EP3764318A1 - Systems and methods for three dimensional geometric reconstruction of captured image data - Google Patents
Systems and methods for three dimensional geometric reconstruction of captured image data Download PDFInfo
- Publication number
- EP3764318A1 EP3764318A1 EP20194730.6A EP20194730A EP3764318A1 EP 3764318 A1 EP3764318 A1 EP 3764318A1 EP 20194730 A EP20194730 A EP 20194730A EP 3764318 A1 EP3764318 A1 EP 3764318A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tetragon
- image
- document
- pixels
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 110
- 238000012545 processing Methods 0.000 claims abstract description 67
- 238000004590 computer program Methods 0.000 claims abstract description 9
- 238000004458 analytical method Methods 0.000 claims description 112
- 238000004422 calculation algorithm Methods 0.000 claims description 65
- 230000000694 effects Effects 0.000 claims description 40
- 238000009826 distribution Methods 0.000 claims description 37
- 239000011159 matrix material Substances 0.000 claims description 36
- 230000009021 linear effect Effects 0.000 claims description 28
- 230000001131 transforming effect Effects 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 abstract description 11
- 238000013459 approach Methods 0.000 description 92
- 238000012937 correction Methods 0.000 description 23
- 238000001514 detection method Methods 0.000 description 23
- 238000012360 testing method Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 17
- 230000008569 process Effects 0.000 description 10
- 238000005286 illumination Methods 0.000 description 9
- 239000013598 vector Substances 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 6
- 238000003708 edge detection Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000003908 quality control method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229940050561 matrix product Drugs 0.000 description 2
- 238000013442 quality metrics Methods 0.000 description 2
- 238000012952 Resampling Methods 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011496 digital image analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/80—Geometric correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/14—Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30176—Document
Definitions
- the present invention relates to digital image data capture and processing, and more particularly to rectifying image artifacts caused by distortional effects inherent to capturing an image using a camera.
- Digital images having depicted therein a document such as a letter, a check, a bill, an invoice, etc. have conventionally been captured and processed using a scanner or multifunction peripheral coupled to a computer workstation such as a laptop or desktop computer.
- a scanner or multifunction peripheral coupled to a computer workstation such as a laptop or desktop computer.
- a major challenge in transitioning conventional document capture and processing techniques is the limited processing power and image resolution achievable using hardware currently available in mobile devices. These limitations present a significant challenge because it is impossible or impractical to process images captured at resolutions typically much lower than achievable by a conventional scanner. As a result, conventional scanner-based processing algorithms typically perform poorly on digital images captured using a mobile device.
- a still further challenge is presented by the nature of mobile capture components (e.g. cameras on mobile phones, tablets, etc.). Where conventional scanners are capable of faithfully representing the physical document in a digital image, critically maintaining aspect ratio, dimensions, and shape of the physical document in the digital image, mobile capture components are frequently incapable of producing such results.
- mobile capture components e.g. cameras on mobile phones, tablets, etc.
- images of documents captured by a camera present a new line of processing issues not encountered when dealing with images captured by a scanner. This is in part due to the inherent differences in the way the document image is acquired, as well as the way the devices are constructed.
- the way that some scanners work is to use a transport mechanism that creates a relative movement between paper and a linear array of sensors. These sensors create pixel values of the document as it moves by, and the sequence of these captured pixel values forms an image. Accordingly, there is generally a horizontal or vertical consistency up to the noise in the sensor itself, and it is the same sensor that provides all the pixels in the line.
- cameras have many more sensors in a nonlinear array, e.g., typically arranged in a rectangle. Thus, all of these individual sensors are independent, and render image data that is not typically of horizontal or vertical consistency.
- cameras introduce a projective effect that is a function of the angle at which the picture is taken. For example, with a linear array like in a scanner, even if the transport of the paper is not perfectly orthogonal to the alignment of sensors and some skew is introduced, there is no projective effect like in a camera. Additionally, with camera capture, nonlinear distortions may be introduced because of the camera optics.
- a method of reconstructing a digital image includes: receiving the digital image comprising a digital representation of an object bounded by a tetragon; correcting curvature in the tetragon to form a quadrilateral; and correcting projective effects in the quadrilateral to form a rectangle.
- a system includes a processor configured to execute logic; and logic configured to receive a digital image comprising a digital representation of an object bounded by a tetragon; logic configured to correct curvature in the tetragon to form a quadrilateral; and logic configured to correct projective effects in the quadrilateral to form a rectangle.
- a computer program product includes a computer readable storage medium having computer readable program code stored thereon.
- the computer readable program code includes code configured to receive a digital image comprising a digital representation of an object bounded by a tetragon; code configured to correct curvature in the tetragon to form a quadrilateral; and code configured to correct projective effects in the quadrilateral to form a rectangle.
- the present application refers to image processing.
- the present application discloses systems, methods, and computer program products configured to transform objects depicted in digital images from a non-rectangular shape to a substantially rectangular shape, or preferably a rectangular shape. Even more preferably, this is accomplished by employing a two-step process where curvature in the object is corrected first, followed by correction of any projective effects in the image.
- a quadrilateral is a four-sided figure where (1) each side is linear, and (2) adjacent sides form vertices at the intersection thereof. Exemplary quadrilaterals are depicted in FIGS. 6C and 6D below, according to two illustrative embodiments.
- a "parallelogram” is a special type of quadrilateral, i.e. a four-sided figure where (1) each side is linear, (2) opposite sides are parallel, and (3) adjacent sides are not necessarily perpendicular, such that vertices at the intersection of adjacent sides form angles having values that are not necessarily 90°.
- a “rectangle” or “rectangular shape” is a special type of quadrilateral, which is defined as a four-sided figure, where (1) each side is linear,(2) opposite sides are parallel, and (3) adjacent sides are perpendicular, such that an interior angle formed at the vertex between each pair of adjacent sides is a right-angle, i.e. a 90° angle.
- An exemplary rectangle is depicted in FIG. 6B , according to one illustrative embodiment.
- ⁇ satisfies the relationship: 85° ⁇ ⁇ ⁇ 95°)) at either (a) a vertex between two adjacent sides, (b) a vertex between a projection of the predominantly linear portion of one side and an adjacent side, or (c) a vertex between a projection of the predominantly linear portion of one side and a projection of the predominantly linear portion of an adjacent side.
- An exemplary "substantially rectangular shape" is depicted below in FIG. 7 (note the corners of the depicted driver license are curved, such that there is no discrete vertex formed by the respective adjacent sides, but a projection of each adjacent side would produce a vertex at the intersection thereof having an angle ⁇ of approximately 90°).
- a “non-rectangular shape” as referred to herein includes any shape that is not either a “rectangular shape” or a “substantially rectangular shape” as defined above.
- a “non-rectangular shape” is a "tetragon,” which as referred to herein is a four-sided figure, where: (1) each side is characterized in whole or in part by an equation selected from a chosen class of functions (e.g. selected from a class of polynomials preferably ranging from zeroth order to fifth order, more preferably first order to third order polynomials, and even more preferably first order to second order polynomials), and (2) adjacent sides of the figure form vertices at the intersection thereof.
- An exemplary tetragon as referred to herein is depicted in FIG. 4 , according to one illustrative embodiment
- a method of reconstructing a digital image includes: receiving the digital image comprising a digital representation of an object bounded by a tetragon; correcting curvature in the tetragon to form a quadrilateral; and correcting projective effects in the quadrilateral to form a rectangle.
- a system in another general embodiment, includes a processor configured to execute logic; and logic configured to receive a digital image comprising a digital representation of an object bounded by a tetragon; logic configured to correct curvature in the tetragon to form a quadrilateral; and logic configured to correct projective effects in the quadrilateral to form a rectangle.
- a computer program product includes a computer readable storage medium having computer readable program code stored thereon.
- the computer readable program code includes code configured to receive a digital image comprising a digital representation of an object bounded by a tetragon; code configured to correct curvature in the tetragon to form a quadrilateral; and code configured to correct projective effects in the quadrilateral to form a rectangle.
- the curvature-correction component corrects the curvature by mapping the curved tetragon bounding the object to a tetragon with the same corners but having straight sides (i.e. characterized by linear, or first-degree polynomials).
- this (now straight-sided) tetragon is mapped to a target rectangle using a 4-point method such as described below.
- this dual procedure affects only the two-step mapping of the coordinates, while the actual transformation of the image happens only once. Since most of the processing time is spend manipulating two large images in memory and combining the four pixels surrounding a non-integer (x, y) coordinates pair rather than calculating the correct coordinates by whatever method, the dual method is only about 3% more expensive than the original with respect to computational cost and therefore runtime, despite improved accuracy in terms of relative pixel location in the reconstructed image as compared to a corresponding image obtained from a traditional flatbed scanner or similar device.
- the dual method reduces the coordinate error (measured as the largest distance from the rectangularized pixel to the same pixel in a scanned image of the same document in the same resolution) by about 3x relative to the error of the coordinate-based method alone.
- the residual error was about 5 pixels in a 500-DPI resolution, or about one hundredth of an inch.
- Images are preferably digital images captured by cameras, especially cameras of mobile devices.
- a mobile device is any device capable of receiving data without having power supplied via a physical connection (e.g. wire, cord, cable, etc.) and capable of receiving data without a physical data connection (e.g. wire, cord, cable, etc.).
- Mobile devices within the scope of the present disclosures include exemplary devices such as a mobile telephone, smartphone, tablet, personal digital assistant, iPod®, iPad®, BLACKBERRY® device, etc.
- the presently disclosed mobile image processing algorithms can be applied, sometimes with certain modifications, to images coming from scanners and multifunction peripherals (MFPs).
- images processed using the presently disclosed processing algorithms may be further processed using conventional scanner processing algorithms, in some approaches.
- an image may be captured by a camera of a mobile device.
- the term "camera” should be broadly interpreted to include any type of device capable of capturing an image of a physical object external to the device, such as a piece of paper.
- the term “camera” does not encompass a peripheral scanner or multifunction device. Any type of camera may be used. Preferred embodiments may use cameras having a higher resolution, e.g. 8 MP or more, ideally 12 MP or more.
- the image may be captured in color, grayscale, black and white, or with any other known optical effect.
- image as referred to herein is meant to encompass any type of data corresponding to the output of the camera, including raw data, processed data, etc.
- various embodiments of the invention discussed herein are implemented using the Internet as a means of communicating among a plurality of computer systems.
- One skilled in the art will recognize that the present invention is not limited to the use of the Internet as a communication medium and that alternative methods of the invention may accommodate the use of a private intranet, a Local Area Network (LAN), a Wide Area Network (WAN) or other means of communication.
- LAN Local Area Network
- WAN Wide Area Network
- various combinations of wired, wireless (e.g., radio frequency) and optical communication links may be utilized.
- the program environment in which one embodiment of the invention may be executed illustratively incorporates one or more general-purpose computers or special-purpose devices such hand-held computers. Details of such devices (e.g., processor, memory, data storage, input and output devices) are well known and are omitted for the sake of clarity.
- the techniques of the present invention might be implemented using a variety of technologies.
- the methods described herein may be implemented in software running on a computer system, or implemented in hardware utilizing one or more processors and logic (hardware and/or software) for performing operations of the method, application specific integrated circuits, programmable logic devices such as Field Programmable Gate Arrays (FPGAs), and/or various combinations thereof.
- FPGAs Field Programmable Gate Arrays
- methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium such as a physical (e.g., non-transitory) computer-readable medium.
- a storage medium such as a physical (e.g., non-transitory) computer-readable medium.
- specific embodiments of the invention may employ object-oriented software programming concepts, the invention is not so limited and is easily adapted to employ other forms of directing the operation of a computer.
- the invention can also be provided in the form of a computer program product comprising a computer readable storage or signal medium having computer code thereon, which may be executed by a computing device (e.g., a processor) and/or system.
- a computer readable storage medium can include any medium capable of storing computer code thereon for use by a computing device or system, including optical media such as read only and writeable CD and DVD, magnetic memory or medium (e.g., hard disk drive, tape), semiconductor memory (e.g., FLASH memory and other portable memory cards, etc.), firmware encoded in a chip, etc.
- a computer readable signal medium is one that does not fit within the aforementioned storage medium class.
- illustrative computer readable signal media communicate or otherwise transfer transitory signals within a system, between systems e.g., via a physical or virtual network, etc.
- FIG. 1 illustrates an architecture 100, in accordance with one embodiment.
- a plurality of remote networks 102 are provided including a first remote network 104 and a second remote network 106.
- a gateway 101 may be coupled between the remote networks 102 and a proximate network 108.
- the networks 104, 106 may each take any form including, but not limited to a LAN, a WAN such as the Internet, public switched telephone network (PSTN), internal telephone network, etc.
- PSTN public switched telephone network
- the gateway 101 serves as an entrance point from the remote networks 102 to the proximate network 108.
- the gateway 101 may function as a router, which is capable of directing a given packet of data that arrives at the gateway 101, and a switch, which furnishes the actual path in and out of the gateway 101 for a given packet.
- At least one data server 114 coupled to the proximate network 108, and which is accessible from the remote networks 102 via the gateway 101.
- the data server(s) 114 may include any type of computing device/groupware. Coupled to each data server 114 is a plurality of user devices 116. Such user devices 116 may include a desktop computer, laptop computer, hand-held computer, printer or any other type of logic. It should be noted that a user device 111 may also be directly coupled to any of the networks, in one embodiment.
- a peripheral 120 or series of peripherals 120 may be coupled to one or more of the networks 104,106, 108.
- databases, servers, and/or additional components may be utilized with, or integrated into, any type of network element coupled to the networks 104, 106, 108.
- a network element may refer to any component of a network.
- methods and systems described herein may be implemented with and/or on virtual systems and/or systems which emulate one or more other systems, such as a UNIX system which emulates a MAC OS environment, a UNIX system which virtually hosts a MICROSOFT WINDOWS environment, a MICROSOFT WINDOWS system which emulates a MAC OS environment, etc.
- This virtualization and/or emulation may be enhanced through the use of VMWARE software, in some embodiments.
- one or more networks 104, 106, 108 may represent a cluster of systems commonly referred to as a "cloud.”
- cloud computing shared resources, such as processing power, peripherals, software, data processing and/or storage, servers, etc., are provided to any system in the cloud, preferably in an on-demand relationship, thereby allowing access and distribution of services across many computing systems.
- Cloud computing typically involves an Internet or other high speed connection (e.g., 4G LTE, fiber optic, etc.) between the systems operating in the cloud, but other techniques of connecting the systems may also be used.
- FIG. 1 illustrates an architecture 100, in accordance with one embodiment
- a plurality of remote networks 102 are provided including a first remote network 104 and a second remote network 106.
- a gateway 101 may be coupled between the remote networks 102 and a proximate network 108.
- the networks 104, 106 may each take any form including, but not limited to a LAN, a WAN such as the Internet, public switched telephone network (PSTN), internal telephone network, etc.
- PSTN public switched telephone network
- the gateway 101 serves as an entrance point from the remote networks 102 to the proximate network 108.
- the gateway 101 may function as a router, which is capable of directing a given packet of data that arrives at the gateway 101, and a switch, which furnishes the actual path in and out of the gateway 101 for a given packet.
- At least one data server 114 coupled to the proximate network 108, and which is accessible from the remote networks 102 via the gateway 101.
- the data server(s) 114 may include any type of computing device/groupware. Coupled to each data server 114 is a plurality of user devices 116. Such user devices 116 may include a desktop computer, lap-top computer, hand-held computer, printer or any other type of logic. It should be noted that a user device 111 may also be directly coupled to any of the networks, in one embodiment.
- a peripheral 120 or series of peripherals 120 may be coupled to one or more of the networks 104, 106, 108. It should be noted that databases and/or additional components may be utilized with, or integrated into, any type of network element coupled to the networks 104, 106, 108. In the context of the present description, a network element may refer to any component of a network.
- methods and systems described herein may be implemented with and/or on virtual systems and/or systems which emulate one or more other systems, such as a UNIX system which emulates a MAC OS environment, a UNIX system which virtually hosts a MICROSOFT WINDOWS environment, a MICROSOFT WINDOWS system which emulates a MAC OS environment, etc.
- This virtualization and/or emulation may be enhanced through the use of VMWARE software, in some embodiments.
- one or more networks 104,106,108 may represent a cluster of systems commonly referred to as a "cloud.”
- cloud computing shared resources, such as processing power, peripherals, software, data processing and/or storage, servers, etc., are provided to any system in the cloud, preferably in an on-demand relationship, thereby allowing access and distribution of services across many computing systems.
- Cloud computing typically involves an Internet or other high speed connection (e.g., 4G LTE, fiber optic, etc.) between the systems operating in the cloud, but other techniques of connecting the systems may also be used.
- FIG. 2 shows a representative hardware environment associated with a user device 116 and/or server 114 of FIG. 1 , in accordance with one embodiment.
- Such figure illustrates a typical hardware configuration of a workstation having a central processing unit 210, such as a microprocessor, and a number of other units interconnected via a system bus 212.
- a central processing unit 210 such as a microprocessor
- the workstation shown in FIG. 2 includes a Random Access Memory (RAM) 214, Read Only Memory (ROM) 216, an I/O adapter 218 for connecting peripheral devices such as disk storage units 220 to the bus 212, a user interface adapter 222 for connecting a keyboard 224, a mouse 226, a speaker 228, a microphone 232, and/or other user interface devices such as a touch screen and a digital camera (not shown) to the bus 212, communication adapter 234 for connecting the workstation to a communication network 235 (e.g., a data processing network) and a display adapter 236 for connecting the bus 212 to a display device 238.
- a communication network 235 e.g., a data processing network
- display adapter 236 for connecting the bus 212 to a display device 238.
- the workstation may have resident thereon an operating system such as the Microsoft Windows® Operating System (OS), a MAC OS, a UNIX OS, etc. It will be appreciated that a preferred embodiment may also be implemented on platforms and operating systems other than those mentioned.
- OS Microsoft Windows® Operating System
- a preferred embodiment may be written using JAVA, XML, C, and/or C++ language, or other programming languages, along with an object oriented programming methodology.
- Object oriented programming (OOP) which has become increasingly used to develop complex applications, may be used.
- An application may be installed on the mobile device, e.g., stored in a nonvolatile memory of the device.
- the application includes instructions to perform processing of an image on the mobile device.
- the application includes instructions to send the image to one or more non-mobile devices, e.g. a remote server such as a network server, a remote workstation, a cloud computing environment, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- the application may include instructions to decide whether to perform some or all processing on the mobile device and/or send the image to the remote site. Examples of how an image may be processed are presented in more detail below.
- a remote server may have higher processing power, more capabilities, more processing algorithms, etc.
- the mobile device may have no image processing capability associated with the application, other than that required to send the image to the remote server.
- the remote server may have no image processing capability relevant to the platforms presented herein, other than that required to receive the processed image from the remote server. Accordingly, the image may be processed partially or entirely on the mobile device, and/or partially or entirely on a remote server, and/or partially or entirely in a cloud, and/or partially or entirely in any part of the overall architecture in between. Moreover, some processing steps may be duplicated on different devices.
- Which device performs which parts of the processing may be defined by a user, may be predetermined, may be determined on the fly, etc. Moreover, some processing steps may be re-performed, e.g., upon receiving a request from the user. Accordingly, the raw image data, partially processed image data, or fully processed image data may be transmitted from the mobile device, e.g., using a wireless data network, to a remote system. Image data as processed at a remote system may be returned to the mobile device for output and/or further processing.
- the image may be partitioned, and the processing of the various parts may be allocated to various devices, e.g., 1/2 to the mobile device and 1/2 to the remote server, after which the processed halves are combined.
- selection of which device performs the processing may be based at least in part on a relative speed of processing locally on the mobile device vs. communication with the server.
- a library of processing functions may be present, and the application on the mobile device or the application on a remote server simply makes calls to this library, and essentially the meaning of the calls defines what kind of processing to perform. The device then performs that processing and outputs the processed image, perhaps with some corresponding metadata.
- the camera can be considered an area sensor that captures images, where the images may have any number of projective effects, and sometimes non-linear effects.
- the image may be processed to correct for such effects.
- the position and boundaries of the document(s) in the image may be found during the processing, e.g., the boundaries of one or more actual pages of paper in the background surrounding the page(s). Because of the mobile nature of various embodiments, the sheet of paper may be lying on just about anything.
- the non-uniformity of the background of the surface on which the piece of paper may be positioned for capture by the camera presents one challenge, and the non-linear and projective effects present additional challenges.
- Various embodiments overcome these challenges, as will soon become apparent.
- an application on the mobile device may be initiated, e.g., in response to a user request to open the application. For example, a user-selection of an icon representing the application may be detected.
- a user authentication may be requested and/or performed. For example, a user ID and password, or any other authentication information, may be requested and/or received from the user.
- various tasks may be enabled via a graphical user interface of the application. For example, a list of tasks may be presented. In such case, a selection of one of the tasks by the user may be detected, and additional options may be presented to the user, a predefined task may be initiated, the camera may be initiated, etc.
- An image may be captured by the camera of the mobile device, preferably upon receiving some type of user input such as detecting a tap on a screen of the mobile device, depression of a button on the mobile device, a voice command, a gesture, etc.
- Another possible scenario may involve some level of analysis of sequential frames, e.g. from a video stream. Sequential frame analysis may be followed by a switch to capturing a single high-resolution image frame, which may be triggered automatically or by a user, in some approaches.
- the trigger may be based on information received from one or more mobile device sensors.
- an accelerometer in or coupled to the mobile device may indicate a stability of the camera, and the application may analyze low-resolution video frame(s) for a document. If a document is detected, the application may perform a focusing operation and acquire a high-resolution image of the detected document.
- Either the low- or high-resolution image may be further processed, but preferred embodiments utilize the high-resolution image for subsequent processing.
- switching to single frame mode as discussed above may be unnecessary, particularly for smaller documents such as business cards and receipts.
- document type identification may facilitate determining whether or not to switch to single frame mode and/or capture a high-resolution image for processing. For the present discussion, assume an image of one or more documents is captured
- one approach performs some limited processing on the mobile device, for example to let the user verify that the page(s) has been found correctly, that the image is not blurred, and/or that the lighting is adequate, e.g., a preview of sorts.
- the document(s) within the image captured by the camera may be found.
- one embodiment performs a smooth transformation in order to make the page(s) rectangular, assuming of course the original piece of paper was rectangular.
- Another useful correction to the image may be mitigation of the unevenness of the illumination.
- page detection and rectangularization may be performed substantially as described below.
- FIGS. 3A-4 One exemplary embodiment illustrating an exemplary methodology for performing page detection will now be described with reference to FIGS. 3A-4 . With reference to these descriptions, it will become more clear how the advantages implemented for a mobile processing algorithm as described herein handle images captured by area sensors (cameras) and compensate for the inherent difficulties presented thereby.
- an edge detection algorithm proceeds from the boundaries of a digital image 300 toward a central region of the image 300, looking for points that are sufficiently different from what is known about the properties of the background.
- the background 304 in the images captured by even the same mobile device may be different every time, so a new technique to identify the document(s) in the image is provided.
- Finding page edges within a camera-captured image helps to accommodate important differences in the properties of images captured using mobile devices as opposed, e.g., to scanners. For example, due to projective effects the image of a rectangular document in a photograph may not appear truly rectangular, and opposite sides of the document in the image may not have the same length. Second, even the best lenses have some non-linearity resulting in straight lines within an object, e.g. straight sides of a substantially rectangular document, appearing slightly curved in the captured image of that object. Third, images captured using cameras overwhelmingly tend to introduce uneven illumination effects in the captured image. This unevenness of illumination makes even a perfectly uniform background of the surface against which a document may be placed appear in the image with varied brightness, and often with shadows, especially around the page edges if the page is not perfectly flat.
- the current algorithm utilizes one or more of the following functionalities.
- the frame of the image contains the digital representation of the document 302 with margins of the surrounding background 304.
- the search for individual page edges 306 may be performed on a step-over approach analyzing rows and columns of the image from outside in.
- the step-over approach may define a plurality of analysis windows 308 within the digital image 300, such as shown in FIGS 3A-3B .
- analysis windows 308 may include one or more "background windows,” i.e. windows encompassing only pixels depicting the background 304 of the digital image 300, as well as one or more "test windows” i.e. windows encompassing pixels depicting the background 304 of the digital image 300, the digital representation of the document 302, or both.
- the digital representation of the document may be detected in the digital image by defining a first analysis window 308, i.e. a background analysis window, in a margin of the image corresponding to the background 304 of the surface upon which the document is placed.
- a plurality of small analysis windows e.g. test windows 312 as shown in FIG. 3D
- one or more distributions of one or more statistical properties descriptive of the background 304 may be estimated.
- a next step in detecting boundaries of the digital representation of the document may include defining a plurality of test windows 312 within the digital image, and analyzing the corresponding regions of the digital image. For each test window 312 one or more statistical values descriptive of the corresponding region of the image may be calculated. Further, these statistical values may be compared to a corresponding distribution of statistics descriptive of the background 304.
- the plurality of test windows 312 may be defined along a path, particularly a linear path. In a particularly preferred approach, the plurality of test windows 312 may be defined in a horizontal direction and/or a vertical direction, e.g. along rows and columns of the digital image. Moreover, a stepwise progression may be employed to define the test windows 312 along the path and/or between the rows and/or columns. In some embodiments, as will be appreciated by one having ordinary skill in the art upon reading the present descriptions, utilizing a stepwise progression may advantageously increase the computational efficiency of document detection processes.
- the magnitude of the starting step may be estimated based on the resolution or pixel size of the image, in some embodiments, but this step may be reduced if advantageous for reliable detection of document sides, as discussed further below.
- the algorithm estimates the distribution of several statistics descriptive of the image properties found in a large analysis window 308 placed within the background surrounding the document.
- a plurality of small windows 312 may be defined within the large analysis window 308, and distributions of statistics descriptive of the small test windows 312 may be estimated.
- large analysis window 308 is defined in a background region of the digital image, such as a top-left corner of the image.
- Statistics descriptive of the background pixels may include any statistical value that may be generated from digital image data, such as a minimum value, a maximum value, a median value, a mean value, a spread or range of values, a variance, a standard deviation, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. Values may be sampled from any data descriptive of the digital image 300, such as brightness values in one or more color channels, e.g. red-green-blue or RGB, cyan-magenta, yellow, black or CMYK, hue saturation value or HSV, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- each of the small analysis windows 312 may comprise a subset of the plurality of pixels within the large analysis window 308.
- small analysis windows 312 may be of any size and/or shape capable of fitting within the boundaries of large analysis window 308.
- small analysis windows 312 may be characterized by a rectangular shape, and even more preferably a rectangle characterized by being three pixels long in a first direction (e.g. height) and seven pixels long in a second direction (e.g. width).
- first direction e.g. height
- second direction e.g. width
- other small analysis window sizes, shapes, and dimensions are also suitable for implementation in the presently disclosed processing algorithms.
- test windows may be employed to analyze an image and detect the boundary of a digital representation of a document depicted in the image.
- Background windows are used for estimation of original statistical properties of the background and/or reestimation of local statistical properties of the background. Reestimation may be necessary and/or advantageous in order to address artifacts such as uneven illumination and/or background texture variations.
- statistical estimation may be performed over some or all of a plurality of small analysis window(s) 312 in a large analysis window 308 within the margin outside of the document page in some approaches.
- Such estimation may be performed using a stepwise movement of a small analysis window 312 within the large analysis window 308, and the stepwise movement may be made in any suitable increment so as to vary the number of samples taken for a given pixel.
- an analysis process may define a number of small analysis windows 312 within large analysis window 308 sufficient to ensure each pixel 318 is sampled once.
- the plurality of small analysis windows 312 defined in this computationally efficient approach would share common borders but not overlap.
- the analysis process may define a number of small analysis windows 312 within large analysis window 308 sufficient to ensure each pixel 318 is sampled a maximum number of times, e.g. by reducing the step to produce only a single pixel shift in a given direction between sequentially defined small analysis windows 312.
- any step increment may be employed in various embodiments of the presently disclosed processing algorithms, as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- the search for the left side edge in a given row i begins from the calculation of the above mentioned statistics in a large analysis window 308 adjacent to the frame boundary on the left side of the image centered around a given row i .
- the algorithm when encountering a possible non-background test window (e.g. a test window for which the estimated statistics are dissimilar from the distribution of statistics characteristic of the last known local background) as the algorithm progresses from the outer region(s) of the image towards the interior regions thereof, the algorithm may backtrack into a previously determined background region, form a new large analysis window 308 and re-estimate the distribution of background statistics in order to reevaluate the validity of the differences between the chosen statistics within the small analysis window 312 and the local distribution of corresponding statistics within the large analysis window 308, in some embodiments.
- a possible non-background test window e.g. a test window for which the estimated statistics are dissimilar from the distribution of statistics characteristic of the last known local background
- the algorithm may backtrack into a previously determined background region, form a new large analysis window 308 and re-estimate the distribution of background statistics in order to reevaluate the validity of the differences between the chosen statistics within the small analysis window 312 and the local distribution of corresponding statistics within the large analysis window 30
- the algorithm may proceed from an outer region of the image 300 to an inner region of the image 300 in a variety of manners.
- the algorithm proceeds defining test windows 312 in a substantially spiral pattern.
- the pattern may be substantially serpentine along either a vertical or a horizontal direction.
- the pattern may be a substantially shingled pattern.
- the pattern may also be defined by a "sequence mask" laid over part or all of the digital image 300, such as a checkerboard pattern, a vertically, horizontally, or diagonally striped pattern, concentric shapes, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- analysis windows such as large analysis windows 308 and/or small analysis windows 312 may be defined throughout the digital image 300 in a random manner, a pseudo-random manner, stochastically, etc. according to some defined procedure, as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- the algorithm can proceed with a sequence of test windows in any desirable fashion as long as the path allows to backtrack into known background, and the path covers the whole image with desirable granularity.
- recalculating statistics in this manner helps to accommodate for any illumination drift inherent to the digital image 300 and/or background 304, which may otherwise result in false identification of non-background points in the image (e.g. outlier candidate edge points 316 as shown in FIG. 3C ).
- the algorithm may jump a certain distance further along its path in order to check again and thus bypass small variations in the texture of the background 304, such as wood grain, scratches on a surface, patterns of a surface, small shadows, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- the algorithm determines whether the point lies on the edge of the shadow (a possibility especially if the edge of the page is raised above the background surface) and tries to get to the actual page edge. This process relies on the observation that shadows usually darken towards the real edge followed by an abrupt brightening of the image.
- page edge detection does not necessarily involve edge detection per se, i.e. page edge detection according to the present disclosures may be performed in a manner that does not search for a document boundary (e.g. page edge 306 ), but rather searches for image characteristics associated with a transition from background to the document.
- the transition may be characterized by flattening of the off-white brightness levels within a glossy paper, i.e. by changes in texture rather than in average gray or color levels.
- candidate edge points e.g. candidate edge points 314 as shown in FIG. 3C
- candidate edge points that are essentially the first and the last non-background pixels in each row and column on a grid.
- outlier candidate edge points 316 as shown in FIG. 3C it is useful in one approach to analyze neighboring candidate edge points.
- a "point" may be considered any region within the digital image, such as a pixel, a position between pixels (e.g. a point with fractional coordinates such as the center of a 2-pixel by 2-pixel square) a small window of pixels, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- a candidate edge point is associated with the center of a test window (e.g. a 3-pixel x 7-pixel window) that has been found to be characterized by statistics that are determined to be different from the distribution of statistics descriptive of the local background.
- a "neighboring" candidate edge point, or a “neighboring” pixel is considered to be a point or pixel, respectively, which is near or adjacent a point or pixel of interest (e.g. pixel 318 ), e.g. a point or pixel positioned at least in part along a boundary of the point or pixel of interest, a point or pixel positioned within a threshold distance of the point or pixel of interest (such as within 2, 10,64 pixels, etc. in a given direction, within one row of the point or pixel of interest, within one column of the point or pixel of interest), etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- the "neighboring" point or pixel may be the closest candidate edge point to the point of interest along a particular direction, e.g. a horizontal direction and/or a vertical direction.
- Each "good” edge point ideally has at least two immediate neighbors (one on each side) and does not deviate far from a straight line segment connecting these neighbors and the "good" edge point, e.g. the candidate edge point and the at least two immediately neighboring points may be fit to a linear regression, and the result may be characterized by a coefficient of determination (R 2 ) not less than 0.95.
- the angle of this segment with respect to one or more borders of the digital image, together with its relative location determines whether the edge point is assigned to top, left, right, or bottom side of the page.
- a candidate edge point and the two neighboring edge points may be assigned to respective corners of a triangle.
- the candidate edge point may be considered a "good” candidate edge point. If the angle of the triangle at the candidate edge point deviates far from 180 degrees by more than a threshold value (such as by 20 degrees or more), then the candidate edge point may be excluded from the set of "good” candidate edge points.
- a threshold value such as by 20 degrees or more
- the step of this grid may start from a large number such as 32, but it may be reduced by a factor of two and the search for edge points repeated until there are enough of them to determine the Least Mean Squares (LMS) based equations of page sides (see below). If this process cannot determine the sides reliably even after using all rows and columns in the image, it gives up and the whole image is treated as the page.
- LMS Least Mean Squares
- the equations of page sides are determined as follows, in one embodiment.
- the algorithm fits the best LMS straight line to each of the sides using the strategy of throwing out worst outliers until all the remaining supporting edges lie within a small distance from the LMS line. For example, a point with the largest distance from a substantially straight line connecting a plurality of candidate edge points along a particular boundary of the document may be designated the "worst" outlier. This procedure may be repeated iteratively to designate and/or remove one or more "worst" outliers from the plurality of candidate edge point. In some approaches, the distance with which a candidate edge point may deviate from the line connecting the plurality of candidate edge points is based at least in part on the size and/or resolution of the digital image.
- the algorithm may attempt to fit the best second-degree polynomial (parabola) to the same original candidate points.
- the algorithmic difference between finding the best parabola vs. the best straight line is minor: instead of two unknown coefficients determining the direction and offset of the line there are three coefficients determining the curvature, direction, and offset of the parabola; however, in other respects the process is essentially the same, in one embodiment.
- the algorithm should prefer the parabola as a better model of the page side in the image. Otherwise, the linear model is employed, in various approaches.
- Intersections of the four found sides of the document may be calculated in order to find the corners of (possibly slightly curved) page tetragon, (e.g. tetragon 400 as shown in FIG. 4 and discussed in further detail below).
- page tetragon e.g. tetragon 400 as shown in FIG. 4 and discussed in further detail below.
- intersections of a straight line and a parabola is slightly more complicated: there can be zero, one, or two solutions of the resulting quadratic equation. If there is no intersection, it may indicate a fatal problem with page detection, and its result may be rejected. A single solution is somewhat unlikely, but presents no further problems. Two intersections present a choice, in which case the intersection closer to the corresponding corner of the frame is a better candidate - in practice, the other solution of the equation may be very far away from the coordinate range of the image frame.
- the third case calculating intersections of two parabolas, results in a fourth degree polynomial equation that (in principle) may be solved analytically.
- the number of calculations necessary to achieve a solution may be greater than in an approximate iterative algorithm that also guarantees the desired sub-pixel precision.
- the tetragon is preferably not too small (e.g., below a predefined threshold of any desired value, such as 25% of the total area of the image), the corners of the tetragon preferably do not lie too far outside of the frame of the image (e.g. not more than 100 pixels away), and the corners themselves should preferably be interpretable as top-left, top-right, bottom-left and bottom-right with diagonals intersecting inside of the tetragon, etc. If these constraints are not met, a given page detection result may be rejected, in some embodiments.
- the algorithm may determine a target rectangle.
- Target rectangle width and height may be set to the average of top and bottom sides of the tetragon and the average of left and right sides respectively.
- the angle of skew of the target rectangle may be set to zero so that the page sides will become horizontal and vertical. Otherwise, the skew angle may be set to the average of the angles of top and bottom sides to the horizontal axis and those of the left and right sides to the vertical axis.
- the center of the target rectangle may be designated so as to match the average of the coordinates of the four corners of the tetragon; otherwise the center may be calculated so that the target rectangle ends up in the top left of the image frame, in additional embodiments.
- some or all steps of the process described herein may be repeated with a smaller step increment, in order to obtain more candidate edge points and, advantageously, achieve more plausible results.
- the detected page may be set to the whole image frame and the original image may be left untouched.
- page detection includes performing a method such as described below. As will be appreciated by one having ordinary skill in the art upon reading the present descriptions, the method may be performed in any environment, including those described herein and represented in any of the Figures provided with the present disclosures.
- the method includes operation, where a plurality of candidate edge points corresponding to a transition from a digital image background to the digital representation of the document are defined.
- defining the plurality of candidate edge points in operation may include one or more additional operations such as operations -, described below.
- a large analysis window (e.g. large analysis window 308 as shown in FIGS 3A-3B and 3D is defined within the digital image 300.
- a first large analysis window is defined in a region depicting a plurality of pixels of the digital image background 304, but not depicting the non-background (e.g. the digital representation of the document 302 ) in order to obtain information characteristic of the digital image background 304 for comparison and contrast to information characteristic of the non-background (e.g. the digital representation of the document 302, such as background statistics discussed in further detail below with reference to operation).
- the first large analysis window 308 may be defined in a corner (such as a top-left corner) of the digital image 300.
- the first large analysis window may be defined in any part of the digital image 300 without departing from the scope of the present disclosures.
- the large analysis window 308 may be any size and/or characterized by any suitable dimensions, but in preferred embodiments the large analysis window 308 is approximately forty pixels high and approximately forty pixels wide.
- the large analysis window 308 may be defined in a corner region of the digital image.
- a digital image 300 is shown, the digital image 300 comprising a digital representation of a document 302 having a plurality of sides 306 and a background 304.
- the large analysis window 308 may be defined in a region comprising a plurality of background pixels and not including pixels corresponding to the digital representation of the document 302.
- the large analysis window 308 may be defined in the corner of the digital image 300, in some approaches.
- a plurality of small analysis windows 312 may be defined within the digital image 300, such as within the large analysis window 308.
- the small analysis windows 312 may overlap at least in part with one or more other small analysis windows 312 such as to be characterized by comprising one or more overlap regions 320 as shown in FIG. 3D .
- all possible small analysis windows 312 are defined within the large analysis window 308.
- small analysis windows may be defined within any portion of the digital image, such as shown in FIG. 3B , and preferably small analysis windows may be defined such that each small analysis window is characterized by a single center pixel.
- one or more statistics are calculated for one or more small analysis windows 312 (e.g. one or more small analysis windows 312 within a large analysis window 308 ) and one or more distributions of corresponding statistics are estimated (e.g. a distribution of statistics estimated across a plurality of small analysis windows 312 ).
- distributions of statistics may be estimated across one or more large analysis window(s) 308 and optionally merged.
- values may be descriptive of any feature associated with the background of the digital image, such as background brightness values, background color channel values, background texture values, background tint values, background contrast values, background sharpness values, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- statistics may include a minimum, a maximum and/or a range of brightness values in one or more color channels of the plurality of pixels depicting the digital image background 304 over the plurality of small windows 312 within the large analysis window 308.
- one or more distributions of background statistics are estimated.
- the distribution(s) of statistics one may obtain descriptive distribution(s) that characterize the properties of the background 304 of the digital image 300 within, for example, a large analysis window 308.
- the distribution(s) preferably correspond to the background statistics calculated for each small analysis window, and may include, for example, a distribution of brightness minima, a distribution of brightness maxima, etc., from which one may obtain distribution statistical descriptors such as the minimum and/or maximum of minimum brightness values, the minimum and/or maximum of minimum brightness values, minimum and/or maximum spread of brightness values, minimum and/or maximum of minimum color channel values, minimum and/or maximum of maximum color channel values, minimum and/or maximum spread of color channel values etc. as would be appreciated by one having ordinary skill in the art upon reading the present descriptions.
- any of the calculated background statistics e.g. for brightness values, color channel values, contrast values, texture values, tint values, sharpness values, etc.
- any value descriptive of the distribution may be employed without departing from the scope of the present disclosures.
- a large analysis window such as analysis window 308 as shown in FIGS. 3A-3B is defined within the digital image 300.
- window shapes may be defined by positively setting the boundaries of the window as a portion of the digital image 300, may be defined by negatively, e.g. by applying a mask to the digital image 300 and defining the regions of the digital image 300 not masked as the analysis window.
- windows may be defined according to a pattern, especially in embodiments where windows are negatively defined by applying a mask to the digital image 300.
- other manners for defining the windows may be employed without departing from the scope of the present disclosures.
- the method may include performing an operation where one or more statistics are calculated for the analysis window 312.
- each analysis window statistic corresponds to a distribution of background statistics estimated for the large analysis window 308 in operation.
- maximum brightness corresponds to distribution of background brightness maxima
- minimum brightness corresponds to distribution of background brightness minima
- brightness spread corresponds to distribution of background brightness spreads, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- the method include determining whether a statistically significant difference exists between at least one analysis window statistic and the corresponding distribution of background statistics.
- determining whether a statistically significant difference exists may be performed using any known statistical significance evaluation method or metric, such as a p-value, a z-test, a chi-squared correlation, etc. as would be appreciated by a skilled artisan reading the present descriptions.
- the method includes designating one or more points (e.g. the centermost pixel 318 or point) in the analysis window for which a statistically significant difference exists between a value describing the pixel 318 and the corresponding distribution of background statistics is designated as a candidate edge point
- the designating may be accomplished by any suitable method known in the art, such as setting a flag corresponding to the pixel, storing coordinates of the pixel, making an array of pixel coordinates, altering one or more values describing the pixel 318 (such as brightness, hue, contrast, etc.), or any other suitable means.
- one or more of operations - may be repeated one or more times.
- a plurality of such repetitions may be performed, wherein each repetition is performed on a different portion of the digital image.
- the repetitions may be performed until each side of the digital representation of the document has been evaluated.
- defining the analysis windows 308, 312 may result in a plurality of analysis windows 308, 312 which share one or more borders, which overlap in whole or in part, and/or which do not share any common border and do not overlap, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- the plurality of repetitions may be performed in a manner directed to reestimate local background statistics upon detecting a potentially non-background window (e.g. a window containing a candidate edge point or a window containing an artifact such as uneven illumination, background texture variation, etc.).
- a potentially non-background window e.g. a window containing a candidate edge point or a window containing an artifact such as uneven illumination, background texture variation, etc.
- a tetragon 400 is defined based on the plurality of candidate edge points.
- the sides of the tetragon 400 encompass the edges 306 of a digital representation of a document 302 in a digital image 300.
- Defining the sides of the tetragon 400 may include, in some approaches, performing one or more least-mean-squares (LMS) approximations.
- LMS least-mean-squares
- defining the sides of the tetragon 400 may include identifying one or more outlier candidate edge points, and removing one or more outlier candidate edge points from the plurality of candidate edge points. Further, defining the sides of the tetragon 400 may include performing at least one additional LMS approximation excluding the one or more outlier candidate edge points.
- each side of the tetragon 400 is characterized by an equation chosen from a class of functions, and performing the at least one LMS approximation comprises determining one or more coefficients for each equation, such as best coefficients of second degree polynomials in a preferred implementation.
- defining the sides of the tetragon 400 may include determining whether each side of the digital representation of the document falls within a given class of functions, such as second degree polynomials or simpler functions such as linear functions instead of second degree polynomials.
- performing method may accurately define a tetragon around the four dominant sides of a document while ignoring one or more deviations from the dominant sides of the document, such as a rip 310 and/or a tab 320 as depicted in FIGS. 3A-3C and 4.
- Additional and/or alternative embodiments of the presently disclosed tetragon 400 may be characterized by having four sides, and each side being characterized by one or more equations such as the polynomial functions discussed above.
- embodiments where the sides of tetragon 400 are characterized by more than one equation may involve dividing one or more sides into a plurality of segments, each segment being characterized by an equation such as the polynomial functions discussed above.
- Defining the tetragon 400 may, in various embodiments, alternatively and/or additionally include defining one or more corners of the tetragon 400.
- tetragon 400 corners may be defined by calculating one or more intersections between adjacent sides of the tetragon 400, and designating an appropriate intersection from the one or more calculated intersections in cases where multiple intersections are calculated.
- defining the corners may include solving one or more equations, wherein each equation is characterized by belonging to a chosen class of functions such as N th degree polynomials, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- a corner of the tetragon 400 may be defined by one or more of: an intersection of two curved adjacent sides of the tetragon 400; an intersection of two substantially straight lines; and an intersection of one substantially straight line and one substantially curved line.
- the method may include an additional and/or alternative operation, where the digital representation of the document 302 and the tetragon 400 are output to a display of a mobile device. Outputting may be performed in any manner, and may depend upon the configuration of the mobile device hardware and/or software.
- outputting may be performed in various approaches so as to facilitate further processing and/or user interaction with the output
- the tetragon 400 may be displayed in a manner designed to distinguish the tetragon 400 from other features of the digital image 300, for example by displaying the tetragon 400 sides in a particular color, pattern, illumination motif, as an animation, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- outputting the tetragon 400 and the digital representation of the document 302 may facilitate a user manually adjusting and/or defining the tetragon 400 in any suitable manner.
- a user may interact with the display of the mobile device to translate the tetragon 400, i.e. to move the location of the tetragon 400 in one or more directions while maintaining the aspect ratio, shape, edge lengths, area, etc. of the tetragon 400.
- a user may interact with the display of the mobile device to manually define or adjust locations of tetragon 400 corners, e.g. tapping on a tetragon 400 corner and dragging the corner to a desired location within the digital image 300 , such as a corner of the digital representation of the document 302.
- FIG. 4 one particular example of an ideal result of page detection is depicted, showing the digital representation of the document 302 within the digital image 300, and having a tetragon 400 that encompasses the edges of the digital representation of the document 302.
- page detection methods such as described above may include one or more additional and/or alternative operations, such as will be described below.
- page detection may further include capturing one or more of the image data containing the digital representation of the document and audio data relating to the digital representation of the document. Capturing may be performed using one or more capture components coupled to the mobile device, such as a microphone, a camera, an accelerometer, a sensor, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- page detection may include defining a new large analysis window 309 and reestimating the distribution of background statistics for the new large analysis window 309 upon determining that the statistically significant difference exists, i.e. essentially repeating operation 1908 and/or 1910 in a different region of the digital image 300 near a point where a potentially non-background point has been identified, such as near one of the edges 306 of the document
- a large analysis window 308 may be positioned near or at the leftmost non-background pixel in a row or positioned near or at the rightmost non-background pixel in a row, positioned near or at the topmost non-background pixel in a column, positioned near or at bottommost non-background pixel in a column.
- Approaches involving such reestimation may further include determining whether the statistically significant difference exists between at least one small analysis window (e.g. a test window) statistic and the corresponding reestimated distribution of large analysis window statistics. In this manner, it is possible to obtain a higher-confidence determination of whether the statistically significant difference exists, and therefore better distinguish true transitions from the digital image background to the digital representation of the document as opposed to, for example, variations in texture, illumination anomalies, and/or other artifacts within the digital image.
- at least one small analysis window e.g. a test window
- avoiding artifacts may take the form of bypassing one or more regions (e.g. regions characterized by textures, variations, etc. that distinguish the region from the true background) of the digital image.
- one or more regions may be bypassed upon determining a statistically significant difference exists between a statistical distribution estimated for the large analysis window 308 and a corresponding statistic calculated for the small analysis window 312, defining a new large analysis window near the small analysis window, reestimating the distribution of statistics for the new large analysis window, and determining that the statistically significant difference does not exist between the reestimated statistical distribution and the corresponding statistic calculated for the small analysis window 312.
- bypassing may be accomplished by checking another analysis window 312 further along the path and resuming the search for a transition to non-background upon determining that the statistics of this checked window do not differ significantly from the known statistical properties of the background, e.g. as indicated by a test of statistical significance.
- bypassing may be accomplished by checking another analysis window further along the path.
- page detection may additionally and/or alternatively include determining whether the tetragon 400 satisfies one or more quality control metrics; and rejecting the tetragon 400 upon determining the tetragon 400 does not satisfy one or more of the quality control metrics.
- quality control metrics may include measures such as a LMS support metric, a minimum tetragon 400 area metric, a tetragon 400 corner location metric, and a tetragon 400 diagonal intersection location metric.
- determining whether the tetragon 400 satisfies one or more of these metrics acts as a check on the performance of the method.
- checks may include determining whether the tetragon 400 covers at least a threshold of the overall digital image area, e.g. whether the tetragon 400 comprises at least 25% of the total image area.
- checks may include determining whether tetragon 400 diagonals intersect inside the boundaries of the tetragon 400, determining whether one or more of the LMS approximations were calculated from sufficient data to have robust confidence in the statistics derived therefrom, i.e. whether the LMS approximation has sufficient "support,” (such as an approximation calculated from at least five data points, or at least a quarter of the total number of data points, in various approaches), and/or determining whether tetragon 400 corner locations (as defined by equations characterizing each respective side of the tetragon 400 ) exist within a threshold distance of the edge of the digital image, e.g.
- quality metrics and/or checks may facilitate rejecting suboptimal tetragon 400 definitions, and further facilitate improving the definition of the tetragon 400 sides.
- one approach involves receiving an indication that the defining the four sides of the tetragon 400 based on the plurality of candidate edge points failed to define a valid tetragon 400, i.e. failed to satisfy one or more of the quality control metrics; and redefining the plurality of candidate edge points.
- redefining the plurality of candidate edge points includes sampling a greater number of points within the digital image than a number of points sampled in the prior, failed attempt.
- This may be accomplished, in one approach, by reducing the step over one or more of rows or columns of the digital image and repeating all the steps of the algorithm in order to analyze a larger number of candidate edge points.
- the step may be decreased in a vertical direction, a horizontal direction, or both.
- other methods of redefining the candidate edge points and/or resampling points within the digital image may be utilized without departing from the scope of the present disclosures.
- page detection may include designating the entire digital image as the digital representation of the document, particularly where multiple repetitions of the method failed to define a valid tetragon 400, even with significantly reduced step in progression through the digital image analysis.
- designating the entire digital image as the digital representation of the document may include defining image corners as document corners, defining image sides as document sides, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- the diagonals of the tetragon 400 may be characterized by a first line connecting a calculated top left corner of the tetragon 400 to a calculated bottom right corner of the tetragon 400, and second line connecting a calculated top right corner of the tetragon 400 and a calculated bottom left corner of the tetragon 400.
- the first line and the second line preferably intersect inside the tetragon 400.
- one or more of the foregoing operations may be performed using a processor, and the processor may be part of a mobile device, particularly a mobile device having an integrated camera.
- the presently described inventive concepts include correcting curvature in a digital image, and more particularly correcting curvature in sides of a digital representation of a document.
- Various approaches to correcting curvature will be described in detail below, with exemplary reference to FIGS. 5A-5B .
- the goal of a curvature correction algorithm is to smoothly transform a tetragon 400 into a quadrilateral.
- the tetragon 400 is characterized by a plurality of equations, each equation corresponding to a side of the tetragon 400 and being selected from a chosen class of functions.
- each side of the tetragon 400 may be characterized by a first degree polynomial, second degree polynomial, third degree polynomial, etc. as would be appreciated by the skilled artisan upon reading the present descriptions.
- curvature correction presented herein utilizes the definition of a plurality of tetragon-based intrinsic coordinate pairs ( p, q ) within the tetragon, each intrinsic coordinate pair ( p , q ) corresponding to an intersection of a top-to-bottom curve characterized by an equation obtained from the equations of its left and right sides by combining all corresponding coefficients in a top-to-bottom curve coefficient ratio of p to 1 - p , and a left-to-right curve characterized by an equation obtained from the equations of its top and bottom sides by combining all corresponding coefficients in a left-to-right curve coefficient ratio of q to 1 - q, wherein 0 ⁇ p ⁇ 1, and wherein 0 ⁇ q ⁇ 1.
- each intrinsic coordinate pair ( p, q ) corresponds to an intersection of a line parallel to each of a left side of the parallelogram and a right side of the parallelogram, e.g. a line splitting both top and bottom sides in the proportion of p to 1 - p ; and a line parallel to each of a top side of the parallelogram and a bottom side of the parallelogram, e.g. a line splitting both top and bottom sides in the proportion of q to 1 - q , wherein 0 ⁇ p ⁇ 1, and wherein 0 ⁇ q ⁇ 1.
- the goal of the curvature correction algorithm described below is to match each point in the curvature-corrected image to a corresponding point in the original image, and do it in such a way as to transform each of the four sides of the tetragon 400 into a substantially straight line connecting its existing corners; however, the same technique can smoothly transform any tetragon described by the equations of its four sides to any other such tetragon.
- the main idea of the coordinate mapping algorithm described below is to achieve this goal by, first, calculating intrinsic coordinates ( p, q ) for each point P (not shown) in the destination image, second, matching these to the same pair ( p , q ) of intrinsic coordinates in the original image, third, calculating the coordinates of the intersection of the left-to-right and top-to-bottom curves corresponding to these intrinsic coordinates respectively, and finally, assigning the color or gray value at the found point in the original image to the point P.
- each point in a digital image 500 may correspond to an intersection of a top-to-bottom curve 504 and a left-to-right curve 506 (a curve may include a straight line, a curved line, e.g. a parabola, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions) corresponding to intrinsic coordinates (such as described above) associated with a point.
- curvature correction may involve defining a plurality of such left-to-right lines 506 and top-to-bottom lines 504.
- curvature correction may include matching target intrinsic coordinates to original intrinsic coordinates of the digital representation of the document 502.
- this matching may include iteratively searching for an intersection of a given left-to-right curve 506 and a given top-to-bottom curve 504.
- FIG. 5A shows the first iteration of an exemplary iterative search within the scope of the present disclosures.
- the iterative search includes designating a starting point 508 having coordinates (x 0 , y 0 ),
- the starting point 508 may be located anywhere within the digital representation of the document 502, but preferably is located at or near the center of the target tetragon.
- the iterative search may include projecting the starting point 508 onto one of the two intersecting curves 504, 506. While the starting point may be projected onto either of the curves 504, 506, in one approach the first half of a first iteration in the iterative search includes projecting the starting point 508 onto the top-to-bottom curve to obtain x-coordinate (x 1 ) of the next point, the projection result represented in FIG. 5A by point 510, which has coordinates (x 1 , y 0 ). Similarly, in some embodiments the second half of a first iteration in the iterative search includes projecting the point 510 onto the left-to-right curve 506 to obtain y-coordinate (y 1 ) of the next point, the projection result represented in FIG. 5A by point 512, which has coordinates (x 1 , y 1 ).
- FIG. 5B is a graphical representation of a starting point of a page curvature correction algorithm, after dividing the digital representation of the document 502 into a plurality of equally-sized sections defined by the plurality of top-to-bottom curves 504 and the plurality of left-to-right curves 506, according to one embodiment.
- a method for modifying one or more spatial characteristics of a digital representation of a document in a digital image includes one or more of the following operations, according to one embodiment. As will be appreciated by one having ordinary skill in the art upon reading the present descriptions, the method may be performed in any suitable environment, including those shown and/or described in the figures and corresponding descriptions of the present disclosures.
- the method includes an operation where a tetragon 400 is transformed into a quadrilateral.
- the tetragon 400 is characterized by a plurality of equations, each equation corresponding to a side of the tetragon 400 and being selected from a chosen class of functions.
- each side of the tetragon 400 may be characterized by a first degree polynomial, second degree polynomial, third degree polynomial, etc. as would be appreciated by the skilled artisan upon reading the present descriptions.
- other equations may characterize any of the sides and/or curves described above, as would be appreciated by one having ordinary skill in the art upon reading the present descriptions.
- curves 504, 506 may be described by exemplary polynomial functions fitting one or more of the following general forms.
- x 1 u 2 ⁇ y 0 2 + u 1 ⁇ y 0 + u 0 ;
- y 1 v 2 ⁇ x 1 2 + v 1 ⁇ x 1 + v 0
- u i (1 - p ) ⁇ a i + p ⁇ b i
- v i (1 - q ) ⁇ c i + q ⁇ d i
- a i are the coefficients in the equation of the left side of the tetragon
- b i are the coefficients in the equation of the right side of the tetragon
- c i are the coefficients in the equation of the top side of the tetragon
- d i are the coefficients in the equation of the bottom side of the tetragon
- p and q are the
- the coefficients such as a i , b i , c i , d i , etc. may be derived from calculations, estimations, and/or determinations achieved in the course of performing page detection, such as a page detection method as discussed above with reference to page detection.
- transforming the tetragon 400 into a quadrilateral may include one or more additional operations, such as will be described in greater detail below.
- the method may additionally and/or alternatively includes stretching one or more regions of the tetragon 400 in a manner sufficiently smooth to avoid introducing additional artifacts (such as distortion of interior regions of the tetragon) into the resulting quadrilateral.
- transforming the tetragon 400 into a rectangle may include determining a height of the rectangle, a width of the rectangle, a skew angle of the rectangle, and/or a center position of the rectangle.
- such transforming may include defining a width of the target rectangle as the average of the width of the top side and the width of the bottom side of the tetragon 400; defining a height of the target rectangle as the average of the height of the left side and the height of the right side of the tetragon 400; defining a center of the target rectangle depending on the desired placement of the rectangle in the image; and defining an angle of skew of the target rectangle, e.g. in response to a user request to deskew the digital representation of the document.
- the presently disclosed algorithms may proceed with a projection correction component that transforms the quadrilateral into the target rectangle, advantageously with very low error as measured by comparing pixel location of various object elements in the corrected image with corresponding pixel locations of the respective object elements in a scanned image.
- the residual error may be about 5 pixels or less in an image having resolution of about 500 dots-per-inch (DPI). This corresponds to no pixel on the "corrected image" of the object being more than 5 pixels away, in any direction, from the corresponding location of the same pixel in a scanned image of the object.
- Projection correction as described herein essentially includes transforming the quadrilateral produced by the curvature correction algorithm described above into a true rectangle, in one approach.
- the rectangle substantially represents the actual dimensions, aspect ratio, etc. of the object captured in the digital image when viewed from a particular perspective (e.g. at an angle normal to the object, such as would be the capture angle if scanning the object in a traditional flatbed scanner, multifunction device, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions).
- FIGS. 6A-6D Various capture angles, and the associated projective effects are demonstrated schematically in FIGS. 6A-6D .
- the projection correction may include applying an algorithm such as a four-point algorithm to the image data.
- algorithms may or may not rely on one or more of the following assumptions: 1) from the perspective of the capture angle, the thickness of the 3D object is zero, and the size of the captured 3D object is nonzero along each of the width and height dimensions; 2) the aspect ratio of the width and height dimensions is known.
- the value of the aspect ratio does not need to be known exactly, it may tolerate small measurement errors, which may influence 3D reconstruction errors.
- measure characterized by error of less than about 10% is acceptable (e.g. an aspect ratio corresponding to predetermined document type such as letter, legal, A4, A5, driver license, credit card, sales receipt, business card, etc.
- 3D pixel positions of four corner pixels in the captured image are estimable using an image segmentation technique, such as utilized in page detection as described herein; 4) the position of object corners in the captured image and the reference image (which correspond to the "real-world coordinates" of the object) are described by a pre-established correspondences of four pixels/corners in the reference image and the captured image; and 5) 3D reconstruction achieves pixel positions in the reconstructed image that are substantially the same as those observed from a particular perspective of the real object, e.g. as observed in a 500 DPI image captured using a capture angle normal to the object such as would be created by scanning a 2D representation of the object from that same perspective.
- the presently described page detection algorithm may be utilized to estimate 2D pixel positions of the document corners.
- the intersections of the four found sides of the document are calculated in order to find the corners of (possibly a slightly curved) page tetragon, (e.g. tetragon 400 as shown in FIG. 4 ).
- the coordinates of an object e.g. document left top corner, left bottom corner, right bottom corner and right top corner in the reference image preferably correspond to the respective object corner coordinates/positions in the captured image.
- Determining the precise relationship in each correspondence may use textual and/or image features as reference points in the determination. For instance, in one embodiment the text orientation and document aspect ratio may be used to determine an orientation of the captured document.
- a reference image of the driver license may be captured, preferably using a scanner, multifunction printer, or other device known in the art not to introduce perspective skew or distortion into images captured therewith.
- the reference image may preferably have been captured using a scanner at a known resolution, most preferably a resolution of approximately 500 DPI, and a known capture angle, most preferably an angle normal to the document (e.g. a capture angle of 90 degrees such as shown above in FIG. 6B ).
- the reference image and preferably as supplemented by a priori knowledge regarding the "true" shape, size, dimensions, texture, etc. of an object, it is possible to reconstruct that object in a manner such that the object represented in the reconstructed image has identical or nearly identical characteristics as the reference image.
- the reconstructed image and reference image may be of different but proportional scale. In such cases, applying a scaling operation to the reconstructed image may eliminate any difference in scale such that the reconstructed object has identical or nearly identical characteristics as the object depicted in the reference image.
- a user may capture an image of their driver's license using a mobile device, and potentially at a steep capture angle (e.g. a capture angle deviating from normal by about 30 degrees or more).
- a steep capture angle e.g. a capture angle deviating from normal by about 30 degrees or more.
- the representation of the driver license in the captured image is characterized by 3D perspective distortions, causing the substantially rectangular document to appear trapezoidal in shape.
- the length of the edge farthest from the capture device may appear shorter than the length of the edge nearest the capture device, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- the length of the far edge may appear significantly shorter, e.g. as little as 50% of the length of the near edge, particularly when using steep capture angles (e.g. 30 degrees or greater deviation from normal).
- 3D reconstruction preferably minimizes introducing any distortions in reconstructing the original image to generate a rectangular representation of the captured object/document.
- perspective correction may include capturing an image using a mobile device, identifying four points, pixels, etc. within the captured image, each point/pixel corresponding to a potential corner of the detected driver's license (or other tetragonal document)and constructing a 3D transformation based at least in part on and four corner pixels.
- the positions of the four pixels can be estimated, when the four-sided polygon which forms as the boundary of the image to be segmented.
- a planar homography/projective transform is a non-singular linear relation between two planes .
- the homography transform defines a linear mapping of four corner pixels/positions between the captured image and the image plane.
- the calculation of the camera parameters may utilize an estimation of the homography transform H, such as shown in Equation (1), in some approaches. As depicted above in Equation (1):
- the ( x, y ) coordinates and ( X, Y ) coordinates depicted in Equation 1 correspond to coordinates of respective points in the captured image plane and the reference image (e.g. as shown in FIG. 6B ).
- the Z coordinate is set to 0, corresponding to the assumption that the object depicted in each lies along a single (e.g. X-Y ) plane with zero thickness.
- Equation (1) may be written as shown in Equation (2) below.
- Equation (3) In order to eliminate a scaling factor, in one embodiment it is possible to calculate the cross product of each term of Equation (2), as shown in Equation (3):
- Equation (3) may be written as shown below in Equation (4).
- Equation (5) the matrix product HP i ' may be expressed as in Equation (5).
- h mT is the transpose of the m th row of H (e.g. h 1T is the transpose of the first row of H, h 2T is the transpose of the second row of H, etc.).
- Equation (4) it is possible to rework Equation (4) as:
- Equation (6) may be reformulated as shown below in Equation (7):
- Equation (7) provides two linearly independent equations.
- the two first rows are preferably used for solving H.
- the homography H may be defined using 8 parameters plus a homogeneous scaling factor (which may be viewed as a free 9 th parameter). In such embodiments, at least 4 point-correspondences providing 8 equations may be used to compute the homography.
- a larger number of correspondences is preferably employed so that an over-determined linear system is obtained, resulting in a more robust result (e.g. lower error in relative pixel-position).
- H [ h 11 , h 12 , h 13 , h 21 , h 22 , h 23 , h 31 , h 32 , h 33 ] T
- n pairs of point-correspondences enable the construction of a 2n ⁇ 9 linear system, which is expressed by Equation (8)
- the first two rows correspond to the first feature point, as indicated by the subscript value of coordinates X, Y, x,y - in this case the subscript value is 1.
- the second two rows correspond to the second feature point, as indicated by the subscript value 2, the last two rows correspond to the n-th feature point
- the n is 4, and the feature points are the four corners of a document page.
- SVD Singular Value Decomposition
- the matrix C is different from the typical matrix utilized in an eight-point algorithm to estimate the essential matrix when two or more cameras are used, such as conventionally performed for stereoscopic machine vision. More specifically, while the elements conventionally used in eight-point algorithm consist of feature points projected on two camera planes, the elements in the presently described matrix C consist of feature points projected on only a single camera plane and the corresponding feature points on 3D objects.
- the coordinates of point-correspondences may preferably be normalized. This may be accomplished, for example, using a technique known as the normalized Direct Linear Transformation (DLT) algorithm.
- DLT Direct Linear Transformation
- Equation 1 may be used to compute each pixel position ( x,y ) for a given value of ( X,Y ) .
- the challenge involves computing ( X,Y ) when the values of ( x, y ) are given or known a priori.
- ( x, y ) and ( X, Y ) are symmetrical (i.e.
- Equation 1 when the values of ( x , y ) and ( X, Y ) are switched, the validity of Equation 1 holds true).
- the "inverse" homography matrix may be estimated, and this "inverse" homography matrix may be used to reconstruct 3D (i.e. "reference” or "real-world") coordinates of an object given the corresponding 2D coordinates of the object as depicted in the captured image, e.g. in the camera view.
- Various embodiments may additionally and/or alternatively include utilizing the foregoing data, calculations, results, and/or concepts to derive further useful information regarding the captured image, object, etc. For example, in various embodiments it is possible to determine the distance between the captured object and the capture device, the pitch and/or roll angle of the capture device, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- the focal depth also known as the distance between each point ( X,Y,Z ) in the 3D (i.e. "reference” or “real world”) coordinate system and the capture device, may be computed using Equation 9 above.
- H ⁇ A r 1 r 2 t
- ⁇ a constant
- the unknown parameters are B ij .
- Equation 13 it is useful to leverage the fact that R is a rotation matrix to estimate r3, which is the cross product of r1 and r2 with a sign to be determined (either 1 or -1).
- R is a rotation matrix to estimate r3, which is the cross product of r1 and r2 with a sign to be determined (either 1 or -1).
- the r3 value is the cross-product value of r1 and r2.
- the yaw, pitch and roll (denoted by the ⁇ , ⁇ and ⁇ respectively) are also known as Euler's angles, which are defined as the rotation angles around z, y, and x axes respectively, in one embodiment.
- the value of ⁇ may be determined in whole or in part based on limited computer word length, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions), this corresponds to the degenerate of rotation matrix R, special formulae are used to estimate the values of yaw, pitch and roll.
- a camera's intrinsic parameters e.g. focal length, scale factors of (u,v) in image plane.
- the requirements of this algorithm may be summarized as follows: 1)The camera's focal length for the captured image can be provided and accessed by an API call of the device (for instance, an android device provides an API call to get focal length information for the captured image); 2) The scale factors of dx and dy are estimated by the algorithm in the equations 12.1 and 12.2.
- Equation 18 is equivalent to Equation 1, except that we use ( u,v ) in Equation 18 to replace the ( x,y ) in Equation 1.
- H ⁇ 1 / L u 1 / L v 1 H L x L y 1
- H ⁇ 1 / L u 1 / L v 1 H L x L y 1
- H ⁇ 1 / L u 1 / L v 1 H L x L y 1
- H ⁇ 1 / L u 1 / L v 1 H L x L y 1
- H ⁇ 1 / L u 1 / L v 1 H L x L y 1
- H ⁇ 1 / L u 1 / L v 1 H L x L y 1
- H ⁇ 1 / L u 1 / L v 1 H L x L y 1
- H ⁇ 1 / L u 1 / L v 1 H L
- Equations (29) and (30) may be used to estimate the document size along X and Y coordinates.
- the scaling factor may remain unknown, using this approach.
- the idea of the algorithm is simply that one can calculate the object coordinates of the document corresponding to the tetragon found in the picture (up to scale, rotation, and shift) for any relative pitch-roll combination.
- This calculated tetragon in object coordinates is characterized by 90-degree angles when the correct values of pitch and roll are used, and the deviation can be characterized by the sum of squares of the four angle differences. This criterion is useful because it is smooth and effectively penalizes individual large deviations.
- a gradient descent procedure based on this criterion can find a good pitch-roll pair in a matter of milliseconds. This has been experimentally verified for instances where the tetragon in the picture was correctly determined.
- This approach uses yaw equal zero and an arbitrary fixed value of the distance to the object because changes in these values only add an additional orthogonal transform of the object coordinates.
- the approach also uses the known focal distance of the camera in the calculations of the coordinate transform, but if all four corners have been found and there are three independent angles, then the same criterion and a slightly more complex gradient descent procedure can be used to estimate the focal distance in addition to pitch and roll - this may be useful for server-based processing, when incoming pictures may or may not have any information about what camera they were taken with.
- arbitrary points on the left and right sides closer to the top of the image frame can be designated as top-left and top-right corners.
- the best estimated pitch-roll will create equally bogus top-left and top-right corners in the object coordinates, but the document will still be correctly rectangularized.
- the direction of a missing (e.g. top) side of the document can be reconstructed since it should be substantially parallel to the opposite (e.g. bottom) side, and orthogonal to adjacent (e.g. left and/or right) side(s).
- the remaining question is where to place the missing side in the context of the image as a whole, and if the aspect ratio is known then the offset of the missing side can be nicely estimated, and if not, then it can be pushed to the edge of the frame, just not to lose any data.
- This variation of the algorithm can resolve an important user case when the picture contains only a part of the document along one of its sides, for example, the bottom of an invoice containing a deposit slip. In a situation like this the bottom, left and right sides of the document can be correctly determined and used to estimate pitch and roll; these angles together with the focal distance can be used to rectangularize the visible part of the document.
- reconstruction includes capturing or receiving a digital image comprising a digital representation of an object, preferably a document or other object having known characteristics (size, texture, color profile, etc.) in operation 702.
- the captured or received image is analyzed to determine a position of one or more boundaries separating the digital representation of the object from an image background or other objects represented in the image.
- the boundaries are analyzed to determine whether any curvature (i.e. regions of non-linearity) exists in one or more of the boundaries.
- Curvature may be determined to exist in one of the boundaries, e.g. by determining a polynomial expression characterizing the boundary fits a particular class of function such as a first, second, third, fourth, etc. order polynomial, each of which may each be a different class of function. If curvature is determined to exist, it is preferably corrected to generate a boundary having substantially linear characteristics along the entirety of the boundary's length.
- the linear-edged boundaries are analyzed and/or extrapolated to define a bounding polygon, preferably a bounding tetragon, and even more preferably a bounding parallelogram, trapezoid, or rectangle.
- the digital image and/or bounding polygon is analyzed to determine whether any perspective distortion and/or projective effects are present within the bounding polygon.
- the perspective distortion and/or projective effects are corrected to generate a reconstructed polygon.
- the bounding polygon is a quadrilateral and the reconstructed polygon is a rectangle.
- an exemplary method 700 may be embodied as a system configured to execute logic, and/or a computer program product comprising computer readable program code configured to perform functions substantially similar to any of those described herein.
- a method of reconstructing a digital image includes receiving the digital image comprising a digital representation of an object bounded by a tetragon; correcting curvature in the tetragon to form a quadrilateral; and correcting projective effects in the quadrilateral to form a rectangle.
- the quadrilateral may be a parallelogram.
- Correcting the curvature may include transforming one or more portions of the tetragon based at least in part on intrinsic tetragon coordinates; and correcting the projective effects may include transforming the tetragon using a four-point algorithm.
- correcting progective effects may include one or more of singular value decomposition (SVD), direct linear transformation (DLT), non-linear refinement (NLR), normalizing coordinates of point-correspondences between the digital image and a reconstructed image, and/or estimating a homography transform ( H ).
- the digital image is optionally characterized by a capture angle of about 30 degrees or more deviation from normal with respect to the object.
- the method may also include outputting the reconstructed digital image, wherein the reconstructed digital image is characterized by a pixel location error of about 5 pixels or less relative to a scanned 500-DPI image of the object captured using a capture angle normal to the object.
- Sides of the tetragon may be characterized by a polynomial, which may be a second degree polynomial, or a polynomial of higher order than second degree.
- the object is a document characterized by a known height-to-width ratio.
- Exemplary systems may include one or more processors, image capture devices, and corresponding functional logic configured to perform any one or more of the operations set forth in the immediately preceding paragraph, and also to leverage any number of the specific features such as the object being a document with rectangular shape and known height-to-width ratio, ⁇ , pi, P' I , etc, as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- Exemplary computer program products may include a computer readable storage medium having embodied thereon computer rea to perform any one or more of the operations set forth in the immediately preceding paragraph, and also to leverage any number of the specific features such as the object being a document with rectangular shape and known height-to-width ratio, ⁇ , pi, P' I , etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
- Computer Graphics (AREA)
- Editing Of Facsimile Originals (AREA)
- Studio Devices (AREA)
Abstract
Description
- The present invention relates to digital image data capture and processing, and more particularly to rectifying image artifacts caused by distortional effects inherent to capturing an image using a camera.
- Digital images having depicted therein a document such as a letter, a check, a bill, an invoice, etc. have conventionally been captured and processed using a scanner or multifunction peripheral coupled to a computer workstation such as a laptop or desktop computer. Methods and systems capable of performing such capture and processing are well known in the art and well adapted to the tasks for which they are employed.
- However, in an era where day-to-day activities, computing, and business are increasingly performed using mobile devices, it would be greatly beneficial to provide analogous document capture and processing systems and methods for deployment and use on mobile platforms, such as smart phones, digital cameras, tablet computers, etc.
- A major challenge in transitioning conventional document capture and processing techniques is the limited processing power and image resolution achievable using hardware currently available in mobile devices. These limitations present a significant challenge because it is impossible or impractical to process images captured at resolutions typically much lower than achievable by a conventional scanner. As a result, conventional scanner-based processing algorithms typically perform poorly on digital images captured using a mobile device.
- In addition, the limited processing and memory available on mobile devices makes conventional image processing algorithms employed for scanners prohibitively expensive in terms of computational cost. Attempting to process a conventional scanner-based image processing algorithm takes far too much time to be a practical application on modern mobile platforms.
- A still further challenge is presented by the nature of mobile capture components (e.g. cameras on mobile phones, tablets, etc.). Where conventional scanners are capable of faithfully representing the physical document in a digital image, critically maintaining aspect ratio, dimensions, and shape of the physical document in the digital image, mobile capture components are frequently incapable of producing such results.
- Specifically, images of documents captured by a camera present a new line of processing issues not encountered when dealing with images captured by a scanner. This is in part due to the inherent differences in the way the document image is acquired, as well as the way the devices are constructed. The way that some scanners work is to use a transport mechanism that creates a relative movement between paper and a linear array of sensors. These sensors create pixel values of the document as it moves by, and the sequence of these captured pixel values forms an image. Accordingly, there is generally a horizontal or vertical consistency up to the noise in the sensor itself, and it is the same sensor that provides all the pixels in the line.
- In contrast, cameras have many more sensors in a nonlinear array, e.g., typically arranged in a rectangle. Thus, all of these individual sensors are independent, and render image data that is not typically of horizontal or vertical consistency. In addition, cameras introduce a projective effect that is a function of the angle at which the picture is taken. For example, with a linear array like in a scanner, even if the transport of the paper is not perfectly orthogonal to the alignment of sensors and some skew is introduced, there is no projective effect like in a camera. Additionally, with camera capture, nonlinear distortions may be introduced because of the camera optics.
- In view of the challenges presented above, it would be beneficial to provide an image capture and processing algorithm and applications thereof that compensate for and/or correct problems associated with image capture and processing using a mobile device, while maintaining a low computational cost via efficient processing methods.
- In one embodiment, a method of reconstructing a digital image includes: receiving the digital image comprising a digital representation of an object bounded by a tetragon; correcting curvature in the tetragon to form a quadrilateral; and correcting projective effects in the quadrilateral to form a rectangle.
- A system includes a processor configured to execute logic; and logic configured to receive a digital image comprising a digital representation of an object bounded by a tetragon; logic configured to correct curvature in the tetragon to form a quadrilateral; and logic configured to correct projective effects in the quadrilateral to form a rectangle.
- A computer program product includes a computer readable storage medium having computer readable program code stored thereon. The computer readable program code includes code configured to receive a digital image comprising a digital representation of an object bounded by a tetragon; code configured to correct curvature in the tetragon to form a quadrilateral; and code configured to correct projective effects in the quadrilateral to form a rectangle.
-
-
FIG. 1 illustrates a network architecture, in accordance with one embodiment. -
FIG. 2 shows a representative hardware environment that may be associated with the servers and/or clients ofFIG. 1 , in accordance with one embodiment. -
FIG. 3A is a schematic representation of a digital image comprising a digital representation of a document, according to one embodiment. -
FIG. 3B is a schematic representation of a digital image comprising a digital representation of a document and a plurality of page detection analysis windows, according to one embodiment. -
FIG. 3C is a schematic representation of a digital image comprising a digital representation of a document characterized by a plurality of candidate edge points, according to one embodiment. -
FIG. 3D is a schematic representation of a large analysis window comprising a plurality of pixels of a digital image, and a small analysis window within the large analysis window, according to one embodiment. -
FIG. 4 is a schematic representation of a digital image comprising a digital representation of a document bounded by a target tetragon, according to one embodiment -
FIG. 5A is a graphical representation of a first iteration of a page rectangularization algorithm, according to one embodiment. -
FIG. 5B is a graphical representation of an input to a page rectangularization algorithm, according to one embodiment. -
FIG. 6A is a simplified schematic showing a coordinate system for measuring capture angle, according to one embodiment -
FIG. 6B depicts an exemplary schematic of a rectangular object captured using a capture angle normal to the object, according to one embodiment. -
FIG. 6C depicts an exemplary schematic of a rectangular object captured using a capture angle slightly skewed with respect to the object, according to one embodiment. -
FIG. 6D depicts an exemplary schematic of a rectangular object captured using a capture angle significantly skewed with respect to the object, according to one embodiment. -
FIG. 7 is a flowchart of a method, according to one embodiment. - The following description is made for the purpose of illustrating the general principles of the present invention and is not meant to limit the inventive concepts claimed herein. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations.
- Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc.
- It must also be noted that, as used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless otherwise specified.
- The present application refers to image processing. In particular, the present application discloses systems, methods, and computer program products configured to transform objects depicted in digital images from a non-rectangular shape to a substantially rectangular shape, or preferably a rectangular shape. Even more preferably, this is accomplished by employing a two-step process where curvature in the object is corrected first, followed by correction of any projective effects in the image.
- The following definitions will be useful in understanding the inventive concepts described herein, according to various embodiments. The following definitions are to be considered exemplary, and are offered for purposes of illustration to provide additional clarity to the present disclosures, but should not be deemed limiting on the scope of the inventive concepts disclosed herein.
- As referred to henceforth, a "quadrilateral" is a four-sided figure where (1) each side is linear, and (2) adjacent sides form vertices at the intersection thereof. Exemplary quadrilaterals are depicted in
FIGS. 6C and 6D below, according to two illustrative embodiments. - A "parallelogram" is a special type of quadrilateral, i.e. a four-sided figure where (1) each side is linear, (2) opposite sides are parallel, and (3) adjacent sides are not necessarily perpendicular, such that vertices at the intersection of adjacent sides form angles having values that are not necessarily 90°.
- A "rectangle" or "rectangular shape" is a special type of quadrilateral, which is defined as a four-sided figure, where (1) each side is linear,(2) opposite sides are parallel, and (3) adjacent sides are perpendicular, such that an interior angle formed at the vertex between each pair of adjacent sides is a right-angle, i.e. a 90° angle. An exemplary rectangle is depicted in
FIG. 6B , according to one illustrative embodiment. - Moreover, as referred-to herein "rectangles" and "rectangular shapes" are considered to include "substantially rectangular shapes", which are defined as a four-sided shape where (1) each side is predominantly linear (e.g. at least 90%, 95%, or 99% of each side's length, in various embodiments, is characterized by a first-order polynomial (such as y = mx + b), (2) each pair of adjacent sides form an interior angle having a value θ, where θ is approximately 90° (e.g. θ satisfies the relationship: 85° ≤ θ ≤ 95°)) at either (a) a vertex between two adjacent sides, (b) a vertex between a projection of the predominantly linear portion of one side and an adjacent side, or (c) a vertex between a projection of the predominantly linear portion of one side and a projection of the predominantly linear portion of an adjacent side. An exemplary "substantially rectangular shape" is depicted below in
FIG. 7 (note the corners of the depicted driver license are curved, such that there is no discrete vertex formed by the respective adjacent sides, but a projection of each adjacent side would produce a vertex at the intersection thereof having an angle θ of approximately 90°). - A "non-rectangular shape" as referred to herein includes any shape that is not either a "rectangular shape" or a "substantially rectangular shape" as defined above. In preferred embodiments, a "non-rectangular shape" is a "tetragon," which as referred to herein is a four-sided figure, where: (1) each side is characterized in whole or in part by an equation selected from a chosen class of functions (e.g. selected from a class of polynomials preferably ranging from zeroth order to fifth order, more preferably first order to third order polynomials, and even more preferably first order to second order polynomials), and (2) adjacent sides of the figure form vertices at the intersection thereof. An exemplary tetragon as referred to herein is depicted in
FIG. 4 , according to one illustrative embodiment - In one general embodiment of the presently disclosed inventive concepts, a method of reconstructing a digital image includes: receiving the digital image comprising a digital representation of an object bounded by a tetragon; correcting curvature in the tetragon to form a quadrilateral; and correcting projective effects in the quadrilateral to form a rectangle.
- In another general embodiment, a system includes a processor configured to execute logic; and logic configured to receive a digital image comprising a digital representation of an object bounded by a tetragon; logic configured to correct curvature in the tetragon to form a quadrilateral; and logic configured to correct projective effects in the quadrilateral to form a rectangle.
- In yet another general embodiment, a computer program product includes a computer readable storage medium having computer readable program code stored thereon. The computer readable program code includes code configured to receive a digital image comprising a digital representation of an object bounded by a tetragon; code configured to correct curvature in the tetragon to form a quadrilateral; and code configured to correct projective effects in the quadrilateral to form a rectangle.
- Previous methods of rectangularization, such as described in
U.S. Pat. Appl. No. 13/740,127 (filed Jan. 11, 2013 - The combination of the previously described curvature-correction method and the presently described projective-effect correction method into a single dual-purpose procedure effectively combines the respective strengths of each approach. In one embodiment, the approaches may be combined as follows. First, the curvature-correction component corrects the curvature by mapping the curved tetragon bounding the object to a tetragon with the same corners but having straight sides (i.e. characterized by linear, or first-degree polynomials). Second, this (now straight-sided) tetragon is mapped to a target rectangle using a 4-point method such as described below.
- As a significant advantage, despite the more accurate reconstruction of the rectangular representation, this dual procedure affects only the two-step mapping of the coordinates, while the actual transformation of the image happens only once. Since most of the processing time is spend manipulating two large images in memory and combining the four pixels surrounding a non-integer (x, y) coordinates pair rather than calculating the correct coordinates by whatever method, the dual method is only about 3% more expensive than the original with respect to computational cost and therefore runtime, despite improved accuracy in terms of relative pixel location in the reconstructed image as compared to a corresponding image obtained from a traditional flatbed scanner or similar device.
- Experimental testing demonstrates that on a photograph with both pronounced curvature and large projective distortions, the dual method reduces the coordinate error (measured as the largest distance from the rectangularized pixel to the same pixel in a scanned image of the same document in the same resolution) by about 3x relative to the error of the coordinate-based method alone. In one embodiment, the residual error was about 5 pixels in a 500-DPI resolution, or about one hundredth of an inch.
- Images (e.g. pictures, figures, graphical schematics, single frames of movies, videos, films, clips, etc.) are preferably digital images captured by cameras, especially cameras of mobile devices. As understood herein, a mobile device is any device capable of receiving data without having power supplied via a physical connection (e.g. wire, cord, cable, etc.) and capable of receiving data without a physical data connection (e.g. wire, cord, cable, etc.). Mobile devices within the scope of the present disclosures include exemplary devices such as a mobile telephone, smartphone, tablet, personal digital assistant, iPod®, iPad®, BLACKBERRY® device, etc.
- However, as it will become apparent from the descriptions of various functionalities, the presently disclosed mobile image processing algorithms can be applied, sometimes with certain modifications, to images coming from scanners and multifunction peripherals (MFPs). Similarly, images processed using the presently disclosed processing algorithms may be further processed using conventional scanner processing algorithms, in some approaches.
- Of course, the various embodiments set forth herein may be implemented utilizing hardware, software, or any desired combination thereof. For that matter, any type of logic may be utilized which is capable of implementing the various functionality set forth herein.
- One benefit of using a mobile device is that with a data plan, image processing and information processing based on captured images can be done in a much more convenient, streamlined and integrated way than previous methods that relied on presence of a scanner. However, the use of mobile devices as document(s) capture and/or processing devices has heretofore been considered unfeasible for a variety of reasons.
- In one approach, an image may be captured by a camera of a mobile device. The term "camera" should be broadly interpreted to include any type of device capable of capturing an image of a physical object external to the device, such as a piece of paper. The term "camera" does not encompass a peripheral scanner or multifunction device. Any type of camera may be used. Preferred embodiments may use cameras having a higher resolution, e.g. 8 MP or more, ideally 12 MP or more. The image may be captured in color, grayscale, black and white, or with any other known optical effect. The term "image" as referred to herein is meant to encompass any type of data corresponding to the output of the camera, including raw data, processed data, etc.
- The description herein is presented to enable any person skilled in the art to make and use the invention and is provided in the context of particular applications of the invention and their requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
- In particular, various embodiments of the invention discussed herein are implemented using the Internet as a means of communicating among a plurality of computer systems. One skilled in the art will recognize that the present invention is not limited to the use of the Internet as a communication medium and that alternative methods of the invention may accommodate the use of a private intranet, a Local Area Network (LAN), a Wide Area Network (WAN) or other means of communication. In addition, various combinations of wired, wireless (e.g., radio frequency) and optical communication links may be utilized.
- The program environment in which one embodiment of the invention may be executed illustratively incorporates one or more general-purpose computers or special-purpose devices such hand-held computers. Details of such devices (e.g., processor, memory, data storage, input and output devices) are well known and are omitted for the sake of clarity.
- It should also be understood that the techniques of the present invention might be implemented using a variety of technologies. For example, the methods described herein may be implemented in software running on a computer system, or implemented in hardware utilizing one or more processors and logic (hardware and/or software) for performing operations of the method, application specific integrated circuits, programmable logic devices such as Field Programmable Gate Arrays (FPGAs), and/or various combinations thereof. In one illustrative approach, methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium such as a physical (e.g., non-transitory) computer-readable medium. In addition, although specific embodiments of the invention may employ object-oriented software programming concepts, the invention is not so limited and is easily adapted to employ other forms of directing the operation of a computer.
- The invention can also be provided in the form of a computer program product comprising a computer readable storage or signal medium having computer code thereon, which may be executed by a computing device (e.g., a processor) and/or system. A computer readable storage medium can include any medium capable of storing computer code thereon for use by a computing device or system, including optical media such as read only and writeable CD and DVD, magnetic memory or medium (e.g., hard disk drive, tape), semiconductor memory (e.g., FLASH memory and other portable memory cards, etc.), firmware encoded in a chip, etc.
- A computer readable signal medium is one that does not fit within the aforementioned storage medium class. For example, illustrative computer readable signal media communicate or otherwise transfer transitory signals within a system, between systems e.g., via a physical or virtual network, etc.
-
FIG. 1 illustrates anarchitecture 100, in accordance with one embodiment. As shown inFIG. 1 , a plurality ofremote networks 102 are provided including a firstremote network 104 and a secondremote network 106. Agateway 101 may be coupled between theremote networks 102 and aproximate network 108. In the context of thepresent network architecture 100, thenetworks - In use, the
gateway 101 serves as an entrance point from theremote networks 102 to theproximate network 108. As such, thegateway 101 may function as a router, which is capable of directing a given packet of data that arrives at thegateway 101, and a switch, which furnishes the actual path in and out of thegateway 101 for a given packet. - Further included is at least one
data server 114 coupled to theproximate network 108, and which is accessible from theremote networks 102 via thegateway 101. It should be noted that the data server(s) 114 may include any type of computing device/groupware. Coupled to eachdata server 114 is a plurality ofuser devices 116.Such user devices 116 may include a desktop computer, laptop computer, hand-held computer, printer or any other type of logic. It should be noted that auser device 111 may also be directly coupled to any of the networks, in one embodiment. - A peripheral 120 or series of
peripherals 120, e.g. facsimile machines, printers, networked storage units, etc., may be coupled to one or more of the networks 104,106, 108. It should be noted that databases, servers, and/or additional components may be utilized with, or integrated into, any type of network element coupled to thenetworks - According to some approaches, methods and systems described herein may be implemented with and/or on virtual systems and/or systems which emulate one or more other systems, such as a UNIX system which emulates a MAC OS environment, a UNIX system which virtually hosts a MICROSOFT WINDOWS environment, a MICROSOFT WINDOWS system which emulates a MAC OS environment, etc. This virtualization and/or emulation may be enhanced through the use of VMWARE software, in some embodiments.
- In more approaches, one or
more networks -
FIG. 1 illustrates anarchitecture 100, in accordance with one embodiment As shown inFIG. 1 , a plurality ofremote networks 102 are provided including a firstremote network 104 and a secondremote network 106. Agateway 101 may be coupled between theremote networks 102 and aproximate network 108. In the context of thepresent architecture 100, thenetworks - In use, the
gateway 101 serves as an entrance point from theremote networks 102 to theproximate network 108. As such, thegateway 101 may function as a router, which is capable of directing a given packet of data that arrives at thegateway 101, and a switch, which furnishes the actual path in and out of thegateway 101 for a given packet. - Further included is at least one
data server 114 coupled to theproximate network 108, and which is accessible from theremote networks 102 via thegateway 101. It should be noted that the data server(s) 114 may include any type of computing device/groupware. Coupled to eachdata server 114 is a plurality ofuser devices 116.Such user devices 116 may include a desktop computer, lap-top computer, hand-held computer, printer or any other type of logic. It should be noted that auser device 111 may also be directly coupled to any of the networks, in one embodiment. - A peripheral 120 or series of
peripherals 120, e.g., facsimile machines, printers, networked and/or local storage units or systems, etc., may be coupled to one or more of thenetworks networks - According to some approaches, methods and systems described herein may be implemented with and/or on virtual systems and/or systems which emulate one or more other systems, such as a UNIX system which emulates a MAC OS environment, a UNIX system which virtually hosts a MICROSOFT WINDOWS environment, a MICROSOFT WINDOWS system which emulates a MAC OS environment, etc. This virtualization and/or emulation may be enhanced through the use of VMWARE software, in some embodiments.
- In more approaches, one or more networks 104,106,108, may represent a cluster of systems commonly referred to as a "cloud." In cloud computing, shared resources, such as processing power, peripherals, software, data processing and/or storage, servers, etc., are provided to any system in the cloud, preferably in an on-demand relationship, thereby allowing access and distribution of services across many computing systems. Cloud computing typically involves an Internet or other high speed connection (e.g., 4G LTE, fiber optic, etc.) between the systems operating in the cloud, but other techniques of connecting the systems may also be used.
-
FIG. 2 shows a representative hardware environment associated with auser device 116 and/orserver 114 ofFIG. 1 , in accordance with one embodiment. Such figure illustrates a typical hardware configuration of a workstation having acentral processing unit 210, such as a microprocessor, and a number of other units interconnected via asystem bus 212. - The workstation shown in
FIG. 2 includes a Random Access Memory (RAM) 214, Read Only Memory (ROM) 216, an I/O adapter 218 for connecting peripheral devices such asdisk storage units 220 to thebus 212, auser interface adapter 222 for connecting akeyboard 224, amouse 226, aspeaker 228, amicrophone 232, and/or other user interface devices such as a touch screen and a digital camera (not shown) to thebus 212,communication adapter 234 for connecting the workstation to a communication network 235 (e.g., a data processing network) and adisplay adapter 236 for connecting thebus 212 to adisplay device 238. - The workstation may have resident thereon an operating system such as the Microsoft Windows® Operating System (OS), a MAC OS, a UNIX OS, etc. It will be appreciated that a preferred embodiment may also be implemented on platforms and operating systems other than those mentioned. A preferred embodiment may be written using JAVA, XML, C, and/or C++ language, or other programming languages, along with an object oriented programming methodology. Object oriented programming (OOP), which has become increasingly used to develop complex applications, may be used.
- Various embodiments of a Mobile Image Capture and Processing algorithm, as well as several mobile applications configured to facilitate use of such algorithmic processing within the scope of the present disclosures are described below. It is to be appreciated that each section below describes functionalities that may be employed in any combination with those disclosed in other sections, including any or up to all the functionalities described herein. Moreover, functionalities of the processing algorithm embodiments as well as the mobile application embodiments may be combined and/or distributed in any manner across a variety of computing resources and/or systems, in several approaches.
- An application may be installed on the mobile device, e.g., stored in a nonvolatile memory of the device. In one approach, the application includes instructions to perform processing of an image on the mobile device. In another approach, the application includes instructions to send the image to one or more non-mobile devices, e.g. a remote server such as a network server, a remote workstation, a cloud computing environment, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. In yet another approach, the application may include instructions to decide whether to perform some or all processing on the mobile device and/or send the image to the remote site. Examples of how an image may be processed are presented in more detail below.
- In one embodiment, there may be no difference between the processing that may be performed on the mobile device and a remote server, other than speed of processing, constraints on memory available, etc. Moreover, there may be some or no difference between various user interfaces presented on a mobile device, e.g. as part of a mobile application, and corresponding user interfaces presented on a display in communication with the non-mobile device.
- In other embodiments, a remote server may have higher processing power, more capabilities, more processing algorithms, etc. In yet further embodiments, the mobile device may have no image processing capability associated with the application, other than that required to send the image to the remote server. In yet another embodiment, the remote server may have no image processing capability relevant to the platforms presented herein, other than that required to receive the processed image from the remote server. Accordingly, the image may be processed partially or entirely on the mobile device, and/or partially or entirely on a remote server, and/or partially or entirely in a cloud, and/or partially or entirely in any part of the overall architecture in between. Moreover, some processing steps may be duplicated on different devices.
- Which device performs which parts of the processing may be defined by a user, may be predetermined, may be determined on the fly, etc. Moreover, some processing steps may be re-performed, e.g., upon receiving a request from the user. Accordingly, the raw image data, partially processed image data, or fully processed image data may be transmitted from the mobile device, e.g., using a wireless data network, to a remote system. Image data as processed at a remote system may be returned to the mobile device for output and/or further processing.
- In a further approach, the image may be partitioned, and the processing of the various parts may be allocated to various devices, e.g., 1/2 to the mobile device and 1/2 to the remote server, after which the processed halves are combined.
- In one embodiment, selection of which device performs the processing may be based at least in part on a relative speed of processing locally on the mobile device vs. communication with the server.
- In one approach, a library of processing functions may be present, and the application on the mobile device or the application on a remote server simply makes calls to this library, and essentially the meaning of the calls defines what kind of processing to perform. The device then performs that processing and outputs the processed image, perhaps with some corresponding metadata.
- Any type of image processing known in the art and/or as newly presented herein may be performed in any combination in various embodiments.
- Referring now to illustrative image processing, the camera can be considered an area sensor that captures images, where the images may have any number of projective effects, and sometimes non-linear effects. The image may be processed to correct for such effects. Moreover, the position and boundaries of the document(s) in the image may be found during the processing, e.g., the boundaries of one or more actual pages of paper in the background surrounding the page(s). Because of the mobile nature of various embodiments, the sheet of paper may be lying on just about anything. This complicates image analysis in comparison to processing images of documents produced using a scanner, because scanner background properties are constant and typically known, whereas mobile capture backgrounds may vary almost infinitely according to the location of the document and the corresponding surrounding textures captured in the image background, as well as because of variable lighting conditions.
- Accordingly, the non-uniformity of the background of the surface on which the piece of paper may be positioned for capture by the camera presents one challenge, and the non-linear and projective effects present additional challenges. Various embodiments overcome these challenges, as will soon become apparent.
- In one exemplary mode of operation, an application on the mobile device may be initiated, e.g., in response to a user request to open the application. For example, a user-selection of an icon representing the application may be detected.
- In some approaches, a user authentication may be requested and/or performed. For example, a user ID and password, or any other authentication information, may be requested and/or received from the user.
- In further approaches, various tasks may be enabled via a graphical user interface of the application. For example, a list of tasks may be presented. In such case, a selection of one of the tasks by the user may be detected, and additional options may be presented to the user, a predefined task may be initiated, the camera may be initiated, etc.
- An image may be captured by the camera of the mobile device, preferably upon receiving some type of user input such as detecting a tap on a screen of the mobile device, depression of a button on the mobile device, a voice command, a gesture, etc. Another possible scenario may involve some level of analysis of sequential frames, e.g. from a video stream. Sequential frame analysis may be followed by a switch to capturing a single high-resolution image frame, which may be triggered automatically or by a user, in some approaches. Moreover, the trigger may be based on information received from one or more mobile device sensors.
- For example, in one embodiment an accelerometer in or coupled to the mobile device may indicate a stability of the camera, and the application may analyze low-resolution video frame(s) for a document. If a document is detected, the application may perform a focusing operation and acquire a high-resolution image of the detected document.
- Either the low- or high-resolution image may be further processed, but preferred embodiments utilize the high-resolution image for subsequent processing. In more approaches, switching to single frame mode as discussed above may be unnecessary, particularly for smaller documents such as business cards and receipts. To increase processing rate and reduce consumption of processing resources, document type identification may facilitate determining whether or not to switch to single frame mode and/or capture a high-resolution image for processing. For the present discussion, assume an image of one or more documents is captured
- Given that mobile devices do not typically have the processing power of conventional non-mobile devices, one approach performs some limited processing on the mobile device, for example to let the user verify that the page(s) has been found correctly, that the image is not blurred, and/or that the lighting is adequate, e.g., a preview of sorts.
- In one approach, the document(s) within the image captured by the camera may be found.
- Additional methods of detecting one or more boundaries of the document(s) are also presented herein. If the document(s) in the image has nonlinearities or is not rectangular, correction processing may be applied.
- Once the page(s) are found in the image, one embodiment performs a smooth transformation in order to make the page(s) rectangular, assuming of course the original piece of paper was rectangular. Another useful correction to the image may be mitigation of the unevenness of the illumination.
- In one exemplary approach, page detection and rectangularization may be performed substantially as described below.
- One exemplary embodiment illustrating an exemplary methodology for performing page detection will now be described with reference to
FIGS. 3A-4 . With reference to these descriptions, it will become more clear how the advantages implemented for a mobile processing algorithm as described herein handle images captured by area sensors (cameras) and compensate for the inherent difficulties presented thereby. - In one approach, and with particular reference to
FIGS. 3A-3B , an edge detection algorithm proceeds from the boundaries of adigital image 300 toward a central region of theimage 300, looking for points that are sufficiently different from what is known about the properties of the background. Notably, thebackground 304 in the images captured by even the same mobile device may be different every time, so a new technique to identify the document(s) in the image is provided. - Finding page edges within a camera-captured image according to the present disclosures helps to accommodate important differences in the properties of images captured using mobile devices as opposed, e.g., to scanners. For example, due to projective effects the image of a rectangular document in a photograph may not appear truly rectangular, and opposite sides of the document in the image may not have the same length. Second, even the best lenses have some non-linearity resulting in straight lines within an object, e.g. straight sides of a substantially rectangular document, appearing slightly curved in the captured image of that object. Third, images captured using cameras overwhelmingly tend to introduce uneven illumination effects in the captured image. This unevenness of illumination makes even a perfectly uniform background of the surface against which a document may be placed appear in the image with varied brightness, and often with shadows, especially around the page edges if the page is not perfectly flat.
- In an exemplary approach, to avoid mistaking the variability within the background for page edges, the current algorithm utilizes one or more of the following functionalities.
- In various embodiments, the frame of the image contains the digital representation of the
document 302 with margins of thesurrounding background 304. In the preferred implementation the search for individual page edges 306 may be performed on a step-over approach analyzing rows and columns of the image from outside in. In one embodiment, the step-over approach may define a plurality ofanalysis windows 308 within thedigital image 300, such as shown inFIGS 3A-3B . As understood herein,analysis windows 308 may include one or more "background windows," i.e. windows encompassing only pixels depicting thebackground 304 of thedigital image 300, as well as one or more "test windows" i.e. windows encompassing pixels depicting thebackground 304 of thedigital image 300, the digital representation of thedocument 302, or both. - In a preferred embodiment, the digital representation of the document may be detected in the digital image by defining a
first analysis window 308, i.e. a background analysis window, in a margin of the image corresponding to thebackground 304 of the surface upon which the document is placed. Within thefirst analysis window 308, a plurality of small analysis windows (e.g. test windows 312 as shown inFIG. 3D ) may be defined within thefirst analysis window 308. Utilizing the plurality oftest windows 312, one or more distributions of one or more statistical properties descriptive of thebackground 304 may be estimated. - With continuing reference to the preferred embodiment discussed immediately above, a next step in detecting boundaries of the digital representation of the document may include defining a plurality of
test windows 312 within the digital image, and analyzing the corresponding regions of the digital image. For eachtest window 312 one or more statistical values descriptive of the corresponding region of the image may be calculated. Further, these statistical values may be compared to a corresponding distribution of statistics descriptive of thebackground 304. - In a preferred approach, the plurality of
test windows 312 may be defined along a path, particularly a linear path. In a particularly preferred approach, the plurality oftest windows 312 may be defined in a horizontal direction and/or a vertical direction, e.g. along rows and columns of the digital image. Moreover, a stepwise progression may be employed to define thetest windows 312 along the path and/or between the rows and/or columns. In some embodiments, as will be appreciated by one having ordinary skill in the art upon reading the present descriptions, utilizing a stepwise progression may advantageously increase the computational efficiency of document detection processes. - Moreover, the magnitude of the starting step may be estimated based on the resolution or pixel size of the image, in some embodiments, but this step may be reduced if advantageous for reliable detection of document sides, as discussed further below.
- In more embodiments, the algorithm estimates the distribution of several statistics descriptive of the image properties found in a
large analysis window 308 placed within the background surrounding the document. In one approach a plurality ofsmall windows 312 may be defined within thelarge analysis window 308, and distributions of statistics descriptive of thesmall test windows 312 may be estimated. In one embodiment,large analysis window 308 is defined in a background region of the digital image, such as a top-left corner of the image. - Statistics descriptive of the background pixels may include any statistical value that may be generated from digital image data, such as a minimum value, a maximum value, a median value, a mean value, a spread or range of values, a variance, a standard deviation, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. Values may be sampled from any data descriptive of the
digital image 300, such as brightness values in one or more color channels, e.g. red-green-blue or RGB, cyan-magenta, yellow, black or CMYK, hue saturation value or HSV, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. - As shown in
FIG. 3D , each of thesmall analysis windows 312 may comprise a subset of the plurality of pixels within thelarge analysis window 308. Moreover,small analysis windows 312 may be of any size and/or shape capable of fitting within the boundaries oflarge analysis window 308. In a preferred embodiment,small analysis windows 312 may be characterized by a rectangular shape, and even more preferably a rectangle characterized by being three pixels long in a first direction (e.g. height) and seven pixels long in a second direction (e.g. width). Of course, other small analysis window sizes, shapes, and dimensions are also suitable for implementation in the presently disclosed processing algorithms. - In one embodiment, test windows may be employed to analyze an image and detect the boundary of a digital representation of a document depicted in the image. Background windows are used for estimation of original statistical properties of the background and/or reestimation of local statistical properties of the background. Reestimation may be necessary and/or advantageous in order to address artifacts such as uneven illumination and/or background texture variations.
- Preferably, statistical estimation may be performed over some or all of a plurality of small analysis window(s) 312 in a
large analysis window 308 within the margin outside of the document page in some approaches. Such estimation may be performed using a stepwise movement of asmall analysis window 312 within thelarge analysis window 308, and the stepwise movement may be made in any suitable increment so as to vary the number of samples taken for a given pixel. For example, to promote computational efficiency, an analysis process may define a number ofsmall analysis windows 312 withinlarge analysis window 308 sufficient to ensure eachpixel 318 is sampled once. Thus the plurality ofsmall analysis windows 312 defined in this computationally efficient approach would share common borders but not overlap. - In another approach designed to promote robustness of statistical estimations, the analysis process may define a number of
small analysis windows 312 withinlarge analysis window 308 sufficient to ensure eachpixel 318 is sampled a maximum number of times, e.g. by reducing the step to produce only a single pixel shift in a given direction between sequentially definedsmall analysis windows 312. Of course, any step increment may be employed in various embodiments of the presently disclosed processing algorithms, as would be understood by one having ordinary skill in the art upon reading the present descriptions. - The skilled artisan will appreciate that
large analysis windows 308 utilized to reestimate statistics of local background in the digital image as well as test windows can be placed in the digital image in any which way desirable. - For example, according to one embodiment shown in
FIG. 3A , the search for the left side edge in a given row i begins from the calculation of the above mentioned statistics in alarge analysis window 308 adjacent to the frame boundary on the left side of the image centered around a given row i. - In still more embodiments, when encountering a possible non-background test window (e.g. a test window for which the estimated statistics are dissimilar from the distribution of statistics characteristic of the last known local background) as the algorithm progresses from the outer region(s) of the image towards the interior regions thereof, the algorithm may backtrack into a previously determined background region, form a new
large analysis window 308 and re-estimate the distribution of background statistics in order to reevaluate the validity of the differences between the chosen statistics within thesmall analysis window 312 and the local distribution of corresponding statistics within thelarge analysis window 308, in some embodiments. - As will be appreciated by one having ordinary skill in the art upon reading the present descriptions, the algorithm may proceed from an outer region of the
image 300 to an inner region of theimage 300 in a variety of manners. For example, in one approach the algorithm proceeds definingtest windows 312 in a substantially spiral pattern. In other approaches the pattern may be substantially serpentine along either a vertical or a horizontal direction. In still more approaches the pattern may be a substantially shingled pattern. The pattern may also be defined by a "sequence mask" laid over part or all of thedigital image 300, such as a checkerboard pattern, a vertically, horizontally, or diagonally striped pattern, concentric shapes, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. In other embodiments, analysis windows such aslarge analysis windows 308 and/orsmall analysis windows 312 may be defined throughout thedigital image 300 in a random manner, a pseudo-random manner, stochastically, etc. according to some defined procedure, as would be understood by one having ordinary skill in the art upon reading the present descriptions. The algorithm can proceed with a sequence of test windows in any desirable fashion as long as the path allows to backtrack into known background, and the path covers the whole image with desirable granularity. - Advantageously, recalculating statistics in this manner helps to accommodate for any illumination drift inherent to the
digital image 300 and/orbackground 304, which may otherwise result in false identification of non-background points in the image (e.g. outlier candidate edge points 316 as shown inFIG. 3C ). - In still yet more embodiments, when the difference is statistically valid, the algorithm may jump a certain distance further along its path in order to check again and thus bypass small variations in the texture of the
background 304, such as wood grain, scratches on a surface, patterns of a surface, small shadows, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. - In additional and/or alternative embodiments, after a potential non-background point has been found, the algorithm determines whether the point lies on the edge of the shadow (a possibility especially if the edge of the page is raised above the background surface) and tries to get to the actual page edge. This process relies on the observation that shadows usually darken towards the real edge followed by an abrupt brightening of the image.
- The above described approach to page edge detection was utilized because the use of standard edge detectors may be unnecessary and even undesirable, for several reasons. First, most standard edge detectors involve operations that are time consuming, and second, the instant algorithm is not concerned with additional requirements like monitoring how thin the edges are, which directions they follow, etc. Even more importantly, looking for page edges 306 does not necessarily involve edge detection per se, i.e. page edge detection according to the present disclosures may be performed in a manner that does not search for a document boundary (e.g. page edge 306), but rather searches for image characteristics associated with a transition from background to the document. For example, the transition may be characterized by flattening of the off-white brightness levels within a glossy paper, i.e. by changes in texture rather than in average gray or color levels.
- As a result, it is possible to obtain candidate edge points (e.g. candidate edge points 314 as shown in
FIG. 3C ) that are essentially the first and the last non-background pixels in each row and column on a grid. In order to eliminate random outliers (e.g. outlier candidate edge points 316 as shown inFIG. 3C ) and to determine which candidate edge points 314 correspond to each side of the page, it is useful in one approach to analyze neighboring candidate edge points. - In one embodiment, a "point" may be considered any region within the digital image, such as a pixel, a position between pixels (e.g. a point with fractional coordinates such as the center of a 2-pixel by 2-pixel square) a small window of pixels, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. In a preferred embodiment, a candidate edge point is associated with the center of a test window (e.g. a 3-pixel x 7-pixel window) that has been found to be characterized by statistics that are determined to be different from the distribution of statistics descriptive of the local background.
- As understood herein, a "neighboring" candidate edge point, or a "neighboring" pixel is considered to be a point or pixel, respectively, which is near or adjacent a point or pixel of interest (e.g. pixel 318), e.g. a point or pixel positioned at least in part along a boundary of the point or pixel of interest, a point or pixel positioned within a threshold distance of the point or pixel of interest (such as within 2, 10,64 pixels, etc. in a given direction, within one row of the point or pixel of interest, within one column of the point or pixel of interest), etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. In preferred approaches, the "neighboring" point or pixel may be the closest candidate edge point to the point of interest along a particular direction, e.g. a horizontal direction and/or a vertical direction.
- Each "good" edge point ideally has at least two immediate neighbors (one on each side) and does not deviate far from a straight line segment connecting these neighbors and the "good" edge point, e.g. the candidate edge point and the at least two immediately neighboring points may be fit to a linear regression, and the result may be characterized by a coefficient of determination (R2) not less than 0.95. The angle of this segment with respect to one or more borders of the digital image, together with its relative location determines whether the edge point is assigned to top, left, right, or bottom side of the page. In a preferred embodiment, a candidate edge point and the two neighboring edge points may be assigned to respective corners of a triangle. If the angle of the triangle at the candidate edge point is close to 180 degrees, then the candidate edge point may be considered a "good" candidate edge point. If the angle of the triangle at the candidate edge point deviates far from 180 degrees by more than a threshold value (such as by 20 degrees or more), then the candidate edge point may be excluded from the set of "good" candidate edge points. The rationale behind this heuristic is based on the desire to throw out random errors in the determination of the first and last non-background pixels within rows and columns. These pixels are unlikely to exist in consistent lines, so checking the neighbors in terms of distance and direction is particularly advantageous in some approaches.
- For speed, the step of this grid may start from a large number such as 32, but it may be reduced by a factor of two and the search for edge points repeated until there are enough of them to determine the Least Mean Squares (LMS) based equations of page sides (see below). If this process cannot determine the sides reliably even after using all rows and columns in the image, it gives up and the whole image is treated as the page.
- The equations of page sides are determined as follows, in one embodiment. First, the algorithm fits the best LMS straight line to each of the sides using the strategy of throwing out worst outliers until all the remaining supporting edges lie within a small distance from the LMS line. For example, a point with the largest distance from a substantially straight line connecting a plurality of candidate edge points along a particular boundary of the document may be designated the "worst" outlier. This procedure may be repeated iteratively to designate and/or remove one or more "worst" outliers from the plurality of candidate edge point. In some approaches, the distance with which a candidate edge point may deviate from the line connecting the plurality of candidate edge points is based at least in part on the size and/or resolution of the digital image.
- If this line is not well supported all along its stretch, the algorithm may attempt to fit the best second-degree polynomial (parabola) to the same original candidate points. The algorithmic difference between finding the best parabola vs. the best straight line is minor: instead of two unknown coefficients determining the direction and offset of the line there are three coefficients determining the curvature, direction, and offset of the parabola; however, in other respects the process is essentially the same, in one embodiment.
- If the support of the parabola is stronger than that of the straight line, especially closer to the ends of the candidate edge span, the conclusion is that the algorithm should prefer the parabola as a better model of the page side in the image. Otherwise, the linear model is employed, in various approaches.
- Intersections of the four found sides of the document may be calculated in order to find the corners of (possibly slightly curved) page tetragon, (e.g. tetragon 400 as shown in
FIG. 4 and discussed in further detail below). In the preferred implementation in order to do this it is necessary to consider three cases: calculating intersections of two straight lines, calculating intersections of a straight line and a parabola, and calculating intersections of two parabolas. - In the first case there is a single solution (since top and bottom page edges 306 stretch mostly horizontally, while left and right page edges 306 stretch mostly vertically, the corresponding LMS lines cannot be parallel) and this solution determines the coordinates of the corresponding page corner.
- The second case, calculating intersections of a straight line and a parabola, is slightly more complicated: there can be zero, one, or two solutions of the resulting quadratic equation. If there is no intersection, it may indicate a fatal problem with page detection, and its result may be rejected. A single solution is somewhat unlikely, but presents no further problems. Two intersections present a choice, in which case the intersection closer to the corresponding corner of the frame is a better candidate - in practice, the other solution of the equation may be very far away from the coordinate range of the image frame.
- The third case, calculating intersections of two parabolas, results in a fourth degree polynomial equation that (in principle) may be solved analytically. However, in practice the number of calculations necessary to achieve a solution may be greater than in an approximate iterative algorithm that also guarantees the desired sub-pixel precision.
- One exemplary procedure used for this purpose is described in detail below with reference to rectangularization of the digital representation of the
document 302, according to one approach. - There are several constraints on the validity of the resulting target tetragon (e.g. tetragon 400 as discussed in further detail below with regard to
FIG. 4 ). Namely, the tetragon is preferably not too small (e.g., below a predefined threshold of any desired value, such as 25% of the total area of the image), the corners of the tetragon preferably do not lie too far outside of the frame of the image (e.g. not more than 100 pixels away), and the corners themselves should preferably be interpretable as top-left, top-right, bottom-left and bottom-right with diagonals intersecting inside of the tetragon, etc. If these constraints are not met, a given page detection result may be rejected, in some embodiments. - In one illustrative embodiment where the detected tetragon of the digital representation of the
document 302 is valid, the algorithm may determine a target rectangle. Target rectangle width and height may be set to the average of top and bottom sides of the tetragon and the average of left and right sides respectively. - In one embodiment, if skew correction is performed, the angle of skew of the target rectangle may be set to zero so that the page sides will become horizontal and vertical. Otherwise, the skew angle may be set to the average of the angles of top and bottom sides to the horizontal axis and those of the left and right sides to the vertical axis.
- In a similar fashion, if crop correction is not performed, the center of the target rectangle may be designated so as to match the average of the coordinates of the four corners of the tetragon; otherwise the center may be calculated so that the target rectangle ends up in the top left of the image frame, in additional embodiments.
- In some approaches, if page detection result is rejected for any reason, some or all steps of the process described herein may be repeated with a smaller step increment, in order to obtain more candidate edge points and, advantageously, achieve more plausible results. In a worst-case scenario where problems persist even with the minimum allowed step, the detected page may be set to the whole image frame and the original image may be left untouched.
- Now with particular reference to an exemplary implementation of the inventive page detection embodiment described herein, in one approach page detection includes performing a method such as described below. As will be appreciated by one having ordinary skill in the art upon reading the present descriptions, the method may be performed in any environment, including those described herein and represented in any of the Figures provided with the present disclosures.
- In one embodiment, the method includes operation, where a plurality of candidate edge points corresponding to a transition from a digital image background to the digital representation of the document are defined.
- In various embodiments, defining the plurality of candidate edge points in operation may include one or more additional operations such as operations -, described below.
- In one operation, and according to one embodiment, a large analysis window (e.g.
large analysis window 308 as shown inFIGS 3A-3B and 3D is defined within thedigital image 300. Preferably, a first large analysis window is defined in a region depicting a plurality of pixels of thedigital image background 304, but not depicting the non-background (e.g. the digital representation of the document 302) in order to obtain information characteristic of thedigital image background 304 for comparison and contrast to information characteristic of the non-background (e.g. the digital representation of thedocument 302, such as background statistics discussed in further detail below with reference to operation). For example, the firstlarge analysis window 308 may be defined in a corner (such as a top-left corner) of thedigital image 300. Of course, the first large analysis window may be defined in any part of thedigital image 300 without departing from the scope of the present disclosures. - Moreover, as will be understood by one having ordinary skill in the art upon reading the present descriptions, the
large analysis window 308 may be any size and/or characterized by any suitable dimensions, but in preferred embodiments thelarge analysis window 308 is approximately forty pixels high and approximately forty pixels wide. - In particularly preferred approaches, the
large analysis window 308 may be defined in a corner region of the digital image. For example, with reference toFIG. 3A , adigital image 300 is shown, thedigital image 300 comprising a digital representation of adocument 302 having a plurality ofsides 306 and abackground 304. As described above with reference to operation, thelarge analysis window 308 may be defined in a region comprising a plurality of background pixels and not including pixels corresponding to the digital representation of thedocument 302. Moreover, thelarge analysis window 308 may be defined in the corner of thedigital image 300, in some approaches. - In another operation, according to one embodiment, a plurality of
small analysis windows 312 may be defined within thedigital image 300, such as within thelarge analysis window 308. Thesmall analysis windows 312 may overlap at least in part with one or more othersmall analysis windows 312 such as to be characterized by comprising one ormore overlap regions 320 as shown inFIG. 3D . In a preferred approach all possiblesmall analysis windows 312 are defined within thelarge analysis window 308. Of course, small analysis windows may be defined within any portion of the digital image, such as shown inFIG. 3B , and preferably small analysis windows may be defined such that each small analysis window is characterized by a single center pixel. - In still another operation, according to one embodiment, one or more statistics are calculated for one or more small analysis windows 312 (e.g. one or more
small analysis windows 312 within a large analysis window 308) and one or more distributions of corresponding statistics are estimated (e.g. a distribution of statistics estimated across a plurality of small analysis windows 312). In another embodiment, distributions of statistics may be estimated across one or more large analysis window(s) 308 and optionally merged. - Moreover, values may be descriptive of any feature associated with the background of the digital image, such as background brightness values, background color channel values, background texture values, background tint values, background contrast values, background sharpness values, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. Moreover still, statistics may include a minimum, a maximum and/or a range of brightness values in one or more color channels of the plurality of pixels depicting the
digital image background 304 over the plurality ofsmall windows 312 within thelarge analysis window 308. - In yet another operation, and again according to one exemplary embodiment, one or more distributions of background statistics are estimated. By estimating the distribution(s) of statistics, one may obtain descriptive distribution(s) that characterize the properties of the
background 304 of thedigital image 300 within, for example, alarge analysis window 308. - The distribution(s) preferably correspond to the background statistics calculated for each small analysis window, and may include, for example, a distribution of brightness minima, a distribution of brightness maxima, etc., from which one may obtain distribution statistical descriptors such as the minimum and/or maximum of minimum brightness values, the minimum and/or maximum of minimum brightness values, minimum and/or maximum spread of brightness values, minimum and/or maximum of minimum color channel values, minimum and/or maximum of maximum color channel values, minimum and/or maximum spread of color channel values etc. as would be appreciated by one having ordinary skill in the art upon reading the present descriptions. Of course, any of the calculated background statistics (e.g. for brightness values, color channel values, contrast values, texture values, tint values, sharpness values, etc.) may be assembled into a distribution and any value descriptive of the distribution may be employed without departing from the scope of the present disclosures.
- In still yet another operation, according to one embodiment, a large analysis window, such as
analysis window 308 as shown inFIGS. 3A-3B is defined within thedigital image 300. - Moreover, window shapes may be defined by positively setting the boundaries of the window as a portion of the
digital image 300, may be defined by negatively, e.g. by applying a mask to thedigital image 300 and defining the regions of thedigital image 300 not masked as the analysis window. Moreover still, windows may be defined according to a pattern, especially in embodiments where windows are negatively defined by applying a mask to thedigital image 300. Of course, other manners for defining the windows may be employed without departing from the scope of the present disclosures. - In more embodiments, the method may include performing an operation where one or more statistics are calculated for the
analysis window 312. Moreover, in preferred embodiments each analysis window statistic corresponds to a distribution of background statistics estimated for thelarge analysis window 308 in operation. For example, in one embodiment maximum brightness corresponds to distribution of background brightness maxima, minimum brightness corresponds to distribution of background brightness minima, brightness spread corresponds to distribution of background brightness spreads, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. - In more embodiments, the method include determining whether a statistically significant difference exists between at least one analysis window statistic and the corresponding distribution of background statistics. As will be appreciated by one having ordinary skill in the art upon reading the present descriptions, determining whether a statistically significant difference exists may be performed using any known statistical significance evaluation method or metric, such as a p-value, a z-test, a chi-squared correlation, etc. as would be appreciated by a skilled artisan reading the present descriptions.
- In additional and/or alternative approaches, the method includes designating one or more points (e.g. the
centermost pixel 318 or point) in the analysis window for which a statistically significant difference exists between a value describing thepixel 318 and the corresponding distribution of background statistics is designated as a candidate edge point The designating may be accomplished by any suitable method known in the art, such as setting a flag corresponding to the pixel, storing coordinates of the pixel, making an array of pixel coordinates, altering one or more values describing the pixel 318 (such as brightness, hue, contrast, etc.), or any other suitable means. - In operation, according to one embodiment, one or more of operations - may be repeated one or more times. In a preferred embodiment, a plurality of such repetitions may be performed, wherein each repetition is performed on a different portion of the digital image. Preferably, the repetitions may be performed until each side of the digital representation of the document has been evaluated. In various approaches, defining the
analysis windows analysis windows - In a particularly preferred embodiment, the plurality of repetitions may be performed in a manner directed to reestimate local background statistics upon detecting a potentially non-background window (e.g. a window containing a candidate edge point or a window containing an artifact such as uneven illumination, background texture variation, etc.).
- In operation, according to one embodiment, four sides of a
tetragon 400 are defined based on the plurality of candidate edge points. Preferably, the sides of thetetragon 400 encompass theedges 306 of a digital representation of adocument 302 in adigital image 300. Defining the sides of thetetragon 400 may include, in some approaches, performing one or more least-mean-squares (LMS) approximations. - In more approaches, defining the sides of the
tetragon 400 may include identifying one or more outlier candidate edge points, and removing one or more outlier candidate edge points from the plurality of candidate edge points. Further, defining the sides of thetetragon 400 may include performing at least one additional LMS approximation excluding the one or more outlier candidate edge points. - Further still, in one embodiment each side of the
tetragon 400 is characterized by an equation chosen from a class of functions, and performing the at least one LMS approximation comprises determining one or more coefficients for each equation, such as best coefficients of second degree polynomials in a preferred implementation. According to these approaches, defining the sides of thetetragon 400 may include determining whether each side of the digital representation of the document falls within a given class of functions, such as second degree polynomials or simpler functions such as linear functions instead of second degree polynomials. - In preferred approaches, performing method may accurately define a tetragon around the four dominant sides of a document while ignoring one or more deviations from the dominant sides of the document, such as a
rip 310 and/or atab 320 as depicted inFIGS. 3A-3C and 4. - Additional and/or alternative embodiments of the presently disclosed
tetragon 400 may be characterized by having four sides, and each side being characterized by one or more equations such as the polynomial functions discussed above. For example, embodiments where the sides oftetragon 400 are characterized by more than one equation may involve dividing one or more sides into a plurality of segments, each segment being characterized by an equation such as the polynomial functions discussed above. - Defining the
tetragon 400 may, in various embodiments, alternatively and/or additionally include defining one or more corners of thetetragon 400. For example,tetragon 400 corners may be defined by calculating one or more intersections between adjacent sides of thetetragon 400, and designating an appropriate intersection from the one or more calculated intersections in cases where multiple intersections are calculated. In still more embodiments, defining the corners may include solving one or more equations, wherein each equation is characterized by belonging to a chosen class of functions such as Nth degree polynomials, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. - In various embodiments, a corner of the
tetragon 400 may be defined by one or more of: an intersection of two curved adjacent sides of thetetragon 400; an intersection of two substantially straight lines; and an intersection of one substantially straight line and one substantially curved line. - In even still more embodiments, the method may include an additional and/or alternative operation, where the digital representation of the
document 302 and thetetragon 400 are output to a display of a mobile device. Outputting may be performed in any manner, and may depend upon the configuration of the mobile device hardware and/or software. - Moreover, outputting may be performed in various approaches so as to facilitate further processing and/or user interaction with the output For example, in one embodiment the
tetragon 400 may be displayed in a manner designed to distinguish thetetragon 400 from other features of thedigital image 300, for example by displaying thetetragon 400 sides in a particular color, pattern, illumination motif, as an animation, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. - Further still, in some embodiments outputting the
tetragon 400 and the digital representation of thedocument 302 may facilitate a user manually adjusting and/or defining thetetragon 400 in any suitable manner. For example, a user may interact with the display of the mobile device to translate thetetragon 400, i.e. to move the location of thetetragon 400 in one or more directions while maintaining the aspect ratio, shape, edge lengths, area, etc. of thetetragon 400. Additionally and/or alternatively, a user may interact with the display of the mobile device to manually define or adjust locations oftetragon 400 corners, e.g. tapping on atetragon 400 corner and dragging the corner to a desired location within thedigital image 300, such as a corner of the digital representation of thedocument 302. - Referring again to
FIG. 4 , one particular example of an ideal result of page detection is depicted, showing the digital representation of thedocument 302 within thedigital image 300, and having atetragon 400 that encompasses the edges of the digital representation of thedocument 302. - In some approaches, page detection methods such as described above may include one or more additional and/or alternative operations, such as will be described below.
- In one approach, page detection may further include capturing one or more of the image data containing the digital representation of the document and audio data relating to the digital representation of the document. Capturing may be performed using one or more capture components coupled to the mobile device, such as a microphone, a camera, an accelerometer, a sensor, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- In another approach, page detection may include defining a new
large analysis window 309 and reestimating the distribution of background statistics for the newlarge analysis window 309 upon determining that the statistically significant difference exists, i.e. essentially repeating operation 1908 and/or 1910 in a different region of thedigital image 300 near a point where a potentially non-background point has been identified, such as near one of theedges 306 of the document - In several exemplary embodiments, a
large analysis window 308 may be positioned near or at the leftmost non-background pixel in a row or positioned near or at the rightmost non-background pixel in a row, positioned near or at the topmost non-background pixel in a column, positioned near or at bottommost non-background pixel in a column. - Approaches involving such reestimation may further include determining whether the statistically significant difference exists between at least one small analysis window (e.g. a test window) statistic and the corresponding reestimated distribution of large analysis window statistics. In this manner, it is possible to obtain a higher-confidence determination of whether the statistically significant difference exists, and therefore better distinguish true transitions from the digital image background to the digital representation of the document as opposed to, for example, variations in texture, illumination anomalies, and/or other artifacts within the digital image.
- Moreover, with or without performing reestimation as described above may facilitate the method avoiding one or more artifacts such as variations in illumination and/or background texture, etc. in the digital image, the artifacts not corresponding to a true transition from the digital image background to the digital representation of the document In some approaches, avoiding artifacts may take the form of bypassing one or more regions (e.g. regions characterized by textures, variations, etc. that distinguish the region from the true background) of the digital image.
- In some approaches, one or more regions may be bypassed upon determining a statistically significant difference exists between a statistical distribution estimated for the
large analysis window 308 and a corresponding statistic calculated for thesmall analysis window 312, defining a new large analysis window near the small analysis window, reestimating the distribution of statistics for the new large analysis window, and determining that the statistically significant difference does not exist between the reestimated statistical distribution and the corresponding statistic calculated for thesmall analysis window 312. - In other approaches, bypassing may be accomplished by checking another
analysis window 312 further along the path and resuming the search for a transition to non-background upon determining that the statistics of this checked window do not differ significantly from the known statistical properties of the background, e.g. as indicated by a test of statistical significance. - As will be appreciated by the skilled artisan upon reading the present disclosures, bypassing may be accomplished by checking another analysis window further along the path.
- In still further approaches, page detection may additionally and/or alternatively include determining whether the
tetragon 400 satisfies one or more quality control metrics; and rejecting thetetragon 400 upon determining thetetragon 400 does not satisfy one or more of the quality control metrics. Moreover, quality control metrics may include measures such as a LMS support metric, aminimum tetragon 400 area metric, atetragon 400 corner location metric, and atetragon 400 diagonal intersection location metric. - In practice, determining whether the
tetragon 400 satisfies one or more of these metrics acts as a check on the performance of the method. For example, checks may include determining whether thetetragon 400 covers at least a threshold of the overall digital image area, e.g. whether thetetragon 400 comprises at least 25% of the total image area. - Furthermore, checks may include determining whether
tetragon 400 diagonals intersect inside the boundaries of thetetragon 400, determining whether one or more of the LMS approximations were calculated from sufficient data to have robust confidence in the statistics derived therefrom, i.e. whether the LMS approximation has sufficient "support," (such as an approximation calculated from at least five data points, or at least a quarter of the total number of data points, in various approaches), and/or determining whethertetragon 400 corner locations (as defined by equations characterizing each respective side of the tetragon 400) exist within a threshold distance of the edge of the digital image, e.g. whethertetragon 400 corners are located more than 100 pixels away from an edge of the digital image in a given direction. Of course, other quality metrics and/or checks may be employed without departing from the scope of these disclosures, as would be appreciated by one having ordinary skill in the art upon reading the present descriptions. - In one approach, quality metrics and/or checks may facilitate rejecting
suboptimal tetragon 400 definitions, and further facilitate improving the definition of thetetragon 400 sides. For example, one approach involves receiving an indication that the defining the four sides of thetetragon 400 based on the plurality of candidate edge points failed to define avalid tetragon 400, i.e. failed to satisfy one or more of the quality control metrics; and redefining the plurality of candidate edge points. Notably, in this embodiment redefining the plurality of candidate edge points includes sampling a greater number of points within the digital image than a number of points sampled in the prior, failed attempt. This may be accomplished, in one approach, by reducing the step over one or more of rows or columns of the digital image and repeating all the steps of the algorithm in order to analyze a larger number of candidate edge points. The step may be decreased in a vertical direction, a horizontal direction, or both. Of course, other methods of redefining the candidate edge points and/or resampling points within the digital image may be utilized without departing from the scope of the present disclosures. - Further still, page detection may include designating the entire digital image as the digital representation of the document, particularly where multiple repetitions of the method failed to define a
valid tetragon 400, even with significantly reduced step in progression through the digital image analysis. In one approach, designating the entire digital image as the digital representation of the document may include defining image corners as document corners, defining image sides as document sides, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. - As described herein, the diagonals of the
tetragon 400 may be characterized by a first line connecting a calculated top left corner of thetetragon 400 to a calculated bottom right corner of thetetragon 400, and second line connecting a calculated top right corner of thetetragon 400 and a calculated bottom left corner of thetetragon 400. Moreover, the first line and the second line preferably intersect inside thetetragon 400. - In various approaches, one or more of the foregoing operations may be performed using a processor, and the processor may be part of a mobile device, particularly a mobile device having an integrated camera.
- The presently described inventive concepts include correcting curvature in a digital image, and more particularly correcting curvature in sides of a digital representation of a document. Various approaches to correcting curvature will be described in detail below, with exemplary reference to
FIGS. 5A-5B . - In one embodiment, the goal of a curvature correction algorithm is to smoothly transform a
tetragon 400 into a quadrilateral. Notably, thetetragon 400 is characterized by a plurality of equations, each equation corresponding to a side of thetetragon 400 and being selected from a chosen class of functions. For example, each side of thetetragon 400 may be characterized by a first degree polynomial, second degree polynomial, third degree polynomial, etc. as would be appreciated by the skilled artisan upon reading the present descriptions. - In one approach, sides of the
tetragon 400 may be described by equations, and in a preferred embodiment a left side of thetetragon 400 is characterized by a second degree polynomial equation: x = a2 ∗ y2 + a1 ∗ y + a0 ; a right side of thetetragon 400 is characterized by a second degree polynomial equation: x = b2 ∗ y 2 + b1 ∗ y + b0 ; a top side of thetetragon 400 is characterized by a second degree polynomial equation: y = c2 ∗ x 2 + c1 ∗ x + c0 ; and a bottom side of thetetragon 400 is characterized by a second degree polynomial equation: y = d2 ∗ x2 + d1 ∗ x + d0. - The description of curvature correction presented herein utilizes the definition of a plurality of tetragon-based intrinsic coordinate pairs (p, q) within the tetragon, each intrinsic coordinate pair (p, q) corresponding to an intersection of a top-to-bottom curve characterized by an equation obtained from the equations of its left and right sides by combining all corresponding coefficients in a top-to-bottom curve coefficient ratio of p to 1 - p, and a left-to-right curve characterized by an equation obtained from the equations of its top and bottom sides by combining all corresponding coefficients in a left-to-right curve coefficient ratio of q to 1 - q, wherein 0 ≤ p ≤ 1, and wherein 0 ≤ q ≤ 1.
- In a preferred embodiment where the sides of the
tetragon 400 are characterized by second degree polynomial equations, the top-to-bottom curve corresponding to the intrinsic coordinate p will be characterized by the equation: x = ((1 - p) ∗ a2 + p ∗ b2 ) ∗ y2 + ((1 - p) ∗ a1 + p ∗ b1 ) ∗ y + ((1 - p) ∗ a0 + p ∗ b0 ), and the left-to-right curve corresponding to the intrinsic coordinate q will be characterized by the equation: y = ((1 - q) ∗ c2 + q ∗ d2 ) ∗ y2 + ((1 - q) ∗ c1 + q ∗ d1 ) ∗ y + ((1 - q) ∗ c0 + q ∗ d0 ). Of course, other equations may characterize any of the sides and/or curves described above, as would be appreciated by one having ordinary skill in the art upon reading the present descriptions. - For a parallelogram, the intrinsic coordinates become especially simple: within the parallelogram, each intrinsic coordinate pair (p, q) corresponds to an intersection of a line parallel to each of a left side of the parallelogram and a right side of the parallelogram, e.g. a line splitting both top and bottom sides in the proportion of p to 1 - p; and a line parallel to each of a top side of the parallelogram and a bottom side of the parallelogram, e.g. a line splitting both top and bottom sides in the proportion of q to 1 - q, wherein 0 ≤ p ≤ 1, and wherein 0 ≤ q ≤ 1. In another particular case, when the tetragon is a unit square, that is a square with sides of
length 1, the intrinsic coordinates are exactly the ordinary Cartesian coordinates: a point with coordinates (p, q) is an intersection of a vertical line x = p and a horizontal line y = q. - The goal of the curvature correction algorithm described below is to match each point in the curvature-corrected image to a corresponding point in the original image, and do it in such a way as to transform each of the four sides of the
tetragon 400 into a substantially straight line connecting its existing corners; however, the same technique can smoothly transform any tetragon described by the equations of its four sides to any other such tetragon. - The main idea of the coordinate mapping algorithm described below is to achieve this goal by, first, calculating intrinsic coordinates (p, q) for each point P (not shown) in the destination image, second, matching these to the same pair (p, q) of intrinsic coordinates in the original image, third, calculating the coordinates of the intersection of the left-to-right and top-to-bottom curves corresponding to these intrinsic coordinates respectively, and finally, assigning the color or gray value at the found point in the original image to the point P.
- Referring now to
FIG. 5A , which depicts a graphical representation of a first iteration of a page curvature correction algorithm, according to one embodiment. As shown inFIG. 5A , each point in adigital image 500 may correspond to an intersection of a top-to-bottom curve 504 and a left-to-right curve 506 (a curve may include a straight line, a curved line, e.g. a parabola, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions) corresponding to intrinsic coordinates (such as described above) associated with a point. - As will become apparent from the present descriptions, curvature correction may involve defining a plurality of such left-to-
right lines 506 and top-to-bottom lines 504. - Moreover, curvature correction may include matching target intrinsic coordinates to original intrinsic coordinates of the digital representation of the
document 502. - As shown in
FIG. 5A , this matching may include iteratively searching for an intersection of a given left-to-right curve 506 and a given top-to-bottom curve 504.FIG. 5A shows the first iteration of an exemplary iterative search within the scope of the present disclosures. - The iterative search, according to one approach discussed in further detail below, includes designating a
starting point 508 having coordinates (x0, y0), Thestarting point 508 may be located anywhere within the digital representation of thedocument 502, but preferably is located at or near the center of the target tetragon. - The iterative search may include projecting the
starting point 508 onto one of the two intersectingcurves curves starting point 508 onto the top-to-bottom curve to obtain x-coordinate (x1) of the next point, the projection result represented inFIG. 5A bypoint 510, which has coordinates (x1, y0). Similarly, in some embodiments the second half of a first iteration in the iterative search includes projecting thepoint 510 onto the left-to-right curve 506 to obtain y-coordinate (y1) of the next point, the projection result represented inFIG. 5A bypoint 512, which has coordinates (x1, y1). -
FIG. 5B is a graphical representation of a starting point of a page curvature correction algorithm, after dividing the digital representation of thedocument 502 into a plurality of equally-sized sections defined by the plurality of top-to-bottom curves 504 and the plurality of left-to-right curves 506, according to one embodiment. - Further iterations may utilize a similar approach such as described in further detail below, in some embodiments.
- With continuing reference to
FIGS. 5A-5B , a method for modifying one or more spatial characteristics of a digital representation of a document in a digital image includes one or more of the following operations, according to one embodiment. As will be appreciated by one having ordinary skill in the art upon reading the present descriptions, the method may be performed in any suitable environment, including those shown and/or described in the figures and corresponding descriptions of the present disclosures. - In one embodiment, the method includes an operation where a
tetragon 400 is transformed into a quadrilateral. Notably, thetetragon 400 is characterized by a plurality of equations, each equation corresponding to a side of thetetragon 400 and being selected from a chosen class of functions. For example, each side of thetetragon 400 may be characterized by a first degree polynomial, second degree polynomial, third degree polynomial, etc. as would be appreciated by the skilled artisan upon reading the present descriptions. - In one embodiment, sides of the
tetragon 400 may be described by equations, and in a preferred embodiment a left side of thetetragon 400 is characterized by a second degree polynomial equation: x = a2 ∗ y2 + a1 ∗ y + a0 ; a right side of thetetragon 400 is characterized by a second degree polynomial equation: x = b2 ∗ y2 + b1 ∗ y + b0 ; a top side of thetetragon 400 is characterized by a second degree polynomial equation: y = c2 ∗ x2 + c1 ∗ x + c0 ; and a bottom side of thetetragon 400 is characterized by a second degree polynomial equation: y = d2 ∗ x2 + d1 ∗ x + d0. Moreover, the top-to-bottom curve equation is: x = ((1 - p) ∗ a2 + p ∗ b2 ) ∗ y2 + ((1 - p) ∗ a1 + p ∗ b1) ∗ y + ((1 - p) ∗ α0 + p ∗ b0 ), and the left-to-right curve equation is: y = ((1 - q) ∗ c2 + q ∗ d2 ) ∗ y2 + ((1 - q) ∗ c1 + q ∗ d1 ) ∗ y + ((1 - q) ∗ c0 + q ∗ d0 ). Of course, other equations may characterize any of the sides and/or curves described above, as would be appreciated by one having ordinary skill in the art upon reading the present descriptions. - In one embodiment, curves 504, 506 may be described by exemplary polynomial functions fitting one or more of the following general forms.
curves - Of course, as would be understood by one having ordinary skill in the art, transforming the
tetragon 400 into a quadrilateral may include one or more additional operations, such as will be described in greater detail below. - In one embodiment, the method may additionally and/or alternatively includes stretching one or more regions of the
tetragon 400 in a manner sufficiently smooth to avoid introducing additional artifacts (such as distortion of interior regions of the tetragon) into the resulting quadrilateral. - In some approaches, transforming the
tetragon 400 into a rectangle may include determining a height of the rectangle, a width of the rectangle, a skew angle of the rectangle, and/or a center position of the rectangle. For example, such transforming may include defining a width of the target rectangle as the average of the width of the top side and the width of the bottom side of thetetragon 400; defining a height of the target rectangle as the average of the height of the left side and the height of the right side of thetetragon 400; defining a center of the target rectangle depending on the desired placement of the rectangle in the image; and defining an angle of skew of the target rectangle, e.g. in response to a user request to deskew the digital representation of the document. - Upon obtaining a (straight-sided) quadrilateral the presently disclosed algorithms may proceed with a projection correction component that transforms the quadrilateral into the target rectangle, advantageously with very low error as measured by comparing pixel location of various object elements in the corrected image with corresponding pixel locations of the respective object elements in a scanned image. In preferred embodiments, the residual error may be about 5 pixels or less in an image having resolution of about 500 dots-per-inch (DPI). This corresponds to no pixel on the "corrected image" of the object being more than 5 pixels away, in any direction, from the corresponding location of the same pixel in a scanned image of the object.
- Projection correction as described herein essentially includes transforming the quadrilateral produced by the curvature correction algorithm described above into a true rectangle, in one approach. Preferably, the rectangle substantially represents the actual dimensions, aspect ratio, etc. of the object captured in the digital image when viewed from a particular perspective (e.g. at an angle normal to the object, such as would be the capture angle if scanning the object in a traditional flatbed scanner, multifunction device, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions).
- Various capture angles, and the associated projective effects are demonstrated schematically in
FIGS. 6A-6D . - In some approaches, the projection correction may include applying an algorithm such as a four-point algorithm to the image data. In various embodiments, such algorithms may or may not rely on one or more of the following assumptions: 1) from the perspective of the capture angle, the thickness of the 3D object is zero, and the size of the captured 3D object is nonzero along each of the width and height dimensions; 2) the aspect ratio of the width and height dimensions is known. The value of the aspect ratio does not need to be known exactly, it may tolerate small measurement errors, which may influence 3D reconstruction errors. In preferred embodiments, measure characterized by error of less than about 10% is acceptable (e.g. an aspect ratio corresponding to predetermined document type such as letter, legal, A4, A5, driver license, credit card, sales receipt, business card, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions); 3) 2D pixel positions of four corner pixels in the captured image are estimable using an image segmentation technique, such as utilized in page detection as described herein; 4) the position of object corners in the captured image and the reference image (which correspond to the "real-world coordinates" of the object) are described by a pre-established correspondences of four pixels/corners in the reference image and the captured image; and 5) 3D reconstruction achieves pixel positions in the reconstructed image that are substantially the same as those observed from a particular perspective of the real object, e.g. as observed in a 500 DPI image captured using a capture angle normal to the object such as would be created by scanning a 2D representation of the object from that same perspective.
- In one embodiment, the presently described page detection algorithm may be utilized to estimate 2D pixel positions of the document corners. The intersections of the four found sides of the document are calculated in order to find the corners of (possibly a slightly curved) page tetragon, (e.g. tetragon 400 as shown in
FIG. 4 ). - In another embodiment, and with particular reference to the correspondence between reference image and captured image pixel coordinates/positions (especially corner coordinates/positions), the coordinates of an object (e.g. document) left top corner, left bottom corner, right bottom corner and right top corner in the reference image preferably correspond to the respective object corner coordinates/positions in the captured image. Determining the precise relationship in each correspondence may use textual and/or image features as reference points in the determination. For instance, in one embodiment the text orientation and document aspect ratio may be used to determine an orientation of the captured document.
- For exemplary purposes only, the following descriptions will illustrate one embodiment of perspective correction performed on a digital image of a driver license. A reference image of the driver license may be captured, preferably using a scanner, multifunction printer, or other device known in the art not to introduce perspective skew or distortion into images captured therewith. The reference image may preferably have been captured using a scanner at a known resolution, most preferably a resolution of approximately 500 DPI, and a known capture angle, most preferably an angle normal to the document (e.g. a capture angle of 90 degrees such as shown above in
FIG. 6B ). - Using the reference image, and preferably as supplemented by a priori knowledge regarding the "true" shape, size, dimensions, texture, etc. of an object, it is possible to reconstruct that object in a manner such that the object represented in the reconstructed image has identical or nearly identical characteristics as the reference image. In some embodiments, the reconstructed image and reference image may be of different but proportional scale. In such cases, applying a scaling operation to the reconstructed image may eliminate any difference in scale such that the reconstructed object has identical or nearly identical characteristics as the object depicted in the reference image.
- A user may capture an image of their driver's license using a mobile device, and potentially at a steep capture angle (e.g. a capture angle deviating from normal by about 30 degrees or more). As a result, the representation of the driver license in the captured image is characterized by 3D perspective distortions, causing the substantially rectangular document to appear trapezoidal in shape. In extreme cases, such as observed when using a capture angle more than 30 degrees away from normal, the length of the edge farthest from the capture device may appear shorter than the length of the edge nearest the capture device, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. In one embodiment, the length of the far edge may appear significantly shorter, e.g. as little as 50% of the length of the near edge, particularly when using steep capture angles (e.g. 30 degrees or greater deviation from normal).
- In various embodiments, 3D reconstruction preferably minimizes introducing any distortions in reconstructing the original image to generate a rectangular representation of the captured object/document.
- In one embodiment, perspective correction may include capturing an image using a mobile device, identifying four points, pixels, etc. within the captured image, each point/pixel corresponding to a potential corner of the detected driver's license (or other tetragonal document)and constructing a 3D transformation based at least in part on and four corner pixels. The positions of the four pixels can be estimated, when the four-sided polygon which forms as the boundary of the image to be segmented.
- A planar homography/projective transform is a non-singular linear relation between two planes . In this case, the homography transform defines a linear mapping of four corner pixels/positions between the captured image and the image plane. The calculation of the camera parameters may utilize an estimation of the homography transform H, such as shown in Equation (1), in some approaches.
- λ is the focal depth of position (X, Y, Z) in the "reference" or "real-world" coordinate system, (e.g. a coordinate system derived from a reference image, such as shown in
FIG 6B and7 above). Put another way, λ may be considered the linear distance between a point (X,Y,Z) in the reference coordinate system and the capture device; - (x, y, z) are the coordinates of a given pixel position in the captured image; and
- H is a (3 x 3) matrix having elements hij, where, i and j define the corresponding row and column index, respectively.
- In one approach, the (x, y) coordinates and (X, Y) coordinates depicted in
Equation 1 correspond to coordinates of respective points in the captured image plane and the reference image (e.g. as shown inFIG. 6B ). The Z coordinate is set to 0, corresponding to the assumption that the object depicted in each lies along a single (e.g. X-Y) plane with zero thickness. We may, in one embodiment, omit the z value inEquation 1 from the above calculations because it does not necessarily play any role in determining the homography matrix. - Thus, the homography H can be estimated by detecting four point-correspondences pi ↔Pi' with pi = (xi,yi,l)T being four corner positions in the captured image plane; and Pi' = (Xi,Y i ,l)T being the coordinates of the corresponding four corner points, where i is point index value with range from 1 to n in the following discussion. Using the previously introduced notation, Equation (1) may be written as shown in Equation (2) below.
-
-
-
-
- Note that the rows of the matrix shown in Equation (7) are not linearly independent. For example, in one embodiment the third row is the sum of -xi times the first row and -yi times the second row. Thus, for each point-correspondence, Equation (7) provides two linearly independent equations. The two first rows are preferably used for solving H. Because the homography transform is written using homogeneous coordinates, in one embodiment the homography H may be defined using 8 parameters plus a homogeneous scaling factor (which may be viewed as a free 9th parameter). In such embodiments, at least 4 point-correspondences providing 8 equations may be used to compute the homography. In practice, and according to one exemplary embodiment, a larger number of correspondences is preferably employed so that an over-determined linear system is obtained, resulting in a more robust result (e.g. lower error in relative pixel-position). By rewriting H in a vector form as h = [h 11,h 12,h 13,h 21,h 22,h 23,h 31,h 32,h 33]T, n pairs of point-correspondences enable the construction of a 2n × 9 linear system, which is expressed by Equation (8)
- As shown in Equation 8, the first two rows correspond to the first feature point, as indicated by the subscript value of coordinates X, Y, x,y - in this case the subscript value is 1. The second two rows correspond to the second feature point, as indicated by the
subscript value 2, the last two rows correspond to the n-th feature point For four-point algorithm, the n is 4, and the feature points are the four corners of a document page. - Solving this linear system involves the calculation of a Singular Value Decomposition (SVD). Such an SVD corresponds to reworking the matrix to the form of the matrix product C = UDVT, where the solution h corresponds to the eigenvector of the smallest eigenvalue of matrix C, which in one embodiment may be located at the last column of the matrix V when the eigenvalues are sorted in descendant order.
- It is worth noting that the matrix C is different from the typical matrix utilized in an eight-point algorithm to estimate the essential matrix when two or more cameras are used, such as conventionally performed for stereoscopic machine vision. More specifically, while the elements conventionally used in eight-point algorithm consist of feature points projected on two camera planes, the elements in the presently described matrix C consist of feature points projected on only a single camera plane and the corresponding feature points on 3D objects.
- In one embodiment, to avoid numerical instabilities, the coordinates of point-correspondences may preferably be normalized. This may be accomplished, for example, using a technique known as the normalized Direct Linear Transformation (DLT) algorithm. For example, in one embodiment, after the homography matrix is estimated,
Equation 1 may be used to compute each pixel position (x,y) for a given value of (X,Y). In practical applications the challenge involves computing (X,Y) when the values of (x, y) are given or known a priori. As shown inEquation 1, and in preferred embodiments, (x, y) and (X, Y) are symmetrical (i.e. when the values of (x, y) and (X, Y) are switched, the validity ofEquation 1 holds true). In this case, the "inverse" homography matrix may be estimated, and this "inverse" homography matrix may be used to reconstruct 3D (i.e. "reference" or "real-world") coordinates of an object given the corresponding 2D coordinates of the object as depicted in the captured image, e.g. in the camera view. - Based on the foregoing, it is possible to implement the presently described four-point algorithm (as well as any equivalent variation and/or modification thereof that would be appreciated by a skilled artisan upon reading these descriptions) which may be utilized in various embodiments to efficiently and effectively reconstruct digital images characterized by at least some perspective distortion into corrected digital images exempting any such perspective distortion, where the corrected image is characterized by a pixel location error of about 5 pixels or less.
- Various embodiments may additionally and/or alternatively include utilizing the foregoing data, calculations, results, and/or concepts to derive further useful information regarding the captured image, object, etc. For example, in various embodiments it is possible to determine the distance between the captured object and the capture device, the pitch and/or roll angle of the capture device, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
-
- Accordingly, in one embodiment the focal depth, also known as the distance between each point (X,Y,Z) in the 3D (i.e. "reference" or "real world") coordinate system and the capture device, may be computed using Equation 9 above.
- After estimating the position of the 3D object we have (X,Y) and λ for each pixel in the captured image. Note that (X,Y) are the coordinates in the world coordinate system, while λ is the distance to the point (X,Y) in the camera coordinate system. If the 3D object is assumed to be a rigid body, we will present an algorithm to estimate the rotation matrix from the world coordinate system to the camera coordinate system. The following equation holds for rotation and translation of the point (X, Y, 0):
- Considering the relationships of homograpy matrix H and intrinsic camera parameter matrix A and r1, r2, where r1, r2 are the first and second column vectors respectively, reveals the following relationship:
-
- In the above relationships, the unknown parameters are Bij. These values are estimated by the following equations:
- Note that in a conventional four-points algorithm, since it is possible to accurately estimate scaling factors a, b, the skew factor c is assumed to be zero, which means that one may ignore camera's skew distortion. It is further useful, in one embodiment, to assume that d and e have zero values (d=0, e=0).
- From equation (11), B = (r1 r2 t), where σ -1 A -1 H = B. Utilizing this relationship enables a new approach to estimate rl, r2 from the equation C= (r1 r2 0) where the first and second column vectors of C are the first and second column vectors of B, and the third column vector of C is 0.
- First, decompose matrix C with SVD (Singular Value Decomposition) method, C = U∑Vt , where U is 3 by 3 orthogonal matrix, where V is 3 by 3 orthogonal matrix. Then r1 and r2 are estimated by the following equation:
where W is a 2 by 3 matrix whose first and second row vectors are the first and second row vectors of Vt respectively. In the above computation, assume σ is 1. This scaling factor does not influence the value of U and W and therefore does not influence the estimation of r1 and r2. After r1, r2 are estimated (e.g. using Equation 13), it is useful to leverage the fact that R is a rotation matrix to estimate r3, which is the cross product of r1 and r2 with a sign to be determined (either 1 or -1). There are two possible solutions of R. In one example using a righthand coordinate system, the r3 value is the cross-product value of r1 and r2. - The yaw, pitch and roll (denoted by the α, β and γ respectively) are also known as Euler's angles, which are defined as the rotation angles around z, y, and x axes respectively, in one embodiment. According to this approach, the rotation matrix R in
Equation 10 can be denoted as: -
-
-
- Notably, in some approaches when r 11, r33 or
- In still more embodiments, it is possible to estimate the distance between an object and a capture device even without the knowledge of the object size, using information such as a camera's intrinsic parameters (e.g. focal length, scale factors of (u,v) in image plane).
- The requirements of this algorithm, in one approach, may be summarized as follows: 1)The camera's focal length for the captured image can be provided and accessed by an API call of the device (for instance, an android device provides an API call to get focal length information for the captured image); 2) The scale factors of dx and dy are estimated by the algorithm in the equations 12.1 and 12.2.
- This means that we can estimate the scale factors dx, dy for a type of device and we do not need to estimate them for each device individually. For instance, in one exemplary embodiment utilizing an Apple iPhone® 4 smartphone, it is possible, using the algorithm presented above, to estimate the scale factors using an object with a known size. The two scaling factors may thereafter be assumed to be identical for the same device type.
-
- Note that Equation 18 is equivalent to
Equation 1, except that we use (u,v) in Equation 18 to replace the (x,y) inEquation 1. - Suppose that ũ = u/Lu, ṽ = v/Lv ; x̃ = X/LX ; ỹ = Y/LY ; where Lu,Lv are image size in coordinates u and v and LX, LY are the object size to be determined.
- Then Equation 18 may be expressed as:
11, we have -
-
-
-
- Equations (29) and (30) may be used to estimate the document size along X and Y coordinates. The scaling factor may remain unknown, using this approach.
- Note that the algorithm to estimate rotation matrix described above does not need the scaling factor σ. Rather, in some approaches it is suitable to assume σ =1. We can estimate roll, pitch, and yaw with the algorithm presented above. From equations (29) and (30), we can also estimate the aspect ratio of the object as:
- In practice the most common case is the camera capture of rectangular documents, such as sheets of paper of standard sizes, business cards, driver and other licenses, etc. Since the focal distance of the camera does not change, and since the knowledge of the yaw is irrelevant for the discussed types of document image processing, it is necessary only to determine roll and pitch of the camera relative to the plane of the document in order to rectangularize the corresponding image of the document.
- The idea of the algorithm is simply that one can calculate the object coordinates of the document corresponding to the tetragon found in the picture (up to scale, rotation, and shift) for any relative pitch-roll combination. This calculated tetragon in object coordinates is characterized by 90-degree angles when the correct values of pitch and roll are used, and the deviation can be characterized by the sum of squares of the four angle differences. This criterion is useful because it is smooth and effectively penalizes individual large deviations.
- A gradient descent procedure based on this criterion can find a good pitch-roll pair in a matter of milliseconds. This has been experimentally verified for instances where the tetragon in the picture was correctly determined. This approach uses yaw equal zero and an arbitrary fixed value of the distance to the object because changes in these values only add an additional orthogonal transform of the object coordinates. The approach also uses the known focal distance of the camera in the calculations of the coordinate transform, but if all four corners have been found and there are three independent angles, then the same criterion and a slightly more complex gradient descent procedure can be used to estimate the focal distance in addition to pitch and roll - this may be useful for server-based processing, when incoming pictures may or may not have any information about what camera they were taken with.
- Interestingly, when the page detection is wrong, even the optimal pitch-roll pair leaves sizeable residual angle errors (of 1 degree or more), or, at least, if the page was just cropped-in parallel to itself, the aspect ratio derived from the found object coordinates does not match the real one.
- Additionally, it is possible to apply this algorithm even when a location of one of the detected sides of the document is suspect or missing entirely (e.g. that side of the document is partially or completely obstructed, not depicted, or is blurred beyond recognition, etc.). In order to accomplish the desired result it is useful to modify the above defined criterion to use only two angles, for example those adjacent to the bottom side, in a gradient descent procedure. In this manner, the algorithm may still be utilized to estimate pitch and roll from a picture tetragon with bogus and/or undetectable top-left and top-right corners.
- In one example, arbitrary points on the left and right sides closer to the top of the image frame can be designated as top-left and top-right corners. The best estimated pitch-roll will create equally bogus top-left and top-right corners in the object coordinates, but the document will still be correctly rectangularized. The direction of a missing (e.g. top) side of the document can be reconstructed since it should be substantially parallel to the opposite (e.g. bottom) side, and orthogonal to adjacent (e.g. left and/or right) side(s).
- The remaining question is where to place the missing side in the context of the image as a whole, and if the aspect ratio is known then the offset of the missing side can be nicely estimated, and if not, then it can be pushed to the edge of the frame, just not to lose any data. This variation of the algorithm can resolve an important user case when the picture contains only a part of the document along one of its sides, for example, the bottom of an invoice containing a deposit slip. In a situation like this the bottom, left and right sides of the document can be correctly determined and used to estimate pitch and roll; these angles together with the focal distance can be used to rectangularize the visible part of the document.
- Thus, in one general approach exemplified by
method 700 as depicted inFIG. 7 , reconstruction includes capturing or receiving a digital image comprising a digital representation of an object, preferably a document or other object having known characteristics (size, texture, color profile, etc.) inoperation 702. - In
operation 704, the captured or received image is analyzed to determine a position of one or more boundaries separating the digital representation of the object from an image background or other objects represented in the image. - In
operation 706, the boundaries are analyzed to determine whether any curvature (i.e. regions of non-linearity) exists in one or more of the boundaries. Curvature may be determined to exist in one of the boundaries, e.g. by determining a polynomial expression characterizing the boundary fits a particular class of function such as a first, second, third, fourth, etc. order polynomial, each of which may each be a different class of function. If curvature is determined to exist, it is preferably corrected to generate a boundary having substantially linear characteristics along the entirety of the boundary's length. - Once any determined curvature is corrected, in
operation 708 the linear-edged boundaries are analyzed and/or extrapolated to define a bounding polygon, preferably a bounding tetragon, and even more preferably a bounding parallelogram, trapezoid, or rectangle. - In
operation 710, the digital image and/or bounding polygon is analyzed to determine whether any perspective distortion and/or projective effects are present within the bounding polygon. - In
operation 712, and in response to determining perspective distortion and/or projective effects exist within the bounding polygon, the digital image, etc., the perspective distortion and/or projective effects are corrected to generate a reconstructed polygon. Preferably, the bounding polygon is a quadrilateral and the reconstructed polygon is a rectangle. - Of course, the foregoing disclosure of an
exemplary method 700 may be embodied as a system configured to execute logic, and/or a computer program product comprising computer readable program code configured to perform functions substantially similar to any of those described herein. - Similarly, all the inventive concepts, features, techniques, components, systems, products, etc. discussed herein should be considered modular, and may be combined in any suitable manner that would be appreciated by one having ordinary skill in the art upon reading these descriptions. Notably, these combinations include any possible set of features disclosed above, with the sole exception of those features that skilled artisans would recognize upon reading these descriptions as being mutually exclusive or incompatible. Thus, various embodiments of the present inventive concepts may be defined by reciting any number of features disclosed above, inclusive or exclusive of any individual feature(s).
- For instance, in one approach, a method of reconstructing a digital image includes receiving the digital image comprising a digital representation of an object bounded by a tetragon; correcting curvature in the tetragon to form a quadrilateral; and correcting projective effects in the quadrilateral to form a rectangle. The quadrilateral may be a parallelogram. Correcting the curvature may include transforming one or more portions of the tetragon based at least in part on intrinsic tetragon coordinates; and correcting the projective effects may include transforming the tetragon using a four-point algorithm. More specifically, correcting progective effects may include one or more of singular value decomposition (SVD), direct linear transformation (DLT), non-linear refinement (NLR), normalizing coordinates of point-correspondences between the digital image and a reconstructed image, and/or estimating a homography transform (H). Estimating H may include detecting one or more point correspondences pi ↔Pi' with pi = (xi,yi,l)T and/or detecting four point correspondences, each point correspondence pi ↔Pi' corresponding to a corner position pi of the tetragon and a respective corner position P'i of the rectangle. The digital image is optionally characterized by a capture angle of about 30 degrees or more deviation from normal with respect to the object. H preferably satisfies the expression λpi = HP'i , where λ is a focal distance between a three-dimensional reference coordinate position (X, Y, Z) and a corresponding reference coordinate position of a capture device; pi = (xi,yi,l)T; P'I = (Xi,Yi,l)T, and i is the respective index feature of the point p or P' in the corresponding image. The method may also include outputting the reconstructed digital image, wherein the reconstructed digital image is characterized by a pixel location error of about 5 pixels or less relative to a scanned 500-DPI image of the object captured using a capture angle normal to the object. Sides of the tetragon may be characterized by a polynomial, which may be a second degree polynomial, or a polynomial of higher order than second degree. Most preferably, the object is a document characterized by a known height-to-width ratio.
- Exemplary systems may include one or more processors, image capture devices, and corresponding functional logic configured to perform any one or more of the operations set forth in the immediately preceding paragraph, and also to leverage any number of the specific features such as the object being a document with rectangular shape and known height-to-width ratio, λ, pi, P'I, etc, as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- Exemplary computer program products may include a computer readable storage medium having embodied thereon computer rea to perform any one or more of the operations set forth in the immediately preceding paragraph, and also to leverage any number of the specific features such as the object being a document with rectangular shape and known height-to-width ratio, λ, pi, P'I, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
- Embodiments of the present invention include the following Concepts:
-
Concept 1. A method of reconstructing a digital image, the method including: receiving the digital image including a digital representation of an object bounded by a tetragon; correctmg curvature in the tetragon to form a quadrilateral; and correcting projective effects in the quadrilateral to form a rectangle. -
Concept 2. The method described inConcept 1, wherein the quadrilateral is a parallelogram. -
Concept 3. The method described inConcept 1, wherein correcting the curvature includes transforming one or more portions of the tetragon based at least in part on intrinsic tetragon coordinates. - Concept 4. The method described in
Concept 1, wherein correcting the projective effects includes transforming the tetragon using a four-point algorithm. -
Concept 5. The method described inConcept 1, wherein the digital image is characterized by a capture angle of about 30 degrees or more deviation from normal with respect to the obj ect. - Concept 6. The method described in
Concept 1, wherein correcting the projective effects includes singular value decomposition (SVD). - Concept 7. The method described in
Concept 1, wherein correcting the projective effects includes direct linear transformation (DLT). - Concept 8. The method described in
Concept 1, wherein correcting the projective effects includes estimating a homography transform H. - Concept 9. The method described in Concept 8, wherein estimating II includes detecting one or more point correspondences pi ↔Pi' with pi = (xi,yi,l)T.
-
Concept 10. The method described in Concept 9, wherein estimating H includes detecting four point correspondences, each point correspondence pi ↔Pi' corresponding to a corner position pi of the tetragon and a respective corner position P'i of the rectangle. - Concept 11. The method described in Concept 8, wherein H satisfies the expression
- Concept 12. The method described in
Concept 1, wherein correcting the projective effects includes performing a non- linear refinement. - Concept 13. The method described in
Concept 1, further including outputting the reconstructed digital image, wherein the reconstructed digital image is characterized by a pixel location error of about 5 pixels or less relative to a scanned 500-DPI image of the object captured using a capture angle normal to the object. - Concept 14. The method described in
Concept 1, wherein at least one side of the tetragon is characterized by a second degree or higher order polynomial, - Concept 15. The method described in Concept 14, wherein each side of the tetragon is characterized by a second degree or higher order polynomial.
- Concept 16. The method described in
Concept 1, wherein correcting the projective effects includes normalizing coordinates of point-correspondences between the digital image and a reconstructed image. - Concept 17. The method described in
Concept 1, wherein the object is a document characterized by a known height-to- width ratio. - Concept 18. A system, including: a processor configured to execute logic; and logic configured to receive a digital image including a digital representation of an object bounded by a tetragon: logic configured to correct curvature in the tetragon to form a quadrilateral; and logic configured to correct projective effects in the quadrilateral to form a rectangle.
- Concept 19. A computer program product including a computer readable storage medium having computer readable program code stored thereon, the computer readable program code including: computer readable program code configured to receive a digital image including a digital representation of an object bounded by a tetragon; computer readable program code configured to correct curvature in the tetragon to form a quadrilateral; and computer readable program code configured to correct projective effects in the quadrilateral to form a rectangle.
- While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of an embodiment of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Claims (15)
- A method for processing a digital image (300) comprising a digital representation of a document (302), the method comprising:using a processor (210), defining a plurality of candidate edge points (314), wherein defining each candidate edge point comprises:defining a large analysis window (308) within a digital image, the large analysis window including a first plurality of pixels;defining a plurality of small analysis windows (312) within the digital image, wherein each of the small analysis windows includes a second plurality of pixels, and wherein the second plurality of pixels is less than the first plurality of pixels included within the large analysis window;estimating one or more distributions of statistics for the large analysis window;calculating one or more statistics for each small analysis window;determining whether a statistically significant difference exists between one or more of the statistics calculated for each of the small analysis windows and a corresponding distribution of statistics estimated for the large analysis window;designating a point in each small analysis window for which the statistically significant difference exists as a candidate edge point upon determining the statistically significant difference exists; anddefining four sides of a tetragon (400) based on the plurality of candidate edge points;correcting curvature in the tetragon (400) to form a quadrilateral;correcting projective effects in the quadrilateral to form a rectangle; andoutputting the digital representation of the document and the rectangle to a display of a mobile device.
- The method as recited in claim 1, wherein correcting the curvature comprises transforming one or more portions of the tetragon based at least in part on intrinsic tetragon coordinates using a four-point algorithm.
- The method as recited in claim 1, wherein correcting the projective effects comprises one or more of singular value decomposition (SVD) and direct linear transformation (DLT).
- The method as recited in claim 1, further comprising estimating a two-dimensional pixel position for each of up to four pixels in the digital image, each of the up to four pixels corresponding to one of four corners of one or more of the document and the tetragon.
- The method as recited in claim 4, wherein estimating the two-dimensions pixel position for each of the four pixels is based on a predetermined correspondence between each of the four pixels and four corresponding pixels of a reference image;wherein the reference image depicts the digital representation of the document from a perspective corresponding to a capture angle normal to the document; andwherein each of the four corresponding pixels of the reference image corresponds to one of four corners of the digital representation of the document in the reference image.
- The method as recited in claim 1, wherein correcting the projective effects comprises estimating a homography transform H;wherein estimating H comprises detecting one or more point correspondences pi ↔Pi' with pi = (xi,yi,1)T;wherein estimating H comprises detecting four point correspondences, each point correspondence pi ↔Pi' corresponding to a corner position pi of the tetragon and a respective corner position P'i of the rectangle; andwherein H satisfies an expression λpi = HP'i; whereλ = a focal distance between a three-dimensional reference coordinate position (X, Y, Z) and a corresponding reference coordinate position of a capture device;pi = (xi,yi,1)T;P'i = (Xi,Yi,1)T; andi is a respective index feature of the point p or P' in a corresponding image.
- The method as recited in claim 1, wherein correcting the projective effects comprises performing a non-linear refinement.
- The method as recited in claim 1, wherein at least one side of the tetragon is characterized by a second degree or higher order polynomial.
- The method as recited in claim 1, wherein the document is characterized by a known height-to-width ratio.
- The method as recited in claim 1, further comprising estimating an absolute size of the document based on intrinsic parameters of a capture device used to capture the digital image.
- The method as recited in claim 10, wherein the estimating employs an intrinsic parameter matrix A representative of the intrinsic capture device parameters.
- The method as recited in claim 12, wherein a=f/dx;
wherein b=f/dy;
wherein f is the focal length;
wherein dx is a horizontal scaling factor;
wherein dy is a vertical scaling factor;
wherein c is a skew parameter; and
wherein (d, e) are coordinates of a principal point in the digital image. - The method as recited in claim 12, wherein c = 0; and wherein either:(d, e) are coordinates of a principal point in the digital image, ord = 0 and e = 0.
- A computer program product comprising a computer readable storage medium (220) having computer readable program code stored thereon, the computer readable program code comprising:computer readable program code configured to define a plurality of candidate edge points (314), wherein defining each candidate edge point comprises:defining a large analysis window (308) within a digital image, the large analysis window including a first plurality of pixels;defining a plurality of small analysis windows (312) within the digital image, wherein each of the small analysis windows includes a second plurality of pixels, and wherein the second plurality of pixels is less than the first plurality of pixels included within the large analysis window;estimating one or more distributions of statistics for the large analysis window;calculating one or more statistics for each small analysis window;determining whether a statistically significant difference exists between one or more of the statistics calculated for each of the small analysis windows and a corresponding distribution of statistics estimated for the large analysis window;designating a point in each small analysis window for which the statistically significant difference exists as a candidate edge point upon determining the statistically significant difference exists; anddefining four sides of a tetragon (400) based on the plurality of candidate edge points;computer readable program code configured to correct curvature in the tetragon (400) to form a quadrilateral;computer readable program code configured to correct projective effects in the quadrilateral to form a rectangle; andcomputer readable program code configured to output the digital representation of the document and the rectangle to a display of a mobile device.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361883865P | 2013-09-27 | 2013-09-27 | |
US14/491,901 US9208536B2 (en) | 2013-09-27 | 2014-09-19 | Systems and methods for three dimensional geometric reconstruction of captured image data |
PCT/US2014/057065 WO2015048045A1 (en) | 2013-09-27 | 2014-09-23 | Systems and methods for three dimensional geometric reconstruction of captured image data |
EP14847922.3A EP3049947A4 (en) | 2013-09-27 | 2014-09-23 | Systems and methods for three dimensional geometric reconstruction of captured image data |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14847922.3A Division EP3049947A4 (en) | 2013-09-27 | 2014-09-23 | Systems and methods for three dimensional geometric reconstruction of captured image data |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3764318A1 true EP3764318A1 (en) | 2021-01-13 |
Family
ID=52740243
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20194730.6A Withdrawn EP3764318A1 (en) | 2013-09-27 | 2014-09-23 | Systems and methods for three dimensional geometric reconstruction of captured image data |
EP14847922.3A Ceased EP3049947A4 (en) | 2013-09-27 | 2014-09-23 | Systems and methods for three dimensional geometric reconstruction of captured image data |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14847922.3A Ceased EP3049947A4 (en) | 2013-09-27 | 2014-09-23 | Systems and methods for three dimensional geometric reconstruction of captured image data |
Country Status (5)
Country | Link |
---|---|
US (2) | US9208536B2 (en) |
EP (2) | EP3764318A1 (en) |
JP (1) | JP2016536837A (en) |
CN (1) | CN105765551A (en) |
WO (1) | WO2015048045A1 (en) |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9769354B2 (en) | 2005-03-24 | 2017-09-19 | Kofax, Inc. | Systems and methods of processing scanned data |
US9767354B2 (en) | 2009-02-10 | 2017-09-19 | Kofax, Inc. | Global geographic information retrieval, validation, and normalization |
US9576272B2 (en) | 2009-02-10 | 2017-02-21 | Kofax, Inc. | Systems, methods and computer program products for determining document validity |
US9634855B2 (en) | 2010-05-13 | 2017-04-25 | Alexander Poltorak | Electronic personal interactive device that determines topics of interest using a conversational agent |
US9514357B2 (en) | 2012-01-12 | 2016-12-06 | Kofax, Inc. | Systems and methods for mobile image capture and processing |
US10146795B2 (en) | 2012-01-12 | 2018-12-04 | Kofax, Inc. | Systems and methods for mobile image capture and processing |
US9355312B2 (en) | 2013-03-13 | 2016-05-31 | Kofax, Inc. | Systems and methods for classifying objects in digital images captured using mobile devices |
US10140511B2 (en) | 2013-03-13 | 2018-11-27 | Kofax, Inc. | Building classification and extraction models based on electronic forms |
US11620733B2 (en) * | 2013-03-13 | 2023-04-04 | Kofax, Inc. | Content-based object detection, 3D reconstruction, and data extraction from digital images |
US9208536B2 (en) | 2013-09-27 | 2015-12-08 | Kofax, Inc. | Systems and methods for three dimensional geometric reconstruction of captured image data |
US20140316841A1 (en) | 2013-04-23 | 2014-10-23 | Kofax, Inc. | Location-based workflows and services |
EP2992481A4 (en) | 2013-05-03 | 2017-02-22 | Kofax, Inc. | Systems and methods for detecting and classifying objects in video captured using mobile devices |
AU2013245477A1 (en) * | 2013-10-16 | 2015-04-30 | Canon Kabushiki Kaisha | Method, system and apparatus for determining a contour segment for an object in an image captured by a camera |
US9386235B2 (en) | 2013-11-15 | 2016-07-05 | Kofax, Inc. | Systems and methods for generating composite images of long documents using mobile video data |
US20150339276A1 (en) * | 2014-05-22 | 2015-11-26 | Craig J. Bloem | Systems and methods for producing custom designs using vector-based images |
US9594971B1 (en) | 2014-06-27 | 2017-03-14 | Blinker, Inc. | Method and apparatus for receiving listings of similar vehicles from an image |
US9892337B1 (en) | 2014-06-27 | 2018-02-13 | Blinker, Inc. | Method and apparatus for receiving a refinancing offer from an image |
US9760776B1 (en) | 2014-06-27 | 2017-09-12 | Blinker, Inc. | Method and apparatus for obtaining a vehicle history report from an image |
US10540564B2 (en) | 2014-06-27 | 2020-01-21 | Blinker, Inc. | Method and apparatus for identifying vehicle information from an image |
US9773184B1 (en) | 2014-06-27 | 2017-09-26 | Blinker, Inc. | Method and apparatus for receiving a broadcast radio service offer from an image |
US9607236B1 (en) | 2014-06-27 | 2017-03-28 | Blinker, Inc. | Method and apparatus for providing loan verification from an image |
US10733471B1 (en) | 2014-06-27 | 2020-08-04 | Blinker, Inc. | Method and apparatus for receiving recall information from an image |
US10572758B1 (en) | 2014-06-27 | 2020-02-25 | Blinker, Inc. | Method and apparatus for receiving a financing offer from an image |
US10515285B2 (en) | 2014-06-27 | 2019-12-24 | Blinker, Inc. | Method and apparatus for blocking information from an image |
US10867327B1 (en) | 2014-06-27 | 2020-12-15 | Blinker, Inc. | System and method for electronic processing of vehicle transactions based on image detection of vehicle license plate |
US9563814B1 (en) | 2014-06-27 | 2017-02-07 | Blinker, Inc. | Method and apparatus for recovering a vehicle identification number from an image |
US10579892B1 (en) | 2014-06-27 | 2020-03-03 | Blinker, Inc. | Method and apparatus for recovering license plate information from an image |
US9558419B1 (en) | 2014-06-27 | 2017-01-31 | Blinker, Inc. | Method and apparatus for receiving a location of a vehicle service center from an image |
US9589201B1 (en) | 2014-06-27 | 2017-03-07 | Blinker, Inc. | Method and apparatus for recovering a vehicle value from an image |
US9754171B1 (en) | 2014-06-27 | 2017-09-05 | Blinker, Inc. | Method and apparatus for receiving vehicle information from an image and posting the vehicle information to a website |
US9779318B1 (en) | 2014-06-27 | 2017-10-03 | Blinker, Inc. | Method and apparatus for verifying vehicle ownership from an image |
US9818154B1 (en) | 2014-06-27 | 2017-11-14 | Blinker, Inc. | System and method for electronic processing of vehicle transactions based on image detection of vehicle license plate |
US9600733B1 (en) | 2014-06-27 | 2017-03-21 | Blinker, Inc. | Method and apparatus for receiving car parts data from an image |
US9589202B1 (en) | 2014-06-27 | 2017-03-07 | Blinker, Inc. | Method and apparatus for receiving an insurance quote from an image |
US9760788B2 (en) | 2014-10-30 | 2017-09-12 | Kofax, Inc. | Mobile document detection and orientation based on reference object characteristics |
US11863538B2 (en) * | 2014-12-08 | 2024-01-02 | Luigi Caramico | Methods and systems for generating a symmetric key for mobile device encryption |
US9160946B1 (en) * | 2015-01-21 | 2015-10-13 | A2iA S.A. | Systems and methods for capturing images using a mobile device |
JP6316330B2 (en) * | 2015-04-03 | 2018-04-25 | コグネックス・コーポレーション | Homography correction |
US10872241B2 (en) * | 2015-04-17 | 2020-12-22 | Ubicquia Iq Llc | Determining overlap of a parking space by a vehicle |
US10043307B2 (en) | 2015-04-17 | 2018-08-07 | General Electric Company | Monitoring parking rule violations |
EP3283972A4 (en) * | 2015-04-17 | 2018-08-29 | General Electric Company | Identifying and tracking vehicles in motion |
US10467465B2 (en) | 2015-07-20 | 2019-11-05 | Kofax, Inc. | Range and/or polarity-based thresholding for improved data extraction |
US10242285B2 (en) | 2015-07-20 | 2019-03-26 | Kofax, Inc. | Iterative recognition-guided thresholding and data extraction |
JP6412474B2 (en) * | 2015-09-03 | 2018-10-24 | 株式会社 日立産業制御ソリューションズ | Crack width measurement system |
WO2017132766A1 (en) * | 2016-02-03 | 2017-08-10 | Sportlogiq Inc. | Systems and methods for automated camera calibration |
KR20170098488A (en) * | 2016-02-22 | 2017-08-30 | 주식회사 만도 | Driving assistant apparatus and driving assistant method |
US10809895B2 (en) * | 2016-03-11 | 2020-10-20 | Fuji Xerox Co., Ltd. | Capturing documents from screens for archival, search, annotation, and sharing |
US10587858B2 (en) * | 2016-03-14 | 2020-03-10 | Symbol Technologies, Llc | Device and method of dimensioning using digital images and depth data |
US9779296B1 (en) | 2016-04-01 | 2017-10-03 | Kofax, Inc. | Content-based detection and three dimensional geometric reconstruction of objects in image and video data |
EP3449456A1 (en) * | 2016-04-26 | 2019-03-06 | Ocado Innovation Limited | Method of improving visual recognition of an item and item display system |
RU2621601C1 (en) * | 2016-06-27 | 2017-06-06 | Общество с ограниченной ответственностью "Аби Девелопмент" | Document image curvature eliminating |
CN106248055B (en) * | 2016-08-31 | 2019-05-10 | 中测新图(北京)遥感技术有限责任公司 | A kind of inclination view stereoscopic plotting method |
CN108122204A (en) * | 2016-11-29 | 2018-06-05 | 深圳市中兴微电子技术有限公司 | A kind of method and apparatus of image denoising |
US10275858B2 (en) | 2017-01-24 | 2019-04-30 | Microsoft Technology Licensing, Llc | Flattening and rectifying a curved image |
CN111033567A (en) * | 2017-06-16 | 2020-04-17 | 惠普发展公司,有限责任合伙企业 | Trapezoidal correction using quadrilateral objects |
US10796258B1 (en) * | 2017-08-15 | 2020-10-06 | Triad National Security, Llc | Decorrelating effects in multiple linear regression to decompose and attribute risk to common and proper effects |
TWI659396B (en) * | 2017-08-31 | 2019-05-11 | Yuan Ze University | Method and image processing device for image reconstruction in multimodal noise suppression |
KR101887216B1 (en) * | 2017-11-24 | 2018-08-09 | 한태재 | Image Reorganization Server and Method |
US11062176B2 (en) | 2017-11-30 | 2021-07-13 | Kofax, Inc. | Object detection and image cropping using a multi-detector approach |
US11148661B2 (en) * | 2018-01-02 | 2021-10-19 | Ford Global Technologies, Llc | Mobile device tethering for a remote parking assist system of a vehicle |
KR102160189B1 (en) * | 2018-11-30 | 2020-09-25 | 인천대학교 산학협력단 | Electronic device that provides a user interface for supporting the coloring of objects within an animation and operating method thereof |
CN110675270A (en) * | 2019-09-05 | 2020-01-10 | 平安健康保险股份有限公司 | Method and device for determining medical insurance deduction amount based on invoice information |
US11113588B2 (en) | 2019-10-02 | 2021-09-07 | United States Of America As Represented By The Secretry Of The Navy | Randomization-based hierarchical and associatively assisted vector learning for machine vision |
US11170468B2 (en) * | 2019-12-18 | 2021-11-09 | The Boeing Company | Systems and methods of determining image scaling |
US11721119B2 (en) * | 2020-12-18 | 2023-08-08 | Konica Minolta Business Solutions U.S.A., Inc. | Finding natural images in document pages |
US10991081B1 (en) | 2020-12-31 | 2021-04-27 | VoyagerX, Inc. | Book scanning using machine-trained model |
US11030488B1 (en) | 2020-12-31 | 2021-06-08 | VoyagerX, Inc. | Book scanning using machine-trained model |
CN112651408B (en) * | 2021-01-07 | 2022-05-20 | 华中科技大学 | Point-to-point transformation characteristic-based three-dimensional local surface description method and system |
CN113643182B (en) * | 2021-08-20 | 2024-03-19 | 中国地质大学(武汉) | Remote sensing image super-resolution reconstruction method based on dual learning graph network |
CN113766083B (en) * | 2021-09-09 | 2024-05-14 | 思看科技(杭州)股份有限公司 | Parameter configuration method of tracking scanning system, electronic device and storage medium |
CN114383817B (en) * | 2021-12-24 | 2023-07-14 | 北京控制工程研究所 | High-precision synchronous scanning optical system adjustment precision evaluation method |
US20230281821A1 (en) * | 2022-03-07 | 2023-09-07 | Onfido Ltd. | Methods and systems for authentication of a physical document |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070206877A1 (en) * | 2006-03-02 | 2007-09-06 | Minghui Wu | Model-based dewarping method and apparatus |
US20130182973A1 (en) * | 2012-01-12 | 2013-07-18 | Kofax, Inc. | Systems and methods for mobile image capture and processing |
US20130223762A1 (en) * | 2012-02-28 | 2013-08-29 | Canon Kabushiki Kaisha | Image conversion apparatus, method, and storage medium |
Family Cites Families (689)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1660102A (en) | 1923-06-04 | 1928-02-21 | William H Smyth | High-speed tracklaying tractor |
US3069654A (en) | 1960-03-25 | 1962-12-18 | Paul V C Hough | Method and means for recognizing complex patterns |
US3696599A (en) | 1971-07-16 | 1972-10-10 | Us Navy | Cable fairing system |
US4558461A (en) | 1983-06-17 | 1985-12-10 | Litton Systems, Inc. | Text line bounding system |
US4836026A (en) | 1984-06-01 | 1989-06-06 | Science Applications International Corporation | Ultrasonic imaging system |
US4651287A (en) | 1984-06-14 | 1987-03-17 | Tsao Sherman H | Digital image processing algorithm for output devices with discrete halftone gray scale capability |
US4656665A (en) | 1985-01-15 | 1987-04-07 | International Business Machines Corporation | Thresholding technique for graphics images using histogram analysis |
GB2190778B (en) | 1986-05-19 | 1990-04-25 | Ricoh Kk | Character recognition with variable subdivisions of a character region |
US4992863A (en) | 1987-12-22 | 1991-02-12 | Minolta Camera Kabushiki Kaisha | Colored image reading apparatus |
US5101448A (en) | 1988-08-24 | 1992-03-31 | Hitachi, Ltd. | Method and apparatus for processing a document by utilizing an image |
JPH02311083A (en) | 1989-05-26 | 1990-12-26 | Ricoh Co Ltd | Original reader |
US5159667A (en) | 1989-05-31 | 1992-10-27 | Borrey Roland G | Document identification by characteristics matching |
JP2940960B2 (en) | 1989-10-31 | 1999-08-25 | 株式会社日立製作所 | Image tilt detection method and correction method, and image information processing apparatus |
US5020112A (en) | 1989-10-31 | 1991-05-28 | At&T Bell Laboratories | Image recognition method using two-dimensional stochastic grammars |
US5063604A (en) | 1989-11-08 | 1991-11-05 | Transitions Research Corporation | Method and means for recognizing patterns represented in logarithmic polar coordinates |
IT1237803B (en) | 1989-12-21 | 1993-06-17 | Temav Spa | PROCESS FOR THE PREPARATION OF FINE NITRIDE ALUMINUM POWDERS |
US5344132A (en) | 1990-01-16 | 1994-09-06 | Digital Image Systems | Image based document processing and information management system and apparatus |
JP2708263B2 (en) | 1990-06-22 | 1998-02-04 | 富士写真フイルム株式会社 | Image reading device |
JPH0488489A (en) | 1990-08-01 | 1992-03-23 | Internatl Business Mach Corp <Ibm> | Character recognizing device and method using generalized half conversion |
JPH04287290A (en) | 1990-11-20 | 1992-10-12 | Imra America Inc | Hough transformation picture processor |
KR930010845B1 (en) | 1990-12-31 | 1993-11-12 | 주식회사 금성사 | Graphic and character auto-separating method of video signal |
JPH04270565A (en) | 1991-02-20 | 1992-09-25 | Fuji Xerox Co Ltd | Picture compression system |
US5313527A (en) | 1991-06-07 | 1994-05-17 | Paragraph International | Method and apparatus for recognizing cursive writing from sequential input information |
US5293429A (en) | 1991-08-06 | 1994-03-08 | Ricoh Company, Ltd. | System and method for automatically classifying heterogeneous business forms |
US5680525A (en) | 1991-08-08 | 1997-10-21 | Hitachi, Ltd. | Three-dimensional graphic system with an editor for generating a textrue mapping image |
CA2097492C (en) | 1991-10-02 | 1999-05-18 | Shinji Kanda | Method for determining orientation of contour line segment in local area and for determining straight line and corner |
US5321770A (en) | 1991-11-19 | 1994-06-14 | Xerox Corporation | Method for determining boundaries of words in text |
JP3191057B2 (en) | 1991-11-22 | 2001-07-23 | 株式会社日立製作所 | Method and apparatus for processing encoded image data |
US5359673A (en) | 1991-12-27 | 1994-10-25 | Xerox Corporation | Method and apparatus for converting bitmap image documents to editable coded data using a standard notation to record document recognition ambiguities |
DE9202508U1 (en) | 1992-02-27 | 1992-04-09 | Georg Karl geka-brush GmbH, 8809 Bechhofen | Tooth cleaning brush |
US5317646A (en) | 1992-03-24 | 1994-05-31 | Xerox Corporation | Automated method for creating templates in a forms recognition and processing system |
DE4310727C2 (en) | 1992-04-06 | 1996-07-11 | Hell Ag Linotype | Method and device for analyzing image templates |
US5268967A (en) | 1992-06-29 | 1993-12-07 | Eastman Kodak Company | Method for automatic foreground and background detection in digital radiographic images |
US5596655A (en) | 1992-08-18 | 1997-01-21 | Hewlett-Packard Company | Method for finding and classifying scanned information |
US5594817A (en) | 1992-10-19 | 1997-01-14 | Fast; Bruce B. | OCR image pre-processor for detecting and reducing skew of the image of textual matter of a scanned document |
US5848184A (en) | 1993-03-15 | 1998-12-08 | Unisys Corporation | Document page analyzer and method |
JPH06274680A (en) | 1993-03-17 | 1994-09-30 | Hitachi Ltd | Method and system recognizing document |
US6002489A (en) | 1993-04-02 | 1999-12-14 | Fujitsu Limited | Product catalog having image evaluation chart |
JPH06314339A (en) | 1993-04-27 | 1994-11-08 | Honda Motor Co Ltd | Image rectilinear component extracting device |
US5602964A (en) | 1993-05-21 | 1997-02-11 | Autometric, Incorporated | Automata networks and methods for obtaining optimized dynamically reconfigurable computational architectures and controls |
US7082426B2 (en) | 1993-06-18 | 2006-07-25 | Cnet Networks, Inc. | Content aggregation method and apparatus for an on-line product catalog |
US5353673A (en) | 1993-09-07 | 1994-10-11 | Lynch John H | Brass-wind musical instrument mouthpiece with radially asymmetric lip restrictor |
JP2720924B2 (en) | 1993-09-21 | 1998-03-04 | 富士ゼロックス株式会社 | Image signal encoding device |
US6219773B1 (en) | 1993-10-18 | 2001-04-17 | Via-Cyrix, Inc. | System and method of retiring misaligned write operands from a write buffer |
EP0654746B1 (en) | 1993-11-24 | 2003-02-12 | Canon Kabushiki Kaisha | Form identification and processing system |
US5546474A (en) | 1993-12-21 | 1996-08-13 | Hewlett-Packard Company | Detection of photo regions in digital images |
US5671463A (en) | 1993-12-28 | 1997-09-23 | Minolta Co., Ltd. | Image forming apparatus capable of forming a plurality of images from different originals on a single copy sheet |
US5598515A (en) | 1994-01-10 | 1997-01-28 | Gen Tech Corp. | System and method for reconstructing surface elements of solid objects in a three-dimensional scene from a plurality of two dimensional images of the scene |
US5473742A (en) | 1994-02-22 | 1995-12-05 | Paragraph International | Method and apparatus for representing image data using polynomial approximation method and iterative transformation-reparametrization technique |
US5699244A (en) | 1994-03-07 | 1997-12-16 | Monsanto Company | Hand-held GUI PDA with GPS/DGPS receiver for collecting agronomic and GPS position data |
JP3163215B2 (en) | 1994-03-07 | 2001-05-08 | 日本電信電話株式会社 | Line extraction Hough transform image processing device |
JP3311135B2 (en) | 1994-03-23 | 2002-08-05 | 積水化学工業株式会社 | Inspection range recognition method |
EP0677818B1 (en) | 1994-04-15 | 2000-05-10 | Canon Kabushiki Kaisha | Image pre-processor for character recognition system |
US5652663A (en) | 1994-07-29 | 1997-07-29 | Polaroid Corporation | Preview buffer for electronic scanner |
US5563723A (en) | 1994-08-31 | 1996-10-08 | Eastman Kodak Company | Method of calibration of image scanner signal processing circuits |
US5757963A (en) | 1994-09-30 | 1998-05-26 | Xerox Corporation | Method and apparatus for complex column segmentation by major white region pattern matching |
JP3494326B2 (en) | 1994-10-19 | 2004-02-09 | ミノルタ株式会社 | Image forming device |
US5696611A (en) | 1994-11-08 | 1997-12-09 | Matsushita Graphic Communication Systems, Inc. | Color picture processing apparatus for reproducing a color picture having a smoothly changed gradation |
EP0723247B1 (en) | 1995-01-17 | 1998-07-29 | Eastman Kodak Company | Document image assessment system and method |
US5822454A (en) | 1995-04-10 | 1998-10-13 | Rebus Technology, Inc. | System and method for automatic page registration and automatic zone detection during forms processing |
US5857029A (en) | 1995-06-05 | 1999-01-05 | United Parcel Service Of America, Inc. | Method and apparatus for non-contact signature imaging |
DK71495A (en) | 1995-06-22 | 1996-12-23 | Purup Prepress As | Digital image correction method and apparatus |
JPH0962826A (en) | 1995-08-22 | 1997-03-07 | Fuji Photo Film Co Ltd | Picture reader |
US5781665A (en) | 1995-08-28 | 1998-07-14 | Pitney Bowes Inc. | Apparatus and method for cropping an image |
CA2184561C (en) | 1995-09-12 | 2001-05-29 | Yasuyuki Michimoto | Object detecting apparatus in which the position of a planar object is estimated by using hough transform |
JP2000500887A (en) | 1995-09-25 | 2000-01-25 | アドビ システムズ インコーポレイテッド | Optimal access to electronic documents |
US6532077B1 (en) | 1995-10-04 | 2003-03-11 | Canon Kabushiki Kaisha | Image processing system |
JPH09116720A (en) | 1995-10-20 | 1997-05-02 | Matsushita Graphic Commun Syst Inc | Ocr facsimile equipment and communication system therefor |
US6009196A (en) | 1995-11-28 | 1999-12-28 | Xerox Corporation | Method for classifying non-running text in an image |
US5987172A (en) | 1995-12-06 | 1999-11-16 | Cognex Corp. | Edge peak contour tracker |
US6009191A (en) | 1996-02-15 | 1999-12-28 | Intel Corporation | Computer implemented method for compressing 48-bit pixels to 16-bit pixels |
US5923763A (en) | 1996-03-21 | 1999-07-13 | Walker Asset Management Limited Partnership | Method and apparatus for secure document timestamping |
US5937084A (en) | 1996-05-22 | 1999-08-10 | Ncr Corporation | Knowledge-based document analysis system |
US8204293B2 (en) | 2007-03-09 | 2012-06-19 | Cummins-Allison Corp. | Document imaging and processing system |
US5956468A (en) | 1996-07-12 | 1999-09-21 | Seiko Epson Corporation | Document segmentation system |
SE510310C2 (en) | 1996-07-19 | 1999-05-10 | Ericsson Telefon Ab L M | Method and apparatus for motion estimation and segmentation |
US6038348A (en) | 1996-07-24 | 2000-03-14 | Oak Technology, Inc. | Pixel image enhancement system and method |
US5696805A (en) | 1996-09-17 | 1997-12-09 | Eastman Kodak Company | Apparatus and method for identifying specific bone regions in digital X-ray images |
JP3685421B2 (en) | 1996-09-18 | 2005-08-17 | 富士写真フイルム株式会社 | Image processing device |
US5899978A (en) | 1996-10-07 | 1999-05-04 | Title America | Titling system and method therefor |
JPH10117262A (en) | 1996-10-09 | 1998-05-06 | Fuji Photo Film Co Ltd | Image processor |
JP2940496B2 (en) | 1996-11-05 | 1999-08-25 | 日本電気株式会社 | Pattern matching encoding apparatus and method |
US6104840A (en) * | 1996-11-08 | 2000-08-15 | Ricoh Company, Ltd. | Method and system for generating a composite image from partially overlapping adjacent images taken along a plurality of axes |
US6512848B2 (en) | 1996-11-18 | 2003-01-28 | Canon Kabushiki Kaisha | Page analysis system |
JP3748141B2 (en) | 1996-12-26 | 2006-02-22 | 株式会社東芝 | Image forming apparatus |
US6052124A (en) | 1997-02-03 | 2000-04-18 | Yissum Research Development Company | System and method for directly estimating three-dimensional structure of objects in a scene and camera motion from three two-dimensional views of the scene |
US6098065A (en) | 1997-02-13 | 2000-08-01 | Nortel Networks Corporation | Associative search engine |
EP0860989B1 (en) | 1997-02-19 | 2006-11-22 | Canon Kabushiki Kaisha | Scanner device and control method thereof, and image input system |
JP2927350B2 (en) | 1997-03-27 | 1999-07-28 | 株式会社モノリス | Multi-resolution filter processing method and image matching method using the method |
SE511242C2 (en) | 1997-04-01 | 1999-08-30 | Readsoft Ab | Method and apparatus for automatic data capture of forms |
US6154217A (en) | 1997-04-15 | 2000-11-28 | Software Architects, Inc. | Gamut restriction of color image |
US6005958A (en) | 1997-04-23 | 1999-12-21 | Automotive Systems Laboratory, Inc. | Occupant type and position detection system |
US6067385A (en) | 1997-05-07 | 2000-05-23 | Ricoh Company Limited | System for aligning document images when scanned in duplex mode |
US6433896B1 (en) | 1997-06-10 | 2002-08-13 | Minolta Co., Ltd. | Image processing apparatus |
EP0887784B1 (en) | 1997-06-25 | 2009-02-25 | Panasonic Corporation | Subframe method for displaying grey scales with reduced dynamic contouring |
JP3877385B2 (en) | 1997-07-04 | 2007-02-07 | 大日本スクリーン製造株式会社 | Image processing parameter determination apparatus and method |
JP3061019B2 (en) | 1997-08-04 | 2000-07-10 | トヨタ自動車株式会社 | Internal combustion engine |
US5953388A (en) | 1997-08-18 | 1999-09-14 | George Mason University | Method and apparatus for processing data from a tomographic imaging system |
JP3891654B2 (en) | 1997-08-20 | 2007-03-14 | 株式会社東芝 | Image forming apparatus |
US6005968A (en) | 1997-08-29 | 1999-12-21 | X-Rite, Incorporated | Scanner calibration and correction techniques using scaled lightness values |
JPH1178112A (en) | 1997-09-09 | 1999-03-23 | Konica Corp | Image forming system and image forming method |
JPH1186021A (en) | 1997-09-09 | 1999-03-30 | Fuji Photo Film Co Ltd | Image processor |
US6011595A (en) | 1997-09-19 | 2000-01-04 | Eastman Kodak Company | Method for segmenting a digital image into a foreground region and a key color region |
JPH1191169A (en) | 1997-09-19 | 1999-04-06 | Fuji Photo Film Co Ltd | Image processing apparatus |
US6480624B1 (en) | 1997-09-30 | 2002-11-12 | Minolta Co., Ltd. | Color discrimination apparatus and method |
JP3608920B2 (en) | 1997-10-14 | 2005-01-12 | 株式会社ミツトヨ | Non-contact image measurement system |
US6434620B1 (en) | 1998-08-27 | 2002-08-13 | Alacritech, Inc. | TCP/IP offload network interface device |
US5867264A (en) | 1997-10-15 | 1999-02-02 | Pacific Advanced Technology | Apparatus for image multispectral sensing employing addressable spatial mask |
US6243722B1 (en) | 1997-11-24 | 2001-06-05 | International Business Machines Corporation | Method and system for a network-based document review tool utilizing comment classification |
US6222613B1 (en) | 1998-02-10 | 2001-04-24 | Konica Corporation | Image processing method and apparatus |
DE19809790B4 (en) | 1998-03-09 | 2005-12-22 | Daimlerchrysler Ag | Method for determining a twist structure in the surface of a precision-machined cylindrical workpiece |
JPH11261821A (en) | 1998-03-12 | 1999-09-24 | Fuji Photo Film Co Ltd | Image processing method |
US6426806B2 (en) | 1998-03-31 | 2002-07-30 | Canon Kabushiki Kaisha | Routing scanned documents with scanned control sheets |
JP3457562B2 (en) | 1998-04-06 | 2003-10-20 | 富士写真フイルム株式会社 | Image processing apparatus and method |
US6327581B1 (en) | 1998-04-06 | 2001-12-04 | Microsoft Corporation | Methods and apparatus for building a support vector machine classifier |
US7194471B1 (en) | 1998-04-10 | 2007-03-20 | Ricoh Company, Ltd. | Document classification system and method for classifying a document according to contents of the document |
US6393147B2 (en) | 1998-04-13 | 2002-05-21 | Intel Corporation | Color region based recognition of unidentified objects |
US8955743B1 (en) | 1998-04-17 | 2015-02-17 | Diebold Self-Service Systems Division Of Diebold, Incorporated | Automated banking machine with remote user assistance |
US6789069B1 (en) | 1998-05-01 | 2004-09-07 | Biowulf Technologies Llc | Method for enhancing knowledge discovered from biological data using a learning machine |
US7617163B2 (en) | 1998-05-01 | 2009-11-10 | Health Discovery Corporation | Kernels and kernel methods for spectral data |
WO2002095534A2 (en) | 2001-05-18 | 2002-11-28 | Biowulf Technologies, Llc | Methods for feature selection in a learning machine |
JPH11328408A (en) | 1998-05-12 | 1999-11-30 | Advantest Corp | Device for processing data and information storage medium |
US6748109B1 (en) | 1998-06-16 | 2004-06-08 | Fuji Photo Film Co., Ltd | Digital laboratory system for processing photographic images |
US6192360B1 (en) | 1998-06-23 | 2001-02-20 | Microsoft Corporation | Methods and apparatus for classifying text and for building a text classifier |
US6161130A (en) | 1998-06-23 | 2000-12-12 | Microsoft Corporation | Technique which utilizes a probabilistic classifier to detect "junk" e-mail by automatically updating a training and re-training the classifier based on the updated training set |
EP0967792B1 (en) | 1998-06-26 | 2011-08-03 | Sony Corporation | Printer having image correcting capability |
US7253836B1 (en) | 1998-06-30 | 2007-08-07 | Nikon Corporation | Digital camera, storage medium for image signal processing, carrier wave and electronic camera |
US6456738B1 (en) | 1998-07-16 | 2002-09-24 | Ricoh Company, Ltd. | Method of and system for extracting predetermined elements from input document based upon model which is adaptively modified according to variable amount in the input document |
FR2781475B1 (en) | 1998-07-23 | 2000-09-08 | Alsthom Cge Alcatel | USE OF A POROUS GRAPHITE CRUCIBLE TO PROCESS SILICA PELLETS |
US6219158B1 (en) | 1998-07-31 | 2001-04-17 | Hewlett-Packard Company | Method and apparatus for a dynamically variable scanner, copier or facsimile secondary reflective surface |
US6385346B1 (en) | 1998-08-04 | 2002-05-07 | Sharp Laboratories Of America, Inc. | Method of display and control of adjustable parameters for a digital scanner device |
US6571008B1 (en) * | 1998-08-07 | 2003-05-27 | Washington State University Research Foundation | Reverse engineering of polymeric solid models by refractive index matching |
US6292168B1 (en) | 1998-08-13 | 2001-09-18 | Xerox Corporation | Period-based bit conversion method and apparatus for digital image processing |
JP2000067065A (en) | 1998-08-20 | 2000-03-03 | Ricoh Co Ltd | Method for identifying document image and record medium |
US6373507B1 (en) | 1998-09-14 | 2002-04-16 | Microsoft Corporation | Computer-implemented image acquistion system |
US7017108B1 (en) | 1998-09-15 | 2006-03-21 | Canon Kabushiki Kaisha | Method and apparatus for reproducing a linear document having non-linear referential links |
US6263122B1 (en) | 1998-09-23 | 2001-07-17 | Hewlett Packard Company | System and method for manipulating regions in a scanned image |
US6223223B1 (en) | 1998-09-30 | 2001-04-24 | Hewlett-Packard Company | Network scanner contention handling method |
US6575367B1 (en) | 1998-11-05 | 2003-06-10 | Welch Allyn Data Collection, Inc. | Image data binarization methods enabling optical reader to read fine print indicia |
US6370277B1 (en) | 1998-12-07 | 2002-04-09 | Kofax Image Products, Inc. | Virtual rescanning: a method for interactive document image quality enhancement |
US6480304B1 (en) | 1998-12-09 | 2002-11-12 | Scansoft, Inc. | Scanning system and method |
US6396599B1 (en) | 1998-12-21 | 2002-05-28 | Eastman Kodak Company | Method and apparatus for modifying a portion of an image in accordance with colorimetric parameters |
US6765685B1 (en) | 1999-01-22 | 2004-07-20 | Ricoh Company, Ltd. | Printing electronic documents with automatically interleaved separation sheets |
US7003719B1 (en) | 1999-01-25 | 2006-02-21 | West Publishing Company, Dba West Group | System, method, and software for inserting hyperlinks into documents |
US6614930B1 (en) | 1999-01-28 | 2003-09-02 | Koninklijke Philips Electronics N.V. | Video stream classifiable symbol isolation method and system |
JP2000227316A (en) | 1999-02-04 | 2000-08-15 | Keyence Corp | Inspection device |
US6646765B1 (en) | 1999-02-19 | 2003-11-11 | Hewlett-Packard Development Company, L.P. | Selective document scanning method and apparatus |
JP2000251012A (en) | 1999-03-01 | 2000-09-14 | Hitachi Ltd | Method and system for document processing |
EP1049030A1 (en) | 1999-04-28 | 2000-11-02 | SER Systeme AG Produkte und Anwendungen der Datenverarbeitung | Classification method and apparatus |
US6590676B1 (en) | 1999-05-18 | 2003-07-08 | Electronics For Imaging, Inc. | Image reconstruction architecture |
EP1054331A3 (en) | 1999-05-21 | 2003-11-12 | Hewlett-Packard Company, A Delaware Corporation | System and method for storing and retrieving document data |
JP4453119B2 (en) * | 1999-06-08 | 2010-04-21 | ソニー株式会社 | Camera calibration apparatus and method, image processing apparatus and method, program providing medium, and camera |
JP2000354144A (en) | 1999-06-11 | 2000-12-19 | Ricoh Co Ltd | Document reader |
JP4626007B2 (en) | 1999-06-14 | 2011-02-02 | 株式会社ニコン | Image processing method, machine-readable recording medium storing image processing program, and image processing apparatus |
US7051274B1 (en) | 1999-06-24 | 2006-05-23 | Microsoft Corporation | Scalable computing system for managing annotations |
JP4114279B2 (en) | 1999-06-25 | 2008-07-09 | コニカミノルタビジネステクノロジーズ株式会社 | Image processing device |
US6501855B1 (en) | 1999-07-20 | 2002-12-31 | Parascript, Llc | Manual-search restriction on documents not having an ASCII index |
IL131092A (en) | 1999-07-25 | 2006-08-01 | Orbotech Ltd | Optical inspection system |
US6628808B1 (en) | 1999-07-28 | 2003-09-30 | Datacard Corporation | Apparatus and method for verifying a scanned image |
US6628416B1 (en) | 1999-10-13 | 2003-09-30 | Umax Data Systems, Inc. | Method and user interface for performing a scan operation for a scanner coupled to a computer system |
JP3501031B2 (en) | 1999-08-24 | 2004-02-23 | 日本電気株式会社 | Image region determination device, image region determination method, and storage medium storing program thereof |
JP3587506B2 (en) | 1999-08-30 | 2004-11-10 | 富士重工業株式会社 | Stereo camera adjustment device |
US6633857B1 (en) | 1999-09-04 | 2003-10-14 | Microsoft Corporation | Relevance vector machine |
US6601026B2 (en) | 1999-09-17 | 2003-07-29 | Discern Communications, Inc. | Information retrieval by natural language querying |
US7123292B1 (en) | 1999-09-29 | 2006-10-17 | Xerox Corporation | Mosaicing images with an offset lens |
JP2001103255A (en) | 1999-09-30 | 2001-04-13 | Minolta Co Ltd | Image processing system |
US6839466B2 (en) | 1999-10-04 | 2005-01-04 | Xerox Corporation | Detecting overlapping images in an automatic image segmentation device with the presence of severe bleeding |
US7430066B2 (en) | 1999-10-13 | 2008-09-30 | Transpacific Ip, Ltd. | Method and user interface for performing an automatic scan operation for a scanner coupled to a computer system |
JP4377494B2 (en) | 1999-10-22 | 2009-12-02 | 東芝テック株式会社 | Information input device |
JP4094789B2 (en) | 1999-11-26 | 2008-06-04 | 富士通株式会社 | Image processing apparatus and image processing method |
US7735721B1 (en) | 1999-11-30 | 2010-06-15 | Diebold Self-Service Systems Division Of Diebold, Incorporated | Method of evaluating checks deposited into a cash dispensing automated banking machine |
US6751349B2 (en) | 1999-11-30 | 2004-06-15 | Fuji Photo Film Co., Ltd. | Image processing system |
US7337389B1 (en) | 1999-12-07 | 2008-02-26 | Microsoft Corporation | System and method for annotating an electronic document independently of its content |
US6665425B1 (en) | 1999-12-16 | 2003-12-16 | Xerox Corporation | Systems and methods for automated image quality based diagnostics and remediation of document processing systems |
US20010027420A1 (en) | 1999-12-21 | 2001-10-04 | Miroslav Boublik | Method and apparatus for capturing transaction data |
US6724916B1 (en) | 2000-01-05 | 2004-04-20 | The United States Of America As Represented By The Secretary Of The Navy | Composite hough transform for multitarget multisensor tracking |
US6778684B1 (en) | 2000-01-20 | 2004-08-17 | Xerox Corporation | Systems and methods for checking image/document quality |
JP2001218047A (en) | 2000-02-04 | 2001-08-10 | Fuji Photo Film Co Ltd | Picture processor |
JP2001309128A (en) | 2000-02-24 | 2001-11-02 | Xerox Corp | Image capture control system |
US7149347B1 (en) | 2000-03-02 | 2006-12-12 | Science Applications International Corporation | Machine learning of document templates for data extraction |
US6859909B1 (en) | 2000-03-07 | 2005-02-22 | Microsoft Corporation | System and method for annotating web-based documents |
US6643413B1 (en) | 2000-03-27 | 2003-11-04 | Microsoft Corporation | Manifold mosaic hopping for image-based rendering |
US6757081B1 (en) | 2000-04-07 | 2004-06-29 | Hewlett-Packard Development Company, L.P. | Methods and apparatus for analyzing and image and for controlling a scanner |
SE0001312D0 (en) | 2000-04-10 | 2000-04-10 | Abb Ab | Industrial robot |
US6337925B1 (en) | 2000-05-08 | 2002-01-08 | Adobe Systems Incorporated | Method for determining a border in a complex scene with applications to image masking |
US20020030831A1 (en) | 2000-05-10 | 2002-03-14 | Fuji Photo Film Co., Ltd. | Image correction method |
US6469801B1 (en) | 2000-05-17 | 2002-10-22 | Heidelberger Druckmaschinen Ag | Scanner with prepress scaling mode |
US6763515B1 (en) | 2000-06-05 | 2004-07-13 | National Instruments Corporation | System and method for automatically generating a graphical program to perform an image processing algorithm |
US6701009B1 (en) | 2000-06-06 | 2004-03-02 | Sharp Laboratories Of America, Inc. | Method of separated color foreground and background pixel improvement |
US20030120653A1 (en) | 2000-07-05 | 2003-06-26 | Sean Brady | Trainable internet search engine and methods of using |
US6463430B1 (en) | 2000-07-10 | 2002-10-08 | Mohomine, Inc. | Devices and methods for generating and managing a database |
JP4023075B2 (en) | 2000-07-10 | 2007-12-19 | 富士ゼロックス株式会社 | Image acquisition device |
JP4171574B2 (en) | 2000-07-21 | 2008-10-22 | 富士フイルム株式会社 | Image processing condition determining apparatus and image processing condition determining program storage medium |
US7624337B2 (en) | 2000-07-24 | 2009-11-24 | Vmark, Inc. | System and method for indexing, searching, identifying, and editing portions of electronic multimedia files |
US6675159B1 (en) | 2000-07-27 | 2004-01-06 | Science Applic Int Corp | Concept-based search and retrieval system |
AU2001280929A1 (en) | 2000-07-28 | 2002-02-13 | Raf Technology, Inc. | Orthogonal technology for multi-line character recognition |
US6850653B2 (en) | 2000-08-08 | 2005-02-01 | Canon Kabushiki Kaisha | Image reading system, image reading setting determination apparatus, reading setting determination method, recording medium, and program |
US6901170B1 (en) | 2000-09-05 | 2005-05-31 | Fuji Xerox Co., Ltd. | Image processing device and recording medium |
JP3720740B2 (en) | 2000-09-12 | 2005-11-30 | キヤノン株式会社 | Distributed printing system, distributed printing control method, storage medium, and program |
US7002700B1 (en) | 2000-09-14 | 2006-02-21 | Electronics For Imaging, Inc. | Method and system for merging scan files into a color workflow |
US7738706B2 (en) * | 2000-09-22 | 2010-06-15 | Sri International | Method and apparatus for recognition of symbols in images of three-dimensional scenes |
DE10047219A1 (en) | 2000-09-23 | 2002-06-06 | Adolf Wuerth Gmbh & Co Kg | cleat |
JP4472847B2 (en) | 2000-09-28 | 2010-06-02 | キヤノン電子株式会社 | Image processing apparatus and control method thereof, image input apparatus and control method thereof, and storage medium |
JP2002109242A (en) | 2000-09-29 | 2002-04-12 | Glory Ltd | Method and device for document processing and storage medium stored with document processing program |
AU2002211405A1 (en) | 2000-10-02 | 2002-04-15 | International Projects Consultancy Services, Inc. | Object-based workflow system and method |
US6621595B1 (en) | 2000-11-01 | 2003-09-16 | Hewlett-Packard Development Company, L.P. | System and method for enhancing scanned document images for color printing |
US20050060162A1 (en) | 2000-11-10 | 2005-03-17 | Farhad Mohit | Systems and methods for automatic identification and hyperlinking of words or other data items and for information retrieval using hyperlinked words or data items |
US7043080B1 (en) | 2000-11-21 | 2006-05-09 | Sharp Laboratories Of America, Inc. | Methods and systems for text detection in mixed-context documents using local geometric signatures |
US6788308B2 (en) | 2000-11-29 | 2004-09-07 | Tvgateway,Llc | System and method for improving the readability of text |
EP1211594A3 (en) | 2000-11-30 | 2006-05-24 | Canon Kabushiki Kaisha | Apparatus and method for controlling user interface |
US6921220B2 (en) | 2000-12-19 | 2005-07-26 | Canon Kabushiki Kaisha | Image processing system, data processing apparatus, data processing method, computer program and storage medium |
US6826311B2 (en) | 2001-01-04 | 2004-11-30 | Microsoft Corporation | Hough transform supporting methods and arrangements |
US7266768B2 (en) | 2001-01-09 | 2007-09-04 | Sharp Laboratories Of America, Inc. | Systems and methods for manipulating electronic information using a three-dimensional iconic representation |
US6522791B2 (en) | 2001-01-23 | 2003-02-18 | Xerox Corporation | Dynamic user interface with scanned image improvement assist |
US6882983B2 (en) | 2001-02-05 | 2005-04-19 | Notiva Corporation | Method and system for processing transactions |
US6950555B2 (en) | 2001-02-16 | 2005-09-27 | Parascript Llc | Holistic-analytical recognition of handwritten text |
JP2002247371A (en) | 2001-02-21 | 2002-08-30 | Ricoh Co Ltd | Image processor and recording medium having recorded image processing program |
WO2002071243A1 (en) | 2001-03-01 | 2002-09-12 | Biowulf Technologies, Llc | Spectral kernels for learning machines |
US7864369B2 (en) | 2001-03-19 | 2011-01-04 | Dmetrix, Inc. | Large-area imaging by concatenation with array microscope |
JP2002300386A (en) | 2001-03-30 | 2002-10-11 | Fuji Photo Film Co Ltd | Image processing method |
US7145699B2 (en) | 2001-03-30 | 2006-12-05 | Sharp Laboratories Of America, Inc. | System and method for digital document alignment |
US20020165717A1 (en) | 2001-04-06 | 2002-11-07 | Solmer Robert P. | Efficient method for information extraction |
US6658147B2 (en) | 2001-04-16 | 2003-12-02 | Parascript Llc | Reshaping freehand drawn lines and shapes in an electronic document |
JP3824209B2 (en) | 2001-04-18 | 2006-09-20 | 三菱電機株式会社 | Automatic document divider |
US7023447B2 (en) | 2001-05-02 | 2006-04-04 | Eastman Kodak Company | Block sampling based method and apparatus for texture synthesis |
US7006707B2 (en) * | 2001-05-03 | 2006-02-28 | Adobe Systems Incorporated | Projecting images onto a surface |
US6944357B2 (en) | 2001-05-24 | 2005-09-13 | Microsoft Corporation | System and process for automatically determining optimal image compression methods for reducing file size |
US7542931B2 (en) | 2001-06-01 | 2009-06-02 | American Express Travel Related Services Company, Inc. | System and method for global automated address verification |
FR2825817B1 (en) | 2001-06-07 | 2003-09-19 | Commissariat Energie Atomique | IMAGE PROCESSING METHOD FOR THE AUTOMATIC EXTRACTION OF SEMANTIC ELEMENTS |
US20030030638A1 (en) * | 2001-06-07 | 2003-02-13 | Karl Astrom | Method and apparatus for extracting information from a target area within a two-dimensional graphical object in an image |
US7403313B2 (en) | 2001-09-27 | 2008-07-22 | Transpacific Ip, Ltd. | Automatic scanning parameter setting device and method |
US6584339B2 (en) | 2001-06-27 | 2003-06-24 | Vanderbilt University | Method and apparatus for collecting and processing physical space data for use while performing image-guided surgery |
US7154622B2 (en) | 2001-06-27 | 2006-12-26 | Sharp Laboratories Of America, Inc. | Method of routing and processing document images sent using a digital scanner and transceiver |
US7013047B2 (en) | 2001-06-28 | 2006-03-14 | National Instruments Corporation | System and method for performing edge detection in an image |
US7298903B2 (en) | 2001-06-28 | 2007-11-20 | Microsoft Corporation | Method and system for separating text and drawings in digital ink |
US20050131780A1 (en) | 2001-08-13 | 2005-06-16 | Rudi Princen | Computer system for managing accounting data |
US7506062B2 (en) | 2001-08-30 | 2009-03-17 | Xerox Corporation | Scanner-initiated network-based image input scanning |
JP5002099B2 (en) | 2001-08-31 | 2012-08-15 | 株式会社東芝 | Magnetic resonance imaging system |
US20030044012A1 (en) | 2001-08-31 | 2003-03-06 | Sharp Laboratories Of America, Inc. | System and method for using a profile to encrypt documents in a digital scanner |
JP4564693B2 (en) | 2001-09-14 | 2010-10-20 | キヤノン株式会社 | Document processing apparatus and method |
US7515313B2 (en) | 2001-09-20 | 2009-04-07 | Stone Cheng | Method and system for scanning with one-scan-and-done feature |
US7430002B2 (en) | 2001-10-03 | 2008-09-30 | Micron Technology, Inc. | Digital imaging system and method for adjusting image-capturing parameters using image comparisons |
US6732046B1 (en) | 2001-10-03 | 2004-05-04 | Navigation Technologies Corp. | Application of the hough transform to modeling the horizontal component of road geometry and computing heading and curvature |
US6922487B2 (en) | 2001-11-02 | 2005-07-26 | Xerox Corporation | Method and apparatus for capturing text images |
US6667774B2 (en) | 2001-11-02 | 2003-12-23 | Imatte, Inc. | Method and apparatus for the automatic generation of subject to background transition area boundary lines and subject shadow retention |
US6898316B2 (en) | 2001-11-09 | 2005-05-24 | Arcsoft, Inc. | Multiple image area detection in a digital image |
US6944616B2 (en) | 2001-11-28 | 2005-09-13 | Pavilion Technologies, Inc. | System and method for historical database training of support vector machines |
EP1317133A1 (en) | 2001-12-03 | 2003-06-04 | Kofax Image Products, Inc. | Virtual rescanning a method for interactive document image quality enhancement |
US7937281B2 (en) | 2001-12-07 | 2011-05-03 | Accenture Global Services Limited | Accelerated process improvement framework |
US7286177B2 (en) | 2001-12-19 | 2007-10-23 | Nokia Corporation | Digital camera |
US7053953B2 (en) | 2001-12-21 | 2006-05-30 | Eastman Kodak Company | Method and camera system for blurring portions of a verification image to show out of focus areas in a captured archival image |
JP2003196357A (en) | 2001-12-27 | 2003-07-11 | Hitachi Software Eng Co Ltd | Method and system of document filing |
US7346215B2 (en) | 2001-12-31 | 2008-03-18 | Transpacific Ip, Ltd. | Apparatus and method for capturing a document |
US7054036B2 (en) | 2002-01-25 | 2006-05-30 | Kabushiki Kaisha Toshiba | Image processing method and image forming apparatus |
US20030142328A1 (en) | 2002-01-31 | 2003-07-31 | Mcdaniel Stanley Eugene | Evaluation of image processing operations |
JP3891408B2 (en) | 2002-02-08 | 2007-03-14 | 株式会社リコー | Image correction apparatus, program, storage medium, and image correction method |
US7362354B2 (en) | 2002-02-12 | 2008-04-22 | Hewlett-Packard Development Company, L.P. | Method and system for assessing the photo quality of a captured image in a digital still camera |
CA2476895A1 (en) | 2002-02-19 | 2003-08-28 | Digimarc Corporation | Security methods employing drivers licenses and other documents |
US6985631B2 (en) | 2002-02-20 | 2006-01-10 | Hewlett-Packard Development Company, L.P. | Systems and methods for automatically detecting a corner in a digitally captured image |
US7020320B2 (en) | 2002-03-06 | 2006-03-28 | Parascript, Llc | Extracting text written on a check |
US7107285B2 (en) | 2002-03-16 | 2006-09-12 | Questerra Corporation | Method, system, and program for an improved enterprise spatial system |
WO2003085624A1 (en) | 2002-04-05 | 2003-10-16 | Unbounded Access Ltd. | Networked accessibility enhancer system |
JP4185699B2 (en) | 2002-04-12 | 2008-11-26 | 日立オムロンターミナルソリューションズ株式会社 | Form reading system, form reading method and program therefor |
US20030210428A1 (en) | 2002-05-07 | 2003-11-13 | Alex Bevlin | Non-OCR method for capture of computer filled-in forms |
CA2526165A1 (en) | 2002-05-23 | 2003-12-04 | Phochron, Inc. | System and method for digital content processing and distribution |
US7636455B2 (en) | 2002-06-04 | 2009-12-22 | Raytheon Company | Digital image edge detection and road network tracking method and system |
US7409092B2 (en) | 2002-06-20 | 2008-08-05 | Hrl Laboratories, Llc | Method and apparatus for the surveillance of objects in images |
US7197158B2 (en) | 2002-06-28 | 2007-03-27 | Microsoft Corporation | Generation of metadata for acquired images |
US20040143547A1 (en) | 2002-07-02 | 2004-07-22 | Dean Mersky | Automated accounts payable using image typing and type specific processing |
US7209599B2 (en) | 2002-07-12 | 2007-04-24 | Hewlett-Packard Development Company, L.P. | System and method for scanned image bleedthrough processing |
US6999625B1 (en) | 2002-07-12 | 2006-02-14 | The United States Of America As Represented By The Secretary Of The Navy | Feature-based detection and context discriminate classification for digital images |
JP2004054640A (en) | 2002-07-19 | 2004-02-19 | Sharp Corp | Method for distributing image information, image information distribution system, center device, terminal device, scanner device, computer program, and recording medium |
US7043084B2 (en) | 2002-07-30 | 2006-05-09 | Mitsubishi Electric Research Laboratories, Inc. | Wheelchair detection using stereo vision |
US7031525B2 (en) | 2002-07-30 | 2006-04-18 | Mitsubishi Electric Research Laboratories, Inc. | Edge detection based on background change |
US7365881B2 (en) | 2002-08-19 | 2008-04-29 | Eastman Kodak Company | Halftone dot-growth technique based on morphological filtering |
US7123387B2 (en) | 2002-08-23 | 2006-10-17 | Chung-Wei Cheng | Image scanning method |
US20040083119A1 (en) | 2002-09-04 | 2004-04-29 | Schunder Lawrence V. | System and method for implementing a vendor contract management system |
JP3741090B2 (en) | 2002-09-09 | 2006-02-01 | コニカミノルタビジネステクノロジーズ株式会社 | Image processing device |
US7260561B1 (en) | 2003-11-10 | 2007-08-21 | Zxibix, Inc. | System and method to facilitate user thinking about an arbitrary problem with output and interface to external components and resources |
US20040090458A1 (en) | 2002-11-12 | 2004-05-13 | Yu John Chung Wah | Method and apparatus for previewing GUI design and providing screen-to-source association |
EP1422920B1 (en) | 2002-11-19 | 2013-01-23 | Canon Denshi Kabushiki Kaisha | Network scanning system |
DE10253903A1 (en) | 2002-11-19 | 2004-06-17 | OCé PRINTING SYSTEMS GMBH | Method, arrangement and computer software for printing a release sheet using an electrophotographic printer or copier |
FR2847344B1 (en) | 2002-11-20 | 2005-02-25 | Framatome Anp | PROBE FOR CONTROLLING AN INTERNAL WALL OF A CONDUIT |
KR100446538B1 (en) | 2002-11-21 | 2004-09-01 | 삼성전자주식회사 | On-line digital picture processing system for digital camera rental system |
US7386527B2 (en) | 2002-12-06 | 2008-06-10 | Kofax, Inc. | Effective multi-class support vector machine classification |
CA2508269A1 (en) | 2002-12-16 | 2004-07-08 | King Pharmaceuticals, Inc. | Methods and dosage forms for reducing heart attacks in a hypertensive individual with a diuretic or a diuretic and an ace inhibitor combination |
US7181082B2 (en) | 2002-12-18 | 2007-02-20 | Sharp Laboratories Of America, Inc. | Blur detection system |
WO2004061702A1 (en) | 2002-12-26 | 2004-07-22 | The Trustees Of Columbia University In The City Of New York | Ordered data compression system and methods |
US20070128899A1 (en) | 2003-01-12 | 2007-06-07 | Yaron Mayer | System and method for improving the efficiency, comfort, and/or reliability in Operating Systems, such as for example Windows |
US7174043B2 (en) | 2003-02-25 | 2007-02-06 | Evernote Corp. | On-line handwriting recognizer |
US20040169889A1 (en) | 2003-02-27 | 2004-09-02 | Toshiba Tec Kabushiki Kaisha | Image processing apparatus and controller apparatus using thereof |
US20040169873A1 (en) | 2003-02-28 | 2004-09-02 | Xerox Corporation | Automatic determination of custom parameters based on scanned image data |
US7765155B2 (en) | 2003-03-13 | 2010-07-27 | International Business Machines Corporation | Invoice processing approval and storage system method and apparatus |
US6729733B1 (en) | 2003-03-21 | 2004-05-04 | Mitsubishi Electric Research Laboratories, Inc. | Method for determining a largest inscribed rectangular image within a union of projected quadrilateral images |
US7639392B2 (en) | 2003-03-28 | 2009-12-29 | Infoprint Solutions Company, Llc | Methods, systems, and media to enhance image processing in a color reprographic system |
US7665061B2 (en) | 2003-04-08 | 2010-02-16 | Microsoft Corporation | Code builders |
GB0308509D0 (en) | 2003-04-12 | 2003-05-21 | Antonis Jan | Inspection apparatus and method |
US7251777B1 (en) | 2003-04-16 | 2007-07-31 | Hypervision, Ltd. | Method and system for automated structuring of textual documents |
US7406183B2 (en) | 2003-04-28 | 2008-07-29 | International Business Machines Corporation | System and method of sorting document images based on image quality |
US7327374B2 (en) | 2003-04-30 | 2008-02-05 | Byong Mok Oh | Structure-preserving clone brush |
US20040223640A1 (en) * | 2003-05-09 | 2004-11-11 | Bovyrin Alexander V. | Stereo matching using segmentation of image columns |
JP4864295B2 (en) * | 2003-06-02 | 2012-02-01 | 富士フイルム株式会社 | Image display system, image display apparatus, and program |
JP4261988B2 (en) | 2003-06-03 | 2009-05-13 | キヤノン株式会社 | Image processing apparatus and method |
US20040245334A1 (en) | 2003-06-06 | 2004-12-09 | Sikorski Steven Maurice | Inverted terminal presentation scanner and holder |
CN1998013A (en) | 2003-06-09 | 2007-07-11 | 格林莱恩系统公司 | System and method for risk detection, reporting and infrastructure |
US7389516B2 (en) | 2003-06-19 | 2008-06-17 | Microsoft Corporation | System and method for facilitating interaction between a computer and a network scanner |
US7616233B2 (en) | 2003-06-26 | 2009-11-10 | Fotonation Vision Limited | Perfecting of digital image capture parameters within acquisition devices using face detection |
JP4289040B2 (en) | 2003-06-26 | 2009-07-01 | 富士ゼロックス株式会社 | Image processing apparatus and method |
US20040263639A1 (en) | 2003-06-26 | 2004-12-30 | Vladimir Sadovsky | System and method for intelligent image acquisition |
JP2005018678A (en) | 2003-06-30 | 2005-01-20 | Casio Comput Co Ltd | Form data input processing device, form data input processing method, and program |
US7362892B2 (en) | 2003-07-02 | 2008-04-22 | Lockheed Martin Corporation | Self-optimizing classifier |
US20060242180A1 (en) | 2003-07-23 | 2006-10-26 | Graf James A | Extracting data from semi-structured text documents |
US20050030602A1 (en) | 2003-08-06 | 2005-02-10 | Gregson Daniel P. | Scan templates |
JP2005071262A (en) | 2003-08-27 | 2005-03-17 | Casio Comput Co Ltd | Slip processing system |
US20050050060A1 (en) | 2003-08-27 | 2005-03-03 | Gerard Damm | Data structure for range-specified algorithms |
US8937731B2 (en) | 2003-09-01 | 2015-01-20 | Konica Minolta Business Technologies, Inc. | Image processing apparatus for receiving a request relating to image processing from an external source and executing the received request |
JP3951990B2 (en) | 2003-09-05 | 2007-08-01 | ブラザー工業株式会社 | Wireless station, program, and operation control method |
JP4725057B2 (en) | 2003-09-09 | 2011-07-13 | セイコーエプソン株式会社 | Generation of image quality adjustment information and image quality adjustment using image quality adjustment information |
JP2005085173A (en) | 2003-09-10 | 2005-03-31 | Toshiba Corp | Data management system |
US7797381B2 (en) | 2003-09-19 | 2010-09-14 | International Business Machines Corporation | Methods and apparatus for information hyperchain management for on-demand business collaboration |
US7844109B2 (en) | 2003-09-24 | 2010-11-30 | Canon Kabushiki Kaisha | Image processing method and apparatus |
JP4139760B2 (en) | 2003-10-10 | 2008-08-27 | 富士フイルム株式会社 | Image processing method and apparatus, and image processing program |
US20050080844A1 (en) | 2003-10-10 | 2005-04-14 | Sridhar Dathathraya | System and method for managing scan destination profiles |
US20070011334A1 (en) | 2003-11-03 | 2007-01-11 | Steven Higgins | Methods and apparatuses to provide composite applications |
EP1530357A1 (en) | 2003-11-06 | 2005-05-11 | Ricoh Company, Ltd. | Method, computer program, and apparatus for detecting specific information included in image data of original image with accuracy, and computer readable storing medium storing the program |
WO2005048079A2 (en) | 2003-11-12 | 2005-05-26 | California Institute Of Technology | Mobile content engine with enhanced features |
US7553095B2 (en) | 2003-11-27 | 2009-06-30 | Konica Minolta Business Technologies, Inc. | Print data transmitting apparatus, image forming system, printing condition setting method and printer driver program |
JP4347677B2 (en) | 2003-12-08 | 2009-10-21 | 富士フイルム株式会社 | Form OCR program, method and apparatus |
US8693043B2 (en) | 2003-12-19 | 2014-04-08 | Kofax, Inc. | Automatic document separation |
JP2005208861A (en) | 2004-01-21 | 2005-08-04 | Oki Electric Ind Co Ltd | Store visiting reception system and store visiting reception method therefor |
US7184929B2 (en) | 2004-01-28 | 2007-02-27 | Microsoft Corporation | Exponential priors for maximum entropy models |
US9229540B2 (en) * | 2004-01-30 | 2016-01-05 | Electronic Scripting Products, Inc. | Deriving input from six degrees of freedom interfaces |
US7298897B1 (en) | 2004-02-11 | 2007-11-20 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Optimal binarization of gray-scaled digital images via fuzzy reasoning |
US7379587B2 (en) | 2004-02-12 | 2008-05-27 | Xerox Corporation | Systems and methods for identifying regions within an image having similar continuity values |
US7812860B2 (en) | 2004-04-01 | 2010-10-12 | Exbiblio B.V. | Handheld device for capturing text from both a document printed on paper and a document displayed on a dynamic display device |
US7636479B2 (en) | 2004-02-24 | 2009-12-22 | Trw Automotive U.S. Llc | Method and apparatus for controlling classification and classification switching in a vision system |
JP2005267457A (en) * | 2004-03-19 | 2005-09-29 | Casio Comput Co Ltd | Image processing device, imaging apparatus, image processing method and program |
FR2868185B1 (en) * | 2004-03-23 | 2006-06-30 | Realeyes3D Sa | METHOD FOR EXTRACTING RAW DATA FROM IMAGE RESULTING FROM SHOOTING |
US7379562B2 (en) | 2004-03-31 | 2008-05-27 | Microsoft Corporation | Determining connectedness and offset of 3D objects relative to an interactive surface |
US9008447B2 (en) | 2004-04-01 | 2015-04-14 | Google Inc. | Method and system for character recognition |
US7990556B2 (en) | 2004-12-03 | 2011-08-02 | Google Inc. | Association of a portable scanner with input/output and storage devices |
JP5238249B2 (en) | 2004-04-01 | 2013-07-17 | グーグル インコーポレイテッド | Acquiring data from rendered documents using handheld devices |
US7505056B2 (en) | 2004-04-02 | 2009-03-17 | K-Nfb Reading Technology, Inc. | Mode processing in portable reading machine |
TWI240067B (en) | 2004-04-06 | 2005-09-21 | Sunplus Technology Co Ltd | Rapid color recognition method |
US7366705B2 (en) | 2004-04-15 | 2008-04-29 | Microsoft Corporation | Clustering based text classification |
US20050246262A1 (en) | 2004-04-29 | 2005-11-03 | Aggarwal Charu C | Enabling interoperability between participants in a network |
JP3800227B2 (en) | 2004-05-17 | 2006-07-26 | コニカミノルタビジネステクノロジーズ株式会社 | Image forming apparatus, information processing method and information processing program used therefor |
US7430059B2 (en) | 2004-05-24 | 2008-09-30 | Xerox Corporation | Systems, methods and graphical user interfaces for interactively previewing a scanned document |
US7492937B2 (en) | 2004-05-26 | 2009-02-17 | Ramsay Thomas E | System and method for identifying objects of interest in image data |
US20110246076A1 (en) | 2004-05-28 | 2011-10-06 | Agency For Science, Technology And Research | Method and System for Word Sequence Processing |
US7272261B2 (en) | 2004-06-04 | 2007-09-18 | Xerox Corporation | Method and system for classifying scanned-media |
US20050273453A1 (en) | 2004-06-05 | 2005-12-08 | National Background Data, Llc | Systems, apparatus and methods for performing criminal background investigations |
US7392426B2 (en) | 2004-06-15 | 2008-06-24 | Honeywell International Inc. | Redundant processing architecture for single fault tolerance |
US20060219773A1 (en) | 2004-06-18 | 2006-10-05 | Richardson Joseph L | System and method for correcting data in financial documents |
EP1607716A3 (en) | 2004-06-18 | 2012-06-20 | Topcon Corporation | Model forming apparatus and method, and photographing apparatus and method |
JP2006031379A (en) | 2004-07-15 | 2006-02-02 | Sony Corp | Information presentation apparatus and information presentation method |
US7339585B2 (en) | 2004-07-19 | 2008-03-04 | Pie Medical Imaging B.V. | Method and apparatus for visualization of biological structures with use of 3D position information from segmentation results |
US20060023271A1 (en) | 2004-07-30 | 2006-02-02 | Boay Yoke P | Scanner with color profile matching mechanism |
US7403008B2 (en) | 2004-08-02 | 2008-07-22 | Cornell Research Foundation, Inc. | Electron spin resonance microscope for imaging with micron resolution |
US7515772B2 (en) | 2004-08-21 | 2009-04-07 | Xerox Corp | Document registration and skew detection system |
US7299407B2 (en) | 2004-08-24 | 2007-11-20 | International Business Machines Corporation | Marking and annotating electronic documents |
WO2006036442A2 (en) | 2004-08-31 | 2006-04-06 | Gopalakrishnan Kumar | Method and system for providing information services relevant to visual imagery |
US7643665B2 (en) | 2004-08-31 | 2010-01-05 | Semiconductor Insights Inc. | Method of design analysis of existing integrated circuits |
CN101052991A (en) | 2004-09-02 | 2007-10-10 | 皇家飞利浦电子股份有限公司 | Feature weighted medical object contouring using distance coordinates |
US20070118794A1 (en) | 2004-09-08 | 2007-05-24 | Josef Hollander | Shared annotation system and method |
US7739127B1 (en) | 2004-09-23 | 2010-06-15 | Stephen Don Hall | Automated system for filing prescription drug claims |
US9530050B1 (en) | 2007-07-11 | 2016-12-27 | Ricoh Co., Ltd. | Document annotation sharing |
US8332401B2 (en) | 2004-10-01 | 2012-12-11 | Ricoh Co., Ltd | Method and system for position-based image matching in a mixed media environment |
US7639387B2 (en) | 2005-08-23 | 2009-12-29 | Ricoh Co., Ltd. | Authoring tools using a mixed media environment |
US8005831B2 (en) | 2005-08-23 | 2011-08-23 | Ricoh Co., Ltd. | System and methods for creation and use of a mixed media environment with geographic location information |
US7991778B2 (en) | 2005-08-23 | 2011-08-02 | Ricoh Co., Ltd. | Triggering actions with captured input in a mixed media environment |
US20060089907A1 (en) | 2004-10-22 | 2006-04-27 | Klaus Kohlmaier | Invoice verification process |
JP2006126941A (en) | 2004-10-26 | 2006-05-18 | Canon Inc | Image processor, image processing method, image processing control program, and storage medium |
US7464066B2 (en) | 2004-10-26 | 2008-12-09 | Applied Intelligence Solutions, Llc | Multi-dimensional, expert behavior-emulation system |
US7492943B2 (en) | 2004-10-29 | 2009-02-17 | George Mason Intellectual Properties, Inc. | Open set recognition using transduction |
US20060095372A1 (en) | 2004-11-01 | 2006-05-04 | Sap Aktiengesellschaft | System and method for management and verification of invoices |
US20060095374A1 (en) | 2004-11-01 | 2006-05-04 | Jp Morgan Chase | System and method for supply chain financing |
US7475335B2 (en) | 2004-11-03 | 2009-01-06 | International Business Machines Corporation | Method for automatically and dynamically composing document management applications |
KR100653886B1 (en) | 2004-11-05 | 2006-12-05 | 주식회사 칼라짚미디어 | Mixed-code and mixed-code encondig method and apparatus |
US7782384B2 (en) | 2004-11-05 | 2010-08-24 | Kelly Douglas J | Digital camera having system for digital image composition and related method |
US20060112340A1 (en) | 2004-11-22 | 2006-05-25 | Julia Mohr | Portal page conversion and annotation |
JP4345651B2 (en) | 2004-11-29 | 2009-10-14 | セイコーエプソン株式会社 | Image information evaluation method, image information evaluation program, and image information evaluation apparatus |
US7428331B2 (en) | 2004-11-30 | 2008-09-23 | Seiko Epson Corporation | Page background estimation using color, texture and edge features |
GB0426523D0 (en) | 2004-12-02 | 2005-01-05 | British Telecomm | Video processing |
US7742641B2 (en) | 2004-12-06 | 2010-06-22 | Honda Motor Co., Ltd. | Confidence weighted classifier combination for multi-modal identification |
JP2006190259A (en) | 2004-12-06 | 2006-07-20 | Canon Inc | Shake determining device, image processor, control method and program of the same |
US7201323B2 (en) | 2004-12-10 | 2007-04-10 | Mitek Systems, Inc. | System and method for check fraud detection using signature validation |
US7249717B2 (en) | 2004-12-10 | 2007-07-31 | Mitek Systems, Inc. | System and method for check fraud detection using signature validation |
US7168614B2 (en) | 2004-12-10 | 2007-01-30 | Mitek Systems, Inc. | System and method for check fraud detection using signature validation |
JP4460528B2 (en) * | 2004-12-14 | 2010-05-12 | 本田技研工業株式会社 | IDENTIFICATION OBJECT IDENTIFICATION DEVICE AND ROBOT HAVING THE SAME |
JP2008526150A (en) | 2004-12-28 | 2008-07-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and apparatus for peer-to-peer instant messaging |
KR100670003B1 (en) | 2004-12-28 | 2007-01-19 | 삼성전자주식회사 | The apparatus for detecting the homogeneous region in the image using the adaptive threshold value |
KR100729280B1 (en) * | 2005-01-08 | 2007-06-15 | 아이리텍 잉크 | Iris Identification System and Method using Mobile Device with Stereo Camera |
WO2006077481A1 (en) | 2005-01-19 | 2006-07-27 | Truecontext Corporation | Policy-driven mobile forms applications |
US20060164682A1 (en) | 2005-01-25 | 2006-07-27 | Dspv, Ltd. | System and method of improving the legibility and applicability of document pictures using form based image enhancement |
JP2006209588A (en) | 2005-01-31 | 2006-08-10 | Casio Electronics Co Ltd | Evidence document issue device and database creation device for evidence document information |
US20060195491A1 (en) | 2005-02-11 | 2006-08-31 | Lexmark International, Inc. | System and method of importing documents into a document management system |
GB0503970D0 (en) | 2005-02-25 | 2005-04-06 | Firstondemand Ltd | Method and apparatus for authentication of invoices |
US7487438B1 (en) | 2005-03-08 | 2009-02-03 | Pegasus Imaging Corporation | Method and apparatus for recognizing a digitized form, extracting information from a filled-in form, and generating a corrected filled-in form |
US7822880B2 (en) | 2005-03-10 | 2010-10-26 | Konica Minolta Systems Laboratory, Inc. | User interfaces for peripheral configuration |
US20070002348A1 (en) | 2005-03-15 | 2007-01-04 | Kabushiki Kaisha Toshiba | Method and apparatus for producing images by using finely optimized image processing parameters |
US7545529B2 (en) | 2005-03-24 | 2009-06-09 | Kofax, Inc. | Systems and methods of accessing random access cache for rescanning |
US9137417B2 (en) | 2005-03-24 | 2015-09-15 | Kofax, Inc. | Systems and methods for processing video data |
US8749839B2 (en) | 2005-03-24 | 2014-06-10 | Kofax, Inc. | Systems and methods of processing scanned data |
US9769354B2 (en) | 2005-03-24 | 2017-09-19 | Kofax, Inc. | Systems and methods of processing scanned data |
US7570816B2 (en) | 2005-03-31 | 2009-08-04 | Microsoft Corporation | Systems and methods for detecting text |
US7412425B2 (en) | 2005-04-14 | 2008-08-12 | Honda Motor Co., Ltd. | Partially supervised machine learning of data classification based on local-neighborhood Laplacian Eigenmaps |
CA2604490C (en) | 2005-04-18 | 2012-04-24 | Research In Motion Limited | System and method for enabling assisted visual development of workflow for application tasks |
JP2006301835A (en) | 2005-04-19 | 2006-11-02 | Fuji Xerox Co Ltd | Transaction document management method and system |
US7941744B2 (en) | 2005-04-25 | 2011-05-10 | Adp, Inc. | System and method for electronic document generation and delivery |
AU2005201758B2 (en) | 2005-04-27 | 2008-12-18 | Canon Kabushiki Kaisha | Method of learning associations between documents and data sets |
US7760956B2 (en) | 2005-05-12 | 2010-07-20 | Hewlett-Packard Development Company, L.P. | System and method for producing a page using frames of a video stream |
US20060256392A1 (en) | 2005-05-13 | 2006-11-16 | Microsoft Corporation | Scanning systems and methods |
US7636883B2 (en) | 2005-05-18 | 2009-12-22 | International Business Machines Corporation | User form based automated and guided data collection |
JP4561474B2 (en) | 2005-05-24 | 2010-10-13 | 株式会社日立製作所 | Electronic document storage system |
EP1893091A4 (en) | 2005-05-27 | 2010-11-03 | Agency Science Tech & Res | Brain image segmentation from ct data |
US20060282762A1 (en) | 2005-06-10 | 2006-12-14 | Oracle International Corporation | Collaborative document review system |
US20060282463A1 (en) | 2005-06-10 | 2006-12-14 | Lexmark International, Inc. | Virtual coversheet association application |
US7957018B2 (en) | 2005-06-10 | 2011-06-07 | Lexmark International, Inc. | Coversheet manager application |
US20060288015A1 (en) | 2005-06-15 | 2006-12-21 | Schirripa Steven R | Electronic content classification |
US7756325B2 (en) | 2005-06-20 | 2010-07-13 | University Of Basel | Estimating 3D shape and texture of a 3D object based on a 2D image of the 3D object |
JP4756930B2 (en) | 2005-06-23 | 2011-08-24 | キヤノン株式会社 | Document management system, document management method, image forming apparatus, and information processing apparatus |
US7937264B2 (en) | 2005-06-30 | 2011-05-03 | Microsoft Corporation | Leveraging unlabeled data with a probabilistic graphical model |
US20070002375A1 (en) | 2005-06-30 | 2007-01-04 | Lexmark International, Inc. | Segmenting and aligning a plurality of cards in a multi-card image |
US7515767B2 (en) | 2005-07-01 | 2009-04-07 | Flir Systems, Inc. | Image correction across multiple spectral regimes |
US20070035780A1 (en) | 2005-08-02 | 2007-02-15 | Kabushiki Kaisha Toshiba | System and method for defining characteristic data of a scanned document |
JP4525519B2 (en) | 2005-08-18 | 2010-08-18 | 日本電信電話株式会社 | Quadrilateral evaluation method, apparatus and program |
US8120665B2 (en) | 2005-08-25 | 2012-02-21 | Ricoh Company, Ltd. | Image processing method and apparatus, digital camera, and recording medium recording image processing program |
US8643892B2 (en) | 2005-08-29 | 2014-02-04 | Xerox Corporation | User configured page chromaticity determination and splitting method |
US7801382B2 (en) | 2005-09-22 | 2010-09-21 | Compressus, Inc. | Method and apparatus for adjustable image compression |
US7450740B2 (en) | 2005-09-28 | 2008-11-11 | Facedouble, Inc. | Image classification and information retrieval over wireless digital networks and the internet |
US7831107B2 (en) | 2005-10-17 | 2010-11-09 | Canon Kabushiki Kaisha | Image processing apparatus, image processing method, and program |
US8176004B2 (en) | 2005-10-24 | 2012-05-08 | Capsilon Corporation | Systems and methods for intelligent paperless document management |
US7495784B2 (en) | 2005-11-14 | 2009-02-24 | Kabushiki Kiasha Toshiba | Printer with print order calculation based on print creation time and process ratio |
US8229166B2 (en) * | 2009-07-07 | 2012-07-24 | Trimble Navigation, Ltd | Image-based tracking |
KR100664421B1 (en) | 2006-01-10 | 2007-01-03 | 주식회사 인지소프트 | Portable terminal and method for recognizing name card using having camera |
WO2007082534A1 (en) | 2006-01-17 | 2007-07-26 | Flemming Ast | Mobile unit with camera and optical character recognition, optionally for conversion of imaged text into comprehensible speech |
US7720206B2 (en) | 2006-01-18 | 2010-05-18 | Teoco Corporation | System and method for intelligent data extraction for telecommunications invoices |
US7639897B2 (en) | 2006-01-24 | 2009-12-29 | Hewlett-Packard Development Company, L.P. | Method and apparatus for composing a panoramic photograph |
US7738730B2 (en) | 2006-01-25 | 2010-06-15 | Atalasoft, Inc. | Method of image analysis using sparse hough transform |
US8385647B2 (en) | 2006-01-25 | 2013-02-26 | Kofax, Inc. | Method of image analysis using sparse Hough transform |
JP4341629B2 (en) | 2006-01-27 | 2009-10-07 | カシオ計算機株式会社 | Imaging apparatus, image processing method, and program |
WO2007097431A1 (en) | 2006-02-23 | 2007-08-30 | Matsushita Electric Industrial Co., Ltd. | Image correction device, method, program, integrated circuit, and system |
US20070204162A1 (en) | 2006-02-24 | 2007-08-30 | Rodriguez Tony F | Safeguarding private information through digital watermarking |
US7657091B2 (en) | 2006-03-06 | 2010-02-02 | Mitek Systems, Inc. | Method for automatic removal of text from a signature area |
MX2008012504A (en) | 2006-03-30 | 2009-05-05 | Obopay Inc | Mobile person-to-person payment system. |
US7562060B2 (en) | 2006-03-31 | 2009-07-14 | Yahoo! Inc. | Large scale semi-supervised linear support vector machines |
US8136114B1 (en) | 2006-04-21 | 2012-03-13 | Sprint Communications Company L.P. | Business process management system having dynamic task assignment |
US8775277B2 (en) | 2006-04-21 | 2014-07-08 | International Business Machines Corporation | Method, system, and program product for electronically validating invoices |
TWI311679B (en) | 2006-04-28 | 2009-07-01 | Primax Electronics Ltd | A method of evaluating minimum sampling steps of auto focus |
US8213687B2 (en) | 2006-04-28 | 2012-07-03 | Hewlett-Packard Development Company, L.P. | Image processing methods, image processing systems, and articles of manufacture |
US20070260588A1 (en) | 2006-05-08 | 2007-11-08 | International Business Machines Corporation | Selective, contextual review for documents |
JP2007306259A (en) | 2006-05-10 | 2007-11-22 | Sony Corp | Setting screen display controller, server device, image processing system, printer, imaging apparatus, display device, setting screen display control method, program, and data structure |
TWI386817B (en) | 2006-05-24 | 2013-02-21 | Kofax Inc | System for and method of providing a user interface for a computer-based software application |
US7787695B2 (en) | 2006-06-06 | 2010-08-31 | Mitek Systems, Inc. | Method for applying a signature simplicity analysis for improving the accuracy of signature validation |
US20080005081A1 (en) | 2006-06-28 | 2008-01-03 | Sun Microsystems, Inc. | Method and apparatus for searching and resource discovery in a distributed enterprise system |
US7626612B2 (en) | 2006-06-30 | 2009-12-01 | Motorola, Inc. | Methods and devices for video correction of still camera motion |
WO2008008142A2 (en) | 2006-07-12 | 2008-01-17 | Kofax Image Products, Inc. | Machine learning techniques and transductive data classification |
US7937345B2 (en) | 2006-07-12 | 2011-05-03 | Kofax, Inc. | Data classification methods using machine learning techniques |
US20080086432A1 (en) | 2006-07-12 | 2008-04-10 | Schmidtler Mauritius A R | Data classification methods using machine learning techniques |
US7761391B2 (en) | 2006-07-12 | 2010-07-20 | Kofax, Inc. | Methods and systems for improved transductive maximum entropy discrimination classification |
US7958067B2 (en) | 2006-07-12 | 2011-06-07 | Kofax, Inc. | Data classification methods using machine learning techniques |
US8073263B2 (en) | 2006-07-31 | 2011-12-06 | Ricoh Co., Ltd. | Multi-classifier selection and monitoring for MMR-based image recognition |
JP4172512B2 (en) | 2006-08-30 | 2008-10-29 | 船井電機株式会社 | Panorama imaging device |
US20080235766A1 (en) | 2006-09-01 | 2008-09-25 | Wallos Robert | Apparatus and method for document certification |
JP2008134683A (en) | 2006-11-27 | 2008-06-12 | Fuji Xerox Co Ltd | Image processor and image processing program |
US8081227B1 (en) | 2006-11-30 | 2011-12-20 | Adobe Systems Incorporated | Image quality visual indicator |
US20080133388A1 (en) | 2006-12-01 | 2008-06-05 | Sergey Alekseev | Invoice exception management |
US7416131B2 (en) | 2006-12-13 | 2008-08-26 | Bottom Line Technologies (De), Inc. | Electronic transaction processing server with automated transaction evaluation |
US9282446B2 (en) | 2009-08-06 | 2016-03-08 | Golba Llc | Location-aware content and location-based advertising with a mobile device |
US20080147561A1 (en) | 2006-12-18 | 2008-06-19 | Pitney Bowes Incorporated | Image based invoice payment with digital signature verification |
US20100062491A1 (en) | 2007-01-05 | 2010-03-11 | Novozymes A/S | Overexpression of the Chaperone BIP in a Heterokaryon |
CA2578466A1 (en) | 2007-01-12 | 2008-07-12 | Truecontext Corporation | Method and system for customizing a mobile application using a web-based interface |
US20080177643A1 (en) | 2007-01-22 | 2008-07-24 | Matthews Clifton W | System and method for invoice management |
US7899247B2 (en) | 2007-01-24 | 2011-03-01 | Samsung Electronics Co., Ltd. | Apparatus and method of segmenting an image according to a cost function and/or feature vector and/or receiving a signal representing the segmented image in an image coding and/or decoding system |
WO2008094470A1 (en) | 2007-01-26 | 2008-08-07 | Magtek, Inc. | Card reader for use with web based transactions |
US20080183576A1 (en) | 2007-01-30 | 2008-07-31 | Sang Hun Kim | Mobile service system and method using two-dimensional coupon code |
EP1956517A1 (en) | 2007-02-07 | 2008-08-13 | WinBooks s.a. | Computer assisted method for processing accounting operations and software product for implementing such method |
US8320683B2 (en) | 2007-02-13 | 2012-11-27 | Sharp Kabushiki Kaisha | Image processing method, image processing apparatus, image reading apparatus, and image forming apparatus |
KR101288971B1 (en) | 2007-02-16 | 2013-07-24 | 삼성전자주식회사 | Method and apparatus for 3 dimensional modeling using 2 dimensional images |
US20080201617A1 (en) | 2007-02-16 | 2008-08-21 | Brother Kogyo Kabushiki Kaisha | Network device and network system |
JP4123299B1 (en) | 2007-02-21 | 2008-07-23 | 富士ゼロックス株式会社 | Image processing apparatus and image processing program |
JP4877013B2 (en) | 2007-03-30 | 2012-02-15 | ブラザー工業株式会社 | Scanner |
US8244031B2 (en) | 2007-04-13 | 2012-08-14 | Kofax, Inc. | System and method for identifying and classifying color regions from a digital image |
US20080270166A1 (en) | 2007-04-16 | 2008-10-30 | Duane Morin | Transcript, course catalog and financial aid apparatus, systems, and methods |
US8279465B2 (en) | 2007-05-01 | 2012-10-02 | Kofax, Inc. | Systems and methods for routing facsimiles based on content |
EP2143041A4 (en) | 2007-05-01 | 2011-05-25 | Compulink Man Ct Inc | Photo-document segmentation method and system |
KR101157654B1 (en) | 2007-05-21 | 2012-06-18 | 삼성전자주식회사 | Method for transmitting email in image forming apparatus and image forming apparatus capable of transmitting email |
US7894689B2 (en) | 2007-05-31 | 2011-02-22 | Seiko Epson Corporation | Image stitching |
JP2009014836A (en) | 2007-07-02 | 2009-01-22 | Canon Inc | Active matrix type display and driving method therefor |
JP4363468B2 (en) | 2007-07-12 | 2009-11-11 | ソニー株式会社 | Imaging apparatus, imaging method, and video signal processing program |
US8126924B1 (en) | 2007-07-20 | 2012-02-28 | Countermind | Method of representing and processing complex branching logic for mobile applications |
EP2183724B1 (en) | 2007-07-27 | 2019-06-26 | Esri R&D Center Zurich AG | Computer system and method for generating a 3d geometric model |
US8385657B2 (en) | 2007-08-01 | 2013-02-26 | Yeda Research And Development Co. Ltd. | Multiscale edge detection and fiber enhancement using differences of oriented means |
US8503797B2 (en) | 2007-09-05 | 2013-08-06 | The Neat Company, Inc. | Automatic document classification using lexical and physical features |
US7825963B2 (en) | 2007-09-19 | 2010-11-02 | Nokia Corporation | Method and system for capturing an image from video |
US20090110267A1 (en) | 2007-09-21 | 2009-04-30 | The Regents Of The University Of California | Automated texture mapping system for 3D models |
US20090089078A1 (en) | 2007-09-28 | 2009-04-02 | Great-Circle Technologies, Inc. | Bundling of automated work flow |
US8094976B2 (en) | 2007-10-03 | 2012-01-10 | Esker, Inc. | One-screen reconciliation of business document image data, optical character recognition extracted data, and enterprise resource planning data |
US8244062B2 (en) * | 2007-10-22 | 2012-08-14 | Hewlett-Packard Development Company, L.P. | Correction of distortion in captured images |
US8059888B2 (en) | 2007-10-30 | 2011-11-15 | Microsoft Corporation | Semi-automatic plane extrusion for 3D modeling |
US7655685B2 (en) | 2007-11-02 | 2010-02-02 | Jenrin Discovery, Inc. | Cannabinoid receptor antagonists/inverse agonists useful for treating metabolic disorders, including obesity and diabetes |
US8732155B2 (en) | 2007-11-16 | 2014-05-20 | Iac Search & Media, Inc. | Categorization in a system and method for conducting a search |
US7809721B2 (en) | 2007-11-16 | 2010-10-05 | Iac Search & Media, Inc. | Ranking of objects using semantic and nonsemantic features in a system and method for conducting a search |
US8194965B2 (en) | 2007-11-19 | 2012-06-05 | Parascript, Llc | Method and system of providing a probability distribution to aid the detection of tumors in mammogram images |
US8311296B2 (en) | 2007-11-21 | 2012-11-13 | Parascript, Llc | Voting in mammography processing |
US8035641B1 (en) * | 2007-11-28 | 2011-10-11 | Adobe Systems Incorporated | Fast depth of field simulation |
US8249985B2 (en) | 2007-11-29 | 2012-08-21 | Bank Of America Corporation | Sub-account mechanism |
US8103048B2 (en) | 2007-12-04 | 2012-01-24 | Mcafee, Inc. | Detection of spam images |
US8532374B2 (en) | 2007-12-05 | 2013-09-10 | Canon Kabushiki Kaisha | Colour document layout analysis with multi-level decomposition |
US8194933B2 (en) | 2007-12-12 | 2012-06-05 | 3M Innovative Properties Company | Identification and verification of an unknown document according to an eigen image process |
US8566752B2 (en) | 2007-12-21 | 2013-10-22 | Ricoh Co., Ltd. | Persistent selection marks |
US8150547B2 (en) | 2007-12-21 | 2012-04-03 | Bell and Howell, LLC. | Method and system to provide address services with a document processing system |
US8577118B2 (en) | 2008-01-18 | 2013-11-05 | Mitek Systems | Systems for mobile image capture and remittance processing |
US7978900B2 (en) | 2008-01-18 | 2011-07-12 | Mitek Systems, Inc. | Systems for mobile image capture and processing of checks |
US8379914B2 (en) | 2008-01-18 | 2013-02-19 | Mitek Systems, Inc. | Systems and methods for mobile image capture and remittance processing |
US9298979B2 (en) | 2008-01-18 | 2016-03-29 | Mitek Systems, Inc. | Systems and methods for mobile image capture and content processing of driver's licenses |
US9292737B2 (en) | 2008-01-18 | 2016-03-22 | Mitek Systems, Inc. | Systems and methods for classifying payment documents during mobile image processing |
US20130297353A1 (en) | 2008-01-18 | 2013-11-07 | Mitek Systems | Systems and methods for filing insurance claims using mobile imaging |
US8483473B2 (en) | 2008-01-18 | 2013-07-09 | Mitek Systems, Inc. | Systems and methods for obtaining financial offers using mobile image capture |
US8582862B2 (en) | 2010-05-12 | 2013-11-12 | Mitek Systems | Mobile image quality assurance in mobile document image processing applications |
US10528925B2 (en) | 2008-01-18 | 2020-01-07 | Mitek Systems, Inc. | Systems and methods for mobile automated clearing house enrollment |
US10102583B2 (en) | 2008-01-18 | 2018-10-16 | Mitek Systems, Inc. | System and methods for obtaining insurance offers using mobile image capture |
US9672510B2 (en) | 2008-01-18 | 2017-06-06 | Mitek Systems, Inc. | Systems and methods for automatic image capture and processing of documents on a mobile device |
US20090204530A1 (en) | 2008-01-31 | 2009-08-13 | Payscan America, Inc. | Bar coded monetary transaction system and method |
RU2460187C2 (en) | 2008-02-01 | 2012-08-27 | Рокстек Аб | Transition frame with inbuilt pressing device |
US7992087B1 (en) | 2008-02-27 | 2011-08-02 | Adobe Systems Incorporated | Document mapped-object placement upon background change |
US9082080B2 (en) | 2008-03-05 | 2015-07-14 | Kofax, Inc. | Systems and methods for organizing data sets |
US20090324025A1 (en) | 2008-04-15 | 2009-12-31 | Sony Ericsson Mobile Communicatoins AB | Physical Access Control Using Dynamic Inputs from a Portable Communications Device |
US8135656B2 (en) | 2008-04-22 | 2012-03-13 | Xerox Corporation | Online management service for identification documents which prompts a user for a category of an official document |
US20090285445A1 (en) | 2008-05-15 | 2009-11-19 | Sony Ericsson Mobile Communications Ab | System and Method of Translating Road Signs |
WO2009148731A1 (en) | 2008-06-02 | 2009-12-10 | Massachusetts Institute Of Technology | Fast pattern classification based on a sparse transform |
US7949167B2 (en) | 2008-06-12 | 2011-05-24 | Siemens Medical Solutions Usa, Inc. | Automatic learning of image features to predict disease |
KR20100000671A (en) | 2008-06-25 | 2010-01-06 | 삼성전자주식회사 | Method for image processing |
US8154611B2 (en) | 2008-07-17 | 2012-04-10 | The Boeing Company | Methods and systems for improving resolution of a digitally stabilized image |
US8520979B2 (en) | 2008-08-19 | 2013-08-27 | Digimarc Corporation | Methods and systems for content processing |
JP4715888B2 (en) | 2008-09-02 | 2011-07-06 | カシオ計算機株式会社 | Image processing apparatus and computer program |
JP4623388B2 (en) | 2008-09-08 | 2011-02-02 | ソニー株式会社 | Image processing apparatus and method, and program |
US9177218B2 (en) | 2008-09-08 | 2015-11-03 | Kofax, Inc. | System and method, and computer program product for detecting an edge in scan data |
WO2010030056A1 (en) | 2008-09-10 | 2010-03-18 | Bionet Co., Ltd | Automatic contour detection method for ultrasonic diagnosis appartus |
JP2010098728A (en) | 2008-09-19 | 2010-04-30 | Sanyo Electric Co Ltd | Projection type video display, and display system |
US9037513B2 (en) | 2008-09-30 | 2015-05-19 | Apple Inc. | System and method for providing electronic event tickets |
WO2010048760A1 (en) | 2008-10-31 | 2010-05-06 | 中兴通讯股份有限公司 | Method and apparatus for authentication processing of mobile terminal |
US8189965B2 (en) | 2008-11-17 | 2012-05-29 | Image Trends, Inc. | Image processing handheld scanner system, method, and computer readable medium |
US8180153B2 (en) | 2008-12-05 | 2012-05-15 | Xerox Corporation | 3+1 layer mixed raster content (MRC) images having a black text layer |
US8306327B2 (en) | 2008-12-30 | 2012-11-06 | International Business Machines Corporation | Adaptive partial character recognition |
US8345981B2 (en) | 2009-02-10 | 2013-01-01 | Kofax, Inc. | Systems, methods, and computer program products for determining document validity |
US9767354B2 (en) | 2009-02-10 | 2017-09-19 | Kofax, Inc. | Global geographic information retrieval, validation, and normalization |
US9576272B2 (en) | 2009-02-10 | 2017-02-21 | Kofax, Inc. | Systems, methods and computer program products for determining document validity |
US8774516B2 (en) | 2009-02-10 | 2014-07-08 | Kofax, Inc. | Systems, methods and computer program products for determining document validity |
US8879846B2 (en) | 2009-02-10 | 2014-11-04 | Kofax, Inc. | Systems, methods and computer program products for processing financial documents |
US8958605B2 (en) | 2009-02-10 | 2015-02-17 | Kofax, Inc. | Systems, methods and computer program products for determining document validity |
US8406480B2 (en) | 2009-02-17 | 2013-03-26 | International Business Machines Corporation | Visual credential verification |
EP2399385B1 (en) | 2009-02-18 | 2019-11-06 | Google LLC | Automatically capturing information, such as capturing information using a document-aware device |
US8265422B1 (en) | 2009-02-20 | 2012-09-11 | Adobe Systems Incorporated | Method and apparatus for removing general lens distortion from images |
JP4725657B2 (en) | 2009-02-26 | 2011-07-13 | ブラザー工業株式会社 | Image composition output program, image composition output device, and image composition output system |
US8498486B2 (en) | 2009-03-12 | 2013-07-30 | Qualcomm Incorporated | Response to detection of blur in an image |
US20100280859A1 (en) | 2009-04-30 | 2010-11-04 | Bank Of America Corporation | Future checks integration |
RS51531B (en) | 2009-05-29 | 2011-06-30 | Vlatacom D.O.O. | Handheld portable device for travel an id document verification, biometric data reading and identification of persons using those documents |
US20100331043A1 (en) | 2009-06-23 | 2010-12-30 | K-Nfb Reading Technology, Inc. | Document and image processing |
US8620078B1 (en) | 2009-07-14 | 2013-12-31 | Matrox Electronic Systems, Ltd. | Determining a class associated with an image |
US8723988B2 (en) * | 2009-07-17 | 2014-05-13 | Sony Corporation | Using a touch sensitive display to control magnification and capture of digital images by an electronic device |
US8478052B1 (en) | 2009-07-17 | 2013-07-02 | Google Inc. | Image classification |
JP5397059B2 (en) | 2009-07-17 | 2014-01-22 | ソニー株式会社 | Image processing apparatus and method, program, and recording medium |
US8508580B2 (en) | 2009-07-31 | 2013-08-13 | 3Dmedia Corporation | Methods, systems, and computer-readable storage media for creating three-dimensional (3D) images of a scene |
JP4772894B2 (en) | 2009-08-03 | 2011-09-14 | シャープ株式会社 | Image output device, portable terminal device, captured image processing system, image output method, program, and recording medium |
JP4856263B2 (en) | 2009-08-07 | 2012-01-18 | シャープ株式会社 | Captured image processing system, image output method, program, and recording medium |
CN101639760A (en) | 2009-08-27 | 2010-02-03 | 上海合合信息科技发展有限公司 | Input method and input system of contact information |
US8655733B2 (en) | 2009-08-27 | 2014-02-18 | Microsoft Corporation | Payment workflow extensibility for point-of-sale applications |
US9779386B2 (en) | 2009-08-31 | 2017-10-03 | Thomson Reuters Global Resources | Method and system for implementing workflows and managing staff and engagements |
US8819172B2 (en) | 2010-11-04 | 2014-08-26 | Digimarc Corporation | Smartphone-based methods and systems |
KR101611440B1 (en) | 2009-11-16 | 2016-04-11 | 삼성전자주식회사 | Method and apparatus for processing image |
US8406554B1 (en) | 2009-12-02 | 2013-03-26 | Jadavpur University | Image binarization based on grey membership parameters of pixels |
US20120019614A1 (en) | 2009-12-11 | 2012-01-26 | Tessera Technologies Ireland Limited | Variable Stereo Base for (3D) Panorama Creation on Handheld Device |
US8532419B2 (en) | 2010-01-13 | 2013-09-10 | iParse, LLC | Automatic image capture |
US20110249905A1 (en) | 2010-01-15 | 2011-10-13 | Copanion, Inc. | Systems and methods for automatically extracting data from electronic documents including tables |
US8600173B2 (en) | 2010-01-27 | 2013-12-03 | Dst Technologies, Inc. | Contextualization of machine indeterminable information based on machine determinable information |
US9129432B2 (en) | 2010-01-28 | 2015-09-08 | The Hong Kong University Of Science And Technology | Image-based procedural remodeling of buildings |
JP5426422B2 (en) | 2010-02-10 | 2014-02-26 | 株式会社Pfu | Image processing apparatus, image processing method, and image processing program |
KR101630688B1 (en) | 2010-02-17 | 2016-06-16 | 삼성전자주식회사 | Apparatus for motion estimation and method thereof and image processing apparatus |
US8433775B2 (en) | 2010-03-31 | 2013-04-30 | Bank Of America Corporation | Integration of different mobile device types with a business infrastructure |
US8515208B2 (en) | 2010-04-05 | 2013-08-20 | Kofax, Inc. | Method for document to template alignment |
US8595234B2 (en) | 2010-05-17 | 2013-11-26 | Wal-Mart Stores, Inc. | Processing data feeds |
US8600167B2 (en) | 2010-05-21 | 2013-12-03 | Hand Held Products, Inc. | System for capturing a document in an image signal |
US9047531B2 (en) | 2010-05-21 | 2015-06-02 | Hand Held Products, Inc. | Interactive user interface for capturing a document in an image signal |
US9183560B2 (en) | 2010-05-28 | 2015-11-10 | Daniel H. Abelow | Reality alternate |
EP3324350A1 (en) | 2010-06-08 | 2018-05-23 | Deutsche Post AG | Navigation system for optimising delivery or collection journeys |
US8352411B2 (en) | 2010-06-17 | 2013-01-08 | Sap Ag | Activity schemes for support of knowledge-intensive tasks |
JP5500480B2 (en) | 2010-06-24 | 2014-05-21 | 株式会社日立情報通信エンジニアリング | Form recognition device and form recognition method |
US8745488B1 (en) | 2010-06-30 | 2014-06-03 | Patrick Wong | System and a method for web-based editing of documents online with an editing interface and concurrent display to webpages and print documents |
US20120008856A1 (en) | 2010-07-08 | 2012-01-12 | Gregory Robert Hewes | Automatic Convergence Based on Face Detection for Stereoscopic Imaging |
US8548201B2 (en) | 2010-09-02 | 2013-10-01 | Electronics And Telecommunications Research Institute | Apparatus and method for recognizing identifier of vehicle |
JP5738559B2 (en) | 2010-09-07 | 2015-06-24 | 株式会社プリマジェスト | Insurance business processing system and insurance business processing method |
US20120077476A1 (en) | 2010-09-23 | 2012-03-29 | Theodore G. Paraskevakos | System and method for utilizing mobile telephones to combat crime |
US20120092329A1 (en) | 2010-10-13 | 2012-04-19 | Qualcomm Incorporated | Text-based 3d augmented reality |
US9282238B2 (en) | 2010-10-29 | 2016-03-08 | Hewlett-Packard Development Company, L.P. | Camera system for determining pose quality and providing feedback to a user |
US20120116957A1 (en) | 2010-11-04 | 2012-05-10 | Bank Of America Corporation | System and method for populating a list of transaction participants |
US8995012B2 (en) | 2010-11-05 | 2015-03-31 | Rdm Corporation | System for mobile image capture and processing of financial documents |
US8744196B2 (en) | 2010-11-26 | 2014-06-03 | Hewlett-Packard Development Company, L.P. | Automatic recognition of images |
US8754988B2 (en) | 2010-12-22 | 2014-06-17 | Tektronix, Inc. | Blur detection with local sharpness map |
US20120194692A1 (en) | 2011-01-31 | 2012-08-02 | Hand Held Products, Inc. | Terminal operative for display of electronic record |
US8675953B1 (en) * | 2011-02-02 | 2014-03-18 | Intuit Inc. | Calculating an object size using images |
US8811711B2 (en) | 2011-03-08 | 2014-08-19 | Bank Of America Corporation | Recognizing financial document images |
JP2012191486A (en) | 2011-03-11 | 2012-10-04 | Sony Corp | Image composing apparatus, image composing method, and program |
JP5231667B2 (en) | 2011-04-01 | 2013-07-10 | シャープ株式会社 | Imaging apparatus, display method in imaging apparatus, image processing method in imaging apparatus, program, and recording medium |
US8533595B2 (en) | 2011-04-19 | 2013-09-10 | Autodesk, Inc | Hierarchical display and navigation of document revision histories |
US8792682B2 (en) | 2011-04-21 | 2014-07-29 | Xerox Corporation | Method and system for identifying a license plate |
US9342886B2 (en) | 2011-04-29 | 2016-05-17 | Qualcomm Incorporated | Devices, methods, and apparatuses for homography evaluation involving a mobile device |
US8751317B2 (en) | 2011-05-12 | 2014-06-10 | Koin, Inc. | Enabling a merchant's storefront POS (point of sale) system to accept a payment transaction verified by SMS messaging with buyer's mobile phone |
US20120293607A1 (en) | 2011-05-17 | 2012-11-22 | Apple Inc. | Panorama Processing |
US8571271B2 (en) | 2011-05-26 | 2013-10-29 | Microsoft Corporation | Dual-phase red eye correction |
US20120300020A1 (en) | 2011-05-27 | 2012-11-29 | Qualcomm Incorporated | Real-time self-localization from panoramic images |
US20120308139A1 (en) | 2011-05-31 | 2012-12-06 | Verizon Patent And Licensing Inc. | Method and system for facilitating subscriber services using mobile imaging |
US9400806B2 (en) | 2011-06-08 | 2016-07-26 | Hewlett-Packard Development Company, L.P. | Image triggered transactions |
US9418304B2 (en) | 2011-06-29 | 2016-08-16 | Qualcomm Incorporated | System and method for recognizing text information in object |
US20130027757A1 (en) | 2011-07-29 | 2013-01-31 | Qualcomm Incorporated | Mobile fax machine with image stitching and degradation removal processing |
US8559766B2 (en) | 2011-08-16 | 2013-10-15 | iParse, LLC | Automatic image capture |
US8813111B2 (en) | 2011-08-22 | 2014-08-19 | Xerox Corporation | Photograph-based game |
US8660943B1 (en) | 2011-08-31 | 2014-02-25 | Btpatent Llc | Methods and systems for financial transactions |
US8525883B2 (en) | 2011-09-02 | 2013-09-03 | Sharp Laboratories Of America, Inc. | Methods, systems and apparatus for automatic video quality assessment |
CN102982396B (en) | 2011-09-06 | 2017-12-26 | Sap欧洲公司 | Universal process modeling framework |
US9710821B2 (en) | 2011-09-15 | 2017-07-18 | Stephan HEATH | Systems and methods for mobile and online payment systems for purchases related to mobile and online promotions or offers provided using impressions tracking and analysis, location information, 2D and 3D mapping, mobile mapping, social media, and user behavior and |
US8768834B2 (en) | 2011-09-20 | 2014-07-01 | E2Interactive, Inc. | Digital exchange and mobile wallet for digital currency |
US8737980B2 (en) | 2011-09-27 | 2014-05-27 | W2Bi, Inc. | End to end application automatic testing |
US9123005B2 (en) | 2011-10-11 | 2015-09-01 | Mobiwork, Llc | Method and system to define implement and enforce workflow of a mobile workforce |
US10810218B2 (en) | 2011-10-14 | 2020-10-20 | Transunion, Llc | System and method for matching of database records based on similarities to search queries |
WO2013059599A1 (en) * | 2011-10-19 | 2013-04-25 | The Regents Of The University Of California | Image-based measurement tools |
EP2587745A1 (en) | 2011-10-26 | 2013-05-01 | Swisscom AG | A method and system of obtaining contact information for a person or an entity |
US9087262B2 (en) | 2011-11-10 | 2015-07-21 | Fuji Xerox Co., Ltd. | Sharpness estimation in document and scene images |
US8701166B2 (en) | 2011-12-09 | 2014-04-15 | Blackberry Limited | Secure authentication |
US11321772B2 (en) | 2012-01-12 | 2022-05-03 | Kofax, Inc. | Systems and methods for identification document processing and business workflow integration |
US9275281B2 (en) | 2012-01-12 | 2016-03-01 | Kofax, Inc. | Mobile image capture, processing, and electronic form generation |
US20170111532A1 (en) | 2012-01-12 | 2017-04-20 | Kofax, Inc. | Real-time processing of video streams captured using mobile devices |
US9483794B2 (en) | 2012-01-12 | 2016-11-01 | Kofax, Inc. | Systems and methods for identification document processing and business workflow integration |
US9058580B1 (en) | 2012-01-12 | 2015-06-16 | Kofax, Inc. | Systems and methods for identification document processing and business workflow integration |
US9058515B1 (en) | 2012-01-12 | 2015-06-16 | Kofax, Inc. | Systems and methods for identification document processing and business workflow integration |
TWI588778B (en) | 2012-01-17 | 2017-06-21 | 國立臺灣科技大學 | Activity recognition method |
US20130198358A1 (en) | 2012-01-30 | 2013-08-01 | DoDat Process Technology, LLC | Distributive on-demand administrative tasking apparatuses, methods and systems |
US8990112B2 (en) | 2012-03-01 | 2015-03-24 | Ricoh Company, Ltd. | Expense report system with receipt image processing |
JP5734902B2 (en) | 2012-03-19 | 2015-06-17 | 株式会社東芝 | Construction process management system and management method thereof |
US20130268430A1 (en) | 2012-04-05 | 2013-10-10 | Ziftit, Inc. | Method and apparatus for dynamic gift card processing |
US20130268378A1 (en) | 2012-04-06 | 2013-10-10 | Microsoft Corporation | Transaction validation between a mobile communication device and a terminal using location data |
US20130271579A1 (en) * | 2012-04-14 | 2013-10-17 | Younian Wang | Mobile Stereo Device: Stereo Imaging, Measurement and 3D Scene Reconstruction with Mobile Devices such as Tablet Computers and Smart Phones |
US8639621B1 (en) | 2012-04-25 | 2014-01-28 | Wells Fargo Bank, N.A. | System and method for a mobile wallet |
US9916514B2 (en) | 2012-06-11 | 2018-03-13 | Amazon Technologies, Inc. | Text recognition driven functionality |
US8441548B1 (en) | 2012-06-15 | 2013-05-14 | Google Inc. | Facial image quality assessment |
US9064316B2 (en) | 2012-06-28 | 2015-06-23 | Lexmark International, Inc. | Methods of content-based image identification |
US8781229B2 (en) | 2012-06-29 | 2014-07-15 | Palo Alto Research Center Incorporated | System and method for localizing data fields on structured and semi-structured forms |
US9092773B2 (en) | 2012-06-30 | 2015-07-28 | At&T Intellectual Property I, L.P. | Generating and categorizing transaction records |
US20140012754A1 (en) | 2012-07-06 | 2014-01-09 | Bank Of America Corporation | Financial document processing system |
US8705836B2 (en) | 2012-08-06 | 2014-04-22 | A2iA S.A. | Systems and methods for recognizing information in objects using a mobile device |
US8842319B2 (en) | 2012-08-21 | 2014-09-23 | Xerox Corporation | Context aware document services for mobile device users |
US8817339B2 (en) | 2012-08-22 | 2014-08-26 | Top Image Systems Ltd. | Handheld device document imaging |
US9928406B2 (en) | 2012-10-01 | 2018-03-27 | The Regents Of The University Of California | Unified face representation for individual recognition in surveillance videos and vehicle logo super-resolution system |
US20140149308A1 (en) | 2012-11-27 | 2014-05-29 | Ebay Inc. | Automated package tracking |
US20140181691A1 (en) | 2012-12-20 | 2014-06-26 | Rajesh Poornachandran | Sharing of selected content for data collection |
US9648297B1 (en) | 2012-12-28 | 2017-05-09 | Google Inc. | Systems and methods for assisting a user in capturing images for three-dimensional reconstruction |
US9092665B2 (en) | 2013-01-30 | 2015-07-28 | Aquifi, Inc | Systems and methods for initializing motion tracking of human hands |
US9239713B1 (en) | 2013-03-06 | 2016-01-19 | MobileForce Software, Inc. | Platform independent rendering for native mobile applications |
US9208536B2 (en) | 2013-09-27 | 2015-12-08 | Kofax, Inc. | Systems and methods for three dimensional geometric reconstruction of captured image data |
US10140511B2 (en) | 2013-03-13 | 2018-11-27 | Kofax, Inc. | Building classification and extraction models based on electronic forms |
US9355312B2 (en) | 2013-03-13 | 2016-05-31 | Kofax, Inc. | Systems and methods for classifying objects in digital images captured using mobile devices |
US10127636B2 (en) | 2013-09-27 | 2018-11-13 | Kofax, Inc. | Content-based detection and three dimensional geometric reconstruction of objects in image and video data |
EP2973226A4 (en) | 2013-03-13 | 2016-06-29 | Kofax Inc | Classifying objects in digital images captured using mobile devices |
US9384566B2 (en) | 2013-03-14 | 2016-07-05 | Wisconsin Alumni Research Foundation | System and method for simulataneous image artifact reduction and tomographic reconstruction |
GB2500823B (en) | 2013-03-28 | 2014-02-26 | Paycasso Verify Ltd | Method, system and computer program for comparing images |
US20140316841A1 (en) | 2013-04-23 | 2014-10-23 | Kofax, Inc. | Location-based workflows and services |
EP2992481A4 (en) | 2013-05-03 | 2017-02-22 | Kofax, Inc. | Systems and methods for detecting and classifying objects in video captured using mobile devices |
RU2541353C2 (en) | 2013-06-19 | 2015-02-10 | Общество с ограниченной ответственностью "Аби Девелопмент" | Automatic capture of document with given proportions |
US20150006362A1 (en) | 2013-06-28 | 2015-01-01 | Google Inc. | Extracting card data using card art |
US20150006360A1 (en) | 2013-06-28 | 2015-01-01 | Google Inc. | Threshold Confidence Levels for Extracted Card Data |
US10140257B2 (en) | 2013-08-02 | 2018-11-27 | Symbol Technologies, Llc | Method and apparatus for capturing and processing content from context sensitive documents on a mobile device |
US10769362B2 (en) | 2013-08-02 | 2020-09-08 | Symbol Technologies, Llc | Method and apparatus for capturing and extracting content from documents on a mobile device |
KR102082301B1 (en) | 2013-09-30 | 2020-02-27 | 삼성전자주식회사 | Method, apparatus and computer-readable recording medium for converting document image captured by camera to the scanned document image |
US20150120564A1 (en) | 2013-10-29 | 2015-04-30 | Bank Of America Corporation | Check memo line data lift |
US9373057B1 (en) | 2013-11-01 | 2016-06-21 | Google Inc. | Training a neural network to detect objects in images |
US9386235B2 (en) | 2013-11-15 | 2016-07-05 | Kofax, Inc. | Systems and methods for generating composite images of long documents using mobile video data |
US20150161765A1 (en) | 2013-12-06 | 2015-06-11 | Emc Corporation | Scaling mobile check photos to physical dimensions |
US8811751B1 (en) | 2013-12-20 | 2014-08-19 | I.R.I.S. | Method and system for correcting projective distortions with elimination steps on multiple levels |
US20150248391A1 (en) | 2014-02-28 | 2015-09-03 | Ricoh Company, Ltd. | Form auto-filling using a mobile device |
US9251431B2 (en) | 2014-05-30 | 2016-02-02 | Apple Inc. | Object-of-interest detection and recognition with split, full-resolution image processing pipeline |
US9342830B2 (en) | 2014-07-15 | 2016-05-17 | Google Inc. | Classifying open-loop and closed-loop payment cards based on optical character recognition |
US20160034775A1 (en) | 2014-08-02 | 2016-02-04 | General Vault, LLC | Methods and apparatus for bounded image data analysis and notification mechanism |
US9251614B1 (en) | 2014-08-29 | 2016-02-02 | Konica Minolta Laboratory U.S.A., Inc. | Background removal for document images |
US9760788B2 (en) | 2014-10-30 | 2017-09-12 | Kofax, Inc. | Mobile document detection and orientation based on reference object characteristics |
US9367899B1 (en) | 2015-05-29 | 2016-06-14 | Konica Minolta Laboratory U.S.A., Inc. | Document image binarization method |
US10467465B2 (en) | 2015-07-20 | 2019-11-05 | Kofax, Inc. | Range and/or polarity-based thresholding for improved data extraction |
US10242285B2 (en) | 2015-07-20 | 2019-03-26 | Kofax, Inc. | Iterative recognition-guided thresholding and data extraction |
US9779296B1 (en) | 2016-04-01 | 2017-10-03 | Kofax, Inc. | Content-based detection and three dimensional geometric reconstruction of objects in image and video data |
-
2014
- 2014-09-19 US US14/491,901 patent/US9208536B2/en active Active
- 2014-09-23 WO PCT/US2014/057065 patent/WO2015048045A1/en active Application Filing
- 2014-09-23 JP JP2016517415A patent/JP2016536837A/en not_active Withdrawn
- 2014-09-23 CN CN201480053143.7A patent/CN105765551A/en not_active Withdrawn
- 2014-09-23 EP EP20194730.6A patent/EP3764318A1/en not_active Withdrawn
- 2014-09-23 EP EP14847922.3A patent/EP3049947A4/en not_active Ceased
-
2015
- 2015-11-04 US US14/932,902 patent/US9946954B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070206877A1 (en) * | 2006-03-02 | 2007-09-06 | Minghui Wu | Model-based dewarping method and apparatus |
US20130182973A1 (en) * | 2012-01-12 | 2013-07-18 | Kofax, Inc. | Systems and methods for mobile image capture and processing |
US20130223762A1 (en) * | 2012-02-28 | 2013-08-29 | Canon Kabushiki Kaisha | Image conversion apparatus, method, and storage medium |
Non-Patent Citations (3)
Title |
---|
A. CRIMINISI ET AL: "A plane measuring device", IMAGE AND VISION COMPUTING, vol. 17, no. 8, 1 June 1999 (1999-06-01), GUILDFORD, GB, pages 625 - 634, XP055481715, ISSN: 0262-8856, DOI: 10.1016/S0262-8856(98)00183-8 * |
YAU-CHAT TSOI ET AL: "Geometric and shading correction for images of printed materials a uni .ed approach using boundary", PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 27 JUNE-2 JULY 2004 WASHINGTON, DC, USA, IEEE, PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION IEE, vol. 1, 27 June 2004 (2004-06-27), pages 240 - 246, XP010708793, ISBN: 978-0-7695-2158-9, DOI: 10.1109/CVPR.2004.1315038 * |
YUANDONG TIAN ET AL: "Rectification and 3D reconstruction of curved document images", COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011 IEEE CONFERENCE ON, IEEE, 20 June 2011 (2011-06-20), pages 377 - 384, XP032038042, ISBN: 978-1-4577-0394-2, DOI: 10.1109/CVPR.2011.5995540 * |
Also Published As
Publication number | Publication date |
---|---|
CN105765551A (en) | 2016-07-13 |
WO2015048045A1 (en) | 2015-04-02 |
JP2016536837A (en) | 2016-11-24 |
EP3049947A4 (en) | 2017-07-26 |
EP3049947A1 (en) | 2016-08-03 |
US9946954B2 (en) | 2018-04-17 |
US20150093018A1 (en) | 2015-04-02 |
US20160055395A1 (en) | 2016-02-25 |
US9208536B2 (en) | 2015-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9946954B2 (en) | Determining distance between an object and a capture device based on captured image data | |
US9275281B2 (en) | Mobile image capture, processing, and electronic form generation | |
US11481878B2 (en) | Content-based detection and three dimensional geometric reconstruction of objects in image and video data | |
US9779296B1 (en) | Content-based detection and three dimensional geometric reconstruction of objects in image and video data | |
US11818303B2 (en) | Content-based object detection, 3D reconstruction, and data extraction from digital images | |
US10699146B2 (en) | Mobile document detection and orientation based on reference object characteristics | |
US11620733B2 (en) | Content-based object detection, 3D reconstruction, and data extraction from digital images | |
EP2803016B1 (en) | Systems and methods for mobile image capture and processing | |
US8811751B1 (en) | Method and system for correcting projective distortions with elimination steps on multiple levels | |
EP2974261A2 (en) | Systems and methods for classifying objects in digital images captured using mobile devices | |
US8897600B1 (en) | Method and system for determining vanishing point candidates for projective correction | |
US8913836B1 (en) | Method and system for correcting projective distortions using eigenpoints | |
WO2017173368A1 (en) | Content-based detection and three dimensional geometric reconstruction of objects in image and video data | |
WO2017015401A1 (en) | Mobile image capture, processing, and electronic form generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200904 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3049947 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20210707 |