EP3774933A1 - Method for producing a three-dimensional object by a multiphoton photopolymerisation process, and associated device - Google Patents

Method for producing a three-dimensional object by a multiphoton photopolymerisation process, and associated device

Info

Publication number
EP3774933A1
EP3774933A1 EP19720696.4A EP19720696A EP3774933A1 EP 3774933 A1 EP3774933 A1 EP 3774933A1 EP 19720696 A EP19720696 A EP 19720696A EP 3774933 A1 EP3774933 A1 EP 3774933A1
Authority
EP
European Patent Office
Prior art keywords
dimensional object
producing
composition
polymerization
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19720696.4A
Other languages
German (de)
French (fr)
Inventor
Laurent GALLAIS-DURING
Jean-Claude Andre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aix Marseille Universite
Centre National de la Recherche Scientifique CNRS
Ecole Centrale de Marseille
Original Assignee
Aix Marseille Universite
Centre National de la Recherche Scientifique CNRS
Ecole Centrale de Marseille
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aix Marseille Universite, Centre National de la Recherche Scientifique CNRS, Ecole Centrale de Marseille filed Critical Aix Marseille Universite
Publication of EP3774933A1 publication Critical patent/EP3774933A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70375Multiphoton lithography or multiphoton photopolymerization; Imaging systems comprising means for converting one type of radiation into another type of radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/704162.5D lithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/08Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/54Inorganic substances
    • C08L2666/58SiO2 or silicates

Definitions

  • the present invention relates to the field of three-dimensional printing. More particularly, the present invention relates to a method for producing a three-dimensional object and a device for implementing this method.
  • Three-dimensional printing technologies have enjoyed considerable popularity since their first use in the mid-1980s.
  • the three-dimensional printing techniques generally used are based on the principle of additive manufacturing, that is, an object is obtained sequentially by the superposition of layers or by sequential or continuous supply of material.
  • Document FR 2567668 discloses a device for producing models of industrial parts. This device makes it possible to produce parts by scanning successive planes, for example horizontal planes, the scanning being effected from the bottom to the top of the tank containing a monomeric liquid.
  • FDM corresponding to the acronym Fused Deposition Modeling
  • SLA stereo-lithography also known by the acronym SLA
  • selective laser sintering in which a laser agglomerates a layer of powder.
  • a three-dimensional printing technique was developed in 1984. It is the stereo-lithography by photopolymerization of a liquid resin.
  • This technique makes it possible to manufacture a three-dimensional object by a series of layers of photopolymerizable resin.
  • the object is made in a bath of liquid resin.
  • the resin is generally polymerized by radical polymerization from an acrylate monomer composition or by cationic polymerization from an epoxy monomer composition and a photoinitiator or photoinitiator which allows the polymerization under the effect of a luminous radiation.
  • Certain compositions applied to one-photon stereolithography applications are commercially available. These compositions include monomers, typically acrylates or epoxies, and the photochemical initiator. According to this technique, a spatially localized process is exploited with amplification linked to a chain reaction.
  • a mobile platform is generally immersed in a tank of liquid resin.
  • This platform supports the object during its manufacture.
  • the platform is positioned at a certain depth below the level of the resin.
  • a laser beam is directed on the surface of the liquid resin to perform a scan adapted to photopolymerize the resin and thereby form a wafer of the three-dimensional object to be manufactured.
  • the platform descends a predefined distance corresponding to the thickness of a slice and the process is renewed for each slice of the object thus obtaining the complete structure in three dimensions of the object.
  • the stereolithography process is complete, the three-dimensional object is removed from the tank, washed and any holding elements are mechanically stripped.
  • the unpolymerized liquid resin present in the tank can subsequently be reused.
  • a final post-treatment step of the object can be carried out in order to harden it, such as for example a cooking step.
  • the deposition times of the different layers can be long if not stimulated, especially in the case of using viscous resins which have a low volume shrinkage of the polymerization.
  • the use of scrapers is often recommended in order to obtain a layer having a flat and uniform surface to ensure the good adhesion of the different layers to each other and also to prevent any collapse of the object during its manufacture.
  • holding elements such as one or more supports, for example rods, which will be removed once the three-dimensional object is removed from the resin to maintain good place this object during its construction in the tank.
  • These holding elements are necessary because of the low viscosity of the resin and its liquid nature on the one hand, and by the density of the polymerized material which is generally slightly greater than the resin which gave rise to it other go. An object created in a low-viscosity resin and without holding elements or supports would tend to move, if only when adding a layer of resin, which makes the manufacture of the object difficult, or even impossible.
  • the powder medium has a coherence of materials conferring on it a structure close to that of a solid. Under these conditions, it is in principle not necessary to introduce supports in the process, even if it uses layers. However, the strong anisotropy related to the melting process leads some manufacturers to recommend the use of supports that compensate mechanical stresses, particularly in the case of use of metal powders.
  • S2P multi-photon photopolymerization
  • two-photon photopolymerization techniques have been developed by Shoji Maruo, Osamu Nakamura and Satoshi Katawa, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization", Opt. Lett. 22, pp. 132-134 (1997).
  • These techniques consist in directly reaching, by means of a photon flux, advantageously formed by at least one focused laser beam, a designated place in a volume, for example a tank, in order to photopolymerize the resin only at this place.
  • An object can thus be manufactured continuously by directing the focused laser beam in the volume of the vessel containing the composition without it being necessary to manufacture the object in slices or in successive layers.
  • the production of three-dimensional objects by multi-photon photopolymerization thus makes it possible to produce three-dimensional objects of great complexity with a high degree of finish, which may, for example, be of the order of a few tens of nanometers.
  • These SL2P printing techniques require the use of initiators capable of absorbing two photons sequentially or simultaneously to form reactive species for initiating photopolymerization.
  • the two-photon absorption requires, according to the material, a significant light density, of the order of a hundred mj / cm 2 at the focal point, the photo-polymerization is limited to the immediate vicinity of the focal point, where the Luminous density is important enough to activate the initiator.
  • One of the main advantages of two-photon stereo-lithography (SL2P) is to allow the fabrication of three-dimensional objects without the need to manufacture the object in superimposed slices or layers.
  • S2P two-photon stereo-lithography
  • Voxel is the acronym for "pixel volumetry", ie volumetric pixel in French. If one wishes to have a good resolution without further processing, when the object to be manufactured requires a high resolution, this leads to very long manufacturing times and potentially prohibitive operating costs. That is why this SL2P technique is generally limited to small objects, often in the millimetric or even micro- or nanometric range, and of simple shape with connection of voxels in the manufacturing process.
  • this technique requires the use of a high light density at the focal point which is generally of micrometric size and which is therefore not optimized for the manufacture of objects of centimeter size, or even decimetric, that is to say ie written in a volume typically between about 1 and 1000 cm 3 .
  • variable beam spot scanning to improve the SL process
  • Yi et al. Rapid Prototyping Journal, Vol. 19, No. 2, 2013, pp. 100-110
  • This method makes it possible to form three-dimensional objects of centimeter size.
  • this method has many disadvantages and requires significant optimization of the device according to the objects to be made.
  • it is possible with this method to change the size of the voxel in two dimensions this is not possible in the third dimension, perpendicular to the first two dimensions, such as in depth.
  • bio-printing processes are additive manufacturing processes from living cells associated with supports made for example in stereo-lithography.
  • One of the disadvantages of these methods is that they generate shearing movements during the establishment of successive layers. These movements can damage living cells and affect their survival.
  • the object of the present invention is to propose a method for producing a three-dimensional object implementing a multi-photonic photopolymerization, in particular with two photons, making it possible at least partially to overcome the disadvantages of the state of the aforementioned technique and which is effective for producing objects of nanometric size, or centimeter or decimetric.
  • Another object of the present invention is to propose a method for producing a complex-shaped object with fluid resins, and in particular to propose a method making it possible to overcome manufacturing artifacts. such as holding elements for example.
  • Another object of the present invention is to propose a method for producing a three-dimensional object in which the movement of the voxels during the production of this object can be prevented and prevented.
  • Another objective of the present invention is to propose a method for producing a three-dimensional object in which the shearing movements of the material constituting the object that may occur during the production of this object are prevented.
  • the present invention relates to a method of producing a three-dimensional object comprising the following operations:
  • composition having a transmittance per unit length preferably greater than 75% at the emission wavelengths of the light source and the at least one filler comprising nanoparticles.
  • the latter can be removed from the photopolymerization tank and then washed with a solution for removing the unpolymerized composition from the three-dimensional object.
  • This washing solution may for example be isopropanol or acetone.
  • nanoparticles makes it possible to modify the viscosity of the composition while avoiding the problems related to the dispersion of light.
  • the production method according to the present invention may further comprise one or more of the following features taken alone or in combination.
  • the composition has a viscosity greater than or equal to 0.30 Pa.s.
  • the nanoparticles have an average diameter less than or equal to 100 nm.
  • the difference in refractive indices of the nanoparticles and the monomer is less than 0.4.
  • the composition may comprise from 10 to 70% by volume of nanoparticles with respect to the volume of said composition.
  • the fillers include a monomer-soluble component.
  • the nanoparticles may be made of a material chosen from: silica, glass, especially borosilicate glass or soda-lime glass, an organic material insoluble in a resin constituting the three-dimensional object.
  • the nanoparticles can be functionalized.
  • the monomer is selected from the following compounds: acrylic resins, L-lactic acid, glycolic acid, caprolactones, these compounds may be used alone or in combination.
  • the filler may also comprise an additional constituent chosen from: living cells, a hydrogel chosen from collagen, fibrin, alginate, chitin, chitosan, hyaluronic acid, poly (2) hydroxyethyl) methacrylate, polyvinyl alcohol and polyethylene glycol, alone or in admixture.
  • a hydrogel chosen from collagen, fibrin, alginate, chitin, chitosan, hyaluronic acid, poly (2) hydroxyethyl) methacrylate, polyvinyl alcohol and polyethylene glycol, alone or in admixture.
  • the monomer is an acrylic monomer, particularly a multifunctional acrylic monomer.
  • the acrylic monomer may be chosen from polyethylene glycol diacrylates, tri (ethylene glycol) dimethacrylates, pentaerythritol tetracrylates, 1,6-hexanediol diacrylate, or a combination of these compounds.
  • the photoinitiator (s) are chosen from: aromatic ketones, aromatic derivatives, eosin Y, or other xanthene dyes
  • the composition may comprise at least one epoxy monomer.
  • the photoinitiator is an onium salt.
  • the multi-photon polymerization is carried out using a laser beam and the spatial resolution of polymerization is adapted by placing an optical diffuser, in particular between 1 ° and 20 °, in the laser beam, the optical diffuser being configured to change the depth of the laser beam field.
  • the three-dimensional object comprises an external surface and an internal volume and localized locations in the internal volume are polymerized with a lower resolution than places forming the outer surface of the three-dimensional object.
  • different portions of the three-dimensional object are successively polymerized in different tanks each containing a specific composition for obtaining a voxel size, or even predetermined functions.
  • the internal volume is polymerized in a first tank containing a first composition comprising first charges in the form of nanoparticles making it possible to obtain a first size of voxel and the external part of the three-dimensional object is polymerized in a second vessel containing a second composition comprising second charges in the form of nanoparticles or no charge to obtain a second voxel size, less than the first voxel size.
  • the present invention also relates to a device for producing a three-dimensional object by multi-photon photo-polymerization, in particular at two photons, comprising:
  • a polymerization vessel containing a composition comprising:
  • composition having a transmittance per unit length preferably greater than 75% at the emission wavelengths of the light source
  • a displacement unit for moving the focussing zone of the laser beam inside the vessel at the predetermined locations to produce the three-dimensional object
  • a polymerization resolution adapter comprising at least one optical diffuser mounted on a support to be placed on the optical path or out of the laser beam in order to adapt the polymerization resolution.
  • FIG. 1 is a simplified diagram of an assembly of a device for producing a three-dimensional object
  • FIG. 2 is a detailed diagram of a composition used for producing a three-dimensional object
  • FIG. 3 illustrates in a table a non-exhaustive list of monomers that can be used in the composition
  • FIG. 4 illustrates in a table a non-exhaustive list of photoinitiators that can be used in the composition
  • FIG. 5 illustrates a conventional ionic polymerization mechanism with priming, propagation and transfer steps
  • FIG. 6 is a diagram of multifunctional monomers of crosslinked systems, insoluble in an initial resin
  • FIGS. 7A and 7B are photographs respectively representing voxels obtained in the case of a Gaussian beam on the one hand, and voxels obtained by placing a diffuser at the entrance of an objective to control the depth of field of the Gaussian beam.
  • the two figures 7A and 7B being of the same scale
  • FIG. 8 is a diagram for illustrating the method of producing a three-dimensional object according to a particular embodiment
  • FIG. 9 is a graph showing the measurement of the diameter of the beam as a function of the distance to the objective in the case of the objective alone and in the case of a 1 ° and 10 ° diffuser,
  • FIG. 10 is a schematic representation of a flowchart illustrating a method for producing a three-dimensional object
  • FIG. 11 is a schematic representation in perspective of an object manufactured by the method of FIG. 10.
  • Fig. 12 is a photograph showing a Dodecahedron obtained by the process of the present invention.
  • Fig. 13 is a photograph showing a bicycle obtained by the method of the present invention.
  • Fig. 14 is a photograph showing an object having a double-helical DNA portion form obtained by the method of the present invention.
  • first and second photopolymerization vessels In the following description, reference is made to first and second photopolymerization vessels, first and second compositions, first and second feeds, first and second voxel sizes. It is a simple indexing to differentiate and name elements close to or of the same nature or structure but not identical. This indexing does not imply a priority of one element with respect to another and it is easy to interchange such denominations without departing from the scope of the present description. This indexing does not imply either an order in time for example to appreciate the operation of the embodiment device or the method of producing the three-dimensional object. With reference to FIG. 1, there is shown a device 1 for producing a three-dimensional object 3 by multi-photon photopolymerization, in particular with two photons.
  • This embodiment device 1 comprises a light source 5 emitting a laser beam 7 and a polymerization tank 9, forming a polymerization reactor, containing a composition 11.
  • the light source 5 may for example be a particularly pulsed laser and in particular femto / picosecond emitting for example at a wavelength of 1030 nm and coupled, where appropriate, with nonlinear optical crystals to double or triple, for example. a nonlinear effect, the frequency of the laser beam 7 to obtain a wavelength of 515 nm and / or 343 nm.
  • the light source 5 emits, according to this example, a pulsed light beam.
  • the choice of the light source 5 may depend on the absorption of the composition 11, which may contain colored additives, for example. Thus, other types of light sources 5, including pulses, can be used.
  • the choice of the multiphotonic photo-polymerization waveguide, in particular at two photons, is determined by the choice of the photoinitiator and its ability to prime the reactive species under the effect of laser irradiation.
  • the output diameter of the laser beam 7 may be about 2.5 mm, the divergence 0.6 mrad and the linear polarization.
  • the pulse energy typically has a duration of 500 fs and is between 40 gj and 2 mj, and the repetition frequency of the pulses can reach 300 kHz, but can be rather located around 1 kHz.
  • Another light source 5 may be used provided that the wavelength of its laser beam 7 is adapted and that the instantaneous power of the laser makes it possible to carry out the photon-multi-photon polymerization, in particular at two photons, of the composition 11. which is in the polymerization tank 9.
  • the embodiment device 1 furthermore has a focusing device 13 for the laser beam 7 and for adapting its digital aperture disposed on the optical path of the laser beam 7.
  • This focusing device 13 may be formed by one or more optical components, in particular an objective for focusing the laser beam 7 inside the composition 11 and adapting the numerical aperture of the laser beam 7.
  • the embodiment device 1 may have a polymerization resolution adapter comprising at least one optical diffuser 14 placed in the optical path of the laser beam 7 to be able to control the depth of field of the laser beam 7.
  • the embodiment 1 comprises a rotatable support 15 with a through hole 14A for focusing the laser beam 7 without modifying the beam in the composition 11 and housings in which are respectively mounted different diffusers 14 to adapt the depth of field. It is thus possible, as has been introduced, to vary the size of the voxels.
  • the support 15 with its or its diffusers 14 and the through hole 14A makes it possible to adjust the dimensions of the voxels and to obtain a variable resolution in the manufacturing process by adjusting the focusing optics and the instantaneous power of the laser beam 7.
  • the polymerization tank 9 is for example placed on a displacement unit 16 displaceable along the x, y and z axes (shown in FIG. 1) to enable the focusing zone of the laser beam 7 to be displaced inside the 9 and thus the polymerization of the composition 11 at predetermined locations to achieve the three-dimensional object 3. It is therefore understood that according to this particular embodiment is the polymerization tank 9 which is moved to allow to position the focal point the laser 5 at the locations to be photopolymerized and not the focal point of the laser 5. To do this, the displacement unit 16 is motorized to allow its movement. This displacement unit 16 is connected, like the laser 5, to a control unit 17 which controls both the operation of the laser 5 and the positioning of the displacement unit 16.
  • mobile mirrors are placed on the optical path of the laser beam 7 to direct the laser beam 7 at the places to be photo-polymerized and a laser focusing system and adaptation of its numerical aperture, allowing to move the focal point on the axis of propagation.
  • the moving mirrors are connected to a control unit to direct the laser beam 7.
  • composition 11 for producing the three-dimensional object 3 by a multi-photon photo polymerization process.
  • the composition 11 comprises at least one monomer 12, at least one filler 20 comprising nanoparticles, and at least one photoinitiator.
  • the monomers 12 are transparent at the predetermined wavelength of the pulsed source which serves for the photopolymerization. These monomers 12 have a refractive index nmonomer at the predetermined wavelength of photopolymerization of the laser 5.
  • a transparent material or medium it is meant that the laser beam 7 can pass, at least in part (that is, that is, it can be weakly absorbent), through this medium as opposed to a material or an opaque medium.
  • charge 20 is meant a material or a material in the broad sense which is added to the composition 11, but which does not participate in the polymerization reaction.
  • the filler 20 can be considered inert with respect to the polymerization.
  • the charges 20 are transparent or very weakly absorbing nanoparticles at the predetermined wavelength of the pulsed source used for the photo-polymerization.
  • These fillers 20 have a refractive index n C har g are at the predetermined wavelength of photopolymerization.
  • the irradiation is carried out at the predetermined wavelength ⁇ , this wavelength can be partially absorbed during its course in the tank containing the polymerizable resin. If a corresponds to an absorption coefficient (measured in m 1 ), the relative energy located at a distance d (d 1 0) from the beam input is determined by the formula exp (-ad) ⁇ 1.
  • exp (-ad) ⁇ 1 The loss of photons can be detrimental to the process since it is the square of the instantaneous power that regulates the kinetics of polymerization.
  • the composition 11 has a transmittance per unit length greater than 75% at the emission wavelengths of the laser 5.
  • the unit of length corresponds to a dimension of the vessel of polymerization 9, and more precisely at a height of the polymerization vessel 9 disposed along the z axis (as shown in Figure 1).
  • the unit of length may for example be a metric unit, such as 1 decimeter or 1 meter.
  • a light beam illuminates a dispersion, namely here the composition 11, characterized by its refractive index
  • the light undergoes a diffusion / absorption process which is a function of the wavelength of the incident light and the optical properties of the light. dispersed and continuous phases.
  • the diffusion / absorption phenomena thus induce an extinction of the incident light in the initial direction of the incident beam.
  • the intensity of the diffuse light depends on the direction of diffusion with respect to the direction of the incident beam, the polarization of the incident light, and the characteristics of the scattering medium.
  • the incident light passes through the medium without being scattered.
  • the light scattered by a particle which corresponds to any type of insolubilized particle present in the medium, constitutes a secondary source for neighboring particles.
  • the waves scattered by the different regions of the material interfere with each other.
  • the interaction of an incident wave with a spherical, homogeneous, isotropic and non-magnetic particle of diameter d in a non-absorbing medium is described by the Maxwell equations.
  • Mie is the first to solve the problem for homogeneous dielectric spheres and to obtain an analytical solution for a spherical particle of arbitrary size.
  • Mie's theory provides a rigorous solution to Maxwell's equations.
  • scattering intensity is particularly important in the case of large particles.
  • the angular variation of scattered light evolves non-monotonously for non-absorbent particles and decreases with scattering angle due to destructive interference in the backward direction.
  • the light absorption phenomena tend to suppress the diffusion lobes and the fine structure of the radiation pattern.
  • the angular dependence of diffuse light less pronounced for small particles, thus allows to draw information on the size of the particles.
  • the intensity of the diffuse light also depends on the values of the refractive indices of the particles and the surrounding medium as well as the wave length of the incident light. Depending on the size of the particles with respect to the wavelength of the incident light, however, approximations can satisfactorily account for the phenomena of light scattering.
  • Rayleigh's theory describes the scattering of light by particles of very small dimensions in front of the wavelength of the incident light (diameter of the particle less than one tenth of the wavelength of the incident beam).
  • the incident electric field illuminating a particle can be considered uniform in the diffuser and the intensity of the diffuse light is then proportional to the square of the volume of the particle.
  • the scattered intensity is essentially concentrated in the forward direction. Geometric optics approximations are then used to describe the scattering of light.
  • the composition 11 is therefore transparent, at least in first approximation to the wavelength of the light source 5. It is therefore not necessary to modify the load torque 20 / monomer 12 to have a low index difference. .
  • the difference between nmonom Guatemala refractive index of the monomer 12 and the refractive index n C har g es loads 20 is less than 0.4, and preferably less than 0.05 (
  • the refractive index n CO mposition of the composition 11 is the result of all components Ci (monomers 12 and loads 20) according to their proportions in the composition 11.
  • VR is the density of the composition 11
  • VR Î the density of each of the components Ci, and% is a rational number between 0 and 1, we have:
  • j is the refractive index of the component Ci
  • the viscosity of the composition 11 can be adjusted by the choice of the volumetric percentage of charge 20, and in particular of nanoparticles; at a value greater than 0.30 Pa.s and preferably between 0.30 and 5.00 Pa.s (Pascal-second), in order to obtain a stable or fixed composition, that is to say in which the object being manufactured but also the load 20 does not move.
  • the viscosity of the composition 11 is adjusted in particular as a function of the manufacturing time of the three-dimensional object 3 or again depending on the size, and in particular the radius or the equivalent radius when the three-dimensional object 3 is not spherical, the three-dimensional object 3 to be manufactured so that the displacement of this three-dimensional object 3 during its manufacture by photo-polymerization is negligible.
  • the use of a slightly heated composition 11 makes it possible to reduce its viscosity and to fill the tank while avoiding the possible presence of air bubbles.
  • This principle can be applicable to the separation of the three-dimensional object 3 once made of the composition 11.
  • p is the density of the fluid
  • m viscosity, V and D are a speed and a characteristic length of the flow considered.
  • the flows at low Reynolds numbers are characterized by the predominance of the effects due to viscosity compared to those due to inertia.
  • the composition behaves almost like a solid, which avoids the movement of voxels.
  • the filler 20 in the form of nanoparticles, for example formed of insoluble nanoparticles or comprising a component that is soluble in the monomer 12, for example soluble macromolecules such as, for example, linear acrylic polymers solubilized in an acrylic resin, in the composition 11.
  • the average size nanoparticles is much lower than the excitation wavelength of the laser beam 7.
  • Solubility is the ability of a substance, called a solute, to solubilize in another substance, called a solvent, to form a homogeneous mixture called a solution.
  • the volumetric percentage of filler 20 in the composition 11 is between 10% and 70% by volume relative to the volume of said composition 11, in particular between 30% and 60% and more particularly between 40% and 50%. More precisely 100% represents the total volume of the composition 11 and this volume is separated into different proportions by volume for each of the constituents of this composition 11.
  • the nanoparticles have an average diameter less than or equal to 100 nm, in particular between 7 nm and 70 nm and more specifically 10 nm.
  • the maximum size of the nanoparticles is chosen according to the diffraction limit of the incident wavelength resulting from the laser beam 7, ie approximately one-tenth of the incident wavelength coming from the light source 5.
  • the nanoparticles are, for example, made of a material chosen from: silica, such as, for example, fused silica, glass, in particular borosilicate glass or soda-lime glass, an organic material insoluble in a resin constituting the three-dimensional object 3, as for example acrylic nanoparticles or epoxies.
  • silica such as, for example, fused silica, glass, in particular borosilicate glass or soda-lime glass
  • an organic material insoluble in a resin constituting the three-dimensional object 3 as for example acrylic nanoparticles or epoxies.
  • the nanoparticles can be functionalized in order to modify their chemical affinity with the monomers 12 or to give them particular properties.
  • the nanoparticles are mono-dispersed, that is to say that they all have the same diameter.
  • these nanoparticles can be of variable sizes, but they respect the diffraction stress defined above.
  • the use of mono-dispersed nanoparticles makes it possible to define in certain configurations the size of the voxels. Indeed, when the diameter of the nanoparticles is greater than the focal volume of the laser beam 7, the size of the voxel is no longer determined by the focal volume of the laser beam 7 but by the diameter of the nanoparticles.
  • the shape of the voxels can thus be perfectly spherical, although the focal volume of the laser beam 7 is not, the laser beams 7 serving only to agglomerate at the focal point the nanoparticles, thanks to the photopolymer created, which then define the size of the voxels.
  • the composition 11 is a frozen composition, for example a composition comprising, as monomers, oligomers of high molecular weight making it possible to obtain a solid or quasi-solid composition at ambient temperature, so that it is possible to perform a photo-polymerization of an object without having to make support or holding appendages.
  • the composition 11 Before and / or after phototransformation, the composition 11 may be heated beyond the melting temperature of the resin in order to introduce the resin into the photopolymerization tank 9 in a liquid (or viscous) form and / or in order to separate the object from the composition 11 that gave it birth. This has the advantage of significantly reducing the time of realization of the three-dimensional object 3 as well as making highly complex parts that would be difficult or impossible to manufacture by other methods requiring the implementation of appendices of support.
  • the monomers 12 present in the composition 11 are monomers 12 commonly used in three-dimensional printing by mono- or multi-photon photopolymerization. These monomers 12 are, for example, acrylic monomers, more specifically acrylates. On the other hand, these acrylic monomers can be multifunctional. A non-exhaustive list of monomers 12 that can be used in composition 11 is provided with reference to FIG.
  • the acrylic monomer is chosen from poly (ethylene glycol) diacrylates, tri (ethylene glycol) dimethacrylates, pentaerythritol tetracrylates, 1,6-hexanediol diacrylate, or a combination of these compounds.
  • the radical photoinitiators or photoinitiators contained in the composition 11 must make it possible to initiate the polymerization at the predetermined wavelength of photopolymerization.
  • photoinitiators There are a large number of photoinitiators adapted according to the operating conditions and the choice of which can be easily determined by those skilled in the art.
  • the photoinitiators below are given by way of non-limiting example. These are typically aromatic ketones, such as, for example, 2,2-dimethoxy-l, 2-phenylacetophenone (DMPA), marketed under the name Irgacure 651®, aromatic derivatives, eosin Y for photopolymerizations.
  • DMPA 2-phenylacetophenone
  • Photoinitiators particularly suitable for the process according to the present invention are shown with reference to Figure 4 and marketed under the trade names Darocure 1173® and 116®, Quantacure PDO®, Irgacure 184®, 651®, and 907®, and Trigonal 14®.
  • the radical photochemical initiator is DMPA marketed under the name lrgacure 651®.
  • the process of the invention uses an ionic photopolymerization mechanism, for example cationic.
  • the monomers 12 present in the composition 11 are, for example, epoxidic monomers and the photoinitiator is an onium salt, such as for example Rhodorsil 2074®.
  • FIG. 5 illustrates a conventional ionic polymerization mechanism with the following steps: priming (A), propagation (B) and (C), transfer (D).
  • a focusing optics 13 and a diffuser 14 making it possible to control and / or modify the depth of field of the laser beam 7 are arranged on the optical path of the laser beam 7.
  • FIG. 7A shows several voxel voxels vox-A, vox-B, vox-C, vox-D and vox-E without diffuser 14 with different laser beam powers 7.
  • FIG. 7B shows several voxel voxels vox-A ', vox-B', vox-C ', vox-D' and vox-E ', with a diffuser 14 on the optical path of the laser beam 7 and at powers 7 different laser beam.
  • a diffuser 14 adapted 1 ° and 20 ° allows to vary the size of the photopolymerized voxels.
  • the power of the light source 5 must be adapted so that the power density is identical or as close as possible to that defined for voxels of smaller size (substantially varying between the square and the cube of the voxel size).
  • the method according to the invention makes it possible to design the producing three-dimensional objects 3 at least centimeter in size without resorting to support or holding appendages for complex objects.
  • the method according to the invention also makes it possible to reduce the time required for producing the three-dimensional object 3 by multi-photon photopolymerization, in particular with two photons.
  • the optimization consists in polymerizing localized locations in the internal volume (solid part) with a low resolution, determined according to the object to be printed, and in polymerizing the zones forming the external surface of the three-dimensional object 3 with a high resolution to obtain a good surface quality for the external surface (s) of the three-dimensional object 3.
  • the manufacture of the three-dimensional object 3 can be carried out successively.
  • the internal volume is polymerized from a first composition 11 comprising first charges 20 in the form of nanoparticles making it possible to obtain a first voxel size, which is high compared with the three-dimensional object 3 to be manufactured.
  • the internal part of the object is then removed from the first tank 9 comprising the first composition 11. This internal part is then pbngée in a second tank 9 comprising a second composition 11 comprising finer nanoparticles than the first composition 11, or not containing no charge 20, for the polymerization of the outer surface of the three-dimensional object 3.
  • first and second successive compositions 11 make it possible to reduce the size of the first and second voxels as a function of the finish of the three-dimensional object 3 to be formed.
  • the method thus makes it possible to polymerize at localized locations in the internal volume with a lower resolution than the places forming the external surface of the three-dimensional object 3.
  • This method can be generalized and it is possible to provide different portions of the three-dimensional object 3 successively by polymerization in different tanks 9 each containing a specific composition 11 to obtain a predetermined voxel size.
  • This method thus makes it possible to easily and quickly produce three-dimensional objects whose shape may be more complex than that accessible with conventional stereo-lithography methods. It is thus possible to envisage the manufacture of complex objects having centimeter dimensions, or even about ten centimeters, in a reasonable manufacturing time and without resorting to holding elements present in the structure of the three-dimensional object 3.
  • This method therefore has a decisive advantage with respect to one-photon stereolithography, since the layer thickness can not, in general, be easily changed during the polymerization of a resin layer. If it is possible to modify the size of the light spot, only two space parameters (voxel) can be modified, whereas according to the method described here, it is possible to adjust the size of the voxels according to three parameters: the diameter of the voxel, the depth and the power of the light source to produce an object according to a setpoint taking into account the surface state of the portion of the three-dimensional object 3 made.
  • the method may be a bio printing process.
  • the composition 11 comprises monomers 12, advantageously biocompatible, at least one filler 20 comprising nanoparticles and at least one biological material corresponding to an additional living component of the filler 20.
  • the monomers 12 may be chosen from the following compounds: acrylics, L-lactic acid, glycolic acid, caprolactones, these compounds may be used alone or in combination.
  • the filler 20 comprises the nanoparticles making it possible to modify the viscosity of the composition 11 and in addition at least one biobigic material corresponding to the additional constituent of the filler 20, for example living cells.
  • the charges 20 are therefore composed of nanoparticles associated with living cells, these nanoparticles being able to be in a mixture of collagen and living cells, for example.
  • a hydrogel is necessary in order to preserve the viability of the cells during printing.
  • the hydrogel may be chosen from collagen, fibrin, alginate, chitin, chitosan, hyaluronic acid, poly (2-hydroxyethyl) methacrylate (PHEMA), polyvinyl alcohol (PVA) and polyethylene glycol (PEG) alone or in combination.
  • PHEMA poly (2-hydroxyethyl) methacrylate
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • FIG. 10 there is shown schematically a method of producing the three-dimensional object 3.
  • This process involves an introduction operation El of the composition 11 in the polymerization tank 9, the composition 11 comprising at least one monomer 12, at least one filler 20 in the form of nanoparticles and at least one photoinitiator.
  • this composition 11 can be slightly heated in order to allow a decrease in its viscosity to facilitate this introduction operation El.
  • the appearance of air bubbles in the polymerization tank 9 can be prevented by this slight heating of the composition 11.
  • the process then performs a polymerization operation E2 by multi-photon polymerization using the light source 5 at predetermined locations.
  • the polymerization vessel 9 is displaced along the x, y, z axes (shown in FIG. 1) so as to allow the displacement of the focusing zone of the laser beam 7 allowing the polymerization of the composition 11.
  • the method then implements an E3 removal step of the printed three-dimensional object 3 of the polymerization vessel 9.
  • this E3 removal operation can be carried out in a conventional manner. by withdrawal with the forceps, or with a sieve for example.
  • the method can implement an E4 removal operation of supernumerary nanoparticles.
  • These supernumerary nanoparticles form with the unpolymerized monomer 12 a film on the three-dimensional object 3 obtained.
  • This film can be removed by wiping, using a dipping in a bath or by rinsing with a solvent that solubilizes the non-polymerized monomer 12, which allows the removal of nanoparticles present on the surface.
  • This elimination operation E4 can be performed at the end of the resin prints in the mass.
  • the fluidification of the composition 11, and in particular at least one monomer 12, unpolymerized can be done by adding monomer 12 liquid, which allows recycling of non-transformed materials or using a conventional monomer solvent 12.
  • the monomer 12 in liquid form is inserted into the free spaces and, by polymerizing, binds the nanoparticles around the points where the laser beam 7 is focused. Nanoparticles at the periphery, not or insufficiently bonded by polymerization, are abraded during the removal operation E4. According to the particular embodiment of FIG. 10, this elimination operation E4 is carried out by rinsing with a solvent, in particular chosen from ketone or alcoholic compounds, in particular acetone or else isopropanol.
  • a solvent in particular chosen from ketone or alcoholic compounds, in particular acetone or else isopropanol.
  • FIG. 11 it is shown schematically of the three-dimensional object 3 obtained according to this method.
  • the three-dimensional object 3 is of substantially elliptical shape.
  • other forms, including forms of higher complexity can be obtained.
  • some objects having more or less complex geometric shapes can be obtained by this method.
  • Fig. 12 shows a photograph of an object having a complex shape of Dodecahedron
  • Fig. 13 shows a photograph of an object having a bicycle shape
  • Fig. 14 shows a photograph of an object having a form of double helix DNA.
  • the polymerization tank 9 may have a support, such as for example a bracket, on which the three-dimensional object 3 is manufactured by multi-photon photopolymerization.
  • a support such as for example a bracket
  • the use of such a support makes it possible to guarantee the stability of the three-dimensional object 3 during its manufacture. Indeed, when the manufacturing times of the three-dimensional object 3 are long, for example greater than 15 seconds, the latter may be caused to move towards the bottom of the polymerization vessel 9 according to the Stokes law. Such displacement of the object during its manufacture could adversely affect the manufacturing accuracy of this three-dimensional object 3. This displacement can therefore be prevented by means of the support present in the polymerization vessel 9 on which the three-dimensional object 3 is realized.
  • Specific examples of compositions 11 are developed hereinafter as well as a process for preparing the nanoparticles serving as filler 20.
  • the nanoparticles are prepared according to a two-step method consisting of obtaining the nanoparticles in powder form and then dispersing them in the monomer 12. This method is described in particular in the following documents:
  • this composition is stirred for about 1 hour by mechanical stirring and / or by ultrasonic stirring of about 25 kHz over possibly longer periods. These stirring times can become higher when the filler rate increases, which may correspond to a "gelation" in particular localized medium.
  • nanoparticles allows a suitable increase in the viscosity of the composition 11 without the light scattering effects of the laser beam 7 needing to be taken into consideration.
  • the refractive indices were measured by an Abbe refractometer (Kern Optics ORT 1RS Refractometer) calibrated using a calibration oil.
  • Norland monomers 65 and 81 incorporate a photoinitiator and have been used without the addition of photoinitiator or complementary photoinitiator.
  • This composition 11 was polymerized by two-photon polymerization using a Frequency doubled 5 Yb: KGW laser at 515 nm with pulse durations of 500 fs to obtain an object to obtain a substantially cylindrical shaped object.
  • the composition 11 has a satisfactory viscosity to avoid displacements of the object to be printed during its production and has a small variation of the refractive index of its various components.
  • the composition 11 is also transparent to the predetermined wavelength of photopolymerization.
  • the embodiment device 1 comprises a light source 5 such as a He / Ne laser of wavelength 543 nm, a long-distance working lens and a set of different diffusers 14 mounted on a filter wheel.
  • a light source 5 such as a He / Ne laser of wavelength 543 nm
  • a long-distance working lens and a set of different diffusers 14 mounted on a filter wheel.
  • the measurement of the caustic of the laser beam 7 is shown in FIG. 9. These measurements make it possible to determine the influence of the diffusers 14 on the diameter of the laser beam 7.
  • the curve 101 shows the diameter of the laser beam 7 in gm as a function of the position in z in mm without diffuser, the curve 103 with a diffuser 14 of 1 °, and the curve 105 with a diffuser 14 of 10 °.
  • this method makes it possible to control the depth of field of the Gaussian beam without reducing the diameter of the laser beam 7 at the focal point and thus to control the dimensions of the voxel.
  • the diameter of the laser beam 7 may be 100 gm in diameter and a depth of field defined by a increased diameter of 2 0 '5, of about 300 gm or a diameter / depth of the order of 0.3 ( Figure 3).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The invention relates to a method for producing a three-dimensional object (3), comprising the following operations: introducing a composition (11) into a polymerisation vessel (9); and polymerising the composition (11) by multiphoton polymerisation, by means of a light source (5), in predetermined spots, in order to produce the three-dimensional object (3), the composition (11) comprising at least one monomer (12), at least one filler and at least one photoinitiator, said composition (11) having a transmittance per unit of length to the emission wavelengths of the light source (5), which is preferably higher than 75%, and the at least one filler comprises nanoparticles.

Description

Procédé pour la réalisation d'un objet tridimensionnel par un processus de photo polymérisation multi-photonique et dispositif associé  Method for producing a three-dimensional object by a multi-photonic photo polymerization process and associated device
La présente invention concerne le domaine de l’impression tridimensionnelle. Plus particulièrement, la présente invention concerne un procédé de réalisation d’un objet tridimensionnel et un dispositif pour la mise en œuvre de ce procédé. The present invention relates to the field of three-dimensional printing. More particularly, the present invention relates to a method for producing a three-dimensional object and a device for implementing this method.
Les technologies d’impression tridimensionnelle ont connu un engouement considérable depuis leurs premières utilisations au milieu des années 1980. Les techniques d’impression tridimensionnelles généralement utilisées se basent sur un principe de la fabrication additive, c’est-à-dire qu’un objet est obtenu séquentiellement par la superposition de couches ou par apport séquentiel ou continu de matière. Three-dimensional printing technologies have enjoyed considerable popularity since their first use in the mid-1980s. The three-dimensional printing techniques generally used are based on the principle of additive manufacturing, that is, an object is obtained sequentially by the superposition of layers or by sequential or continuous supply of material.
On connaît du document FR 2567668 un dispositif pour la réalisation de modèles de pièces industrielles. Ce dispositif permet de réaliser des pièces par balayage de plans successifs, par exemple horizontaux, le balayage s’effectuant du bas vers le haut de la cuve contenant un liquide monomère.  Document FR 2567668 discloses a device for producing models of industrial parts. This device makes it possible to produce parts by scanning successive planes, for example horizontal planes, the scanning being effected from the bottom to the top of the tank containing a monomeric liquid.
Parmi les différents procédés d’impression tridimensionnelle, on distingue plus particulièrement le FDM (correspondant à l’acronyme anglais Fused Déposition Modeling) correspondant à un modelage par dépôt de matière en fusion, la stéréo-lithographie également connu sous l’acronyme SLA, et le frittage sélectif par laser dans lequel un laser agglomère une couche de poudre. Ces différentes techniques ont été considérablement améliorées au cours de ces dernières années de sorte qu’elles ne sont plus seulement utilisées pour la réalisation de prototypes, mais de plus en plus souvent pour la réalisation d’objets fonctionnels.  Among the various three-dimensional printing methods, there is more particularly FDM (corresponding to the acronym Fused Deposition Modeling) corresponding to a modeling by deposition of molten material, stereo-lithography also known by the acronym SLA, and selective laser sintering in which a laser agglomerates a layer of powder. These different techniques have been considerably improved in recent years so that they are not only used for prototypes, but more and more often for the realization of functional objects.
Une technique d’impression tridimensionnelle a été développée en 1984. 11 s’agit de la stéréo-lithographie par photo- polymérisation d’une résine liquide. Cette technique permet de fabriquer un objet tridimensionnel par une succession de couches de résine photo- polymérisable. L’objet est fabriqué dans un bain de résine liquide. La résine est généralement polymérisée par polymérisation radicalaire à partir d’une composition de monomères acrylates ou par polymérisation cationique à partir d’une composition de monomères époxys et d’un photo-initiateur ou photo-amorceur qui permet la polymérisation sous l’effet d’une radiation lumineuse. Certaines compositions appliquées aux applications de stéréo- lithographie à un photon sont disponibles dans le commerce. Ces compositions comprennent des monomères, typiquement des acrylates ou des époxys, et l’amorceur photochimique. Selon cette technique, on exploite un processus localisé dans l’espace avec une amplification liée à une réaction en chaîne. A three-dimensional printing technique was developed in 1984. It is the stereo-lithography by photopolymerization of a liquid resin. This technique makes it possible to manufacture a three-dimensional object by a series of layers of photopolymerizable resin. The object is made in a bath of liquid resin. The resin is generally polymerized by radical polymerization from an acrylate monomer composition or by cationic polymerization from an epoxy monomer composition and a photoinitiator or photoinitiator which allows the polymerization under the effect of a luminous radiation. Certain compositions applied to one-photon stereolithography applications are commercially available. These compositions include monomers, typically acrylates or epoxies, and the photochemical initiator. According to this technique, a spatially localized process is exploited with amplification linked to a chain reaction.
Selon cette technique, une plate-forme mobile est plongée généralement dans une cuve de résine liquide. Cette plate-forme supporte l’objet au cours de sa fabrication. La plate forme est positionnée à une certaine profondeur en-dessous du niveau de la résine. Un faisceau laser est dirigé sur la surface de la résine liquide pour réaliser un balayage adapté afin de photo-polymériser la résine et de former ainsi une tranche de l’objet tridimensionnel à fabriquer. Après le traitement d’une tranche, la plate-forme descend d’une distance prédéfinie correspondant à l’épaisseur d’une tranche et le processus se renouvelle pour chaque tranche de l’objet permettant ainsi l’obtention de la structure complète en trois dimensions de l’objet. Une fois le processus de stéréolithographie terminé, l’objet tridimensionnel est retiré de la cuve, lavé et des éléments de maintien éventuels sont élimés mécaniquement. La résine liquide non-polymérisée présente dans la cuve peut par la suite être réutilisée. Selon la résine utilisée, une dernière étape de post- traitement de l’objet peut être réalisée afin de la durcir, comme par exemple une étape de cuisson. Selon cette technique, les temps de déposition des différentes couches peuvent être longs si on ne la stimule pas, en particulier dans le cas d’utilisation de résines visqueuses qui présentent un faible retrait volumique brs de la polymérisation. Dans le cas d’utilisation de résines visqueuses avec cette technique, l’utilisation de racleurs est souvent préconisée afin d’obtenir une couche présentant une surface plane et uniforme pour assurer la bonne adhésion des différentes couches entre elles et aussi pour prévenir tout effondrement de l’objet au cours de sa fabrication.  According to this technique, a mobile platform is generally immersed in a tank of liquid resin. This platform supports the object during its manufacture. The platform is positioned at a certain depth below the level of the resin. A laser beam is directed on the surface of the liquid resin to perform a scan adapted to photopolymerize the resin and thereby form a wafer of the three-dimensional object to be manufactured. After the treatment of a slice, the platform descends a predefined distance corresponding to the thickness of a slice and the process is renewed for each slice of the object thus obtaining the complete structure in three dimensions of the object. Once the stereolithography process is complete, the three-dimensional object is removed from the tank, washed and any holding elements are mechanically stripped. The unpolymerized liquid resin present in the tank can subsequently be reused. Depending on the resin used, a final post-treatment step of the object can be carried out in order to harden it, such as for example a cooking step. According to this technique, the deposition times of the different layers can be long if not stimulated, especially in the case of using viscous resins which have a low volume shrinkage of the polymerization. In the case of using viscous resins with this technique, the use of scrapers is often recommended in order to obtain a layer having a flat and uniform surface to ensure the good adhesion of the different layers to each other and also to prevent any collapse of the object during its manufacture.
Ces techniques ont pour inconvénient de ne pas permettre la réalisation de couches très fines, typiquement de l’ordre de quelques dizaines de gm, voire, dans certaines conditions délicates, inférieures au gm. En effet, de telles couches présentent le risque de se déplacer ou d’être arrachées lors de la fabrication de l’objet tridimensionnel. Par ailleurs, ces techniques d’impression tridimensionnelle par superposition de couches ne permettant pas la fabrication d’objets complexes ou nécessitant un degré élevé de finition. Ceci est notamment dû à la viscosité de la résine et à sa tension superficielle. En règle générale, une résine de faible viscosité, généralement de l’ordre de quelques dizaines de centi-Poises (cP), est préférée, car elle correspond à un optimum entre la résolution de l’objet et le temps de mise en place et de stabilisation des couches. A ceci s’ajoute le fait qu’il faut également fabriquer des éléments de maintien, comme un ou plusieurs supports, par exemple des tiges, qui vont être supprimés une fois que l’objet tridimensionnel est retiré de la résine afin de maintenir en bonne place cet objet au cours de sa construction dans la cuve. Ces éléments de maintien s’avèrent nécessaires du fait de la faible viscosité de la résine et de sa nature liquide d’une part, et par la densité du matériau polymérisé qui est généralement légèrement supérieure à la résine qui lui a donné naissance d’autre part. Un objet créé dans une résine de faible viscosité et sans éléments de maintien ou supports aurait tendance à se déplacer, ne serait-ce que lors de l’ajout d’une couche de résine, ce qui rend la fabrication de l’objet difficile, voire impossible. Selon la complexité de l’objet à réaliser, certains de ces supports ne peuvent pas être retirés aisément et, dans certains cas, l’objet ne peut pas être fabriqué par cette technique d’impression tridimensionnelle. La réalisation d’éléments de maintien ou d’appendices de fabrication, dont le seul but est de permettre la fabrication de l’objet, augmente davantage le temps de conception, de numérisation, de fabrication et de finition. These techniques have the disadvantage of not allowing the realization of very thin layers, typically of the order of a few tens of gm, or, in certain delicate conditions, less than gm. Indeed, such layers have the risk of moving or being torn off during the manufacture of the three-dimensional object. Moreover, these three-dimensional printing techniques by superposition of layers does not allow the manufacture of complex objects or requiring a high degree of finish. This is due in particular to the viscosity of the resin and its surface tension. As a general rule, a resin of low viscosity, generally of the order of a few tens of centi-poises (cP), is preferred because it corresponds to an optimum between the resolution of the object and the time of setting up and stabilizing layers. Added to this is the fact that it is also necessary to manufacture holding elements, such as one or more supports, for example rods, which will be removed once the three-dimensional object is removed from the resin to maintain good place this object during its construction in the tank. These holding elements are necessary because of the low viscosity of the resin and its liquid nature on the one hand, and by the density of the polymerized material which is generally slightly greater than the resin which gave rise to it other go. An object created in a low-viscosity resin and without holding elements or supports would tend to move, if only when adding a layer of resin, which makes the manufacture of the object difficult, or even impossible. Depending on the complexity of the object to be produced, some of these supports can not be removed easily and in some cases the object can not be manufactured by this three-dimensional printing technique. The realization of holding elements or manufacturing appendices, whose sole purpose is to enable the manufacture of the object, further increases the time of design, digitization, manufacturing and finishing.
Par ailleurs, avec les procédés d’impression tridimensionnelle utilisant la fusion d’une poudre induite par laser, le milieu pulvérulent dispose d’une cohérence des matériaux lui conférant une structure proche de celle d’un solide. Dans ces conditions, il n’est en principe pas nécessaire d’introduire dans le procédé des supports, même s’il utilise des couches. Cependant, la forte anisotropie liée au procédé de fusion amène certains industriels à recommander l’utilisation de supports qui compensent les tensions mécaniques, en particulier dans le cas d’utilisation de poudres métalliques.  Moreover, with the three-dimensional printing processes using the melting of a laser-induced powder, the powder medium has a coherence of materials conferring on it a structure close to that of a solid. Under these conditions, it is in principle not necessary to introduce supports in the process, even if it uses layers. However, the strong anisotropy related to the melting process leads some manufacturers to recommend the use of supports that compensate mechanical stresses, particularly in the case of use of metal powders.
D’autre part, pour des objets nécessitant un aspect de surface fini, il est nécessaire d’utiliser une résolution de fabrication adaptée à l’état de surface souhaité ou de réaliser un traitement complémentaire comme de l’usinage en fin de procédé d’impression.  On the other hand, for objects requiring a finite surface appearance, it is necessary to use a manufacturing resolution adapted to the desired surface state or to perform a complementary treatment such as machining at the end of the process. impression.
Afin de s’affranchir de ces limitations, il est possible de recourir à des techniques de photo- polymérisation multi- photonique (SL2P), notamment à deux photons. Des technique de photo- polymérisation à deux photons ont par exemple été développées par Shoji Maruo, Osamu Nakamura et Satoshi Katawa, « Three-dimensional microfabrication with two- photon-absorbed photopolymerization », Opt. Lett. 22, pp. 132-134 (1997). Ces techniques consistent à atteindre directement à l’aide d’un flux de photons, avantageusement formé par au moins un faisceau laser focalisé, un endroit désigné dans un volume, par exemple d’une cuve, afin de photo-polymériser la résine uniquement à cet endroit. Un objet peut ainsi être fabriqué en continu en dirigeant le faisceau laser focalisé dans le volume de la cuve contenant la composition sans qu’il soit nécessaire de fabriquer l’objet par tranches ou par couches successives. La réalisation d’objets tridimensionnels par photo- polymérisation multi- photonique permet ainsi de réaliser des objets tridimensionnels de grande complexité avec un degré élevé de finition, pouvant par exemple être de l’ordre de quelques dizaines de nanomètres. Ces techniques d’impression SL2P nécessitent l’utilisation d’amorceurs capables d’absorber deux photons de façon séquentielle ou simultanée afin de former des espèces réactives permettant d’amorcer la photo-polymérisation. L’absorption à deux photons nécessitant, selon le matériau, une densité lumineuse importante, de l’ordre d’une centaine de mj/cm2 au point focal, la photo-polymérisation est limitée au voisinage immédiat du point focal, là où la densité lumineuse est assez importante pour activer l’amorceur. L’un des principaux avantages de la stéréo-lithographie à deux photons (SL2P) est de permettre la fabrication d’objets tridimensionnels sans nécessiter de fabriquer l’objet en tranches ou couches superposées. Dans les processus de photo- polymérisation à un ou deux photons, pour que la polymérisation de la résine ait lieu, il faut franchir un seuil lié à la consommation bcale de l’oxygène qui est un inhibiteur de polymérisation. Cela permet de gagner en résolution spatiale relativement à la forme du faisceau lumineux. Cet effet est plus important avec une absorption bi-photonique qu’avec une absorption à un photon. In order to overcome these limitations, it is possible to use multi-photon photopolymerization (SL2P) techniques, in particular two photons. For example, two-photon photopolymerization techniques have been developed by Shoji Maruo, Osamu Nakamura and Satoshi Katawa, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization", Opt. Lett. 22, pp. 132-134 (1997). These techniques consist in directly reaching, by means of a photon flux, advantageously formed by at least one focused laser beam, a designated place in a volume, for example a tank, in order to photopolymerize the resin only at this place. An object can thus be manufactured continuously by directing the focused laser beam in the volume of the vessel containing the composition without it being necessary to manufacture the object in slices or in successive layers. The production of three-dimensional objects by multi-photon photopolymerization thus makes it possible to produce three-dimensional objects of great complexity with a high degree of finish, which may, for example, be of the order of a few tens of nanometers. These SL2P printing techniques require the use of initiators capable of absorbing two photons sequentially or simultaneously to form reactive species for initiating photopolymerization. The two-photon absorption requires, according to the material, a significant light density, of the order of a hundred mj / cm 2 at the focal point, the photo-polymerization is limited to the immediate vicinity of the focal point, where the Luminous density is important enough to activate the initiator. One of the main advantages of two-photon stereo-lithography (SL2P) is to allow the fabrication of three-dimensional objects without the need to manufacture the object in superimposed slices or layers. In one- or two-photon photopolymerization processes, in order for the polymerization of the resin to take place, it is necessary to cross a threshold related to the oxygen consumption of the oxygen which is a polymerization inhibitor. This makes it possible to gain spatial resolution relative to the shape of the light beam. This effect is greater with bi-photon absorption than with single-photon absorption.
Cette résolution fixe est reliée à un volume élémentaire, appelé voxel, produit par l’impulsion laser. Le voxel est l’acronyme anglais de « volumétrie pixel », c’est-à-dire pixel volumétrique en français. Si l’on souhaite disposer d’une bonne résolution sans traitement complémentaire, lorsque l’objet à fabriquer nécessite une résolution élevée, cela conduit à des temps de fabrication très longs et des coûts d’exploitation possiblement prohibitifs. C’est pourquoi cette technique de SL2P est généralement limitée à des objets de petite taille, souvent dans le domaine millimétrique, voire micro- ou nanométrique, et de forme simple avec raccordement des voxels dans le processus de fabrication. De plus, cette technique nécessite d’utiliser une densité lumineuse importante au niveau du point focal qui est généralement de taille micrométrique et qui n’est donc pas optimisé pour la fabrication d’objets de taille centimétrique, voire décimétrique, c’est-à-dire inscrits dans un volume compris typiquement entre environ 1 et 1000 cm3. This fixed resolution is connected to an elementary volume, called voxel, produced by the laser pulse. Voxel is the acronym for "pixel volumetry", ie volumetric pixel in French. If one wishes to have a good resolution without further processing, when the object to be manufactured requires a high resolution, this leads to very long manufacturing times and potentially prohibitive operating costs. That is why this SL2P technique is generally limited to small objects, often in the millimetric or even micro- or nanometric range, and of simple shape with connection of voxels in the manufacturing process. In addition, this technique requires the use of a high light density at the focal point which is generally of micrometric size and which is therefore not optimized for the manufacture of objects of centimeter size, or even decimetric, that is to say ie written in a volume typically between about 1 and 1000 cm 3 .
Plus récemment, des techniques de SL2P à résolution variable ont été développées. On connaît du document « Stereolithography with variable resolutions using optical filter with high contrast-gratings », Li et al, J. Vac. Sci. Technol. B, Vol. 33, No. 6, Nov/Dec 2015, une méthode d’impression tridimensionnelle par stéréo-lithographie. La variation de la résolution est obtenue par l’utilisation de filtres optiques modifiant la longueur d’onde du faisceau laser, permettant ainsi d’avoir une taille de pixel variable de 37 et 417 mih. Cette méthode a pour inconvénient d’utiliser deux bngueurs d’ondes différentes et donc de ne permettre que deux tailles de pixels en fonction de la longueur d’onde du faisceau laser et du filtre optique. Par ailleurs, cette technique reste seulement adaptée à des objets de taille micrométrique. More recently, SL2P techniques with variable resolution have been developed. From the document "Stereolithography with variable resolutions using high contrast-gratings" Li et al, J. Vac. Sci. Technol. B, Vol. 33, No. 6, Nov / Dec 2015, a three-dimensional printing method by stereo-lithography. The variation of the resolution is obtained by the use of optical filters changing the wavelength of the laser beam, thus allowing to have a variable pixel size of 37 and 417 mih. This method has the disadvantage of using two different wave bunners and thus to allow only two pixel sizes depending on the wavelength of the laser beam and the optical filter. Moreover, this technique remains only adapted to objects of micrometric size.
Le document « Using variable beam spot scanning to improve the SL process », Yi et al, Rapid Prototyping Journal, Vol. 19, No. 2, 2013, pp. 100-110, décrit une méthode de stéréo-lithographie à résolution variable. La variation de la résolution est obtenue par un dispositif optique. Cette méthode permet de former des objets tridimensionnels de taille centimétrique. Toutefois, cette méthode présente de nombreux inconvénients et nécessite une optimisation importante du dispositif en fonction des objets à réaliser. Bien qu’il soit possible avec ce procédé de changer la taille du voxel en deux dimensions, cela n’est pas possible dans la troisième dimension, perpendiculaire aux deux premières dimensions, comme par exemple en profondeur.  The document "Using variable beam spot scanning to improve the SL process", Yi et al., Rapid Prototyping Journal, Vol. 19, No. 2, 2013, pp. 100-110, describes a method of stereo-lithography with variable resolution. The variation of the resolution is obtained by an optical device. This method makes it possible to form three-dimensional objects of centimeter size. However, this method has many disadvantages and requires significant optimization of the device according to the objects to be made. Although it is possible with this method to change the size of the voxel in two dimensions, this is not possible in the third dimension, perpendicular to the first two dimensions, such as in depth.
Plus récemment, des procédés dit de bio-impression ont été développés pour la fabrication de tissus vivants, voire d’organes. Ces méthodes sont notamment décrites dans les publications suivantes :  More recently, so-called bio-printing processes have been developed for the manufacture of living tissues, or even organs. These methods are described in particular in the following publications:
• André J.C., Malaquin L., Guedon E. (2017), « Bio-printing ; où va-t-on ? », Techniques de l’lngénieur - ref. RE2 68 VI, 23 pp. (2017) ;  • André J.C., Malaquin L., Guedon E. (2017), "Bio-printing; where are we going ? », Engineering Techniques - ref. RE2 68 VI, 23 pp. (2017);
• Chua C.K., Yeong N.Y. (2015), « Bio-printing : principles and applications », e-book World Scientific Ed. - Singapour ;  • Chua C.K., Yeong N.Y. (2015), "Bio-printing: principles and applications", e-book World Scientific Ed. - Singapore;
• Morimoto Y, Takeuchi S. (2013), « 3D cell culture based on microfluidic technique to mimic living tissues », Biomatter. Sri., 1 , 257-264.  • Morimoto Y, Takeuchi S. (2013), "3D cell culture based on microfluidic technique to mimic living tissues", Biomatter. Sri., 1, 257-264.
Ces procédés de bio-impression sont des procédés de fabrication additive à partir de cellules vivantes associées à des supports fabriqués par exemple en stéréo-lithographie. L’un des inconvénients de ces procédés est qu’ils engendrent des mouvements de cisaillement lors de la mise en place des couches successives. Or, ces mouvements sont susceptibles d’endommager les cellules vivantes et d’affecter leur survie.  These bio-printing processes are additive manufacturing processes from living cells associated with supports made for example in stereo-lithography. One of the disadvantages of these methods is that they generate shearing movements during the establishment of successive layers. These movements can damage living cells and affect their survival.
La présente invention a pour objet de proposer un procédé de réalisation d’un objet tridimensionnel mettant en œuvre une photo-polymérisation multi-photonique, notamment à deux photons, permettant de pallier au moins partiellement les inconvénients de l’état de la technique précités et qui soit efficace pour la réalisation d’objets de taille nanométrique, voire centimétrique ou décimétrique. The object of the present invention is to propose a method for producing a three-dimensional object implementing a multi-photonic photopolymerization, in particular with two photons, making it possible at least partially to overcome the disadvantages of the state of the aforementioned technique and which is effective for producing objects of nanometric size, or centimeter or decimetric.
Un autre objectif de la présente invention, différent de l’objectif précédent, est de proposer un procédé de réalisation d’un objet de forme complexe avec des résines fluides, et notamment de proposer un procédé permettant de s’affranchir d’artefacts de fabrication tels que des éléments de maintien par exemple.  Another object of the present invention, different from the preceding objective, is to propose a method for producing a complex-shaped object with fluid resins, and in particular to propose a method making it possible to overcome manufacturing artifacts. such as holding elements for example.
Un autre objectif de la présente invention, différent des objectifs précédents, est de proposer un procédé de réalisation d’un objet tridimensionnel dans lequel le mouvement des voxels au cours de la réalisation de cet objet peut être prévenu et empêché.  Another object of the present invention, different from the preceding objectives, is to propose a method for producing a three-dimensional object in which the movement of the voxels during the production of this object can be prevented and prevented.
Un autre objectif de la présente invention, différent des objectifs précédents, est de proposer un procédé de réalisation d’un objet tridimensionnel dans lequel les mouvements de cisaillement du matériau constitutif de l’objet pouvant se produire au cours de la réalisation de cet objet sont prévenus.  Another objective of the present invention, different from the preceding objectives, is to propose a method for producing a three-dimensional object in which the shearing movements of the material constituting the object that may occur during the production of this object are prevented.
Afin d’atteindre au moins partiellement au moins un des objectifs précités, la présente invention a pour objet un procédé de réalisation d’un objet tridimensionnel comprenant les opérations suivantes : In order to at least partially achieve at least one of the aforementioned objects, the present invention relates to a method of producing a three-dimensional object comprising the following operations:
• introduire une composition dans une cuve de polymérisation,  • introduce a composition into a polymerization tank,
• polymériser par polymérisation multi- photonique à l’aide d’une source lumineuse, à des endroits prédéterminés, la composition pour réaliser l’objet tridimensionnel, la composition comprenant au moins un monomère, au moins une charge et au moins un photo-amorceur,  Multi-photon polymerization by means of a light source, at predetermined locations, the composition for producing the three-dimensional object, the composition comprising at least one monomer, at least one filler and at least one photoinitiator ,
la composition présentant une transmittance par unité de longueur de préférence supérieure à 75 % aux longueurs d’ondes d’émission de la source lumineuse et l’au moins une charge comprenant des nanoparticules. the composition having a transmittance per unit length preferably greater than 75% at the emission wavelengths of the light source and the at least one filler comprising nanoparticles.
Après la réalisation de cet objet tridimensionnel, ce dernier peut être retiré de la cuve de photo-polymérisation puis lavé avec une solution permettant d’éliminer de l’objet tridimensionnel la composition non polymérisée. Cette solution de lavage peut par exemple être de l’isopropanol ou de l’acétone.  After completion of this three-dimensional object, the latter can be removed from the photopolymerization tank and then washed with a solution for removing the unpolymerized composition from the three-dimensional object. This washing solution may for example be isopropanol or acetone.
Grâce à ce procédé, on gagne de manière significative en efficacité pour réaliser des objets tridimensionnels de formes complexes, actuellement inaccessibles avec des résines fluides. En effet, des voxels produits ont normalement besoin d’être supportés. En jouant sur la viscosité élevée de la composition permise par l’ajout de nanoparticules, on peut s’affranchir d’artefacts de fabrication, comme par exemple la réalisation d’éléments ou d’appendices de maintien ou de support, qui devaient être éliminés une fois l’objet tridimensionnel terminé dans les procédés connus de l’art antérieur. En choisissant des viscosités élevées, la composition se comporte sensiblement comme un solide au cours de la réalisation de l’objet tridimensionnel, ce qui permet de prévenir les éventuels mouvements des voxels. With this method, we gain significantly in efficiency to achieve three-dimensional objects of complex shapes, currently inaccessible with fluid resins. Indeed, produced voxels normally need to be supported. By playing on the high viscosity of the composition allowed by the addition of nanoparticles, it is possible to to overcome manufacturing artifacts, such as the production of elements or appendages maintenance or support, which had to be eliminated once the three-dimensional object finished in the known methods of the prior art. By choosing high viscosities, the composition behaves substantially like a solid during the production of the three-dimensional object, which makes it possible to prevent the possible movements of the voxels.
De plus, l’utilisation de nanoparticules permet de modifier la viscosité de la composition tout en s’affranchissant des problèmes liés à la dispersion de la lumière.  In addition, the use of nanoparticles makes it possible to modify the viscosity of the composition while avoiding the problems related to the dispersion of light.
Le procédé de réalisation selon la présente invention peut comprendre en outre une ou plusieurs des caractéristiques suivantes prises seules ou en combinaison. The production method according to the present invention may further comprise one or more of the following features taken alone or in combination.
La composition a une viscosité supérieure ou égale à 0,30 Pa.s.  The composition has a viscosity greater than or equal to 0.30 Pa.s.
Les nanoparticules ont un diamètre moyen inférieur ou égal à 100 nm.  The nanoparticles have an average diameter less than or equal to 100 nm.
Selon un aspect, la différence d’indices de réfraction des nanoparticules et du monomère est inférieure à 0,4.  In one aspect, the difference in refractive indices of the nanoparticles and the monomer is less than 0.4.
La composition peut comprendre de 10 à 70 % en volume de nanoparticules par rapport au volume de ladite composition.  The composition may comprise from 10 to 70% by volume of nanoparticles with respect to the volume of said composition.
Selon un aspect, les charges comprennent un composant soluble dans le monomère. In one aspect, the fillers include a monomer-soluble component.
Les nanoparticules peuvent être réalisées en un matériau choisi parmi : la silice, le verre, notamment du verre borosilicate ou du verre sodo-calcique, un matériau organique insoluble dans une résine constituant l’objet tridimensionnel. The nanoparticles may be made of a material chosen from: silica, glass, especially borosilicate glass or soda-lime glass, an organic material insoluble in a resin constituting the three-dimensional object.
Selon un mode de réalisation particulier, les nanoparticules peuvent être fonctionnalisées.  According to a particular embodiment, the nanoparticles can be functionalized.
Selon un aspect, le monomère est choisi parmi les composés suivants : les résines acryliques, l’acide L-lactique, l’acide glycolique, les capro-lactones, ces composés pouvant être utilisés seuls ou en combinaison.  In one aspect, the monomer is selected from the following compounds: acrylic resins, L-lactic acid, glycolic acid, caprolactones, these compounds may be used alone or in combination.
Selon cet aspect, la charge peut comprendre en outre un constituant additionnel choisi parmi : des cellules vivantes, un hydrogel choisi parmi le collagène, la fibrine, l’alginate, la chitine, le chitosane, l’acide hyaluronique, le poly-(2-hydroxyéthyl) -méthacrylate, l’alcool polyvinylique et le polyéthylène glycol considérés seuls ou en mélange.  According to this aspect, the filler may also comprise an additional constituent chosen from: living cells, a hydrogel chosen from collagen, fibrin, alginate, chitin, chitosan, hyaluronic acid, poly (2) hydroxyethyl) methacrylate, polyvinyl alcohol and polyethylene glycol, alone or in admixture.
Selon un autre aspect, le monomère est un monomère acrylique, en particulier un monomère acrylique multifonctionnel. Selon cet autre aspect, le monomère acrylique peut être choisi parmi les poly éthylène glycolj-diacrylates, les tri- (éthylène glycolj-diméthacrylates, les pentaérythritol- tetracrylates, le 1,6-hexanediol-diacrylate, ou une combinaison de ces composés. In another aspect, the monomer is an acrylic monomer, particularly a multifunctional acrylic monomer. According to this other aspect, the acrylic monomer may be chosen from polyethylene glycol diacrylates, tri (ethylene glycol) dimethacrylates, pentaerythritol tetracrylates, 1,6-hexanediol diacrylate, or a combination of these compounds.
Selon cet autre aspect encore, le ou les photo-amorceurs sont choisis parmi : les cétones aromatiques, les dérivés aromatiques, l’éosine Y, ou d’autres colorant xanthéniques According to this other aspect, the photoinitiator (s) are chosen from: aromatic ketones, aromatic derivatives, eosin Y, or other xanthene dyes
Selon une variante, la composition peut comprendre au moins un monomère époxy.According to one variant, the composition may comprise at least one epoxy monomer.
Selon cette variante, le photo-amorceur est un sel d’onium. According to this variant, the photoinitiator is an onium salt.
Selon un mode de réalisation particulier, la polymérisation multi- photonique est réalisée à l’aide d’un faisceau laser et la résolution spatiale de polymérisation est adaptée en plaçant un diffuseur optique, notamment entre 1° et 20°, dans le faisceau laser, le diffuseur optique étant configuré pour modifier la profondeur du champ du faisceau laser.  According to a particular embodiment, the multi-photon polymerization is carried out using a laser beam and the spatial resolution of polymerization is adapted by placing an optical diffuser, in particular between 1 ° and 20 °, in the laser beam, the optical diffuser being configured to change the depth of the laser beam field.
Selon un autre mode de réalisation particulier, l’objet tridimensionnel comprend une surface externe et un volume interne et des endroits bcalisés dans le volume interne sont polymérisés avec une résolution plus faible que des endroits formant la surface externe de l’objet tridimensionnel.  According to another particular embodiment, the three-dimensional object comprises an external surface and an internal volume and localized locations in the internal volume are polymerized with a lower resolution than places forming the outer surface of the three-dimensional object.
Selon cet autre mode de réalisation particulier, différentes portions de l’objet tridimensionnel sont successivement polymérisées dans différentes cuves contenant chacune une composition spécifique permettant d’obtenir une taille de voxel, voire des fonctionnalités, prédéterminées.  According to this particular particular embodiment, different portions of the three-dimensional object are successively polymerized in different tanks each containing a specific composition for obtaining a voxel size, or even predetermined functions.
Selon cet autre mode de réalisation, le volume interne est polymérisé dans une première cuve contenant une première composition comprenant des premières charges sous forme de nanoparticules permettant d’obtenir une première taille de voxel et la partie externe de l’objet tridimensionnel est polymérisée dans une deuxième cuve contenant une deuxième composition comprenant des deuxièmes charges sous forme de nanoparticules ou aucune charge permettant d’obtenir une deuxième taille de voxel, inférieure à la première taille de voxel.  According to this other embodiment, the internal volume is polymerized in a first tank containing a first composition comprising first charges in the form of nanoparticles making it possible to obtain a first size of voxel and the external part of the three-dimensional object is polymerized in a second vessel containing a second composition comprising second charges in the form of nanoparticles or no charge to obtain a second voxel size, less than the first voxel size.
La présente invention a également pour objet un dispositif de réalisation d’un objet tridimensionnel par photo-polymérisation multi- photonique, notamment à deux photons, comprenant : The present invention also relates to a device for producing a three-dimensional object by multi-photon photo-polymerization, in particular at two photons, comprising:
• une source lumineuse émettant un faisceau laser,  A light source emitting a laser beam,
• une cuve de polymérisation contenant une composition comprenant :  A polymerization vessel containing a composition comprising:
0 au moins un monomère, 0 au moins une charge comprenant des nanoparticules telles que définies précédemment, et 0 at least one monomer, 0 at least one filler comprising nanoparticles as defined above, and
0 au moins un photo-amorceur,  0 at least one photoinitiator,
ladite composition présentant une transmittance par unité de longueur de préférence supérieure à 75 % aux longueurs d’ondes d’émission de la source lumineuse, said composition having a transmittance per unit length preferably greater than 75% at the emission wavelengths of the light source,
• un dispositif de focalisation du faisceau laser et d’adaptation de son ouverture numérique,  A device for focusing the laser beam and adapting its numerical aperture,
• une unité de déplacement pour permettre le déplacement de la zone de focalisation du faisceau laser à l’intérieur de la cuve aux endroits prédéterminés pour réaliser l’objet tridimensionnel, et  A displacement unit for moving the focussing zone of the laser beam inside the vessel at the predetermined locations to produce the three-dimensional object, and
• un adaptateur de résolution de polymérisation comprenant au moins un diffuseur optique monté mobile sur un support pour être placé sur le chemin optique ou en dehors du faisceau laser afin d’adapter la résolution de polymérisation.  A polymerization resolution adapter comprising at least one optical diffuser mounted on a support to be placed on the optical path or out of the laser beam in order to adapt the polymerization resolution.
D’autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre illustratif et non limitatif, et des dessins annexés dans lesquels : Other features and advantages of the present invention will appear more clearly on reading the following description, given by way of illustration and not limitation, and the accompanying drawings in which:
• la figure 1 est un schéma simplifié d’un montage d’un dispositif de réalisation d’un objet tridimensionnel,  FIG. 1 is a simplified diagram of an assembly of a device for producing a three-dimensional object,
• la figure 2 est un schéma détaillé d’une composition utilisée pour la réalisation d’un objet tridimensionnel,  FIG. 2 is a detailed diagram of a composition used for producing a three-dimensional object,
• la figure 3 illustre sur un tableau une liste non-exhaustive de monomères pouvant être utilisés dans la composition,  FIG. 3 illustrates in a table a non-exhaustive list of monomers that can be used in the composition,
• la figure 4 illustre sur un tableau une liste non-exhaustive de photo-amorceurs pouvant être utilisés dans la composition,  FIG. 4 illustrates in a table a non-exhaustive list of photoinitiators that can be used in the composition,
• la figure 5 illustre un mécanisme classique de polymérisation ionique avec des étapes d’amorçage, de propagation et de transfert,  FIG. 5 illustrates a conventional ionic polymerization mechanism with priming, propagation and transfer steps,
• la figure 6 est un schéma de monomères multifonctionnels de systèmes réticulés, insolubles dans une résine initiale,  FIG. 6 is a diagram of multifunctional monomers of crosslinked systems, insoluble in an initial resin,
• les figures 7A et 7B sont des photographies représentant respectivement des voxels obtenus dans le cas d’un faisceau gaussien d’une part, et des voxels obtenus en plaçant un diffuseur en entrée d’un objectif pour contrôler la profondeur de champ du faisceau gaussien d’autre part, les deux figures 7A et 7B étant de même échelle, • la figure 8 est un schéma permettant d’illustrer le procédé de réalisation d’un objet tridimensionnel selon un mode de réalisation particulier, FIGS. 7A and 7B are photographs respectively representing voxels obtained in the case of a Gaussian beam on the one hand, and voxels obtained by placing a diffuser at the entrance of an objective to control the depth of field of the Gaussian beam. on the other hand, the two figures 7A and 7B being of the same scale, FIG. 8 is a diagram for illustrating the method of producing a three-dimensional object according to a particular embodiment,
• la figure 9 est un graphique représentant la mesure du diamètre du faisceau en fonction de la distance par rapport à l’objectif dans le cas de l’objectif seul et dans le cas d’un diffuseur 1° et 10°,  FIG. 9 is a graph showing the measurement of the diameter of the beam as a function of the distance to the objective in the case of the objective alone and in the case of a 1 ° and 10 ° diffuser,
• la figure 10 est une représentation schématique d’un organigramme illustrant un procédé de réalisation d’un objet tridimensionnel, et  FIG. 10 is a schematic representation of a flowchart illustrating a method for producing a three-dimensional object, and
• la figure 11 est une représentation schématique en perspective d’un objet fabriqué par le procédé de la figure 10.  FIG. 11 is a schematic representation in perspective of an object manufactured by the method of FIG. 10.
• La figure 12 est une photographie représentant un Dodécaèdre obtenu par le procédé de la présente invention.  Fig. 12 is a photograph showing a Dodecahedron obtained by the process of the present invention.
• La figure 13 est une photographie représentant une bicyclette obtenue par le procédé de la présente invention.  Fig. 13 is a photograph showing a bicycle obtained by the method of the present invention.
• La figure 14 est une photographie représentant un objet ayant une forme de portion d’ADN en double hélice obtenu par le procédé de la présente invention.  Fig. 14 is a photograph showing an object having a double-helical DNA portion form obtained by the method of the present invention.
Sur les différentes figures, les éléments identiques portent les mêmes numéros de référence. In the different figures, the identical elements bear the same reference numbers.
Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation ou que les caractéristiques s’appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées et/ou interchangées pour fournir d’autres réalisations.  The following achievements are examples. Although the description refers to one or more embodiments, this does not necessarily mean that each reference relates to the same embodiment or that the features apply only to a single embodiment. Simple features of different embodiments may also be combined and / or interchanged to provide other embodiments.
Dans la description suivante, il est fait référence à une première et une deuxième cuves de photo- polymérisation, à une première et une deuxième compositions, à une première et une deuxième charges, à une première et à une deuxième tailles de voxel. 11 s’agit d’un simple indexage pour différencier et dénommer des éléments proches ou de même nature ou structure mais non identiques. Cette indexation n’implique pas une priorité d’un élément par rapport à un autre et on peut aisément interchanger de telles dénominations sans sortir du cadre de la présente description. Cette indexation n’implique pas non plus un ordre dans le temps par exemple pour apprécier le fonctionnement du dispositif de réalisation ou encore le procédé de réalisation de l’objet tridimensionnel. En référence à la figure 1, il est représenté un dispositif de réalisation 1 d’un objet tridimensionnel 3 par photo- polymérisation multi- photonique, notamment à deux photons. In the following description, reference is made to first and second photopolymerization vessels, first and second compositions, first and second feeds, first and second voxel sizes. It is a simple indexing to differentiate and name elements close to or of the same nature or structure but not identical. This indexing does not imply a priority of one element with respect to another and it is easy to interchange such denominations without departing from the scope of the present description. This indexing does not imply either an order in time for example to appreciate the operation of the embodiment device or the method of producing the three-dimensional object. With reference to FIG. 1, there is shown a device 1 for producing a three-dimensional object 3 by multi-photon photopolymerization, in particular with two photons.
Ce dispositif de réalisation 1 comprend une source lumineuse 5 émettant un faisceau laser 7 et une cuve de polymérisation 9, formant un réacteur de polymérisation, contenant une composition 11.  This embodiment device 1 comprises a light source 5 emitting a laser beam 7 and a polymerization tank 9, forming a polymerization reactor, containing a composition 11.
La source lumineuse 5 peut par exemple être un laser en particulier impulsionnel et notamment femto/picoseconde émettant par exemple à une longueur d’onde de 1030 nm et couplé, le cas échéant, avec des cristaux optiques non linéaires permettant de doubler ou tripler, par un effet non linéaire, la fréquence du faisceau laser 7 afin d’obtenir une longueur d’onde de 515 nm et/ou de 343 nm. La source lumineuse 5 émet donc, selon cet exemple, un faisceau lumineux impulsionnel. Le choix de la source lumineuse 5 peut dépendre de l’absorption de la composition 11, pouvant contenir des additifs colorés par exemple. Ainsi, d’autres types de sources lumineuses 5, notamment impulsionnelles, peuvent être utilisés.  The light source 5 may for example be a particularly pulsed laser and in particular femto / picosecond emitting for example at a wavelength of 1030 nm and coupled, where appropriate, with nonlinear optical crystals to double or triple, for example. a nonlinear effect, the frequency of the laser beam 7 to obtain a wavelength of 515 nm and / or 343 nm. The light source 5 emits, according to this example, a pulsed light beam. The choice of the light source 5 may depend on the absorption of the composition 11, which may contain colored additives, for example. Thus, other types of light sources 5, including pulses, can be used.
Le choix de la bngueur d’onde de photo-polymérisation multi- photonique, notamment à deux photons est déterminé par le choix du photo-amorceur et de sa capacité à amorcer les espèces réactives sous l’effet de l’irradiation laser.  The choice of the multiphotonic photo-polymerization waveguide, in particular at two photons, is determined by the choice of the photoinitiator and its ability to prime the reactive species under the effect of laser irradiation.
Typiquement, le diamètre de sortie du faisceau laser 7 peut être d’environ 2,5 mm, la divergence de 0,6 mrad et la polarisation linéaire.  Typically, the output diameter of the laser beam 7 may be about 2.5 mm, the divergence 0.6 mrad and the linear polarization.
L’énergie par impulsion a typiquement une durée de 500 fs et est comprise entre 40 gj et 2 mj, et la fréquence de répétition des puises peut atteindre 300 kHz, mais peut être plutôt située autour de 1 kHz. Une autre source lumineuse 5 peut être utilisée pour autant que la longueur d’onde de son faisceau laser 7 soit adaptée et que la puissance instantanée du laser permette de réaliser la photo- polymérisation multi- photonique, notamment à deux photons, de la composition 11 qui se trouve dans la cuve de polymérisation 9.  The pulse energy typically has a duration of 500 fs and is between 40 gj and 2 mj, and the repetition frequency of the pulses can reach 300 kHz, but can be rather located around 1 kHz. Another light source 5 may be used provided that the wavelength of its laser beam 7 is adapted and that the instantaneous power of the laser makes it possible to carry out the photon-multi-photon polymerization, in particular at two photons, of the composition 11. which is in the polymerization tank 9.
Le dispositif de réalisation 1 présente en outre un dispositif de focalisation 13 du faisceau laser 7 et d’adaptation de son ouverture numérique disposé sur le chemin optique du faisceau laser 7. Ce dispositif de focalisation 13 peut être formé par un ou plusieurs composants optiques, notamment un objectif pour focaliser le faisceau laser 7 à l’intérieur de la composition 11 et adapter l’ouverture numérique du faisceau laser 7.  The embodiment device 1 furthermore has a focusing device 13 for the laser beam 7 and for adapting its digital aperture disposed on the optical path of the laser beam 7. This focusing device 13 may be formed by one or more optical components, in particular an objective for focusing the laser beam 7 inside the composition 11 and adapting the numerical aperture of the laser beam 7.
De manière optionnelle, le dispositif de réalisation 1 peut présenter un adaptateur de résolution de polymérisation comprenant au moins un diffuseur optique 14 placé dans le chemin optique du faisceau laser 7 pour pouvoir contrôler la profondeur de champ du faisceau laser 7. A cet effet, le dispositif de réalisation 1 comprend un support 15 rotatif avec un trou traversant 14A pour focaliser le faisceau laser 7 sans modification du faisceau dans la composition 11 et des logements dans lesquels sont montés respectivement différents diffuseurs 14 permettant d’adapter la profondeur de champ. On peut ainsi, comme cela a été introduit, faire varier la taille des voxels. Le support 15 avec son ou ses diffuseurs 14 et le trou traversant 14A permet d’ajuster les dimensions des voxels et d’obtenir une résolution variable dans le processus de fabrication en ajustant l’optique de focalisation et la puissance instantanée du faisceau laser 7. Optionally, the embodiment device 1 may have a polymerization resolution adapter comprising at least one optical diffuser 14 placed in the optical path of the laser beam 7 to be able to control the depth of field of the laser beam 7. For this purpose, the embodiment 1 comprises a rotatable support 15 with a through hole 14A for focusing the laser beam 7 without modifying the beam in the composition 11 and housings in which are respectively mounted different diffusers 14 to adapt the depth of field. It is thus possible, as has been introduced, to vary the size of the voxels. The support 15 with its or its diffusers 14 and the through hole 14A makes it possible to adjust the dimensions of the voxels and to obtain a variable resolution in the manufacturing process by adjusting the focusing optics and the instantaneous power of the laser beam 7.
La cuve de polymérisation 9 est par exemple placée sur une unité de déplacement 16 déplaçable selon les axes x, y et z (représentés sur la figure 1) pour permettre le déplacement de la zone de focalisation du faisceau laser 7 à l’intérieur de la cuve 9 et donc la polymérisation de la composition 11 aux endroits prédéterminés pour réaliser l’objet tridimensionnel 3. On comprend donc que selon ce mode de réalisation particulier c’est la cuve de polymérisation 9 qui est déplacée afin de permettre de positionner le point focal du laser 5 aux endroits à photo- polymériser et non le point focal du laser 5. Pour ce faire, l’unité de déplacement 16 est motorisée pour permettre son mouvement. Cette unité de déplacement 16 est reliée, tout comme le laser 5, à une unité de contrôle 17 qui commande à la fois le fonctionnement du laser 5 et le positionnement de l’unité de déplacement 16.  The polymerization tank 9 is for example placed on a displacement unit 16 displaceable along the x, y and z axes (shown in FIG. 1) to enable the focusing zone of the laser beam 7 to be displaced inside the 9 and thus the polymerization of the composition 11 at predetermined locations to achieve the three-dimensional object 3. It is therefore understood that according to this particular embodiment is the polymerization tank 9 which is moved to allow to position the focal point the laser 5 at the locations to be photopolymerized and not the focal point of the laser 5. To do this, the displacement unit 16 is motorized to allow its movement. This displacement unit 16 is connected, like the laser 5, to a control unit 17 which controls both the operation of the laser 5 and the positioning of the displacement unit 16.
Selon une variante non représentée ici, on place des miroirs mobiles sur le chemin optique du faisceau laser 7 pour diriger le faisceau laser 7 aux endroits qui devront être photo-polymérisés et un système de focalisation laser et d’adaptation de son ouverture numérique, permettant de déplacer le point focal sur l’axe de propagation. Dans ce cas, les miroirs mobiles sont reliés à une unité de contrôle pour diriger le faisceau laser 7.  According to a variant not shown here, mobile mirrors are placed on the optical path of the laser beam 7 to direct the laser beam 7 at the places to be photo-polymerized and a laser focusing system and adaptation of its numerical aperture, allowing to move the focal point on the axis of propagation. In this case, the moving mirrors are connected to a control unit to direct the laser beam 7.
En référence à la figure 2, il est représenté de façon simplifiée et schématique la composition 11 pour la réalisation de l’objet tridimensionnel 3 par un processus de photo polymérisation multi-photonique. La composition 11 comprend au moins un monomère 12, au moins une charge 20 comprenant des nanoparticules, et au moins un photo-amorceur. Referring to Figure 2, there is shown schematically and schematically the composition 11 for producing the three-dimensional object 3 by a multi-photon photo polymerization process. The composition 11 comprises at least one monomer 12, at least one filler 20 comprising nanoparticles, and at least one photoinitiator.
Les monomères 12 sont transparents à la longueur d’onde prédéterminée de la source pulsée qui sert à la photo- polymérisation. Ces monomères 12 présentent un indice de réfraction nmonomère à la longueur d’onde prédéterminée de photo- polymérisation du laser 5. Par un matériau ou milieu transparent, on entend que le faisceau laser 7 peut passer, au moins en partie (c’est-à-dire qu’il peut être faiblement absorbant), au travers de ce milieu par opposition à un matériau ou un milieu opaque. Par charge 20, on entend une matière ou un matériau au sens large qui est ajouté à la composition 11, mais qui ne participe pas à la réaction de polymérisation. La charge 20 peut être considérée inerte par rapport à la polymérisation. Les charges 20 sont des nanoparticules transparentes ou très faiblement absorbantes à la longueur d’onde prédéterminée de la source pulsée qui sert à la photo-polymérisation. Ces charges 20 ont un indice de réfraction nCharges à la longueur d’onde prédéterminée de photo- polymérisation. The monomers 12 are transparent at the predetermined wavelength of the pulsed source which serves for the photopolymerization. These monomers 12 have a refractive index nmonomer at the predetermined wavelength of photopolymerization of the laser 5. By a transparent material or medium, it is meant that the laser beam 7 can pass, at least in part (that is, that is, it can be weakly absorbent), through this medium as opposed to a material or an opaque medium. By charge 20 is meant a material or a material in the broad sense which is added to the composition 11, but which does not participate in the polymerization reaction. The filler 20 can be considered inert with respect to the polymerization. The charges 20 are transparent or very weakly absorbing nanoparticles at the predetermined wavelength of the pulsed source used for the photo-polymerization. These fillers 20 have a refractive index n C har g are at the predetermined wavelength of photopolymerization.
L’irradiation se faisant à la longueur d’onde prédéterminée À, cette longueur d’onde peut être partiellement absorbée durant son parcours dans la cuve contenant la résine polymérisable. Si a correspond à un coefficient d’absorption (mesurée en m 1), l’énergie relative située à une distance d (d ¹ 0) de l’entrée du faisceau est déterminée par la formule exp (-a.d) <1. La perte de photons peut être préjudiciable au procédé puisqu’il s’agit du carré de la puissance instantanée qui règle la cinétique de polymérisation. Cependant, il est possible d’augmenter la puissance du laser pour compenser les effets de l’absorption de photons incidents. On se limite par exemple à une transmittance de 75 % correspondante à une perte de rendement de polymérisation de 0 .56, ce qui est acceptable bien que ralentissant d’autant la durée de fabrication d’une pièce selon le procédé. Since the irradiation is carried out at the predetermined wavelength λ, this wavelength can be partially absorbed during its course in the tank containing the polymerizable resin. If a corresponds to an absorption coefficient (measured in m 1 ), the relative energy located at a distance d (d ¹ 0) from the beam input is determined by the formula exp (-ad) <1. The loss of photons can be detrimental to the process since it is the square of the instantaneous power that regulates the kinetics of polymerization. However, it is possible to increase the power of the laser to compensate for the effects of the absorption of incident photons. For example, it is limited to a 75% transmittance corresponding to a loss of polymerization yield of 0.56, which is acceptable although slowing down the manufacturing time of a part according to the process.
Ainsi, la composition 11 présente une transmittance par unité de longueur supérieure à 75 % aux longueurs d’ondes d’émission du laser 5. Selon le mode de réalisation particulier représenté ici, l’unité de longueur correspond à une dimension de la cuve de polymérisation 9, et plus précisément à une hauteur de la cuve de polymérisation 9 disposée selon l’axe z (comme représenté sur la figure 1). Toutefois, selon d’autres variantes non représentées ici, l’unité de longueur peut par exemple être une unité métrique, comme par exemple 1 décimètre ou 1 mètre.  Thus, the composition 11 has a transmittance per unit length greater than 75% at the emission wavelengths of the laser 5. According to the particular embodiment represented here, the unit of length corresponds to a dimension of the vessel of polymerization 9, and more precisely at a height of the polymerization vessel 9 disposed along the z axis (as shown in Figure 1). However, according to other variants not shown here, the unit of length may for example be a metric unit, such as 1 decimeter or 1 meter.
Lorsqu’un faisceau lumineux éclaire une dispersion, à savoir ici la composition 11, caractérisée par son indice de réfraction, la lumière subit un processus de diffusion/absorption qui est fonction de la longueur d’onde de la lumière incidente et des propriétés optiques des phases dispersée et continue. Les phénomènes de diffusion/absorption induisent ainsi une extinction de la lumière incidente dans la direction initiale du faisceau incident. L’intensité de la lumière diffuse dépend de la direction de diffusion par rapport à la direction du faisceau incident, de la polarisation de la lumière incidente et des caractéristiques du milieu diffusif.  When a light beam illuminates a dispersion, namely here the composition 11, characterized by its refractive index, the light undergoes a diffusion / absorption process which is a function of the wavelength of the incident light and the optical properties of the light. dispersed and continuous phases. The diffusion / absorption phenomena thus induce an extinction of the incident light in the initial direction of the incident beam. The intensity of the diffuse light depends on the direction of diffusion with respect to the direction of the incident beam, the polarization of the incident light, and the characteristics of the scattering medium.
Pour un faible nombre de diffuseurs, la majeure partie de la lumière incidente traverse le milieu sans subir de diffusion. Pour une forte extinction du faisceau incident (régime de diffusion multiple), la lumière diffusée par une particule, qui correspond à n’importe quelle type de particule insolubilisée présente dans le milieu, constitue une source secondaire pour des particules voisines. Dans le cas d’une particule, les ondes diffusées par les différentes régions du matériau interfèrent les unes avec les autres. L’interaction d’une onde incidente avec une particule sphérique, homogène, isotrope et non-magnétique de diamètre d dans un milieu non-absorbant est décrite par les équations de Maxwell. For a small number of diffusers, most of the incident light passes through the medium without being scattered. For a strong extinction of the incident beam ( multiple scattering), the light scattered by a particle, which corresponds to any type of insolubilized particle present in the medium, constitutes a secondary source for neighboring particles. In the case of a particle, the waves scattered by the different regions of the material interfere with each other. The interaction of an incident wave with a spherical, homogeneous, isotropic and non-magnetic particle of diameter d in a non-absorbing medium is described by the Maxwell equations.
Seule la résolution des équations de Maxwell permet alors de déterminer l’intensité diffusée par la particule sous toutes les directions. Mie est le premier à avoir résolu le problème pour des sphères diélectriques homogènes et obtenu une solution analytique pour une particule sphérique de taille arbitraire. La théorie de Mie apporte une solution rigoureuse aux équations de Maxwell. Aux faibles angles de diffusion, l’intensité de diffusion est particulièrement importante dans le cas des grosses particules. De plus, la variation angulaire de la lumière diffusée évolue de manière non-monotone pour des particules non- absorbantes et diminue avec l’angle de diffusion en raison des interférences destructives dans la direction arrière. Les phénomènes d’absorption lumineuse tendent à supprimer les lobes de diffusion et la structure fine du diagramme de rayonnement. La dépendance angulaire de la lumière diffuse moins prononcée pour les petites particules, permet ainsi de tirer des informations sur la taille des particules.  Only the resolution of Maxwell's equations then makes it possible to determine the intensity diffused by the particle in all directions. Mie is the first to solve the problem for homogeneous dielectric spheres and to obtain an analytical solution for a spherical particle of arbitrary size. Mie's theory provides a rigorous solution to Maxwell's equations. At low scattering angles, scattering intensity is particularly important in the case of large particles. In addition, the angular variation of scattered light evolves non-monotonously for non-absorbent particles and decreases with scattering angle due to destructive interference in the backward direction. The light absorption phenomena tend to suppress the diffusion lobes and the fine structure of the radiation pattern. The angular dependence of diffuse light less pronounced for small particles, thus allows to draw information on the size of the particles.
L’intensité de la lumière diffuse dépend également des valeurs des indices de réfraction des particules et du milieu environnant ainsi que de la bngueur d’onde de la lumière incidente. Selon la taille des particules par rapport à la longueur d’onde de la lumière incidente, des approximations permettent cependant de rendre compte de manière satisfaisante des phénomènes de diffusion de la lumière.  The intensity of the diffuse light also depends on the values of the refractive indices of the particles and the surrounding medium as well as the wave length of the incident light. Depending on the size of the particles with respect to the wavelength of the incident light, however, approximations can satisfactorily account for the phenomena of light scattering.
La théorie de Rayleigh décrit la diffusion de la lumière par des particules de dimensions très petites devant la longueur d’onde de la lumière incidente (diamètre de la particule inférieur au dixième de la longueur d’onde du faisceau incident). Dans ce cas, le champ électrique incident illuminant une particule peut être considéré comme uniforme dans le diffuseur et l’intensité de la lumière diffuse est alors proportionnelle au carré du volume de la particule. Pour des particules non-absorbantes, l’intensité diffusée par unité de volume s’exprime de la manière suivante : Où lo désigne l’intensité de la lumière incidente de longueur d’onde l, Q l’angle de diffusion, m = nParticuie/nmüieu le rapport d’indice (choix d’indice) entre la particule et le milieu hôte, ici le monomère 12, et N le nombre de particules non-absorbantes par unité de volume. Lorsque la taille des particules est très grande devant la longueur d’onde de la lumière incidente (diamètre des particules supérieur à 10-20À), l’intensité diffusée est essentiellement concentrée dans la direction avant. On utilise alors les approximations de l’optique géométrique pour décrire la diffusion de la lumière. Rayleigh's theory describes the scattering of light by particles of very small dimensions in front of the wavelength of the incident light (diameter of the particle less than one tenth of the wavelength of the incident beam). In this case, the incident electric field illuminating a particle can be considered uniform in the diffuser and the intensity of the diffuse light is then proportional to the square of the volume of the particle. For non-absorbent particles, the scattered intensity per unit volume is expressed as follows: Where lo designates the intensity of the incident light of wavelength l, Q the angle of diffusion, m = n P articulate / n m the index ratio (choice of index) between the particle and the medium host, here the monomer 12, and N the number of non-absorbent particles per unit volume. When the particle size is very large in front of the wavelength of the incident light (particle diameter greater than 10-20 Å), the scattered intensity is essentially concentrated in the forward direction. Geometric optics approximations are then used to describe the scattering of light.
L’expression précédente permet d’obtenir la section efficace d’absorption (s) d’un ensemble de particules : The preceding expression makes it possible to obtain the absorption cross section (s) of a set of particles:
Considérant une configuration m=l,05, d=10nm, À=1030nm, et 1 particule dans 10nm3, on obtient s de l’ordre de 10 3, permettant de négliger les effets de diffusion. Considering a configuration m = 1.05, d = 10 nm, λ = 1030 nm, and 1 particle in 10 nm 3 , we obtain s of the order of 10 3 , making it possible to neglect the diffusion effects.
La composition 11 est donc transparente, au moins en première approximation à la longueur d’onde de la source lumineuse 5. 11 n’est donc pas nécessaire de modifier le couple charge 20/monomère 12 pour disposer d’un écart d’indice faible. La différence entre l’indice de réfraction nmonomères du monomère 12 et l’indice de réfraction nCharges des charges 20 est inférieur à 0,4, et de préférence inférieur à 0,05 (| nmonomères - nChargesl <0,05), et plus particulièrement inférieure à 0,01 (| nmonomères - nChargesl <0,01), voire l’indice de réfraction des monomères 12 et l’indice de réfraction des charges 20 sont égaux (| nmonomères nchargesl — 0). En choisissant une différence d’indices de réfraction faible, voire nulle, cela permet de réduire, voire de supprimer tout phénomène de dispersion du faisceau laser 7 dans la composition 11, notamment aux interfaces entre les monomères 12 et les charges 20 à la longueur d’onde émise par la source lumineuse 5 pour autant que la taille des charges 20 affecte le déplacement de la lumière dans le cas de charges 20 de taille très supérieure à la longueur d’onde. The composition 11 is therefore transparent, at least in first approximation to the wavelength of the light source 5. It is therefore not necessary to modify the load torque 20 / monomer 12 to have a low index difference. . The difference between nmonomères refractive index of the monomer 12 and the refractive index n C har g es loads 20 is less than 0.4, and preferably less than 0.05 (| n m onomères - n C har g es1 <0.05), and more particularly less than 0.01 (| n m onomers - n C har g es 1 <0.01), or even the refractive index of the monomers 12 and the refractive index of the fillers 20 are equal (| nmonomers - nchar g es1 - 0). By choosing a difference in refractive indices that is low or even zero, this makes it possible to reduce or even eliminate any phenomenon of dispersion of the laser beam 7 in the composition 11, in particular at the interfaces between the monomers 12 and the charges 20 at the length of the wave emitted by the light source 5 as far as the size of the charges 20 affects the displacement of the light in the case of charges of size much greater than the wavelength.
L’indice de réfraction nCOmposition de la composition 11 est le résultat de tous ses composants Ci (monomères 12 et charges 20) selon leurs proportions dans la composition 11. Ainsi, si VR est la masse volumique de la composition 11 et VRÎ la masse volumique de chacun des composants Ci, et % est un nombre rationnel compris entre 0 et 1, on a : The refractive index n CO mposition of the composition 11 is the result of all components Ci (monomers 12 and loads 20) according to their proportions in the composition 11. Thus, if VR is the density of the composition 11 and VR Î the density of each of the components Ci, and% is a rational number between 0 and 1, we have:
• nij étant l’indice de réfraction du composant Ci, et Where j is the refractive index of the component Ci, and
• i, j, m étant des nombres entiers, m correspondant au nombre de composants Ci constituant la composition 11.  Where i, j, m being integers, m corresponding to the number of components Ci constituting the composition 11.
Dans ce cas, on comprend que par l’ajustement des proportions des composants Ci, on peut également ajuster l’indice de réfraction nCOmposition de la composition 11 (et aussi ajuster l’indice de réfraction du ou des monomères 12 d’un côté par rapport à l’indice de réfraction de la charge 20 de l’autre côté) si au moins un indice de réfraction ny du composant Cj (i¹j) est par exemple supérieur au deuxième indice de réfraction n2. In this case, it is understood that by adjusting the proportions of the components Ci, it is also possible to adjust the refractive index n CO mposition of the composition 11 (and also to adjust the refractive index of the monomer (s) 12 of a side with respect to the refractive index of the load 20 on the other side) if at least one refractive index ny of the component C j (i¹j) is for example greater than the second refractive index n 2 .
La viscosité de la composition 11 peut être ajustée par le choix du pourcentage volumétrique de charge 20, et en particulier de nanoparticules ; à une valeur supérieure à 0,30 Pa.s et de préférence comprise entre 0,30 et 5,00 Pa.s (Pascal-seconde), afin d'obtenir une composition stable ou figée, c’est-à-dire dans laquelle l’objet en cours de fabrication mais aussi la charge 20 ne se déplace pas. La viscosité de la composition 11 est ajustée notamment en fonction du temps de fabrication de l’objet tridimensionnel 3 ou encore en fonction de la taille, et en particulier du rayon ou du rayon équivalent lorsque l’objet tridimensionnel 3 n’est pas sphérique, de l’objet tridimensionnel 3 à fabriquer de manière à ce que le déplacement de cet objet tridimensionnel 3 au cours de sa fabrication par photo polymérisation soit négligeable. D’autre part, l’utilisation d’une composition 11 légèrement chauffée permet de diminuer sa viscosité et de remplir la cuve en évitant la présence éventuelle de bulles d’air. Ce principe peut être applicable à la séparation de l’objet tridimensionnel 3 une fois fabriqué de la composition 11. En jouant sur la viscosité élevée de la composition 11, on peut s’affranchir d’artefacts de fabrication comme par exemple des éléments de maintien ou de supports. En effet, en hydrodynamique, le nombre de Reynolds Re traduit l’importance relative des effets de viscosité et des effets d’inertie selon la relation suivante : Re = pVD/m The viscosity of the composition 11 can be adjusted by the choice of the volumetric percentage of charge 20, and in particular of nanoparticles; at a value greater than 0.30 Pa.s and preferably between 0.30 and 5.00 Pa.s (Pascal-second), in order to obtain a stable or fixed composition, that is to say in which the object being manufactured but also the load 20 does not move. The viscosity of the composition 11 is adjusted in particular as a function of the manufacturing time of the three-dimensional object 3 or again depending on the size, and in particular the radius or the equivalent radius when the three-dimensional object 3 is not spherical, the three-dimensional object 3 to be manufactured so that the displacement of this three-dimensional object 3 during its manufacture by photo-polymerization is negligible. On the other hand, the use of a slightly heated composition 11 makes it possible to reduce its viscosity and to fill the tank while avoiding the possible presence of air bubbles. This principle can be applicable to the separation of the three-dimensional object 3 once made of the composition 11. By modifying the high viscosity of the composition 11, it is possible to dispense with manufacturing artifacts such as, for example, holding elements. or supports. Indeed, in hydrodynamics, the Reynolds number Re reflects the relative importance of viscosity effects and inertia effects according to the following relation: Re = pVD / m
Où p est la masse volumique du fluide, m la viscosité, V et D sont une vitesse et une longueur caractéristique de l’écoulement considéré. Les écoulements aux faibles nombres de Reynolds sont caractérisés par la prédominance des effets dus à la viscosité devant ceux dus à l’inertie. Ainsi, en choisissant des viscosités élevées, la composition se comporte pratiquement comme un solide, ce qui évite le mouvement des voxels. Where p is the density of the fluid, m viscosity, V and D are a speed and a characteristic length of the flow considered. The flows at low Reynolds numbers are characterized by the predominance of the effects due to viscosity compared to those due to inertia. Thus, by choosing high viscosities, the composition behaves almost like a solid, which avoids the movement of voxels.
La charge 20 sous forme de nanoparticules par exemple formées de nanoparticules insolubles ou comprenant un composant soluble dans le monomère 12, comme par exemple des macromolécules solubles comme par exemple des polymères acryliques linéaires solubilisés dans une résine acrylique, dans la composition 11. La taille moyenne des nanoparticules est très inférieure à la longueur d’onde d’excitation du faisceau laser 7.  The filler 20 in the form of nanoparticles, for example formed of insoluble nanoparticles or comprising a component that is soluble in the monomer 12, for example soluble macromolecules such as, for example, linear acrylic polymers solubilized in an acrylic resin, in the composition 11. The average size nanoparticles is much lower than the excitation wavelength of the laser beam 7.
La « solubilité » est la capacité d’une substance, appelée soluté, à se solubiliser dans une autre substance, appelée solvant, pour former un mélange homogène, appelé solution.  "Solubility" is the ability of a substance, called a solute, to solubilize in another substance, called a solvent, to form a homogeneous mixture called a solution.
Selon un mode de réalisation particulier, lorsque la charge 20 comprend des nanoparticules insolubles, le pourcentage volumétrique de charge 20 dans la composition 11 est compris entre 10 % et 70 % en volume par rapport au volume de ladite composition 11, notamment entre 30 % et 60 % et plus particulièrement entre 40 % et 50 %. Plus précisément 100 % représente le volume total de la composition 11 et ce volume est séparé en différentes proportions volumiques pour chacun des constituants de cette composition 11.  According to a particular embodiment, when the filler 20 comprises insoluble nanoparticles, the volumetric percentage of filler 20 in the composition 11 is between 10% and 70% by volume relative to the volume of said composition 11, in particular between 30% and 60% and more particularly between 40% and 50%. More precisely 100% represents the total volume of the composition 11 and this volume is separated into different proportions by volume for each of the constituents of this composition 11.
D’autre part, les nanoparticules ont un diamètre moyen inférieur ou égal à 100 nm, notamment compris entre 7 nm et 70 nm et plus spécifiquement de 10 nm. La taille maximale des nanoparticules est choisie selon la limite de diffraction de la longueur d’onde incidente issue du faisceau laser 7, soit environ un dixième de la longueur d’onde incidente issue de la source lumineuse 5.  On the other hand, the nanoparticles have an average diameter less than or equal to 100 nm, in particular between 7 nm and 70 nm and more specifically 10 nm. The maximum size of the nanoparticles is chosen according to the diffraction limit of the incident wavelength resulting from the laser beam 7, ie approximately one-tenth of the incident wavelength coming from the light source 5.
Les nanoparticules sont par exemple réalisées en un matériau choisi parmi : la silice, comme par exemple la silice fondue, le verre, notamment du verre borosilicate ou du verre sodo-calcique, un matériau organique insoluble dans une résine constituant l’objet tridimensionnel 3, comme par exemple des nanoparticules acryliques ou époxys. De manière alternative ou en complément, les nanoparticules peuvent être fonctionnalisées afin de modifier leur affinité chimique avec les monomères 12 ou encore pour leur conférer des propriétés particulières. The nanoparticles are, for example, made of a material chosen from: silica, such as, for example, fused silica, glass, in particular borosilicate glass or soda-lime glass, an organic material insoluble in a resin constituting the three-dimensional object 3, as for example acrylic nanoparticles or epoxies. Alternatively or in addition, the nanoparticles can be functionalized in order to modify their chemical affinity with the monomers 12 or to give them particular properties.
Selon un mode de réalisation particulier, les nanoparticules sont mono-disperses, c’est-à-dire qu’elles présentent toutes le même diamètre. De manière alternative, ces nanoparticules peuvent être de tailles variables, mais elles respectent la contrainte de diffraction définie ci-dessus.  According to a particular embodiment, the nanoparticles are mono-dispersed, that is to say that they all have the same diameter. Alternatively, these nanoparticles can be of variable sizes, but they respect the diffraction stress defined above.
L’utilisation de nanoparticules mono-disperses permet de définir dans certaines configurations la taille des voxels. En effet, lorsque le diamètre des nanoparticules est supérieur au volume focal du faisceau laser 7, la taille du voxel n’est plus déterminée par le volume focal du faisceau laser 7 mais par le diamètre des nanoparticules. En particulier, la forme des voxels peut ainsi être parfaitement sphérique, bien que le volume focal du faisceau laser 7 ne le soit pas, les faisceaux laser 7 servant uniquement à agglomérer au point focal les nanoparticules, grâce au photopolymère créé, qui définissent alors la taille des voxels.  The use of mono-dispersed nanoparticles makes it possible to define in certain configurations the size of the voxels. Indeed, when the diameter of the nanoparticles is greater than the focal volume of the laser beam 7, the size of the voxel is no longer determined by the focal volume of the laser beam 7 but by the diameter of the nanoparticles. In particular, the shape of the voxels can thus be perfectly spherical, although the focal volume of the laser beam 7 is not, the laser beams 7 serving only to agglomerate at the focal point the nanoparticles, thanks to the photopolymer created, which then define the size of the voxels.
Selon un autre mode de réalisation, la composition 11 est une composition figée, par exemple une composition comprenant comme monomères des oligomères de poids moléculaire élevé permettant d’obtenir une composition solide ou quasi-solide à température ambiante, de sorte que l’on peut réaliser une photo-polymérisation d’un objet sans avoir à réaliser des appendices de support ou de maintien. Avant et/ou après photo-transformation, la composition 11 peut être chauffée au-delà de la température de fusion de la résine afin d’introduire la résine dans la cuve de photo-polymérisation 9 sous une forme liquide (ou visqueuse) et/ou afin de séparer l’objet de la composition 11 qui lui a donné naissance. Ceci a pour avantage de diminuer de manière significative le temps de réalisation de l’objet tridimensionnel 3 ainsi que de réaliser des pièces fortement complexes qu’il serait difficile, voire impossible à fabriquer par d’autres méthodes nécessitant la mise en place d’appendices de support.  According to another embodiment, the composition 11 is a frozen composition, for example a composition comprising, as monomers, oligomers of high molecular weight making it possible to obtain a solid or quasi-solid composition at ambient temperature, so that it is possible to perform a photo-polymerization of an object without having to make support or holding appendages. Before and / or after phototransformation, the composition 11 may be heated beyond the melting temperature of the resin in order to introduce the resin into the photopolymerization tank 9 in a liquid (or viscous) form and / or in order to separate the object from the composition 11 that gave it birth. This has the advantage of significantly reducing the time of realization of the three-dimensional object 3 as well as making highly complex parts that would be difficult or impossible to manufacture by other methods requiring the implementation of appendices of support.
Dans le cas d’une composition liquide, les monomères 12 présents dans la composition 11 sont des monomères 12 couramment utilisés en impression tridimensionnelle par photo- polymérisation mono- ou multi-photonique. Ces monomères 12 sont par exemple des monomères acryliques, plus spécifiquement des acrylates. D’autre part, ces monomères acryliques peuvent être multifonctionnels. Une liste non-exhaustive de monomères 12 pouvant être utilisés dans la composition 11 est fournie en référence à la figure 3. On note que la viscosité de la composition 11 (supérieure ou égale à 0,05 Pa.s = 0,5 poiseuilles = 50 cP) a pour effet que la charge 20, en particulier sous forme de nanoparticules, est quasiment figée dans la composition 11, c’est-à-dire leur déplacement est faible ou quasi-nul lors d’un temps correspondant à une durée de réalisation d’un objet tridimensionnel 3. Dans ces conditions, les effets de la force gravitationnelle sur les nanoparticules sont négligeables. Aucun effet remarquable de sédimentation n’a été observé. In the case of a liquid composition, the monomers 12 present in the composition 11 are monomers 12 commonly used in three-dimensional printing by mono- or multi-photon photopolymerization. These monomers 12 are, for example, acrylic monomers, more specifically acrylates. On the other hand, these acrylic monomers can be multifunctional. A non-exhaustive list of monomers 12 that can be used in composition 11 is provided with reference to FIG. It is noted that the viscosity of the composition 11 (greater than or equal to 0.05 Pa.s = 0.5 teaspoons = 50 cP) has the effect that the filler 20, in particular in the form of nanoparticles, is almost frozen in the composition 11, that is to say their displacement is low or almost zero during a time corresponding to a duration of realization of a three-dimensional object 3. Under these conditions, the effects of the gravitational force on the nanoparticles are negligible . No remarkable sedimentation effects were observed.
De façon préférentielle, le monomère acrylique est choisi parmi les poly- (éthylène glycolj-diacrylates, les tri- (éthylène glycolj-diméthacrylates, les pentaérythritol-tetracrylates, le 1,6-hexanediol-diacrylate, ou une combinaison de ces composés.  Preferably, the acrylic monomer is chosen from poly (ethylene glycol) diacrylates, tri (ethylene glycol) dimethacrylates, pentaerythritol tetracrylates, 1,6-hexanediol diacrylate, or a combination of these compounds.
Les photo-initiateurs ou photo-amorceurs radicalaires contenus dans la composition 11 doivent permettre d’amorcer la polymérisation à la longueur d’onde prédéterminée de photo-polymérisation. 11 existe un grand nombre de photo-amorceurs adaptés selon les conditions opératoires et dont le choix peut être facilement déterminé par l’homme du métier. Les photo-amorceurs ci-après sont indiqués à titre d’exemple non-limitatif. 11 s’agit typiquement de cétones aromatiques, comme par exemple la 2,2-diméthoxy-l,2- phénylacétophénone (DMPA), commercialisée sous le nom lrgacure 651®, les dérivés aromatiques, de l’éosine Y pour des photo- polymérisations dans le domaine visible, ou des amorceurs thermiques comme le peroxyde de benzoyle pour des photo- polymérisations dans le domaine infra-rouge, ou encore d’autres colorant xanthéniques. Des photo- amorceurs particulièrement adaptés au procédé selon la présente invention sont représentés en référence à la figure 4 et commercialisés sous les noms commerciaux Darocure 1173® et 116®, Quantacure PDO®, lrgacure 184®, 651®, et 907®, et Trigonal 14®.  The radical photoinitiators or photoinitiators contained in the composition 11 must make it possible to initiate the polymerization at the predetermined wavelength of photopolymerization. There are a large number of photoinitiators adapted according to the operating conditions and the choice of which can be easily determined by those skilled in the art. The photoinitiators below are given by way of non-limiting example. These are typically aromatic ketones, such as, for example, 2,2-dimethoxy-l, 2-phenylacetophenone (DMPA), marketed under the name Irgacure 651®, aromatic derivatives, eosin Y for photopolymerizations. in the visible range, or thermal initiators such as benzoyl peroxide for infra-red photopolymerizations, or other xanthene dyes. Photoinitiators particularly suitable for the process according to the present invention are shown with reference to Figure 4 and marketed under the trade names Darocure 1173® and 116®, Quantacure PDO®, Irgacure 184®, 651®, and 907®, and Trigonal 14®.
De façon préférentielle, l’amorceur photochimique radicalaire est la DMPA commercialisée sous le nom lrgacure 651®.  Preferably, the radical photochemical initiator is DMPA marketed under the name lrgacure 651®.
Selon un autre mode de réalisation, le procédé de l’invention utilise un mécanisme de photo- polymérisation ionique, par exemple cationique. Auquel cas, les monomères 12 présents dans la composition 11 sont, par exemple, des monomères époxys et le photo- amorceur est un sel d’onium, comme par exemple le Rhodorsil 2074®. La référence suivante : Vairon J-P & al, « lndustrial Cationic Polymerization : An OverView in Cationic Polymerizations », Matyjaszewszki, K., Ed., Marcel Dekker : New York, NY, USA, 1996, pp. 683-750 indique une liste de différents amorceurs photo-chimiques utilisables dans le procédé faisant l’objet de l’invention. La figure 5 illustre un mécanisme classique de polymérisation ionique avec les étapes suivantes : amorçage (A), propagation (B) et (C), transfert (D). According to another embodiment, the process of the invention uses an ionic photopolymerization mechanism, for example cationic. In which case, the monomers 12 present in the composition 11 are, for example, epoxidic monomers and the photoinitiator is an onium salt, such as for example Rhodorsil 2074®. The following reference: JP & al Vairon, "Industrial Cationic Polymerization: An OverView in Cationic Polymerizations," Matyjaszewski, K., Ed., Marcel Dekker: New York, NY, USA, 1996, pp. 683-750 indicates a list of different photochemical initiators usable in the process which is the subject of the invention. FIG. 5 illustrates a conventional ionic polymerization mechanism with the following steps: priming (A), propagation (B) and (C), transfer (D).
Avec des monomères multifonctionnels, des systèmes réticulés, insolubles dans la résine initiale, peuvent être formés comme l’indique le schéma de la figure 6. With multifunctional monomers, crosslinked systems, insoluble in the initial resin, can be formed as shown in the scheme of Figure 6.
En dehors des composés de la famille des époxys, il est possible d’utiliser un grand nombre de monomères décrits de manière synthétique dans la référence suivante : Oskar Nuyken & Stephen D. Pask, « Ring-Opening Polymerization - An lntroductory Review », Polymers, 2013, 5, pp. 361-403, doi:10.3390/polym5020361. Apart from the compounds of the family of epoxies, it is possible to use a large number of monomers described in a synthetic manner in the following reference: Oskar Nuyken & Stephen D. Pask, "Ring-Opening Polymerization - An Introductory Review", Polymers , 2013, 5, pp. 361-403, doi: 10.3390 / polym5020361.
Comme indiqué précédemment, une optique de focalisation 13 et un diffuseur 14 permettant de contrôler et/ou de modifier la profondeur de champ du faisceau laser 7 sont disposés sur le chemin optique du faisceau laser 7. As indicated above, a focusing optics 13 and a diffuser 14 making it possible to control and / or modify the depth of field of the laser beam 7 are arranged on the optical path of the laser beam 7.
La figure 7A montre plusieurs voxels photo-polymérisés vox-A, vox-B, vox-C, vox-D et vox-E sans diffuseur 14 avec différentes puissances de faisceau laser 7.  FIG. 7A shows several voxel voxels vox-A, vox-B, vox-C, vox-D and vox-E without diffuser 14 with different laser beam powers 7.
La figure 7B montre plusieurs voxels photo-polymérisés vox-A’, vox-B’, vox-C’, vox-D’ et vox-E’, avec un diffuseur 14 sur le chemin optique du faisceau laser 7 et à des puissances de faisceau laser 7 différentes.  FIG. 7B shows several voxel voxels vox-A ', vox-B', vox-C ', vox-D' and vox-E ', with a diffuser 14 on the optical path of the laser beam 7 and at powers 7 different laser beam.
L’utilisation d’un diffuseur 14 adapté 1° et 20° (un diffuseur 1° signifie une ouverture du faisceau laser 7 en sortie du diffuseur 14 de 1°) permet de faire varier la taille des voxels photo-polymérisés. Cependant, de manière évidente, la puissance de la source lumineuse 5 doit être adaptée pour que la densité de puissance soit identique ou la plus proche possible de celle définie pour les voxels de plus petite taille (sensiblement variant entre le carré et le cube de la taille du voxel).  The use of a diffuser 14 adapted 1 ° and 20 ° (a diffuser 1 ° means an opening of the laser beam 7 at the output of the diffuser 14 of 1 °) allows to vary the size of the photopolymerized voxels. However, obviously, the power of the light source 5 must be adapted so that the power density is identical or as close as possible to that defined for voxels of smaller size (substantially varying between the square and the cube of the voxel size).
Du fait d’une viscosité élevée de la composition 11 (par exemple supérieure à 1,00 Pa.s pour 40 % en volume de nanoparticules dans par rapport au volume de la composition 11), le procédé selon l’invention permet de concevoir la réalisation d’objets tridimensionnels 3 de taille au moins centimétrique sans recourir à des appendices de support ou de maintien pour des objets complexes. Le procédé selon l’invention permet également de réduire le temps nécessaire pour la réalisation de l’objet tridimensionnel 3 par photo-polymérisation multi- photonique, notamment à deux photons. Due to a high viscosity of the composition 11 (for example greater than 1.00 Pa.s for 40% by volume of nanoparticles in relation to the volume of the composition 11), the method according to the invention makes it possible to design the producing three-dimensional objects 3 at least centimeter in size without resorting to support or holding appendages for complex objects. The method according to the invention also makes it possible to reduce the time required for producing the three-dimensional object 3 by multi-photon photopolymerization, in particular with two photons.
En effet, il est possible de distinguer l’objet tridimensionnel 3 sur une surface externe et un volume interne. L’optimisation consiste abrs à polymériser des endroits bcalisés dans le volume interne (partie massive) avec une faible résolution, déterminée en fonction de l’objet à imprimer, et à polymériser les zones formant la surface externe de l’objet tridimensionnel 3 avec une résolution élevée pour obtenir un état de surface de bonne qualité pour la (les) surface(s) externe(s) de l’objet tridimensionnel 3.  Indeed, it is possible to distinguish the three-dimensional object 3 on an outer surface and an internal volume. The optimization consists in polymerizing localized locations in the internal volume (solid part) with a low resolution, determined according to the object to be printed, and in polymerizing the zones forming the external surface of the three-dimensional object 3 with a high resolution to obtain a good surface quality for the external surface (s) of the three-dimensional object 3.
Ceci est représenté de façon schématique sur la figure 8. Par simplification de présentation, on suppose que les voxels sont des cubes et que l’on dispose, par exemple, au moins d’une première résolution permettant de réaliser des voxels de taille Dz et une seconde résolution, plus fine, permettant de réaliser des voxels Dzz de taille plus petite, par exemple 10*Dzz=Dz.  This is shown schematically in FIG. 8. For simplification of presentation, it is assumed that the voxels are cubes and that, for example, at least one first resolution is available which makes it possible to produce voxels of size Dz and a second resolution, finer, allowing to realize voxels Dzz of smaller size, for example 10 * Dzz = Dz.
On comprend aisément que si les voxels à l’intérieur de l’objet tridimensionnel sont réalisés avec la résolution Dz et les voxels formant la surface externe de l’objet tridimensionnel 3 avec la résolution Dzz, on peut diminuer le temps de fabrication de l’objet tridimensionnel 3 de manière significative.  It is easy to understand that if the voxels inside the three-dimensional object are made with the resolution Dz and the voxels forming the external surface of the three-dimensional object 3 with the resolution Dzz, the manufacturing time of the three-dimensional object 3 significantly.
Selon un mode de réalisation particulier, la fabrication de l’objet tridimensionnel 3 peut être réalisée de façon successive. Le volume interne est polymérisé à partir d’une première composition 11 comprenant des premières charges 20 sous forme de nanoparticules permettant d’obtenir une première taille de voxel, élevée par rapport à l’objet tridimensionnel 3 à fabriquer. La partie interne de l’objet est ensuite retirée de la première cuve 9 comprenant la première composition 11. Cette partie interne est ensuite pbngée dans une deuxième cuve 9 comprenant une deuxième composition 11 comprenant des nanoparticules plus fines que la première composition 11, voire ne contenant aucune charge 20, pour la polymérisation de la surface externe de l’objet tridimensionnel 3. Ces première et deuxième compositions 11 successives permettent de réduire la taille des premier et deuxième voxels en fonction de la finition de l’objet tridimensionnel 3 à former. Le procédé permet ainsi de polymériser en des endroits localisés dans le volume interne avec une résolution plus faible que les endroits formant la surface externe de l’objet tridimensionnel 3.  According to a particular embodiment, the manufacture of the three-dimensional object 3 can be carried out successively. The internal volume is polymerized from a first composition 11 comprising first charges 20 in the form of nanoparticles making it possible to obtain a first voxel size, which is high compared with the three-dimensional object 3 to be manufactured. The internal part of the object is then removed from the first tank 9 comprising the first composition 11. This internal part is then pbngée in a second tank 9 comprising a second composition 11 comprising finer nanoparticles than the first composition 11, or not containing no charge 20, for the polymerization of the outer surface of the three-dimensional object 3. These first and second successive compositions 11 make it possible to reduce the size of the first and second voxels as a function of the finish of the three-dimensional object 3 to be formed. The method thus makes it possible to polymerize at localized locations in the internal volume with a lower resolution than the places forming the external surface of the three-dimensional object 3.
Ce procédé peut être généralisé et on peut prévoir de réaliser différentes portions de l’objet tridimensionnel 3 successivement par polymérisation dans différentes cuves 9 contenant chacune une composition 11 spécifique permettant d’obtenir une taille de voxel prédéterminée. This method can be generalized and it is possible to provide different portions of the three-dimensional object 3 successively by polymerization in different tanks 9 each containing a specific composition 11 to obtain a predetermined voxel size.
Ce procédé permet ainsi de réaliser facilement et rapidement des objets tridimensionnels 3 dont la forme peut être plus complexe que celle accessible avec les méthodes classiques de stéréo-lithographie. On peut ainsi envisager la fabrication d’objets complexes ayant des dimensions centimétrique, voire d’une dizaine de centimètres, dans un temps de fabrication raisonnable et sans recours à des éléments de maintien présents dans la structure de l’objet tridimensionnel 3.  This method thus makes it possible to easily and quickly produce three-dimensional objects whose shape may be more complex than that accessible with conventional stereo-lithography methods. It is thus possible to envisage the manufacture of complex objects having centimeter dimensions, or even about ten centimeters, in a reasonable manufacturing time and without resorting to holding elements present in the structure of the three-dimensional object 3.
Ce procédé présente donc un avantage déterminant relativement à la stéré- lithographie à un photon, puisque l’épaisseur de couche ne peut pas, en général, être modifiée facilement lors de la polymérisation d’une couche de résine. S’il est possible de modifier la taille du spot lumineux, seuls deux paramètres d’espace (voxel) peuvent être modifiés, alors que selon le procédé décrit ici, il est possible d’ajuster la taille des voxels en fonction de trois paramètres : le diamètre du voxel, la profondeur et la puissance de la source lumineuse pour réaliser un objet selon une consigne tenant compte de l’état de surface de la partie de l’objet tridimensionnel 3 réalisé.  This method therefore has a decisive advantage with respect to one-photon stereolithography, since the layer thickness can not, in general, be easily changed during the polymerization of a resin layer. If it is possible to modify the size of the light spot, only two space parameters (voxel) can be modified, whereas according to the method described here, it is possible to adjust the size of the voxels according to three parameters: the diameter of the voxel, the depth and the power of the light source to produce an object according to a setpoint taking into account the surface state of the portion of the three-dimensional object 3 made.
Selon un mode de réalisation particulier, le procédé peut être un procédé de bio impression. Dans ce cas, la composition 11 comprend des monomères 12, avantageusement biocompatible, au moins une charge 20 comprenant des nanoparticules et au moins un matériel biologique correspondant à un constituant additionnel vivant de la charge 20. According to a particular embodiment, the method may be a bio printing process. In this case, the composition 11 comprises monomers 12, advantageously biocompatible, at least one filler 20 comprising nanoparticles and at least one biological material corresponding to an additional living component of the filler 20.
A titre d’exemple non-limitatif, les monomères 12 peuvent être choisis parmi les composés suivants : les acryliques, l’acide L-lactique, l’acide glycolique, les capro-lactones, ces composés pouvant être utilisés seuls ou en combinaison. La charge 20 comprend les nanoparticules permettant de modifier la viscosité de la composition 11 et en outre au moins un matériel biobgique correspondant au constituant additionnel de la charge 20, comme par exemple des cellules vivantes. Selon ce mode de réalisation particulier, les charges 20 sont donc composées de nanoparticules associées aux cellules vivantes, ces nanoparticules pouvant être dans un mélange de collagène et de cellules vivantes par exemple.  By way of nonlimiting example, the monomers 12 may be chosen from the following compounds: acrylics, L-lactic acid, glycolic acid, caprolactones, these compounds may be used alone or in combination. The filler 20 comprises the nanoparticles making it possible to modify the viscosity of the composition 11 and in addition at least one biobigic material corresponding to the additional constituent of the filler 20, for example living cells. According to this particular embodiment, the charges 20 are therefore composed of nanoparticles associated with living cells, these nanoparticles being able to be in a mixture of collagen and living cells, for example.
Un hydrogel est nécessaire afin de préserver la viabilité des cellules lors de l’impression. A titre d’exemple non-limitatif, l’hydrogel peut être choisi parmi le collagène, la fibrine, l’alginate, la chitine, le chitosane, l’acide hyaluronique, le poly-(2-hydroxyéthyl)- méthacrylate (PHEMA), l’alcool polyvinylique (PVA) et le polyéthylène glycol (PEG) considérés seuls ou en mélange. A hydrogel is necessary in order to preserve the viability of the cells during printing. By way of non-limiting example, the hydrogel may be chosen from collagen, fibrin, alginate, chitin, chitosan, hyaluronic acid, poly (2-hydroxyethyl) methacrylate (PHEMA), polyvinyl alcohol (PVA) and polyethylene glycol (PEG) alone or in combination.
En référence à la figure 10, il est représenté de manière schématique un procédé de réalisation de l’objet tridimensionnel 3. With reference to FIG. 10, there is shown schematically a method of producing the three-dimensional object 3.
Ce procédé met en œuvre une opération d’introduction El de la composition 11 dans la cuve de polymérisation 9, la composition 11 comprenant au moins un monomère 12, au moins une charge 20 sous forme de nanoparticules et au moins un photo-amorceur. Lorsque la composition 11 présente une viscosité élevée, cette composition 11 peut être légèrement chauffée afin de permettre une diminution de sa viscosité afin de faciliter cette opération d’introduction El. Par ailleurs, dans une telle situation, l’apparition de bulles d’air dans la cuve de polymérisation 9 peut être prévenue grâce à cette légère chauffe de la composition 11.  This process involves an introduction operation El of the composition 11 in the polymerization tank 9, the composition 11 comprising at least one monomer 12, at least one filler 20 in the form of nanoparticles and at least one photoinitiator. When the composition 11 has a high viscosity, this composition 11 can be slightly heated in order to allow a decrease in its viscosity to facilitate this introduction operation El. Moreover, in such a situation, the appearance of air bubbles in the polymerization tank 9 can be prevented by this slight heating of the composition 11.
Le procédé met ensuite en œuvre une opération de polymérisation E2 par polymérisation multi- photonique à l’aide de la source lumineuse 5 à des endroits prédéterminés. Au cours de cette opération de polymérisation E2, la cuve de polymérisation 9 est déplacée selon les axes x, y, z (représentés sur la figure 1) de manière à permettre le déplacement de la zone de focalisation du faisceau laser 7 permettant la polymérisation de la composition 11.  The process then performs a polymerization operation E2 by multi-photon polymerization using the light source 5 at predetermined locations. During this polymerization operation E2, the polymerization vessel 9 is displaced along the x, y, z axes (shown in FIG. 1) so as to allow the displacement of the focusing zone of the laser beam 7 allowing the polymerization of the composition 11.
De manière optionnelle, le procédé met ensuite en œuvre une étape de retrait E3 de l’objet tridimensionnel 3 imprimé de la cuve de polymérisation 9. En présence de charges 20 sous forme de nanoparticules, cette opération de retrait E3 peut se faire de façon classique par retrait à la pince, ou bien avec un tamis par exemple.  Optionally, the method then implements an E3 removal step of the printed three-dimensional object 3 of the polymerization vessel 9. In the presence of nanoparticle-shaped charges 20, this E3 removal operation can be carried out in a conventional manner. by withdrawal with the forceps, or with a sieve for example.
Ensuite, et également de manière optionnelle, le procédé peut mettre en œuvre une opération d’élimination E4 des nanoparticules surnuméraires. Ces nanoparticules surnuméraires forment avec le monomère 12 non-polymérisé un film sur l’objet tridimensionnel 3 obtenu. Ce film peut être éliminé par essuyage, à l’aide d’un trempage dans un bain ou encore par rinçage avec un solvant qui solubilise le monomère 12 non- polymérisé, ce qui permet l’élimination des nanoparticules présentes en surface. Cette opération d’élimination E4 peut être réalisée à la fin des impressions en résine dans la masse. Dans certains cas, la fluidification de la composition 11, et en particulier d’au moins un monomère 12, non-polymérisée peut se faire en ajoutant du monomère 12 liquide, ce qui permet un recyclage des matières non-transformées ou à l’aide d’un solvant classique du monomère 12. Then, and also optionally, the method can implement an E4 removal operation of supernumerary nanoparticles. These supernumerary nanoparticles form with the unpolymerized monomer 12 a film on the three-dimensional object 3 obtained. This film can be removed by wiping, using a dipping in a bath or by rinsing with a solvent that solubilizes the non-polymerized monomer 12, which allows the removal of nanoparticles present on the surface. This elimination operation E4 can be performed at the end of the resin prints in the mass. In some cases, the fluidification of the composition 11, and in particular at least one monomer 12, unpolymerized can be done by adding monomer 12 liquid, which allows recycling of non-transformed materials or using a conventional monomer solvent 12.
En particulier, même si les nanoparticules de la charge 20 sont en contact mutuel (densité de charge maximale), voire en empilement compact, le monomère 12 sous forme liquide s’insère dans les espaces libres et, en polymérisant, lie les nanoparticules autour des points où le faisceau laser 7 est focalisé. Les nanoparticules en périphérie, non ou insuffisamment liées par polymérisation sont abrs enlevées lors de l’opération d’élimination E4. Selon le mode de réalisation particulier de la figure 10, cette opération d’élimination E4 est mise en œuvre par rinçage avec un solvant, notamment choisi parmi des composés cétoniques ou alcooliques, notamment de l’acétone ou encore de l’isopropanol.  In particular, even if the nanoparticles of the charge 20 are in mutual contact (maximum charge density), or even in compact stack, the monomer 12 in liquid form is inserted into the free spaces and, by polymerizing, binds the nanoparticles around the points where the laser beam 7 is focused. Nanoparticles at the periphery, not or insufficiently bonded by polymerization, are abraded during the removal operation E4. According to the particular embodiment of FIG. 10, this elimination operation E4 is carried out by rinsing with a solvent, in particular chosen from ketone or alcoholic compounds, in particular acetone or else isopropanol.
En référence à la figure 11, il est représenté de manière schématique de l’objet tridimensionnel 3 obtenu selon ce procédé. Selon cette représentation, l’objet tridimensionnel 3 est de forme sensiblement elliptique. Toutefois, selon d’autres modes de réalisation, et notamment selon d’autres types de déplacement de la cuve de polymérisation 9, d’autres formes, y compris des formes de complexité supérieure, peuvent être obtenues. Ainsi, certains objets présentant des formes géométriques plus ou moins complexes peuvent être obtenus par ce procédé. A titre d’exemple, la figure 12 représente une photographie d’un objet ayant une forme complexe de Dodécaèdre, la figure 13 représente une photographie d’un objet ayant une forme de bicyclette et la figure 14 représente une photographie d’un objet ayant une forme de l’ADN en double hélice. L’échelle de largeur portant sur ces figures correspond à 1 mm (échelle de 2,45cm = 1mm réel). Referring to Figure 11, it is shown schematically of the three-dimensional object 3 obtained according to this method. According to this representation, the three-dimensional object 3 is of substantially elliptical shape. However, according to other embodiments, and in particular according to other types of displacement of the polymerization tank 9, other forms, including forms of higher complexity, can be obtained. Thus, some objects having more or less complex geometric shapes can be obtained by this method. By way of example, Fig. 12 shows a photograph of an object having a complex shape of Dodecahedron, Fig. 13 shows a photograph of an object having a bicycle shape and Fig. 14 shows a photograph of an object having a form of double helix DNA. The width scale on these figures corresponds to 1 mm (scale of 2.45 cm = 1 mm real).
Selon un mode de réalisation particulier non représenté ici, la cuve de polymérisation 9 peut présenter un support, comme par exemple une potence, sur lequel l’objet tridimensionnel 3 est fabriqué par photo- polymérisation multi-photonique. L’utilisation d’un tel support permet de garantir la stabilité de l’objet tridimensionnel 3 au cours de sa fabrication. En effet, lorsque les temps de fabrication de l’objet tridimensionnel 3 sont longs, par exemple supérieur à 15 secondes, ce dernier peut être amené à se déplacer vers le fond de la cuve de polymérisation 9 selon la loi de Stokes. Un tel déplacement de l’objet au cours de sa fabrication pourrait nuire à la précision de fabrication de cet objet tridimensionnel 3. Ce déplacement peut donc être prévenu à l’aide du support présent dans la cuve de polymérisation 9 sur lequel l’objet tridimensionnel 3 est réalisé. Des exemples spécifiques de compositions 11 sont développés ci-après ainsi qu’un procédé de préparation des nanoparticules servant de charge 20. According to a particular embodiment not shown here, the polymerization tank 9 may have a support, such as for example a bracket, on which the three-dimensional object 3 is manufactured by multi-photon photopolymerization. The use of such a support makes it possible to guarantee the stability of the three-dimensional object 3 during its manufacture. Indeed, when the manufacturing times of the three-dimensional object 3 are long, for example greater than 15 seconds, the latter may be caused to move towards the bottom of the polymerization vessel 9 according to the Stokes law. Such displacement of the object during its manufacture could adversely affect the manufacturing accuracy of this three-dimensional object 3. This displacement can therefore be prevented by means of the support present in the polymerization vessel 9 on which the three-dimensional object 3 is realized. Specific examples of compositions 11 are developed hereinafter as well as a process for preparing the nanoparticles serving as filler 20.
Préparation des nanoparticules : Preparation of nanoparticles:
Les nanoparticules sont préparées selon une méthode en deux étapes qui consiste à obtenir les nanoparticules sous forme de poudre puis de les disperser dans le monomère 12. Cette méthode est notamment décrite dans les documents suivants : The nanoparticles are prepared according to a two-step method consisting of obtaining the nanoparticles in powder form and then dispersing them in the monomer 12. This method is described in particular in the following documents:
• Kulkarni et al « Application of nano-fluids in heating buildings and reducing pollution », Applied Energy, 2009, 86, pp. 2566-2573 ;  • Kulkarni et al, "Application of nano-fluids in heating buildings and reducing pollution", Applied Energy, 2009, 86, pp. 2566-2573;
• Longo et Zilio, « Experimental measurement of therms-physical properties of oxide- water nano-fluids down to ice-point », Experimental Thermal and Fluid Science, 2011, 35, pp. 1313-1324 ;  • Longo and Zilio, "Experimental measurement of thermal-physical properties of oxide-water nano-fluids down to ice-point", Experimental Thermal and Fluid Science, 2011, 35, pp. 1313-1324;
• Ho et al, « An experimental investigation of forced convecting cooling performance of microchanel heat sink with Al203/water nano-fluids », Applied Thermal Engineering, 2010, 30, pp. 96-103 ; et  Ho et al, "An experimental investigation of forced convection cooling performance of microchannel heat sink with Al203 / water nano-fluids", Applied Thermal Engineering, 2010, 30, pp. 96-103; and
• Zhang et al, « Effective thermal conductivity and thermal diffusivity of nano-fluids containing spherical and cylindrical nanoparticles », Experimental Thermal and Fluid Science, 2007, 31, pp. 593-599.  • Zhang et al, "Effective thermal conductivity and thermal diffusivity of nano-fluids containing spherical and cylindrical nanoparticles", Experimental Thermal and Fluid Science, 2007, 31, pp. 593-599.
Afin de s’assurer de la bonne répartition des nanoparticules dans la composition 11, cette composition est agitée pendant 1 heure environ par agitation mécanique et/ou par agitation par ultrasons d’environ 25 kHz sur des périodes éventuellement plus longues. Ces durées d’agitation peuvent devenir plus élevées quand le taux de charge augmente, ce qui peut correspondre à une « gélification » en particulier bcalisée du milieu. In order to ensure the good distribution of the nanoparticles in the composition 11, this composition is stirred for about 1 hour by mechanical stirring and / or by ultrasonic stirring of about 25 kHz over possibly longer periods. These stirring times can become higher when the filler rate increases, which may correspond to a "gelation" in particular localized medium.
Comme indiqué précédemment, l’utilisation de nanoparticules permet une augmentation adaptée de la viscosité de la composition 11 sans que les effets de diffusion de la lumière du faisceau laser 7 aient besoin d’être pris en considération  As indicated above, the use of nanoparticles allows a suitable increase in the viscosity of the composition 11 without the light scattering effects of the laser beam 7 needing to be taken into consideration.
Choix des monomères 12 : Choice of monomers 12:
Les monomères suivants sont particulièrement adaptés pour le procédé décrit précédemment : The following monomers are particularly suitable for the process described above:
Les indices de réfraction ont été mesurés par un réfractomètre d’Abbe (Kern Optics ORT 1RS Réfractomètre) étalonné à l’aide d’une huile de calibration. The refractive indices were measured by an Abbe refractometer (Kern Optics ORT 1RS Refractometer) calibrated using a calibration oil.
Par ailleurs, les monomères 12 Norland 65 et 81 incorporent un photo-initiateur et ont été utilisées sans ajout de photo-initiateur ou de photo-amorceur complémentaire.  On the other hand, Norland monomers 65 and 81 incorporate a photoinitiator and have been used without the addition of photoinitiator or complementary photoinitiator.
Exemple de composition 11 : Example of Composition 11:
Cette composition 11 a été polymérisée par polymérisation à deux photons en utilisant un laser 5 Yb : KGW doublé en fréquence à 515 nm avec des durées d’impulsion de 500 fs pour obtenir un objet pour obtenir un objet de forme sensiblement cylindrique. This composition 11 was polymerized by two-photon polymerization using a Frequency doubled 5 Yb: KGW laser at 515 nm with pulse durations of 500 fs to obtain an object to obtain a substantially cylindrical shaped object.
D’autre part, la composition 11 présente une viscosité satisfaisante pour éviter les déplacements de l’objet à imprimer au cours de sa réalisation et présente une faible variation de l’indice de réfraction de ses différents composants. La composition 11 est également transparente à la longueur d’onde prédéterminée de photo-polymérisation. On the other hand, the composition 11 has a satisfactory viscosity to avoid displacements of the object to be printed during its production and has a small variation of the refractive index of its various components. The composition 11 is also transparent to the predetermined wavelength of photopolymerization.
Autre exemple, obtention de voxels variables : Another example, obtaining variable voxels:
Une expérience a été réalisée afin de déterminer les effets de diffuseurs 14 placés en entrée de l’objectif et permettant de présenter une large gamme de fréquences spatiales. En effet, si le faisceau laser 7 initial se caractérise comme une onde plane se propageant dans une certaine direction, le diffuseur sépare cette onde en de multiples ondes se propageant de façon aléatoire dans un angle caractéristique du diffuseur 14 (lié à la rugosité ou « fréquence spatiale »). An experiment was carried out to determine the effects of diffusers 14 placed at the entrance of the objective and making it possible to present a wide range of spatial frequencies. Indeed, if the initial laser beam 7 is characterized as a plane wave propagating in a certain direction, the diffuser separates this wave into multiple waves propagating randomly in a characteristic angle of the diffuser 14 (related to the roughness or " spatial frequency ").
Le dispositif de réalisation 1 comprend une source lumineuse 5 telle qu’un laser He/Ne de longueur d’onde 543 nm, un objectif à longue distance de travail et un jeu de différents diffuseurs 14 montés sur une roue à filtre.  The embodiment device 1 comprises a light source 5 such as a He / Ne laser of wavelength 543 nm, a long-distance working lens and a set of different diffusers 14 mounted on a filter wheel.
La mesure de la caustique du faisceau laser 7 est reportée à la figure 9. Ces mesures permettent de déterminer l’influence des diffuseurs 14 sur le diamètre du faisceau laser 7.  The measurement of the caustic of the laser beam 7 is shown in FIG. 9. These measurements make it possible to determine the influence of the diffusers 14 on the diameter of the laser beam 7.
Sur cette figure 9 sont représentées trois courbes 101, 103 et 105. La courbe 101 montre le diamètre du faisceau laser 7 en gm en fonction de la position en z en mm sans diffuseur, la courbe 103 avec un diffuseur 14 de 1°, et la courbe 105 avec un diffuseur 14 de 10°.  In this figure 9 are represented three curves 101, 103 and 105. The curve 101 shows the diameter of the laser beam 7 in gm as a function of the position in z in mm without diffuser, the curve 103 with a diffuser 14 of 1 °, and the curve 105 with a diffuser 14 of 10 °.
On observe que ce procédé rend possible le contrôle de la profondeur de champ du faisceau gaussien sans réduire le diamètre du faisceau laser 7 au point focal et ainsi de contrôler les dimensions du voxel.  It is observed that this method makes it possible to control the depth of field of the Gaussian beam without reducing the diameter of the laser beam 7 at the focal point and thus to control the dimensions of the voxel.
Dans le cas présent, le diamètre du faisceau laser 7 peut atteindre 100 gm de diamètre et une profondeur de champ définie par une augmentation de diamètre de 20 5, d’environ 300 gm soit un rapport diamètre/profondeur de l’ordre de 0,3 (figure 3). In this case, the diameter of the laser beam 7 may be 100 gm in diameter and a depth of field defined by a increased diameter of 2 0 '5, of about 300 gm or a diameter / depth of the order of 0.3 (Figure 3).

Claims

Revendications claims
1. Procédé de réalisation d’un objet tridimensionnel (3) comprenant les opérations suivantes : A method of producing a three-dimensional object (3) comprising the following operations:
• introduire (El) une composition (11) dans une cuve de polymérisation (9), Introducing (El) a composition (11) into a polymerization vessel (9),
• polymériser (E2) par polymérisation multi-photonique à l’aide d’une source lumineuse (5), à des endroits prédéterminés, la composition (11) pour réaliser l’objet tridimensionnel (3), la composition (11) comprenant au moins un monomère (12), au moins une charge (20) et au moins un photo-amorceur, Polymerizing (E2) by multi-photon polymerization using a light source (5), at predetermined locations, the composition (11) for producing the three-dimensional object (3), the composition (11) comprising at least at least one monomer (12), at least one filler (20) and at least one photoinitiator,
caractérisé en ce que la charge (20) comprend des nanoparticules. characterized in that the filler (20) comprises nanoparticles.
2. Procédé de réalisation d’un objet tridimensionnel (3) selon la revendication précédente, caractérisé en ce que la composition (11) présente une transmittance par unité de longueur supérieure à 75% aux longueurs d’ondes d’émission de la source lumineuse. 2. Method for producing a three-dimensional object (3) according to the preceding claim, characterized in that the composition (11) has a transmittance per unit length greater than 75% at the emission wavelengths of the light source. .
3. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications précédentes, caractérisé en ce que la composition (11) a une viscosité supérieure ou égale à 0,30 Pa.s. 3. A method of producing a three-dimensional object (3) according to any one of the preceding claims, characterized in that the composition (11) has a viscosity greater than or equal to 0.30 Pa.s.
4. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications précédentes, caractérisé en ce que les nanoparticules ont un diamètre moyen inférieur ou égal à 100 nm. 4. A method of producing a three-dimensional object (3) according to any one of the preceding claims, characterized in that the nanoparticles have an average diameter less than or equal to 100 nm.
5. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications précédentes, caractérisé en ce que la différence d’indices de réfraction des nanoparticules et du monomère (12) est inférieure à 0,4. 5. A method of producing a three-dimensional object (3) according to any one of the preceding claims, characterized in that the difference in refractive indices of the nanoparticles and the monomer (12) is less than 0.4.
6. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications précédentes, caractérisé en ce que la composition (11) comprend de 10 à 70 % en volume de nanoparticules par rapport au volume de ladite composition (11). 6. Method for producing a three-dimensional object (3) according to any one of the preceding claims, characterized in that the composition (11) comprises from 10 to 70% by volume of nanoparticles with respect to the volume of said composition (11). ).
7. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications précédentes, caractérisé en ce que les charges (20) comprennent un composant soluble dans le monomère (12). 7. A method of producing a three-dimensional object (3) according to any one of the preceding claims, characterized in that the charges (20) comprise a component soluble in the monomer (12).
8. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications précédentes, caractérisé en ce que les nanoparticules sont réalisées en un matériau choisi parmi : la silice, le verre, notamment du verre borosilicate ou du verre sodo- calcique, un matériau organique insoluble dans une résine constituant l’objet tridimensionnel (3). 8. A method of producing a three-dimensional object (3) according to any one of the preceding claims, characterized in that the nanoparticles are made of a material selected from: silica, glass, especially borosilicate glass or soda glass - Calcium, an organic material insoluble in a resin constituting the three-dimensional object (3).
9. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications précédentes, caractérisé en ce que le monomère (12) est choisi parmi les composés suivants : les monomères acryliques, l’acide L-lactique, l’acide glycolique, les capro-lactones, ces composés pouvant être utilisés seuls ou en combinaison. 9. Process for producing a three-dimensional object (3) according to any one of the preceding claims, characterized in that the monomer (12) is chosen from the following compounds: acrylic monomers, L-lactic acid, glycolic acid, caprolactones, these compounds can be used alone or in combination.
10. Procédé de réalisation d’un objet tridimensionnel (3) selon la revendication 9, caractérisé en ce que la charge (20) peut comprendre en outre un constituant additionnel choisi parmi : des cellules vivantes, un hydrogel choisi parmi le collagène, la fibrine, l’alginate, la chitine, le chitosane, l’acide hyaluronique, le poly-(2-hydroxyéthyl) -méthacrylate, l’alcool polyvinylique et le polyéthylène glycol considérés seuls ou en mélange. 10. A method of producing a three-dimensional object (3) according to claim 9, characterized in that the charge (20) may further comprise an additional constituent selected from: living cells, a hydrogel selected from collagen, fibrin alginate, chitin, chitosan, hyaluronic acid, poly- (2-hydroxyethyl) methacrylate, polyvinyl alcohol and polyethylene glycol, alone or as a mixture.
11. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications 1 à 8, caractérisé en ce que le monomère (12) est un monomère acrylique. 11. A method of producing a three-dimensional object (3) according to any one of claims 1 to 8, characterized in that the monomer (12) is an acrylic monomer.
12. Procédé de réalisation d’un objet tridimensionnel (3) selon la revendication 11, caractérisé en ce que le monomère acrylique est choisi parmi les poly- (éthylène glycol) - diacrylates, les tri-(éthylène glycol) -diméthacrylates, les pentaérythritol-tetracrylates, le 1,6- hexanediol-diacrylate, ou une combinaison de ces composés. 12. Process for producing a three-dimensional object (3) according to claim 11, characterized in that the acrylic monomer is chosen from poly (ethylene glycol) diacrylates, tri (ethylene glycol) dimethacrylates and pentaerythritol. -tetracrylates, 1,6-hexanediol-diacrylate, or a combination of these compounds.
13. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications 11 ou 12, caractérisé en ce que le ou les photo-amorceurs sont choisis parmi : les cétones aromatiques, les dérivés aromatiques, l’éosine Y, ou d’autres colorant xanthéniques 13. A method of producing a three-dimensional object (3) according to any one of claims 11 or 12, characterized in that the one or more photoinitiators are chosen from: aromatic ketones, aromatic derivatives, eosin Y , or other xanthene dyes
14. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications I à 8 et ll à l3, caractérisé en ce que la composition (11) comprend au moins un monomère époxy. 14. A method of producing a three-dimensional object (3) according to any one of claims I to 8 and 11 to 13, characterized in that the composition (11) comprises at least one epoxy monomer.
15. Procédé de réalisation d’un objet tridimensionnel (3) selon la revendication 14, caractérisé en ce que le photo-amorceur est un sel d’onium. 15. A method of producing a three-dimensional object (3) according to claim 14, characterized in that the photoinitiator is an onium salt.
16. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications précédentes dans lequel la polymérisation multi- photonique est réalisée à l’aide d’un faisceau laser (7), caractérisé en ce que la résolution spatiale de polymérisation est adaptée en plaçant un diffuseur optique (14), notamment entre 1° et 20°, dans le faisceau laser (7). 16. A method of producing a three-dimensional object (3) according to any preceding claim wherein the multi-photon polymerization is carried out using a laser beam (7), characterized in that the spatial resolution polymerization is adapted by placing an optical diffuser (14), in particular between 1 ° and 20 °, in the laser beam (7).
17. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications précédentes dans lequel l’objet tridimensionnel (3) comprend une surface externe et un volume interne, caractérisé en ce que des endroits bcalisés dans le volume interne sont polymérisés avec une résolution plus faible que des endroits formant la surface externe de l’objet tridimensionnel (3). 17. A method of producing a three-dimensional object (3) according to any one of the preceding claims wherein the three-dimensional object (3) comprises an outer surface and an internal volume, characterized in that localized locations in the internal volume. are polymerized with a lower resolution than places forming the outer surface of the three-dimensional object (3).
18. Procédé de réalisation d’un objet tridimensionnel (3) selon la revendication 17, caractérisé en ce que différentes portions de l’objet tridimensionnel (3) sont successivement polymérisées dans différentes cuves (9) contenant chacune une composition spécifique permettant d’obtenir une taille de voxel, voire des fonctionnalités, prédéterminée. 18. A method of producing a three-dimensional object (3) according to claim 17, characterized in that different portions of the three-dimensional object (3) are successively polymerized in different tanks (9) each containing a specific composition to obtain a voxel size, or even features, predetermined.
19. Procédé de réalisation d’un objet tridimensionnel (3) selon l’une quelconque des revendications 17 ou 18, caractérisé en ce que le volume interne est polymérisé dans une première cuve (9) contenant une première composition (11) comprenant des premières charges (20) sous forme de nanoparticules permettant d’obtenir une première taille de voxel et la partie externe de l’objet tridimensionnel (3) est polymérisée dans une deuxième cuve (9) contenant une deuxième composition (11) comprenant des deuxièmes charges (20) sous forme de nanoparticules ou aucune charge permettant d’obtenir une deuxième taille de voxel, inférieure à la première taille de voxel. 19. A method of producing a three-dimensional object (3) according to any one of claims 17 or 18, characterized in that the internal volume is polymerized in a first tank (9) containing a first composition (11) comprising first fillers (20) in the form of nanoparticles making it possible to obtain a first size of voxel and the external part of the three-dimensional object (3) is polymerized in a second tank (9) containing a second composition (11) comprising second fillers ( 20) under nanoparticle form or no charge to obtain a second size of voxel, less than the first voxel size.
20. Dispositif de réalisation (1) d’un objet tridimensionnel (3) par photo- polymérisation multi- photonique, notamment à deux photons, caractérisé en ce qu’il comprend : 20. Apparatus (1) for producing a three-dimensional object (3) by multi-photon photopolymerization, in particular with two photons, characterized in that it comprises:
• une source lumineuse (5) émettant un faisceau laser (7),  A light source (5) emitting a laser beam (7),
• une cuve de polymérisation (9) contenant une composition (11) comprenant :  A polymerization vessel (9) containing a composition (11) comprising:
0 au moins un monomère (12), 0 at least one monomer (12),
0 au moins une charge (20) comprenant des nanoparticules selon l’une quelconque des revendications 3 à 7, et 0 at least one filler (20) comprising nanoparticles according to any of claims 3 to 7, and
0 au moins un photo-amorceur,  0 at least one photoinitiator,
• un dispositif de focalisation (13) du faisceau laser (7) et d’adaptation de son ouverture numérique,  A focusing device (13) for the laser beam (7) and for adapting its numerical aperture,
• une unité de déplacement (16) pour permettre le déplacement de la zone de focalisation du faisceau laser (7) à l’intérieur de la cuve (9) aux endroits prédéterminés pour réaliser l’objet tridimensionnel (3), et  A displacement unit (16) for allowing the focusing zone of the laser beam (7) to move inside the tank (9) at the predetermined locations to produce the three-dimensional object (3), and
• un adaptateur de résolution de polymérisation comprenant au moins un diffuseur optique (14) monté mobile sur un support (15) pour être placé sur le chemin optique ou en dehors du faisceau laser (7) afin d’adapter la résolution de polymérisation.  A polymerization resolution adapter comprising at least one optical diffuser (14) movably mounted on a support (15) to be placed on the optical path or outside the laser beam (7) in order to adapt the polymerization resolution.
21. Dispositif de réalisation (1) d’un objet tridimensionnelle (3) par photo- polymérisation multi- photonique selon la revendication précédente, caractérisé en ce que ladite composition (11) présente une transmittance par unité de longueur de préférence supérieure à 75 % aux longueurs d’ondes d’émission de la source lumineuse (5). 21. Apparatus (1) for producing a three-dimensional object (3) by multi-photon photocure polymerization according to the preceding claim, characterized in that said composition (11) has a transmittance per unit length, preferably greater than 75%. at the emission wavelengths of the light source (5).
EP19720696.4A 2018-03-28 2019-03-27 Method for producing a three-dimensional object by a multiphoton photopolymerisation process, and associated device Withdrawn EP3774933A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1852698A FR3079517B1 (en) 2018-03-28 2018-03-28 PROCESS FOR THE REALIZATION OF A THREE-DIMENSIONAL OBJECT BY A MULTI-PHOTONIC PHOTO-POLYMERIZATION PROCESS AND ASSOCIATED DEVICE
PCT/FR2019/050710 WO2019186070A1 (en) 2018-03-28 2019-03-27 Method for producing a three-dimensional object by a multiphoton photopolymerisation process, and associated device

Publications (1)

Publication Number Publication Date
EP3774933A1 true EP3774933A1 (en) 2021-02-17

Family

ID=63080019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19720696.4A Withdrawn EP3774933A1 (en) 2018-03-28 2019-03-27 Method for producing a three-dimensional object by a multiphoton photopolymerisation process, and associated device

Country Status (4)

Country Link
US (1) US20210087301A1 (en)
EP (1) EP3774933A1 (en)
FR (1) FR3079517B1 (en)
WO (1) WO2019186070A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639031B2 (en) * 2019-05-13 2023-05-02 Lawrence Livermore National Security, Llc Photocurable resins for volumetric additive manufacturing
WO2021076106A1 (en) * 2019-10-15 2021-04-22 Hewlett-Packard Development Company, L.P. Three-dimensional printing with melting point suppression agents
KR20220083718A (en) * 2019-10-17 2022-06-20 헨켈 아게 운트 코. 카게아아 Additive manufacturing method to achieve three-dimensional parts with superior properties
WO2021154601A1 (en) * 2020-01-28 2021-08-05 Rn Technologies, Llc Additive manufacturing of devices from assemblies of discretized component voxel elements
FR3112345B1 (en) * 2020-07-09 2023-04-21 Univ Claude Bernard Lyon Initiator molecule for a nonlinear absorption reaction, photopolymerizable composition activatable by two-photon absorption, and associated 3D printing process.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567668B1 (en) 1984-07-16 1987-10-16 Cilas Alcatel DEVICE FOR PRODUCING AN INDUSTRIAL PART MODEL
JP4350832B2 (en) * 1999-04-19 2009-10-21 Jsr株式会社 Photocurable resin composition for three-dimensional modeling and a modeled product obtained by curing the same
US8404173B2 (en) * 2006-11-17 2013-03-26 Poof Technologies, Llc Polymer object optical fabrication process
DE102010020158A1 (en) * 2010-05-11 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for producing three-dimensional structures
FR3023012B1 (en) * 2014-06-26 2017-12-01 Univ Joseph Fourier THREE DIMENSIONAL PRINTING DEVICE
CN108291011B (en) * 2015-09-09 2021-03-02 卡本有限公司 Epoxy dual cure resin for additive manufacturing
FR3049606B1 (en) * 2016-03-30 2018-04-13 Universite Grenoble Alpes PHOTOSENSITIVE COMPOSITION ACTIVATED BY MULTIPHOTONIC ABSORPTION FOR THREE-DIMENSIONAL MANUFACTURING
FR3056593B1 (en) * 2016-09-28 2020-06-26 Ecole Centrale De Marseille METHOD FOR THE PRODUCTION OF A THREE-DIMENSIONAL OBJECT BY A MULTI-PHOTONIC PHOTO-POLYMERIZATION PROCESS AND ASSOCIATED DEVICE

Also Published As

Publication number Publication date
US20210087301A1 (en) 2021-03-25
FR3079517A1 (en) 2019-10-04
WO2019186070A1 (en) 2019-10-03
FR3079517B1 (en) 2021-01-01

Similar Documents

Publication Publication Date Title
EP3519448B1 (en) Process to prepare a 3d-object via multi-photonic polymerisation and related device
Harinarayana et al. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: A comprehensive review
WO2019186070A1 (en) Method for producing a three-dimensional object by a multiphoton photopolymerisation process, and associated device
Malinauskas et al. Ultrafast laser nanostructuring of photopolymers: A decade of advances
Burmeister et al. Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization
Correa et al. Femtosecond laser in polymeric materials: microfabrication of doped structures and micromachining
Malinauskas et al. Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area
FR3092109A1 (en) COMPOSITION AND METHOD FOR MAKING PARTS CONSISTING OF OXIDIZED CERAMICS OR HYBRID PARTS BY A STEREOLITHOGRAPHY TECHNIQUE.
JP2003001599A (en) Manufacture method of three-dimensional minute structure and apparatus thereof
Yoo et al. Scalable light-printing of substrate-engraved free-form metasurfaces
Butkus et al. Femtosecond-laser direct writing 3D micro/nano-lithography using VIS-light oscillator
Käpylä et al. Investigation of the optimal processing parameters for picosecond laser-induced microfabrication of a polymer–ceramic hybrid material
EP3286912B1 (en) Hybrid nanocomposite materials, laser scanning system and use thereof in volumetric image projection
US20140170333A1 (en) Micro-and nano-fabrication of connected and disconnected metallic structures in three-dimensions using ultrafast laser pulses
Schmidt Laser-based micro-and nano-fabrication of photonic structures
WO2022171704A1 (en) Method for printing a 3d object in a photoreactive composition, and printer suitable for implementing the method
Žukauskas et al. 3D micro-optics via ultrafast laser writing: miniaturization, integration, and multifunctionalities
Serbin et al. Three-dimensional nanostructuring of hybrid materials by two-photon polymerization
Vora Three-dimensional nanofabrication of silver structures in polymer with direct laser writing
Harinarayana Three-dimensional Microfabrication of Mechanical Metamaterials Via Stereolithography and Two-Photon Polymerization
Dileep et al. Review of Vat photopolymerization 3D Printing of Photonic Devices
Issa Functionalization and 2-photon Patterning of Photopolymers for 1D and 3D Directed Assembly of Nano-objects
Baldacchini et al. Multiphoton photopolymerization with a Ti: sapphire oscillator
FR3099479A1 (en) A method of manufacturing a three-dimensional object, or modifying the surface condition of a preformed object, by photopolymerization
Xu Integrated Nanoemitters on Glass-based Waveguides by Photopolymerization

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200923

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221117

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230328