EP3765201B1 - Rotor for a centrifugal separator and centrifugal separator - Google Patents

Rotor for a centrifugal separator and centrifugal separator Download PDF

Info

Publication number
EP3765201B1
EP3765201B1 EP19714111.2A EP19714111A EP3765201B1 EP 3765201 B1 EP3765201 B1 EP 3765201B1 EP 19714111 A EP19714111 A EP 19714111A EP 3765201 B1 EP3765201 B1 EP 3765201B1
Authority
EP
European Patent Office
Prior art keywords
spacers
rotor
disc
discs
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19714111.2A
Other languages
German (de)
French (fr)
Other versions
EP3765201A1 (en
Inventor
Markus LÜERSMANN
Eike Stitterich
Tom Klaver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengst SE and Co KG
Original Assignee
Hengst SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengst SE and Co KG filed Critical Hengst SE and Co KG
Publication of EP3765201A1 publication Critical patent/EP3765201A1/en
Application granted granted Critical
Publication of EP3765201B1 publication Critical patent/EP3765201B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/12Centrifuges in which rotors other than bowls generate centrifugal effects in stationary containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • B04B7/12Inserts, e.g. armouring plates
    • B04B7/14Inserts, e.g. armouring plates for separating walls of conical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/005Centrifugal separators or filters for fluid circulation systems, e.g. for lubricant oil circulation systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/12Centrifuges in which rotors other than bowls generate centrifugal effects in stationary containers
    • B04B2005/125Centrifuges in which rotors other than bowls generate centrifugal effects in stationary containers the rotors comprising separating walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0422Separating oil and gas with a centrifuge device

Definitions

  • the present invention relates to a rotor of a centrifugal separator, the rotor having a central shaft on which a stack of plates made up of a plurality of identical plates is arranged, the shaft having an engagement contour on its outer circumference for non-rotatable, axially displaceable engagement with a counter-contour on the inner circumference of the plates of the stack of plates, wherein the engagement contour and the counter-contour can be brought into engagement with one another in a plurality of rotational positions spaced apart from one another in the circumferential direction, and wherein each plate has spacers spaced apart from one another in the circumferential direction of the plates, each of which separates two adjacent plates at an axial distance, forming an intermediate flow gap with a predeterminable gap dimension keep from each other.
  • the invention also relates to a centrifugal separator.
  • the document EP 3 124 120 A1 shows an oil separator configured to separate oil mist from a gas.
  • the oil separator includes a rotor. This rotor has multiple cutting disks stacked along the axis line of a spindle. Each of the separator disks is in the form of a truncated cone plate member and is formed with concave-convex ribs extending radially from the center of rotation on outer peripheral side parts corresponding to the inclined surfaces of the truncated cone.
  • the concavo-convex ribs include first convex portions and second convex portions, the first convex portions on the outer peripheral side parts having a convex shape on the front surface side and a concave shape on the back surface side, and the second convex portions on the outer peripheral side parts include a convex shape on the back and a concave shape on the front. This allows stacks of cutting discs with form a predetermined distance between the individual cutting disks without the need for separate spacers.
  • the document US 779 099 A shows a centrifugal separator with a rotor, the rotor having a central shaft on which a stack of plates made up of several identical plates is arranged, the shaft having an engagement contour on its outer circumference for non-rotatable, axially displaceable engagement with a counter-contour on the inner circumference of the plates of the stack of plates having.
  • the engagement contour and the counter-contour can be brought into engagement with one another in a plurality of rotational positions spaced apart from one another in the circumferential direction.
  • the plates are corrugated as seen in the plate peripheral direction, with the corrugations each holding two adjacent plates at an axial distance from one another, with the formation of intermediate flow channels with a definable cross section.
  • the corrugated plates are designed in such a way that with different twisted positions of adjacent plates relative to one another in the plate stack, at least two different axial distances with different cross sections of the flow channels between the adjacent plates can be adjusted.
  • the plates here have the shape of a truncated cone and the inclined, radially outer part of the plates is designed as a closed surface.
  • the inner circumference of the radially inner, flat area of the plates is provided with the counter-contour to the contour of engagement of the central shaft.
  • Radially outside of the counter-contour are distributed in the circumferential direction several flow openings through which a gas to be cleaned flows axially during operation of the rotor and from where the gas is then deflected radially outwards into the flow gaps between the adjacent plates.
  • An arrangement of spacer webs running over the lower side of the obliquely aligned area of the plates is used here to space the plates from one another.
  • the document EP 2 349 578 B1 describes a separator disk adapted to be included in a disk pack of a centrifuge rotor.
  • the separator disc has a tapered shape and extends about an axis of rotation and along a tapered rotating symmetrical surface along the axis of rotation.
  • the separator plate has an inner surface and an outer surface.
  • the separating disc is made of a material, the separating disc being configured in a way that it has a clearance between the separating disc and an adjacent separating disc in the disc pack and thus includes first protrusions extending outwardly from the tapered rotating symmetrical surface, and second projections extending inwardly from the tapered rotating symmetrical surface.
  • Each first and second projection defines a contact zone adapted to contact an adjacent separator disk in the disk pack.
  • the contact zones of the first projections are offset with respect to the contact zones of the second projections, seen in a direction normal to the outer face.
  • the first and second projections are sequentially provided in a peripheral direction of the separator disk. What is important here is that the tapered shape and the projections of the separator disc were provided by pressing a blank of the material against a tool part having a shape corresponding to the tapered shape with the projections of the pressed separator disc.
  • the document EP 2 334 439 B1 shows a disk pack for a centrifuge rotor of a centrifugal separator, which is designed for the separation of components in a medium supplied, the disk pack having a multiplicity of separating plates which are present one on top of the other in the plate pack.
  • Each separator disc extends about an axis of rotation and has a cone-like shape with an inner surface and an outer surface along the axis of rotation.
  • Each separating disk is made from at least one material, with the separating disks in the stack of disks being prestressed against one another with a prestressing force.
  • the separating discs have a plurality of first separating discs, each of which has a number of spacer elements.
  • Each separating plate has at least one section without spacer elements.
  • the first separating discs are polarly positioned in such a way that the spacer elements of one separating disc abut the portion of an adjacent separating disc. It is essential here that the spacer elements have a number of pairs of spacer elements, the pairs each having a first spacer element which extends away from the outer surface and a second spacer element which extends away from the inner surface, the first and second spacers are offset in relation to each other as viewed in a normal direction with respect to the outer surface and sequentially in a peripheral direction of the first separator disc be provided that the prestressing force causes an abutment force between the spacer elements and the adjacent separating disk and an elastic deformation of the section of at least the separating disks, and that this elastic deformation ensures an increase in the abutment force between the spacer elements and the adjacent separating disk during rotation of the disk pack.
  • a disadvantage of most of the known rotors and plates described above is that the axial distance between adjacent plates in the stack of plates is fixed at a single value, which is determined by the height of the spacer webs or the first and second projections or the spacer elements on the plates is predetermined. If a different axial distance between adjacent plates in the stack of plates is desired or required, it is necessary to manufacture new plates with spacer webs or first and second projections or spacers of a different, smaller or larger axial height. However, such production is unfavorable and, in particular, uneconomical with regard to the necessary investment in tools and the differentiation of parts when assembling the stack of plates.
  • US 779 099 A Although two different disc distances can be set, only relatively narrow flow channels, but no intermediate flow gaps, are provided between the adjacent discs.
  • the object of the present invention is therefore to create a rotor of the type mentioned at the outset, which avoids the disadvantages mentioned and in which it is possible in a technically simple and economically favorable manner to use different distances and thus different widths of intermediate flow gaps between the to realize plates in a stack of plates.
  • a corresponding centrifugal separator is to be created.
  • the solution to the first part of the task relating to the rotor is achieved according to the invention with a rotor of the type mentioned at the beginning, which is characterized in that the spacers of the plates are designed and arranged in such a way that with different rotational positions of adjacent plates relative to one another in the plate stack there are at least two different axial distances with different gap dimensions of the flow gap between the adjacent ones plates are adjustable and that the circumferentially spaced twisted positions, in which the engagement contour and the counter-contour can be brought into engagement with each other, are in two superimposed angular grids that are offset relative to one another in the circumferential direction by an offset angle, with the two angular grids each having a uniform matching grid angular spacing , where the screen angle spacing is an integer fraction of 360° and the offset angle is less than half the screen angle spacing.
  • the invention advantageously enables stacks of plates to be created from mutually identical plates with at least two different plate spacings in the plate stack, with the respective plate spacing only depending on the relative twisted position of the adjacent plates. Since only one design of plates is required, the tooling costs are advantageously kept low, which results in good economics in the manufacture of plate stacks and rotors for centrifugal separators. In addition, the axial distance between two immediately adjacent plates can be changed here even with a small angular offset by the aforementioned offset angle.
  • each plate has first and second spacers and that the first and second spacers differ in terms of their height and/or their radial position on the plate.
  • These spacers are easy to produce and the axial plate spacing can be changed simply by placing two directly adjacent plates on the central shaft, rotated relative to one another by the grid angle spacing or by the offset angle.
  • first and second spacers are formed by two different humps or beads formed or stamped into the plates, each forming an elevation on one side of the plate and a depression on the other side of the plate.
  • Such spacers can advantageously be produced by simply pressing or embossing, for example.
  • the spacers which are spaced apart from one another in the circumferential direction of the plate, are each designed as individual humps or as a radially running row of a plurality of humps.
  • each plate has first and second spacers and that the first and second spacers are formed by webs or nubs that are attached to or formed on the plates and form elevations.
  • the webs or knobs forming the first spacers be arranged on the top side of the plate, that the webs or knobs forming the second spacers be arranged on the bottom side of the plate and that the webs or knobs forming the first spacers be arranged relative to the webs or nubs forming the second spacers are offset in the circumferential direction of the plate.
  • the axial plate spacing can be easily changed by placing two directly adjacent plates rotated by the screen angle spacing on the central shaft, with the upper and lower side spacers of two directly adjacent plates either meeting and causing a larger axial plate spacing or not meeting and bring about a smaller axial disc distance.
  • a further rotor configuration provides that the webs or knobs forming the first spacers are arranged on the top side of the plate, the webs or knobs forming the second spacers are arranged on the underside on the plate, the webs or knobs forming the first spacers on the the webs or knobs forming the second spacer are arranged congruently and that the angular spacing of the spacers spaced apart from one another in the circumferential direction of the plates corresponds to twice the grid angle spacing.
  • the axial plate spacing can be easily changed by placing two directly adjacent plates on the central shaft, rotated by the grid angle spacing or the offset angle.
  • the webs or knobs forming the first spacers, arranged on the top side of the plate, and the webs or knobs forming the second spacers, arranged on the underside of the plate, are identical to one another.
  • the plates within the plate stack of the rotor have a smaller axial distance from one another with a smaller gap in a region of the rotor close to the inflow and a greater axial distance from one another with a larger gap in a region of the rotor remote from the inflow. In this way, in particular, a more uniform distribution of a volume flow of a fluid medium to be treated in the rotor over the plurality of flow gaps can be achieved.
  • the engagement contour and the counter-contour should be in two to sixteen, preferably six to twelve, in the circumferential direction of the central shaft and the plate can be brought into engagement with one another in twisted positions spaced apart from one another.
  • the number of twisted positions in which the central shaft and the plates can be brought into engagement with one another can also be greater than the aforementioned numbers, in which case the grid angle spacing then becomes correspondingly smaller. This can be expedient, for example, if more than two different axial disc distances are to be adjustable.
  • the disks of the rotor are preferably press-stamped parts made from sheet metal or injection-moulded parts made from plastic. Both types of plates mentioned can be produced comparatively easily and inexpensively and can be provided with the necessary spacers, both of which preferably take place in one operation.
  • the engagement contour on the outer circumference of the shaft be formed by a number of n teeth running in the longitudinal direction of the shaft and projecting radially outwards and that the counter-contour on the inner circumference of the plates be formed by a number of n or 2 xn to the teeth matching, radially outwardly facing recesses is formed.
  • the number n is preferably between 2 and 8, preferably 3 to 6, in order not to make the production of the engaging and counter-contours too complicated.
  • the number n also depends on the forces to be absorbed during operation of the rotor and acting in the circumferential direction of the rotor between the plates and the central shaft.
  • the centrifugal separator according to the invention is an oil mist separator for the crankcase ventilation gas of an internal combustion engine and can advantageously serve to effectively separate oil mist and oil droplets from the crankcase ventilation gas of the internal combustion engine.
  • the discs In a rotor of such a centrifugal separator, the discs have a very small distance from one another, in practice, for example, between about 0.3 and 0.5 mm.
  • the plates can then be designed, for example, so that they form a first distance of 0.3 mm between them in a first relative twisted position and a second distance of 0.5 mm between them in a second relative twisted position.
  • the plates and their spacers can also be designed in such a way that, in a third rotational position relative to one another, they form a third distance between them, for example of 0.4 mm. In this way, needs-based, different gap dimensions between the mutually identical discs of the rotor can be easily adjusted during rotor production.
  • the drawings show a rotor 1 of a centrifugal separator, which is otherwise not shown here, in a first embodiment.
  • the rotor 1 has a central shaft 2 on which a stack of plates 3 made up of several identical plates 30 is arranged.
  • the plates 30 each have the known shape of a truncated cone shell and can be made of sheet metal or plastic.
  • the shaft 2 has an engagement contour 21 on its outer circumference for non-rotatable, axially displaceable engagement with a counter-contour 31 on the inner circumference of the plates 30 of the plate stack 3, the engagement contour 21 here having the shape of a six-pointed star.
  • the engagement contour 21 and the counter-contour 31 can be brought into engagement with one another in a plurality of relative rotational positions spaced apart from one another in the circumferential direction by a grid angle distance a, here of 60°.
  • the plates 30 have spacers 4, 5, which in the stack of plates 3 hold two adjacent plates 30 at a distance from one another, forming the flow gap 34 between them with a predetermined gap dimension.
  • each plate 30 has two such different first and second spacers 4, 5 spaced apart from one another in the circumferential direction of the plates 30 that with different rotational positions of adjacent plates 30 relative to one another in the plate stack 3 there are two different distances with different gap dimensions h 1 , h 2 of the flow gap 34 between the adjacent plates 30 can be produced, as can be seen in particular in FIG.
  • the two different first and second spacers 4, 5 are formed or stamped here by two different ones in the plates 30, each on one side of the plate, here the underside, an increase and on the other side of the plate, here the upper side, forming a depression, arranged in pairs one behind the other in the radial direction.
  • the first spacers 4 and the second spacers 5 are spaced apart from one another by an angular distance ⁇ of 60°.
  • This angular distance ⁇ is therefore identical to the grid angle distance ⁇ of the engaging and counter-contours 21, 31.
  • the humps forming the first and second spacers 4, 5 differ here both in their height and in their radial position on the plate 30.
  • the humps forming the first spacers 4 have a greater axial depth and are located somewhat further outwards as seen in the radial direction.
  • the humps forming the second spacers 5 have a smaller axial depth and are located somewhat further inward, viewed in the radial direction, than the humps forming the first spacers 4 .
  • the two adjacent Plate 30 has a smaller distance with a gap dimension h 1 of the intermediate flow gap 34.
  • the two adjacent plates 30 have a larger one Distance with a gap dimension h 2 of the intermediate flow gap 34.
  • the identical plates 30 within the plate stack 3 of the rotor 1 can therefore have different distances from one another with different gap dimensions h 1 , h 2 of the flow gaps 34 .
  • This can be used advantageously, for example, to place the plates 30 at a smaller axial distance from one another with a smaller gap dimension h 1 in a region of rotor 1 close to the inflow, and to place the plates 30 at a greater axial distance from one another with a larger gap h 1 in a region of rotor 1 remote from the inflow Arranging the gap dimension h 2 in order to even out the flow through the plate stack 3 .
  • the Figures 4 to 7 show the rotor 1 in a second embodiment. What differs from the first embodiment of the rotor 1 is that the humps forming the first and second spacers 4, 5 are smaller and in the form of radially extending rows of humps, each with four humps. In this way, more points of contact are formed between the respectively adjacent plates 30 in the plate stack 3, which benefits its dimensional stability during operation at high speeds.
  • the humps forming the first and second spacers 4, 5 differ both in their height and in their radial position on the plate 30.
  • the humps forming the first spacers 4 have a greater axial depth and are located somewhat further outwards as seen in the radial direction .
  • the protuberances forming the second spacers 5 have a smaller axial depth and are located somewhat further inward as seen in the radial direction.
  • This angular distance ⁇ is therefore identical to the grid angle distance ⁇ of the engaging and counter-contours 21, 31.
  • the two adjacent plates 30 have a smaller one Distance with a gap dimension h 1 of the intermediate flow gap 34.
  • the rotor 1 agrees with the Figures 4 to 7 with the embodiment according to the Figures 1 to 3 match, so reference is made to their description.
  • the Figures 8 to 11 show the rotor 1 in a third embodiment.
  • the first and second spacers 4, 5 are now formed by webs which are attached to the plates 30 or formed thereon and form elevations.
  • the spacers 4, 5 formed by the webs here run in a straight line in the radial direction.
  • the spacers 4, 5 can also be curved.
  • the webs forming the first spacer 4, here three pieces, are arranged on the upper side on the plate 30 and the webs forming the second spacer 5, also three pieces, are arranged on the underside on the plate 30.
  • the webs forming the first spacers 4 are offset relative to the webs or knobs forming the second spacers 5 in the circumferential direction of the plate 30 .
  • the angular distance ⁇ between the three webs forming the first spacers 4 is 120° in each case here.
  • the angular spacing ⁇ of the three webs forming the second spacers 5 is also 120° here.
  • the angular distance between in each case a first spacer 4 and a second spacer 5 within the plate 30 is 60°. This angle of 60° corresponds to the grid angle distance ⁇ of the different relative rotational positions of the plate 30 to the central shaft 10, in which the two can be brought into engagement with one another by means of the engagement contour 21 and the counter-contour 31.
  • the gap dimension h 1 corresponds to the height of the individual spacers 4, 5 formed by the webs, which are identical to one another here.
  • the second and third plates 30 seen from above are arranged in a relative twisted position in the stack of plates 3, in which the first spacers 4 of one plate 30, here the lower plate, are congruent with the second spacers 5 of the other plate 30, here the upper plate, then have the two adjacent plates 30 have a larger spacing with a gap dimension h 2 of the intermediate flow gap 34.
  • the gap dimension h 2 here corresponds to the added height of the spacers 4 and 5 formed by the webs lying one on top of the other.
  • the Figures 12 to 15 show the rotor 1 in a fourth embodiment.
  • the first and second spacers 4, 5 are formed by webs which are attached or formed on the plates 30 and form elevations.
  • the webs forming the first spacer 4, here three pieces, are arranged on the upper side on the plate 30 and the webs forming the second spacer 5, also three pieces, are arranged on the underside on the plate 30.
  • the webs on the upper side forming the first spacers 4 are arranged congruently with the webs on the lower side forming the second spacers 5 .
  • the angular distance ⁇ between the three webs forming the first spacers 4 is 120° in each case here.
  • the angular spacing ⁇ of the three webs forming the second spacers 5 is also 120° here.
  • the angular distance ⁇ between each two spacers 4, 5 corresponds here to twice the grid angle distance ⁇ of the different relative rotational positions of the plate 30 to the central shaft 10, in which the two can be brought into engagement with one another by means of the engagement contour 21 and the counter-contour 31.
  • the gap dimension h 1 corresponds to the height of the individual through the spacers 4, 5, which are identical to one another here.
  • the two plates 30 are arranged in a relative rotational position to one another in the plate stack 3, in which the first spacers 4 of one plate 30, here the lower plate, are congruent with the second spacers 5 of the other, here the upper plate 30, then the two adjacent plates 30 have a larger axial distance with a gap dimension h 2 of the intermediate flow gap 34.
  • the gap dimension h 2 here corresponds to the added height of the superimposed spacers 4 and 5 formed by the webs.
  • the rotor 1 agrees with the Figures 12 to 15 with the embodiment according to the Figures 8 to 11 match, so reference is made to their description.
  • the Figures 16 to 20 show plate 30 and the rotor 1 in a further embodiment.
  • the first and second spacers 4, 5 are formed by webs which are attached or formed on the plates 30 and form elevations.
  • the webs forming the first spacer 4, here three pieces, are arranged on the upper side on the plate 30 and the webs forming the second spacer 5, also three pieces, are arranged on the underside on the plate 30.
  • the webs on the upper side forming the first spacers 4 are arranged congruently with the webs on the lower side forming the second spacers 5 .
  • the angular distance ⁇ between the three webs forming the first spacers 4 is 120° in each case here.
  • the angular spacing ⁇ of the three webs forming the second spacers 5 is the same and is also 120° here.
  • the counter-contour 31 is changed.
  • two angular grids are provided which are superimposed and offset relative to one another in the circumferential direction by an offset angle ⁇ .
  • the two angle grids each have a uniform matching grid angle distance ⁇ , here 60°.
  • the screen angle distance ⁇ can also have a different value; however, it always corresponds to an integer fraction of 360°.
  • the offset angle ⁇ is less than half the screen angle distance a; here the offset angle ⁇ is 15°.
  • the spacers 4, 5 of two plates 30 adjacent to one another in the plate stack 3 can either be positioned congruently to one another axial distance between the two plates 30 with a larger gap h 2 between them, or positioned at two different distances from one another in the circumferential direction in non-congruent relation to one another in order to produce an axial distance between the two plates 30 with a smaller gap h 1 between them .
  • the circumferentially adjacent spacers 4, 5 of two axially adjacent plates 30 in the plate stack 3 are only separated by the offset angle ⁇ , ie by 15° in the example shown.
  • the circumferentially adjacent spacers 4, 5 of two axially adjacent plates 30 in the stack of plates 3 can also be spaced apart by the grid angle distance a, here 60°, or by an angle ⁇ - ⁇ , i.e. 45° here. Great flexibility in designing the stack of plates 3 is thus achieved here.
  • the two plates 30 are arranged in a relative rotated position in the stack of plates 3, in which the spacers 4, 5 of the two plates 30 are not congruent with one another, but rotated relative to one another out of alignment are, then these two adjacent plates 30 have a smaller axial distance with a gap dimension h 1 of the intermediate flow gap 34.
  • the two plates 30 are arranged in a relative rotational position to one another in the plate stack 3, in which the first spacers 4 of one plate 30, here the lower plate, are congruent with the second spacers 5 of the other, here upper plate 30, then the two adjacent plates 30 have a larger axial distance with a gap dimension h 2 of the intermediate flow gap 34.
  • the distance between the teeth of the engagement contour 21 in the circumferential direction of the shaft 2 is 60° in each case, ie it corresponds to the grid angle distance a explained above.
  • the distance between the teeth of the engagement contour 21 in the circumferential direction of the shaft 2 is 120° in each case, ie it corresponds to twice the grid angle distance a explained above.
  • the number of teeth forming the engagement contour 21 on the shaft 2 has no influence on the number of possible relative engagement positions of the central shaft 2 and plates 30 .
  • rotors 1 with plate stacks 30 can be formed with plates 30 that are completely identical to one another and central shafts 2 that are identical, the plates 30 of which have different axial distances from one another and which therefore provide different gap dimensions h for the flow gaps 34 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Centrifugal Separators (AREA)

Description

Die vorliegende Erfindung betrifft einen Rotor eines Zentrifugalabscheiders, wobei der Rotor eine zentrale Welle aufweist, auf der ein Tellerstapel aus mehreren identischen Tellern angeordnet ist, wobei die Welle an ihrem Außenumfang eine Eingriffskontur für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegenkontur am Innenumfang der Teller des Tellerstapels aufweist, wobei die Eingriffskontur und die Gegenkontur in mehreren in Umfangsrichtung voneinander beabstandeten Verdrehstellungen in Eingriff miteinander bringbar sind und wobei jeder Teller in Tellerumfangsrichtung voneinander beabstandete Abstandshalter aufweist, die je zwei benachbarte Teller unter Ausbildung eines zwischenliegenden Strömungsspalts mit einem vorgebbaren Spaltmaß auf axialem Abstand voneinander halten. Außerdem betrifft die Erfindung einen Zentrifugalabscheider.The present invention relates to a rotor of a centrifugal separator, the rotor having a central shaft on which a stack of plates made up of a plurality of identical plates is arranged, the shaft having an engagement contour on its outer circumference for non-rotatable, axially displaceable engagement with a counter-contour on the inner circumference of the plates of the stack of plates, wherein the engagement contour and the counter-contour can be brought into engagement with one another in a plurality of rotational positions spaced apart from one another in the circumferential direction, and wherein each plate has spacers spaced apart from one another in the circumferential direction of the plates, each of which separates two adjacent plates at an axial distance, forming an intermediate flow gap with a predeterminable gap dimension keep from each other. The invention also relates to a centrifugal separator.

Das Dokument EP 3 124 120 A1 zeigt einen Ölabscheider, der konfiguriert ist, um Ölnebel von einem Gas zu trennen. Der Ölabscheider umfasst einen Rotor. Dieser Rotor weist mehrere Trennscheiben auf, die entlang der Achsenlinie einer Spindel geschichtet sind. Jede der Trennscheiben hat die Form eines kegelstumpfförmigen Plattenelements und ist mit konkav-konvexen Rippen ausgeführt, die sich vom Rotationszentrum in Radialrichtung auf äußeren peripheren Seitenteilen, die den geneigten Flächen des Kegelstumpfes entsprechen, erstrecken. Die konkav-konvexen Rippen umfassen erste konvexe Abschnitte und zweite konvexe Abschnitte, wobei die ersten konvexen Abschnitte an den äußeren Umfangsseitenteilen eine konvexe Form an der Vorderseite der Oberflächenseite und eine konkave Form auf der Rückseite der Oberflächenseite und die zweiten konvexen Abschnitte an den äußeren peripheren Seitenteilen eine konvexe Form auf der Rückseite und eine konkave Form auf der Vorderseite umfassen. Hiermit lassen sich Stapel aus Trennscheiben mit einen vorgegebenen Abstand zwischen den einzelnen Trennscheiben bilden, ohne dass dafür separate Abstandshalter erforderlich sind.The document EP 3 124 120 A1 shows an oil separator configured to separate oil mist from a gas. The oil separator includes a rotor. This rotor has multiple cutting disks stacked along the axis line of a spindle. Each of the separator disks is in the form of a truncated cone plate member and is formed with concave-convex ribs extending radially from the center of rotation on outer peripheral side parts corresponding to the inclined surfaces of the truncated cone. The concavo-convex ribs include first convex portions and second convex portions, the first convex portions on the outer peripheral side parts having a convex shape on the front surface side and a concave shape on the back surface side, and the second convex portions on the outer peripheral side parts include a convex shape on the back and a concave shape on the front. This allows stacks of cutting discs with form a predetermined distance between the individual cutting disks without the need for separate spacers.

Das Dokument US 779 099 A zeigt einen Zentrifugalabscheider mit einem Rotor, wobei der Rotor eine zentrale Welle aufweist, auf der ein Tellerstapel aus mehreren identischen Tellern angeordnet ist, wobei die Welle an ihrem Außenumfang eine Eingriffskontur für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegenkontur am Innenumfang der Teller des Tellerstapels aufweist. Die Eingriffskontur und die Gegenkontur sind in mehreren in Umfangsrichtung voneinander beabstandeten Verdrehstellungen in Eingriff miteinander bringbar. Die Teller sind in Tellerumfangsrichtung gesehen gewellt ausgeführt, wobei die Wellungen je zwei einander benachbarte Teller unter Ausbildung von zwischenliegenden Strömungskanälen mit einem vorgebbaren Querschnitt auf axialem Abstand voneinander halten. Die gewellten Teller sind dabei so ausgebildet, dass mit unterschiedlichen Verdrehstellungen einander benachbarter Teller relativ zueinander im Tellerstapel wenigstens zwei unterschiedliche axiale Abstände mit unterschiedlichen Querschnitten der Strömungskanäle zwischen den benachbarten Tellern einstellbar sind.The document US 779 099 A shows a centrifugal separator with a rotor, the rotor having a central shaft on which a stack of plates made up of several identical plates is arranged, the shaft having an engagement contour on its outer circumference for non-rotatable, axially displaceable engagement with a counter-contour on the inner circumference of the plates of the stack of plates having. The engagement contour and the counter-contour can be brought into engagement with one another in a plurality of rotational positions spaced apart from one another in the circumferential direction. The plates are corrugated as seen in the plate peripheral direction, with the corrugations each holding two adjacent plates at an axial distance from one another, with the formation of intermediate flow channels with a definable cross section. The corrugated plates are designed in such a way that with different twisted positions of adjacent plates relative to one another in the plate stack, at least two different axial distances with different cross sections of the flow channels between the adjacent plates can be adjusted.

Ein weiterer Rotor der vorstehend angegebenen Art ist aus dem Dokument DE 10 2015 119 616 A1 bekannt. Die Teller haben hier die Form eines Kegelstumpfmantels und der geneigt verlaufende radial äußere Teil der Teller ist als geschlossene Fläche ausgeführt. Der radial innere, ebene Bereich der Teller ist an seinem Innenumfang mit der Gegenkontur zur Eingriffskontur der zentralen Welle versehen. Radial außen von der Gegenkontur liegen in Umfangsrichtung verteilt mehrere Strömungsdurchbrechungen, durch welche im Betrieb des Rotors ein zu reinigendes Gas axial einströmt und von wo aus dann das Gas in Radialrichtung nach außen in die Strömungsspalte zwischen den einander benachbarten Tellern umgelenkt wird. Zur gegenseitigen Beabstandung der Teller dient hier eine Anordnung von über die jeweils untere Seite des schräg ausgerichteten Bereichs der Teller verlaufenden Abstandshaltestegen .Another rotor of the type indicated above is from the document DE 10 2015 119 616 A1 famous. The plates here have the shape of a truncated cone and the inclined, radially outer part of the plates is designed as a closed surface. The inner circumference of the radially inner, flat area of the plates is provided with the counter-contour to the contour of engagement of the central shaft. Radially outside of the counter-contour are distributed in the circumferential direction several flow openings through which a gas to be cleaned flows axially during operation of the rotor and from where the gas is then deflected radially outwards into the flow gaps between the adjacent plates. An arrangement of spacer webs running over the lower side of the obliquely aligned area of the plates is used here to space the plates from one another.

Das Dokument EP 2 349 578 B1 beschreibt einen Trennteller, der angepasst ist, um in ein Tellerpaket eines Zentrifugenrotors eingeschlossen zu werden. Der Trennteller weist eine sich verjüngende Form auf und erstreckt sich um eine Achse der Rotation und entlang einer sich verjüngenden rotierenden symmetrischen Fläche entlang der Achse der Rotation. Weiter weist der Trennteller eine innere Fläche und eine äußere Fläche auf. Der Trennteller ist aus einem Material gefertigt, wobei der Trennteller auf eine Weise konfiguriert ist, dass er einen Zwischenraum zwischen dem Trennteller und einem benachbarten Trennteller im Tellerpaket aufweist und somit erste Vorsprünge umfasst, die sich von der sich verjüngenden rotierenden symmetrischen Fläche nach außen erstrecken, und zweite Vorsprünge umfasst, die sich von der sich verjüngenden rotierenden symmetrischen Fläche nach innen erstrecken. Jeder erste und zweite Vorsprung definiert eine Kontaktzone, die angepasst ist, um einen benachbarten Trennteller im Tellerpaket zu berühren. Dabei sind die Kontaktzonen der ersten Vorsprünge in Bezug auf die Kontaktzonen der zweiten Vorsprünge, gesehen in einer normalen Richtung bezüglich der äußeren Fläche, versetzt. Die ersten und zweiten Vorsprünge sind nacheinander in einer peripheren Richtung des Trenntellers bereitgestellt. Wesentlich ist hier, dass die sich verjüngende Form und die Vorsprünge des Trenntellers durch Pressen eines Rohlings aus dem Material gegen einen Werkzeugteil, der eine Form aufweist, die der sich verjüngenden Form mit den Vorsprüngen des gepressten Trenntellers entspricht, bereitgestellt wurden.The document EP 2 349 578 B1 describes a separator disk adapted to be included in a disk pack of a centrifuge rotor. The separator disc has a tapered shape and extends about an axis of rotation and along a tapered rotating symmetrical surface along the axis of rotation. Next, the separator plate has an inner surface and an outer surface. The separating disc is made of a material, the separating disc being configured in a way that it has a clearance between the separating disc and an adjacent separating disc in the disc pack and thus includes first protrusions extending outwardly from the tapered rotating symmetrical surface, and second projections extending inwardly from the tapered rotating symmetrical surface. Each first and second projection defines a contact zone adapted to contact an adjacent separator disk in the disk pack. Here, the contact zones of the first projections are offset with respect to the contact zones of the second projections, seen in a direction normal to the outer face. The first and second projections are sequentially provided in a peripheral direction of the separator disk. What is important here is that the tapered shape and the projections of the separator disc were provided by pressing a blank of the material against a tool part having a shape corresponding to the tapered shape with the projections of the pressed separator disc.

Das Dokument EP 2 334 439 B1 zeigt ein Tellerpaket für einen Zentrifugenrotor eines Zentrifugalabscheiders, das für die Abscheidung von Komponenten in einem zugeführten Medium ausgebildet ist, wobei das Tellerpaket eine Vielzahl von Trenntellern aufweist, die aufeinander im Tellerpaket vorhanden sind. Jeder Trennteller erstreckt sich um eine Rotationsachse und weist eine kegelartige Form mit einer Innenfläche und einer Außenfläche längs der Rotationsachse auf. Dabei ist jeder Trennteller aus mindestens einem Material hergestellt, wobei die Trennteller im Tellerpaket mit einer Vorspannkraft gegeneinander vorgespannt sind. Die Trennteller weisen eine Vielzahl von ersten Trenntellern auf, von denen ein jeder eine Anzahl von Distanzelementen aufweist. Ein jeder Trennteller weist mindestens einen Abschnitt ohne Distanzelemente aufweist. Die ersten Trennteller sind in einer derartigen Weise polar positioniert, dass die Distanzelemente des einen Trenntellers an den Abschnitt eines benachbarten Trenntellers anstoßen. Wesentlich ist hier, dass die Distanzelemente eine Anzahl von Paaren von Distanzelementen aufweisen, wobei die Paare jeweils ein erstes Distanzelement, das sich weg von der Außenfläche erstreckt, und ein zweites Distanzelement, das sich weg von der Innenfläche erstreckt, aufweisen, wobei das erste und zweite Distanzelement in Beziehung zueinander versetzt sind, gesehen in einer normalen Richtung mit Bezugnahme auf die Außenfläche, und nacheinander in einer peripheren Richtung des ersten Trenntellers bereitgestellt werden, dass die Vorspannkraft eine Widerlagerkraft zwischen den Distanzelementen und dem benachbarten Trennteller und eine elastische Verformung des Abschnittes von mindestens den Trenntellern bewirkt, und dass diese elastische Verformung während der Drehung des Tellerpaketes eine Erhöhung der Widerlagerkraft zwischen den Distanzelementen und dem benachbarten Trennteller sichert.The document EP 2 334 439 B1 shows a disk pack for a centrifuge rotor of a centrifugal separator, which is designed for the separation of components in a medium supplied, the disk pack having a multiplicity of separating plates which are present one on top of the other in the plate pack. Each separator disc extends about an axis of rotation and has a cone-like shape with an inner surface and an outer surface along the axis of rotation. Each separating disk is made from at least one material, with the separating disks in the stack of disks being prestressed against one another with a prestressing force. The separating discs have a plurality of first separating discs, each of which has a number of spacer elements. Each separating plate has at least one section without spacer elements. The first separating discs are polarly positioned in such a way that the spacer elements of one separating disc abut the portion of an adjacent separating disc. It is essential here that the spacer elements have a number of pairs of spacer elements, the pairs each having a first spacer element which extends away from the outer surface and a second spacer element which extends away from the inner surface, the first and second spacers are offset in relation to each other as viewed in a normal direction with respect to the outer surface and sequentially in a peripheral direction of the first separator disc be provided that the prestressing force causes an abutment force between the spacer elements and the adjacent separating disk and an elastic deformation of the section of at least the separating disks, and that this elastic deformation ensures an increase in the abutment force between the spacer elements and the adjacent separating disk during rotation of the disk pack.

Als nachteilig wird bei den meisten vorstehend beschriebenen bekannten Rotoren und Tellern dafür angesehen, dass der axiale Abstand zwischen einander benachbarten Tellern im Tellerstapel auf einen einzigen Wert festgelegt ist, welcher durch die Höhe der Abstandshaltestege oder der ersten und zweiten Vorsprünge oder der Distanzelemente an den Tellern vorgegeben ist. Wenn ein anderer axialer Abstand zwischen einander benachbarten Tellern im Tellerstapel gewünscht ist oder benötigt wird, ist die Fertigung von neuen Tellern mit Abstandshaltestegen oder ersten und zweiten Vorsprüngen oder Distanzelementen einer anderen, kleineren oder größeren axialen Höhe erforderlich. Eine solche Fertigung ist aber bezüglich der nötigen Werkzeuginvestitionen und der Teiledifferenzierung bei der Montage der Tellerstapel ungünstig und insbesondere unwirtschaftlich. Bei dem Rotor nach dem Dokument US 779 099 A sind zwar zwei unterschiedliche Tellerabstände einstellbar, allerding werden hier nur relativ enge Strömungskanäle, aber keine zwischenliegenden Strömungsspalte, zwischen den einander benachbarten Tellern zur Verfügung gestellt.A disadvantage of most of the known rotors and plates described above is that the axial distance between adjacent plates in the stack of plates is fixed at a single value, which is determined by the height of the spacer webs or the first and second projections or the spacer elements on the plates is predetermined. If a different axial distance between adjacent plates in the stack of plates is desired or required, it is necessary to manufacture new plates with spacer webs or first and second projections or spacers of a different, smaller or larger axial height. However, such production is unfavorable and, in particular, uneconomical with regard to the necessary investment in tools and the differentiation of parts when assembling the stack of plates. At the rotor according to the document US 779 099 A Although two different disc distances can be set, only relatively narrow flow channels, but no intermediate flow gaps, are provided between the adjacent discs.

Für die vorliegende Erfindung stellt sich daher die Aufgabe, einen Rotor der eingangs genannten Art zu schaffen, der die aufgeführten Nachteile vermeidet und bei dem es auf technisch einfache und wirtschaftlich günstige Art und Weise möglich ist, unterschiedliche Abstände und damit unterschiedlich weite zwischenliegende Strömungsspalte zwischen den Tellern im Tellerstapel zu realisieren. Außerdem soll ein entsprechender Zentrifugalabscheider geschaffen werden.The object of the present invention is therefore to create a rotor of the type mentioned at the outset, which avoids the disadvantages mentioned and in which it is possible in a technically simple and economically favorable manner to use different distances and thus different widths of intermediate flow gaps between the to realize plates in a stack of plates. In addition, a corresponding centrifugal separator is to be created.

Die Lösung des ersten, den Rotor betreffenden Teils der Aufgabe gelingt erfindungsgemäß mit einem Rotor der eingangs genannten Art, der dadurch gekennzeichnet ist, dass die Abstandshalter der Teller so ausgebildet und angeordnet sind, dass mit unterschiedlichen Verdrehstellungen einander benachbarter Teller relativ zueinander im Tellerstapel wenigstens zwei unterschiedliche axiale Abstände mit unterschiedlichen Spaltmaßen des Strömungsspalts zwischen den benachbarten Tellern einstellbar sind und dass die in Umfangsrichtung voneinander beabstandeten Verdrehstellungen, in denen die Eingriffskontur und die Gegenkontur in Eingriff miteinander bringbar sind, in zwei einander überlagerten, in Umfangsrichtung gegeneinander um einen Versatzwinkel versetzten Winkelrastern liegen, wobei die beiden Winkelraster jeweils einen gleichmäßigen übereinstimmenden Rasterwinkelabstand aufweisen, wobei der Rasterwinkelabstand einem ganzzahligen Bruchteil von 360° entspricht und wobei der Versatzwinkel kleiner als die Hälfte des Rasterwinkelabstands ist.The solution to the first part of the task relating to the rotor is achieved according to the invention with a rotor of the type mentioned at the beginning, which is characterized in that the spacers of the plates are designed and arranged in such a way that with different rotational positions of adjacent plates relative to one another in the plate stack there are at least two different axial distances with different gap dimensions of the flow gap between the adjacent ones plates are adjustable and that the circumferentially spaced twisted positions, in which the engagement contour and the counter-contour can be brought into engagement with each other, are in two superimposed angular grids that are offset relative to one another in the circumferential direction by an offset angle, with the two angular grids each having a uniform matching grid angular spacing , where the screen angle spacing is an integer fraction of 360° and the offset angle is less than half the screen angle spacing.

Mit der Erfindung wird vorteilhaft das Erstellen von Tellerstapeln aus untereinander identischen Tellern mit dennoch wenigstens zwei unterschiedlichen Tellerabständen im Tellerstapel ermöglicht, wobei der jeweilige Tellerabstand dabei nur von der relativen Verdrehstellung der einander benachbarten Teller abhängt. Da nur eine Ausführung von Tellern benötigt wird, werden die Werkzeugkosten vorteilhaft niedrig gehalten, was eine gute Wirtschaftlichkeit bei der Fertigung von Tellerstapeln und Rotoren für Zentrifugalabscheider ergibt. Außerdem kann hier schon mit einem winkelmäßig kleinen Versatz um den vorgenannten Versatzwinkel zwischen zwei einander unmittelbar benachbarten Tellern deren axialer Abstand verändert werden.The invention advantageously enables stacks of plates to be created from mutually identical plates with at least two different plate spacings in the plate stack, with the respective plate spacing only depending on the relative twisted position of the adjacent plates. Since only one design of plates is required, the tooling costs are advantageously kept low, which results in good economics in the manufacture of plate stacks and rotors for centrifugal separators. In addition, the axial distance between two immediately adjacent plates can be changed here even with a small angular offset by the aforementioned offset angle.

Eine Ausgestaltung des Rotors sieht vor, dass jeder Teller erste und zweite Abstandshalter aufweist und dass sich die ersten und zweiten Abstandshalter durch ihre Höhe und/oder durch ihre radiale Position auf dem Teller unterscheiden. Diese Abstandshalter sind einfach herstellbar und der axiale Tellerabstand lässt sich einfach dadurch verändern, dass ein um den Rasterwinkelabstand oder um den Versatzwinkel relativ zueinander verdrehtes Aufsetzen zweier einander unmittelbar benachbarter Teller auf die zentrale Welle erfolgt.One embodiment of the rotor provides that each plate has first and second spacers and that the first and second spacers differ in terms of their height and/or their radial position on the plate. These spacers are easy to produce and the axial plate spacing can be changed simply by placing two directly adjacent plates on the central shaft, rotated relative to one another by the grid angle spacing or by the offset angle.

Weiter ist dabei bevorzugt vorgesehen, dass die ersten und zweiten Abstandshalter durch zwei verschiedene in die Teller eingeformte oder eingeprägte, jeweils auf der einen Tellerseite eine Erhöhung und auf der anderen Tellerseite eine Eintiefung ausbildende Höcker oder Sicken gebildet sind. Solche Abstandshalter lassen sich vorteilhaft beispielsweise durch einfaches Drücken oder Prägen erzeugen.Furthermore, it is preferably provided that the first and second spacers are formed by two different humps or beads formed or stamped into the plates, each forming an elevation on one side of the plate and a depression on the other side of the plate. Such spacers can advantageously be produced by simply pressing or embossing, for example.

Dabei ist es weiter möglich, dass die in Umfangsrichtung des Tellers voneinander beabstandeten Abstandhalter jeweils als Einzelhöcker oder als radial verlaufende Reihe aus jeweils mehreren Höckern ausgebildet sind.It is also possible that the spacers, which are spaced apart from one another in the circumferential direction of the plate, are each designed as individual humps or as a radially running row of a plurality of humps.

Eine weitere Ausgestaltung des Rotors sieht vor, dass jeder Teller erste und zweite Abstandshalter aufweist und dass die ersten und zweiten Abstandshalter durch an den Tellern angebrachte oder angeformte, Erhöhungen ausbildende Stege oder Noppen gebildet sind.A further embodiment of the rotor provides that each plate has first and second spacers and that the first and second spacers are formed by webs or nubs that are attached to or formed on the plates and form elevations.

In diesbezüglicher weiterer Ausgestaltung wird vorgeschlagen, dass die die ersten Abstandshalter bildenden Stege oder Noppen oberseitig an dem Teller angeordnet sind, dass die die zweiten Abstandshalter bildenden Stege oder Noppen unterseitig an dem Teller angeordnet sind und dass die die ersten Abstandshalter bildenden Stege oder Noppen relativ zu den die zweiten Abstandshalter bildenden Stegen oder Noppen in Umfangsrichtung des Tellers versetzt sind. Der axiale Tellerabstand lässt sich auch hier einfach dadurch verändern, dass ein um den Rasterwinkelabstand verdrehtes Aufsetzen zweier einander unmittelbar benachbarter Teller auf die zentrale Welle erfolgt, wobei oberseitige und unterseitige Abstandshalter zweier einander unmittelbar benachbarter Teller entweder aufeinandertreffen und einen größeren axialen Tellerabstand bewirken oder nicht aufeinandertreffen und einen kleineren axialen Tellerabstand bewirken.In a further embodiment in this regard, it is proposed that the webs or knobs forming the first spacers be arranged on the top side of the plate, that the webs or knobs forming the second spacers be arranged on the bottom side of the plate and that the webs or knobs forming the first spacers be arranged relative to the webs or nubs forming the second spacers are offset in the circumferential direction of the plate. Here, too, the axial plate spacing can be easily changed by placing two directly adjacent plates rotated by the screen angle spacing on the central shaft, with the upper and lower side spacers of two directly adjacent plates either meeting and causing a larger axial plate spacing or not meeting and bring about a smaller axial disc distance.

Eine weitere Rotorausgestaltung sieht vor, dass die die ersten Abstandshalter bildenden Stege oder Noppen oberseitig an dem Teller angeordnet sind, dass die die zweiten Abstandshalter bildenden Stege oder Noppen unterseitig an dem Teller angeordnet sind, dass die die ersten Abstandshalter bildenden Stege oder Noppen zu den die zweiten Abstandshalter bildenden Stegen oder Noppen deckungsgleich angeordnet sind und dass der Winkelabstand der in Umfangsrichtung der Teller voneinander beabstandeten Abstandshalter dem doppelten Rasterwinkelabstand entspricht. Auch bei dieser Rotorausführung lässt sich der axiale Tellerabstand einfach dadurch verändern, dass ein um den Rasterwinkelabstand oder den Versatzwinkel verdrehtes Aufsetzen zweier einander unmittelbar benachbarter Teller auf die zentrale Welle erfolgt.A further rotor configuration provides that the webs or knobs forming the first spacers are arranged on the top side of the plate, the webs or knobs forming the second spacers are arranged on the underside on the plate, the webs or knobs forming the first spacers on the the webs or knobs forming the second spacer are arranged congruently and that the angular spacing of the spacers spaced apart from one another in the circumferential direction of the plates corresponds to twice the grid angle spacing. In this rotor design, too, the axial plate spacing can be easily changed by placing two directly adjacent plates on the central shaft, rotated by the grid angle spacing or the offset angle.

Um die Fertigung der Teller einfach zu halten, ist bevorzugt vorgesehen, dass die die ersten Abstandshalter bildenden, oberseitig an dem Teller angeordneten Stege oder Noppen und die die zweiten Abstandshalter bildenden, unterseitig an dem Teller angeordneten Stege oder Noppen untereinander identisch sind.In order to keep the production of the plates simple, it is preferably provided that the webs or knobs forming the first spacers, arranged on the top side of the plate, and the webs or knobs forming the second spacers, arranged on the underside of the plate, are identical to one another.

Mit der Erfindung sind unterschiedliche Rotoren einfach herstellbar. Dabei ist es einerseits möglich, dass innerhalb des Tellerstapels einer ersten Rotorausführung alle Teller einen ersten, kleineren axialen Abstand voneinander mit einem kleineren Spaltmaß aufweisen und dass innerhalb des Tellerstapels einer zweiten Rotorausführung mit zu der ersten Rotorausführung identischen Tellern alle Teller einen zweiten, größeren axialen Abstand voneinander mit einem größeren Spaltmaß aufweisen.Different rotors are easy to produce with the invention. On the one hand, it is possible for all plates within the plate stack of a first rotor design to have a first, smaller axial distance from one another with a smaller gap, and for all plates within the plate stack of a second rotor design with plates that are identical to the first rotor design to have a second, larger axial distance from each other with a larger gap.

Alternativ dazu besteht die Möglichkeit, dass die Teller innerhalb des Tellerstapels des Rotors unterschiedliche axiale Abstände aufweisen.As an alternative to this, there is the possibility that the plates within the plate stack of the rotor have different axial distances.

Dabei ist bevorzugt weiter vorgesehen, dass die Teller innerhalb des Tellerstapels des Rotors in einem zuströmungsnahen Bereich des Rotors einen kleineren axialen Abstand voneinander mit einem kleineren Spaltmaß und in einem zuströmungsfernen Bereich des Rotors einen größeren axialen Abstand voneinander mit einem größeren Spaltmaß aufweisen. Hiermit kann insbesondere eine gleichmäßigere Aufteilung eines Volumenstroms eines im Rotor zu behandelnden fluiden Mediums auf die Vielzahl der Strömungsspalte erreicht werden.It is preferably further provided that the plates within the plate stack of the rotor have a smaller axial distance from one another with a smaller gap in a region of the rotor close to the inflow and a greater axial distance from one another with a larger gap in a region of the rotor remote from the inflow. In this way, in particular, a more uniform distribution of a volume flow of a fluid medium to be treated in the rotor over the plurality of flow gaps can be achieved.

Um die Fertigung der einzelnen Teller und des Tellerstapels sowie der zentralen Welle des Rotors hinsichtlich deren Eingriffs- und Gegenkonturen praktikabel zu halten, wird vorgeschlagen, dass die Eingriffskontur und die Gegenkontur in zwei bis sechzehn, vorzugsweise sechs bis zwölf, in Umfangsrichtung der zentralen Welle und der Teller voneinander beabstandeten Verdrehstellungen in Eingriff miteinander bringbar sind.In order to keep the production of the individual plates and the plate stack as well as the central shaft of the rotor practicable with regard to their engagement and counter-contours, it is proposed that the engagement contour and the counter-contour should be in two to sixteen, preferably six to twelve, in the circumferential direction of the central shaft and the plate can be brought into engagement with one another in twisted positions spaced apart from one another.

Bei Bedarf kann die Zahl der Verdrehstellungen, in denen die zentrale Welle und die Teller in Eingriff miteinander bringbar sind, auch größer als die vorgenannten Zahlen sein, wobei dann der Rasterwinkelabstand entsprechend kleiner wird. Dies kann beispielsweise dann zweckmäßig sein, wenn mehr als zwei unterschiedliche axiale Tellerabstände einstellbar sein sollen.If required, the number of twisted positions in which the central shaft and the plates can be brought into engagement with one another can also be greater than the aforementioned numbers, in which case the grid angle spacing then becomes correspondingly smaller. This can be expedient, for example, if more than two different axial disc distances are to be adjustable.

Die Teller des Rotors sind bevorzugt Drückstanzteile aus Metallblech oder Spritzgussteile aus Kunststoff. Beide genannten Arten von Tellern sind vergleichsweise einfach und kostengünstig herstellbar und mit den nötigen Abstandshaltern versehbar, wobei beides vorzugsweise in einem Arbeitsgang erfolgt.The disks of the rotor are preferably press-stamped parts made from sheet metal or injection-moulded parts made from plastic. Both types of plates mentioned can be produced comparatively easily and inexpensively and can be provided with the necessary spacers, both of which preferably take place in one operation.

Unabhängig von der Ausführung der Abstandshalter wird vorgeschlagen, dass die Eingriffskontur am Außenumfang der Welle durch eine Anzahl von n in Längsrichtung der Welle verlaufenden, nach radial außen vorragenden Zähnen gebildet ist und dass die Gegenkontur am Innenumfang der Teller durch eine Anzahl von n oder 2 x n zu den Zähnen passenden, radial nach außen hin weisenden Ausnehmungen gebildet ist.Regardless of the design of the spacers, it is proposed that the engagement contour on the outer circumference of the shaft be formed by a number of n teeth running in the longitudinal direction of the shaft and projecting radially outwards and that the counter-contour on the inner circumference of the plates be formed by a number of n or 2 xn to the teeth matching, radially outwardly facing recesses is formed.

Dabei beträgt vorzugsweise die Anzahl n zwischen 2 und 8, vorzugsweise 3 bis 6, um die Fertigung der Eingriffs- und Gegenkonturen nicht zu kompliziert werden zu lassen. Die Anzahl n richtet sich auch nach den im Betrieb des Rotors aufzunehmenden, in Umfangsrichtung des Rotors zwischen den Tellern und der zentralen Welle wirkenden Kräften.In this case, the number n is preferably between 2 and 8, preferably 3 to 6, in order not to make the production of the engaging and counter-contours too complicated. The number n also depends on the forces to be absorbed during operation of the rotor and acting in the circumferential direction of the rotor between the plates and the central shaft.

Die Lösung des zweiten, den Zentrifugalabscheider betreffenden Teils der Aufgabe gelingt erfindungsgemäß mit einem Zentrifugalabscheider, der dadurch gekennzeichnet ist, dass er einen Rotor nach einem der Ansprüche 1 bis 15 aufweist. Bei einem solchen Zentrifugalabscheider werden die vorstehend schon im Zusammenhang mit dem Rotor erläuterten Vorteile erreicht.The solution to the second part of the task relating to the centrifugal separator is achieved according to the invention with a centrifugal separator which is characterized in that it has a rotor according to one of claims 1 to 15. With such a centrifugal separator, the advantages already explained above in connection with the rotor are achieved.

In einer bevorzugten Verwendung ist der erfindungsgemäße Zentrifugalabscheider ein Ölnebelabscheider für das Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine und kann dabei vorteilhaft zum wirksamen Abscheiden von Ölnebel und Öltröpfchen aus dem Kurbelgehäuseentlüftungsgas der Brennkraftmaschine dienen. In einem Rotor eines solchen Zentrifugalabscheiders haben die Teller einen sehr geringen Abstand zueinander, in der Praxis beispielsweise zwischen etwa 0,3 und 0,5 mm. Für diese Anwendung können dann die Teller beispielsweise so ausgeführt sein, dass sie in einer ersten relativen Verdrehstellung zueinander zwischen sich einen ersten Abstand von 0,3 mm und in einer zweiten relativen Verdrehstellung zueinander zwischen sich einen zweiten Abstand von 0,5 mm ausbilden. Die Teller und deren Abstandshalter können auch so ausgeführt sein, dass sie in einer dritten relativen Verdrehstellung zueinander zwischen sich einen dritten Abstand, z.B. von 0,4 mm, ausbilden. Auf diese Weise lassen sich bei der Rotorfertigung bedarfsgerechte, unterschiedliche Spaltmaße zwischen den untereinander identischen Tellern des Rotors einfach einstellen.In a preferred application, the centrifugal separator according to the invention is an oil mist separator for the crankcase ventilation gas of an internal combustion engine and can advantageously serve to effectively separate oil mist and oil droplets from the crankcase ventilation gas of the internal combustion engine. In a rotor of such a centrifugal separator, the discs have a very small distance from one another, in practice, for example, between about 0.3 and 0.5 mm. For this application, the plates can then be designed, for example, so that they form a first distance of 0.3 mm between them in a first relative twisted position and a second distance of 0.5 mm between them in a second relative twisted position. The plates and their spacers can also be designed in such a way that, in a third rotational position relative to one another, they form a third distance between them, for example of 0.4 mm. In this way, needs-based, different gap dimensions between the mutually identical discs of the rotor can be easily adjusted during rotor production.

Im Folgenden werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung erläutert. Die Figuren der Zeichnung zeigen:

Figur 1
einen Rotor eines Zentrifugalabscheiders in einer ersten Ausführung, in Ansicht schräg von oben,
Figur 2
den Rotor aus Figur 1 in Draufsicht,
Figur 3
den Rotor aus Figur 2 im Längsschnitt entlang der Schnittlinie III - III in Figur 2,
Figur 4
den Rotor in einer zweiten Ausführung, in Ansicht schräg von oben,
Figur 5
den Rotor aus Figur 4 in Draufsicht,
Figur 6
den Rotor aus Figur 5 im Längsschnitt entlang der Schnittlinie VI - VI in Figur 5,
Figur 7
das in Figur 6 eingerahmte Detail VII in vergrößerter Darstellung,
Figur 8
den Rotor in einer dritten Ausführung, in Ansicht schräg von oben,
Figur 9
den Rotor aus Figur 8 in Draufsicht,
Figur 10
den Rotor aus Figur 9 im Längsschnitt entlang der Schnittlinie X - X in Figur 9,
Figur 11
das in Figur 10 eingerahmte Detail XI in vergrößerter Darstellung,
Figur 12
den Rotor in einer vierten Ausführung, in Ansicht schräg von oben,
Figur 13
den Rotor aus Figur 12 in Draufsicht,
Figur 14
den Rotor aus Figur 13 im Längsschnitt entlang der Schnittlinie XIV-XIV in Figur 13,
Figur 15
das in Figur 14 eingerahmte Detail XV in vergrößerter Darstellung,
Figur 16
einen einzelnen Teller eines Rotors, in einer weiteren Ausführung, in Draufsicht,
Figur 17
einen aus Tellern gemäß Figur 16 erstellten Rotor, in Draufsicht,
Figur 18
den Rotor aus Figur 17 in Schnitt gemäß der Schnittlinie XVIII - XVIII in Figur 17,
Figur 19
das in Figur 18 eingerahmte Detail XIX in vergrößerter Darstellung,
Figur 20
das in Figur 18 eingerahmte Detail XX in vergrößerter Darstellung,
Figur 21
einen oberen Abschnitt einer ersten zentralen Welle als Teil des Rotors nach Figur 17, in Seitenansicht,
Figur 22
die Welle aus Figur 21 im Querschnitt gemäß der Schnittlinie XXII-XXII in Figur 21,
Figur 23
einen oberen Abschnitt einer zweiten, geänderten zentralen Welle als Teil eines Rotors, in Seitenansicht, und
Figur 24
die Welle aus Figur 23 im Querschnitt gemäß der Schnittlinie XXIV-XXIV in Figur 23.
Exemplary embodiments of the invention are explained below with reference to a drawing. The figures of the drawing show:
figure 1
a rotor of a centrifugal separator in a first embodiment, viewed obliquely from above,
figure 2
the rotor off figure 1 in top view,
figure 3
the rotor off figure 2 in longitudinal section along line III - III in figure 2 ,
figure 4
the rotor in a second version, viewed diagonally from above,
figure 5
the rotor off figure 4 in top view,
figure 6
the rotor off figure 5 in longitudinal section along line VI - VI in figure 5 ,
figure 7
this in figure 6 framed detail VII in an enlarged view,
figure 8
the rotor in a third embodiment, viewed diagonally from above,
figure 9
the rotor off figure 8 in top view,
figure 10
the rotor off figure 9 in longitudinal section along line X - X in figure 9 ,
figure 11
this in figure 10 framed detail XI in an enlarged view,
figure 12
the rotor in a fourth embodiment, viewed obliquely from above,
figure 13
the rotor off figure 12 in top view,
figure 14
the rotor off figure 13 in longitudinal section along section line XIV-XIV in figure 13 ,
figure 15
this in figure 14 framed detail XV in an enlarged view,
figure 16
a single plate of a rotor, in a further embodiment, in top view,
figure 17
one made of plates according to figure 16 created rotor, in top view,
figure 18
the rotor off figure 17 in section along line XVIII - XVIII in figure 17 ,
figure 19
this in figure 18 framed detail XIX in an enlarged view,
figure 20
this in figure 18 framed detail XX in an enlarged view,
figure 21
discloses an upper portion of a first central shaft as part of the rotor figure 17 , in side view,
figure 22
the wave out figure 21 in cross-section along section line XXII-XXII in figure 21 ,
figure 23
an upper section of a second, modified central shaft as part of a rotor, in side view, and
figure 24
the wave out figure 23 in cross-section along section line XXIV-XXIV in figure 23 .

In der folgenden Figurenbeschreibung sind gleiche Teile in den verschiedenen Zeichnungsfiguren stets mit den gleichen Bezugszeichen versehen, sodass nicht zu jeder Zeichnungsfigur alle Bezugszeichen erneut erläutert werden müssen.In the following description of the figures, the same parts in the various figures are always provided with the same reference numbers, so that not all reference numbers have to be explained again for each figure.

Die Figuren 1 bis 3 der Zeichnung zeigen einen Rotor 1 eines hier im Übrigen nicht dargestellten Zentrifugalabscheiders, in einer ersten Ausführung. Der Rotor 1 weist eine zentrale Welle 2 auf, auf der ein Tellerstapel 3 aus mehreren identischen Tellern 30 angeordnet ist. Die Teller 30 haben dabei jeweils die an sich bekannte Form eines Kegelstumpfmantels und können aus Metallblech oder Kunststoff bestehen.the Figures 1 to 3 The drawings show a rotor 1 of a centrifugal separator, which is otherwise not shown here, in a first embodiment. The rotor 1 has a central shaft 2 on which a stack of plates 3 made up of several identical plates 30 is arranged. The plates 30 each have the known shape of a truncated cone shell and can be made of sheet metal or plastic.

Aus Übersichtlichkeitsgründen sind in Figur 1 nur einige wenige Teller 30 gezeichnet; in der Praxis weist ein Tellerstapel 3 bis zu 100 oder mehr Teller 30 auf.For reasons of clarity, in figure 1 only a few plates 30 drawn; in practice, a stack of plates 3 has up to 100 or more plates 30 .

Die Welle 2 weist an ihrem Außenumfang eine Eingriffskontur 21 für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegenkontur 31 am Innenumfang der Teller 30 des Tellerstapels 3 auf, wobei die Eingriffskontur 21 hier die Form eines sechszackigen Sterns hat. Dabei sind die Eingriffskontur 21 und die Gegenkontur 31 in mehreren in Umfangsrichtung voneinander in einem Rasterwinkelabstand a, hier von 60°, beabstandeten relativen Verdrehstellungen in Eingriff miteinander bringbar.The shaft 2 has an engagement contour 21 on its outer circumference for non-rotatable, axially displaceable engagement with a counter-contour 31 on the inner circumference of the plates 30 of the plate stack 3, the engagement contour 21 here having the shape of a six-pointed star. The engagement contour 21 and the counter-contour 31 can be brought into engagement with one another in a plurality of relative rotational positions spaced apart from one another in the circumferential direction by a grid angle distance a, here of 60°.

Radial außen von der Gegenkontur 31 liegen in Umfangsrichtung verteilt mehrere Strömungsöffnungen 32 in den Tellern 30, durch welche im Betrieb des Rotors 1 ein zu reinigendes fluides Medium, wie Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine, axial einströmt und von wo aus dann das fluide Medium in Radialrichtung nach außen in Strömungsspalte 34 zwischen den einander benachbarten Tellern 30 strömt. Eine umgekehrte Strömungsrichtung des fluiden Mediums im Betrieb des Rotors 1 ist auch möglich.Radially on the outside of the counter-contour 31 are several flow openings 32 distributed in the circumferential direction in the plates 30, through which a fluid medium to be cleaned, such as crankcase ventilation gas of an internal combustion engine, flows axially during operation of the rotor 1 and from where the fluid medium then flows outwards in the radial direction flows into flow gaps 34 between the adjacent plates 30. A reverse flow direction of the fluid medium when the rotor 1 is in operation is also possible.

Der Abscheidemechanismus von Rotoren 1 der hier diskutierten Art in Zentrifugalabscheidern ist bekannt und muss daher hier nicht weiter erläutert werden.The separating mechanism of rotors 1 of the type discussed here in centrifugal separators is known and therefore does not have to be explained further here.

Die Teller 30 weisen Abstandshalter 4, 5 auf, die im Tellerstapel 3 je zwei benachbarte Teller 30 unter Ausbildung des zwischenliegenden Strömungsspalts 34 mit einem vorgebbaren Spaltmaß auf Abstand voneinander halten.The plates 30 have spacers 4, 5, which in the stack of plates 3 hold two adjacent plates 30 at a distance from one another, forming the flow gap 34 between them with a predetermined gap dimension.

Die Besonderheit der Teller 30 des Tellerstapels 3 ist, dass jeder Teller 30 zwei derart unterschiedliche, in Umfangsrichtung der Teller 30 voneinander beabstandete erste und zweite Abstandshalter 4, 5 aufweist, dass mit unterschiedlichen Verdrehstellungen benachbarter Teller 30 relativ zueinander im Tellerstapel 3 zwei unterschiedliche Abstände mit unterschiedlichen Spaltmaßen h1, h2 des Strömungsspalts 34 zwischen den benachbarten Tellern 30 herstellbar sind, wie insbesondere in Figur 3 sichtbar ist.The special feature of the plates 30 of the plate stack 3 is that each plate 30 has two such different first and second spacers 4, 5 spaced apart from one another in the circumferential direction of the plates 30 that with different rotational positions of adjacent plates 30 relative to one another in the plate stack 3 there are two different distances with different gap dimensions h 1 , h 2 of the flow gap 34 between the adjacent plates 30 can be produced, as can be seen in particular in FIG.

Die zwei verschiedenen ersten und zweiten Abstandshalter 4, 5 sind hier durch zwei verschiedene in die Teller 30 eingeformte oder eingeprägte, jeweils auf der einen Tellerseite, hier der Unterseite, eine Erhöhung und auf der anderen Tellerseite, hier der Oberseite, eine Eintiefung ausbildende, paarweise in Radialrichtung hintereinander angeordnete Höcker gebildet.The two different first and second spacers 4, 5 are formed or stamped here by two different ones in the plates 30, each on one side of the plate, here the underside, an increase and on the other side of the plate, here the upper side, forming a depression, arranged in pairs one behind the other in the radial direction.

In Umfangsrichtung der Teller 30 gesehen sind hierbei die ersten Abstandshalter 4 und die zweiten Abstandshalter 5 mit einem Winkelabstand β von 60° voneinander beabstandet. Dieser Winkelabstand β ist damit mit dem Rasterwinkelabstand α der Eingriffs- und Gegenkonturen 21, 31 identisch.Seen in the circumferential direction of the plates 30, the first spacers 4 and the second spacers 5 are spaced apart from one another by an angular distance β of 60°. This angular distance β is therefore identical to the grid angle distance α of the engaging and counter-contours 21, 31.

Die die ersten und zweiten Abstandshalter 4, 5 bildenden Höcker unterscheiden sich hier sowohl durch ihre Höhe als auch durch ihre radiale Position auf dem Teller 30. Die die ersten Abstandshalter 4 bildenden Höcker haben eine größere axiale Tiefe und liegen in Radialrichtung gesehen etwas weiter außen. Die die zweiten Abstandshalter 5 bildenden Höcker haben eine kleinere axiale Tiefe und liegen in Radialrichtung gesehen etwas weiter innen als die die ersten Abstandshalter 4 bildenden Höcker.The humps forming the first and second spacers 4, 5 differ here both in their height and in their radial position on the plate 30. The humps forming the first spacers 4 have a greater axial depth and are located somewhat further outwards as seen in the radial direction. The humps forming the second spacers 5 have a smaller axial depth and are located somewhat further inward, viewed in the radial direction, than the humps forming the first spacers 4 .

Wenn, wie in Figur 3 die beiden oberen unmittelbar benachbarten Teller 30, diese in einer relativen Verdrehstellung im Tellerstapel 3 angeordnet sind, in der die ersten Abstandshalter 4 des einen, unteren Tellers 30 deckungsgleich mit den zweiten Abstandshaltern 5 des anderen, oberen Tellers 30 liegen, dann haben die beiden benachbarten Teller 30 einen kleineren Abstand mit einem Spaltmaß h1 des zwischenliegenden Strömungsspalts 34.If, as in figure 3 the two upper immediately adjacent plates 30, which are arranged in a relative rotated position in the plate stack 3, in which the first spacers 4 of one, lower plate 30 are congruent with the second spacers 5 of the other, upper plate 30, then the two adjacent Plate 30 has a smaller distance with a gap dimension h 1 of the intermediate flow gap 34.

Wenn, wie in Figur 3 die beiden unteren unmittelbar benachbarten Teller 30, diese in einer relativen Verdrehstellung im Tellerstapel 3 angeordnet sind, in der die ersten Abstandshalter 4 des einen Tellers 30 deckungsgleich mit den ersten Abstandshaltern 4 des anderen Tellers 30 liegen, dann haben die beiden benachbarten Teller 30 einen größeren Abstand mit einem Spaltmaß h2 des zwischenliegenden Strömungsspalts 34.If, as in figure 3 the two lower immediately adjacent plates 30, which are arranged in a relative rotated position in the plate stack 3, in which the first spacers 4 of one plate 30 are congruent with the first spacers 4 of the other plate 30, then the two adjacent plates 30 have a larger one Distance with a gap dimension h 2 of the intermediate flow gap 34.

Zum Verändern des Spaltmaßes h zwischen zwei einander benachbarten Tellern 30 genügt ein um den Abstandshalterwinkelabstand β verdrehtes Aufsetzen des einen Tellers 30, wobei hier der Abstandshalterwinkelabstand β mit dem Rasterwinkelabstand α identisch ist.To change the gap h between two adjacent plates 30, it is sufficient to place one plate 30 rotated by the spacer angle distance β, with the spacer angle distance β being identical to the grid angle distance α.

In der Figur 3 sind die Abstände der Teller 30 voneinander aus Gründen der Erkennbarkeit übertrieben groß dargestellt. In der Realität beträgt das Spaltmaß h zwischen zwei einander benachbarten Tellern 30 oft nur einige zehntel Millimeter.In the figure 3 the distances between the plates 30 are exaggerated for reasons of visibility. In reality, the gap h between two adjacent plates 30 is often only a few tenths of a millimeter.

Die identischen Teller 30 innerhalb des Tellerstapels 3 des Rotors 1 können also unterschiedliche Abstände voneinander mit unterschiedlichen Spaltmaßen h1, h2 der Strömungsspalte 34 aufweisen. Dies kann beispielsweise vorteilhaft dazu genutzt werden, in einem zuströmungsnahen Bereich des Rotors 1 die Teller 30 mit einem kleineren axialen Abstand voneinander mit einem kleineren Spaltmaß h1 und in einem zuströmungsfernen Bereich des Rotors 1 die Teller 30 mit einem größeren axialen Abstand voneinander mit einem größeren Spaltmaß h2 anzuordnen, um die Durchströmung des Tellerstapels 3 zu vergleichmäßigen.The identical plates 30 within the plate stack 3 of the rotor 1 can therefore have different distances from one another with different gap dimensions h 1 , h 2 of the flow gaps 34 . This can be used advantageously, for example, to place the plates 30 at a smaller axial distance from one another with a smaller gap dimension h 1 in a region of rotor 1 close to the inflow, and to place the plates 30 at a greater axial distance from one another with a larger gap h 1 in a region of rotor 1 remote from the inflow Arranging the gap dimension h 2 in order to even out the flow through the plate stack 3 .

Es besteht auch die Möglichkeit, dass innerhalb des Tellerstapels 3 einer ersten Rotorausführung alle Teller 30 einen ersten, kleineren axialen Abstand voneinander mit einem kleineren Spaltmaß h1 aufweisen und dass innerhalb des Tellerstapels 3 einer zweiten Rotorausführung mit zu der ersten Rotorausführung identischen Tellern 30 alle Teller 30 einen zweiten, größeren axialen Abstand voneinander mit einem größeren Spaltmaß h2 aufweisen.There is also the possibility that all the plates 30 within the plate stack 3 of a first rotor design have a first, smaller axial distance from one another with a smaller gap dimension h 1 and that all the plates within the plate stack 3 of a second rotor design with plates 30 that are identical to the first rotor design 30 have a second, larger axial distance from one another with a larger gap h 2 .

Die Figuren 4 bis 7 zeigen den Rotor 1 in einer zweiten Ausführung. Unterschiedlich zur ersten Ausführung des Rotors 1 ist, dass die die ersten und zweiten Abstandshalter 4, 5 bildenden Höcker kleiner und in Form von radial verlaufenden Höckerreihen mit je vier Höckern ausgeführt sind. Auf diese Weise werden mehr Berührungspunkte zwischen den jeweils einander benachbarten Tellern 30 im Tellerstapel 3 gebildet, was dessen Formstabilität im Betrieb mit hohen Drehzahlen zugutekommt.the Figures 4 to 7 show the rotor 1 in a second embodiment. What differs from the first embodiment of the rotor 1 is that the humps forming the first and second spacers 4, 5 are smaller and in the form of radially extending rows of humps, each with four humps. In this way, more points of contact are formed between the respectively adjacent plates 30 in the plate stack 3, which benefits its dimensional stability during operation at high speeds.

Die die ersten und zweiten Abstandshalter 4, 5 bildenden Höcker unterscheiden sich auch hier sowohl durch ihre Höhe als auch durch ihre radiale Position auf dem Teller 30. Die die ersten Abstandshalter 4 bildenden Höcker haben eine größere axiale Tiefe und liegen in Radialrichtung gesehen etwas weiter außen. Die die zweiten Abstandshalter 5 bildenden Höcker haben eine kleinere axiale Tiefe und liegen in Radialrichtung gesehen etwas weiter innen.Here, too, the humps forming the first and second spacers 4, 5 differ both in their height and in their radial position on the plate 30. The humps forming the first spacers 4 have a greater axial depth and are located somewhat further outwards as seen in the radial direction . The protuberances forming the second spacers 5 have a smaller axial depth and are located somewhat further inward as seen in the radial direction.

In Umfangsrichtung der Teller 30 gesehen liegt auch hier zwischen den ersten Abstandshaltern 4 und den zweiten Abstandshaltern 5 ein Winkelabstand β von 60°.Seen in the circumferential direction of the plates 30 there is also an angular distance β of 60° between the first spacers 4 and the second spacers 5 .

Dieser Winkelabstand β ist damit mit dem Rasterwinkelabstand α der Eingriffs- und Gegenkonturen 21, 31 identisch.This angular distance β is therefore identical to the grid angle distance α of the engaging and counter-contours 21, 31.

Wenn, wie in Figur 7 die beiden unteren unmittelbar benachbarten Teller 30, diese in einer relativen Verdrehstellung im Tellerstapel 3 angeordnet sind, in der die ersten Abstandshalter 4 des einen Tellers 30 deckungsgleich mit den ersten Abstandshaltern 4 des anderen Tellers 30 liegen, dann haben die beiden benachbarten Teller 30 einen kleineren Abstand mit einem Spaltmaß h1 des zwischenliegenden Strömungsspalts 34.If, as in figure 7 the two lower immediately adjacent plates 30, which are arranged in a relative rotated position in the stack of plates 3, in which the first spacers 4 of one plate 30 are congruent with the first spacers 4 of the other plate 30, then the two adjacent plates 30 have a smaller one Distance with a gap dimension h 1 of the intermediate flow gap 34.

Wenn hier, wie in Figur 7 die beiden oberen unmittelbar benachbarten Teller 30, diese in einer relativen Verdrehstellung im Tellerstapel 3 angeordnet sind, in der die ersten Abstandshalter 4 des einen, hier unteren Tellers 30 deckungsgleich mit den zweiten Abstandshaltern 5 des anderen, hier oberen Tellers 30 liegen, dann haben die beiden benachbarten Teller 30 einen größeren Abstand mit einem Spaltmaß h2 des zwischenliegenden Strömungsspalts 34.If here as in figure 7 the two upper immediately adjacent plates 30, which are arranged in a relative rotated position in the stack of plates 3, in which the first spacers 4 of one plate 30, in this case the lower one, are congruent with the second spacers 5 of the other plate 30, in this case the upper one, then the two adjacent plates 30 a greater distance with a gap dimension h 2 of the intermediate flow gap 34.

In seinen weiteren Merkmalen und Eigenschaften stimmt der Rotor 1 nach den Figuren 4 bis 7 mit dem Ausführungsbeispiel nach den Figuren 1 bis 3 überein, auf deren Beschreibung daher verwiesen wird.In its other features and properties, the rotor 1 agrees with the Figures 4 to 7 with the embodiment according to the Figures 1 to 3 match, so reference is made to their description.

Die Figuren 8 bis 11 zeigen den Rotor 1 in einer dritten Ausführung. Unterschiedlich zu den zuvor beschriebenen Ausführungen des Rotors 1 ist, dass nun die ersten und zweiten Abstandshalter 4, 5 durch an den Tellern 30 angebrachte oder angeformte, Erhöhungen ausbildende Stege gebildet sind. Die durch die Stege gebildeten Abstandshalter 4, 5 verlaufen hier gradlinig in Radialrichtung. Alternativ können die Abstandshalter 4, 5 auch gebogen verlaufen.the Figures 8 to 11 show the rotor 1 in a third embodiment. What differs from the previously described embodiments of the rotor 1 is that the first and second spacers 4, 5 are now formed by webs which are attached to the plates 30 or formed thereon and form elevations. The spacers 4, 5 formed by the webs here run in a straight line in the radial direction. Alternatively, the spacers 4, 5 can also be curved.

Die die ersten Abstandshalter 4 bildenden Stege, hier drei Stück, sind oberseitig an dem Teller 30 angeordnet und die die zweiten Abstandshalter 5 bildenden Stege, ebenfalls drei Stück, sind unterseitig an dem Teller 30 angeordnet. Außerdem sind hier die die ersten Abstandshalter 4 bildenden Stege relativ zu den die zweiten Abstandshalter 5 bildenden Stegen oder Noppen in Umfangsrichtung des Tellers 30 versetzt. Der Winkelabstand β der drei die ersten Abstandshalter 4 bildenden Stege zueinander beträgt hier jeweils 120°. Der Winkelabstand β der drei die zweiten Abstandshalter 5 bildenden Stege beträgt hier ebenfalls 120°. Der Winkelabstand zwischen jeweils einem ersten Abstandshalter 4 und einem zweiten Abstandshalter 5 innerhalb des Tellers 30 beträgt 60°. Dieser Winkel von 60° entspricht dem Rasterwinkelabstand α der verschiedenen relativen Verdrehpositionen des Tellers 30 zur zentralen Welle 10, in denen die beiden mittels der Eingriffskontur 21 und der Gegenkontur 31 in Eingriff miteinander bringbar sind.The webs forming the first spacer 4, here three pieces, are arranged on the upper side on the plate 30 and the webs forming the second spacer 5, also three pieces, are arranged on the underside on the plate 30. In addition, here the webs forming the first spacers 4 are offset relative to the webs or knobs forming the second spacers 5 in the circumferential direction of the plate 30 . The angular distance β between the three webs forming the first spacers 4 is 120° in each case here. The angular spacing β of the three webs forming the second spacers 5 is also 120° here. The angular distance between in each case a first spacer 4 and a second spacer 5 within the plate 30 is 60°. This angle of 60° corresponds to the grid angle distance α of the different relative rotational positions of the plate 30 to the central shaft 10, in which the two can be brought into engagement with one another by means of the engagement contour 21 and the counter-contour 31.

Wenn, wie in Figur 10 und vergrößert dargestellt in Figur 11 die beiden obersten unmittelbar benachbarten Teller 30, diese in einer relativen Verdrehstellung im Tellerstapel 3 angeordnet sind, in der die zweiten Abstandshalter 5 des einen, oberen Tellers 30 deckungsgleich mit den zweiten Abstandshaltern 5 des anderen, unteren Tellers 30 liegen, dann haben diese beiden benachbarten Teller 30 einen kleineren Abstand mit einem Spaltmaß h1 des zwischenliegenden Strömungsspalts 34. Dabei entspricht das Spaltmaß h1 der Höhe der einzelnen durch die hier untereinander identischen Stege gebildeten Abstandshalter 4, 5.If, as in figure 10 and shown enlarged in figure 11 the two uppermost immediately adjacent plates 30, which are arranged in a relative rotated position in the plate stack 3, in which the second spacers 5 of one, upper plate 30 are congruent with the second spacers 5 of the other, lower plate 30, then these two adjacent Plate 30 has a smaller distance with a gap dimension h 1 of the intermediate flow gap 34. The gap dimension h 1 corresponds to the height of the individual spacers 4, 5 formed by the webs, which are identical to one another here.

Wenn, wie in Figur 10 und vergrößert dargestellt in Figur 11, der von oben gesehen zweite und dritte Teller 30 in einer relativen Verdrehstellung im Tellerstapel 3 angeordnet sind, in der die ersten Abstandshalter 4 des einen, hier unteren Tellers 30 deckungsgleich mit den zweiten Abstandshaltern 5 des anderen, hier oberen Tellers 30 liegen, dann haben die beiden benachbarten Teller 30 einen größeren Abstand mit einem Spaltmaß h2 des zwischenliegenden Strömungsspalts 34. Dabei entspricht das Spaltmaß h2 hier der addierten Höhe der aufeinanderliegenden, durch die Stege gebildeten Abstandshalter 4 und 5.If, as in figure 10 and shown enlarged in figure 11 , the second and third plates 30 seen from above are arranged in a relative twisted position in the stack of plates 3, in which the first spacers 4 of one plate 30, here the lower plate, are congruent with the second spacers 5 of the other plate 30, here the upper plate, then have the two adjacent plates 30 have a larger spacing with a gap dimension h 2 of the intermediate flow gap 34. The gap dimension h 2 here corresponds to the added height of the spacers 4 and 5 formed by the webs lying one on top of the other.

In seinen weiteren Merkmalen und Eigenschaften stimmt der Rotor 1 nach den Figuren 8 bis 11 mit dem Ausführungsbeispiel nach den Figuren 1 bis 3 überein, auf deren Beschreibung daher verwiesen wird.In its other features and properties, the rotor 1 agrees with the Figures 8 to 11 with the embodiment according to the Figures 1 to 3 match, so reference is made to their description.

Die Figuren 12 bis 15 zeigen den Rotor 1 in einer vierten Ausführung. Übereinstimmend mit dem zuvor beschriebenen Ausführungsbeispiel des Rotors 1 nach Figur 8 bis 11 sind auch hier die ersten und zweiten Abstandshalter 4, 5 durch an den Tellern 30 angebrachte oder angeformte, Erhöhungen ausbildende Stege gebildet.the Figures 12 to 15 show the rotor 1 in a fourth embodiment. According to the embodiment of the rotor 1 described above Figure 8 to 11 Here, too, the first and second spacers 4, 5 are formed by webs which are attached or formed on the plates 30 and form elevations.

Die die ersten Abstandshalter 4 bildenden Stege, hier drei Stück, sind oberseitig an dem Teller 30 angeordnet und die die zweiten Abstandshalter 5 bildenden Stege, ebenfalls drei Stück, sind unterseitig an dem Teller 30 angeordnet. Anders als bei dem zuvor beschriebenen Ausführungsbeispiel des Rotors 1 nach Figur 8 bis 11 sind hier die die ersten Abstandshalter 4 bildenden oberseitigen Stege deckungsgleich mit den die zweiten Abstandshalter 5 bildenden unterseitigen Stegen angeordnet. Der Winkelabstand β der drei die ersten Abstandshalter 4 bildenden Stege zueinander beträgt hier jeweils 120°. Der Winkelabstand β der drei die zweiten Abstandshalter 5 bildenden Stege beträgt hier ebenfalls jeweils 120°. Der Winkelabstand β zwischen je zwei Abstandshaltern 4, 5 entspricht hier also dem doppelten Rasterwinkelabstand α der verschiedenen relativen Verdrehpositionen des Tellers 30 zur zentralen Welle 10, in denen die beiden mittels der Eingriffskontur 21 und der Gegenkontur 31 in Eingriff miteinander bringbar sind.The webs forming the first spacer 4, here three pieces, are arranged on the upper side on the plate 30 and the webs forming the second spacer 5, also three pieces, are arranged on the underside on the plate 30. Unlike according to the embodiment of the rotor 1 described above Figure 8 to 11 Here the webs on the upper side forming the first spacers 4 are arranged congruently with the webs on the lower side forming the second spacers 5 . The angular distance β between the three webs forming the first spacers 4 is 120° in each case here. The angular spacing β of the three webs forming the second spacers 5 is also 120° here. The angular distance β between each two spacers 4, 5 corresponds here to twice the grid angle distance α of the different relative rotational positions of the plate 30 to the central shaft 10, in which the two can be brought into engagement with one another by means of the engagement contour 21 and the counter-contour 31.

Wenn, wie in Figur 14 und vergrößert in Figur 15 am Beispiel des zweiten und dritten Tellers 30 von oben dargestellt, die beiden Teller 30 in einer relativen Verdrehstellung zueinander im Tellerstapel 3 angeordnet sind, in der die ersten Abstandshalter 4 des einen, oberen Tellers 30 nicht deckungsgleich mit den zweiten Abstandshaltern 5 des anderen, unteren Tellers 30 liegen, sondern relativ zueinander um den Rasterwinkelabstand α = 60° zueinander verdreht sind, dann haben diese beiden benachbarten Teller 30 einen kleineren axialen Abstand mit einem Spaltmaß h1 des zwischenliegenden Strömungsspalts 34. Dabei entspricht das Spaltmaß h1 der Höhe der einzelnen durch die hier untereinander identischen Stege gebildeten Abstandshalter 4, 5.If, as in figure 14 and enlarged in figure 15 shown from above using the example of the second and third plates 30, the two plates 30 are arranged in a relative rotational position to one another in the plate stack 3, in which the first spacers 4 of one, upper plate 30 are not congruent with the second spacers 5 of the other, lower Plates 30 lie, but are rotated relative to each other by the grid angle distance α = 60°, then these two adjacent plates 30 have a smaller axial distance with a gap dimension h 1 of the intermediate flow gap 34. The gap dimension h 1 corresponds to the height of the individual through the spacers 4, 5, which are identical to one another here.

Wenn, wie in Figur 10 und vergrößert in Figur 11 am Beispiel des dritten und vierten Tellers 30 von oben dargestellt, die beiden Teller 30 in einer relativen Verdrehstellung zueinander im Tellerstapel 3 angeordnet sind, in der die ersten Abstandshalter 4 des einen, hier unteren Tellers 30 deckungsgleich mit den zweiten Abstandshaltern 5 des anderen, hier oberen Tellers 30 liegen, dann haben die beiden benachbarten Teller 30 einen größeren axialen Abstand mit einem Spaltmaß h2 des zwischenliegenden Strömungsspalts 34. Dabei entspricht das Spaltmaß h2 hier der addierten Höhe der aufeinanderliegenden, durch die Stege gebildeten Abstandshalter 4 und 5.If, as in figure 10 and enlarged in figure 11 shown from above using the example of the third and fourth plates 30, the two plates 30 are arranged in a relative rotational position to one another in the plate stack 3, in which the first spacers 4 of one plate 30, here the lower plate, are congruent with the second spacers 5 of the other, here the upper plate 30, then the two adjacent plates 30 have a larger axial distance with a gap dimension h 2 of the intermediate flow gap 34. The gap dimension h 2 here corresponds to the added height of the superimposed spacers 4 and 5 formed by the webs.

In seinen weiteren Merkmalen und Eigenschaften stimmt der Rotor 1 nach den Figuren 12 bis 15 mit dem Ausführungsbeispiel nach den Figuren 8 bis 11 überein, auf deren Beschreibung daher verwiesen wird.In its other features and properties, the rotor 1 agrees with the Figures 12 to 15 with the embodiment according to the Figures 8 to 11 match, so reference is made to their description.

Die Figuren 16 bis 20 zeigen Teller 30 und den Rotor 1 in einer weiteren Ausführung. Übereinstimmend mit dem zuvor beschriebenen Ausführungsbeispiel des Rotors 1 nach Figur 12 bis 15 sind auch hier die ersten und zweiten Abstandshalter 4, 5 durch an den Tellern 30 angebrachte oder angeformte, Erhöhungen ausbildende Stege gebildet.the Figures 16 to 20 show plate 30 and the rotor 1 in a further embodiment. According to the embodiment of the rotor 1 described above Figure 12 to 15 Here, too, the first and second spacers 4, 5 are formed by webs which are attached or formed on the plates 30 and form elevations.

Die die ersten Abstandshalter 4 bildenden Stege, hier drei Stück, sind oberseitig an dem Teller 30 angeordnet und die die zweiten Abstandshalter 5 bildenden Stege, ebenfalls drei Stück, sind unterseitig an dem Teller 30 angeordnet. Auch hier sind die die ersten Abstandshalter 4 bildenden oberseitigen Stege deckungsgleich mit den die zweiten Abstandshalter 5 bildenden unterseitigen Stegen angeordnet. Der Winkelabstand β der drei die ersten Abstandshalter 4 bildenden Stege zueinander beträgt hier jeweils 120°. Der Winkelabstand β der drei die zweiten Abstandshalter 5 bildenden Stege ist gleich groß und beträgt hier ebenfalls jeweils 120°.The webs forming the first spacer 4, here three pieces, are arranged on the upper side on the plate 30 and the webs forming the second spacer 5, also three pieces, are arranged on the underside on the plate 30. Here, too, the webs on the upper side forming the first spacers 4 are arranged congruently with the webs on the lower side forming the second spacers 5 . The angular distance β between the three webs forming the first spacers 4 is 120° in each case here. The angular spacing β of the three webs forming the second spacers 5 is the same and is also 120° here.

Unterschiedlich zu den zuvor beschriebenen Ausführungsbeispielen ist bei dem Beispiel nach den Figuren 16 bis 24, dass am Innenumfang der Teller 30 die Gegenkontur 31 geändert ist. Hier sind für die Gegenkontur 31 zwei einander überlagerte, in Umfangsrichtung gegeneinander um einen Versatzwinkel δ versetzten Winkelraster vorgesehen. Dabei weisen die beiden Winkelraster jeweils einen gleichmäßigen übereinstimmenden Rasterwinkelabstand α auf, hier 60°. Der Rasterwinkelabstand α kann auch einen anderen Wert aufweisen; er entspricht aber immer einem ganzzahligen Bruchteil von 360°. Der Versatzwinkel δ ist kleiner als die Hälfte des Rasterwinkelabstands a; hier beträgt der Versatzwinkel δ 15°.In contrast to the exemplary embodiments described above, the example according to FIG Figures 16 to 24 that on the inner circumference of the plate 30, the counter-contour 31 is changed. Here, for the counter-contour 31 , two angular grids are provided which are superimposed and offset relative to one another in the circumferential direction by an offset angle δ. The two angle grids each have a uniform matching grid angle distance α, here 60°. The screen angle distance α can also have a different value; however, it always corresponds to an integer fraction of 360°. The offset angle δ is less than half the screen angle distance a; here the offset angle δ is 15°.

Hiermit wird erreicht, dass die in Umfangsrichtung voneinander beabstandeten Verdrehstellungen, in denen die Eingriffskontur 21 und die Gegenkontur 31 in Eingriff miteinander bringbar sind, in zwei einander überlagerten, in Umfangsrichtung gegeneinander um den Versatzwinkel δ versetzten Winkelrastern liegen. Im Vergleich mit den zuvor beschriebenen Ausführungsbeispielen ergibt sich hier also die doppelte Anzahl von relativen Verdrehstellungen zwischen der zentralen Welle 2 und jeweils einem Teller 30, in denen deren Eingriffskontur 21 und Gegenkontur 31 in Eingriff miteinander bringbar sind.This ensures that the circumferentially spaced twisted positions, in which the engaging contour 21 and the counter-contour 31 can be brought into engagement with one another, lie in two superimposed angular grids offset in the circumferential direction by the offset angle δ. In comparison with the exemplary embodiments described above, there is twice the number of relative rotational positions between the central shaft 2 and a plate 30 in each case, in which their engagement contour 21 and counter-contour 31 can be brought into engagement with one another.

Somit können die Abstandshalter 4, 5 zweier einander im Tellerstapel 3 benachbarter Teller 30 entweder zueinander deckungsgleich positioniert werden, um einen axialen Abstand der beiden Teller 30 mit einem größeren Spaltmaß h2 zwischen ihnen herzustellen, oder in zwei verschiedenen Abständen voneinander in Umfangsrichtung jeweils in Nicht-Deckung zueinander positioniert werden, um einen axialen Abstand der beiden Teller 30 mit einem kleineren Spaltmaß h1 zwischen ihnen herzustellen.Thus, the spacers 4, 5 of two plates 30 adjacent to one another in the plate stack 3 can either be positioned congruently to one another axial distance between the two plates 30 with a larger gap h 2 between them, or positioned at two different distances from one another in the circumferential direction in non-congruent relation to one another in order to produce an axial distance between the two plates 30 with a smaller gap h 1 between them .

Bei Wahl des kleinen Spaltmaßes h1 liegen die in Umfangsrichtung einander benachbarten Abstandshalter 4, 5 zweier einander im Tellerstapel 3 axial benachbarter Teller 30 nur um den Versatzwinkel δ, im gezeigten Beispiel also um 15°, auseinander. Alternativ können die in Umfangsrichtung benachbarten Abstandshalter 4, 5 zweier einander im Tellerstapel 3 axial benachbarter Teller 30 auch um den Rasterwinkelabstand a, hier 60°, oder um einen Winkel α - δ, also hier 45°, voneinander beabstandet positioniert werden. Es wird hier also eine große Flexibilität bei der Gestaltung des Tellerstapels 3 erzielt.If the small gap h 1 is selected, the circumferentially adjacent spacers 4, 5 of two axially adjacent plates 30 in the plate stack 3 are only separated by the offset angle δ, ie by 15° in the example shown. Alternatively, the circumferentially adjacent spacers 4, 5 of two axially adjacent plates 30 in the stack of plates 3 can also be spaced apart by the grid angle distance a, here 60°, or by an angle α-δ, i.e. 45° here. Great flexibility in designing the stack of plates 3 is thus achieved here.

Wenn, wie in Figur 18 und vergrößert in den Figuren 19 und 20 jeweils am Beispiel des zweiten und dritten Tellers 30 von oben dargestellt, die beiden Teller 30 in einer relativen Verdrehstellung zueinander im Tellerstapel 3 angeordnet sind, in der die Abstandshalter 4, 5 der beiden Teller 30 nicht deckungsgleich zueinander liegen, sondern relativ zueinander außer Deckung verdreht sind, dann haben diese beiden benachbarten Teller 30 einen kleineren axialen Abstand mit einem Spaltmaß h1 des zwischenliegenden Strömungsspalts 34.If, as in figure 18 and enlarged in the Figures 19 and 20 shown from above using the example of the second and third plate 30, the two plates 30 are arranged in a relative rotated position in the stack of plates 3, in which the spacers 4, 5 of the two plates 30 are not congruent with one another, but rotated relative to one another out of alignment are, then these two adjacent plates 30 have a smaller axial distance with a gap dimension h 1 of the intermediate flow gap 34.

Wenn, wie links in Figur 18 und vergrößert in Figur 19 am Beispiel des ersten und zweiten Tellers 30 von oben dargestellt, die beiden Teller 30 in einer relativen Verdrehstellung zueinander im Tellerstapel 3 angeordnet sind, in der die ersten Abstandshalter 4 des einen, hier unteren Tellers 30 deckungsgleich mit den zweiten Abstandshaltern 5 des anderen, hier oberen Tellers 30 liegen, dann haben die beiden benachbarten Teller 30 einen größeren axialen Abstand mit einem Spaltmaß h2 des zwischenliegenden Strömungsspalts 34.If as left in figure 18 and enlarged in figure 19 shown from above using the example of the first and second plate 30, the two plates 30 are arranged in a relative rotational position to one another in the plate stack 3, in which the first spacers 4 of one plate 30, here the lower plate, are congruent with the second spacers 5 of the other, here upper plate 30, then the two adjacent plates 30 have a larger axial distance with a gap dimension h 2 of the intermediate flow gap 34.

In den Figuren 18 bis 20 sind aus Gründen der Übersichtlichkeit jeweils nur wenige Teller 30 dargestellt; in der Praxis bestehen Tellerstapel 30 aus einer wesentlich größeren, oft dreistelligen, Zahl von Tellern 30.In the Figures 18 to 20 only a few plates 30 are shown for reasons of clarity; in practice, stacks of plates 30 consist of a much larger, often three-digit, number of plates 30.

Die Figuren 21 bis 24 schließlich zeigen zwei verschiedene Ausführungen der zentralen Welle 2, jeweils im Längsschnitt und im Querschnitt.the Figures 21 to 24 finally show two different versions of the central shaft 2, each in longitudinal section and in cross section.

Bei der ersten Ausführung nach den Figuren 21 und 22 besitzt die Welle 2 auf ihrem Außenumfang als Eingriffskontur 21 zur verdrehfesten Aufnahme von Tellern 30 sechs parallel zueinander in Wellenlängsrichtung verlaufende, in Umfangsrichtung der Welle 2 gleichmäßig voneinander beabstandete, nach außen weisende Zähne.On the first execution after the Figures 21 and 22 has the shaft 2 on its outer circumference as an engagement contour 21 for torsionally receiving plates 30 six parallel to each other in the longitudinal direction of the shaft, evenly spaced from each other in the circumferential direction of the shaft 2, outwardly facing teeth.

Bei diesem ersten Beispiel der Welle 2 beträgt der Abstand der Zähne der Eingriffskontur 21 in Umfangsrichtung der Welle 2 jeweils 60°, entspricht also dem zuvor erläuterten Rasterwinkelabstand a.In this first example of the shaft 2, the distance between the teeth of the engagement contour 21 in the circumferential direction of the shaft 2 is 60° in each case, ie it corresponds to the grid angle distance a explained above.

Bei der zweiten Ausführung der Welle 2 nach den Figuren 23 und 24 besitzt die Welle 2 auf ihrem Außenumfang als Eingriffskontur 21 zur verdrehfesten Aufnahme von Tellern 30 drei parallel zueinander in Wellenlängsrichtung verlaufende, in Umfangsrichtung der Welle 2 gleichmäßig voneinander beabstandete, nach außen weisende Zähne.In the second embodiment of the shaft 2 after Figures 23 and 24 has the shaft 2 on its outer circumference as an engagement contour 21 for non-rotatably receiving plates 30 three parallel to each other in the longitudinal direction of the shaft, evenly spaced from each other in the circumferential direction of the shaft 2, outwardly facing teeth.

Bei diesem zweiten Beispiel der Welle 2 beträgt der Abstand der Zähne der Eingriffskontur 21 in Umfangsrichtung der Welle 2 jeweils 120°, entspricht also dem Zweifachen des zuvor erläuterten Rasterwinkelabstands a.In this second example of the shaft 2, the distance between the teeth of the engagement contour 21 in the circumferential direction of the shaft 2 is 120° in each case, ie it corresponds to twice the grid angle distance a explained above.

Auf die Anzahl der möglichen relativen Eingriffsstellungen von zentraler Welle 2 und Tellern 30 hat hier die Anzahl der die Eingriffskontur 21 bildenden Zähne an der Welle 2 keinen Einfluss. Die konkrete Gestaltung von Eingriffskontur 21 und Gegenkontur 31, z. B. die Anzahl und/oder Größe der die Eingriffskontur 21 der Welle 2 bildenden Zähne und der dazu passenden, die Gegenkontur 31 bildenden Ausnehmungen am Innenumfang der Teller, richtet sich insbesondere nach den im Betrieb des Rotors 1 zwischen den Tellern 30 und der Welle 2 auftretenden mechanischen Belastungen.The number of teeth forming the engagement contour 21 on the shaft 2 has no influence on the number of possible relative engagement positions of the central shaft 2 and plates 30 . The specific design of engagement contour 21 and counter-contour 31, z. B. the number and/or size of the teeth forming the engagement contour 21 of the shaft 2 and the matching recesses forming the counter-contour 31 on the inner circumference of the plates, depends in particular on the during operation of the rotor 1 between the plates 30 and the shaft 2 occurring mechanical loads.

Mit allen vorstehend beschriebenen Ausführungen der Teller 30 können mit untereinander vollkommen gleichen Tellern 30 und identischen zentralen Wellen 2 Rotoren 1 mit Tellerstapeln 30 gebildet werden, deren Teller 30 unterschiedliche axiale Abstände voneinander aufweisen und die somit unterschiedlich große Spaltmaße h für die Strömungsspalte 34 zur Verfügung stellen. Bezugszeichenliste: Zeichen Bezeichnung 1 Rotor 10 Drehachse 2 zentrale Welle 21 Eingriffskontur außen an 2 zu 31 3 Tellerstapel 30 Teller 31 Gegenkontur innen an 30 zu 21 32 Strömungsöffnungen in 30 33 radial äußerer Rand von 30 34 Strömungsspalt 4 erste Abstandshalter 5 zweite Abstandshalter h, h1, h2 Spaltmaße α Rasterwinkelabstand von 21,31 β Abstandshalterwinkelabstand δ Versatzwinkel With all the configurations of the plates 30 described above, rotors 1 with plate stacks 30 can be formed with plates 30 that are completely identical to one another and central shafts 2 that are identical, the plates 30 of which have different axial distances from one another and which therefore provide different gap dimensions h for the flow gaps 34 . <u>List of reference characters:</u> character designation 1 rotor 10 axis of rotation 2 central wave 21 Engagement contour outside on 2 to 31 3 stack of plates 30 Plate 31 Counter-contour inside at 30 to 21 32 Flow openings in 30 33 radially outer edge of 30 34 flow gap 4 first spacers 5 second spacer h, h1 , h2 gap dimensions a screen angle spacing of 21.31 β spacer angle spacing δ offset angle

Claims (17)

  1. A rotor (1) of a centrifugal separator, the rotor (1) having a central shaft (2) on which a disc stack (3) of a plurality of identical discs (30) is arranged, the shaft (2) having on its outer circumference an engagement contour (21) for a rotationally fixed, axially displaceable engagement with a corresponding contour (31) on an inner circumference of the discs (30) of the disc stack (3), the engagement contour (21) and the corresponding contour (31) capable of being brought into engagement with one another in a plurality of circumferentially spaced-apart rotational positions, and each disc (30) having spacers (4, 5) spaced apart from one another in the circumferential direction of the disc, the spacers keeping each of two adjacent discs (30) at an axial spacing from one another to form an intermediate flow gap (34) with a predeterminable gap dimension (h), characterized in that,
    the spacers (4, 5) of the discs (30) are designed and arranged in such a way that at least two different axial spacings with different gap dimensions (h1, h2) of the flow gap (34) between the adjacent discs (30) can be set with different rotational positions of adjacent discs (30) relative to one another in the disc stack (3) and
    the circumferentially spaced-apart rotational positions in which the engagement contour (21) and the corresponding contour (31) can be brought into engagement with one another are located in two superimposed angular grids, offset against one another in circumferential direction by an offset angle (δ), wherein the two angular grids each have a uniform corresponding grid angle spacing (α), wherein the grid angle spacing (α) corresponds to an integral fraction of 360° and wherein the offset angle ( δ ) is smaller than half the grid angle spacing (α) .
  2. A rotor according to claim 1, characterized in that each disc (30) has first and second spacers (4, 5) and that the first and second spacers (4, 5) differ by their height and/or by their radial position on the disc (30).
  3. A rotor according to claim 2, characterized in that the first and second spacers (4, 5) are formed by two different humps or corrugations formed or embossed into the discs (30), each forming a projection on one disc side and a depression on the other disc side.
  4. A rotor according to claim 3, characterized in that the spacers (4, 5) spaced apart from one another in circumferential direction of the disc (30) are each formed as individual humps or as radially extending row of each a plurality of humps.
  5. A rotor according to claim 1, characterized in that each disc (30) has first and second spacers (4,5) and that the first and second spacers (4, 5) are formed on the discs (30) by mounted or formed ridges or nubs that form projections.
  6. A rotor according to claim 5, characterized in that the ridges or nubs forming the first spacers (4) are arranged on the upper side of the disc (30), that the ridges or nubs forming the second spacers (5) are arranged on the lower side of the disc (30), and that the ridges or nubs forming the first spacers (4) are offset relatively against the ridges or nubs forming the second spacers (5) in the circumferential direction of the disc (30).
  7. A rotor according to claim 5, characterized in that the ridges or nubs forming the first spacers (4) are arranged on the upper side of the disc (30), that the ridges or nubs forming the second spacers (5) are arranged on the lower side of the disc (30), that the ridges or nubs forming the first spacers (4) are arranged congruently with the ridges or nubs forming the second spacers (5), and in that the angular spacing (β) of the spacers (4, 5) spaced apart from one another in circumferential direction of the discs (30) corresponds to twice the grid angle spacing (α) .
  8. A rotor according to any of claims 5 to 7, characterized in that the ridges or nubs forming the first spacers (4) and arranged on the upper side of the disc (30) and the ridges or nubs forming the second spacers (5) and arranged on the lower side of the disc (30) are identical to one another.
  9. A rotor according to any of claims 1 to 8, characterized in that within the disc stack (3) of a first rotor embodiment all discs (30) have a first, smaller axial spacing from one other with a smaller gap dimension (h1) and that within the disc stack (3) of a second rotor embodiment with discs (30) identical to the first rotor embodiment all discs (30) have a second, larger axial spacing from one other with a larger gap dimension (h2).
  10. A rotor according to any of claims 1 to 8, characterized in that the discs (30) within the disc stack (3) of the rotor (1) have different axial spacings.
  11. A rotor according to claim 10, characterized in that the discs (30) within the disc stack (3) of the rotor (1) have a smaller axial spacing from one other with a smaller gap dimension (h1) in a region of the rotor (1) close to the inflow and a larger axial spacing from one other with a larger gap dimension (h2) in a region of the rotor (1) remote from the inflow.
  12. A rotor according to any of claims 1 to 11, characterized in that the engagement contour (21) and the corresponding contour (31) can be brought into engagement with one another in two to sixteen, preferably six to twelve, rotational positions spaced apart from one another in circumferential direction of the central shaft (2) and the disc (30).
  13. A rotor according to any of claims 1 to 12, characterized in that the discs (30) are press-stamped parts made of sheet metal or injection-molded parts made of plastic.
  14. A rotor according to any of claims 1 to 13, characterized in that the engagement contour (21) on the outer circumference of the shaft (2) is formed by a number of n teeth extending in the longitudinal direction of the shaft (2) and projecting radially outward, and that the corresponding contour (31) on the inner circumference of the discs (30) is formed by a number of n or 2 x n recesses matching the teeth and pointing radially outward.
  15. A rotor according to claim 14, characterized in that the number n is between 2 and 8, preferably 3 to 6.
  16. A centrifugal separator, characterized in that it comprises a rotor (1) according to any of claims 1 to 15.
  17. A centrifugal separator according to claim 16, characterized in that it is an oil mist separator for the crankcase ventilation gas of an internal combustion engine.
EP19714111.2A 2018-03-12 2019-03-11 Rotor for a centrifugal separator and centrifugal separator Active EP3765201B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018105586.2A DE102018105586A1 (en) 2018-03-12 2018-03-12 Rotor of a centrifugal separator and centrifugal separator
PCT/EP2019/055958 WO2019175077A1 (en) 2018-03-12 2019-03-11 Rotor for a centrifugal separator and centrifugal separator

Publications (2)

Publication Number Publication Date
EP3765201A1 EP3765201A1 (en) 2021-01-20
EP3765201B1 true EP3765201B1 (en) 2022-03-09

Family

ID=65955167

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19714111.2A Active EP3765201B1 (en) 2018-03-12 2019-03-11 Rotor for a centrifugal separator and centrifugal separator

Country Status (5)

Country Link
US (1) US11453015B2 (en)
EP (1) EP3765201B1 (en)
CN (1) CN112203773B (en)
DE (1) DE102018105586A1 (en)
WO (1) WO2019175077A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019120023A1 (en) * 2019-07-24 2021-01-28 Hengst Se Separator plate for an oil mist separator and an oil mist separator
CN114315081B (en) * 2022-03-10 2022-06-17 定州市四丰环保科技有限公司 Roller of solid-liquid separator and solid-liquid separator
CN117181459B (en) * 2023-11-06 2024-02-02 江苏赛德力制药机械制造有限公司 Double-cone disc combined type horizontal decanter centrifuge with adjustable disc number

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US779099A (en) * 1903-07-20 1905-01-03 Gustaf T Rennerfelt Centrifugal cream-separator.
SE316422B (en) * 1964-04-14 1969-10-20 Ceskoslovenska Akademie Ved
JPS5775164A (en) * 1980-10-29 1982-05-11 Toshiba Corp Centrifugal clarifier
DE19705704C1 (en) * 1997-02-14 1998-07-02 Suedmo Schleicher Ag Centrifuge-drum plate
DE102004042888A1 (en) * 2004-09-04 2006-03-23 Westfalia Separator Ag Self-draining separator with disc package
EP2015871B1 (en) * 2006-05-11 2017-04-26 GEA Mechanical Equipment GmbH Three-phase separator comprising a skimming disc and solid discharge orifices
SE532500C2 (en) * 2008-07-16 2010-02-09 Alfa Laval Corp Ab Centrifugal separator
SE532912C2 (en) 2008-09-30 2010-05-04 Alfa Laval Corp Ab Separation disc for a centrifuge rotor and disc package
SE532914C2 (en) 2008-09-30 2010-05-04 Alfa Laval Corp Ab Disc package for a centrifuge rotor
SE532915C2 (en) * 2008-09-30 2010-05-04 Alfa Laval Corp Ab Centrifuge rotor disk package
SE536671C2 (en) * 2012-04-23 2014-05-13 3Nine Ab Tapered disc elements for a rotor for centrifugal separators and rotors containing such disc elements
EP3178565B1 (en) * 2012-05-14 2018-06-27 Alfa Laval Corporate AB Disc stack for centrifugal separator
JP6286530B2 (en) * 2014-03-27 2018-02-28 東京濾器株式会社 Oil separator
DE102015119616A1 (en) 2015-11-13 2017-05-18 Hengst Se & Co. Kg Rotor of a centrifugal separator

Also Published As

Publication number Publication date
US20210046490A1 (en) 2021-02-18
CN112203773B (en) 2022-05-17
DE102018105586A1 (en) 2019-09-12
WO2019175077A1 (en) 2019-09-19
CN112203773A (en) 2021-01-08
EP3765201A1 (en) 2021-01-20
US11453015B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
EP3765201B1 (en) Rotor for a centrifugal separator and centrifugal separator
EP3374085B1 (en) Rotor of a centrifugal separator
DE2333426C3 (en) Disc carrier drum, in particular for gear clutches and brakes
DE202007010399U1 (en) Cutting blade and rotating cutter assembly for shredder
WO2012117033A1 (en) Die stock
EP2963318B1 (en) Brush seal
DE2750334C2 (en)
DE2608213A1 (en) FLEXIBLE MAGNETIC DISKS CONTAINING MAGNETIC DISC STACK OF A MAGNETIC DISK STORAGE
DE2544379B2 (en) Fan rotor for a cross-flow fan
EP3463731B1 (en) Cutting insert for a milling tool and milling tool
DE3329525C2 (en)
EP3033532B1 (en) Connecting element, use and method
DE10301707B4 (en) Viscosity torsional vibration damper with cooling channels
DE102010049558A1 (en) Pendulum mass for centrifugal force pendulum device in drive train of motor vehicle, has outer side and inner side comprising identical contours, and arcs with identical radius, where mass is attached to pendulum mass carrier device
EP2253242A1 (en) Brush disc for a floor cleaning machine
DE102008049429A1 (en) Modular spacer for a damper
DE202012002545U1 (en) cutting tool
DE102015210864B4 (en) clutch assembly
DE19911628A1 (en) Prodn. of padding material esp. for packing purposes of inherently stiff flat material such as cardboard or similar by separating flat material in strip sections which remain connected with each other
WO2007003235A1 (en) Fastening sleeve
WO2019200418A1 (en) Clutch disk
EP1403147A2 (en) Assembly of gas generator and generator holder
DE202019002530U1 (en) Press-in element, arrangement and device
DE102023001661B3 (en) Knife shaft for a cutting unit of a cutting device
EP2765361B1 (en) Method for cladding a panel radiator

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1473679

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003675

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220709

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003675

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220311

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220311

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

26N No opposition filed

Effective date: 20221212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230228

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230419

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230311

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502019003675

Country of ref document: DE

Representative=s name: SCHULZE HORN, KATHRIN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309