EP3769302A1 - Porous acoustic phase mask - Google Patents

Porous acoustic phase mask

Info

Publication number
EP3769302A1
EP3769302A1 EP19712210.4A EP19712210A EP3769302A1 EP 3769302 A1 EP3769302 A1 EP 3769302A1 EP 19712210 A EP19712210 A EP 19712210A EP 3769302 A1 EP3769302 A1 EP 3769302A1
Authority
EP
European Patent Office
Prior art keywords
phase
acoustic
phase mask
porosity
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19712210.4A
Other languages
German (de)
French (fr)
Inventor
Olivier Mondain-Monval
Thomas BRUNET
Olivier Poncelet
Yabin JIN
Raj Kumar
Samuel Marre
Artem KOVALENKO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Ecole National Superieure dArts et Metiers ENSAM
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Original Assignee
Centre National de la Recherche Scientifique CNRS
Ecole National Superieure dArts et Metiers ENSAM
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Ecole National Superieure dArts et Metiers ENSAM, Universite de Bordeaux, Institut Polytechnique de Bordeaux filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3769302A1 publication Critical patent/EP3769302A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/165Particles in a matrix
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/30Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/032Impregnation of a formed object with a gas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/036Use of an organic, non-polymeric compound to impregnate, bind or coat a foam, e.g. fatty acid ester
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/20Ternary blends of expanding agents
    • C08J2203/202Ternary blends of expanding agents of physical blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/048Bimodal pore distribution, e.g. micropores and nanopores coexisting in the same foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Definitions

  • the invention relates to an acoustic phase mask for the spatial manipulation of acoustic wave fronts, for example an acoustic lens for focusing an acoustic wave.
  • the spatial manipulation of acoustic wave fronts, and particularly the focusing of acoustic waves, is typically performed using metamaterial devices, especially in a frequency range corresponding to the audible and / or ultrasonic frequencies.
  • Martin et al. discloses a device comprising an anisotropic array of aluminum hollow cylinders arranged to form an acoustic index gradient n in the device. An incident sound acoustic wave, passing through the array of cylinders, is focused in predefined regions of space. The manufacture of such a device requires a precise and expensive mechanical assembly, limiting its industrial application.
  • An object of the invention is to provide an acoustic phase mask that is easier to implement or to manufacture than the devices of the prior art.
  • phase mask having a variation of the acoustic index n, characterized in that the phase mask comprises a body comprising:
  • pores formed in the matrix the pores being predominantly filled with gas, the deformable solid material extending between the pores,
  • the body having a porosity of less than or equal to 50%, and a controlled porosity gradient leading to a variation of the acoustic index n spatially in the body.
  • the invention may be advantageously completed by the following characteristics, taken individually or in any of their technically possible combinations:
  • the phase mask is an acoustic lens, the porosity gradient being such that the lens is able to focus an incident plane acoustic wave transmitted by the phase mask into at least one point of the space,
  • the phase mask has two opposite planar faces extending parallel to a main plane and having at least one porosity gradient f oriented in a direction parallel to the main plane,
  • the porosity is distributed in the body so as to correspond to an index n evolving linearly in the direction, in at least part of the phase mask,
  • the porosity is distributed in the body so as to correspond to an index n evolving hyperbolic manner in the direction, in at least a part of the phase mask,
  • the phase mask comprises a juxtaposition of layers comprising a matrix and pores, each layer having a constant porosity, the porosity of a layer being different from the porosity of a directly adjacent layer, the phase mask comprises a support having cavities, each cell containing a matrix, at least two matrices having different porosities,
  • the two opposite planar faces are separated by a thickness d, the thickness d being between 100 ⁇ m and 10 mm. Indeed, this range of thicknesses d is suitable for the manipulation of acoustic waves having a wavelength of between 100 kHz and 10 MHz.
  • Another aspect of the invention relates to a method for handling acoustic wave fronts, comprising a step of installing an acoustic phase mask previously described in the propagation space of an incident plane acoustic wave having a length wave l.
  • the phase mask may advantageously have a thickness d according to a direction of propagation of the incident acoustic wave, the thickness d being strictly less than the wavelength ⁇ .
  • Another aspect of the invention relates to a method of manufacturing a phase mask described above, the method comprising steps of:
  • each emulsion having on the one hand a first liquid phase and, on the other hand, a second phase comprising monomers and at least one type of surfactant, so as to form drops of the first liquid phase in the second phase, at least two emulsions having respective fractions in first phase different,
  • the invention may be advantageously completed by the following characteristics, taken individually or in any of their technically possible combinations:
  • the drying step is a supercritical drying step of the first liquid phase
  • the first liquid phase comprises, during the step of successively supercritical drying of water, a liquid chosen from ethanol and acetone, and carbon dioxide,
  • the first liquid phase comprises a liquid compound adapted to decompose spontaneously at room temperature into a gas and a liquid, and in which, during the drying step, the decomposition of the liquid compound is expected so as to form a phase gas in the pores,
  • the compound is hydrogen peroxide
  • the crosslinking of the monomers is carried out by exposing the emulsions to ultraviolet radiation.
  • FIG. 1 illustrates a phase mask according to one embodiment of the invention
  • FIGS. 2a, 2b and 2c illustrate a method of manufacturing a porous material
  • FIG. 3 illustrates a supercritical drying step
  • FIGS. 4a, 4b and 4c are photomicrographs of porous materials
  • FIG. 5 is a diagram illustrating the evolution of the porosity of a porous material as a function of the volume fraction in first dispersed phase after drying for different drying methods
  • FIG. 6 illustrates the manipulation of a plane wave incident by a phase mask according to one embodiment of the invention
  • FIG. 7 illustrates the evolution of the longitudinal velocity of an acoustic wave in a porous elastomeric material according to one embodiment of the invention as a function of the porosity of the porous elastomeric material
  • FIGS. 8a, 8b, 8c, 8d, 8e and 8f illustrate a method of manufacturing a phase mask according to one embodiment of the invention
  • FIGS. 9a, 9b, 9c and 9d illustrate a method of manufacturing a phase mask according to one embodiment of the invention
  • FIGS. 10a and 10b illustrate the deflection of a plane wave incident at a predetermined angle, as well as the phase mask adapted for this deflection
  • FIGS. 11a and 11b illustrate the focusing of an incident plane wave towards a predetermined focal point, as well as the phase mask adapted for this focusing
  • FIGS. 12a, 12b and 12c illustrate experimental measurements enabling the deflection and focusing of acoustic waves produced by phase masks according to embodiments of the invention.
  • the porosity of a porous material will be defined as the ratio between the pore volume of the porous material and the total volume of the porous material (i.e. sum of the pore volume of the porous material and the volume of solid material extending between the pores).
  • Manipulation of an acoustic wave refers to any deliberate and controlled modification of said front (local phase, amplitude and / or polarization), for example the deflection or focusing of an acoustic wave. .
  • phase mask denotes any device that locally modifies the phase of an incident wave passing through it.
  • the phase mask is a planar device.
  • emulsion denotes a mixture of two immiscible liquid substances, one of which is dispersed in the form of drops in the other in a homogeneous manner.
  • FIG. 1 illustrates a section of an acoustic phase 1 mask.
  • the phase mask 1 comprises a body 2.
  • the body 2 allows a simplified use of the phase mask 1, with regard to other known devices, such as obstacle networks or transducer networks.
  • the body 2 comprises at least one matrix 3, formed in a deformable solid material, and pores 4 formed in the matrix 3.
  • the majority of the pores 4 are filled with gas, which allows the body 2 to be compressible (compressibility is between 10 9 Pa 1 for the body 2 non-porous to 10 6 Pa 1 for the body 2 having 40% pores filled with gas).
  • the deformable solid material extends between the pores 4. This material has a shear modulus preferably less than 10 MPa.
  • the pores 4 give the body 2 a local porosity.
  • the body 2 has a porosity of less than 50%, that is to say that the local porosity at any point of the body 2 is less than 50%. In other words, the maximum porosity of the body 2 is less than 50%.
  • the body 2 has a porosity gradient f. This porosity gradient in the body 2 is controlled and causes a spatial variation of the acoustic index n in the body 2.
  • the variation of the acoustic index n, or the acoustic index gradient n makes it possible to cause a modulation incident wavefront during its passage through the phase mask 1, allowing for example to focus an incident wave, particularly an incident plane wave.
  • FIG. 1 illustrates a phase-1 mask in section: the phase mask 1 has two opposite planar faces extending parallel to a main plane 7 and the body 2 of the phase-1 mask has a porosity gradient oriented in a parallel direction 7.
  • the main plane 7 is parallel to the plane defined by the x and y axes, and the gradient is oriented along the x axis.
  • the body 2 has a porosity f decreasing along the x axis.
  • the body 2 is at least partly made of porous materials, that is to say a material comprising the matrix 3 of deformable solid material, and the pores 4, the deformable solid material of the matrix 3 extending between the pores 4
  • the porous material is produced by polymerization of an aqueous emulsion in a polymerizable solvent, for example thermally or by irradiation under UV and then by drying.
  • the deformable solid material comprises elastomeric polymers. These polymers have transition temperatures vitreous less than room temperature.
  • the polymers of the deformable solid material have a glass transition temperature below -50 ° C., preferably below -80 ° C., and preferably below -100 ° C.
  • the body 2 may have a higher compressibility than the known porous materials.
  • a reference material i.e. water in the invention
  • cre / 1500 ms 1
  • the acoustic index n depends on the porosity.
  • a porosity gradient of the porous material thus leads to an acoustic index gradient n in the body 2 of the phase 1 mask.
  • the porosity of the porous material can be adjusted to have propagation speeds of typically between 10 ms -1 and 1000 ms 1 .
  • the known devices do not make it possible to achieve variations in propagation speeds with such a high amplitude.
  • the manufacture of a phase 1 mask, and in particular the porous material of one or more matrices 3 of the phase 1 mask comprises the steps of: a) forming a plurality of emulsions 12, each emulsion 12 having, on the one hand, a first liquid phase 13 and, on the other hand, a second phase 14 comprising monomers and at least one type of surfactant, in order to form drops of the first liquid phase in the second phase 14.
  • At least two emulsions 12 have different first-phase respective fractions.
  • the step of forming an emulsion is illustrated in FIG. 2a.
  • the crosslinking step is illustrated in FIG. 2b.
  • step c) drying the porous material obtained in step b) to remove the first liquid phase so as to fill most of the pores 4 gas.
  • the drying step is illustrated by Fig. 2c.
  • each inverse emulsion 12 is made between, on the one hand, a second phase 14 comprising monomers and a suitable surfactant, and on the other hand a first aqueous phase.
  • a second phase 14 comprising monomers and a suitable surfactant
  • a first aqueous phase comprising monomers and a suitable surfactant
  • the emulsion 12 can be achieved using a shearing device (eg Rayneri, Ultraturrax, or any mechanical device allowing sufficient shear of the two phases).
  • the emulsion can also be formed by exposing the first phase 13 and the second phase 14 to ultrasonic waves.
  • the mother emulsion is emulsion 12 thus obtained.
  • the volume fraction of the mother emulsion 12 in the first phase 13 can be between 0% and 90%.
  • the choice of the surfactant is adapted to the monomers chosen in the second phase 14. In general, the surfactant has an HLB number of less than or equal to about 8.
  • an inverse emulsion 12 that is, to say including drops of first phase
  • the diameter of the first phase drops 13 formed in the second phase 14 is typically between 0.1 and 100 ⁇ m.
  • the emulsions 12 are deposited in one or more containers. At least two emulsions 12 have different first-phase respective fractions. The fraction in first phase 13 can also vary in a controlled manner during the deposition of an emulsion 12 in a container, forming a plurality of emulsions 12 in a continuous manner.
  • the container may be for example a mold or a cell. A wall of the container may be formed by an emulsion 12 already crosslinked.
  • the monomers of the second phase 14 of the emulsion 12 are crosslinked so as to form a deformable solid material. Crosslinking of the monomers may be preferably carried out by exposure of the monomers to ultraviolet radiation or heating.
  • one or more matrices 3 are obtained in deformable solid material. Pores 4 are formed by the matrix or matrices 3. These pores 4 are filled with first phase 1 3.
  • step c) the matrix or matrices 3 are dried. This step makes it possible to replace, at least in majority and preferably completely, the first liquid phase 13 contained in the pores 14 by gas. Typically, the drying of the first phase 13 is carried out by pervaporation of the first liquid phase 13 through the polymer matrix 3.
  • a drying front propagates in the matrix 3, and more particularly at the interface between the matrix 3 and the pores 4.
  • This indicative value is greater than the typical shear moduli of the deformable solid material, elastomeric polymers.
  • pore collapse is observed during the implementation of known drying methods, and the porosity of a porous material is thus limited because no gas replaces the disappearance of the first phase 1 3 in the pores 4.
  • the drying step is a supercritical drying step of the porous material for removing the first liquid phase.
  • the supercritical drying method is known for drying porous brittle materials, such as aerogels. She is by example described by Marre et al. (Marre, S., made Aymonier, C. (2016), Preparation of Nanomaterials in Flow and Supercritical Conditions from Coordination Complexes in Organometallic Flow Chemistry (pp. 177-211), Springer, Cham.).
  • a liquid phase contained by the pores 4 is transformed into a gaseous phase, without phase transition, by imposing temperature and pressure conditions making it possible to bypass the critical point of the compound (s) contained in the pores.
  • the absence of passage through a phase transition line makes it possible to avoid a drying front between a liquid phase and a gaseous phase.
  • the drying pressure is decreased or equal to zero, and it is possible to avoid crushing the porous material on itself during drying.
  • the drying fluid used for supercritical drying can be C0 2 .
  • FIG. 3 illustrates the supercritical drying of the porous material using CO2.
  • the pores 4 contain a first aqueous phase.
  • the first phase 13 is first exchanged with liquid ethanol.
  • the liquid contained in the pores 4 is miscible with the CO2.
  • the exchange of the first phase 1 3 with a liquid phase of ethanol is carried out by immersing the porous material in an aqueous solution bath which is progressively enriched in ethanol by a system of pumps at ambient temperature and pressure. The exchange occurs gradually, on a time scale adapted to avoid imposing excessive mechanical stresses on the solid deformable material.
  • the ethanol is then extracted with CO2.
  • the extraction is carried out by placing the porous material bathed in pure ethanol in a high pressure reactor, in which the pressure and temperature conditions can be adjusted by means of injection pumps and a pressure regulator. output.
  • the temperature of the reactor is first adjusted beyond the theoretical critical temperature of the CO 2 / ethanol mixture (ie between 45 and 50 ° C. for a 90/10 molar composition) while the reactor is slowly pressurized with CO2. up to a value greater than the critical pressure of the CO 2 / ethanol mixture (ie 1 10 bar).
  • the C0 2 is then pumped continuously through the porous material at a constant flow rate (11 g / min), while the operating conditions are kept constant (the pressure is controlled by means of an outlet pressure controller).
  • C0 2 mixes with ethanol and forms a supercritical monophasic mixture.
  • the ethanol contained in the pores 4 is gradually replaced by a C 2 / ethanol supercritical mixture which progressively enriches with CO2.
  • the fluid ethanol / CO 2 mixture is extracted from the reactor in order to maintain a constant internal volume of fluid.
  • the pressure of the system is slowly reduced to 1 bar, for example in one hour, so as to bring the CO2 gas phase without ironing the liquid state.
  • This pressure variation corresponds to the trajectory shown in dotted lines starting from point B and going to point I in FIG.
  • the first liquid phase comprises a liquid compound adapted to decompose spontaneously at ambient temperature into a gas and a liquid.
  • the kinetics of decomposition of the liquid into gas and liquid product can be fixed by the proportion of liquid capable of decomposing in the dispersed phase. This kinetics can be adjusted so that the characteristic gas bubble onset time is typically slower (i.e. typically greater than 30 minutes) than the time required for emulsification.
  • the decomposition of the liquid compound is expected so as to form a gas phase in the pores 4.
  • the compound 1 may be hydrogen peroxide H2O2. Hydrogen peroxide decomposes at constant ambient temperature and pressure into water (liquid) and gaseous oxygen.
  • the proportion of H 2 O 2 in the first liquid phase may preferably be 1/3 in total mass of the first phase 13.
  • the characteristic time of appearance of the gas bubbles is of the order of 30 minutes.
  • This kinetics can be slowed down or accelerated by varying this proportion or by adding a controlled concentration catalyst in the dispersed phase (for example iodide ions I which are known to catalyze the reaction of decomposition of H2O2 into oxygen and water).
  • a controlled concentration catalyst in the dispersed phase for example iodide ions I which are known to catalyze the reaction of decomposition of H2O2 into oxygen and water.
  • This method does not require external control of the pressure and / or temperature imposed on the porous material.
  • the use of the compound makes it possible to dry the porous material by using a simpler and less expensive material than during a supercritical drying.
  • the drying by introduction of the compound is for example carried out by placing the porous material in an oven, in which the temperature is controlled at 40 ° C. under ambient atmosphere.
  • Figures 4a, 4b and 4c are photomicrographs obtained by scanning electron microscopy, illustrating porous materials of the body 2, having different porosities.
  • the porosity f of the porous material of the body 2 is substantially equal to 5%.
  • the porosity f of the porous material of the body 2 is substantially equal to 10%.
  • the porosity f of the porous material of the body 2 is substantially equal to 15%.
  • FIG. 5 illustrates the evolution of the porosity of a porous material after a drying step carried out according to a known method (illustrated by curve (a)), a supercritical drying step (illustrated by curve (b)) and by a drying step by introducing a compound into the first phase 13 (illustrated by the curve (c)).
  • the drying methods illustrated by curves (b) and (c) make it possible to obtain a porous material having a porosity f substantially equal to the volume fraction of the first phase 13 in the emulsion 12.
  • the collapse of the matrix 3 on itself prevents an increase of the porosity above a threshold value (substantially 10%) and thus limits a possible acoustic index gradient n of the body 2.
  • the second phase 14 comprises silicone oil Silcolease UV poly 200 from Bluestar Silicones, 4% by weight of catalyst Silcolease UV cata 21 1 from Bluestar Silicones, 0.4% by weight of surfactant (2-octyl-1-dodecanol) and 200 ppm of Rahn Genocure ITX.
  • the first phase 13 comprises 1.5% by weight of sodium chloride.
  • the amount of aqueous phase incorporated in the organic phase is dependent on the desired porosity for the porous material.
  • the formation of an emulsion is carried out in a mortar by adding the first phase 13 dropwise during shear, and then it is refined, either using blade tools (Rayneri or Ultraturrax type), either by ultrasound.
  • the crosslinking step is carried out by exposing the emulsion to ultraviolet radiation using the Dymax BlueWave 200 lamp.
  • the porous material is then dried by supercritical drying or by introducing a compound as described above.
  • the second phase 14 comprises 64% by weight of ethylhexyl acrylate, 5.5% by weight of styrene, 10.5% by weight of divinylbenzene and 20% by weight of SPAN 80 surfactant.
  • sodium chloride 25.10 3 mol / L and potassium peroxodisulfate 5.10 3 mol / L.
  • the amount of first phase 13 incorporated into the organic phase is dependent on the desired porosity for the final material.
  • the formation of an emulsion is carried out using a Rayneri type blade tool by adding the first phase 13 dropwise during shearing.
  • the crosslinking of the monomers is carried out by heating at a temperature of 60 ° C.
  • the porous material is then dried by supercritical drying or by introduction of a compound, as described above.
  • a deformable silicone-based solid material (denoted SiVi / SiH) can be obtained by thermal polymerization of the PDMS via a hydrosilylation reaction.
  • the second phase 14 comprises 8.8 g of PDMS-vinyl (BLUESIL FLD 621 V1500), 1.8 g of PDMS-silane (BLUESIL FLD 626V30H2.5) and 0.352 g of platinum catalyst (SCLS CATA1 1091 M), (BlueStar Silicones Company).
  • SCLS CATA1 1091 M platinum catalyst
  • 4.4 mg of polymerization retarder (1-ethynyl-1-cyclohexanol, ECH of Sigma Aldrich) are added.
  • 2-octyl-1-dodecanol or Silube J208-812 can be used.
  • the emulsions 12 are prepared by introducing a first aqueous phase comprising 1.5% by weight of NaCl with stirring. The emulsion is then poured into a Teflon mold and then heated at 60 ° C for 24 hours. The porous material is then dried by supercritical drying or by introducing a compound as described above.
  • a porosity gradient leading to a spatial variation of the acoustic index n in the body 2 it is possible to locally control the celerity of the acoustic waves and thus to bend the acoustic rays by mirage effect (version 3D of the gradient medium) or to control delays / phase advances at wave fronts (2D version of these media, for example a phase 1 mask).
  • mirage effect version 3D of the gradient medium
  • delays / phase advances at wave fronts 2D version of these media, for example a phase 1 mask.
  • the term "manipulation" of the acoustic wavefront is understood to mean at least one of the effects previously described on a plane incident acoustic wave.
  • the phase mask 1 may have a subwavelength thickness.
  • the phase mask 1 has two opposite planar faces extending parallel to the main plane 7 and has at least one porosity gradient f oriented in the direction 8 parallel to the plane principal 7.
  • the thickness d denotes the distance between the two opposite planar faces.
  • the manipulation of an incident plane acoustic wave front plane 6, of length l can be implemented with a phase mask 1 of a thickness d strictly less than the wavelength 1.
  • the incident wavelengths 6 are between 100 kHz and 10 MHz, in particular for water as a surrounding medium.
  • the thickness d of the phase mask is preferably between 100 ⁇ m and 10 mm.
  • FIG. 6 illustrates an incident plane acoustic wave 6 presenting a simple physical wavefront (uniform / flat for example) at the input of the phase 1 mask.
  • the transmitted wave 19 or target wave 19 has a wavefront different from that of the incident plane wave 6 at the output of the phase mask 1.
  • the output wavefront results in a "target" volume acoustic field (a converging field, for example, for focusing).
  • FIG. 6 also illustrates a method using a phase 1 mask for generating a sound pressure target field p c (at non-planar phase fronts) from an incident plane wave 6 or an excitation plane front ( by an ultrasonic transmitter for example).
  • the target pressure field may, for example, be a harmonic field of pulsation w.
  • the target pressure can be written is the pressure amplitude, O c the target phase, and t the time.
  • U is possible to consider that the phase mask 1 presents an acoustic index n variable in the xy plane and constant in its thickness d, supposed small compared to 1, that is to say to consider that n depends on x and y.
  • the phase mask locally shifts the field m (x, y) k Q d
  • the spatial distribution of the acoustic index n of the phase mask 1 must verify the formula: to be adapted to generate the target field P c .
  • the distribution of the porosity in the phase mask 1 is thus chosen so as to produce a phase 1 mask having an acoustic index n satisfying the formula (2).
  • FIG. 7 illustrates the evolution of the celerity of an acoustic wave in the phase 1 mask with the porosity of the body 2.
  • the measured celerities correspond to an acoustic index n of between approximately 1.5 and 40.
  • the phase mask 1 is, in general, adapted to have an acoustic index between 1, 5 and 40.
  • the body 2 of the phase mask 1 can be manufactured by stacking layers 9, each layer 9 comprising a matrix 3 and pores 4 and having a constant porosity f , the porosity of a layer 9 being different from the porosity of a layer 9 directly adjacent.
  • a first emulsion 12 is deposited in a mold 19 comprising a support of polytetrafluoroethylene (PTFE) and two transparent side walls.
  • PTFE polytetrafluoroethylene
  • the monomers of emulsion 12 are crosslinked by exposing emulsion 12 to UV radiation. This exposure is possible thanks to the transparent walls 20. Thermal crosslinking of the emulsion 12 is also possible.
  • the thickness d of the mold (distance between the two walls 20) can be between 0.5 mm and 5 mm when the crosslinking is carried out by UV. The thickness may be greater when the crosslinking is carried out by heating.
  • a first phase volume fraction emulsion 12 different from that of the emulsion 12 described in FIG. 8a, for example greater, is deposited in the mold 19 on the crosslinked layer 9 described in FIG. 8b.
  • the monomers of the emulsion 12 described in FIG. 8c are crosslinked so as to form two juxtaposed layers 9.
  • the different layers 9 can be dried before each deposit of a new emulsion.
  • the various layers 9 can be extracted from the mold 19.
  • the different juxtaposed layers 9 thus form the body 2 of a phase 1 mask.
  • FIG. 8f is a front view photograph of a phase 1 mask manufactured according to the method described in FIGS. 8a to 8e.
  • the phase mask 1 thus has a porosity gradient, the porosity being maximum in the middle of the phase 1 and minimum mask at the low and high ends of the phase 1 mask.
  • the dotted lines correspond to the boundaries between the different layers 9.
  • the layers 9 deposited have a height h smaller than the wavelength 1 of the incident acoustic wave 6. For example, for a frequency of 100 kHz, the wavelength 1 of an incident plane acoustic wave 6 is 15 mm.
  • the layers 9 have a height equal to 8 mm (ie about 1/2), which is sufficient for the acoustic index gradient n is actually perceived as continuous for the incident plane wave 6. It is obviously possible to reduce the width of the strips, for example up to about 1 mm.
  • the body 2 may comprise a support 10 having cells 1 1, each cell 1 1 containing a matrix 3, at least two of the matrices 3 having different porosities.
  • the support 10 may for example be manufactured by 3D printing.
  • the parameters of the 3D printing are chosen so as to manufacture a support 10 in which cells 1 1 are delimited by thin thicknesses (typically about 100 micrometers) of polylactic acid (PLA), polyamide (PA) or any other printable polymer.
  • PVA polylactic acid
  • PA polyamide
  • the emulsions 12 of different volume fractions in the first phase 1 3 are introduced into the cells 1 1.
  • the monomers of all the emulsions 12 may be crosslinked simultaneously, for example by exposure to UV through a wall 20.
  • the phase mask 1 may comprise the support 10.
  • the thickness of the support 10 may be typically 0.1 mm, and considered negligible compared to the acoustic wavelengths. The acoustic experiments carried out show that the presence of such a support 10, not filled with material, introduces no change in the acoustic field.
  • the phase mask 1 comprises the body 2, the body 2 comprising a succession of strips or layers 9 and the support 10.
  • the body 2 has a porosity gradient due to the formation of the different matrices 3 of different porosities.
  • the phase mask 1 may comprise a succession of strips or layers 9, as described above.
  • the phase mask 1 may make it possible to modify the propagation angle ⁇ between the propagation direction of an incident plane acoustic wave 6 and that of a transmitted wave 19, ie an angle of deflection Q with respect to the main plane 7.
  • incident incident plane wave 6 of incident field P in is nsi have transformed into plane wave transmitted or deflected 19 of target field
  • the gradient is preferably constant, which corresponds to a linear evolution of the porosity of the body 2 in space. In this case, it is equal to sin 9 / d and oriented along the x axis.
  • the phase mask 1 can be used to focus an incident plane acoustic wave 6.
  • the target field is expressed in the form
  • acoustic n evolves hyperbolic way in a part of the body 2.
  • Phase 1 masks with a thickness equal to 2 mm are deposited on the surface of an ultrasonic transducer (supplied by the company Imasonic) emitting at a center frequency of 1 50 kHz and having side dimensions of 150 mm ⁇ 40 mm in the plane defined by the x and y axes.
  • the whole is immersed in a tank filled with water allowing measurements in immersion, as performed in underwater acoustics.
  • the ultrasonic transducer is positioned in the upper part of the tank and its active face is oriented towards the bottom so as to generate an incident plane wave propagating from top to bottom along the z axis.
  • the ultrasonic transducer is powered via a function generator (provided by Agilent) to generate in the water an ultrasonic wave train (30 cycles) centered at 150 kHz.
  • the sound pressure emitted is then mapped in the central zone of the field near this transducer by means of a needle hydrophone having a diameter of 1 mm (supplied by Accuracy Acoustics) in the XZ plane (60 mm x 100 mm).
  • the pitch in x and z between each measurement is 2 mm, that is to say 5 times smaller than the wavelength of the ultrasound used.
  • the time signals were recorded by means of an acquisition card (provided by Alazartech) with a sampling frequency of 1 MHz over a duration of 300 ps for each measurement position.
  • the transducer is not covered by a phase 1 mask.
  • the wave fronts are planar, parallel and horizontal, and are characteristic of a plane wave propagating vertically from top to bottom of the tank as expected along the z axis.
  • the transducer is covered with a phase 1 mask.
  • the phase mask 1 comprises a body having a constant gradient of acoustic index (ie a variation of n linear acoustic index).
  • the plane, parallel and inclined wavefronts show a deflection of the ultrasonic waves related to the presence of the phase mask 1 at the surface of the ultrasonic transducer.
  • the deflection angle ⁇ of the ultrasonic beam is connected to the index gradient and the thickness of the porous material by 2 mm, and is substantially equal to 5 °.
  • the transducer is covered with a phase 1 mask.
  • the phase mask 1 comprises a body having a variation of n hyperbolic acoustic index.
  • the mapping of the diffracted acoustic field in FIG. 12c illustrates the existence of a small central zone whose width is slightly smaller than the wavelength (ie approximately 10 mm) in which the energy of the acoustic beam is concentrated.
  • the convergent (and divergent) curved wave fronts respectively visible above and below this focal task underline the focusing effect of the phase 1 mask.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

The invention relates to an acoustic phase mask, the phase mask having a variation of the acoustic index n, characterized in that the phase mask comprises a body comprising: - at least one matrix formed by a deformable solid material, having a shear modulus of less than 10 MPa, and - pores formed in the matrix, the pores being predominantly filled with gas, the deformable solid material extending between the pores, the body having a porosity φ of less than or equal to 50%, and a controlled porosity φ gradient leading to a variation of the acoustic index n spatially in the body.

Description

MASQUE DE PHASE ACOUSTIQUE POREUX  POROUS ACOUSTIC PHASE MASK
DOMAINE DE L’INVENTION FIELD OF THE INVENTION
L’invention concerne un masque de phase acoustique pour la manipulation spatiale de fronts d’ondes acoustiques, par exemple une lentille acoustique pour la focalisation d’une onde acoustique.  The invention relates to an acoustic phase mask for the spatial manipulation of acoustic wave fronts, for example an acoustic lens for focusing an acoustic wave.
ETAT DE LA TECHNIQUE STATE OF THE ART
La manipulation spatiale de fronts d’ondes acoustiques, et particulièrement la focalisation d’ondes acoustiques, est typiquement réalisée en utilisant des dispositifs en métamatériaux, notamment dans une gamme de fréquences correspondant aux fréquences audibles et/ou ultrasonores.  The spatial manipulation of acoustic wave fronts, and particularly the focusing of acoustic waves, is typically performed using metamaterial devices, especially in a frequency range corresponding to the audible and / or ultrasonic frequencies.
Zhu et al. (Zhu, H. , & Semperlotti, F. (2015), Improving the performance of structure- embedded acoustic lenses via gradient-index local inhomogeneities, International Journal of Smart and Nano Materials, 6(1 ), 1 - 13.) décrit par exemple un dispositif permettant de focaliser une onde ultrasonore se propageant dans une plaque d’aluminium. Des inhomogénéités ou inclusions sont formées par des ajours dans la plaque d’aluminium de manière à former un guide d’onde, permettant de focaliser une onde ultrasonore initialement radiale. Cette méthode est difficilement transposable industriellement à la manipulation d’ondes acoustiques en trois dimensions, et dans d’autres media de propagation de l’onde acoustique dans lesquels il n’est pas possible de créer des ajours.  Zhu et al. (Zhu, H., & Semperlotti, F. (2015), Improving the performance of structured-embedded acoustic lenses via gradient-local index inhomogeneities, International Journal of Smart and Nano Materials, 6 (1), 1 - 13.) for example a device for focusing an ultrasonic wave propagating in an aluminum plate. Inhermalities or inclusions are formed by openings in the aluminum plate so as to form a waveguide, for focusing an initially radial ultrasonic wave. This method is difficult to transpose industrially to the manipulation of acoustic waves in three dimensions, and in other acoustic wave propagation media in which it is not possible to create openings.
Martin et al. (Martin, T. P. , Naify, C. J. , Skerritt, E. A. , Layman, C. N. , Nicholas, M. , Calvo, D. C. , ... & Sânchez-Dehesa, J. (2015), Transparent gradient-index lens for underwater sound based on phase advance, Physical Review Applied, 4(3), 034003. ) décrit un dispositif comprenant un réseau anisotrope de cylindres creux en aluminium arrangés de manière à former un gradient d’indice acoustique n dans le dispositif. Une onde acoustique sonore incidente, traversant le réseau de cylindres, est focalisée dans des régions prédéfinies de l’espace. La fabrication d’un tel dispositif nécessite un montage mécanique précis et onéreux, limitant son application industrielle. RESUME DE L’INVENTION Martin et al. (Martin, TP, Naify, CJ, Skerritt, EA, Layman, CN, Nicholas, M., Calvo, DC, ... & Sanchez-Dehesa, J. (2015), Transparent gradient-index lens for underwater sound based on phase advance, Physical Review Applied, 4 (3), 034003.) discloses a device comprising an anisotropic array of aluminum hollow cylinders arranged to form an acoustic index gradient n in the device. An incident sound acoustic wave, passing through the array of cylinders, is focused in predefined regions of space. The manufacture of such a device requires a precise and expensive mechanical assembly, limiting its industrial application. SUMMARY OF THE INVENTION
Un but de l’invention est de réaliser un masque de phase acoustique plus facile à mettre en oeuvre ou à fabriquer que les dispositifs de l’art antérieur.  An object of the invention is to provide an acoustic phase mask that is easier to implement or to manufacture than the devices of the prior art.
Ces buts sont atteints dans le cadre de la présente invention grâce à un masque de phase acoustique, le masque présentant une variation de l’indice acoustique n, caractérisé en ce que le masque de phase comprend un corps comprenant :  These objects are achieved in the context of the present invention by means of an acoustic phase mask, the mask having a variation of the acoustic index n, characterized in that the phase mask comprises a body comprising:
- au moins une matrice formée en un matériau solide déformable présentant un module de cisaillement inférieur à 10 MPa, et at least one matrix formed of a deformable solid material having a shear modulus of less than 10 MPa, and
- des pores formés dans la matrice, les pores étant majoritairement remplis de gaz, le matériau solide déformable s’étendant entre les pores,  pores formed in the matrix, the pores being predominantly filled with gas, the deformable solid material extending between the pores,
le corps présentant une porosité f inférieure ou égale à 50%, et un gradient de porosité f contrôlé entraînant une variation de l’indice acoustique n spatialement dans le corps. the body having a porosity of less than or equal to 50%, and a controlled porosity gradient leading to a variation of the acoustic index n spatially in the body.
L'invention peut être avantageusement complétée par les caractéristiques suivantes, prises individuellement ou en l’une quelconque de leurs combinaisons techniquement possibles :  The invention may be advantageously completed by the following characteristics, taken individually or in any of their technically possible combinations:
- le masque de phase est une lentille acoustique, le gradient de porosité étant tel que la lentille est apte à focaliser une onde acoustique plane incidente transmise par le masque de phase en au moins un point de l’espace, the phase mask is an acoustic lens, the porosity gradient being such that the lens is able to focus an incident plane acoustic wave transmitted by the phase mask into at least one point of the space,
- le masque de phase présente deux faces planes opposées s’étendant parallèlement à un plan principal et présentant au moins un gradient de porosité f orienté selon une direction parallèle au plan principal,  the phase mask has two opposite planar faces extending parallel to a main plane and having at least one porosity gradient f oriented in a direction parallel to the main plane,
- la porosité est distribuée dans le corps de manière à correspondre à un indice n évoluant de manière linéaire selon la direction, dans au moins une partie du masque de phase,  the porosity is distributed in the body so as to correspond to an index n evolving linearly in the direction, in at least part of the phase mask,
- la porosité est distribuée dans le corps de manière à correspondre à un indice n évoluant de manière hyperbolique selon la direction, dans au moins une partie du masque de phase,  the porosity is distributed in the body so as to correspond to an index n evolving hyperbolic manner in the direction, in at least a part of the phase mask,
- le masque de phase comprend une juxtaposition de couches comprenant une matrice et des pores, chaque couche présentant une porosité f constante, la porosité d’une couche étant différente de la porosité d’une couche directement voisine, - le masque de phase comprend un support présentant des alvéoles, chaque alvéole, contenant une matrice, au moins deux matrices présentant des porosités différentes, the phase mask comprises a juxtaposition of layers comprising a matrix and pores, each layer having a constant porosity, the porosity of a layer being different from the porosity of a directly adjacent layer, the phase mask comprises a support having cavities, each cell containing a matrix, at least two matrices having different porosities,
- les deux faces planes opposées sont séparées par une épaisseur d, l’épaisseur d étant comprise entre 100pm et 10mm. En effet, cette gamme d’épaisseurs d est adaptée pour la manipulation d’ondes acoustiques présentant une longueur d’onde comprise entre 100kHz et 10MHz.  the two opposite planar faces are separated by a thickness d, the thickness d being between 100 μm and 10 mm. Indeed, this range of thicknesses d is suitable for the manipulation of acoustic waves having a wavelength of between 100 kHz and 10 MHz.
Un autre aspect de l’invention concerne un procédé de manipulation de fronts d’ondes acoustiques, comprenant une étape d’installation d’un masque de phase acoustique décrit précédemment dans l’espace de propagation d’une onde acoustique plane incidente présentant une longueur d’onde l. Another aspect of the invention relates to a method for handling acoustic wave fronts, comprising a step of installing an acoustic phase mask previously described in the propagation space of an incident plane acoustic wave having a length wave l.
Le masque de phase peut avantageusement présenter une épaisseur d selon une direction de propagation de l’onde acoustique incidente, l’épaisseur d étant strictement inférieure à la longueur d’onde l.  The phase mask may advantageously have a thickness d according to a direction of propagation of the incident acoustic wave, the thickness d being strictly less than the wavelength λ.
Un autre aspect de l’invention concerne un procédé de fabrication d’un masque de phase décrit précédemment, le procédé comprenant des étapes de :  Another aspect of the invention relates to a method of manufacturing a phase mask described above, the method comprising steps of:
- formation d’une pluralité d’émulsions, chaque émulsion présentant d’une part une première phase liquide, et d’autre part, une deuxième phase comprenant des monomères et au moins un type d’agent de surface, de manière à former des gouttes de la première phase liquide dans la deuxième phase, au moins deux émulsions présentant des fractions respectives en première phase différentes,  forming a plurality of emulsions, each emulsion having on the one hand a first liquid phase and, on the other hand, a second phase comprising monomers and at least one type of surfactant, so as to form drops of the first liquid phase in the second phase, at least two emulsions having respective fractions in first phase different,
- réticulation des monomères des émulsions de manière à former un matériau solide déformable définissant la ou les matrices et les pores comprenant la première phase liquide,  crosslinking the monomers of the emulsions so as to form a deformable solid material defining the matrix or matrices and the pores comprising the first liquid phase,
- séchage pour éliminer la première phase liquide de manière à remplir en majorité les pores de gaz.  drying to remove the first liquid phase so as to fill the majority of the gas pores.
L'invention peut être avantageusement complétée par les caractéristiques suivantes, prises individuellement ou en l’une quelconque de leurs combinaisons techniquement possibles :  The invention may be advantageously completed by the following characteristics, taken individually or in any of their technically possible combinations:
- l’étape de séchage est une étape de séchage supercritique de la première phase liquide, - la première phase liquide comprend, lors de l’étape de séchage supercritique successivement de l’eau, un liquide choisi parmi de l’éthanol et de l’acétone, et du dioxyde de carbone, the drying step is a supercritical drying step of the first liquid phase, the first liquid phase comprises, during the step of successively supercritical drying of water, a liquid chosen from ethanol and acetone, and carbon dioxide,
- la première phase liquide comprend un composé liquide adapté à se décomposer spontanément à température ambiante en un gaz et en un liquide, et dans lequel, lors de l’étape de séchage, on attend la décomposition du composé liquide de manière à former une phase gazeuse dans les pores, the first liquid phase comprises a liquid compound adapted to decompose spontaneously at room temperature into a gas and a liquid, and in which, during the drying step, the decomposition of the liquid compound is expected so as to form a phase gas in the pores,
- le composé est de l’eau oxygénée, the compound is hydrogen peroxide,
- la réticulation des monomères est mise en oeuvre par une exposition des émulsions à un rayonnement ultraviolet.  the crosslinking of the monomers is carried out by exposing the emulsions to ultraviolet radiation.
DESCRIPTION DES DESSINS DESCRIPTION OF THE DRAWINGS
D’autres caractéristiques et avantages ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative, et doit être lue en regard des figures annexées, parmi lesquelles :  Other features and advantages will emerge from the description which follows, which is purely illustrative and nonlimiting, and should be read in conjunction with the appended figures, among which:
- la figure 1 illustre un masque de phase selon un mode de réalisation de l’invention,  FIG. 1 illustrates a phase mask according to one embodiment of the invention,
- les figures 2a, 2b et 2c illustrent un procédé de fabrication d’un matériau poreux,  FIGS. 2a, 2b and 2c illustrate a method of manufacturing a porous material,
- la figure 3 illustre une étape de séchage supercritique,  FIG. 3 illustrates a supercritical drying step,
- les figures 4a, 4b et 4c sont des microphotographies de matériaux poreux,  FIGS. 4a, 4b and 4c are photomicrographs of porous materials,
- la figure 5 est un diagramme illustrant l’évolution de la porosité d’un matériau poreux en fonction de la fraction volumique en première phase dispersée après un séchage pour différentes méthodes de séchage,  FIG. 5 is a diagram illustrating the evolution of the porosity of a porous material as a function of the volume fraction in first dispersed phase after drying for different drying methods,
- la figure 6 illustre la manipulation d’une onde plane incidente par un masque de phase selon un mode de réalisation de l’invention,  FIG. 6 illustrates the manipulation of a plane wave incident by a phase mask according to one embodiment of the invention,
- la figure 7 illustre l’évolution de la vitesse longitudinale d’une onde acoustique dans un matériau poreux élastomérique selon un mode de réalisation de l’invention en fonction de la porosité du matériau poreux élastomérique,  FIG. 7 illustrates the evolution of the longitudinal velocity of an acoustic wave in a porous elastomeric material according to one embodiment of the invention as a function of the porosity of the porous elastomeric material,
- les figure 8a, 8b, 8c, 8d, 8e et 8f illustrent un procédé de fabrication d’un masque de phase selon un mode de réalisation de l’invention,  FIGS. 8a, 8b, 8c, 8d, 8e and 8f illustrate a method of manufacturing a phase mask according to one embodiment of the invention,
- les figures 9a, 9b, 9c et 9d illustrent un procédé de fabrication d’un masque de phase selon un mode de réalisation de l’invention, - les figures 10a et 10b illustrent la déflexion d’une onde plane incidente selon un angle prédéterminé, ainsi que le masque de phase adapté pour cette déflexion, FIGS. 9a, 9b, 9c and 9d illustrate a method of manufacturing a phase mask according to one embodiment of the invention, FIGS. 10a and 10b illustrate the deflection of a plane wave incident at a predetermined angle, as well as the phase mask adapted for this deflection,
- les figures 1 1 a et 1 1 b illustrent la focalisation d’une onde plane incidente vers un point focal prédéterminé, ainsi que le masque de phase adapté pour cette focalisation,  FIGS. 11a and 11b illustrate the focusing of an incident plane wave towards a predetermined focal point, as well as the phase mask adapted for this focusing,
- les figures 12a, 12b et 12c illustrent des mesures expérimentales permettant la déflexion et la focalisation d’ondes acoustiques réalisées par des masques de phase selon des modes de réalisation de l’invention.  FIGS. 12a, 12b and 12c illustrate experimental measurements enabling the deflection and focusing of acoustic waves produced by phase masks according to embodiments of the invention.
DEFINITIONS DEFINITIONS
On désignera par « porosité » d’un matériau poreux le rapport entre, d’une part, le volume des pores du matériau poreux, et, d’autre part, le volume total du matériau poreux (c’est-à-dire la somme du volume des pores du matériau poreux et du volume de matériau plein s’étendant entre les pores).  The porosity of a porous material will be defined as the ratio between the pore volume of the porous material and the total volume of the porous material (i.e. sum of the pore volume of the porous material and the volume of solid material extending between the pores).
On désigne par « manipulation » d’une onde acoustique (ou du front d’onde acoustique) toute modification volontaire et contrôlée dudit front (phase, amplitude et/ou polarisation locales), par exemple la déflexion ou la focalisation d’une onde acoustique.  "Manipulation" of an acoustic wave (or acoustic wavefront) refers to any deliberate and controlled modification of said front (local phase, amplitude and / or polarization), for example the deflection or focusing of an acoustic wave. .
On désigne par « masque de phase » tout dispositif permettant de modifier localement à façon la phase d’une onde incidente le traversant. De préférence, le masque de phase est un dispositif planaire.  The term "phase mask" denotes any device that locally modifies the phase of an incident wave passing through it. Preferably, the phase mask is a planar device.
On désigne par « émulsion » un mélange de deux substances liquides non miscibles, l'une étant dispersée sous forme de gouttes dans l'autre de manière homogène.  The term "emulsion" denotes a mixture of two immiscible liquid substances, one of which is dispersed in the form of drops in the other in a homogeneous manner.
DESCRIPTION DETAILLEE D’UN MODE DE REALISATION DE L’INVENTION DETAILED DESCRIPTION OF AN EMBODIMENT OF THE INVENTION
Architecture générale d’un masque de phase acoustique General architecture of an acoustic phase mask
La figure 1 illustre une coupe d’un masque de phase 1 acoustique. Le masque de phase 1 comprend un corps 2. Le corps 2 permet une utilisation simplifiée du masque de phase 1 , au regard d’autres dispositifs connus, tels que des réseaux d’obstacles ou des réseaux de transducteurs. Le corps 2 comprend au moins une matrice 3, formée dans un matériau solide déformable, et des pores 4 formés dans la matrice 3. La majorité des pores 4 est remplie de gaz, ce qui permet au corps 2 d’être compressible (la compressibilité est comprise entre 10 9Pa 1 pour le corps 2 non poreux à 10 6Pa 1 pour le corps 2 présentant 40% de pores remplis de gaz). Le matériau solide déformable s’étend entre les pores 4. Ce matériau présente un module de cisaillement préférentiellement inférieur à 10 MPa. Figure 1 illustrates a section of an acoustic phase 1 mask. The phase mask 1 comprises a body 2. The body 2 allows a simplified use of the phase mask 1, with regard to other known devices, such as obstacle networks or transducer networks. The body 2 comprises at least one matrix 3, formed in a deformable solid material, and pores 4 formed in the matrix 3. The majority of the pores 4 are filled with gas, which allows the body 2 to be compressible (compressibility is between 10 9 Pa 1 for the body 2 non-porous to 10 6 Pa 1 for the body 2 having 40% pores filled with gas). The deformable solid material extends between the pores 4. This material has a shear modulus preferably less than 10 MPa.
Les pores 4 confèrent au corps 2 une porosité f locale. Le corps 2 présente une porosité inférieure à 50 %, c’est-à-dire que la porosité locale en tout point du corps 2 est inférieure à 50 %. Autrement dit, la porosité maximale du corps 2 est inférieure à 50 %.  The pores 4 give the body 2 a local porosity. The body 2 has a porosity of less than 50%, that is to say that the local porosity at any point of the body 2 is less than 50%. In other words, the maximum porosity of the body 2 is less than 50%.
Le corps 2 présente un gradient de porosité f. Ce gradient de porosité dans le corps 2 est contrôlé et entraîne une variation spatiale de l’indice acoustique n dans le corps 2. La variation de l’indice acoustique n, ou le gradient d’indice acoustique n, permet d’entraîner une modulation du front d’onde incident lors de son passage à travers le masque de phase 1 , permettant par exemple de focaliser une onde incidente, particulièrement une onde plane incidente.  The body 2 has a porosity gradient f. This porosity gradient in the body 2 is controlled and causes a spatial variation of the acoustic index n in the body 2. The variation of the acoustic index n, or the acoustic index gradient n, makes it possible to cause a modulation incident wavefront during its passage through the phase mask 1, allowing for example to focus an incident wave, particularly an incident plane wave.
La figure 1 illustre un masque de phase 1 en coupe : le masque de phase 1 présente deux faces planes opposées s’étendant parallèlement à un plan principal 7 et le corps 2 du masque de phase 1 présente un gradient de porosité orienté selon une direction parallèle au plan principal 7. En référence à la figure 1 , le plan principal 7 est parallèle au plan défini par les axes x et y, et le gradient est orienté selon l’axe x. Plus précisément, le corps 2 présente une porosité f décroissante selon l’axe x.  FIG. 1 illustrates a phase-1 mask in section: the phase mask 1 has two opposite planar faces extending parallel to a main plane 7 and the body 2 of the phase-1 mask has a porosity gradient oriented in a parallel direction 7. With reference to FIG. 1, the main plane 7 is parallel to the plane defined by the x and y axes, and the gradient is oriented along the x axis. More specifically, the body 2 has a porosity f decreasing along the x axis.
Fabrication d’un matériau poreux Manufacture of a porous material
Le corps 2 est au moins en partie en matériaux poreux, c’est-à-dire un matériau comprenant la matrice 3 en matériau solide déformable, et les pores 4, le matériau solide déformable de la matrice 3 s’étendant entre les pores 4. Le matériau poreux est fabriqué par polymérisation d'une émulsion aqueuse dans un solvant polymérisable, par exemple thermiquement ou par irradiation sous UV puis par un séchage.  The body 2 is at least partly made of porous materials, that is to say a material comprising the matrix 3 of deformable solid material, and the pores 4, the deformable solid material of the matrix 3 extending between the pores 4 The porous material is produced by polymerization of an aqueous emulsion in a polymerizable solvent, for example thermally or by irradiation under UV and then by drying.
Le matériau solide déformable comprend des polymères élastomériques. Ces polymères présentent des températures de transition vitreuse inférieures à la température ambiante. En particulier, les polymères du matériau solide déformable présentent une température de transition vitreuse inférieure à -50° C, de préférence inférieure à -80° C, et de préférence inférieure à -100° C. The deformable solid material comprises elastomeric polymers. These polymers have transition temperatures vitreous less than room temperature. In particular, the polymers of the deformable solid material have a glass transition temperature below -50 ° C., preferably below -80 ° C., and preferably below -100 ° C.
De par une porosité élevée du matériau poreux, le remplissage des pores 4 majoritairement de gaz, et la déformabilité du matériau solide, le corps 2 peut présenter une compressibilité plus élevée que les matériaux poreux connus.  Due to the high porosity of the porous material, the filling of the pores 4 mainly with gas, and the deformability of the solid material, the body 2 may have a higher compressibility than the known porous materials.
L'indice acoustique n d'un matériau peut être défini par la formule (1 ) : n — cref / cmat 0 ) où Cref et cmat sont respectivement les vitesses de propagation (ou célérités) des ondes acoustiques longitudinales dans un matériau de référence, c’est-à-dire l’eau dans l’invention, pour laquelle cre/ = 1 500 m.s 1, et dans le matériau considéré. Comme la vitesse de propagation d’une onde acoustique dans un matériau dépend de la porosité du matériau, l’indice acoustique n dépend de la porosité. Un gradient de porosité du matériau poreux entraîne ainsi un gradient d’indice acoustique n dans le corps 2 du masque de phase 1 . The acoustic index n of a material can be defined by the formula (1): n - c ref / c mat 0) where C re f and c mat are respectively the speeds of propagation (or celerities) of the longitudinal acoustic waves in a reference material, i.e. water in the invention, for which cre / = 1500 ms 1 , and in the material under consideration. As the velocity of propagation of an acoustic wave in a material depends on the porosity of the material, the acoustic index n depends on the porosity. A porosity gradient of the porous material thus leads to an acoustic index gradient n in the body 2 of the phase 1 mask.
Le matériau poreux peut présenter une large gamme de vitesse de propagation. En effet, la vitesse de propagation du son dans un matériau peut s'écrire cmat = (M/p)1/2, où p est la masse volumique du matériau et M le module élastique de compression du matériau. La célérité d’une onde acoustique dans le matériau poreux diminue lorsque à la fois le module élastique de compression du matériau poreux diminue et la densité du matériau poreux augmente. The porous material may have a wide range of propagation velocity. Indeed, the speed of propagation of sound in a material can be written c mat = (M / p) 1/2 , where p is the density of the material and M the elastic modulus of compression of the material. The velocity of an acoustic wave in the porous material decreases when both the elastic modulus of compression of the porous material decreases and the density of the porous material increases.
Ainsi, la porosité du matériau poreux peut être ajustée pour présenter des vitesses de propagation comprises entre typiquement 10 m.s 1 et 1000 m.s 1. Les dispositifs connus ne permettent pas d’atteindre des variations de vitesses de propagation avec une amplitude aussi élevée. Thus, the porosity of the porous material can be adjusted to have propagation speeds of typically between 10 ms -1 and 1000 ms 1 . The known devices do not make it possible to achieve variations in propagation speeds with such a high amplitude.
En référence aux figure 2a, 2b et 2c, la fabrication d’un masque de phase 1 , et en particulier du matériau poreux d’une ou plusieurs matrices 3 du masque de phase 1 comprend les étapes consistant à : a) former une pluralité d’émulsions 12, chaque émulsion 12 présentant, d’une part, une première phase 13 liquide, et d’autre part, une deuxième phase 14 comprenant des monomères et au moins un type d’agent de surface, de manière à former des gouttes de la première phase 13 liquide dans la deuxième phase 14. With reference to FIGS. 2a, 2b and 2c, the manufacture of a phase 1 mask, and in particular the porous material of one or more matrices 3 of the phase 1 mask, comprises the steps of: a) forming a plurality of emulsions 12, each emulsion 12 having, on the one hand, a first liquid phase 13 and, on the other hand, a second phase 14 comprising monomers and at least one type of surfactant, in order to form drops of the first liquid phase in the second phase 14.
Au moins deux émulsions 12 présentent des fractions respectives en première phase 13 différentes. L’étape de formation d’une émulsion est illustrée par la figure 2a.  At least two emulsions 12 have different first-phase respective fractions. The step of forming an emulsion is illustrated in FIG. 2a.
b) réticuler les monomères des émulsions 12 de manière à former un matériau solide déformable 3 définissant la ou les matrices 3 et les pores 4 contenant la première phase 13 liquide.  b) crosslinking the monomers of the emulsions 12 so as to form a deformable solid material 3 defining the matrix or matrices 3 and the pores 4 containing the first liquid phase 13.
L’étape de réticulation est illustrée par la figure 2b.  The crosslinking step is illustrated in FIG. 2b.
c) sécher le matériau poreux obtenu à l’étape b) pour éliminer la première phase 13 liquide de manière à remplir en majorité les pores 4 de gaz.  c) drying the porous material obtained in step b) to remove the first liquid phase so as to fill most of the pores 4 gas.
L’étape de séchage est illustrée par la figue 2c.  The drying step is illustrated by Fig. 2c.
Lors de l’étape a), chaque émulsion 12 inverse est réalisée entre, d’une part, une deuxième phase 14 comprenant des monomères et d'un agent de surface adapté, et d’autre part une première phase 13 aqueuse. L’émulsion In step a), each inverse emulsion 12 is made between, on the one hand, a second phase 14 comprising monomers and a suitable surfactant, and on the other hand a first aqueous phase. The emulsion
12 peut être réalisée en utilisant un dispositif de cisaillement (par exemple Rayneri, Ultraturrax, ou tout appareil mécanique permettant un cisaillement suffisant des deux phases). L’émulsion peut être également formée en exposant la première phase 13 et la deuxième phase 14 à des ondes ultrasonores. On désigne par émulsion mère l’émulsion 12 ainsi obtenue. La fraction volumique de l’émulsion 12 mère en première phase 13 peut être comprise entre 0% et 90%. Le choix de l’agent de surface est adapté aux monomères choisis dans la deuxième phase 14. De manière générale, l’agent de surface présente un numéro HLB inférieur ou égal à environ 8. Ainsi, une émulsion 12 inverse, c’est-à-dire comprenant des gouttes de première phase12 can be achieved using a shearing device (eg Rayneri, Ultraturrax, or any mechanical device allowing sufficient shear of the two phases). The emulsion can also be formed by exposing the first phase 13 and the second phase 14 to ultrasonic waves. The mother emulsion is emulsion 12 thus obtained. The volume fraction of the mother emulsion 12 in the first phase 13 can be between 0% and 90%. The choice of the surfactant is adapted to the monomers chosen in the second phase 14. In general, the surfactant has an HLB number of less than or equal to about 8. Thus, an inverse emulsion 12, that is, to say including drops of first phase
13 aqueuse dans une deuxième phase 14 lipidique est favorisée. Le diamètre des gouttes de première phase 13 formées dans la deuxième phase 14 est typiquement compris entre 0,1 et 100 pm. 13 in a second lipid phase is favored. The diameter of the first phase drops 13 formed in the second phase 14 is typically between 0.1 and 100 μm.
Lors de l’étape b), les émulsions 12 sont déposées dans un ou plusieurs récipients. Au moins deux émulsions 12 présentent des fractions respectives en première phase 13 différentes. La fraction en première phase 13 peut également varier de manière contrôlée au cours du dépôt d’une émulsion 12 dans un récipient, formant une pluralité d’émulsions 12 de manière continue. Le récipient peut être par exemple un moule ou une alvéole. Une paroi du récipient peut être formée par une émulsion 12 déjà réticulée. Une fois déposée, les monomères de la deuxième phase 14 de l’émulsion 12 sont réticulés de manière à former un matériau solide déformable. La réticulation des monomères peut être préférentiellement mise en oeuvre par une exposition des monomères à un rayonnement ultraviolet ou à un chauffage. A la fin de l’étape b), on obtient une ou plusieurs matrices 3 en matériau solide déformable. Des pores 4 sont formés par la ou les matrices 3. Ces pores 4 sont remplis de première phase 1 3. In step b), the emulsions 12 are deposited in one or more containers. At least two emulsions 12 have different first-phase respective fractions. The fraction in first phase 13 can also vary in a controlled manner during the deposition of an emulsion 12 in a container, forming a plurality of emulsions 12 in a continuous manner. The container may be for example a mold or a cell. A wall of the container may be formed by an emulsion 12 already crosslinked. Once deposited, the monomers of the second phase 14 of the emulsion 12 are crosslinked so as to form a deformable solid material. Crosslinking of the monomers may be preferably carried out by exposure of the monomers to ultraviolet radiation or heating. At the end of step b), one or more matrices 3 are obtained in deformable solid material. Pores 4 are formed by the matrix or matrices 3. These pores 4 are filled with first phase 1 3.
Lors de l’étape c), on sèche la ou les matrices 3. Cette étape permet de remplacer, au moins en majorité et préférentiellement totalement, la première phase 13 liquide contenue dans les pores 14 par du gaz. Typiquement, le séchage de la première phase 13 est mis en oeuvre par pervaporation de la première phase 13 liquide à travers la matrice 3 en polymère.  During step c), the matrix or matrices 3 are dried. This step makes it possible to replace, at least in majority and preferably completely, the first liquid phase 13 contained in the pores 14 by gas. Typically, the drying of the first phase 13 is carried out by pervaporation of the first liquid phase 13 through the polymer matrix 3.
Dans les méthodes de séchage connues, un front de séchage se propage dans la matrice 3, et plus particulièrement à l’interface entre la matrice 3 et les pores 4. La matrice 3 est alors soumise à une pression de séchage Pséchage égale à deux fois la tension de surface g de la première phase 13 liquide avec l'air, divisée par le rayon r des micropores par lesquels s’échappe la première phase 13 lors de la pervaporation, soit Pséchage = 2 g/r. S'il est difficile de connaître la valeur exacte de r, on peut estimer que r est typiquement inférieur ou égal à 1 nm. Ainsi, pour une première phase 13 d'eau ( g = 72 mN/m), Pséchage = 144 MPa. Cette valeur, indicative, est supérieure aux modules de cisaillement typiques du matériau solide déformable, en polymères élastomériques. En conséquence, on observe un écroulement des pores lors de la mise en oeuvre de méthodes de séchage connues, et la porosité d’un matériau poreux est ainsi limitée car aucun gaz ne remplace la disparition de première phase 1 3 dans les pores 4. In the known drying methods, a drying front propagates in the matrix 3, and more particularly at the interface between the matrix 3 and the pores 4. The matrix 3 is then subjected to a drying pressure P drying equal to two the surface tension g of the first liquid phase with the air, divided by the radius r of the micropores by which the first phase 13 is evaded during the evaporation , or P drying = 2 g / r. If it is difficult to know the exact value of r, we can estimate that r is typically less than or equal to 1 nm. Thus, for a first phase 13 of water (g = 72 mN / m), P drying = 144 MPa. This indicative value is greater than the typical shear moduli of the deformable solid material, elastomeric polymers. As a result, pore collapse is observed during the implementation of known drying methods, and the porosity of a porous material is thus limited because no gas replaces the disappearance of the first phase 1 3 in the pores 4.
Selon un aspect de l’invention, l’étape de séchage est une étape de séchage supercritique du matériau poreux permettant d’éliminer la première phase 13 liquide. La méthode de séchage supercritique est connue pour le séchage de matériaux poreux fragiles, tels que les aérogels. Elle est par exemple décrite par Marre et al. (Marre, S., fit Aymonier, C. (2016), Préparation of Nanomaterials in Flow at Supercritical Conditions from Coordination Complexes. In Organometallic Flow Chemistry (pp. 177-211). Springer, Cham.). Lors d’un séchage supercritique, une phase liquide contenue par les pores 4 est transformée en phase gazeuse, sans transition de phase, en imposant des conditions de température et de pression permettant de contourner le point critique du ou des composés contenus dans les pores 4. L’absence de passage par une ligne de transition de phase permet d’éviter un front de séchage entre une phase liquide et une phase gazeuse. Ainsi, la pression de séchage est diminuée ou égale à zéro, et il est possible d’éviter l’écrasement du matériau poreux sur lui-même lors du séchage. According to one aspect of the invention, the drying step is a supercritical drying step of the porous material for removing the first liquid phase. The supercritical drying method is known for drying porous brittle materials, such as aerogels. She is by example described by Marre et al. (Marre, S., made Aymonier, C. (2016), Preparation of Nanomaterials in Flow and Supercritical Conditions from Coordination Complexes in Organometallic Flow Chemistry (pp. 177-211), Springer, Cham.). During supercritical drying, a liquid phase contained by the pores 4 is transformed into a gaseous phase, without phase transition, by imposing temperature and pressure conditions making it possible to bypass the critical point of the compound (s) contained in the pores. The absence of passage through a phase transition line makes it possible to avoid a drying front between a liquid phase and a gaseous phase. Thus, the drying pressure is decreased or equal to zero, and it is possible to avoid crushing the porous material on itself during drying.
Le fluide de séchage utilisé pour le séchage supercritique peut être le C02. Le C02 présente un point critique correspondant à une pression Pc = 73,9 atm et à une température de Te = 31 ° C. Ces conditions de température et de pression sont faciles et économique à mettre en oeuvre. The drying fluid used for supercritical drying can be C0 2 . The C0 2 has a critical point corresponding to a pressure Pc = 73.9 atm and a temperature of Te = 31 ° C. These conditions of temperature and pressure are easy and economical to implement.
La figure 3 illustre le séchage supercritique du matériau poreux en utilisant du CO2. Suite à l’étape b), les pores 4 contiennent une première phase 1 3 aqueuse. La première phase 13 est d’abord échangée avec de l’éthanol liquide. Ainsi, le liquide contenu dans les pores 4 est miscible avec le CO2. L’échange de la première phase 1 3 avec une phase liquide d’éthanol est réalisé en immergeant le matériau poreux dans un bain de solution aqueuse qui est progressivement enrichi en éthanol par un système de pompes à température et pression ambiantes. L’échange se produit progressivement, sur une échelle de temps adaptée pour éviter d’imposer des contraintes mécaniques trop élevées au matériau solide déformable.  Figure 3 illustrates the supercritical drying of the porous material using CO2. Following step b), the pores 4 contain a first aqueous phase. The first phase 13 is first exchanged with liquid ethanol. Thus, the liquid contained in the pores 4 is miscible with the CO2. The exchange of the first phase 1 3 with a liquid phase of ethanol is carried out by immersing the porous material in an aqueous solution bath which is progressively enriched in ethanol by a system of pumps at ambient temperature and pressure. The exchange occurs gradually, on a time scale adapted to avoid imposing excessive mechanical stresses on the solid deformable material.
L’éthanol est ensuite extrait par le CO2. L’extraction est mise en oeuvre en plaçant le matériau poreux baignant dans l’éthanol pur dans un réacteur haute pression, dans lequel les conditions de pression et de température peuvent être ajustées au moyen de pompes d’injection et d’un régulateur de pression en sortie. La température du réacteur est tout d’abord ajustée au-delà de la température critique théorique du mélange CÜ2/éthanol (i. e. entre 45 et 50° C pour une composition 90/10 molaire) tandis que le réacteur est lentement pressurisé avec du CO2, jusqu’à une valeur supérieure à la pression critique du mélange CÜ2/éthanol (i. e. 1 10 bars). Ces variations en pression et en température correspondent à la trajectoire illustrée en pointillés partant du point A et allant au point B dans la figure 3. The ethanol is then extracted with CO2. The extraction is carried out by placing the porous material bathed in pure ethanol in a high pressure reactor, in which the pressure and temperature conditions can be adjusted by means of injection pumps and a pressure regulator. output. The temperature of the reactor is first adjusted beyond the theoretical critical temperature of the CO 2 / ethanol mixture (ie between 45 and 50 ° C. for a 90/10 molar composition) while the reactor is slowly pressurized with CO2. up to a value greater than the critical pressure of the CO 2 / ethanol mixture (ie 1 10 bar). These variations in pressure and temperature correspond to the trajectory shown in dotted lines starting from point A and going to point B in FIG.
Le C02 est alors pompé en continu au travers du matériau poreux à débit constant (1 1 g/min), tandis que les conditions opératoires sont maintenues constantes (la pression est contrôlée grâce à un contrôleur de pression de sortie). Le C02 se mélange à l’éthanol et forme un mélange monophasique supercritique. Au cours de cette phase de mélange, l’éthanol contenu dans les pores 4 est peu à peu remplacé par un mélange supercritique CÜ2/éthanol qui s’enrichit progressivement en CO2. Dans le même temps, le mélange éthanol/C02 fluide est extrait du réacteur afin d’y conserver un volume interne de fluide constant. Une fois tout l’éthanol remplacé par du CO2, la pression du système est lentement ramenée à 1 bar, par exemple en une heure, de manière à ramener le CO2 en phase gazeuse sans repasser par l’état liquide. Cette variation de pression correspond à la trajectoire illustrée en pointillés partant du point B et allant au point I dans la figure 3. The C0 2 is then pumped continuously through the porous material at a constant flow rate (11 g / min), while the operating conditions are kept constant (the pressure is controlled by means of an outlet pressure controller). C0 2 mixes with ethanol and forms a supercritical monophasic mixture. During this mixing phase, the ethanol contained in the pores 4 is gradually replaced by a C 2 / ethanol supercritical mixture which progressively enriches with CO2. At the same time, the fluid ethanol / CO 2 mixture is extracted from the reactor in order to maintain a constant internal volume of fluid. Once all the ethanol is replaced by CO2, the pressure of the system is slowly reduced to 1 bar, for example in one hour, so as to bring the CO2 gas phase without ironing the liquid state. This pressure variation corresponds to the trajectory shown in dotted lines starting from point B and going to point I in FIG.
Enfin, la température est diminuée jusqu’à la température ambiante. Cette variation de température correspond à la trajectoire illustrée en pointillés partant du point I et allant au point A dans la figure 3. Ainsi, le fluide contenu dans les pores 4 est remplacé de manière continue par un gaz, en évitant l’apparition d’une interface triple solide/liquide/gaz (de tension de surface non nulle) dans les pores 4.  Finally, the temperature is decreased to room temperature. This variation in temperature corresponds to the trajectory shown in dashed lines starting from point I and going to point A in FIG. 3. Thus, the fluid contained in the pores 4 is continuously replaced by a gas, avoiding the appearance of a triple solid / liquid / gas interface (non-zero surface tension) in the pores 4.
Selon un autre aspect de l’invention, la première phase 3 liquide comprend un composé liquide adapté à se décomposer spontanément à température ambiante en un gaz et en un liquide. La cinétique de décomposition du liquide en gaz et en produit liquide peut être fixée par la proportion de liquide susceptible de se décomposer dans la phase dispersée. Cette cinétique peut être ajustée afin que le temps caractéristique d’apparition des bulles de gaz soit typiquement plus lent (c’est-à dire typiquement supérieur à 30 minutes) que le temps nécessaire à l’émulsification. Lors de l’étape de séchage, on attend la décomposition du composé liquide de manière à former une phase gazeuse dans les pores 4. Le composé 1 peut être du peroxyde d’hydrogène H2O2. Le peroxyde d’hydrogène se décompose, à température et pression constante ambiante en eau (liquide) et en dioxygène gazeux. La proportion de H2O2 dans la première phase 13 liquide peut être préférentiellement de 1 /3 en masse totale de première phase 13. Pour une proportion en H2O2 dans l’eau de 1 /3, le temps caractéristique d’apparition des bulles de gaz est de l’ordre de 30 minutes. Cette cinétique peut être ralentie ou accélérée en jouant sur cette proportion ou bien en ajoutant un catalyseur en concentration contrôlée dans la phase dispersée (par exemple des ions iodures I qui sont connus pour catalyser la réaction de décomposition de H2O2 en oxygène et en eau). Cette méthode permet de compenser la pression potentiellement exercée, lors du séchage, par des lignes de contact dans les pores 4 par une augmentation de la pression gazeuse entraînée par la décomposition du composé. Il est ainsi possible d’éviter l’effondrement des pores 4 sur eux-mêmes lors du séchage du matériau poreux. Cette méthode ne nécessite pas de contrôle externe de la pression et/ou de la température imposées au matériau poreux. Ainsi, l’utilisation du composé permet de sécher le matériau poreux en utilisant un matériel plus simple et moins onéreux que lors d’un séchage supercritique. Le séchage par introduction du composé est par exemple réalisé en plaçant le matériau poreux dans une étuve, dans laquelle la température est contrôlée à 40° C, sous atmosphère ambiante. According to another aspect of the invention, the first liquid phase comprises a liquid compound adapted to decompose spontaneously at ambient temperature into a gas and a liquid. The kinetics of decomposition of the liquid into gas and liquid product can be fixed by the proportion of liquid capable of decomposing in the dispersed phase. This kinetics can be adjusted so that the characteristic gas bubble onset time is typically slower (i.e. typically greater than 30 minutes) than the time required for emulsification. During the drying step, the decomposition of the liquid compound is expected so as to form a gas phase in the pores 4. The compound 1 may be hydrogen peroxide H2O2. Hydrogen peroxide decomposes at constant ambient temperature and pressure into water (liquid) and gaseous oxygen. The proportion of H 2 O 2 in the first liquid phase may preferably be 1/3 in total mass of the first phase 13. For a proportion of H2O2 in water of 1/3, the characteristic time of appearance of the gas bubbles is of the order of 30 minutes. This kinetics can be slowed down or accelerated by varying this proportion or by adding a controlled concentration catalyst in the dispersed phase (for example iodide ions I which are known to catalyze the reaction of decomposition of H2O2 into oxygen and water). This method makes it possible to compensate for the pressure potentially exerted during drying by contact lines in the pores 4 by an increase in the gas pressure caused by the decomposition of the compound. It is thus possible to avoid the collapse of the pores 4 on themselves during the drying of the porous material. This method does not require external control of the pressure and / or temperature imposed on the porous material. Thus, the use of the compound makes it possible to dry the porous material by using a simpler and less expensive material than during a supercritical drying. The drying by introduction of the compound is for example carried out by placing the porous material in an oven, in which the temperature is controlled at 40 ° C. under ambient atmosphere.
Les deux procédés de séchage décrits précédemment (séchage supercritique et introduction d’un composé dans la première phase liquide 13) permettent d’obtenir une porosité du matériau poreux sensiblement égale à la fraction volumique en première phase 13 obtenue lors de l’étape a) du procédé.  The two drying processes described above (supercritical drying and introduction of a compound in the first liquid phase 13) make it possible to obtain a porosity of the porous material substantially equal to the volume fraction in the first phase 13 obtained during step a) of the process.
Les figures 4a, 4b et 4c sont des microphotographies obtenues en microscopie à balayage électronique, illustrant des matériaux poreux du corps 2, présentant différentes porosités. En référence à la figure 4a, la porosité f du matériau poreux du corps 2 est sensiblement égale à 5%. En référence à la figure 4b, la porosité f du matériau poreux du corps 2 est sensiblement égale à 10%. En référence à la figure 4b, la porosité f du matériau poreux du corps 2 est sensiblement égale à 15%.  Figures 4a, 4b and 4c are photomicrographs obtained by scanning electron microscopy, illustrating porous materials of the body 2, having different porosities. With reference to FIG. 4a, the porosity f of the porous material of the body 2 is substantially equal to 5%. With reference to FIG. 4b, the porosity f of the porous material of the body 2 is substantially equal to 10%. With reference to FIG. 4b, the porosity f of the porous material of the body 2 is substantially equal to 15%.
La figure 5 illustre l’évolution de la porosité d’un matériau poreux après une étape de séchage réalisée selon une méthode connue (illustrée par la courbe (a)), une étape de séchage supercritique (illustrée par la courbe (b)) et par une étape de séchage par introduction d’un composé dans la première phase 13 (illustrée par la courbe (c)). Les méthodes de séchage illustrées par les courbes (b) et (c) permettent d’obtenir un matériau poreux présentant une porosité f sensiblement égale à la fraction volumique de la première phase 13 dans l’émulsion 12. En revanche, lors de l’utilisation d’un séchage par une méthode connue (par exemple un séchage simple en étuve), l’effondrement de la matrice 3 sur elle-même empêche une augmentation de la porosité au-dessus d’une valeur seuil (sensiblement 10%) et limite ainsi un possible gradient d’indice acoustique n du corps 2. FIG. 5 illustrates the evolution of the porosity of a porous material after a drying step carried out according to a known method (illustrated by curve (a)), a supercritical drying step (illustrated by curve (b)) and by a drying step by introducing a compound into the first phase 13 (illustrated by the curve (c)). The drying methods illustrated by curves (b) and (c) make it possible to obtain a porous material having a porosity f substantially equal to the volume fraction of the first phase 13 in the emulsion 12. In contrast, when using a drying by a known method (for example a simple drying in an oven), the collapse of the matrix 3 on itself prevents an increase of the porosity above a threshold value (substantially 10%) and thus limits a possible acoustic index gradient n of the body 2.
Exemples de fabrication du matériau poreux Examples of manufacture of the porous material
Exemple 1 Example 1
La deuxième phase 14 comprend de l’huile silicone Silcolease UV poly 200 de Bluestar Silicones, 4% massiques de catalyseur Silcolease UV cata 21 1 de Bluestar Silicones, 0,4% massiques de tensioactif (le 2-octyl-1 -dodecanol) et 200 ppm de Genocure ITX de Rahn. La première phase 13 comprend 1 ,5% massiques de chlorure de sodium. La quantité de phase aqueuse incorporée dans la phase organique est dépendante de la porosité souhaitée pour le matériau poreux. La formation d’une émulsion est réalisée dans un mortier en ajoutant la première phase 13 au goutte-à-goutte pendant le cisaillement, puis elle est affinée, soit à l'aide d'outils à pale (de type Rayneri ou Ultraturrax), soit par ultrasons. L’étape de réticulation est mise en oeuvre en exposant l’émulsion à un rayonnement ultraviolet grâce à la lampe BlueWave 200 de Dymax. Le matériau poreux est ensuite séché par séchage supercritique ou par introduction d’un composé, tel que décrit précédemment.  The second phase 14 comprises silicone oil Silcolease UV poly 200 from Bluestar Silicones, 4% by weight of catalyst Silcolease UV cata 21 1 from Bluestar Silicones, 0.4% by weight of surfactant (2-octyl-1-dodecanol) and 200 ppm of Rahn Genocure ITX. The first phase 13 comprises 1.5% by weight of sodium chloride. The amount of aqueous phase incorporated in the organic phase is dependent on the desired porosity for the porous material. The formation of an emulsion is carried out in a mortar by adding the first phase 13 dropwise during shear, and then it is refined, either using blade tools (Rayneri or Ultraturrax type), either by ultrasound. The crosslinking step is carried out by exposing the emulsion to ultraviolet radiation using the Dymax BlueWave 200 lamp. The porous material is then dried by supercritical drying or by introducing a compound as described above.
Exemple 2 Example 2
La deuxième phase 14 comprend 64 % en masse d'ethylhexyl acrylate, 5,5 % en masse de Styrène, 10,5 % en masse de divinylbenzene et 20 % en masse de tensio-actif SPAN 80. La phase aqueuse présente des concentrations en chlorure de sodium de 25.10 3 mol/L et en peroxodisulfate de potassium de 5.10 3 mol/L. La quantité de première phase 13 incorporée dans la phase organique est dépendante de la porosité souhaitée pour le matériau final. La formation d’une émulsion est réalisée à l'aide d'un outil à pale de type Rayneri en ajoutant la première phase 13 au goutte-à-goutte pendant le cisaillement. La réticulation des monomères est réalisée par chauffage à une température de 60 ° C. Le matériau poreux est ensuite séché par séchage supercritique ou par introduction d’un composé, tel que décrit précédemment. Exemple 3 The second phase 14 comprises 64% by weight of ethylhexyl acrylate, 5.5% by weight of styrene, 10.5% by weight of divinylbenzene and 20% by weight of SPAN 80 surfactant. sodium chloride 25.10 3 mol / L and potassium peroxodisulfate 5.10 3 mol / L. The amount of first phase 13 incorporated into the organic phase is dependent on the desired porosity for the final material. The formation of an emulsion is carried out using a Rayneri type blade tool by adding the first phase 13 dropwise during shearing. The crosslinking of the monomers is carried out by heating at a temperature of 60 ° C. The porous material is then dried by supercritical drying or by introduction of a compound, as described above. Example 3
Un matériau solide déformable à base de silicone (noté SiVi/SiH) peut être obtenu par polymérisation thermique du PDMS via une réaction d'hydrosilylation. La deuxième phase 14 comprend 8,8 g de PDMS-vinyl (BLUESIL FLD 621 V1500), 1 ,8 g de PDMS-silane (BLUESIL FLD 626V30H2.5) et de 0,352 g de catalyseur au platine (SCLS CATA1 1091 M), (Société BlueStar Silicones). Afin de pouvoir préparer les émulsions 12 avant la réticulation des monomères, 4,4 mg de retardateur de polymérisation (1 -ethynyl-1 - cyclohexanol, ECH de Sigma Aldrich) sont ajoutés. Pour stabiliser l'émulsion, on peut utiliser du 2-octyl-1 -dodecanol ou du Silube J208-812. Les émulsions 12 sont préparées par introduction d'une première phase 13 aqueuse comprenant 1 ,5 % massique de NaCl sous agitation. L'émulsion est ensuite versée dans un moule en Téflon puis chauffée à 60° C pendant 24 heures. Le matériau poreux est ensuite séché par séchage supercritique ou par introduction d’un composé, tel que décrit précédemment.  A deformable silicone-based solid material (denoted SiVi / SiH) can be obtained by thermal polymerization of the PDMS via a hydrosilylation reaction. The second phase 14 comprises 8.8 g of PDMS-vinyl (BLUESIL FLD 621 V1500), 1.8 g of PDMS-silane (BLUESIL FLD 626V30H2.5) and 0.352 g of platinum catalyst (SCLS CATA1 1091 M), (BlueStar Silicones Company). In order to be able to prepare the emulsions 12 before the crosslinking of the monomers, 4.4 mg of polymerization retarder (1-ethynyl-1-cyclohexanol, ECH of Sigma Aldrich) are added. To stabilize the emulsion, 2-octyl-1-dodecanol or Silube J208-812 can be used. The emulsions 12 are prepared by introducing a first aqueous phase comprising 1.5% by weight of NaCl with stirring. The emulsion is then poured into a Teflon mold and then heated at 60 ° C for 24 hours. The porous material is then dried by supercritical drying or by introducing a compound as described above.
Fabrication d’un masque de phase 1 acoustique Fabrication of an acoustic phase 1 mask
De par la présence d’un gradient de porosité entraînant une variation spatiale de l’indice acoustique n dans le corps 2, il est possible de contrôler localement la célérité des ondes acoustiques et ainsi de courber à façon les rayons acoustiques par effet mirage (version 3D du milieu à gradient) ou encore de contrôler des retards/avances de phase à des fronts d'ondes (version 2D de ces milieux, par exemple un masque de phase 1 ). Ainsi, il est par exemple possible de concentrer les faisceaux acoustiques, c’est-à-dire les focaliser, de dévier les faisceaux acoustiques et/ou de séparer les faisceaux acoustiques. On entend par « manipulation » du front d’onde acoustique au moins l’un des effets précédemment décrits sur une onde acoustique incidente plane.  Due to the presence of a porosity gradient leading to a spatial variation of the acoustic index n in the body 2, it is possible to locally control the celerity of the acoustic waves and thus to bend the acoustic rays by mirage effect (version 3D of the gradient medium) or to control delays / phase advances at wave fronts (2D version of these media, for example a phase 1 mask). Thus, it is for example possible to concentrate the acoustic beams, that is to say, focus them, to deflect the acoustic beams and / or to separate the acoustic beams. The term "manipulation" of the acoustic wavefront is understood to mean at least one of the effects previously described on a plane incident acoustic wave.
En référence à la figure 6 et selon un aspect de l’invention, le masque de phase 1 (illustré en coupe dans la figure 6) peut présenter une épaisseur sub-longueur d'onde. Le masque de phase 1 présente deux faces planes opposées s’étendant parallèlement au plan principal 7 et présente au moins un gradient de porosité f orienté selon la direction 8 parallèle au plan principal 7. On désigne par épaisseur d la distance entre les deux faces planes opposées. La manipulation d’un front onde acoustique incident plan 6, de longueur l peut être mise en oeuvre avec un masque de phase 1 d’une épaisseur d strictement inférieure à la longueur d’onde l. Préférentiellement, les longueurs d’ondes incidentes 6 sont comprises entre 100kHz et 10MHz, en particulier pour l’eau comme milieu environnant. Ainsi, l’épaisseur d du masque de phase est préférentiellement comprise entre 100pm et 10mm. Referring to Figure 6 and according to one aspect of the invention, the phase mask 1 (shown in section in Figure 6) may have a subwavelength thickness. The phase mask 1 has two opposite planar faces extending parallel to the main plane 7 and has at least one porosity gradient f oriented in the direction 8 parallel to the plane principal 7. The thickness d denotes the distance between the two opposite planar faces. The manipulation of an incident plane acoustic wave front plane 6, of length l can be implemented with a phase mask 1 of a thickness d strictly less than the wavelength 1. Preferably, the incident wavelengths 6 are between 100 kHz and 10 MHz, in particular for water as a surrounding medium. Thus, the thickness d of the phase mask is preferably between 100 μm and 10 mm.
La figure 6 illustre une onde acoustique plane incidente 6 présentant un front d'onde physique simple (uniforme/plan par exemple) en entrée du masque de phase 1 . L’onde transmise 19 ou onde cible 19 présente un front d'onde différent de celui de l’onde plane incidente 6, en sortie du masque de phase 1 . Le front d'ondes de sortie entraîne un champ acoustique volumique "cible" (un champ convergent par exemple pour la focalisation).  FIG. 6 illustrates an incident plane acoustic wave 6 presenting a simple physical wavefront (uniform / flat for example) at the input of the phase 1 mask. The transmitted wave 19 or target wave 19 has a wavefront different from that of the incident plane wave 6 at the output of the phase mask 1. The output wavefront results in a "target" volume acoustic field (a converging field, for example, for focusing).
La figure 6 illustre également une méthode utilisant un masque de phase 1 pour générer un champ cible de pression acoustique pc (aux fronts de phase non plans) à partir d'une onde plane incidente 6 ou d'un front plan d'excitation (par un émetteur ultrasonore par exemple). FIG. 6 also illustrates a method using a phase 1 mask for generating a sound pressure target field p c (at non-planar phase fronts) from an incident plane wave 6 or an excitation plane front ( by an ultrasonic transmitter for example).
De manière générale, pour que le champ de pression de sortie se rapproche au mieux du champ cible (choisi par un utilisateur), le masque de phase 1 est fabriqué de manière à ce que la transmission d’une onde plane incidente 6 par le masque de phase 1 restitue exactement en sortie du masque de phase 1 le champ cible choisi, c’est-à-dire en z = 0, et préférentiellement sur une surface du plan défini par les axes x et z plus grande.  In general, so that the output pressure field is as close as possible to the target field (chosen by a user), the phase mask 1 is manufactured so that the transmission of a plane wave incident 6 by the mask phase 1 reproduces exactly at the output of the phase mask 1 the selected target field, that is to say in z = 0, and preferably on a surface of the plane defined by the axes x and z greater.
Le champ de pression cible peut, par exemple, être un champ harmonique de pulsation w . La pression cible peut s’écrire est l’amplitude de la pression, Oc la phase cible, et t le temps. Le champ acoustique Pm immédiatement en sortie du masque de phase 1 est égal à masque de phase 1 permet d’imposer la phase de l’onde transmise directement en sortie du masque de phase 1 , ce qui permet d’établir la relation = F c (x,y,z = oj . U est possible de considérer que le masque de phase 1 présente un indice acoustique n variable dans le plan xy et constant dans son épaisseur d, supposée petite par rapport à l, c’est-à-dire de considérer que n dépend de x et y. Le masque de phase déphase localement le champ m(x,y)kQd The target pressure field may, for example, be a harmonic field of pulsation w. The target pressure can be written is the pressure amplitude, O c the target phase, and t the time. The acoustic field P m immediately at the output of the phase mask 1 is equal to phase mask 1 makes it possible to impose the phase of the wave transmitted directly at the output of the phase 1 mask, which makes it possible to establish the relationship C = F (x, y, z = oj. U is possible to consider that the phase mask 1 presents an acoustic index n variable in the xy plane and constant in its thickness d, supposed small compared to 1, that is to say to consider that n depends on x and y. The phase mask locally shifts the field m (x, y) k Q d
incident d’une quantité 6 en chaque point de la sortie du masque de phase 1 (x, y, z = d) tel que incident of an amount 6 at each point of the output of the phase mask 1 (x, y, z = d) such that
. L’onde plane incidente 6 peut correspondre à un front de phase incident uniforme dans le plan xy c’est-à-dire inc x V z = = F0 (qui peut être fixé arbitrairement égal à 0). Ainsi, la distribution spatiale de l’indice acoustique n du masque de phase 1 doit vérifier la formule : pour être adapté à générer le champ cible Pc . La distribution de la porosité dans le masque de phase 1 est ainsi choisie de manière à fabriquer un masque de phase 1 présentant un indice acoustique n vérifiant la formule (2). . The incident plane wave 6 may correspond to a uniform incident phase front in the xy plane i.e. inc x V z = = F 0 (which can be set arbitrarily equal to 0). Thus, the spatial distribution of the acoustic index n of the phase mask 1 must verify the formula: to be adapted to generate the target field P c . The distribution of the porosity in the phase mask 1 is thus chosen so as to produce a phase 1 mask having an acoustic index n satisfying the formula (2).
La figure 7 illustre l’évolution de la célérité d’une onde acoustique dans le masque de phase 1 avec la porosité du corps 2. Les célérités mesurées correspondent à un indice acoustique n compris entre environ 1 ,5 et 40. Le masque de phase 1 est, de manière générale, adapté pour présenter un indice acoustique compris entre 1 ,5 et 40.  FIG. 7 illustrates the evolution of the celerity of an acoustic wave in the phase 1 mask with the porosity of the body 2. The measured celerities correspond to an acoustic index n of between approximately 1.5 and 40. The phase mask 1 is, in general, adapted to have an acoustic index between 1, 5 and 40.
En référence aux figures 8a, 8b, 8c, 8d, 8e et 8f, le corps 2 du masque de phase 1 peut être fabriqué en empilant des couches 9, chaque couche 9 comprenant une matrice 3 et des pores 4 et présentant une porosité f constante, la porosité d’une couche 9 étant différente de la porosité d’une couche 9 directement voisine.  With reference to FIGS. 8a, 8b, 8c, 8d, 8e and 8f, the body 2 of the phase mask 1 can be manufactured by stacking layers 9, each layer 9 comprising a matrix 3 and pores 4 and having a constant porosity f , the porosity of a layer 9 being different from the porosity of a layer 9 directly adjacent.
En référence à la figure 8a, une première émulsion 12 est déposée dans un moule 19 comprenant un support en polytétrafluoroéthylène (PTFE) et deux parois latérales 20 transparentes.  With reference to FIG. 8a, a first emulsion 12 is deposited in a mold 19 comprising a support of polytetrafluoroethylene (PTFE) and two transparent side walls.
En référence à la figure 8b, les monomères de l’émulsion 12 sont réticulés en exposant l’émulsion 12 au rayonnement UV. Cette exposition est possible grâce aux parois transparentes 20. Une réticulation thermique de l’émulsion 12 est également possible. L’épaisseur d du moule (distance entre les deux parois 20) peut être comprise entre 0,5 mm et 5 mm lorsque la réticulation est mise en oeuvre par UV. L’épaisseur peut être supérieure lorsque la réticulation est mise en oeuvre par chauffage. With reference to FIG. 8b, the monomers of emulsion 12 are crosslinked by exposing emulsion 12 to UV radiation. This exposure is possible thanks to the transparent walls 20. Thermal crosslinking of the emulsion 12 is also possible. The thickness d of the mold (distance between the two walls 20) can be between 0.5 mm and 5 mm when the crosslinking is carried out by UV. The thickness may be greater when the crosslinking is carried out by heating.
En référence à la figure 8c, une émulsion 12 de fraction volumique en première phase 13 différente de celle de l’émulsion 12 décrite dans la figure 8a, par exemple supérieure, est déposée dans le moule 19 sur la couche 9 réticulée décrite dans la figure 8b.  With reference to FIG. 8c, a first phase volume fraction emulsion 12 different from that of the emulsion 12 described in FIG. 8a, for example greater, is deposited in the mold 19 on the crosslinked layer 9 described in FIG. 8b.
En référence à la figure 8d, les monomères de l’émulsion 12 décrite dans la figure 8c sont réticulés, de manière à former deux couches 9 juxtaposées.  With reference to FIG. 8d, the monomers of the emulsion 12 described in FIG. 8c are crosslinked so as to form two juxtaposed layers 9.
Les différentes couches 9 peuvent être séchées avant chaque dépôt d’une nouvelle émulsion.  The different layers 9 can be dried before each deposit of a new emulsion.
En référence à la figure 8e, les différentes couches 9 peuvent être extraites du moule 19. Les différentes couches 9 juxtaposées forment ainsi le corps 2 d’un masque de phase 1 .  With reference to FIG. 8e, the various layers 9 can be extracted from the mold 19. The different juxtaposed layers 9 thus form the body 2 of a phase 1 mask.
La figure 8f est une photographie en vue de face d’un masque de phase 1 , fabriqué selon la méthode décrite dans les figures 8a à 8e. Le masque de phase 1 présente ainsi un gradient de porosité, la porosité étant maximale au milieu du masque de phase 1 et minimale aux extrémités basses et hautes du masque de phase 1 . Les lignes en pointillés correspondent aux limites entre les différentes couches 9.  FIG. 8f is a front view photograph of a phase 1 mask manufactured according to the method described in FIGS. 8a to 8e. The phase mask 1 thus has a porosity gradient, the porosity being maximum in the middle of the phase 1 and minimum mask at the low and high ends of the phase 1 mask. The dotted lines correspond to the boundaries between the different layers 9.
Les couches 9 déposées présentent une hauteur h plus petite que la longueur d’onde l de l’onde acoustique incidente 6. Par exemple, pour une fréquence de 100 kHz, la longueur d’onde l d’une onde acoustique plane incidente 6 est de 15 mm. Les couches 9 présentent une hauteur égale à 8 mm (soit environ l/2), ce qui est suffisant pour que le gradient d’indice acoustique n soit effectivement perçu comme continu pour l’onde plane incidente 6. Il est bien évidemment possible de diminuer la largeur des bandes, par exemple jusqu’à environ 1 mm.  The layers 9 deposited have a height h smaller than the wavelength 1 of the incident acoustic wave 6. For example, for a frequency of 100 kHz, the wavelength 1 of an incident plane acoustic wave 6 is 15 mm. The layers 9 have a height equal to 8 mm (ie about 1/2), which is sufficient for the acoustic index gradient n is actually perceived as continuous for the incident plane wave 6. It is obviously possible to reduce the width of the strips, for example up to about 1 mm.
En référence aux figures 9a, 9b, 9c et 9d, le corps 2 peut comprendre un support 10 présentant des alvéoles 1 1 , chaque alvéole 1 1 contenant une matrice 3, au moins deux des matrices 3 présentant des porosités différentes.  Referring to Figures 9a, 9b, 9c and 9d, the body 2 may comprise a support 10 having cells 1 1, each cell 1 1 containing a matrix 3, at least two of the matrices 3 having different porosities.
En référence aux figures 9a et 9b, le support 10 peut par exemple être fabriqué par impression 3D. Les paramètres de l’impression 3D sont choisis de manière à fabriquer un support 10 dans lequel des alvéoles 1 1 sont délimitées par des minces épaisseurs (typiquement une centaine de micromètres) de polymères type acide polylactique (PLA), polyamide (PA) ou tout autre polymère imprimable. Les émulsions 12 de différentes fractions volumiques en première phase 1 3 sont introduites dans les alvéoles 1 1 . With reference to FIGS. 9a and 9b, the support 10 may for example be manufactured by 3D printing. The parameters of the 3D printing are chosen so as to manufacture a support 10 in which cells 1 1 are delimited by thin thicknesses (typically about 100 micrometers) of polylactic acid (PLA), polyamide (PA) or any other printable polymer. The emulsions 12 of different volume fractions in the first phase 1 3 are introduced into the cells 1 1.
En référence à la figure 9c, les monomères de l’ensemble des émulsions 12 peuvent être réticulés simultanément, par exemple par une exposition aux UV au travers d’une paroi 20. Le masque de phase 1 peut comprendre le support 10. En effet, l’épaisseur du support 10 peut être typiquement de 0, 1 mm, et considérée comme négligeable par rapport aux longueurs d’ondes acoustiques. Les expériences acoustiques réalisées montrent que la présence d’un tel support 10, non rempli de matériau, n’introduit aucune modification du champ acoustique.  With reference to FIG. 9c, the monomers of all the emulsions 12 may be crosslinked simultaneously, for example by exposure to UV through a wall 20. The phase mask 1 may comprise the support 10. In fact, the thickness of the support 10 may be typically 0.1 mm, and considered negligible compared to the acoustic wavelengths. The acoustic experiments carried out show that the presence of such a support 10, not filled with material, introduces no change in the acoustic field.
En référence à la figure 9d, le masque de phase 1 comprend le corps 2, le corps 2 comprenant une succession de bandes ou de couches 9 et le support 10. Le corps 2 présente un gradient de porosité de par la formation des différentes matrices 3 de porosités différentes.  With reference to FIG. 9d, the phase mask 1 comprises the body 2, the body 2 comprising a succession of strips or layers 9 and the support 10. The body 2 has a porosity gradient due to the formation of the different matrices 3 of different porosities.
Manipulation de fronts d’ondes acoustiques Manipulation of acoustic wave fronts
Le masque de phase 1 peut comprendre une succession de bandes ou de couches 9, comme décrit précédemment.  The phase mask 1 may comprise a succession of strips or layers 9, as described above.
En référence aux figures 10a et 1 0b, le masque de phase 1 peut permettre de modifier l’angle Q de propagation entre la direction de propagation d’une onde acoustique plane incidente 6 et celle d’une onde transmise 19, soit un angle de déflexion Q au regard du plan principale 7.  With reference to FIGS. 10a and 10b, the phase mask 1 may make it possible to modify the propagation angle θ between the propagation direction of an incident plane acoustic wave 6 and that of a transmitted wave 19, ie an angle of deflection Q with respect to the main plane 7.
L’onde plane incidente 6 de champ incident Pin est ai nsi transformée en onde plane transmise ou défléchie 19, de champ cibleThe incident incident plane wave 6 of incident field P in is nsi have transformed into plane wave transmitted or deflected 19 of target field
_ ikQ sin qc ikQ cos qz — jui _ ik Q sin qc ik Q cos q z - jui
Pc— P0 e e e La distribution spatiale de n vérifie étant l’indice au centre du masque de P c - P 0 eee The spatial distribution of n satisfies being the index at the center of the mask of
phase 1 . Le gradient est préférentiellement constant, ce qui correspond à une évolution linéaire de la porosité du corps 2 dans l’espace. Dans ce cas, il est égal à sin 9 / d et orienté selon l’axe x. Phase 1 . The gradient is preferably constant, which corresponds to a linear evolution of the porosity of the body 2 in space. In this case, it is equal to sin 9 / d and oriented along the x axis.
En référence aux figures 1 1 a et 1 1 b, le masque de phase 1 peut permettre de focaliser une onde acoustique plane incidente 6. L’onde plane incidente 6, en incidence normale avec le masque de phase 1 , pour manipulerWith reference to FIGS. 11a and 11b, the phase mask 1 can be used to focus an incident plane acoustic wave 6. The plane wave incident 6, in normal incidence with the phase mask 1, to manipulate
_ ik0z -iut _ ik 0 z -iut
le champ Pinc— PQ e est ainsi transformée en onde cylindrique convergente au point de focalisation de coordonnée z = F par rapport au masque de phase 1 dont la face de sortie correspond à la coordonnée z = 0. En utilisant une approximation de champ lointain, le champ cible s’exprime sous la formethe field P inc - P Q e is thus transformed into a convergent cylindrical wave at the focal point of coordinate z = F with respect to the phase mask 1 whose output face corresponds to the coordinate z = 0. Using a field approximation far, the target field is expressed in the form
distribution spatiale de l’indice n dans le masque de phase 1 est ainsi donnée par référence à la figure 1 1 b, l’indice spatial distribution of the index n in the phase mask 1 is thus given with reference to FIG. 1 1 b, the index
acoustique n évolue de manière hyperbolique dans une partie du corps 2. acoustic n evolves hyperbolic way in a part of the body 2.
Dans l’ensemble des modes de réalisation, il est possible de faire correspondre la porosité du corps 2 à un indice n déterminé, tel que décrit précédemment, en utilisant la relation mesurée entre la célérité de l’onde acoustique et la porosité du matériau traversé par l’onde acoustique, illustrée sur la figure 7.  In all of the embodiments, it is possible to match the porosity of the body 2 with a given index n, as described above, by using the measured relation between the speed of the acoustic wave and the porosity of the material traversed. by the acoustic wave, illustrated in Figure 7.
En référence aux figures 12a, 12b et 12c, la déflexion, et en particulier la focalisation d’une onde plane incidente 6 par un masque de phase 1 sont testées. Des masques de phase 1 d’une épaisseur d égale à 2 mm sont déposés à la surface d’un transducteur ultrasonore (fourni par la société Imasonic) émettant à une fréquence centrale de 1 50 kHz et présentant des dimensions latérales de 150 mm x 40 mm dans le plan défini par les axes x et y. L’ensemble est plongé dans une cuve remplie d’eau autorisant des mesures en immersion, telles que réalisées en acoustique sous-marine. Le transducteur ultrasonore est positionné dans la partie supérieure de la cuve et sa face active est orientée vers le fond de manière à générer une onde plane incidente se propageant du haut vers le bas selon l'axe z. Le transducteur ultrasonore est alimenté via un générateur de fonctions (fourni par la société Agilent) pour générer dans l’eau un train d’ondes ultrasonores (30 cycles) centré à 150 kHz. La pression acoustique émise est ensuite cartographiée dans la zone centrale du champ proche de ce transducteur grâce à un hydrophone aiguille présentant un diamètre 1 mm (fourni par la société Précision Acoustics) dans le plan XZ (60 mm x 100 mm). Le pas en x et en z entre chaque mesure est de 2 mm, c’est-à-dire 5 fois plus petit que la longueur d’onde des ultrasons utilisés. Les signaux temporels ont été enregistrés grâce à une carte d’acquisition (fournie par la société Alazartech) avec une fréquence d’échantillonnage de 1 MHz sur une durée de 300 ps pour chaque position de mesure. Referring to Figures 12a, 12b and 12c, the deflection, and in particular the focusing of an incident plane wave 6 by a phase mask 1 are tested. Phase 1 masks with a thickness equal to 2 mm are deposited on the surface of an ultrasonic transducer (supplied by the company Imasonic) emitting at a center frequency of 1 50 kHz and having side dimensions of 150 mm × 40 mm in the plane defined by the x and y axes. The whole is immersed in a tank filled with water allowing measurements in immersion, as performed in underwater acoustics. The ultrasonic transducer is positioned in the upper part of the tank and its active face is oriented towards the bottom so as to generate an incident plane wave propagating from top to bottom along the z axis. The ultrasonic transducer is powered via a function generator (provided by Agilent) to generate in the water an ultrasonic wave train (30 cycles) centered at 150 kHz. The sound pressure emitted is then mapped in the central zone of the field near this transducer by means of a needle hydrophone having a diameter of 1 mm (supplied by Accuracy Acoustics) in the XZ plane (60 mm x 100 mm). The pitch in x and z between each measurement is 2 mm, that is to say 5 times smaller than the wavelength of the ultrasound used. The time signals were recorded by means of an acquisition card (provided by Alazartech) with a sampling frequency of 1 MHz over a duration of 300 ps for each measurement position.
En référence à la figure 12a, le transducteur n’est pas recouvert par un masque de phase 1 . Les fronts d’onde sont plans, parallèles et horizontaux, et sont caractéristiques d’une onde plane se propageant verticalement du haut vers le bas de la cuve comme attendu selon l'axe z.  With reference to FIG. 12a, the transducer is not covered by a phase 1 mask. The wave fronts are planar, parallel and horizontal, and are characteristic of a plane wave propagating vertically from top to bottom of the tank as expected along the z axis.
En référence à la figure 12b, le transducteur est recouvert d’un masque de phase 1 . Le masque de phase 1 comprend un corps présentant un gradient constant d’indice acoustique (soit une variation d’indice acoustique n linéaire). Les fronts d’onde plans, parallèles et inclinés montrent une déflexion des ondes ultrasonores liée à la présence du masque de phase 1 en surface du transducteur ultrasonore. Comme anticipé théoriquement, l’angle Q de déflexion du faisceau ultrasonore est relié au gradient d’indice et à l’épaisseur du matériau poreux de 2 mm, et est sensiblement égal à 5° .  With reference to FIG. 12b, the transducer is covered with a phase 1 mask. The phase mask 1 comprises a body having a constant gradient of acoustic index (ie a variation of n linear acoustic index). The plane, parallel and inclined wavefronts show a deflection of the ultrasonic waves related to the presence of the phase mask 1 at the surface of the ultrasonic transducer. As theoretically anticipated, the deflection angle θ of the ultrasonic beam is connected to the index gradient and the thickness of the porous material by 2 mm, and is substantially equal to 5 °.
En référence à la figure 12c, le transducteur est recouvert d’un masque de phase 1 . Le masque de phase 1 comprend un corps présentant une variation d’indice acoustique n hyperbolique. La cartographie du champ acoustique diffracté dans la figure 12c illustre l’existence d’une petite zone centrale de largeur légèrement inférieure à la longueur d'onde (soit sensiblement de 10 mm) dans laquelle se concentre l’énergie du faisceau acoustique. Par ailleurs, les fronts d’onde courbes convergents (et divergents) respectivement visibles au-dessus et en dessous de cette tâche focale soulignent l’effet de focalisation du masque de phase 1 .  With reference to FIG. 12c, the transducer is covered with a phase 1 mask. The phase mask 1 comprises a body having a variation of n hyperbolic acoustic index. The mapping of the diffracted acoustic field in FIG. 12c illustrates the existence of a small central zone whose width is slightly smaller than the wavelength (ie approximately 10 mm) in which the energy of the acoustic beam is concentrated. Moreover, the convergent (and divergent) curved wave fronts respectively visible above and below this focal task underline the focusing effect of the phase 1 mask.

Claims

REVENDICATIONS
1. Masque de phase (1 ) acoustique, le masque de phase (1 ) présentant une variation de l’indice acoustique n, caractérisé en ce que le masque de phase (1 ) comprend un corps (2) comprenant : Acoustic phase mask (1), the phase mask (1) having a variation of the acoustic index n, characterized in that the phase mask (1) comprises a body (2) comprising:
- au moins une matrice (3) formée en un matériau solide déformable présentant un module de cisaillement inférieur à 10 MPa, et  at least one matrix (3) formed of a deformable solid material having a shear modulus of less than 10 MPa, and
- des pores (4) formés dans la matrice (3), les pores (4) étant remplis de gaz, le matériau solide déformable s’étendant entre les pores (4),  pores (4) formed in the matrix (3), the pores (4) being filled with gas, the deformable solid material extending between the pores (4),
le corps (2) présentant une porosité f inférieure ou égale à 50%, et un gradient de porosité f contrôlé entraînant une variation spatiale de l’indice acoustique n dans le corps (2). the body (2) having a porosity of less than or equal to 50%, and a controlled porosity gradient leading to a spatial variation of the acoustic index n in the body (2).
2. Masque de phase (1 ) acoustique selon la revendication 1 , le masque de phase (1 ) étant une lentille (5) acoustique, le gradient de porosité étant tel que la lentille est apte à focaliser une onde acoustique plane incidente (6) transmise par le masque de phase (1 ) en au moins un point de l’espace. 2. Phase mask (1) acoustic according to claim 1, the phase mask (1) being an acoustic lens (5), the porosity gradient being such that the lens is able to focus an incident plane acoustic wave (6) transmitted by the phase mask (1) in at least one point of space.
3. Masque de phase (1 ) acoustique selon la revendication 1 ou 2, le masque de phase (1 ) présentant deux faces planes opposées s’étendant parallèlement à un plan principal (7) et présentant au moins un gradient de porosité f orienté selon une direction (8) parallèle au plan principal (7). 3. phase mask (1) acoustic according to claim 1 or 2, the phase mask (1) having two opposite planar faces extending parallel to a main plane (7) and having at least one gradient of porosity f oriented according to a direction (8) parallel to the main plane (7).
4. Masque de phase (1 ) acoustique selon la revendication 3, dans lequel la porosité est distribuée dans le corps (2) de manière à correspondre à un indice n évoluant de manière linéaire selon la direction (8), dans au moins une partie du masque de phase (1 ). 4. Acoustic phase mask (1) according to claim 3, in which the porosity is distributed in the body (2) so as to correspond to an index n evolving linearly in the direction (8), in at least a part phase mask (1).
5. Masque de phase (1 ) acoustique selon la revendication 3 ou 4, dans lequel la porosité est distribuée dans le corps de manière à correspondre à un indice n évoluant de manière hyperbolique selon la direction (8), dans au moins une partie du masque de phase (1 ). 5. Acoustic phase mask (1) according to claim 3 or 4, wherein the porosity is distributed in the body so as to correspond to an index n evolving hyperbolic manner in the direction (8), in at least a part of the phase mask (1).
6. Masque de phase (1 ) acoustique selon l’une des revendications 1 à 5, comprenant une juxtaposition de couches (9) comprenant une matrice (3) et des pores (4), chaque couche (9) présentant une porosité f constante, la porosité d’une couche (9) étant différente de la porosité d’une couche (9) directement voisine. 6. acoustic phase mask (1) according to one of claims 1 to 5, comprising a juxtaposition of layers (9) comprising a matrix (3) and pores (4), each layer (9) having a constant porosity f , the porosity of a layer (9) being different from the porosity of a layer (9) directly adjacent.
7. Masque de phase (1 ) acoustique selon l’une des revendications 1 à 6, comprenant un support (10) présentant des alvéoles (11 ), chaque alvéole (11 ) contenant une matrice (3), au moins deux matrices (3) présentant des porosités différentes. 7. Acoustic phase mask (1) according to one of claims 1 to 6, comprising a support (10) having cells (11), each cell (11) containing a matrix (3), at least two matrices (3). ) with different porosities.
8. Masque de phase selon l’une des revendications 3 à 7, dans lequel les deux faces planes opposées sont séparées par une épaisseur d, d étant comprise entre 100pm et 10mm. 8. phase mask according to one of claims 3 to 7, wherein the two opposite planar faces are separated by a thickness d, d being between 100pm and 10mm.
9. Procédé de fabrication d’un masque de phase acoustique (1 ) selon l’une des revendications 1 à 8, le procédé comprenant des étapes de : 9. A method of manufacturing an acoustic phase mask (1) according to one of claims 1 to 8, the method comprising steps of:
- formation d’une pluralité d’émulsions (12), chaque émulsion (12) présentant d’une part une première phase (13) liquide, et d’autre part, une deuxième phase (14) comprenant des monomères et au moins un type d’agent de surface, de manière à former des gouttes de la première phase (13) liquide dans la deuxième phase (14), au moins deux émulsions (12) présentant des fractions respectives en première phase (13) différentes,  - forming a plurality of emulsions (12), each emulsion (12) having on the one hand a first phase (13) liquid, and secondly, a second phase (14) comprising monomers and at least one type of surfactant, so as to form drops of the first phase (13) liquid in the second phase (14), at least two emulsions (12) having respective fractions in first phase (13) different,
- réticulation des monomères des émulsions (12) de manière à former un matériau solide déformable (3) définissant la ou les matrices et les pores (4) comprenant la première phase (13) liquide, crosslinking the monomers of the emulsions (12) so as to form a deformable solid material (3) defining the matrix or matrices and the pores (4) comprising the first liquid phase (13),
- séchage pour éliminer la première phase (13) liquide de manière à remplir en majorité les pores (4) de gaz.  - Drying to remove the first phase (13) liquid so as to fill the majority of the pores (4) of gas.
10. Procédé de fabrication d’un masque de phase (1 ) acoustique selon la revendication 9, dans lequel l’étape de séchage est une étape de séchage supercritique de la première phase (13) liquide. 10. A method of manufacturing an acoustic phase mask (1) according to claim 9, wherein the drying step is a supercritical drying step of the first phase (13) liquid.
1 1. Procédé de fabrication d’un masque de phase (1 ) acoustique selon la revendication 10, dans lequel la première phase (1 3) liquide comprend, lors de l’étape de séchage supercritique successivement de l’eau, un liquide choisi parmi de l’éthanol et de l’acétone, et du dioxyde de carbone. 1. A method of manufacturing an acoustic phase mask (1) according to claim 10, wherein the first liquid phase (1 3) comprises, during the supercritical drying stage successively water, a selected liquid. among ethanol and acetone, and carbon dioxide.
12. Procédé de fabrication d’un masque de phase (1 ) acoustique selon la revendication 10, dans lequel la première phase (13) liquide comprend un composé liquide adapté à se décomposer spontanément à température ambiante en un gaz et en un liquide, et dans lequel, lors de l’étape de séchage, on attend la décomposition du composé liquide de manière à former une phase gazeuse dans les pores (4). 12. A method of manufacturing an acoustic phase mask (1) according to claim 10, wherein the first liquid phase (13) comprises a liquid compound adapted to decompose spontaneously at room temperature into a gas and a liquid, and in which, during the drying step, decomposition of the liquid compound is expected to form a gaseous phase in the pores (4).
1 3. Procédé de fabrication d’un masque de phase (1 ) acoustique selon la revendication 12, dans lequel le composé est de l’eau oxygénée. A method of manufacturing an acoustic phase mask (1) according to claim 12, wherein the compound is oxygenated water.
14. Procédé de fabrication d’un masque de phase (1 ) acoustique selon l’une des revendications 9 à 13, dans lequel la réticulation des monomères est mise en oeuvre par une exposition des émulsions à un rayonnement ultraviolet. 14. A method of manufacturing an acoustic phase mask (1) according to one of claims 9 to 13, wherein the crosslinking of the monomers is carried out by exposing the emulsions to ultraviolet radiation.
EP19712210.4A 2018-03-23 2019-03-25 Porous acoustic phase mask Withdrawn EP3769302A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1852569A FR3079340B1 (en) 2018-03-23 2018-03-23 POROUS ACOUSTIC PHASE MASK
PCT/EP2019/057427 WO2019180270A1 (en) 2018-03-23 2019-03-25 Porous acoustic phase mask

Publications (1)

Publication Number Publication Date
EP3769302A1 true EP3769302A1 (en) 2021-01-27

Family

ID=62816716

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19712210.4A Withdrawn EP3769302A1 (en) 2018-03-23 2019-03-25 Porous acoustic phase mask

Country Status (4)

Country Link
US (1) US20210142778A1 (en)
EP (1) EP3769302A1 (en)
FR (1) FR3079340B1 (en)
WO (1) WO2019180270A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2860730B1 (en) * 2003-10-14 2006-02-03 Ecole Polytech PROCESS FOR MANUFACTURING POROUS ELEMENT AND APPLICATIONS
KR101782624B1 (en) * 2010-02-12 2017-09-28 삼성전자주식회사 Aerogel and method of making the aerogel
KR101660316B1 (en) * 2010-03-30 2016-09-28 삼성전자 주식회사 Organic aerogel and composition for the organic aerogel
KR20110049572A (en) * 2009-11-05 2011-05-12 삼성전자주식회사 Organic aerogel, composition for the organic aerogel and method of manufacturing the organic aerogel
KR20120026279A (en) * 2010-09-09 2012-03-19 삼성전자주식회사 Aerogel composite and method of manufacturing the same
FR3035737B1 (en) * 2015-04-29 2018-08-10 Centre National De La Recherche Scientifique ACOUSTIC METAMATERIAL FOR INSULATION AND METHOD OF MANUFACTURING THE SAME

Also Published As

Publication number Publication date
FR3079340A1 (en) 2019-09-27
US20210142778A1 (en) 2021-05-13
FR3079340B1 (en) 2020-03-20
WO2019180270A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
Yuan et al. Asymmetric polyamide nanofilms with highly ordered nanovoids for water purification
O’Hern et al. Nanofiltration across defect-sealed nanoporous monolayer graphene
Ingole et al. Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation
Bhadra et al. A bilayered structure comprised of functionalized carbon nanotubes for desalination by membrane distillation
Yip et al. Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients
CN110770028B (en) Container for use in a stereolithography system
Wang et al. Simple method for preparation of porous polyimide film with an ordered surface based on in situ self-assembly of polyamic acid and silica microspheres
Sobolewska et al. Surface relief grating in azo-polymer obtained for ss polarization configuration of the writing beams
Chan et al. Laser-generated focused ultrasound for arbitrary waveforms
EP1485431A2 (en) Hydrocarbon copolymer or polymer based aerogel and method for the preparation thereof
EP3769302A1 (en) Porous acoustic phase mask
EP0964737A1 (en) Hollow membranes with capillary tubes, modules for treating fluid using same and methods for making same
FR3035737A1 (en) ACOUSTIC METAMATERIAL FOR INSULATION AND METHOD OF MANUFACTURING THE SAME
Chang et al. Creating membrane‐air‐liquid interface through a rough hierarchy structure for membrane gas absorption to remove CO2
EP2297599A2 (en) Improved method for making enclosures filled with liquid and sealed by a membrane
Donovan et al. Elimination of extreme boundary scattering via polymer thermal bridging in silica nanoparticle packings: implications for thermal management
Siegel et al. Roll‐to‐Roll Fabrication of Bijels via Solvent Transfer Induced Phase Separation (R2R‐STrIPS)
WO2014016524A1 (en) Composite membranes, the preparation method and uses thereof
EP2825499B1 (en) Surface treatment of microfluidic devices
Bormashenko et al. Free‐standing, thermostable, micrometer‐scale honeycomb polymer films and their properties
JPWO2018003944A1 (en) Composite semipermeable membrane and method of manufacturing composite semipermeable membrane
KR102107749B1 (en) Superhydrophobic Membrane using Ceramic Nano Particles with Hydrophobic Modification by growing in Surface and Pore of Membrane and Manufacturing Method Thereof
Chen et al. UV grafting process for synthetic drag reduction of biomimetic riblet surfaces
Kravets et al. Formation of Superhydrophobic Coatings on the Track-Etched Membrane Surface by the Method of Electron-Beam Deposition of Polymers in Vacuum
Kravets et al. Formation of Hydrophobic and Superhydrophobic Coatings on Track-Etched Membrane Surfaces to Create Composite Membranes for Water Desalination

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MONDAIN-MONVAL, OLIVIER

Inventor name: JIN, YABIN

Inventor name: KOVALENKO, ARTEM

Inventor name: MARRE, SAMUEL

Inventor name: BRUNET, THOMAS

Inventor name: KUMAR, RAJ

Inventor name: PONCELET, OLIVIER

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: MONDAIN-MONVAL, OLIVIER

Inventor name: BRUNET, THOMAS

Inventor name: PONCELET, OLIVIER

Inventor name: JIN, YABIN

Inventor name: KUMAR, RAJ

Inventor name: MARRE, SAMUEL

Inventor name: KOVALENKO, ARTEM

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220804

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231003