EP3762420A1 - Anticorps activables de cd147 et procédés de fabrication et d'utilisation associés - Google Patents

Anticorps activables de cd147 et procédés de fabrication et d'utilisation associés

Info

Publication number
EP3762420A1
EP3762420A1 EP19712879.6A EP19712879A EP3762420A1 EP 3762420 A1 EP3762420 A1 EP 3762420A1 EP 19712879 A EP19712879 A EP 19712879A EP 3762420 A1 EP3762420 A1 EP 3762420A1
Authority
EP
European Patent Office
Prior art keywords
seq
activatable antibody
amino acid
sequence
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19712879.6A
Other languages
German (de)
English (en)
Inventor
Shweta SINGH
Madan Paidhungat
Sylvia WONG
Jeanne Grace FLANDEZ
Kristi Elkins
Siew Schleyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cytomx Therapeutics Inc
Original Assignee
Cytomx Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cytomx Therapeutics Inc filed Critical Cytomx Therapeutics Inc
Publication of EP3762420A1 publication Critical patent/EP3762420A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/68031Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being an auristatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site

Definitions

  • the invention relates generally to activatable antibodies that bind to CD 147 and methods of making and using these activatable antibodies in a variety of therapeutic,
  • Antibody-based therapies have proven effective treatments for several diseases but in some cases, toxicities due to broad target expression have limited their therapeutic effectiveness. In addition, antibody -based therapeutics have exhibited other limitations such as rapid clearance from the circulation following administration.
  • prodrugs of an active chemical entity are administered in a relatively inactive (or significantly less active) form. Once administered, the prodrug is metabolized in vivo into the active compound.
  • prodrug strategies can provide for increased selectivity of the drug for its intended target and for a reduction of adverse effects.
  • activatable antibodies that bind to CD 147 and methods of making and using these activatable antibodies in a variety of therapeutic, prophylactic, and diagnostic contexts.
  • the activatable antibodies bind human and cynomolgus monkey CD147.
  • the CD147 activatable antibodies bind both the glycosylated and deglycosylated forms of the CD 147 antigen.
  • an activatable antibody that, in an activated state, binds CD147 comprising: (a) an antibody or an antigen binding fragment thereof (AB) that specifically binds to human CD 147 and cynomolgus monkey CD 147; (b) a masking moiety (MM) coupled to the AB, wherein the MM inhibits the binding of the AB to CD147 when the activatable antibody is in an uncleaved (unactivated state) state, and wherein the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 101-109; and (c) a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
  • the CD147 includes both deglycosylated CD147 and glycosylated CD147.
  • any one of the activatable antibodies provided herein are conjugated to an agent, generating a conjugated activatable antibody.
  • the agent is a toxin or fragment thereof.
  • the agent is a microtubule inhibitor.
  • the agent is a nucleic acid damaging agent.
  • the agent is a detectable moiety. In some embodiments, the detectable moiety is a diagnostic agent.
  • a conjugated activatable antibody comprising: an antibody or antigen binding fragment thereof (AB) that, in an activated state, binds CD147; and a toxin conjugated to the AB via a linker, wherein the conjugated activatable antibody comprises amino acid sequences, a linker, and a toxin selected from a single row in Table 9, wherein for the given combination: (a) the AB comprises a heavy chain comprising the amino acid sequence of the heavy chain sequence or heavy chain variable domain sequence corresponding to the given combination in the single row listed in Table 9; (b) the AB comprises a light chain comprising the amino acid sequence of the light chain sequence or light chain variable domain sequence corresponding to the given combination in the single row listed in Table 9; and (c) the linker and the toxin comprise the linker and the toxin corresponding to the given combination in the single row listed in Table 9.
  • AB antibody or antigen binding fragment thereof
  • a pharmaceutical composition comprising any of the activatable antibodies or conjugated activatable antibodies provided herein; and a carrier.
  • the pharmaceutical composition of comprises an additional agent.
  • the additional agent is a therapeutic agent.
  • an isolated nucleic acid molecule encoding any one of the activatable antibodies described herein.
  • a vector comprising the isolated nucleic acid molecule.
  • a method of producing an activatable antibody by culturing a cell under conditions that lead to expression of the activatable antibody, wherein the cell comprises the nucleic acid molecules or the vectors provided herein.
  • a method of manufacturing any one of the activatable antibodies provided herein that, in an activated state, binds CD 147 comprising: (a) culturing a cell comprising a nucleic acid construct that encodes the activatable antibody under conditions that lead to the expression of any one of the activatable antibodies described herein, and (b) recovering the activatable antibody.
  • provided herein is a method of preventing, treating, alleviating a symptom of, delaying the progression of, or otherwise ameliorating a disorder or disease in which diseased cells express CD147 or a CDl47-medidated disease or disorder comprising administering a therapeutically effective amount of any one of the activatable antibodies or conjugated activatable antibodies provided herein, or pharmaceutical compositions of the same to a subject in need thereof.
  • provided herein is a method of preventing, treating, alleviating a symptom of, delaying the progression of, or otherwise ameliorating a disorder or disease associated with cells expressing CD147 or a CDl47-medidated disease or disorder comprising administering a therapeutically effective amount of any one of the activatable antibodies or conjugated activatable antibodies provided herein, or pharmaceutical compositions of the same to a subject in need thereof.
  • the disorder or disease is cancer.
  • the cancer is an adenocarcinoma, a bile duct (biliary) cancer, a bladder cancer, a bone cancer, a breast cancer, a triple-negative breast cancer, a Her2- negative breast cancer, a carcinoid cancer, a cervical cancer, a cholangiocarcinoma, a colorectal cancer, a colon cancer, an endometrial cancer, an esophageal cancer, a glioma, a head and neck cancer, a head and neck squamous cell cancer, a leukemia, a liver cancer, a lung cancer, a non small cell lung cancer, a small cell lung cancer, a lymphoma, a melanoma, an oropharyngeal cancer, an ovarian cancer, a pancreatic cancer, a prostate cancer, a metastatic castration-resistant prostate carcinoma, a renal cancer, a sarcoma, a skin cancer, a squamous cell cancer
  • a method of inhibiting or reducing the growth, proliferation, or metastasis of cells expressing CD147 comprising administering a therapeutically effective amount of any one of activatable antibodies or conjugated activatable antibodies provided herein, or pharmaceutical compositions of the same to a subject in need thereof.
  • the expression and/or activity of the CD147 is aberrant.
  • a method of inhibiting, blocking, or preventing the binding of a natural ligand to CD 147 comprising administering a therapeutically effective amount of any one of the activatable antibodies or conjugated activatable antibodies provided herein, or pharmaceutical compositions of the same to a subject in need thereof.
  • the expression and/or activity of the CD147 is aberrant.
  • activatable antibodies in another aspect, provided herein are activatable antibodies, conjugated activatable antibody, pharmaceutical composition thereof, and methods of use thereof wherein the activatable antibodies or conjugated activatable antibodies does not bind an Fc-gamma receptor.
  • the Fc-gamma receptor is Fc-gamma Rl receptor.
  • FIG. 1 A-1H are graphs depicting the in vitro cytotoxicity of conjugated anti human CD147 antibodies of the disclosure.
  • FIGS. 2A to 2D show exemplary immunohistochemical assay results of anti human CD147 antibodies of the disclosure to various cancer-derived tissues.
  • FIG. 3 is a graph depicting exemplary studies of the ability of anti-human CD147 antibodies of the disclosure to bind human CD147 on various human-derived cell lines and the cytotoxicity of anti-human CD147 antibody drug conjugates of the disclosure to the various human-derived cell lines.
  • FIG. 4 is a graph depicting an exemplary binding affinity study of anti-human CD147 antibodies of the disclosure to human and cynomolgus cell lines.
  • FIG. 5 is a graph depicting an exemplary study of the ability of humanized anti human CD147 antibodies of the disclosure to bind glycosylated and deglycosylated human CD 147 fusion protein.
  • FIGS. 6A and 6B are graphs depicting exemplary studies of the ability of anti human CD 147 activatable antibodies of the disclosure to bind human CD 147 on various human- derived cell lines.
  • FIGS. 7A, 7B, and 7C are graphs depicting exemplary studies of the ability of anti-human CD147 activatable antibodies of the disclosure to bind human CD147 on various human-derived cell lines.
  • CD147 also known as Basigin, extracellular matrix metalloproteinase inducer
  • CD147 is the receptor for cyclophilins A and B, S100A9 and platelet glycoprotein VI, whereas CD 147 serves as the receptor for the rod-derived cone viability factor.
  • CD147 associates with monocarboxylate transporters and is essential for their cell surface translocation and activities.
  • CD147 also interacts with several integrins. In the same membrane plane, CD147 also associates with other proteins including GLUT1, CD44 and CD98. The carbohydrate portion of CD 147 is recognized by lectins, such as galectin-3 and E-selectin. These molecular recognitions form the basis for the role of CD147 in the transport of nutrients, migration of inflammatory leukocytes and induction of matrix metalloproteinases (MMPs).
  • MMPs matrix metalloproteinases
  • CD 147 plays roles in vision, spermatogenesis and other physiological phenomena, and also plays roles in the pathogenesis of numerous diseases, including cancer. CD 147 is also the receptor for an invasive protein RH5, which is present in malaria parasites.
  • CD 147 has a broad expression pattern on hematopoietic and non-hematopoietic cells such as monocytes, granulocytes, epithelial and endothelial cells. CD 147 is upregulated on active T-lymphocytes. Some CD147 antibodies, to specific epitopes, inhibit proliferation induced by a CD3 mAh.
  • CD 147 is desirable target because it is prevalent across multiple cancer indications.
  • the present disclosure provides antibodies, activatable antibodies, conjugated antibodies, and conjugated activatable antibodies that specifically bind mammalian CD 147, methods of making and use thereof.
  • the disclosure provides anti-mammalian CD147 antibodies and fragments thereof (interchangeably referred to herein as CD147 antibodies, or ABs), conjugated CD147 antibodies, activatable CD147 antibodies, and conjugated activatable CD147 antibodies that are useful in methods of treating, preventing, delaying the progression of, ameliorating and/or alleviating a symptom of a disease or disorder associated with cells expressing CD147.
  • the cells are associated with normal CD147 expression and/or activity.
  • the cells are associated with aberrant CD147 expression and/or activity.
  • the cells are associated with CD 147 expression and/or activity in diseased cells.
  • any of the antibodies/activatable antibodies described herein can be used in methods of treating, preventing, delaying the progression of, ameliorating and/or alleviating a symptom of a cancer or other neoplastic condition. Any of the antibodies/activatable antibodies described herein can also be used for detection/diagnostic applications.
  • the antibodies and activatable antibodies specifically bind human CD147 and cynomolgus monkey CD147. In some embodiments, the antibodies and activatable antibodies bind human CD147. In some embodiments, the antibodies and activatable antibodies bind cynomolgus monkey CD 147. In some embodiments, the antibodies and activatable antibodies are internalized by CDl47-containing cells. In some embodiments, the antibodies and activatable antibodies bind both the glycosylated and deglycosylated forms of the CD 147 antigen.
  • the term“antibody” refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen.
  • immunoglobulin (Ig) molecules i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen.
  • By“specifically bind” or“immunoreacts with” or“immunospecifically bind” is meant that the antibody reacts with one or more antigenic determinants of the desired antigen and does not react with other polypeptides or binds at much lower affinity (Kd > 10 6 ).
  • Antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, domain antibody, single chain, Fab, and F(ab’)2 fragments, scFvs, and an Fab expression library.
  • the antibodies provided herein can be of any of the IgG, IgM, IgA, IgE and IgD classes (or subclasses thereof).
  • MAbs contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.
  • the term“antigen-binding site” or“binding portion” refers to the part of the immunoglobulin molecule that participates in antigen binding.
  • the antigen binding site is formed by amino acid residues of the N-terminal variable (“V”) regions of the heavy (“H”) and light (“L”) chains.
  • V N-terminal variable
  • L heavy
  • FR framework regions
  • the term“FR” refers to amino acid sequences that are naturally found between, and adjacent to, hypervariable regions in immunoglobulins.
  • the three hypervariable regions of a light chain and the three hypervariable regions of a heavy chain are disposed relative to each other in three dimensional space to form an antigen-binding surface.
  • the antigen-binding surface is complementary to the three-dimensional surface of a bound antigen, and the three hypervariable regions of each of the heavy and light chains are referred to as“complementarity-determining regions,” or“CDRs.”
  • CDRs complementarity-determining regions
  • the assignment of amino acids to each domain is in accordance with the definitions of Rabat Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991)), or Chothia & Lesk J. Mol. Biol. 196:901-917 (1987), Chothia et al. Nature 342:878-883 (1989).
  • the term“epitope” includes any protein determinant capable of specific binding to an immunoglobulin, a scFv, or a T-cell receptor.
  • the term“epitope” includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor.
  • Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.
  • antibodies can be raised against N-terminal or C-terminal peptides of a polypeptide.
  • An antibody is said to specifically bind an antigen when the dissociation constant is ⁇ 1 mM; in some embodiments, ⁇ 100 nM and in some embodiments, ⁇ 10 nM.
  • the terms“specific binding,”“immunological binding,” and “immunological binding properties” refer to the non-covalent interactions of the type which occur between an immunoglobulin molecule and an antigen for which the immunoglobulin is specific.
  • the strength, or affinity of immunological binding interactions can be expressed in terms of the dissociation constant (Kd) of the interaction, wherein a smaller Kd represents a greater affinity.
  • Immunological binding properties of selected polypeptides can be quantified using methods well known in the art. One such method entails measuring the rates of antigen- binding site/antigen complex formation and dissociation, wherein those rates depend on the concentrations of the complex partners, the affinity of the interaction, and geometric parameters that equally influence the rate in both directions.
  • both the“on rate constant” (K 0n ) and the “off rate constant” (K 0ff ) can be determined by calculation of the concentrations and the actual rates of association and dissociation. ( See Nature 361 : 185-87 (1993)).
  • the ratio of K 0ff /K 0n enables the cancellation of all parameters not related to affinity, and is equal to the dissociation constant K d . (See, generally , Davies et al. (1990) Annual Rev Biochem 59:439-473).
  • An antibody of the present disclosure is said to specifically bind to the target, when the binding constant (Kd) is ⁇ 1 mM, in some embodiments ⁇ 100 nM, in some embodiments ⁇ 10 nM, and in some embodiments ⁇ 100 pM to about 1 pM, as measured by assays such as radioligand binding assays or similar assays known to those skilled in the art.
  • Kd binding constant
  • isolated polynucleotide shall mean a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof, which by virtue of its origin the“isolated polynucleotide” (1) is not associated with all or a portion of a polynucleotide in which the“isolated polynucleotide” is found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence.
  • Polynucleotides in accordance with the disclosure include the nucleic acid molecules encoding the heavy chain immunoglobulin molecules shown herein, and nucleic acid molecules encoding the light chain immunoglobulin molecules shown herein.
  • isolated protein means a protein of cDNA, recombinant RNA, or synthetic origin or some combination thereof, which by virtue of its origin, or source of derivation, the“isolated protein” (1) is not associated with proteins found in nature, (2) is free of other proteins from the same source, e.g, free of murine proteins, (3) is expressed by a cell from a different species, or (4) does not occur in nature.
  • polypeptide is used herein as a generic term to refer to native protein, fragments, or analogs of a polypeptide sequence. Hence, native protein fragments, and analogs are species of the polypeptide genus.
  • Polypeptides in accordance with the disclosure comprise the heavy chain immunoglobulin molecules shown herein, and the light chain immunoglobulin molecules shown herein, as well as antibody molecules formed by combinations comprising the heavy chain immunoglobulin molecules with light chain immunoglobulin molecules, such as kappa light chain immunoglobulin molecules, and vice versa, as well as fragments and analogs thereof.
  • Naturally-occurring refers to the fact that an object can be found in nature.
  • a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and that has not been intentionally modified by man in the laboratory or otherwise is naturally- occurring.
  • control sequence“operably linked” to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences.
  • control sequence refers to polynucleotide sequences that are necessary to affect the expression and processing of coding sequences to which they are ligated. The nature of such control sequences differs depending upon the host organism in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence in eukaryotes, generally, such control sequences include promoters and transcription termination sequence.
  • control sequences is intended to include, at a minimum, all components whose presence is essential for expression and processing and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.
  • polynucleotide as referred to herein means nucleotides of at least 10 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide.
  • the term includes single and double stranded forms of DNA.
  • oligonucleotide includes naturally occurring, and modified nucleotides linked together by naturally occurring, and non-naturally occurring oligonucleotide linkages.
  • Oligonucleotides are a polynucleotide subset generally comprising a length of 200 bases or fewer. In some embodiments, oligonucleotides are 10 to 60 bases in length and in some embodiments, 12, 13, 14, 15, 16, 17, 18, 19, or 20 to 40 bases in length.
  • Oligonucleotides are usually single stranded, e.g., for probes, although oligonucleotides may be double stranded, e.g, for use in the construction of a gene mutant. Oligonucleotides of the disclosure are either sense or antisense oligonucleotides.
  • the term“naturally occurring nucleotides” referred to herein includes deoxyribonucleotides and ribonucleotides.
  • the term“modified nucleotides” referred to herein includes nucleotides with modified or substituted sugar groups and the like. The term
  • oligonucleotide linkages referred to herein includes oligonucleotide linkages such as phosphorothioate, phosphorodithioate, phosphoroselerloate, phosphorodiselenoate,
  • oligonucleotide can include a label for detection, if desired.
  • Examples of unconventional amino acids include: 4 hydroxyproline, g-carboxyglutamate, e-N,N,N-trimethyllysine, e -N- acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5- hydroxylysine, s-N-methylarginine, and other similar amino acids and imino acids (e.g, 4- hydroxyproline).
  • the left-hand direction is the amino terminal direction and the right-hand direction is the carboxy-terminal direction, in accordance with standard usage and convention.
  • the left-hand end of single-stranded polynucleotide sequences is the 5’ end the left-hand direction of double-stranded polynucleotide sequences is referred to as the 5’ direction.
  • the direction of 5’ to 3’ addition of nascent RNA transcripts is referred to as the transcription direction sequence regions on the DNA strand having the same sequence as the RNA and that are 5’ to the 5’ end of the RNA transcript are referred to as“upstream sequences”, sequence regions on the DNA strand having the same sequence as the RNA and that are 3’ to the 3’ end of the RNA transcript are referred to as “downstream sequences”.
  • the term“substantial identity” means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 80 percent sequence identity, in some embodiments, at least 90 percent sequence identity, in some embodiments, at least 95 percent sequence identity, and in some embodiments, at least 99 percent sequence identity.
  • residue positions that are not identical differ by
  • amino acid sequences of antibodies or immunoglobulin molecules are contemplated as being encompassed by the present disclosure, providing that the variations in the amino acid sequence maintain at least 75%, in some embodiments, at least 80%, 90%, 95%, and in some embodiments, 99%.
  • conservative amino acid replacements are contemplated. Conservative replacements are those that take place within a family of amino acids that are related in their side chains.
  • amino acids are generally divided into families: (1) acidic amino acids are aspartate, glutamate; (2) basic amino acids are lysine, arginine, histidine; (3) non-polar amino acids are alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan, and (4) uncharged polar amino acids are glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine.
  • the hydrophilic amino acids include arginine, asparagine, aspartate, glutamine, glutamate, histidine, lysine, serine, and threonine.
  • the hydrophobic amino acids include alanine, cysteine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, tyrosine and valine.
  • Other families of amino acids include (i) serine and threonine, which are the aliphatic-hydroxy family; (ii) asparagine and glutamine, which are the amide containing family; (iii) alanine, valine, leucine and isoleucine, which are the aliphatic family; and (iv) phenylalanine, tryptophan, and tyrosine, which are the aromatic family.
  • Suitable amino- and carboxy -termini of fragments or analogs occur near boundaries of functional domains.
  • Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases.
  • computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three- dimensional structure are known. Bowie et al. Science 253: 164 (1991).
  • Suitable amino acid substitutions are those that: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter binding affinities, and (5) confer or modify other physicochemical or functional properties of such analogs.
  • Analogs can include various muteins of a sequence other than the naturally-occurring peptide sequence. For example, single or multiple amino acid substitutions (for example, conservative amino acid substitutions) can be made in the naturally- occurring sequence (for example, in the portion of the polypeptide outside the domain(s) forming intermolecular contacts.
  • a conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence (e.g a replacement amino acid should not tend to break a helix that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence).
  • Examples of art-recognized polypeptide secondary and tertiary structures are described in Proteins, Structures and Molecular Principles (Creighton, Ed., W. H. Freeman and Company, New York (1984)); Introduction to Protein Structure (C. Branden and J. Tooze, eds., Garland Publishing, New York, N.Y. (1991)); and Thornton et at. Nature 354: 105 (1991).
  • polypeptide fragment refers to a polypeptide that has an amino terminal and/or carboxy-terminal deletion and/or one or more internal deletion(s), but where the remaining amino acid sequence is identical to the corresponding positions in the naturally-occurring sequence deduced, for example, from a full-length cDNA sequence. Fragments typically are at least 5, 6, 8 or 10 amino acids long, in some embodiments, at least 14 amino acids long, in some embodiments, at least 20 amino acids long, usually at least 50 amino acids long, and in some embodiments, at least 70 amino acids long.
  • analog refers to polypeptides that are comprised of a segment of at least 25 amino acids that has substantial identity to a portion of a deduced amino acid sequence and that has specific binding to the target, under suitable binding conditions.
  • polypeptide analogs comprise a conservative amino acid substitution (or addition or deletion) with respect to the naturally- occurring sequence.
  • Analogs typically are at least 20 amino acids long, in some embodiments, at least 50 amino acids long or longer, and can often be as long as a full-length naturally-occurring polypeptide.
  • agent is used herein to denote a chemical compound, a mixture of chemical compounds, a biological macromolecule, or an extract made from biological materials.
  • label refers to incorporation of a detectable marker, e.g., by incorporation of a radiolabeled amino acid or attachment to a polypeptide of biotinyl moieties that can be detected by marked avidin (e.g, streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or calorimetric methods). In certain situations, the label or marker can also be therapeutic. Various methods of labeling polypeptides and glycoproteins are known in the art and can be used.
  • labels for polypeptides include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3 H, 14 C, 15 N, 35 S, 90 Y, "Tc, U1 ln, 125 I, 131 I), fluorescent labels (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic labels (e.g, horseradish peroxidase, p- galactosidase, luciferase, alkaline phosphatase), chemiluminescent, biotinyl groups,
  • radioisotopes or radionuclides e.g., 3 H, 14 C, 15 N, 35 S, 90 Y, "Tc, U1 ln, 125 I, 131 I
  • fluorescent labels e.g., FITC, rhodamine, lanthanide phosphors
  • enzymatic labels e.g, horseradish
  • predetermined polypeptide epitopes recognized by a secondary reporter e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags.
  • labels are attached by spacer arms of various lengths to reduce potential steric hindrance.
  • pharmaceutical agent or drug refers to a chemical compound or composition capable of inducing a desired therapeutic effect when properly administered to a patient.
  • substantially pure means an object species is the predominant species present ( i.e on a molar basis it is more abundant than any other individual species in the composition), and in some embodiments, a substantially purified fraction is a composition wherein the object species comprises at least about 50 percent (on a molar basis) of all macromolecular species present.
  • a substantially pure composition will comprise more than about 80 percent of all macromolecular species present in the composition, in some embodiments, more than about 85%, 90%, 95%, and 99%.
  • the object species is purified to essential homogeneity (contaminant species cannot be detected in the composition by
  • composition consists essentially of a single macromolecular species.
  • patient includes human and veterinary subjects.
  • ABs antibodies and antigen binding fragments thereof (ABs) that specifically bind to mammalian CD147.
  • the AB specifically binds human CD 147 and cynomolgus monkey CD 147.
  • the ABs provided herein that bind CD 147 includes a monoclonal antibody, a domain antibody, a single chain antibody, a Fab fragment, a F(ab’)2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, or a single domain light chain antibody.
  • such an ABs that binds CD147 is a mouse, other rodent, chimeric, humanized or fully human monoclonal antibody.
  • activatable CD147 antibodies that include an antibody or antigen-binding fragment thereof (AB) that specifically binds CD 147 coupled to a masking moiety (MM), such that coupling of the MM reduces the ability of the antibody or antigen binding fragment thereof to bind CD 147.
  • the MM is coupled via a sequence that includes a substrate for a protease (cleavable moiety, CM), for example, a protease that is co-localized with CD147 at a treatment site in a subject.
  • CM protease
  • the activatable CD147 antibodies of the disclosure are described in greater detail in a below section).
  • the CD147 antibodies of the disclosure specifically bind a mammalian CD147 target, such as, for example, human CD147. Also included in the disclosure are CD147 antibodies and ABs that bind to the same CD147 epitope as an antibody of the disclosure and/or an activated activatable antibody described herein. Also included in the disclosure are CD147 antibodies compete with a CD147 antibody described herein for binding to a CD147 target, e.g., human CD147. Also included in the disclosure are CD147 antibodies that cross-compete with (inhibit the binding of) a CD147 antibody and/or an activated CD147 activatable antibody described herein for binding to a CD147 target, e.g., human CD147.
  • Antibodies and/or activatable antibodies of the disclosure specifically bind a mammalian CD147, e.g. human CD147 and cynomologous CD147. Also included in the disclosure are antibodies and/or activatable antibodies that bind to the same epitope as any of the antibodies and/or activatable antibodies described herein. Also included in the disclosure are antibodies and/or antibodies activatable antibodies that compete with a CD 147 antibody (inhibit the binding of) and/or a CD147 activatable antibody described herein for binding to CD147, e.g., human CD147.
  • antibodies and/or antibodies activatable antibodies that cross-compete with a CD 147 antibody and/or a CD 147 activatable antibody described herein for binding to CD147 (inhibits the binding to CD147), e.g., human CD147.
  • the mammalian CD147 is selected from the group consisting of a human CD 147, a murine CD 147, a rat CD 147, and a cynomolgus monkey CD147.
  • the AB specifically binds to human CD147, murine CD147 or cynomolgus monkey CD147 with a dissociation constant of less than 1 nM.
  • the mammalian CD147 is a human CD147.
  • the AB has one or more of the following characteristics: (a) the AB specifically binds to human CD 147; and (b) the AB specifically binds to human CD 147 and cynomolgus monkey CD 147.
  • the AB has one or more of the following characteristics: (a) the AB specifically binds human CD 147 and cynomolgus monkey CD 147; (b) the AB inhibits binding of one or more of the natural mammalian ligands of CD 147 to mammalian CD 147; (c) the AB inhibits binding of one or more of the natural human ligands of CD 147 to human CD 147; and (d) the AB inhibits binding of one or more of the natural cynomolgus monkey ligands of CD 147 to cynomolgus monkey CD 147.
  • the AB binds both glycosylated and deglycosylated forms of CD 147.
  • the AB blocks the ability of a natural ligand to bind to the mammalian CD 147 with an ECso less than or equal to 5 nM, less than or equal to 10 nM, less than or equal to 50 nM, less than or equal to 100 nM, less than or equal to 500 nM, and/or less than or equal to 1000 nM.
  • the AB blocks the ability of a natural ligand to bind to the mammalian CD 147 with an ECso less than or equal to 5 nM, less than or equal to 10 nM, less than or equal to 50 nM, less than or equal to 100 nM, less than or equal to 500 nM, and/or less than or equal to 1000 nM.
  • the AB blocks the ability of a natural ligand to bind to the mammalian CD147 with an ECso of 5 nM to 1000 nM, 5 nM to 500 nM, 5 nM to 100 nM 5 nM to 50 nM, 5 nM to 10 nM, 10 nM to 1000 nM, 10 nM to 500 nM, 10 nM to 100 nM 10 nM to 50 nM, 50 nM to 1000 nM, 50 nM to 500 nM, 50 nM to 100 nM, 100 nM to 1000 nM, 100 nM to 500 nM, 500 nM to 1000 nM.
  • the AB blocks the ability of a natural ligand to bind to the mammalian CD147 with an ECso of 5 nM to 1000 nM, 5 nM to 500 nM, 5 nM to 100 nM 5 nM to 50 nM, 5 n
  • the AB of the present disclosure inhibits or reduces the growth, proliferation, and/or metastasis of cells expressing mammalian CD 147.
  • the AB of the present disclosure may inhibit or reduce the growth, proliferation, and/or metastasis of cells expressing mammalian CD147 by specifically binding to CD147 and inhibiting, blocking, and/or preventing the binding of a natural ligand to mammalian CD147.
  • the AB has a dissociation constant of about 100 nM or less for binding to mammalian CD147. In some embodiments, the AB has a dissociation constant of about 10 nM or less for binding to mammalian CD147. In some embodiments, the AB has a dissociation constant of about 5 nM or less for binding to CD147. In some embodiments, the AB has a dissociation constant of about 1 nM or less for binding to CD147. In some embodiments, the AB has a dissociation constant of about 0.5 nM or less for binding to CD147. In some embodiments, the AB has a dissociation constant of about 0.1 nM or less for binding to CD147.
  • the AB has a dissociation constant of 0.01 nM to 100 nM, 0.01 nM to 10 nM, 0.01 nM to 5 nM, 0.01 nM to 1 nM, 0.01 to 0.5 nM, 0.01 nm to 0.1 nM, 0.01 nm to 0.05 nM, 0.05 nM to 100 nM, 0.05 nM to 10 nM, 0.05 nM to 5 nM, 0.05 nM to 1 nM, 0.05 to 0.5 nM, 0.05 nm to 0.1 nM, 0.1 nM to 100 nM, 0.1 nM to 10 nM, 0.1 nM to 5 nM, 0.1 nM to 1 nM, 0.1 to 0.5 nM, 0.5 nM to 100 nM, 0.1 nM to 10 nM, 0.1 nM to 5 nM, 0.1 nM to 1 nM, 0.1 to
  • Exemplary CD 147 antibodies and activatable CD 147 antibodies of the invention may include a heavy chain and a light chain that are, or are derived from, the heavy chain variable and light chain variable sequences shown below (CDR sequences are shown in bold and underline): mu 3All VH:
  • the antibody or antigen-binding fragment thereof of the CD147 antibody/activatable antibody comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4. In some embodiments, the antibody or antigen-binding fragment thereof of the CD147 antibody/activatable antibody comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3.
  • the antibody or antigen-binding fragment thereof of the CD147 antibody/activatable antibody comprises a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9. In some embodiments, the antibody or antigen-binding fragment thereof of the CD147 antibody/activatable antibody comprises a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the antibody or antigen-binding fragment thereof of the CD147 antibody/activatable antibody comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the antibody or antigen-binding fragment thereof of the CD147 antibody/activatable antibody comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the antibody or antigen-binding fragment thereof of the CD147 antibody/activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4.
  • the antibody or antigen-binding fragment thereof of the CD 147 comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4.
  • antibody/activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3.
  • the antibody or antigen-binding fragment thereof of the CD147 antibody/activatable antibody comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the antibody or antigen-binding fragment thereof of the CD 147 comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • antibody/activatable antibody comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the antibody or antigen-binding fragment thereof of the CD147 antibody/activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%,
  • the antibody or antigen-binding fragment thereof of the CD147 antibody/activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%,
  • Exemplary CD 147 antibodies and activatable CD 147 antibodies of the invention include a combination of a variable heavy chain complementarity determining region 1 (VH CDR1, also referred to herein as CDRH1) sequence, a variable heavy chain complementarity determining region 2 (VH CDR2, also referred to herein as CDRH2) sequence, a variable heavy chain complementarity determining region 3 (VH CDR3, also referred to herein as CDRH3) sequence, a variable light chain complementarity determining region 1 (VL CDR1, also referred to herein as CDRL1) sequence, a variable light chain complementarity determining region 2 (VL CDR2, also referred to herein as CDRL2) sequence, and a variable light chain complementarity determining region 3 (VL CDR3, also referred to herein as CDRL3) sequence, wherein at least one CDR sequence is selected from the VH CDR1, also referred to herein as CDRH1 sequence, a variable heavy chain complementarity determining region 2 (VH CDR2,
  • the CD 147 antibody or antigen-binding fragment thereof comprises a combination of a variable heavy chain complementarity determining region 1 (VH CDR1, also referred to herein as CDRH1) sequence, a variable heavy chain complementarity determining region 2 (VH CDR2, also referred to herein as CDRH2) sequence, a variable heavy chain complementarity determining region 3 (VH CDR3, also referred to herein as CDRH3) sequence, a variable light chain complementarity determining region 1 (VL CDR1, also referred to herein as CDRL1) sequence, a variable light chain complementarity determining region 2 (VL CDR2, also referred to herein as CDRL2) sequence, and a variable light chain complementarity determining region 3 (VL CDR3, also referred to herein as CDRL3) sequence, wherein at least one complementarity determining region (CDR) sequence is selected from the group consisting of a VH CDR1 sequence comprising the amino acid sequence GFTFSNYWMN
  • the CD 147 antibody or antigen-binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR1 sequence comprising the amino acid sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); a VH CDR2 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR2 sequence comprising the amino acid sequence EIR
  • the CD 147 antibody or antigen-binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence
  • the VH CDR1 sequence comprises the amino acid sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11)
  • the VH CDR2 sequence comprises the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 12)
  • the VH CDR3 sequence comprises the amino acid sequence AGTDY (SEQ ID NO: 13)
  • the VL CDR1 sequence comprises the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15)
  • the VL CDR2 sequence comprises the amino acid sequence YSSNRYT (SEQ ID NO: 16); and the VL CDR3 sequence comprises the amino acid
  • the CD 147 antibody or antigen-binding fragment thereof comprises an amino acid sequence comprising amino acid sequences selected from the group consisting of: (a) the VH CDR1 sequence GFTF SNYWMN (SEQ ID NO: 10) or
  • GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12); the VH CDR3 sequence AGTDY (SEQ ID NO: 13); the VL CDR1 sequence
  • the CD 147 antibody or antigen-binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the VH CDR1 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%,
  • the VH CDR2 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 12);
  • the VH CDR3 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence AGTDY (SEQ ID NO: 13);
  • the VL CDR1 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 14) or RASQSVRTDVG
  • Suitable CD147 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that binds to the same epitope on human CD 147 and/or cynomolgus monkey CD147 as a CD147 antibody comprising a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • Suitable CD147 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that binds to the same epitope on human CD 147 and/or cynomolgus monkey CD147 as a CD147 antibody comprising a VH CDR1 sequence comprising the amino acid sequence GFTF SNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); a VH CDR2 sequence comprising the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 12); a VH CDR3 sequence comprising the amino acid sequence AGTDY (SEQ ID NO: 13); a VL CDR1 sequence comprising the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); a VL CDR2 sequence comprising the amino acid sequence YSSNRYT (SEQ ID NO: 16); and a VL CDR3 sequence comprising the amino acid sequence QQDYSSPFT (SEQ ID NO: 10
  • Suitable CD147 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that cross-competes for binding to (inhibits the binding of) human CD147 and/or cynomolgus monkey CD147 to a CD147 antibody comprising a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • Suitable CD147 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that cross-competes for binding to (inhibits the binding of) human CD147 and/or cynomolgus monkey CD147 to a CD147 antibody comprising a VH CDR1 sequence comprising the amino acid sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); a VH CDR2 sequence comprising the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 12); a VH CDR3 sequence comprising the amino acid sequence AGTDY (SEQ ID NO: 13); a VL CDR1 sequence comprising the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); a VL CDR2 sequence comprising the amino acid sequence YSSNRYT (SEQ ID NO: 16); and a VL CDR3 sequence comprising the amino acid sequence QQDYSSPFT
  • the CD147 antibody of the disclosure comprises an isolated antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD 147, wherein the AB specifically binds human CD 147 and cynomolgus monkey CD147.
  • the antibody or antigen binding fragment thereof comprises the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12); the VH CDR3 sequence AGTDY (SEQ ID NO: 13); the VL CDR1 sequence KASQSVRTDVA (SEQ ID NO: 14) or
  • the antibody or antigen binding fragment thereof comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the isolated antibody or antigen binding fragment thereof binds to the same epitope on human CD147 and/or cynomolgus monkey CD147 as an isolated antibody that comprises the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or
  • GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12); the VH CDR3 sequence AGTDY (SEQ ID NO: 13); the VL CDR1 sequence
  • KASQSVRTDVA SEQ ID NO: 14
  • RASQSVRTDVG SEQ ID NO: 15
  • VL CDR2 sequence YSSNRYT SEQ ID NO: 16
  • VL CDR3 sequence QQDYSSPFT SEQ ID NO: 17
  • QQDYSSPYT SEQ ID NO: 18
  • the isolated antibody or antigen binding fragment thereof binds to the same epitope on human CD 147 and/or cynomolgus monkey CD147 as an isolated antibody that comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the isolated antibody or antigen binding fragment thereof cross-competes with (inhibits the binding of) an isolated antibody that comprises the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTF SNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12); the VH CDR3 sequence AGTDY (SEQ ID NO: 13); the VL CDR1 sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); the VL CDR2 sequence YSSNRYT (SEQ ID NO: 16); and the VL CDR3 sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • the isolated antibody or antigen binding fragment thereof cross-competes with (inhibits the binding of) an isolated antibody that comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the isolated antibody or antigen binding fragment thereof cross-competes with (inhibits the binding of) an isolated antibody that comprises the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTF SNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12); the VH CDR3 sequence AGTDY (SEQ ID NO: 13); the VL CDR1 sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); the VL CDR2 sequence YSSNRYT (SEQ ID NO: 16); and the VL CDR3 sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • VH CDR1 sequence GFTFSNYWMN SEQ ID NO: 10
  • GFTF SNYWMD SEQ ID NO: 11
  • the VH CDR2 sequence EIRLKSYNYATH S
  • the isolated antibody or antigen binding fragment thereof cross-competes with (inhibits the binding of) an isolated antibody that comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the CD147 antibody/activatable CD147 antibody includes a heavy chain that comprises or is derived from a heavy chain amino acid sequence shown in Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a light chain that comprises or is derived from a heavy chain amino acid sequence shown in Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a heavy chain that comprises or is derived from a heavy chain amino acid sequence shown in Table 1, and a light chain that comprises or is derived from a light chain amino acid sequence shown in Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain variable region and light chain variable region sequences from the combinations shown in Group A in Table 1.
  • the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain variable region and light chain variable region sequences from the sequences shown in Group B in Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain variable region and light chain variable region sequences from the sequences shown in Group C in Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain variable region and light chain variable region sequences from the sequences shown in Group D in Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes the combination of heavy chain variable region and light chain variable region sequences shown in Group E in Table 1.
  • the CD147 antibody/activatable CD 147 antibody includes the combination of heavy chain variable region and light chain variable region sequences shown in Group F in Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain variable region and light chain variable region sequences from the sequences shown in Group G in Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain variable region and light chain variable region sequences from the sequences shown in Group H in Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes the combination of heavy chain variable region and light chain variable region sequences shown in Group I in Table 1.
  • the CD147 antibody/activatable CD147 antibody includes the heavy chain variable region sequence shown in Group J in Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes the heavy chain variable region sequence shown in Group J in Table 1, or the combination of heavy chain variable region and light chain variable region sequences shown in Group K in Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain variable region and light chain variable region sequences from the sequences shown in Group L in Table 1. [00095] In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the complementarity determining region (CDR) sequences of a heavy chain sequence from the heavy chain sequences shown in Group A Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group A Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain
  • the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group A Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group A Table 1.
  • the CD147 antibody/activatable CD147 antibody includes a combination of CDRs of a heavy chain sequence from the heavy chain sequences shown in Group B Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group B Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group B Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group B Table 1.
  • the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group C Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group C Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group C Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group C Table 1.
  • the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group D Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group D Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group D Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group D Table 1.
  • the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group E Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group E Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group E Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group E Table 1.
  • the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group F Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group F Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group F Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group F Table 1.
  • the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group G Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group G Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group G Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group G Table 1.
  • the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group H Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group H Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group H Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group H Table 1.
  • the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group I Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group I Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group I Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group I Table 1.
  • the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group J Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group J Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group J Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group J Table 1.
  • the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group K Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group K Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group K Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group K Table 1.
  • CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group K Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a light chain sequence from the light chain sequences shown in Group K Table 1. In some embodiments, the CD147 antibody/activatable CD147 antibody includes a combination of the CDRs of a heavy chain sequence from the heavy chain sequences shown in Group K Table 1 and the CDRs of a light chain sequence from the heavy chain sequences shown in Group K Table 1.
  • VH Variable Heavy Chain Region
  • VL Variable Light Chain Region
  • the CD147 antibody/activatable CD147 antibody includes a CDR sequence shown in Table 2, a combination of VL CDR sequences (VL CDR1, VL CDR2, VL CDR3) selected from the group consisting of those combinations shown in a single row Table 2, a combination of VH CDR sequences (VH CDR1, VH CDR2, VH CDR3) selected from the group consisting of those combinations shown in Table 2, or a combination of VL CDR and VH CDR sequences (VL CDR1, VL CDR2, VL CDR3, VH CDR1, VH CDR2, VH CDR3) selected the group consisting of those combinations shown in Table 2.
  • VL CDR1, VL CDR2, VL CDR3, VH CDR1, VH CDR2, VH CDR3 selected the group consisting of those combinations shown in Table 2.
  • the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain CDR sequences selected from the group consisting of the combinations shown in Group A in Table 2.
  • the CD 147 is a combination of heavy chain CDR sequences selected from the group consisting of the combinations shown in Group A in Table 2.
  • antibody/activatable CD147 antibody includes a combination of light chain CDR sequences selected from the group consisting of the combinations shown in Group A in Table 2.
  • the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain CDR sequences selected from the group consisting of the combinations shown in Group A in Table 2, and a combination of light chain CDR sequences selected from the group consisting of the combinations shown in Group A in Table 2.
  • the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain CDR sequences selected from the group consisting of the combinations shown in Group B in Table 2.
  • antibody/activatable CD147 antibody includes a combination of light chain CDR sequences selected from the group consisting of the combinations shown in Group B in Table 2.
  • the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain CDR sequences selected from the group consisting of the combinations shown in Group B in Table 2, and a combination of light chain CDR sequences selected from the group consisting of the combinations shown in Group B in Table 2.
  • the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain CDR sequences selected from the group consisting of the combinations shown in Group C in Table 2.
  • antibody/activatable CD147 antibody includes a combination of light chain CDR sequences selected from the group consisting of the combinations shown in Group C in Table 2.
  • the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain CDR sequences selected from the group consisting of the combinations shown in Group C in Table 2, and a combination of light chain CDR sequences selected from the group consisting of the combinations shown in Group C in Table 2.
  • the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain CDR sequences selected from the Group E consisting of the combinations shown in Group E in Table 2. In some embodiments, the CD147
  • antibody/activatable CD147 antibody includes a combination of light chain CDR sequences selected from the Group E consisting of the combinations shown in Group E in Table 2.
  • the CD147 antibody/activatable CD147 antibody includes a combination of heavy chain CDR sequences selected from the Group E consisting of the combinations shown in Group E in Table 2, and a combination of light chain CDR sequences selected from the Group E consisting of the combinations shown in Group E in Table 2.
  • the CD147 antibody/activatable CD147 antibody comprises or is derived from an antibody that is manufactured, secreted or otherwise produced by a hybridoma, such as, for example, the hybridoma(s) disclosed in US Patent No. 5,330,896 and deposited at ATCC under deposit number HB 8214.
  • the CD147 antibody/activatable CD147 antibody comprises or is derived from an antibody that is manufactured, secreted or otherwise produced by a hybridoma, such as, for example, the hybridoma(s) designated BA120 as disclosed in US Patent No. 7,736,647 and deposited at the Collection Nationale de Cultures de Microorganismes (CNCM) (Institut Pasteur, Paris, France, 25, Rue du Dondel Roux, F-75724, Paris, Cedex 15) on Jun. 14, 2005, under number CNCM 1-3449; the hybridoma(s) disclosed in US Patent No.
  • CNCM Collection Nationale de Cultures de Microorganismes
  • the CD147 antibody/activatable CD147 antibody includes a heavy chain that comprises or is derived from a heavy chain amino acid sequence shown in PCT Publication Nos. WO 2014/144060, WO 2014/189973, WO 2014/020140, in US Patent Nos. 8,663,598; 8,129,503; 7,736,647; 7,572,895; 4,434,156; in US Patent Application
  • the disclosure also provides methods for producing a CD147 AB of the disclosure by culturing a cell under conditions that lead to expression of the antibody or fragment thereof, wherein the cell comprises a nucleic acid molecule of the disclosure or a vector of the disclosure.
  • the CD147 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4.
  • the antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3.
  • the CD147 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the CD147 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a nucleic acid sequence encoding a light chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the CD147 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a nucleic acid sequence encoding a light chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the CD147 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a heavy chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4.
  • the antibody or antigen binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a heavy chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3.
  • the CD147 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a light chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the antibody or antigen binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a light chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the CD147 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a heavy chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a light chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the CD147 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a heavy chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a light chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • Activatable CD 147 Antibodies activatable CD 147 Antibodies
  • the disclosure also provides activatable antibodies that include an antibody or antigen-binding fragment thereof that specifically binds CD 147 coupled to a masking moiety (MM), such that coupling of the MM reduces the ability of the antibody or antigen-binding fragment thereof to bind CD147.
  • the MM is coupled via a sequence that includes a substrate for a protease (CM, cleavable moiety), for example, a protease that is active in diseased tissue and/or a protease that is co-localized with CD147 at a treatment site in a subject.
  • CM protease
  • cleavable moiety for example, a protease that is active in diseased tissue and/or a protease that is co-localized with CD147 at a treatment site in a subject.
  • the activatable CD 147 antibodies provided herein are stable in circulation, activated at intended sites of therapy and/or diagnosis but not in normal, e.g ., healthy tissue or other tissue not targeted for treatment and/or diagnosis, and, when activated, exhibit binding to CD147 that is at least comparable to the corresponding, unmodified antibody, also referred to herein as the parental antibody.
  • the activatable CD 147 antibodies described herein overcome a limitation of antibody therapeutics, particularly antibody therapeutics that are known to be toxic to at least some degree in vivo. Target-mediated toxicity constitutes a major limitation for the development of therapeutic antibodies.
  • the activatable CD 147 antibodies provided herein are designed to address the toxicity associated with the inhibition of the target in normal tissues by traditional therapeutic antibodies. These activatable CD 147 antibodies remain masked until proteolytically activated at the site of disease.
  • the activatable CD 147 antibodies of the invention were engineered by coupling the antibody to an inhibitory mask through a linker that incorporates a protease substrate.
  • cleaved state of the activatable antibody refers to the condition of the activatable antibodies following modification of the CM by at least one protease.
  • uncleaved state refers to the condition of the activatable antibodies in the absence of cleavage of the CM by a protease.
  • activatable antibodies is used herein to refer to an activatable antibody in both its uncleaved (native) state, as well as in its cleaved state.
  • a cleaved activatable antibody may lack an MM due to cleavage of the CM by protease, resulting in release of at least the MM (e.g, where the MM is not joined to the activatable antibodies by a covalent bond (e.g, a disulfide bond between cysteine residues).
  • activatable or switchable By activatable or switchable is meant that the activatable antibody exhibits a first level of binding to a target when the activatable antibody is in a inhibited, masked or uncleaved state ⁇ i.e., a first conformation), and a second level of binding to the target in the uninhibited, unmasked and/or cleaved state (i.e., a second conformation), where the second level of target binding is greater than the first level of binding.
  • the access of target to the AB of the activatable antibody is greater in the presence of a cleaving agent capable of cleaving the CM, i.e., a protease, than in the absence of such a cleaving agent.
  • the AB when the activatable antibody is in the uncleaved state, the AB is inhibited from target binding and can be masked from target binding (i.e., the first conformation is such the AB cannot bind the target), and in the cleaved state the AB is not inhibited or is unmasked to target binding.
  • the CM and AB of the activatable antibodies are selected so that the AB represents a binding moiety for a given target, and the CM represents a substrate for a protease.
  • the protease is co-localized with the target at a treatment site or diagnostic site in a subject.
  • co-localized refers to being at the same site or relatively close nearby.
  • a protease cleaves a CM yielding an activated antibody that binds to a target located nearby the cleavage site.
  • the activatable antibodies disclosed herein find particular use where, for example, a protease capable of cleaving a site in the CM, i.e., a protease, is present at relatively higher levels in target-containing tissue of a treatment site or diagnostic site than in tissue of non-treatment sites (for example in healthy tissue).
  • a CM of the disclosure is also cleaved by one or more other proteases. In some embodiments, it is the one or more other proteases that is co-localized with the target and that is responsible for cleavage of the CM in vivo.
  • activatable antibodies provide for reduced toxicity and/or adverse side effects that could otherwise result from binding of the AB at non-treatment sites if the AB were not masked or otherwise inhibited from binding to the target.
  • an activatable antibody can be designed by selecting an AB of interest (such as any CD 147 antibody or fragment thereof described herein) and constructing the remainder of the activatable antibody so that, when conformationally constrained, the MM provides for masking of the AB or reduction of binding of the AB to its target. Structural design criteria can be to be taken into account to provide for this functional feature.
  • Activatable antibodies exhibiting a switchable phenotype of a desired dynamic range for target binding in an inhibited versus an uninhibited conformation are provided.
  • Dynamic range generally refers to a ratio of (a) a maximum detected level of a parameter under a first set of conditions to (b) a minimum detected value of that parameter under a second set of conditions.
  • the dynamic range refers to the ratio of (a) a maximum detected level of target protein binding to an activatable antibody in the presence of at least one protease capable of cleaving the CM of the activatable antibodies to (b) a minimum detected level of target protein binding to an activatable antibody in the absence of the protease.
  • the dynamic range of an activatable antibody can be calculated as the ratio of the dissociation constant of an activatable antibody cleaving agent (e.g ., enzyme) treatment to the dissociation constant of the activatable antibodies cleaving agent treatment.
  • the greater the dynamic range of an activatable antibody the better the switchable phenotype of the activatable antibody.
  • Activatable antibodies having relatively higher dynamic range values exhibit more desirable switching phenotypes such that target protein binding by the activatable antibodies occurs to a greater extent (e.g, predominantly occurs) in the presence of a cleaving agent (e.g, enzyme) capable of cleaving the CM of the activatable antibodies than in the absence of a cleaving agent.
  • the activatable CD 147 antibodies provided herein include a masking moiety (MM).
  • the masking moiety is an amino acid sequence that is coupled or otherwise attached to the CD147 antibody and is positioned within the activatable CD 147 antibody construct such that the masking moiety reduces the ability of the CD147 antibody to specifically bind CD147.
  • Suitable masking moieties are identified using any of a variety of known techniques. For example, peptide masking moieties are identified using the methods described in PCT Publication No. WO 2009/025846 by Daugherty et ak, the contents of which are hereby incorporated by reference in their entirety.
  • the activatable CD 147 antibodies provided herein include a cleavable moiety (CM).
  • the cleavable moiety includes an amino acid sequence that is a substrate for a protease, usually an extracellular protease.
  • Suitable substrates are identified using any of a variety of known techniques. For example, peptide substrates are identified using the methods described in U.S. Patent No. 7,666,817 by Daugherty et ak; in U.S. Patent No. 8,563,269 by Stagliano et ak; and in PCT Publication No.
  • Exemplary substrates include but are not limited to substrates cleavable by one or more of the following enzymes or proteases listed in Table 3.
  • the activatable antibodies in an activated state bind CD 147 and include (i) an antibody or an antigen binding fragment thereof (AB) that specifically binds to CD 147; (ii) a masking moiety (MM) that, when the activatable antibody is in an uncleaved state, inhibits the binding of the AB to CD 147; and (c) a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
  • AB antibody or an antigen binding fragment thereof
  • MM masking moiety
  • CM cleavable moiety
  • the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM- MM.
  • the activatable antibody comprises a linking peptide between the MM and the CM.
  • the activatable antibody comprises a linking peptide between the CM and the AB.
  • the activatable antibody comprises a first linking peptide (LP1) and a second linking peptide (LP2), and wherein the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-LP1-CM- LP2-AB or AB-LP2-CM-LP1-MM.
  • the two linking peptides need not be identical to each other.
  • At least one of LP1 or LP2 comprises an amino acid sequence selected from the group consisting of (GS)n, (GGS)n, (GSGGS)n (SEQ ID NO: 116) and (GGGS)n (SEQ ID NO: 117), where n is an integer of at least one.
  • At least one of LP1 or LP2 comprises an amino acid sequence selected from the group consisting of GGSG (SEQ ID NO: 118), GGSGG (SEQ ID NO: 119), GSGSG (SEQ ID NO: 120), GSGGG (SEQ ID NO: 121), GGGSG (SEQ ID NO: 118), GGSG (SEQ ID NO: 118), GGSGG (SEQ ID NO: 119), GSGSG (SEQ ID NO: 120), GSGGG (SEQ ID NO: 121), GGGSG (SEQ ID NO:
  • LP1 comprises the amino acid sequence
  • GSSGGSGGSGGSG (SEQ ID NO: 124), GSSGGSGGSGG (SEQ ID NO: 125),
  • GSSGGSGGSGGS (SEQ ID NO: 126), GSSGGSGGSGGSGGGS (SEQ ID NO: 127),
  • GSSGGSGGSG SEQ ID NO: 128, GSSGGSGGSGS (SEQ ID NO: 129), or GGGSSGGS (SEQ ID NO: 134).
  • LP2 comprises the amino acid sequence GSS, GGS,
  • GGGS SEQ ID NO: 130
  • GSSGT SEQ ID NO: 131
  • GSSG SEQ ID NO: 132).
  • the antibody or antigen-binding fragment thereof that binds CD147 is a monoclonal antibody, domain antibody, single chain, Fab fragment, a F(ab’)2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, or a single domain light chain antibody.
  • such an antibody or antigen-binding fragment thereof that binds CD147 is a mouse, other rodent, chimeric, humanized or fully human monoclonal antibody.
  • the activatable antibody in an uncleaved state specifically binds to the mammalian CD147 with a dissociation constant less than or equal to 1 nM, less than or equal to 5 nM, less than or equal to 10 nM, less than or equal to 15 nM, less than or equal to 20 nM, less than or equal to 25 nM, less than or equal to 50 nM, less than or equal to 100 nM, less than or equal to 150 nM, less than or equal to 250 nM, less than or equal to 500 nM, less than or equal to 750 nM, less than or equal to 1000 nM, and/or less than or equal to 2000 nM.
  • a dissociation constant less than or equal to 1 nM, less than or equal to 5 nM, less than or equal to 10 nM, less than or equal to 15 nM, less than or equal to 20 nM, less than or equal to 25 nM, less than or equal to 50 nM, less
  • the activatable antibody in an uncleaved state specifically binds to the mammalian CD147 with a dissociation constant in the range of 1 nM to 2000 nM,
  • the activatable antibody in an activated state specifically binds to the mammalian CD147 with a dissociation constant is less than or equal to 0.01 nM
  • the activatable antibody in an activated state specifically binds to the mammalian CD147 with a dissociation constant in the range of 0.01 nM to 100 nM, 0.01 nM to 10 nM, 0.01 nM to 5 nM, 0.01 nM to 1 nM, 0.01 to 0.5 nM, 0.01 nm to 0.1 nM, 0.01 nm to 0.05 nM, 0.05 nM to 100 nM, 0.05 nM to 10 nM, 0.05 nM to 5 nM, 0.05 nM to 1 nM, 0.05 to 0.5 nM, 0.05 nm to 0.1 nM, 0.1 nM to 100 nM, 0.1 nM to 10 nM, 0.1 nM to 5 nM, 0.1 nM to 1 nM, 0.1 to 0.5 nM, 0.5 nM to 100 nM, 0.1 nM to 10 nM, 0.1 n
  • the Kd of the AB modified with a MM towards the CD147 target is at least 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000, 5,000,000, 10,000,000, 50,000,000 or greater, or between 5-10, 10-100, 10-1,000, 10-10,000, 10- 100,000, 10-1,000,000, 10-10,000,000, 100-1,000, 100-10,000, 100-100,000, 100-1,000,000, 100-10,000,000, 1,000-10,000, 1,000-100,000, 1,000-1,000,000, 1000-10,000,000, 10,000- 100,000, 10,000-1,000,000, 10,000-10,000,000, 100,000-1,000,000, or 100,000-10,000,000 times greater than the Kd of the AB not modified with an MM or of the parental AB towards the CD 147 target.
  • the binding affinity of the AB modified with a MM towards the CD 147 target is at least 2, 3, 4, 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000, 5,000,000, 10,000,000, 50,000,000 or greater, or between 5-10, 10- 100, 10-1,000, 10-10,000, 10-100,000, 10-1,000,000, 10-10,000,000, 100-1,000, 100-10,000, 100-100,000, 100-1,000,000, 100-10,000,000, 1,000-10,000, 1,000-100,000, 1,000-1,000,000, 1000-10,000,000, 10,000-100,000, 10,000-1,000,000, 10,000-10,000,000, 100,000-1,000,000, or 100,000-10,000,000 times lower than the binding affinity of the AB not modified with an MM or of the parental AB towards the CD 147 target.
  • the dissociation constant (Kd) of the MM towards the AB is generally greater than the Kd of the AB towards the CD 147 target.
  • the Kd of the MM towards the AB can be at least 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 100,000, 1,000,000 or even 10,000,000 times greater than the Kd of the AB towards the CD147 target.
  • the binding affinity of the MM towards the AB is generally lower than the binding affinity of the AB towards the CD147 target.
  • the binding affinity of MM towards the AB can be at least 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 100,000, 1,000,000 or even 10,000,000 times lower than the binding affinity of the AB towards the CD 147 target.
  • the dissociation constant (Kd) of the MM towards the AB is approximately equal to the Kd of the AB towards the CD 147 target. In some embodiments, the dissociation constant (Kd) of the MM towards the AB is no more than the dissociation constant of the AB towards the CD147 target. In some embodiments, the dissociation constant (Kd) of the MM towards the AB is equivalent to the dissociation constant of the AB towards the CD147 target.
  • the dissociation constant (Kd) of the MM towards the AB is less than the dissociation constant of the AB towards the CD147 target.
  • the dissociation constant (Kd) of the MM towards the AB is greater than the dissociation constant of the AB towards the CD147 target.
  • the MM has a Kd for binding to the AB that is no more than the Kd for binding of the AB to the target.
  • the MM has a Kd for binding to the AB that is no less than the Kd for binding of the AB to the target.
  • the MM has a Kd for binding to the AB that is
  • the MM has a Kd for binding to the AB that is less than the Kd for binding of the AB to the target. [000159] In some embodiments, the MM has a Kd for binding to the AB that is greater than the Kd for binding of the AB to the target.
  • the MM has a Kd for binding to the AB that is no more than 2, 3, 4, 5, 10, 25, 50, 100, 250, 500, or 1,000 fold greater than the K d for binding of the AB to the target. In some embodiments, the MM has a Kd for binding to the AB that is between 1-5, 2-5, 2-10, 5-10, 5-20, 5-50, 5-100, 10-100, 10-1,000, 20-100, 20-1000, or 100-1,000 fold greater than the Kd for binding of the AB to the target.
  • the MM has an affinity for binding to the AB that is less than the affinity of binding of the AB to the target.
  • the MM has an affinity for binding to the AB that is no more than the affinity of binding of the AB to the target.
  • the MM has an affinity for binding to the AB that is approximately equal of the affinity of binding of the AB to the target.
  • the MM has an affinity for binding to the AB that is no less than the affinity of binding of the AB to the target.
  • the MM has an affinity for binding to the AB that is greater than the affinity of binding of the AB to the target.
  • the MM has an affinity for binding to the AB that is 2, 3,
  • the MM has an affinity for binding to the AB that is between 1-5, 2-5, 2- 10, 5-10, 5-20, 5-50, 5-100, 10-100, 10-1,000, 20-100, 20-1000, or 100-1,000 fold less than the affinity of binding of the AB to the target. In some embodiments, the MM has an affinity for binding to the AB that is 2 to 20 fold less than the affinity of binding of the AB to the target. In some embodiments, a MM not covalently linked to the AB and at equimolar concentration to the AB does not inhibit the binding of the AB to the target.
  • the AB’s ability to bind the target when modified with an MM can be reduced by at least 50%, 60%, 70%, 80%, 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% and even 100% for at least 2, 4, 6, 8, 12, 28, 24, 30, 36, 48, 60, 72, 84, or 96 hours, or 5, 10, 15, 30, 45, 60, 90, 120, 150, or 180 days, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months or more when measured in vivo or in an in vitro assay.
  • the MM inhibits the binding of the AB to the target.
  • the MM binds the antigen binding domain of the AB and inhibits binding of the AB to the target.
  • the MM can sterically inhibit the binding of the AB to the target.
  • the MM can allosterically inhibit the binding of the AB to its target.
  • such coupling or modification can effect a structural change that reduces or inhibits the ability of the AB to specifically bind its target.
  • An AB coupled to or modified with an MM can be represented by the following formulae (in order from an amino (N) terminal region to carboxyl (C) terminal region:
  • MM is a masking moiety
  • the AB is an antibody or antibody fragment thereof
  • the L is a linker.
  • linkers e.g., flexible linkers
  • the MM is not a natural binding partner of the AB. In some embodiments, the MM contains no or substantially no homology to any natural binding partner of the AB. In some embodiments, the MM is no more than 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% similar to any natural binding partner of the AB. In some embodiments, the MM is no more than 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% identical to any natural binding partner of the AB.
  • the MM is no more than 25% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 50% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 20% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 10% identical to any natural binding partner of the AB.
  • the activatable antibodies include an AB that is modified by an MM and also includes one or more cleavable moieties (CM). Such activatable antibodies exhibit activatable/switchable binding, to the AB’s target.
  • Activatable antibodies generally include an antibody or antibody fragment (AB), modified by or coupled to a masking moiety (MM) and a modifiable or cleavable moiety (CM).
  • CM contains an amino acid sequence that serves as a substrate for at least one protease.
  • the elements of the activatable antibodies are arranged so that the MM and CM are positioned such that in a cleaved (or relatively active) state and in the presence of a target, the AB binds a target while the activatable antibody is in an uncleaved (or relatively inactive) state in the presence of the target, specific binding of the AB to its target is reduced or inhibited.
  • the specific binding of the AB to its target can be reduced due to the inhibition or masking of the AB’s ability to specifically bind its target by the MM.
  • the Kd of the AB modified with a MM and a CM towards the CD 147 target is at least 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000, 5,000,000, 10,000,000, 50,000,000 or greater, or between 5-10, 10-100, 10-1,000, 10- 10,000, 10-100,000, 10-1,000,000, 10-10,000,000, 100-1,000, 100-10,000, 100-100,000, 100- 1,000,000, 100-10,000,000, 1,000-10,000, 1,000-100,000, 1,000-1,000,000, 1000-10,000,000, 10,000-100,000, 10,000-1,000,000, 10,000-10,000,000, 100,000-1,000,000, or 100,000- 10,000,000 times greater than the Kd of the AB not modified with an MM and a CM or of the parental AB towards the CD 147 target.
  • the binding affinity of the AB modified with a MM and a CM towards the CD147 target is at least 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000, 5,000,000, 10,000,000, 50,000,000 or greater, or between 5-10, 10-100, 10-1,000, 10-10,000, 10-100,000, 10-1,000,000, 10- 10,000,000, 100-1,000, 100-10,000, 100-100,000, 100-1,000,000, 100-10,000,000, 1,000-10,000, 1,000-100,000, 1,000-1,000,000, 1000-10,000,000, 10,000-100,000, 10,000-1,000,000, 10,000- 10,000,000, 100,000-1,000,000, or 100,000-10,000,000 times lower than the binding affinity of the AB not modified with an MM and a CM or of the parental AB towards the CD 147 target.
  • the AB’s ability to bind the target when modified with an MM and a CM can be reduced by at least 50%, 60%, 70%, 80%, 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% and even 100% for at least 2, 4, 6, 8, 12, 28, 24, 30, 36, 48, 60, 72, 84, or 96 hours or 5, 10, 15, 30, 45, 60, 90, 120, 150, or 180 days, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months or longer when measured in vivo or in an in vitro assay.
  • Activatable antibodies can be provided in a variety of structural configurations. Exemplary formulae for activatable antibodies are provided below. It is specifically
  • the N- to C-terminal order of the AB, MM and CM can be reversed within an activatable antibody. It is also specifically contemplated that the CM and MM may overlap in amino acid sequence, e.g ., such that the CM is contained within the MM.
  • activatable antibodies can be represented by the following formula (in order from an amino (N) terminal region to carboxyl (C) terminal region:
  • MM is a masking moiety
  • CM is a cleavable moiety
  • AB is an antibody or fragment thereof.
  • MM and CM are indicated as distinct components in the formulae above, in all exemplary embodiments (including formulae) disclosed herein it is contemplated that the amino acid sequences of the MM and the CM could overlap, e.g. , such that the CM is completely or partially contained within the MM.
  • the formulae above provide for additional amino acid sequences that can be positioned N-terminal or C-terminal to the activatable antibodies elements.
  • the MM is not a natural binding partner of the AB. In some embodiments, the MM contains no or substantially no homology to any natural binding partner of the AB. In some embodiments, the MM is no more than 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% similar to any natural binding partner of the AB. In some embodiments, the MM is no more than 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% identical to any natural binding partner of the AB.
  • the MM is no more than 50% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 25% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 20% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 10% identical to any natural binding partner of the AB.
  • the activatable antibody construct may be desirable to insert one or more linkers, e.g., flexible linkers, into the activatable antibody construct so as to provide for flexibility at one or more of the MM-CM junction, the CM-AB junction, or both.
  • the AB, MM, and/or CM may not contain a sufficient number of residues (e.g, Gly, Ser, Asp, Asn, especially Gly and Ser, particularly Gly) to provide the desired flexibility.
  • the switchable phenotype of such activatable antibody constructs may benefit from introduction of one or more amino acids to provide for a flexible linker.
  • a flexible linker can be operably inserted to facilitate formation and maintenance of a cyclic structure in the uncleaved activatable antibody.
  • an activatable antibody comprises one of the following formulae (where the formula below represents an amino acid sequence in either N- to C-terminal direction or C- to N-terminal direction):
  • MM, CM, and AB are as defined above; wherein Ll and L2 are each independently and optionally present or absent, are the same or different flexible linkers that include at least 1 flexible amino acid (e.g, Gly).
  • the formulae above provide for additional amino acid sequences that can be positioned N-terminal or C-terminal to the activatable antibodies elements. Examples include, but are not limited to, targeting moieties (e.g, a ligand for a receptor of a cell present in a target tissue) and serum half-life extending moieties (e.g, polypeptides that bind serum proteins, such as immunoglobulin (e.g., IgG) or serum albumin (e.g, human serum albumin (HAS)).
  • targeting moieties e.g, a ligand for a receptor of a cell present in a target tissue
  • serum half-life extending moieties e.g, polypeptides that bind serum proteins, such as immunoglobulin (e.g.
  • the CM is specifically cleaved by at least one protease at a rate of about 0.001- 1500 x 10 4 M ⁇ S 1 or at least 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2.5, 5, 7.5, 10, 15, 20, 25, 50,
  • the CM is specifically cleaved at a rate of about 100,000 M ⁇ S 1 . In some embodiments, the CM is specifically cleaved at a rate from about lxlOE2 to about lxlOE6 M ⁇ S 1 (i.e., from about lxlO 2 to about lxlO 6 M ⁇ S 1 ).
  • CM For specific cleavage by an enzyme, contact between the enzyme and CM is made.
  • the activatable antibody comprising an AB coupled to a MM and a CM
  • the CM can be cleaved.
  • Sufficient enzyme activity can refer to the ability of the enzyme to make contact with the CM and effect cleavage. It can readily be envisioned that an enzyme may be in the vicinity of the CM but unable to cleave because of other cellular factors or protein modification of the enzyme.
  • Linkers suitable for use in compositions described herein are generally ones that provide flexibility of the modified AB or the activatable antibodies to facilitate the inhibition of the binding of the AB to the target. Such linkers are generally referred to as flexible linkers.
  • Suitable linkers can be readily selected and can be of any of a suitable of different lengths, such as from 1 amino acid (e.g, Gly) to 20 amino acids, from 2 amino acids to 15 amino acids, from 3 amino acids to 12 amino acids, including 4 amino acids to 10 amino acids, 5 amino acids to 9 amino acids, 6 amino acids to 8 amino acids, or 7 amino acids to 8 amino acids, and can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids in length.
  • Exemplary flexible linkers include glycine polymers (G)n, glycine-serine polymers (including, for example, (GS)n, (GSGGS)n (SEQ ID NO: 339) and (GGGS)n (SEQ ID NO: 340), where n is an integer of at least one), glycine-alanine polymers, alanine-serine polymers, and other flexible linkers known in the art.
  • Glycine and glycine-serine polymers are relatively unstructured, and therefore may be able to serve as a neutral tether between
  • Glycine accesses significantly more phi-psi space than even alanine, and is much less restricted than residues with longer side chains (see Scheraga, Rev. Computational Chem.
  • Exemplary flexible linkers include, but are not limited to Gly-Gly-Ser-Gly (SEQ ID NO: 341), Gly-Gly-Ser-Gly-Gly (SEQ ID NO: 342), Gly-Ser-Gly-Ser-Gly (SEQ ID NO: 343), Gly-Ser-Gly-Gly-Gly (SEQ ID NO: 344), Gly-Gly-Gly-Ser-Gly (SEQ ID NO: 345), Gly-Ser-Ser-Ser-Gly (SEQ ID NO: 346), and the like.
  • an activatable antibodies can include linkers that are all or partially flexible, such that the linker can include a flexible linker as well as one or more portions that confer less flexible structure to provide for a desired activatable antibodies structure.
  • compositions and methods that include an activatable CD 147 antibody that includes an antibody or antibody fragment (AB) that specifically binds CD147, where the AB is coupled to a masking moiety (MM) that decreases the ability of the AB to bind its target.
  • the activatable CD 147 antibody further includes a cleavable moiety (CM) that is a substrate for a protease.
  • CM cleavable moiety
  • compositions and methods provided herein enable the attachment of one or more agents to one or more cysteine residues in the AB without reducing or otherwise disturbing one or more disulfide bonds within the MM.
  • the compositions and methods provided herein produce an activatable CD 147 antibody that is conjugated to one or more agents, e.g., any of a variety of therapeutic, diagnostic and/or prophylactic agents, for example, in some embodiments, without any of the agent(s) being conjugated to the MM of the activatable CD147 antibody.
  • the compositions and methods provided herein produce conjugated activatable CD147 antibodies in which the MM retains the ability to effectively and efficiently mask the AB of the activatable antibody in an uncleaved state.
  • the compositions and methods provided herein produce conjugated activatable CD147 antibodies in which the activatable antibody is still activated, i.e., cleaved, in the presence of a protease that can cleave the CM.
  • the activatable antibody comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4. In some embodiments, the activatable antibody comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3.
  • the activatable antibody comprises a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9. In some embodiments, the activatable antibody comprises a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the activatable antibody comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4.
  • the activatable antibody comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3.
  • the activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1- 4. In some embodiments, the activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3.
  • the activatable antibody comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5- 9.
  • the activatable antibody comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1- 4, and a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1- 3, and a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the activatable antibody comprises a combination of a variable heavy chain complementarity determining region 1 (VH CDR1, also referred to herein as CDRH1) sequence, a variable heavy chain complementarity determining region 2 (VH CDR2, also referred to herein as CDRH2) sequence, a variable heavy chain complementarity
  • VH CDR3, also referred to herein as CDRH3 sequence, a variable light chain complementarity determining region 1 (VL CDR1, also referred to herein as CDRL1) sequence, a variable light chain complementarity determining region 2 (VL CDR2, also referred to herein as CDRL2) sequence, and a variable light chain complementarity determining region 3 (VL CDR3, also referred to herein as CDRL3) sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence comprising the amino acid sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); a VH CDR2 sequence comprising the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 12); a VH CDR3 sequence comprising the amino acid sequence AGTDY (SEQ ID NO: 13); a VL CDR1 sequence comprising the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14
  • RASQSVRTDVG (SEQ ID NO: 15); a VL CDR2 sequence comprising the amino acid sequence YSSNRYT (SEQ ID NO: 16); and a VL CDR3 sequence comprising the amino acid sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • the activatable antibody comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR1 sequence comprising the amino acid sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); a VH CDR2 sequence that includes a sequence that is at least 90%, 91%,
  • VH CDR2 sequence comprising the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 12); a VH CDR3 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR3 sequence comprising the amino acid sequence AGTDY (SEQ ID NO: 13); a VL CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VL CDR1 sequence comprising the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); a VL CDR2 sequence that includes a sequence that is at least 90%, 91%,
  • VL CDR2 sequence comprising the amino acid sequence YSSNRYT (SEQ ID NO: 16); and a VL CDR3 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VL CDR3 sequence comprising the amino acid sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • the activatable antibody comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the VH CDR1 sequence comprises the amino acid sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence comprises the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence comprises the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence comprises the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 10)
  • VH CDR3 sequence comprises the amino acid sequence AGTDY (SEQ ID NO: 12); the VH CDR3 sequence comprises the amino acid sequence AGTDY (SEQ ID NO: 12); the VH CDR3 sequence comprises the amino acid sequence AGTDY (SEQ ID NO: 12); the VH CDR3 sequence comprises the amino acid sequence AGTDY (SEQ ID NO: 12); the VH CDR3 sequence comprises the amino acid sequence AGTDY (SEQ ID NO: 12); the VH CDR3 sequence comprises the amino acid sequence AGTDY (SEQ ID NO: 12);
  • the VL CDR1 sequence comprises the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15);
  • the VL CDR2 sequence comprises the amino acid sequence YSSNRYT (SEQ ID NO: 16); and the VL CDR3 sequence comprises the amino acid sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • the activatable antibody comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence
  • the VH CDR1 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11)
  • the VH CDR2 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence
  • the VH CDR3 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence AGTDY (SEQ ID NO: 13);
  • the VL CDR1 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15);
  • the VL CDR2 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%,
  • VL CDR3 sequence comprises a sequence that is at least 90%, 91%, 92%,
  • QQDYSSPFT SEQ ID NO: 17
  • QQDYSSPYT SEQ ID NO: 18
  • the AB of the activatable CD147 antibody comprises a heavy chain variable region amino acid sequence selected from the group consisting of the heavy chain variable region sequences shown in Table 1. In some embodiments, the AB of the activatable CD147 antibody comprises a light chain variable region amino acid sequence selected from the group consisting of the light chain variable region sequences shown in Table 1. In some embodiments, the AB of the activatable CD147 antibody comprises a heavy chain variable region amino acid sequence selected from the group consisting of the heavy chain variable region sequences shown in Table 1 and a light chain variable region amino acid sequence selected from the group consisting of the light chain variable region sequences shown in Table 1.
  • the AB of the activatable CD147 antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of the heavy chain variable region sequences shown in Table 1.
  • the AB of the activatable CD147 antibody comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of the light chain variable region sequences shown in Table 1.
  • the AB of the activatable CD 147 antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of the heavy chain variable region sequences shown in Table 1 and a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of the light chain variable region sequences shown in Table 1.
  • the activatable antibody comprises a combination of a variable heavy chain complementarity determining region 1 (VH CDR1, also referred to herein as CDRH1) sequence, a variable heavy chain complementarity determining region 2 (VH CDR2, also referred to herein as CDRH2) sequence, a variable heavy chain complementarity
  • VH CDR3, also referred to herein as CDRH3 a variable light chain complementarity determining region 1 (VL CDR1, also referred to herein as CDRL1) sequence, a variable light chain complementarity determining region 2 (VL CDR2, also referred to herein as CDRL2) sequence, and a variable light chain complementarity determining region 3 (VL CDR3, also referred to herein as CDRL3) sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence shown in Table 2; a VH CDR2 sequence shown in Table 2; a VH CDR3 sequence shown in Table 2; a VL CDR1 sequence shown in Table 2; a VL CDR2 sequence shown in Table 2; and a VL CDR3 sequence shown in Table 2.
  • the activatable antibody comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR1 sequence shown in Table 2; a VH CDR2 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR2 sequence shown in Table 2; a VH CDR3 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to
  • the activatable antibody comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the combination is a combination of the six CDR sequences (VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, and VL CDR3) shown in a single row in Table 2.
  • the activatable antibody comprises a heavy chain that comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, and a VH CDR3 sequence, wherein the combination is a combination of the three heavy chain CDR sequences (VH CDR1, VH CDR2, VH CDR3) shown in a single row in Table 2.
  • the activatable antibody comprises a light chain that comprises a combination of a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the combination is a combination of the three light chain CDR sequences (VL CDR1, VL CDR2, VL CDR3) shown in a single row in Table 2.
  • the activatable antibody comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein each CDR sequence in the combination comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the corresponding CDR sequence in a combination of the six CDR sequences (VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, and VL CDR3) shown in a single row in Table 2.
  • the activatable antibody comprises a heavy chain variable region that comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, and a VH CDR3 sequence, wherein each CDR sequence in the combination comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the corresponding CDR sequence in a combination of three heavy chain CDR sequences (VH CDR1, VH CDR2, VH CDR3) shown in a single row in Table 2.
  • the activatable antibody comprises a light chain variable region that comprises a combination of a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein each CDR sequence in the combination comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the corresponding CDR sequence in a combination of three light chain CDR sequences (VL CDR1, VL CDR2, VL CDR3) shown in a single row in Table 2.
  • the MM has a dissociation constant for binding to the AB which is greater than the dissociation constant of the AB to CD147.
  • the MM has a dissociation constant for binding to the AB which is no more than the dissociation constant of the AB to CD147. [000210] In some embodiments, the MM has a dissociation constant for binding to the AB is equivalent to the dissociation constant of the AB to CD 147.
  • the MM has a dissociation constant for binding to the AB which is less than the dissociation constant of the AB to CD147.
  • the dissociation constant (Kd) of the MM towards the AB is no more than 2, 3, 4, 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 50,000,
  • the MM does not interfere or compete with the AB for binding to CD147 when the activatable antibody is in a cleaved state.
  • the MM is a polypeptide of about 2 to 40 amino acids in length. In some embodiments, the MM is a polypeptide of up to about 40 amino acids in length.
  • the MM polypeptide sequence is different from that of CD 147. In some embodiments, the MM polypeptide sequence is no more than 50% identical to any natural binding partner of the AB. In some embodiments, the MM polypeptide sequence is different from that of CD 147 and is no more than 40%, 30%, 25%, 20%, 15%, or 10% identical to any natural binding partner of the AB.
  • the coupling of the MM to the AB reduces the ability of the AB to bind CD147 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD 147 is at least two times greater than the Kd of the AB when not coupled to the MM towards CD 147.
  • Kd dissociation constant
  • the coupling of the MM to the AB reduces the ability of the AB to bind CD147 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD147 is at least five times greater than the Kd of the AB when not coupled to the MM towards CD 147.
  • Kd dissociation constant
  • the coupling of the MM to the AB reduces the ability of the AB to bind CD147 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD147 is at least 10 times greater than the Kd of the AB when not coupled to the MM towards CD 147.
  • Kd dissociation constant
  • the coupling of the MM to the AB reduces the ability of the AB to bind CD147 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD147 is at least 20 times greater than the Kd of the AB when not coupled to the MM towards CD 147.
  • Kd dissociation constant
  • the coupling of the MM to the AB reduces the ability of the AB to bind CD147 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD147 is at least 40 times greater than the Kd of the AB when not coupled to the MM towards CD 147.
  • Kd dissociation constant
  • the coupling of the MM to the AB reduces the ability of the AB to bind CD147 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD147 is at least 100 times greater than the Kd of the AB when not coupled to the MM towards CD 147.
  • Kd dissociation constant
  • the coupling of the MM to the AB reduces the ability of the AB to bind CD147 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD147 is at least 1000 times greater than the Kd of the AB when not coupled to the MM towards CD 147.
  • Kd dissociation constant
  • the coupling of the MM to the AB reduces the ability of the AB to bind CD147 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD147 is at least 10,000 times greater than the Kd of the AB when not coupled to the MM towards CD 147.
  • Kd dissociation constant
  • the MM in the presence of CD 147, reduces the ability of the AB to bind CD147 by at least 90% when the CM is uncleaved, as compared to when the CM is cleaved when assayed in vitro using a target displacement assay such as, for example, the assay described in PCT Publication No. WO 2010/081173, the contents of which are hereby incorporated by reference in their entirety.
  • a target displacement assay such as, for example, the assay described in PCT Publication No. WO 2010/081173, the contents of which are hereby incorporated by reference in their entirety.
  • MM comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 101-109. In some embodiments, the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 107-109. [000226] In some embodiments, the protease that cleaves the CM is active, e.g., up- regulated or otherwise unregulated, in diseased tissue, and the protease cleaves the CM in the activatable antibody when the activatable antibody is exposed to the protease.
  • the protease that cleaves the CM is active, e.g., up- regulated or otherwise unregulated, in diseased tissue, and the protease cleaves the CM in the activatable antibody when the activatable antibody is exposed to the protease.
  • the protease is co-localized with CD147 in a tissue, and the protease cleaves the CM in the activatable antibody when the activatable antibody is exposed to the protease.
  • the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD147 is reduced to occur with a dissociation constant that is at least twofold greater than the dissociation constant of an unmodified AB binding to CD147, whereas in the cleaved state (i.e., when the activatable antibody is in the cleaved state), the AB binds CD147.
  • the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD147 is reduced to occur with a dissociation constant that is at least fivefold greater than the dissociation constant of an unmodified AB binding to CD147, whereas in the cleaved state (i.e., when the activatable antibody is in the cleaved state), the AB binds CD147.
  • the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD147 is reduced to occur with a dissociation constant that is at least lO-fold greater than the dissociation constant of an unmodified AB binding to CD147, whereas in the cleaved state (i.e., when the activatable antibody is in the cleaved state), the AB binds CD147.
  • the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD147 is reduced to occur with a dissociation constant that is at least 20-fold greater than the dissociation constant of an unmodified AB binding to CD147, whereas in the cleaved state (i.e., when the activatable antibody is in the cleaved state), the AB binds CD147.
  • the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD147 is reduced to occur with a dissociation constant that is at least 40-fold greater than the dissociation constant of an unmodified AB binding to CD147, whereas in the cleaved state, the AB binds CD147.
  • the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD147 is reduced to occur with a dissociation constant that is at least 50-fold greater than the dissociation constant of an unmodified AB binding to CD147, whereas in the cleaved state, the AB binds CD147.
  • the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD147 is reduced to occur with a dissociation constant that is at least lOO-fold greater than the dissociation constant of an unmodified AB binding to CD147, whereas in the cleaved state, the AB binds CD147.
  • the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD147 is reduced to occur with a dissociation constant that is at least 200-fold greater than the dissociation constant of an unmodified AB binding to CD147, whereas in the cleaved state, the AB binds CD147.
  • the CM is a polypeptide of up to 15 amino acids in length.
  • the CM is a polypeptide that includes a first cleavable moiety (CM1) that is a substrate for at least one matrix metalloprotease (MMP) and a second cleavable moiety (CM2) that is a substrate for at least one serine protease (SP).
  • MMP matrix metalloprotease
  • SP serine protease
  • each of the CM1 substrate sequence and the CM2 substrate sequence of the CM1- CM2 substrate is independently a polypeptide of up to 15 amino acids in length.
  • the CM is a substrate for at least one protease that is or is believed to be up-regulated or otherwise unregulated in cancer.
  • the CM is a substrate for at least one protease selected from the group consisting of a matrix metalloprotease (MMP), thrombin, a neutrophil elastase, a cysteine protease, legumain, and a serine protease, such as matriptase (MT-SP1), and urokinase (uPA).
  • MMP matrix metalloprotease
  • thrombin thrombin
  • neutrophil elastase a neutrophil elastase
  • cysteine protease cysteine protease
  • legumain and a serine protease
  • MT-SP1 matriptase
  • uPA urokinase
  • Exemplary substrates include but are not limited to substrates cleavable by one or more of the following enzymes or proteases listed in Table 3.
  • the CM is selected for use with a specific protease, for example a protease that is known to be co-localized with the target of the activatable antibody.
  • the CM is a substrate for at least one MMP.
  • MMPs include the MMPs listed in the Table 3.
  • the CM is a substrate for a protease selected from the group consisting of MMP 9, MMP 14, MMP1, MMP3, MMP13, MMP17, MMP11, and MMP19.
  • the CM is a substrate for MMP9.
  • the CM is a substrate for MMP14.
  • the CM is a substrate that includes the sequence
  • TGRGPSWV SEQ ID NO: 356
  • SARGPSRW SEQ ID NO: 357
  • TARGPSFK SEQ ID NO: 358
  • LSGRSDNH SEQ ID NO: 359
  • GGWHTGRN SEQ ID NO: 360
  • HTGRSGAL SEQ ID NO: 361
  • PLTGRSGG SEQ ID NO: 362
  • AARGPAIH SEQ ID NO: 363
  • RGPAFNPM SEQ ID NO: 364
  • SSRGPAYL SEQ ID NO: 365
  • RGPATPIM SEQ ID NO: 366
  • RGPA SEQ ID NO: 367
  • GGQPSGMWGW SEQ ID NO: 368
  • FPRPLGITGL SEQ ID NO: 369
  • VHMPLGFLGP SEQ ID NO: 370
  • SPLTGRSG SEQ ID NO: 371
  • SAGFSLPA (SEQ ID NO: 372); LAPLGLQRR (SEQ ID NO: 373); SGGPLGVR (SEQ ID NO: 374); PLGL (SEQ ID NO: 375); LSGRSGNH (SEQ ID NO: 789); SGRSANPRG (SEQ ID NO: 790); LSGRSDDH (SEQ ID NO: 791); LSGRSDIH (SEQ ID NO: 792); LSGRSDQH (SEQ ID NO: 793); LSGRSDTH (SEQ ID NO: 794); LSGRSDYH (SEQ ID NO: 795); LSGRSDNP (SEQ ID NO: 796); LSGRSANP (SEQ ID NO: 797); LSGRSANI (SEQ ID NO: 798);
  • LSGRSDNI (SEQ ID NO: 799); MIAPVAYR (SEQ ID NO: 800); RPSPMWAY (SEQ ID NO: 801); WATPRPMR (SEQ ID NO: 802); FRLLDWQW (SEQ ID NO: 803); ISSGL (SEQ ID NO: 804); ISSGLLS (SEQ ID NO: 805); and/or ISSGLL (SEQ ID NO: 806).
  • the CM comprises the amino acid sequence LSGRSDNH (SEQ ID NO: 359). In some embodiments, the CM comprises the amino acid sequence
  • the CM comprises the amino acid sequence PLTGRSGG (SEQ ID NO: 362). In some embodiments, the CM comprises the amino acid sequence GGQPSGMWGW (SEQ ID NO: 368). In some embodiments, the CM comprises the amino acid sequence FPRPLGITGL (SEQ ID NO: 369). In some embodiments, the CM comprises the amino acid sequence VHMPLGFLGP (SEQ ID NO: 370). In some embodiments, the CM comprises the amino acid sequence PLGL (SEQ ID NO: 375). In some embodiments, the CM comprises the amino acid sequence SARGPSRW (SEQ ID NO: 357). In some embodiments, the CM comprises the amino acid sequence TARGPSFK (SEQ ID NO: 358). In some embodiments, the CM comprises the amino acid sequence GGWHTGRN (SEQ ID NO: 362). In some embodiments, the CM comprises the amino acid sequence GGQPSGMWGW (SEQ ID NO: 368). In some embodiments, the CM comprises the amino acid sequence
  • the CM comprises the amino acid sequence HTGRSGAL (SEQ ID NO: 361). In some embodiments, the CM comprises the amino acid sequence
  • the CM comprises the amino acid sequence RGPAFNPM (SEQ ID NO: 364). In some embodiments, the CM comprises the amino acid sequence SSRGPAYL (SEQ ID NO: 365). In some embodiments, the CM comprises the amino acid sequence RGPATPIM (SEQ ID NO: 366). In some embodiments, the CM comprises the amino acid sequence RGPA (SEQ ID NO: 367). In some embodiments, the CM comprises the amino acid sequence LSGRSGNH (SEQ ID NO: 789). In some embodiments, the CM comprises the amino acid sequence SGRSANPRG (SEQ ID NO: 790).
  • the CM comprises the amino acid sequence LSGRSDDH (SEQ ID NO: 791). In some embodiments, the CM comprises the amino acid sequence LSGRSDIH (SEQ ID NO: 792). In some embodiments, the CM comprises the amino acid sequence LSGRSDQH (SEQ ID NO: 791).
  • the CM comprises the amino acid sequence LSGRSDTH (SEQ ID NO: 794). In some embodiments, the CM comprises the amino acid sequence LSGRSDYH (SEQ ID NO: 795). In some embodiments, the CM comprises the amino acid sequence
  • the CM comprises the amino acid sequence LSGRSANP (SEQ ID NO: 797). In some embodiments, the CM comprises the amino acid sequence LSGRSANI (SEQ ID NO: 798). In some embodiments, the CM comprises the amino acid sequence LSGRSDNI (SEQ ID NO: 799). In some embodiments, the CM comprises the amino acid sequence MIAPVAYR (SEQ ID NO: 800). In some embodiments, the CM comprises the amino acid sequence RPSPMWAY (SEQ ID NO: 801). In some embodiments, the CM comprises the amino acid sequence WATPRPMR (SEQ ID NO: 802). In some embodiments,
  • the CM comprises the amino acid sequence FRLLDWQW (SEQ ID NO: 803). In some embodiments, the CM comprises the amino acid sequence ISSGL (SEQ ID NO: 804). In some embodiments, the CM comprises the amino acid sequence ISSGLLS (SEQ ID NO: 805). In some embodiments, the CM comprises the amino acid sequence and/or ISSGLL (SEQ ID NO: 806).
  • the CM is a substrate for an MMP and includes the sequence ISSGLSS (SEQ ID NO: 376); QNQALRMA (SEQ ID NO: 377); AQNLLGMV (SEQ ID NO: 378); STFPFGMF (SEQ ID NO: 379); PVGYTSSL (SEQ ID NO: 380); DWLYWPGI (SEQ ID NO: 381), ISSGLLSS (SEQ ID NO: 382), LKAAPRWA (SEQ ID NO: 383);
  • GPSHLVLT SEQ ID NO: 384
  • LPGGLSPW SEQ ID NO: 385
  • MGLFSEAG SEQ ID NO: 386
  • SPLPLRVP SEQ ID NO: 387
  • RMHLRSLG SEQ ID NO: 388
  • LAAPLGLL SEQ ID NO: 389
  • AVGLLAPP SEQ ID NO: 390
  • LLAPSHRA SEQ ID NO: 391
  • PAGLWLDP PAGLWLDP
  • the CM comprises the amino acid sequence ISSGLSS (SEQ ID NO: 376). In some embodiments, the CM comprises the amino acid sequence
  • the CM comprises the amino acid sequence AQNLLGMV (SEQ ID NO: 378). In some embodiments, the CM comprises the amino acid sequence STFPFGMF (SEQ ID NO: 379). In some embodiments, the CM comprises the amino acid sequence PVGYTSSL (SEQ ID NO: 380). In some embodiments, the CM comprises the amino acid sequence DWLYWPGI (SEQ ID NO: 381). In some embodiments, the CM comprises the amino acid sequence ISSGLLSS (SEQ ID NO: 382). In some embodiments, the CM comprises the amino acid sequence LKAAPRWA (SEQ ID NO: 383). In some embodiments,
  • the CM comprises the amino acid sequence GPSHLVLT (SEQ ID NO: 384). In some embodiments, the CM comprises the amino acid sequence LPGGLSPW (SEQ ID NO: 384). In some embodiments, the CM comprises the amino acid sequence LPGGLSPW (SEQ ID NO: 384).
  • the CM comprises the amino acid sequence MGLFSEAG (SEQ ID NO: 386). In some embodiments, the CM comprises the amino acid sequence
  • the CM comprises the amino acid sequence RMHLRSLG (SEQ ID NO: 388). In some embodiments, the CM comprises the amino acid sequence LAAPLGLL (SEQ ID NO: 389). In some embodiments, the CM comprises the amino acid sequence AVGLLAPP (SEQ ID NO: 390). In some embodiments, the CM comprises the amino acid sequence LLAPSHRA (SEQ ID NO: 391). In some embodiments, the CM comprises the amino acid sequence PAGLWLDP (SEQ ID NO: 392).
  • the CM is a substrate for thrombin.
  • the CM is a substrate for thrombin and includes the sequence GPRSFGL (SEQ ID NO: 393) or GPRSFG (SEQ ID NO: 394).
  • the CM comprises the amino acid sequence GPRSFGL (SEQ ID NO: 393).
  • the CM comprises the amino acid sequence GPRSFG (SEQ ID NO: 394).
  • the CM comprises an amino acid sequence selected from the group consisting of NTLSGRSENHSG (SEQ ID NO: 395); NTLSGRSGNHGS (SEQ ID NO: 396); TSTSGRSANPRG (SEQ ID NO: 397); TSGRSANP (SEQ ID NO: 398);
  • VAGRSMRP (SEQ ID NO: 399); VVPEGRRS (SEQ ID NO: 400); ILPRSPAF (SEQ ID NO: 401); MVLGRSLL (SEQ ID NO: 402); QGRAITFI (SEQ ID NO: 403); SPRSIMLA (SEQ ID NO: 404); and SMLRSMPL (SEQ ID NO: 405).
  • the CM comprises the amino acid sequence
  • the CM comprises the amino acid sequence NTLSGRSGNHGS (SEQ ID NO: 396). In some embodiments, the CM comprises the amino acid sequence TSTSGRSANPRG (SEQ ID NO: 397). In some embodiments, the CM comprises the amino acid sequence TSGRSANP (SEQ ID NO: 398). In some embodiments, the CM comprises the amino acid sequence VAGRSMRP (SEQ ID NO: 399). In some
  • the CM comprises the amino acid sequence VVPEGRRS (SEQ ID NO: 400). In some embodiments, the CM comprises the amino acid sequence ILPRSPAF (SEQ ID NO: 401). In some embodiments, the CM comprises the amino acid sequence MVLGRSLL (SEQ ID NO: 402). In some embodiments, the CM comprises the amino acid sequence QGRAITFI (SEQ ID NO: 403). In some embodiments, the CM comprises the amino acid sequence SPRSIMLA (SEQ ID NO: 404). In some embodiments, the CM comprises the amino acid sequence
  • the CM is a substrate for a neutrophil elastase. In some embodiments, the CM is a substrate for a serine protease. In some embodiments, the CM is a substrate for uPA. In some embodiments, the CM is a substrate for legumain. In some embodiments, the CM is a substrate for matriptase. In some embodiments, the CM is a substrate for a cysteine protease. In some embodiments, the CM is a substrate for a cysteine protease, such as a cathepsin.
  • the CM is a CM1-CM2 substrate and includes the sequence ISSGLLSGRSDNH (SEQ ID NO: 406); ISSGLLSSGGSGGSLSGRSDNH (SEQ ID NO: 407); AVGLLAPPGGTSTSGRSANPRG (SEQ ID NO: 408);
  • T ST SGRS ANPRGGGAV GLL APP (SEQ ID NO: 409); VHMPLGFLGPGGTSTSGRSANPRG (SEQ ID NO: 410); TSTSGRSANPRGGGVHMPLGFLGP (SEQ ID NO: 411);
  • V GLL APPGGL S GRSDNH (SEQ ID NO: 412); L S GRSDNHGGA V GLL APP (SEQ ID NO: 413); VHMPLGFLGPGGLSGRSDNH (SEQ ID NO: 414);
  • LSGRSDNHGGVHMPLGFLGP SEQ ID NO: 415
  • LSGRSDNHGGSGGSISSGLLSS SEQ ID NO: 416
  • LSGRSGNHGGSGGSISSGLLSS SEQ ID NO: 417
  • LSGRSGNHGGSGGSQNQALRMA (SEQ ID NO: 421); QN Q ALRM AGGS GGSL S GRS GNH (SEQ ID NO: 422); ISSGLLSGRSGNH (SEQ ID NO: 423); ISSGLLSGRSANPRG (SEQ ID NO: 680); A V GLL APPT S GRS ANPRG (SEQ ID NO: 681); AVGLLAPPSGRSANPRG (SEQ ID NO: 682); ISSGLLSGRSDDH (SEQ ID NO: 683); ISSGLLSGRSDIH (SEQ ID NO: 684); ISSGLLSGRSDQH (SEQ ID NO: 685); ISSGLLSGRSDTH (SEQ ID NO: 686);
  • ISSGLLSGRSDYH SEQ ID NO: 687
  • ISSGLLSGRSDNP SEQ ID NO: 688
  • ISSGLLSGRSANP SEQ ID NO: 689
  • ISSGLLSGRSANI SEQ ID NO: 690
  • V GLL APPGGL S GRSDDH (SEQ ID NO: 691); A V GLL APPGGL S GRSDIH (SEQ ID NO: 6)
  • AVGLLAPPGGLSGRSDQH SEQ ID NO: 693
  • AV GLL APPGGL SGRSDTH SEQ ID NO: 694
  • a V GLL APPGGL S GRSD YH SEQ ID NO: 695
  • AV GLLAPPGGLSGRSDNP SEQ ID NO: 696
  • AVGLLAPPGGLSGRSANP SEQ ID NO: 697
  • AVGLLAPPGGLSGRSANI (SEQ ID NO: 698), ISSGLLSGRSDNI (SEQ ID NO: 713);
  • V GLL APPGGL S GRSDNI SEQ ID NO: 714
  • GL S GRSDNHGG A V GLL APP SEQ ID NO: 807
  • GLSGRSDNHGGVHMPLGFLGP SEQ ID NO: 808
  • the CM1-CM2 substrate includes the sequence
  • CM1-CM2 substrate includes the sequence
  • CM1-CM2 substrate includes the sequence AVGLLAPPGGTSTSGRSANPRG (SEQ ID NO: 408), which is also referred to herein as substrate 2015 and/or substrate 1004/LP70003, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
  • the CM1-CM2 substrate includes the sequence TSTSGRSANPRGGGAVGLLAPP (SEQ ID NO: 409), which is also referred to herein as substrate 0003/LP71004, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
  • the CM1-CM2 substrate includes the sequence VHMPLGFLGPGGTSTSGRSANPRG (SEQ ID NO: 410), which is also referred to herein as substrate 1003/LP70003, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
  • the CM1-CM2 substrate includes the sequence T ST SGRS ANPRGGGVHMPLGFLGP (SEQ ID NO: 411), which is also referred to herein as substrate 0003/LP71003, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
  • the CM1-CM2 substrate includes the sequence
  • AVGLLAPPGGLSGRSDNH (SEQ ID NO: 412), which is also referred to herein as substrate 3001 and/or substrate 1004/LP70001, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
  • the CM1-CM2 substrate includes the sequence LSGRSDNHGGAVGLLAPP (SEQ ID NO: 413), which is also referred to herein as substrate 0001/LP71004, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
  • the CM1-CM2 substrate includes the sequence
  • VHMPLGFLGPGGLSGRSDNH (SEQ ID NO: 414), which is also referred to herein as substrate 1003/LP70001, wherein LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
  • the CM1-CM2 substrate includes the sequence
  • L SGRSDNHGGVHMPLGFLGP (SEQ ID NO: 415), which is also referred to herein as substrate 0001/LP71003, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
  • the CM1-CM2 substrate includes the sequence
  • LSGRSDNHGGSGGSISSGLLSS (SEQ ID NO: 416), which is also referred to herein as substrate 0001/LP71001, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
  • the CM1-CM2 substrate includes the sequence LSGRSGNHGGSGGSISSGLLSS (SEQ ID NO: 417), which is also referred to herein as substrate 0002/LP71001, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
  • the CM1-CM2 substrate includes the sequence ISSGLLSSGGSGGSLSGRSGNH (SEQ ID NO: 418), which is also referred to herein as substrate 1001/LP70002, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
  • the CM1-CM2 substrate includes the sequence LSGRSDNHGGSGGSQNQALRMA (SEQ ID NO: 419), which is also referred to herein as substrate 0001/LP71002, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
  • the CM 1 -CM2 substrate includes the sequence QNQALRMAGGSGGSLSGRSDNH (SEQ ID NO: 420), which is also referred to herein as substrate 1002/LP70001, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
  • the CM1-CM2 substrate includes the sequence
  • the CM1-CM2 substrate includes the sequence QNQALRMAGGSGGSLSGRSGNH (SEQ ID NO: 422), which is also referred to herein as substrate 1002/LP70002, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
  • the CM1-CM2 substrate includes the sequence ISSGLLSGRSGNH (SEQ ID NO: 423), which is also referred to herein as substrate 2002.
  • the CM1-CM2 substrate includes the sequence
  • the CM1-CM2 substrate includes the sequence AVGLLAPPTSGRSANPRG (SEQ ID NO: 681), which is also referred to herein as substrate 2004.
  • the CM 1 -CM2 substrate includes the sequence A V GLL APP S GRS ANPRG (SEQ ID NO: 682), which is also referred to herein as substrate 2005.
  • the CM1-CM2 substrate includes the sequence ISSGLLSGRSDDH (SEQ ID NO: 683), which is also referred to herein as substrate 2006.
  • the CM1-CM2 substrate includes the sequence ISSGLLSGRSDIH (SEQ ID NO: 684), which is also referred to herein as substrate 2007.
  • the CM1-CM2 substrate includes the sequence ISSGLLSGRSDQH (SEQ ID NO: 685), which is also referred to herein as substrate 2008.
  • the CM1- CM2 substrate includes the sequence ISSGLLSGRSDTH (SEQ ID NO: 686), which is also referred to herein as substrate 2009.
  • the CM1-CM2 substrate includes the sequence ISSGLLSGRSDYH (SEQ ID NO: 687), which is also referred to herein as substrate 2010.
  • the CM1-CM2 substrate includes the sequence ISSGLLSGRSDNP (SEQ ID NO: 688), which is also referred to herein as substrate 2011.
  • the CM1-CM2 substrate includes the sequence ISSGLLSGRSANP (SEQ ID NO: 689), which is also referred to herein as substrate 2012.
  • the CM1-CM2 substrate includes the sequence ISSGLLSGRSANI (SEQ ID NO: 690), which is also referred to herein as substrate 2013.
  • the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSDDH (SEQ ID NO: 691), which is also referred to herein as substrate
  • the CM1-CM2 substrate includes the sequence
  • AVGLLAPPGGLSGRSDIH (SEQ ID NO: 692), which is also referred to herein as substrate
  • the CM1-CM2 substrate includes the sequence
  • AVGLLAPPGGLSGRSDQH (SEQ ID NO: 693), which is also referred to herein as substrate
  • the CM1-CM2 substrate includes the sequence
  • AVGLLAPPGGLSGRSDTH (SEQ ID NO: 694), which is also referred to herein as substrate
  • the CM1-CM2 substrate includes the sequence
  • AVGLLAPPGGLSGRSDYH (SEQ ID NO: 695), which is also referred to herein as substrate
  • the CM1-CM2 substrate includes the sequence
  • AVGLLAPPGGLSGRSDNP (SEQ ID NO: 696), which is also referred to herein as substrate
  • the CM1-CM2 substrate includes the sequence
  • AVGLLAPPGGLSGRSANP (SEQ ID NO: 697), which is also referred to herein as substrate
  • the CM1-CM2 substrate includes the sequence
  • AVGLLAPPGGLSGRSANI (SEQ ID NO: 698), which is also referred to herein as substrate
  • the CM1-CM2 substrate includes the sequence ISSGLLSGRSDNI (SEQ ID NO: 713), which is also referred to herein as substrate 2014.
  • the CM 1 -CM2 substrate includes the sequence AV GLLAPPGGLSGRSDNI (SEQ ID NO: 714), which is also referred to herein as substrate 3014.
  • the CM1-CM2 substrate includes the sequence GLSGRSDNHGGAVGLLAPP (SEQ ID NO: 807), which is also referred to herein as substrate 0001/LP71004, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
  • the CM1-CM2 substrate includes the sequence GLSGRSDNHGGVHMPLGFLGP (SEQ ID NO: 808), which is also referred to herein as substrate 0001/LP71003, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
  • the CM is a substrate for at least two proteases.
  • each protease is selected from the group consisting of those shown in Table 3.
  • the CM is a substrate for at least two proteases, wherein one of the proteases is selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain and matriptase and the other protease is selected from the group consisting of those shown in Table 3.
  • the CM is a substrate for at least two proteases selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain and matriptase.
  • the activatable antibody includes at least a first CM and a second CM.
  • the first CM and the second CM are each polypeptides of no more than 15 amino acids long.
  • the first CM and the second CM in the activatable antibody in the uncleaved state have the structural arrangement from N-terminus to C-terminus as follows: MM-CM1-CM2-AB or AB-CM2-CM1-MM.
  • At least one of the first CM and the second CM is a polypeptide that functions as a substrate for a protease selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain, and matriptase.
  • a protease selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain, and matriptase.
  • the first CM is cleaved by a first cleaving agent selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain, and matriptase in a target tissue and the second CM is cleaved by a second cleaving agent in a target tissue.
  • a first cleaving agent selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain, and matriptase in a target tissue
  • the second CM is cleaved by a second cleaving agent in a target tissue.
  • the other protease is selected from the group consisting of those shown in Table 3.
  • the first cleaving agent and the second cleaving agent are the same protease selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain, and matriptase, and the first CM and the second CM are different substrates for the enzyme.
  • the first cleaving agent and the second cleaving agent are the same protease selected from the group consisting of those shown in Table 3.
  • the first cleaving agent and the second cleaving agent are different proteases.
  • the first cleaving agent and the second cleaving agent are co-localized in the target tissue. In some embodiments, the first CM and the second CM are cleaved by at least one cleaving agent in the target tissue.
  • the activatable antibody is exposed to and cleaved by a protease such that, in the activated or cleaved state, the activated antibody includes a light chain amino acid sequence that includes at least a portion of LP2 and/or CM sequence after the protease has cleaved the CM.
  • Suitable activatable CD147 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that binds to the same epitope on human CD 147 and/or cynomolgus monkey CD147 as a CD147 antibody comprising a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • Suitable activatable CD147 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that binds to the same epitope on human CD 147 and/or cynomolgus monkey CD147 as a CD147 antibody comprising a VH CDR1 sequence comprising the amino acid sequence GFTF SNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); a VH CDR2 sequence comprising the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 12); a VH CDR3 sequence comprising the amino acid sequence AGTDY (SEQ ID NO: 13); a VL CDR1 sequence comprising the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); a VL CDR2 sequence comprising the amino acid sequence YSSNRYT (SEQ ID NO: 16); and a VL CDR3 sequence comprising the amino acid sequence QQDYSSPFT
  • Suitable activatable CD147 antibodies of the disclosure also include an antibody or antigen-binding fragment thereof that binds to the same epitope on human CD 147 and/or cynomolgus monkey CD147 as a CD147 antibody comprising a heavy chain variable region amino acid sequence selected from the group consisting of the heavy chain variable region sequences shown in Table 1 and a light chain variable region amino acid sequence selected from the group consisting of the light chain variable region sequences shown in Table 1.
  • Suitable activatable CD147 antibodies of the disclosure also include an antibody or antigen-binding fragment thereof that binds to the same epitope on human CD 147 and/or cynomolgus monkey CD147 as a CD147 antibody comprising a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the combination is a combination of the six CDR sequences (VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, and VL CDR3) shown in a single row in Table 2.
  • Suitable activatable CD147 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that cross-competes for binding to (inhibits the binding of) human CD147 and/or cynomolgus monkey CD147 to a CD147 antibody comprising a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NO: 1
  • Suitable activatable CD147 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that cross-competes for binding to (inhibits the binding of) human CD147 and/or cynomolgus monkey CD147 to a CD147 antibody comprising a VH CDR1 sequence comprising the amino acid sequence GFTFSNYWMN (SEQ ID NO: 10) or
  • GFTFSNYWMD (SEQ ID NO: 11); a VH CDR2 sequence comprising the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 12); a VH CDR3 sequence comprising the amino acid sequence AGTDY (SEQ ID NO: 13); a VL CDR1 sequence comprising the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); a VL CDR2 sequence comprising the amino acid sequence YSSNRYT (SEQ ID NO: 16); and a VL CDR3 sequence comprising the amino acid sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • Suitable activatable CD147 antibodies of the disclosure also include an antibody or antigen-binding fragment thereof that cross-competes for binding to (inhibits the binding of) human CD147 and/or cynomolgus monkey CD147 as a CD147 antibody comprising a heavy chain variable region amino acid sequence selected from the group consisting of the heavy chain variable region sequences shown in Table 1 and a light chain variable region amino acid sequence selected from the group consisting of the light chain variable region sequences shown in Table 1.
  • Suitable activatable CD147 antibodies of the disclosure also include an antibody or antigen-binding fragment thereof that cross-competes for binding to (inhibits the binding of) human CD147 and/or cynomolgus monkey CD147 as a CD147 antibody comprising a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the combination is a combination of the six CDR sequences (VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, and VL CDR3) shown in a single row in Table 2.
  • the activatable CD 147 antibody is an activatable antibody that, in an activated state, binds CD147 comprising: an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD 147, wherein the AB specifically binds human CD 147 and cynomolgus monkey CD 147; a masking moiety (MM) that inhibits the binding of the AB to CD147 when the activatable antibody is in an uncleaved state; and a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
  • AB antibody or an antigen binding fragment thereof
  • MM masking moiety
  • CM cleavable moiety
  • the MM has a dissociation constant for binding to the AB that is greater than the dissociation constant of the AB to CD147. In some embodiments, the MM does not interfere or compete with the AB for binding to CD147 when the activatable antibody is in a cleaved state. In some embodiments, the MM is a polypeptide of no more than 40 amino acids in length. In some embodiments, the MM polypeptide sequence is different from that of human CD147. In some embodiments, the MM polypeptide sequence is no more than 50% identical to any natural binding partner of the AB. In some embodiments, the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 101-109. In some embodiments, the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 107-109.
  • the CM is a substrate for a protease that is active in diseased tissue.
  • the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 356-423, 680-698, 713, 714, and 789-808.
  • the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 359, 370, 377, 382, 390, 397, 406-423, 680-698, 713, 714, and 807-808.
  • the activatable antibody comprises an antigen binding fragment thereof is selected from the group consisting of a Fab fragment, a F(ab’)2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody.
  • the AB of the activatable antibody specifically binds human CD147.
  • the AB comprises the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence
  • EIRLKSYNYATH SEQ ID NO: 12
  • VH CDR3 sequence AGTDY SEQ ID NO: 13
  • VL CDR1 sequence KASQSVRTDVA SEQ ID NO: 14
  • RASQSVRTDVG SEQ ID NO: 14
  • the AB comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9. [000268] In some embodiments, the AB is linked to the CM. In some embodiments, the AB is linked directly to the CM. In some embodiments, the AB is linked to the CM via a linking peptide.
  • the MM is linked to the CM such that the activatable antibody in an uncleaved state comprises the structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM-MM.
  • the activatable antibody comprises a linking peptide between the MM and the CM.
  • the activatable antibody comprises a linking peptide between the CM and the AB.
  • the activatable antibody comprises a first linking peptide (LP1) and a second linking peptide (LP2), and wherein the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-LP1-CM-LP2-AB or AB-LP2-CM-LP1-MM.
  • the two linking peptides need not be identical to each other.
  • each of LP1 and LP2 is a peptide of about 1 to 20 amino acids in length.
  • the activatable antibody comprises the heavy chain sequence selected from the group consisting of SEQ ID NOs: 1-4 and 19-21 and a light chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9, 23- 26, 140-349, 720-749, and 810-1049.
  • the activatable antibody comprises a combination of amino acid sequences, wherein the combination of amino acid sequences is selected from a single row in Table 4, wherein for a given combination, (a) the heavy chain of the AB comprises the amino acid sequences of the VH CDR sequences corresponding to the given combination in the single row listed in Table 4, (b) the light chain of the AB comprises the amino acid sequences of the VL CDR sequences corresponding to the given combination in the single row listed in Table 4, (c) the MM comprises the amino acid sequence of the mask sequence (MM) corresponding to the given combination in the single row listed in Table 4, and (d) the CM comprises the amino acid sequence of the substrate sequence (CM) corresponding to the given combination in the single row listed in Table 4.
  • the activatable antibody comprises a combination of amino acid sequences, wherein for a given combination of amino acid sequences, (a) the heavy chain of the AB comprises the amino acid sequences of the VH sequence or VH CDR sequences selected from the group consisting of: the VH sequence or VH CDR sequences listed in the
  • the light chain of the AB comprises the amino acid sequences of the VL sequence or VL CDR sequences selected from the group consisting of: the VL sequence or VL CDR sequences listed in the corresponding column of Table 5
  • the MM comprises the amino acid sequence of the mask sequence (MM) selected from the group consisting of: the MM sequences listed in the corresponding column of Table 5
  • the CM comprises the amino acid sequence of the substrate sequence (CM) selected from the group consisting of: the CM sequences listed in the corresponding column of Table 5.
  • the activatable CD 147 antibody comprises an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD 147, a MM, and a CM, wherein the activatable antibody comprises: a heavy chain sequence of SEQ ID NOs: 19-21; and a light chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9 and 23-26.
  • AB antigen binding fragment thereof
  • the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 101-109
  • the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 359, 370, 377, 382, 390, 397, 406-423, 680-698, 713, 714, and 789-808.
  • the AB comprises the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12); the VH CDR3 sequence AGTDY (SEQ ID NO: 13); the VL CDR1 sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); the VL CDR2 sequence YSSNRYT (SEQ ID NO: 16); and the VL CDR3 sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • the AB comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the activatable CD 147 antibody comprises an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD 147, a MM comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 101- 109, and a CM comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 356-423, 680-698, 713, 714, and 789-808.
  • AB antigen binding fragment thereof
  • the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 101-109
  • the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 359, 370, 377, 382, 390, 397, 406-423, 680-698, 713, 714, and 807-808.
  • the AB comprises the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12); the VH CDR3 sequence AGTDY (SEQ ID NO: 13); the VL CDR1 sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); the VL CDR2 sequence YSSNRYT (SEQ ID NO: 16); and the VL CDR3 sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • the AB comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the activatable CD 147 antibody comprises an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD 147, wherein the AB specifically binds to the same epitope on human CD 147 and/or cynomolgus monkey CD147 as an isolated antibody of the disclosure; a masking moiety (MM) that inhibits the binding of the AB to CD147 when the activatable antibody is in an uncleaved state; and a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
  • AB antigen binding fragment thereof
  • the CD147 activatable antibody of the disclosure comprises an isolated antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD 147, wherein the AB specifically binds human CD 147 and cynomolgus monkey CD147.
  • AB antigen binding fragment thereof
  • the antibody or antigen binding fragment thereof comprises the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12); the VH CDR3 sequence AGTDY (SEQ ID NO: 13); the VL CDR1 sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); the VL CDR2 sequence YSSNRYT (SEQ ID NO: 16); and the VL CDR3 sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • the activatable antibody or antigen binding fragment thereof comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the activatable CD 147 antibody comprises an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD 147, wherein the AB specifically cross-competes with (inhibits the binding of) an isolated antibody of the disclosure for binding to human CD147 and/or cynomolgus monkey CD147; a masking moiety (MM) that inhibits the binding of the AB to CD147 when the activatable antibody is in an uncleaved state; and a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
  • AB antigen binding fragment thereof
  • the CD147 activatable antibody of the disclosure comprises an isolated antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD 147, wherein the AB specifically binds human CD 147 and cynomolgus monkey CD147.
  • AB antigen binding fragment thereof
  • the antibody or antigen binding fragment thereof comprises the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12); the VH CDR3 sequence AGTDY (SEQ ID NO: 13); the VL CDR1 sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); the VL CDR2 sequence YSSNRYT (SEQ ID NO: 16); and the VL CDR3 sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • the activatable antibody or antigen binding fragment thereof comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4 and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the activatable antibody also includes an agent conjugated to the AB.
  • the agent conjugated to the AB or the AB of an activatable antibody is a therapeutic agent.
  • the agent is an antineoplastic agent.
  • the agent is a toxin or fragment thereof.
  • a fragment of a toxin is a fragment that retains toxic activity.
  • the agent is conjugated to the AB via a cleavable linker.
  • the agent is conjugated to the AB via a linker that includes at least one CM1-CM2 substrate sequence.
  • the agent is conjugated to the AB via a noncleavable linker. In some embodiments, the agent is conjugated to the AB via a linker that is cleavable in an intracellular or lysosomal environment. In some embodiments, the agent is a microtubule inhibitor. In some embodiments, the agent is a nucleic acid damaging agent, such as a DNA alkylator, a DNA cleaving agent, a DNA cross-linker, a DNA intercalator, or other DNA damaging agent. In some embodiments, the agent is an agent selected from the group listed in Table 6. In some embodiments, the agent is a dolastatin. In some embodiments, the agent is an auristatin or derivative thereof.
  • the agent is auristatin E or a derivative thereof. In some embodiments, the agent is monomethyl auristatin E (MMAE). In some embodiments, the agent is monomethyl auristatin D (MMAD). In some embodiments, the agent is a maytansinoid or maytansinoid derivative. In some
  • the agent is DM1 or DM4. In some embodiments, the agent is a duocarmycin or derivative thereof. In some embodiments, the agent is a calicheamicin or derivative thereof. In some embodiments, the agent is a pyrrolobenzodiazepine. In some embodiments, the agent is a pyrrolobenzodiazepine dimer.
  • the activatable antibody is conjugated to one or more equivalents of an agent. In some embodiments, the activatable antibody is conjugated to one equivalent of the agent. In some embodiments, the activatable antibody is conjugated to two, three, four, five, six, seven, eight, nine, ten, or greater than ten equivalents of the agent. In some embodiments, the activatable antibody is part of a mixture of activatable antibodies having a homogeneous number of equivalents of conjugated agents. In some embodiments, the activatable antibody is part of a mixture of activatable antibodies having a heterogeneous number of equivalents of conjugated agents.
  • the mixture of activatable antibodies is such that the average number of agents conjugated to each activatable antibody is between zero to one, between one to two, between two and three, between three and four, between four and five, between five and six, between six and seven, between seven and eight, between eight and nine, between nine and ten, and ten and greater. In some embodiments, the mixture of activatable antibodies is such that the average number of agents conjugated to each activatable antibody is one, two, three, four, five, six, seven, eight, nine, ten, or greater.
  • the activatable antibody comprises one or more site-specific amino acid sequence modifications such that the number of lysine and/or cysteine residues is increased or decreased with respect to the original amino acid sequence of the activatable antibody, thus in some embodiments correspondingly increasing or decreasing the number of agents that can be conjugated to the activatable antibody, or in some embodiments limiting the conjugation of the agents to the activatable antibody in a site-specific manner.
  • the modified activatable antibody is modified with one or more non-natural amino acids in a site-specific manner, thus in some embodiments limiting the conjugation of the agents to only the sites of the non-natural amino acids.
  • the agent is an anti-inflammatory agent.
  • the activatable antibody also includes a detectable moiety.
  • the detectable moiety is a diagnostic agent.
  • the activatable antibody also includes a signal peptide.
  • the signal peptide is conjugated to the activatable antibody via a spacer.
  • the spacer is conjugated to the activatable antibody in the absence of a signal peptide.
  • the spacer is joined directly to the MM of the activatable antibody.
  • the spacer is joined directly to the MM of the activatable antibody in the structural arrangement from N-terminus to C-terminus of spacer-MM-CM-AB.
  • An example of a spacer joined directly to the N-terminus of MM of the activatable antibody is QGQSGQ (SEQ ID NO: 424).
  • a spacer joined directly to the N-terminus of MM of the activatable antibody examples include QGQSGQG (SEQ ID NO: 645), QGQSG (SEQ ID NO: 646), QGQS (SEQ ID NO: 647), QGQ, QG, and Q.
  • Other examples of a spacer joined directly to the N-terminus of MM of the activatable antibody include GQSGQG (SEQ ID NO: 645), QGQSG (SEQ ID NO: 646), QGQS (SEQ ID NO: 647), QGQ, QG, and Q.
  • Other examples of a spacer joined directly to the N-terminus of MM of the activatable antibody include GQSGQG (SEQ ID NO: 645), QGQSG (SEQ ID NO: 646), QGQS (SEQ ID NO: 647), QGQ, QG, and Q.
  • Other examples of a spacer joined directly to the N-terminus of MM of the activatable antibody
  • the spacer includes at least the amino acid sequence QGQSGQ (SEQ ID NO: 424). In some embodiments, the spacer includes at least the amino acid sequence QGQSGQG (SEQ ID NO: 424). In some embodiments, the spacer includes at least the amino acid sequence QGQSGQG (SEQ ID NO: 424).
  • the spacer includes at least the amino acid sequence QGQSG (SEQ ID NO: 646). In some embodiments, the spacer includes at least the amino acid sequence QGQS (SEQ ID NO: 647). In some embodiments, the spacer includes at least the amino acid sequence QGQ. In some embodiments, the spacer includes at least the amino acid sequence QG. In some embodiments, the spacer includes at least the amino acid residue Q. In some
  • the spacer includes at least the amino acid sequence GQSGQG (SEQ ID NO: 1
  • the spacer includes at least the amino acid sequence QSGQG (SEQ ID NO: 667). In some embodiments, the spacer includes at least the amino acid sequence SGQG (SEQ ID NO: 668). In some embodiments, the spacer includes at least the amino acid sequence GQG. In some embodiments, the spacer includes at least the amino acid sequence G. In some embodiments, the spacer is absent. [000284] In some embodiments, the AB of the activatable antibody naturally contains one or more disulfide bonds. In some embodiments, the AB can be engineered to include one or more disulfide bonds.
  • activatable antibody or antigen binding fragment thereof is conjugated to an agent.
  • the activatable antibody comprises an antibody or antigen binding fragment thereof cross-competes with (inhibits the binding of) an isolated antibody that comprises the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or
  • GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12); the VH CDR3 sequence AGTDY (SEQ ID NO: 13); the VL CDR1 sequence
  • the activatable antibody comprises an antibody or antigen binding fragment thereof cross-competes with (inhibits the binding of) an isolated antibody that comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the agent is a toxin or fragment thereof.
  • the agent is a microtubule inhibitor. In some embodiments, the agent is a nucleic acid damaging agent. In some embodiments, the agent is selected from the group consisting of a dolastatin or a derivative thereof, an auristatin or a derivative thereof, a maytansinoid or a derivative thereof, a duocarmycin or a derivative thereof, a calicheamicin or a derivative thereof, and a pyrrol Tavernzodiazepine or a derivative thereof. In some embodiments, the agent is auristatin E or a derivative thereof. In some embodiments, the agent is monomethyl auristatin E (MMAE). In some embodiments, the agent is monomethyl auristatin D (MMAD).
  • MMAE monomethyl auristatin E
  • the agent is a maytansinoid selected from the group consisting of DM1 and DM4. In some embodiments, the agent is maytansinoid DM4. In some embodiments, the agent is duocarmycin. In some embodiments, the agent is conjugated to the AB via a linker. In some embodiments, the linker with which the agent is conjugated to the AB comprises an SPDB moiety, a vc moiety, or a PEG2-vc moiety.
  • the linker and toxin conjugated to the AB comprises an SPDB-DM4 moiety, a vc-MMAD moiety, a vc-MMAE moiety, vc-duocarmycin, or a PEG2 -vc-MMAD moiety.
  • the linker is a cleavable linker.
  • the linker is a non-cleavable linker.
  • the agent is a detectable moiety.
  • the detectable moiety is a diagnostic agent.
  • the conjugated activatable antibody comprises a conjugated activatable antibody that, in an activated state, binds CD147 comprising: an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD 147, wherein the AB specifically binds human CD 147 and cynomolgus monkey CD 147; a masking moiety (MM) that inhibits the binding of the AB to CD147 when the activatable antibody is in an uncleaved state; a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease; and an agent conjugated to the AB.
  • the agent is selected from the group consisting of a dolastatin or a derivative thereof, an auristatin or a derivative thereof, a maytansinoid or a derivative thereof, a
  • duocarmycin or a derivative thereof a calicheamicin or a derivative thereof, and a
  • the agent is selected from the group consisting of auristatin E, monomethyl auristatin F (MMAF), monomethyl auristatin E (MMAE), monomethyl auristatin D (MMAD), maytansinoid DM4, maytansinoid DM1, a duocarmycin, a pyrrolobenzodiazepine, and a pyrrolobenzodiazepine dimer.
  • auristatin E monomethyl auristatin F
  • MMAE monomethyl auristatin E
  • MMAD monomethyl auristatin D
  • maytansinoid DM4 maytansinoid DM1, a duocarmycin, a pyrrolobenzodiazepine, and a pyrrolobenzodiazepine dimer.
  • the agent is conjugated to the AB via a linker.
  • the linker with which the agent is conjugated to the AB comprises an SPDB moiety, a vc moiety, or a PEG2-vc moiety.
  • the linker and toxin conjugated to the AB comprises an SPDB-DM4 moiety, a vc-MMAD moiety, a vc-MMAE moiety, vc-duocarmycin, or a PEG2-vc- MMAD moiety.
  • the AB of the conjugated activatable antibody or antigen binding fragment thereof comprises the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12); the VH CDR3 sequence AGTDY (SEQ ID NO: 13); the VL CDR1 sequence
  • the AB of the conjugated activatable antibody or antigen binding fragment thereof comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 101-109. In some embodiments, the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 107-109. In some embodiments, the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 101-109. In some embodiments, the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 107-109. In some embodiments, the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 356-423, 680-698, 713, 714, and 789-808.
  • the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 359, 370, 377, 382, 390, 397, 406-423, 680-698, 713, 714, and 807-808.
  • the activatable antibody comprises a combination of amino acid sequences, wherein the combination of amino acid sequences is selected from a single row in Table 4, wherein for a given
  • the heavy chain of the AB comprises the amino acid sequences of the VH CDR sequences corresponding to the given combination in the single row listed in Table 4,
  • the light chain of the AB comprises the amino acid sequences of the VL CDR sequences
  • the activatable antibody comprises a combination of amino acid sequences, wherein for a given combination of amino acid sequences, (a) the heavy chain of the AB comprises the amino acid sequences of the VH sequence or VH CDR sequences selected from the group consisting of: the VH sequence or VH CDR sequences listed in the corresponding column of Table 5, (b) the light chain of the AB comprises the amino acid sequences of the VL sequence or VL CDR sequences selected from the group consisting of: the VL sequence or VL CDR sequences listed in the corresponding column of Table 5, (c) the MM comprises the amino acid sequence of the mask sequence (MM) selected from the group consisting of: the MM sequences listed in the corresponding column of Table 5, and (d) the CM comprises the amino acid
  • the activatable antibody comprises: a heavy chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4 or 19-21; and a light chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9, 23- 26, 140-349, 720-749, and 810-1049.
  • the conjugated activatable antibody comprises a conjugated activatable antibody that, in an activated state, binds to CD147, comprising: an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD 147, wherein the AB specifically binds human CD 147 and cynomolgus monkey CD 147; a masking moiety (MM) that inhibits the binding of the AB to CD 147 when the activatable antibody is in an uncleaved state; a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease; and an agent conjugated to the AB, wherein the AB comprises: (i) the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence EIRLKSYNYATH (SEQ ID NO: 12);
  • KASQSVRTDVA SEQ ID NO: 14
  • RASQSVRTDVG SEQ ID NO: 15
  • VL CDR2 sequence YSSNRYT SEQ ID NO: 16
  • VL CDR3 sequence QQDYSSPFT SEQ ID NO: 17
  • QQDYSSPYT SEQ ID NO: 18
  • a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9
  • a heavy chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4 or 19-21 and a light chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9, 23-26, 140-349, 720-749, and 810- 1049
  • the agent is selected from the group consisting of auristatin E, mono
  • the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 101-109. In some embodiments, the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 107-109. In some embodiments, the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 101-109. In some embodiments, the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 107-109. In some embodiments, the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 356-423, 680-698, 713, 714, and 789-808.
  • the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 359, 370, 377, 382, 390, 397, 406-423, 680-698, 713, 714, and 807-808.
  • the agent is conjugated to the AB via a linker, and wherein the linker to which the agent is conjugated to the AB comprises an SPDB moiety, a vc moiety, or a PEG2-vc moiety.
  • the linker and toxin conjugated to the AB comprises an SPDB-DM4 moiety, a vc-MMAD moiety, a vc-MMAE moiety, vc-duocarmycin, or a PEG2 -vc-MMAD moiety.
  • the conjugated activatable antibody comprises a conjugated activatable antibody comprising: an antibody or antigen binding fragment thereof (AB) that, in an activated state, binds CD 147; and a toxin conjugated to the AB via a linker, wherein the conjugated activatable antibody comprises amino acid sequences, a linker, and a toxin selected from a single row in Table 9, wherein for the given combination: (a) the AB comprises a heavy chain comprising the amino acid sequence of the heavy chain sequence or heavy chain variable domain sequence corresponding to the given combination in the single row listed in Table 9, (b) the AB comprises a light chain comprising the amino acid sequence of the light chain sequence or light chain variable domain sequence corresponding to the given combination in the single row listed in Table 9, and (c) the linker and the toxin comprise the linker and the toxin corresponding to the given combination in the single row listed in Table 9.
  • AB antibody or antigen binding fragment thereof
  • the conjugated activatable antibody comprises amino acid sequences, a linker
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4. In some embodiments, the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9. In some embodiments, the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a nucleic acid sequence encoding a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a nucleic acid sequence encoding a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a heavy chain variable region amino acid sequence comprising selected from the group consisting of SEQ ID NOs: 1-3.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a light variable region chain amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%,
  • nucleic acid sequence encoding a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3 and a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region amino acid sequence selected from the group consisting of the heavy chain variable region sequences shown in Table 1. In some embodiments, the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain variable region amino acid sequence selected from the group consisting of the light chain variable region sequences shown in Table 1.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region amino acid sequence selected from the group consisting of the heavy chain variable region sequences shown in Table 1 and a nucleic acid sequence encoding a light chain variable region amino acid sequence selected from the group consisting of the light chain variable region sequences shown in Table 1.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of the heavy chain variable region sequences shown in Table 1.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of the light chain variable region sequences shown in Table 1.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%,
  • nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of the light chain variable region sequences shown in Table 1.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a combination of a variable heavy chain complementarity determining region 1 (VH CDR1, also referred to herein as CDRH1) sequence, a variable heavy chain complementarity determining region 2 (VH CDR2, also referred to herein as CDRH2) sequence, a variable heavy chain complementarity determining region 3 (VH CDR3, also referred to herein as CDRH3) sequence, a variable light chain complementarity determining region 1 (VL CDR1, also referred to herein as CDRL1) sequence, a variable light chain complementarity determining region 2 (VL CDR2, also referred to herein as CDRL2) sequence, and a variable light chain complementarity determining region 3 (VL CDR3, also referred to herein as CDRL3) sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence shown in Table 2;
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR1 sequence shown in Table 2; a VH CD2 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR2 sequence shown in Table 2; a VH CDR3 sequence that includes a sequence that is at least 90%, 9
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the combination is a combination of the six CDR sequences (VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, and VL CDR3) shown in a single row in Table 2.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain variable region that comprise a combination of a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the combination is a combination of the three light chain CDR sequences (VL CDR1, VL CDR2, VL CDR3) shown in a single row in Table 2.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region that comprise a combination of a VH CDR1 sequence, a VH CDR2 sequence, and a VH CDR3 sequence, wherein the combination is a combination of the three heavy chain CDR sequences (VH CDR1, VH CDR2, VH CDR3) shown in a single row in Table 2.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein each CDR sequence in the combination comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the corresponding CDR sequence in a combination of the six CDR sequences (VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, and VL CDR3) shown in a single row in Table 2.
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region that comprise a combination of a VH CDR1 sequence, a VH CDR2 sequence, and a VH CDR3 sequence, wherein each CDR sequence in the combination comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the corresponding CDR sequence in a combination of three heavy chain CDR sequences (VH CDR1, VH CDR2, VH CDR3) shown in a single row in Table 2.
  • VH CDR1, VH CDR2, VH CDR3 three heavy chain CDR sequences
  • the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain variable region that comprise a combination of a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein each CDR sequence in the combination comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the corresponding CDR sequence in a combination of three light chain CDR sequences (VL CDR1, VL CDR2, VL CDR3) shown in a single row in Table 2.
  • VL CDR1, VL CDR2, VL CDR3 three light chain CDR sequences
  • the disclosure also provides methods for producing an activatable antibody of the disclosure by culturing a cell under conditions that lead to expression of the activatable antibody, wherein the cell comprises a nucleic acid molecule of the disclosure or a vector of the disclosure.
  • the disclosure also provides methods of manufacturing an activatable antibody that, in an activated state, binds CD 147, the method comprising: (a) culturing a cell comprising a nucleic acid construct that encodes the activatable antibody under conditions that lead to expression of the activatable antibody, wherein the activatable antibody comprises an activatable antibody of the disclosure; and (b) recovering the activatable antibody.
  • the activatable antibody includes one or more polypeptides that include the combination of sequences in a given row of Table 4 or any combination of a mask sequence (MM), a substrate sequence (CM), a light chain variable domain sequence or light chain variable domain CDR sequences, and a heavy chain variable domain sequence or heavy chain variable domain CDR sequences of Table 5.
  • an activatable antibody of the present disclosure includes one or more polypeptides that include the combination of sequences selected from Table 4 or Table 5, where the polypeptide includes a combination of a masking sequence selected from the column titled“Mask Sequence (MM)” of Table 4 or Table 5, a substrate sequence from the column titled“Substrate Sequence (CM)” of Table 4 or Table 5, a light chain variable domain or light chain CDRs from the column titled“VL or VL CDRs” or“VL CDRs SEQ ID NOs” of Table 4 or Table 5, and a heavy chain variable domain or heavy chain CDRs from the column titled“VH or VH CDRs” or“VH CDRs SEQ ID Nos” of Table 4 or Table 5.
  • MM Masking sequence
  • CM Substrate Sequence
  • an activatable antibody of the present disclosure may include the amino acid sequences of combination no. 147, which includes the masking sequence of SEQ ID NO: 17, the substrate sequence of SEQ ID NO: 412, a light chain variable domain that includes the VL CDR sequences of SEQ ID NOs: 15, 16, and 18, and a heavy chain variable domain that includes the VH CDR sequences of 11, 12, and 13. Therefore, an activatable antibody that includes at least the combination of sequences in any given row of Table 4 is described herein. Similarly, any combination of a mask sequence (MM), a substrate sequence (CM), a light chain variable domain sequence or light chain variable domain CDR sequences, and a heavy chain variable domain sequence or heavy chain variable domain CDR sequences of Table 5 is described herein.
  • An activatable antibody that includes at least any combination of a masking sequence, a substrate sequence, a variable heavy chain or variable heavy chain CDRs, and a variable light chain or variable light chain CDRs selected from the corresponding columns Table 4 or Table 5 is also described herein.
  • an activatable antibody that includes at least the combination of sequences in any given row of Table 4 or any combination of a mask sequence (MM), a substrate sequence (CM), a light chain variable domain sequence or light chain variable domain CDR sequences, and a heavy chain variable domain sequence or heavy chain variable domain CDR sequences of Table 5 can be combined with one or more toxins, including a dolastatin or a derivative thereof, an auristatin or a derivative thereof, a maytansinoid or a derivative thereof, a duocarmycin or a derivative thereof, a calicheamicin or a derivative thereof, or a pyrrolobenzodiazepine or a derivative thereof.
  • toxins including a dolastatin or a derivative thereof, an auristatin or a derivative thereof, a maytansinoid or a derivative thereof, a duocarmycin or a derivative thereof, a calicheamicin or a derivative thereof, or a pyrrolobenzodiazepine or a derivative thereof.
  • an activatable antibody that includes at least the combination of sequences in any given row of Table 4 or any combination of a mask sequence (MM), a substrate sequence (CM), a light chain variable domain sequence or light chain variable domain CDR sequences, and a heavy chain variable domain sequence or heavy chain variable domain CDR sequences of Table 5 can be combined with one or more toxins, including auristatin E, monomethyl auristatin F (MMAF), monomethyl auristatin E (MMAE), monomethyl auristatin D (MMAD), maytansinoid DM4, maytansinoid DM1, a pyrrolobenzodiazepine, a pyrrolobenzodiazepine dimer, and/or a duocarmycin.
  • auristatin E monomethyl auristatin F
  • MMAE monomethyl auristatin E
  • MMAD monomethyl auristatin D
  • maytansinoid DM4 maytansinoid DM1, a pyrrolobenzodia
  • any of the combinations in Table 4 or Table 5 as described above can be combined with human immunoglobulin constant regions to result in fully human IgGs including IgGl, IgG2, IgG4 or mutated constant regions to result in human IgGs with altered functions such as IgGl N297A, IgGl N297Q, or IgG4 S228P.
  • any mask sequence disclosed herein can be used in a combination.
  • any CM disclosed herein can be used in a combination.
  • any light chain variable region sequence or light chain CDR sequences disclosed herein can be used in a combination.
  • any heavy chain variable region sequence or heavy chain CDR sequences disclosed herein can be used in a combination.
  • the serum half-life of the activatable antibody is longer than that of the corresponding antibody; e.g., the pK of the activatable antibody is longer than that of the corresponding antibody. In some embodiments, the serum half-life of the activatable antibody is similar to that of the corresponding antibody. In some embodiments, the serum half- life of the activatable antibody is at least 15 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 12 days when
  • the serum half-life of the activatable antibody is at least 11 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 10 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 9 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 8 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 7 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 6 days when administered to an organism.
  • the serum half-life of the activatable antibody is at least 5 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 4 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 3 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 2 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 24 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 20 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 18 hours when administered to an organism.
  • the serum half-life of the activatable antibody is at least 16 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 14 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 12 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 10 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 8 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 6 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 4 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 3 hours when administered to an organism.
  • the disclosure also provides methods of producing an activatable CD147 antibody polypeptide by culturing a cell under conditions that lead to expression of the polypeptide, wherein the cell comprises an isolated nucleic acid molecule encoding an antibody and/or an activatable antibody described herein, and/or vectors that include these isolated nucleic acid sequences.
  • the disclosure provides methods of producing an antibody and/or activatable antibody by culturing a cell under conditions that lead to expression of the antibody and/or activatable antibody, wherein the cell comprises an isolated nucleic acid molecule encoding an antibody and/or an activatable antibody described herein, and/or vectors that include these isolated nucleic acid sequences.
  • the invention also provides a method of manufacturing activatable antibodies that in an activated state binds CD147 by (a) culturing a cell comprising a nucleic acid construct that encodes the activatable antibody under conditions that lead to expression of the activatable antibody, wherein the activatable antibody comprises a masking moiety (MM), a cleavable moiety (CM), and an antibody or an antigen binding fragment thereof (AB) that specifically binds CD147, (i) wherein the CM is a polypeptide that functions as a substrate for a protease; and (ii) wherein the CM is positioned in the activatable antibody such that, when the activatable antibody is in an uncleaved state, the MM interferes with specific binding of the AB to CD 147 and in a cleaved state the MM does not interfere or compete with specific binding of the AB to CD147; and (b) recovering the activatable antibody.
  • Suitable AB, MM, and/or CM include
  • the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM- MM.
  • the activatable antibody comprises a linking peptide between the MM and the CM.
  • the activatable antibody comprises a linking peptide between the CM and the AB.
  • the activatable antibody comprises a first linking peptide (LP1) and a second linking peptide (LP2), and wherein the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-LP1-CM-LP2-AB or AB-LP2-CM-LP1-MM.
  • the two linking peptides need not be identical to each other.
  • the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: spacer-MM-LP 1 -CM-LP2-AB or AB-LP2-CM-LP 1 -MM-spacer.
  • At least one of LP1 or LP2 comprises an amino acid sequence selected from the group consisting of (GS)n, (GGS)n, (GSGGS)n (SEQ ID NO: 116) and (GGGS)n (SEQ ID NO: 117), where n is an integer of at least one.
  • At least one of LP1 or LP2 comprises an amino acid sequence selected from the group consisting of GGSG (SEQ ID NO: 118), GGSGG (SEQ ID NO: 119), GSGSG (SEQ ID NO: 120), GSGGG (SEQ ID NO: 121), GGGSG (SEQ ID NO: 118), GGSG (SEQ ID NO: 118), GGSGG (SEQ ID NO: 119), GSGSG (SEQ ID NO: 120), GSGGG (SEQ ID NO: 121), GGGSG (SEQ ID NO:
  • LP1 comprises the amino acid sequence
  • GSSGGSGGSGGSG (SEQ ID NO: 124), GSSGGSGGSGG (SEQ ID NO: 125),
  • GSSGGSGGSGGS (SEQ ID NO: 126), GSSGGSGGSGGSGGGS (SEQ ID NO: 127),
  • GSSGGSGGSG SEQ ID NO: 128, GSSGGSGGSGS (SEQ ID NO: 129), or GGGSSGGS (SEQ ID NO: 134).
  • LP2 comprises the amino acid sequence GSS, GGS,
  • GGGS SEQ ID NO: 130
  • GSSGT SEQ ID NO: 131
  • GSSG SEQ ID NO: 132).
  • the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: spacer-MM-LP 1-CM-LP2-AB or AB-LP2-CM-LP1 -MM-spacer, where LP1 comprises the amino acid sequence GGGSSGGS (SEQ ID NO: 134) and the LP2 comprises the amino acid sequence GGS.
  • the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: spacer-MM-LPl-CM-LP2-AB or AB-LP2-CM-LPl-MM-spacer, where LP1 comprises the amino acid sequence GGGSSGGS (SEQ ID NO: 134) and the LP2 comprises the amino acid sequence GGGS (SEQ ID NO: 130).
  • the CD 147 antibodies and activatable antibodies described herein also include an agent conjugated to the antibody/activatable antibody.
  • the conjugated agent is a therapeutic agent, such as an anti-inflammatory and/or an antineoplastic agent.
  • the agent is conjugated to a carbohydrate moiety of the antibody/activatable antibody, for example, in some embodiments, where the carbohydrate moiety is located outside the antigen-binding region of the antibody or antigen-binding fragment in the activatable antibody.
  • the agent is conjugated to a sulfhydryl group of the antibody or antigen-binding fragment in the antibody/activatable antibody.
  • the agent is a cytotoxic agent such as a toxin (e.g ., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
  • a cytotoxic agent such as a toxin (e.g ., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
  • the agent is a detectable moiety such as, for example, a label or other marker.
  • the agent is or includes a radiolabeled amino acid, one or more biotinyl moieties that can be detected by marked avidin (e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or calorimetric methods), one or more radioisotopes or radionuclides, one or more fluorescent labels, one or more enzymatic labels, and/or one or more chemiluminescent agents.
  • detectable moieties are attached by spacer molecules.
  • the disclosure also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a toxin (e.g, an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a toxin (e.g, an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a cytotoxic agent such as a toxin (e.g, an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a toxin (e.g, an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a toxin (e.
  • Suitable cytotoxic agents include, for example, dolastatins and derivatives thereof (e.g. auristatin E, AFP, MMAF, MMAE, MMAD, DMAF, DMAE).
  • the agent is monomethyl auristatin E (MMAE) or monomethyl auristatin D (MMAD).
  • the agent is an agent selected from the group listed in Table 6.
  • the agent is a dolastatin.
  • the agent is an auristatin or derivative thereof.
  • the agent is auristatin E or a derivative thereof.
  • the agent is monomethyl auristatin E (MMAE).
  • the agent is monomethyl auristatin D (MMAD). In some embodiments, the agent is a maytansinoid or maytansinoid derivative. In some embodiments, the agent is DM1 or DM4. In some embodiments, the agent is a duocarmycin or derivative thereof. In some embodiments, the agent is a calicheamicin or derivative thereof. In some embodiments, the agent is a
  • the agent is a pyrrolobenzodiazepine dimer.
  • Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes.
  • a variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212 Bi, 131 I, 131 In, 90 Y, and 186 Re.
  • the agent is a toxin or fragment thereof. In some embodiments, the agent is a microtubule inhibitor. In some embodiments, the agent is a nucleic acid damaging agent. In some embodiments, the agent is selected from the group consisting of a dolastatin or a derivative thereof, an auristatin or a derivative thereof, a maytansinoid or a derivative thereof, a duocarmycin or a derivative thereof, a calicheamicin or a derivative thereof, and a pyrrolobenzodiazepine or a derivative thereof. In some embodiments, the agent is auristatin E or a derivative thereof. In some embodiments, the agent is monomethyl auristatin E (MMAE).
  • MMAE monomethyl auristatin E
  • the agent is monomethyl auristatin D (MMAD).
  • the agent is a maytansinoid selected from the group consisting of DM1 and DM4.
  • the agent is maytansinoid DM4.
  • the agent is duocarmycin.
  • the agent is conjugated to the AB via a linker.
  • the linker with which the agent is conjugated to the AB comprises an SPDB moiety, a vc moiety, or a PEG2-vc moiety.
  • the linker and toxin conjugated to the AB comprises an SPDB-DM4 moiety, a vc-MMAD moiety, a vc-MMAE moiety, vc-duocarmycin, or a PEG2 -vc-MMAD moiety.
  • the linker is a cleavable linker.
  • the linker is a non-cleavable linker.
  • the agent is a detectable moiety.
  • the detectable moiety is a diagnostic agent.
  • the conjugated activatable antibody comprises an antibody comprising: (a) an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD147, wherein the AB comprises: (i) the VH CDR1 sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); the VH CDR2 sequence
  • EIRLKSYNYATH SEQ ID NO: 12
  • VH CDR3 sequence AGTDY SEQ ID NO: 13
  • VL CDR1 sequence KASQSVRTDVA SEQ ID NO: 14
  • RASQSVRTDVG SEQ ID NO: 14
  • VL CDR2 sequence YSSNRYT SEQ ID NO: 16
  • VL CDR3 sequence QQDYSSPFT SEQ ID NO: 17
  • QQDYSSPYT SEQ ID NO: 18
  • a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4
  • a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9
  • an agent conjugated to the AB wherein the agent is selected from the group consisting of auristatin E, monomethyl auristatin F (MMAF), monomethyl auristatin E (MMAE), monomethyl auristatin D (MMAD), maytansinoid DM4, maytansinoid DM1, a pyrrol Whyzodiazepine, a pyrrol Tavernzodiazepine dimer, and a
  • the CD147 antibodies and activatable antibodies of the disclosure have at least one point of conjugation for an agent, but in the methods and compositions provided herein less than all possible points of conjugation are available for conjugation to an agent.
  • the one or more points of conjugation are sulfur atoms involved in disulfide bonds.
  • the one or more points of conjugation are sulfur atoms involved in interchain disulfide bonds.
  • the one or more points of conjugation are sulfur atoms involved in interchain sulfide bonds, but not sulfur atoms involved in intrachain disulfide bonds.
  • the one or more points of conjugation are sulfur atoms of cysteine or other amino acid residues containing a sulfur atom. Such residues may occur naturally in the antibody structure or can be incorporated into the antibody by site-directed mutagenesis, chemical conversion, or mis-incorporation of non-natural amino acids.
  • Also provided are methods of preparing a conjugate of a CD147 antibody/CD 147 activatable antibody having one or more interchain disulfide bonds in the AB and one or more intrachain disulfide bonds in the MM, and a drug reactive with free thiols is provided.
  • the method generally includes partially reducing interchain disulfide bonds in the activatable antibody with a reducing agent, such as, for example, TCEP; and conjugating the drug reactive with free thiols to the partially reduced antibody/activatable antibody.
  • partial reduction refers to situations where an act antibody/activatable antibody is contacted with a reducing agent and less than all disulfide bonds, e.g ., less than all possible sites of conjugation are reduced. In some embodiments, less than 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10% or less than 5% of all possible sites of conjugation are reduced.
  • a method of reducing and conjugating an agent e.g., a drug, to a CD147 antibody/CDl47 activatable antibody resulting in selectivity in the placement of the agent.
  • the method generally includes partially reducing the CD 147
  • the antibody/CD 147 activatable antibody with a reducing agent such that any conjugation sites in the masking moiety or other non-AB portion of the CD147 antibody/CDl47 activatable antibody are not reduced, and conjugating the agent to interchain thiols in the AB.
  • the conjugation site(s) are selected so as to allow desired placement of an agent to allow conjugation to occur at a desired site.
  • the reducing agent is, for example, TCEP.
  • the reduction reaction conditions such as, for example, the ratio of reducing agent to antibody/activatable antibody, the length of incubation, the temperature during the incubation, the pH of the reducing reaction solution, etc., are determined by identifying the conditions that produce a conjugated antibody/activatable antibody e.g.
  • the ratio of reduction agent to antibody/activatable antibody will vary depending on the antibody/activatable antibody. In some embodiments, the ratio of reducing agent to
  • antibody/activatable antibody will be in a range from about 20: 1 to 1 : 1, from about 10:1 to 1:1, from about 9:1 to 1:1, from about 8:1 to 1:1, from about 7:1 to 1:1, from about 6:1 to 1:1, from about 5:1 to 1:1, from about 4:1 to 1:1, from about 3:1 to 1:1, from about 2:1 to 1:1, from about 20:1 to 1:1.5, from about 10:1 to 1:1.5, from about 9:1 to 1:1.5, from about 8:1 to 1:1.5, from about 7:1 to 1:1.5, from about 6:1 to 1:1.5, from about 5:1 to 1:1.5, from about 4:1 to 1:1.5, from about 3:1 to 1:1.5, from about 2:1 to 1:1.5, from about 1.5:1 to 1:1.5, or from about 1:1 to 1:1.5.
  • the ratio is in a range of from about 5:1 to 1:1. In some embodiments, the ratio is in a range of from about 5 : 1 to 1.5 : 1. In some embodiments, the ratio is in a range of from about 4: 1 to 1 : 1. In some embodiments, the ratio is in a range from about 4: 1 to 1.5 : 1. In some embodiments, the ratio is in a range from about 8: 1 to about 1 : 1. In some embodiments, the ratio is in a range of from about 2.5:1 to 1:1.
  • the CD 147 antibody undergoes conjugation first and is then further modified to include a CM and MM (resulting in an activatable antibody). In some embodiments, the CD 147 activatable antibody is conjugated.
  • a method of reducing interchain disulfide bonds in the AB of an activatable CD 147 antibody and conjugating an agent, e.g., a thiol-containing agent such as a drug, to the resulting interchain thiols to selectively locate agent(s) on the AB is provided.
  • the method generally includes partially reducing the AB with a reducing agent to form at least two interchain thiols without forming all possible interchain thiols in the activatable antibody; and conjugating the agent to the interchain thiols of the partially reduced AB.
  • the AB of the activatable antibody is partially reduced for about 1 hour at about 37°C at a desired ratio of reducing agent: activatable antibody.
  • the ratio of reducing agent to activatable antibody will be in a range from about 20: 1 to 1:1, from about 10:1 to 1:1, from about 9:1 to 1:1, from about 8:1 to 1:1, from about 7:1 to 1:1, from about 6:1 to 1:1, from about 5:1 to 1:1, from about 4: 1 to 1 : 1, from about 3:1 to 1:1, from about 2: 1 to 1 : 1, from about 20: 1 to 1 : 1.5, from about 10:1 to 1:1.5, from about 9:1 to 1:1.5, from about 8:1 to 1:1.5, from about 7:1 to 1:1.5, from about 6:1 to 1:1.5, from about 5:1 to 1:1.5, from about 4:1 to 1:1.5, from about 3:1 to 1:1.5, from about 2:1 to 1:1.5, from about 1.5:1 to 1:1.5, or from about 1:1 to 1:1.5.
  • the ratio is in a range of from about 5 : 1 to 1 : 1. In some embodiments, the ratio is in a range of from about 5:1 to 1.5:1. In some embodiments, the ratio is in a range of from about 4:1 to 1:1. In some embodiments, the ratio is in a range from about 4:1 to 1.5:1. In some embodiments, the ratio is in a range from about 8: 1 to about 1 : 1. In some embodiments, the ratio is in a range of from about 2.5 : 1 to 1 : 1.
  • the thiol-containing reagent can be, for example, cysteine or N-acetyl cysteine.
  • the reducing agent can be, for example, TCEP.
  • the reduced activatable antibody can be purified prior to conjugation, using for example, column chromatography, dialysis, or diafiltration. Alternatively, the reduced antibody is not purified after partial reduction and prior to conjugation.
  • the invention also provides partially reduced antibodies/activatable antibodies in which at least one interchain disulfide bond in the antibody/activatable antibody has been reduced with a reducing agent without disturbing any intrachain disulfide bonds in the antibody/activatable antibody, wherein the activatable antibody includes an antibody or an antigen binding fragment thereof (AB) that specifically binds to CD 147, a masking moiety (MM) that inhibits the binding of the AB of the activatable antibody in an uncleaved state to the CD 147 target, and a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
  • the MM is coupled to the AB via the CM.
  • the antibody/activatable antibody is not disturbed by the reducing agent.
  • one or more intrachain disulfide bond(s) of the MM within the antibody/activatable antibody is not disturbed by the reducing agent.
  • the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM-MM.
  • reducing agent is TCEP.
  • a method of reducing and conjugating an agent, e.g., a drug, to a CD147 antibody/CDl47 activatable antibody resulting in selectivity in the placement of the agent by providing an activatable CD147 antibody with a defined number and positions of lysine and/or cysteine residues.
  • the defined number of lysine and/or cysteine residues is higher or lower than the number of corresponding residues in the amino acid sequence of the parent antibody or activatable antibody.
  • the defined number of lysine and/or cysteine residues may result in a defined number of agent equivalents that can be conjugated to the CD147 antibody or activatable CD147 antibody.
  • the defined number of lysine and/or cysteine residues may result in a defined number of agent equivalents that can be conjugated to the CD147 antibody or activatable CD147 antibody in a site-specific manner.
  • the modified activatable antibody is modified with one or more non-natural amino acids in a site-specific manner, thus in some embodiments limiting the conjugation of the agents to only the sites of the non-natural amino acids.
  • the CD147 antibody or activatable CD147 antibody with a defined number and positions of lysine and/or cysteine residues can be partially reduced with a reducing agent as discussed herein such that any conjugation sites in the masking moiety or other non-AB portion of the activatable antibody are not reduced, and conjugating the agent to interchain thiols in the AB.
  • the disclosure also provides partially reduced activatable antibodies in which at least one interchain disulfide bond in the activatable antibody has been reduced with a reducing agent without disturbing any intrachain disulfide bonds in the activatable antibody, wherein the activatable antibody includes an antibody or an antigen binding fragment thereof (AB) that specifically binds to the target, e.g., CD 147, a masking moiety (MM) that inhibits the binding of the AB of the activatable antibody in an uncleaved state to the target, and a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for at least one protease.
  • AB antigen binding fragment thereof
  • MM masking moiety
  • CM cleavable moiety
  • the MM is coupled to the AB via the CM.
  • one or more intrachain disulfide bond(s) of the activatable antibody is not disturbed by the reducing agent.
  • one or more intrachain disulfide bond(s) of the MM within the activatable antibody is not disturbed by the reducing agent.
  • the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM-MM.
  • reducing agent is TCEP.
  • the agent is linked to the AB using a maleimide caproyl- valine-citrulline linker or a maleimide PEG-valine-citrulline linker. In some embodiments, the agent is linked to the AB using a maleimide caproyl-valine-citrulline linker. In some
  • the agent is linked to the AB using a maleimide PEG-valine-citrulline linker
  • the agent is monomethyl auristatin D (MMAD) linked to the AB using a maleimide PEG-valine-citrulline-para-aminobenzyloxycarbonyl linker, and this linker payload construct is referred to herein as“vc-MMAD.”
  • the agent is monomethyl auristatin E (MMAE) linked to the AB using a maleimide PEG-valine-citrulline-para- aminobenzyloxycarbonyl linker, and this linker payload construct is referred to herein as“vc- MMAE.”
  • the agent is linked to the AB using a maleimide PEG-valine- citrulline linker
  • the agent is monomethyl auristatin D (MMAD) linked to the AB using a maleimide bis-PEG-valine-cit
  • the disclosure also provides conjugated activatable antibodies that include an activatable antibody linked to monomethyl auristatin D (MMAD) payload, wherein the activatable antibody includes an antibody or an antigen binding fragment thereof (AB) that specifically binds to a target, a masking moiety (MM) that inhibits the binding of the AB of the activatable antibody in an uncleaved state to the target, and cleavable moiety (CM) coupled to the AB, and the CM is a polypeptide that functions as a substrate for at least one MMP protease.
  • MMAD monomethyl auristatin D
  • the MM D-conjugated activatable antibody can be conjugated using any of several methods for attaching agents to ABs: (a) attachment to the carbohydrate moieties of the AB, or (b) attachment to sulfhydryl groups of the AB, or (c) attachment to amino groups of the AB, or (d) attachment to carboxylate groups of the AB.
  • the MMAD payload is conjugated to the AB via a linker. In some embodiments, the MMAD payload is conjugated to a cysteine in the AB via a linker. In some embodiments, the MMAD payload is conjugated to a lysine in the AB via a linker. In some embodiments, the MMAD payload is conjugated to another residue of the AB via a linker, such as those residues disclosed herein. In some embodiments, the linker is a thiol-containing linker. In some embodiments, the linker is a cleavable linker. In some embodiments, the linker is a non- cleavable linker.
  • the linker is selected from the group consisting of the linkers shown in Tables 7 and 8.
  • the activatable antibody and the MMAD payload are linked via a maleimide caproyl-valine-citrulline linker.
  • the activatable antibody and the MMAD payload are linked via a maleimide PEG-valine-citrulline linker.
  • the activatable antibody and the MMAD payload are linked via a maleimide caproyl-valine-citrulline-para-aminobenzyloxy carbonyl linker.
  • the activatable antibody and the MMAD payload are linked via a maleimide PEG-valine- citrulline-para-aminobenzyloxycarbonyl linker.
  • the MMAD payload is conjugated to the AB using the partial reduction and conjugation technology disclosed herein.
  • the polyethylene glycol (PEG) component of a linker of the present disclosure is formed from 2 ethylene glycol monomers, 3 ethylene glycol monomers, 4 ethylene glycol monomers, 5 ethylene glycol monomers, 6 ethylene glycol monomers, 7 ethylene glycol monomers 8 ethylene glycol monomers, 9 ethylene glycol monomers, or at least 10 ethylene glycol monomers.
  • the PEG component is a branched polymer.
  • the PEG component is an unbranched polymer.
  • the PEG polymer component is functionalized with an amino group or derivative thereof, a carboxyl group or derivative thereof, or both an amino group or derivative thereof and a carboxyl group or derivative thereof.
  • the PEG component of a linker of the present disclosure is an amino-tetra-ethylene glycol-carboxyl group or derivative thereof. In some embodiments, the PEG component of a linker of the present disclosure is an amino-tri-ethylene glycol-carboxyl group or derivative thereof. In some embodiments, the PEG component of a linker of the present disclosure is an amino-di-ethylene glycol-carboxyl group or derivative thereof. In some embodiments, an amino derivative is the formation of an amide bond between the amino group and a carboxyl group to which it is conjugated. In some embodiments, a carboxyl derivative is the formation of an amide bond between the carboxyl group and an amino group to which it is conjugated. In some embodiments, a carboxyl derivative is the formation of an ester bond between the carboxyl group and an hydroxyl group to which it is conjugated.
  • Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis- diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as l,5-difluoro-2,4- dinitrobenzene).
  • SPDP N-succinimidyl-3-
  • a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238: 1098 (1987).
  • Carbon-l4-labeled l-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. ( See W094/11026).
  • Table 6 lists some of the exemplary pharmaceutical agents that can be employed in the herein described disclosure but in no way is meant to be an exhaustive list.
  • MMAE Monomethyl auri statin E
  • Auristatin derivatives e.g, amides thereof Modified Bryostatins
  • Maytansinoids e.g. DM-l; DM-4 Maytansinoid derivatives Cemadotin analogue (CemCH2-SH)
  • Coupling can be accomplished by any chemical reaction that will bind the two molecules so long as the antibody and the other moiety retain their respective activities.
  • This linkage can include many chemical mechanisms, for instance covalent binding, affinity binding, intercalation, coordinate binding and complexation.
  • the binding is, however, covalent binding.
  • Covalent binding can be achieved either by direct condensation of existing side chains or by the incorporation of external bridging molecules.
  • Many bivalent or polyvalent linking agents are useful in coupling protein molecules, such as the antibodies of the present disclosure, to other molecules.
  • representative coupling agents can include organic compounds such as thioesters, carbodiimides, succinimide esters, diisocyanates, glutaraldehyde, diazobenzenes and hexamethylene diamines.
  • organic compounds such as thioesters, carbodiimides, succinimide esters, diisocyanates, glutaraldehyde, diazobenzenes and hexamethylene diamines.
  • the activatable antibody in addition to the compositions and methods provided herein, can also be modified for site-specific conjugation through modified amino acid sequences inserted or otherwise included in the activatable antibody sequence. These modified amino acid sequences are designed to allow for controlled placement and/or dosage of the conjugated agent within a conjugated activatable antibody.
  • the activatable antibody can be engineered to include cysteine substitutions at positions on light and heavy chains that provide reactive thiol groups and do not negatively impact protein folding and assembly, nor alter antigen binding.
  • the activatable antibody can be engineered to include or otherwise introduce one or more non-natural amino acid residues within the activatable antibody to provide suitable sites for conjugation.
  • the activatable antibody can be engineered to include or otherwise introduce enzymatically activatable peptide sequences within the activatable antibody sequence.
  • suitable linkers include: (i) EDC (1 -ethyl-3 -(3 -dimethylamino-propyl)
  • SMPT succinimidyloxycarbonyl-alpha-methyl-alpha-(2- pridyl-dithio)-toluene
  • SPDP succinimidyl-6 [3-(2- pyridyldithio) propionamidojhexanoate
  • Additional linkers include, but are not limited to, SMCC ((succinimidyl 4- (N-maleimidomethyl)cyclohexane-l-carboxylate), sulfo-SMCC (sulfosuccinimidyl 4-(N- maleimidomethyl)cyclohexane-l-carboxylate), SPDB (N-succinimidyl-4-(2-pyridyldithio) butanoate), or sulfo-SPDB (N-succinimidyl-4-(2-pyridyldithio)-2-sulfo butanoate).
  • SMCC succinimidyl 4- (N-maleimidomethyl)cyclohexane-l-carboxylate)
  • sulfo-SMCC sulfosuccinimidyl 4-(N- maleimidomethyl)cyclohexane-l-carboxylate
  • SPDB N-succ
  • linkers described above contain components that have different attributes, thus leading to conjugates with differing physio-chemical properties.
  • sulfo-NHS esters of alkyl carboxylates are more stable than sulfo-NHS esters of aromatic carboxylates.
  • NHS-ester containing linkers are less soluble than sulfo-NHS esters.
  • the linker SMPT contains a sterically hindered disulfide bond, and can form conjugates with increased stability.
  • Disulfide linkages are in general, less stable than other linkages because the disulfide linkage is cleaved in vitro , resulting in less conjugate available.
  • Sulfo-NHS in particular, can enhance the stability of carbodimide couplings.
  • Carbodimide couplings (such as EDC) when used in conjunction with sulfo-NHS, forms esters that are more resistant to hydrolysis than the carbodimide coupling reaction alone.
  • the linkers are cleavable. In some embodiments, the linkers are non-cleavable. In some embodiments, two or more linkers are present. The two or more linkers are all the same, i.e., cleavable or non-cleavable, or the two or more linkers are different, i.e., at least one cleavable and at least one non-cleavable.
  • ABs can be covalently attached to an agent through an intermediate linker having at least two reactive groups, one to react with AB and one to react with the agent.
  • the linker which may include any compatible organic compound, can be chosen such that the reaction with AB (or agent) does not adversely affect AB reactivity and selectivity. Furthermore, the attachment of linker to agent might not destroy the activity of the agent.
  • Suitable linkers for reaction with oxidized antibodies or oxidized antibody fragments include those containing an amine selected from the group consisting of primary amine, secondary amine, hydrazine, hydrazide, hydroxylamine, phenylhydrazine, semicarbazide and
  • Such reactive functional groups may exist as part of the structure of the linker, or can be introduced by suitable chemical modification of linkers not containing such groups.
  • suitable linkers for attachment to reduced ABs include those having certain reactive groups capable of reaction with a sulfhydryl group of a reduced antibody or fragment.
  • reactive groups include, but are not limited to: reactive haloalkyl groups (including, for example, haloacetyl groups), p-mercuribenzoate groups and groups capable of Michael -type addition reactions (including, for example, maleimides and groups of the type described by Mitra and Lawton, 1979, J. Amer. Chem. Soc. 101 : 3097-3110).
  • suitable linkers for attachment to neither oxidized nor reduced Abs include those having certain functional groups capable of reaction with the primary amino groups present in unmodified lysine residues in the Ab.
  • Such reactive groups include, but are not limited to, NHS carboxylic or carbonic esters, sulfo-NHS carboxylic or carbonic esters, 4-nitrophenyl carboxylic or carbonic esters, pentafluorophenyl carboxylic or carbonic esters, acyl imidazoles, isocyanates, and isothiocyanates.
  • suitable linkers for attachment to neither oxidized nor reduced Abs include those having certain functional groups capable of reaction with the carboxylic acid groups present in aspartate or glutamate residues in the Ab, which have been activated with suitable reagents.
  • suitable activating reagents include EDC, with or without added NHS or sulfo-NHS, and other dehydrating agents utilized for carboxamide formation.
  • the functional groups present in the suitable linkers would include primary and secondary amines, hydrazines, hydroxylamines, and hydrazides.
  • the agent can be attached to the linker before or after the linker is attached to the AB. In certain applications it may be desirable to first produce an AB-linker intermediate in which the linker is free of an associated agent. Depending upon the particular application, a specific agent may then be covalently attached to the linker. In some embodiments, the AB is first attached to the MM, CM and associated linkers and then attached to the linker for conjugation purposes.
  • Branched Linkers In specific embodiments, branched linkers that have multiple sites for attachment of agents are utilized. For multiple site linkers, a single covalent attachment to an AB would result in an AB-linker intermediate capable of binding an agent at a number of sites.
  • the sites can be aldehyde or sulfhydryl groups or any chemical site to which agents can be attached.
  • higher specific activity can be achieved by attachment of a single site linker at a plurality of sites on the AB.
  • This plurality of sites can be introduced into the AB by either of two methods. First, one may generate multiple aldehyde groups and/or sulfhydryl groups in the same AB. Second, one may attach to an aldehyde or sulfhydryl of the AB a "branched linker" having multiple functional sites for subsequent attachment to linkers.
  • the functional sites of the branched linker or multiple site linker can be aldehyde or sulfhydryl groups, or can be any chemical site to which linkers can be attached.
  • Cleavable Linkers Peptide linkers that are susceptible to cleavage by enzymes of the complement system, such as but not limited to u-plasminogen activator, tissue plasminogen activator, trypsin, plasmin, or another enzyme having proteolytic activity can be used in one embodiment of the present disclosure.
  • an agent is attached via a linker susceptible to cleavage by complement.
  • the antibody is selected from a class that can activate complement.
  • the antibody-agent conjugate thus, activates the complement cascade and releases the agent at the target site.
  • an agent is attached via a linker susceptible to cleavage by enzymes having a proteolytic activity such as a u-plasminogen activator, a tissue plasminogen activator, plasmin, or trypsin.
  • cleavable linkers are useful in conjugated activatable antibodies that include an extracellular toxin, e.g ., by way of non-limiting example, any of the extracellular toxins shown in Table 6.
  • Non-limiting examples of cleavable linker sequences are provided in Table 7.
  • Pro-urokinase PRFKIIGG (SEQ ID NO: 615)
  • PRFRIIGG (SEQ ID NO: 616)
  • TGFp SSRHRRALD (SEQ ID NO: 617)
  • Plasminogen RKS SIIIRMRD VVL (SEQ ID NO: 618)
  • GGSIDGR (SEQ ID NO: 623)
  • Gelatinase A PLGLWA (SEQ ID NO: 624)
  • Calf skin collagen (al(I) chain) GPQGIAGQ (SEQ ID NO: 625)
  • Calf skin collagen (a2(I) chain) GPQGLLGA (SEQ ID NO: 626)
  • Bovine cartilage collagen (al(II) chain) GIAGQ (SEQ ID NO: 627)
  • Rat aiM EPQALAMS (SEQ ID NO: 633)
  • Rat 012M AAYHLVSQ (SEQ ID NO: 635)
  • Rat ail3(2J) ESLPVVAV (SEQ ID NO: 637)
  • Rat ail 3 (27J) SAPAVESE (SEQ ID NO: 638)
  • VAQFVLTE (SEQ ID NO: 640)
  • agents can be attached via disulfide bonds (for example, the disulfide bonds on a cysteine molecule) to the AB. Since many tumors naturally release high levels of glutathione (a reducing agent) this can reduce the disulfide bonds with subsequent release of the agent at the site of delivery.
  • glutathione a reducing agent
  • the reducing agent that would modify a CM would also modify the linker of the conjugated activatable antibody.
  • linker in such a way as to optimize the spacing between the agent and the AB of the activatable antibody. This can be accomplished by use of a linker of the general structure:
  • W is either -NH-CH2- or -CH2-;
  • Q is an amino acid, peptide
  • n is an integer from 0 to 20.
  • the linker may comprise a spacer element and a cleavable element.
  • the spacer element serves to position the cleavable element away from the core of the AB such that the cleavable element is more accessible to the enzyme responsible for cleavage.
  • Certain of the branched linkers described above may serve as spacer elements.
  • linker to agent or of spacer element to cleavable element, or cleavable element to agent
  • Any reaction providing a product of suitable stability and biological compatibility is acceptable.
  • Serum Complement and Selection of Linkers according to one method of the present disclosure, when release of an agent is desired, an AB that is an antibody of a class that can activate complement is used. The resulting conjugate retains both the ability to bind antigen and activate the complement cascade.
  • an agent is joined to one end of the cleavable linker or cleavable element and the other end of the linker group is attached to a specific site on the AB.
  • the agent has an hydroxy group or an amino group, it can be attached to the carboxy terminus of a peptide, amino acid or other suitably chosen linker via an ester or amide bond, respectively.
  • such agents can be attached to the linker peptide via a carbodimide reaction. If the agent contains functional groups that would interfere with attachment to the linker, these interfering functional groups can be blocked before attachment and deblocked once the product conjugate or intermediate is made. The opposite or amino terminus of the linker is then used either directly or after further modification for binding to an AB that is capable of activating complement.
  • Linkers can be of any desired length, one end of which can be covalently attached to specific sites on the AB of the activatable antibody.
  • the other end of the linker or spacer element can be attached to an amino acid or peptide linker.
  • conjugates when administered to a subject, will accomplish delivery and release of the agent at the target site, and are particularly effective for the in vivo delivery of pharmaceutical agents, antibiotics, antimetabolites, antiproliferative agents and the like as presented in but not limited to those in Table 6.
  • Linkers for Release without Complement Activation In yet another application of targeted delivery, release of the agent without complement activation is desired since activation of the complement cascade will ultimately lyse the target cell. Hence, this approach is useful when delivery and release of the agent should be accomplished without killing the target cell. Such is the goal when delivery of cell mediators such as hormones, enzymes, corticosteroids, neurotransmitters, genes or enzymes to target cells is desired.
  • conjugates can be prepared by attaching the agent to an AB that is not capable of activating complement via a linker that is mildly susceptible to cleavage by serum proteases. When this conjugate is administered to an individual, antigen-antibody complexes will form quickly whereas cleavage of the agent will occur slowly, thus resulting in release of the compound at the target site.
  • the activatable antibody can be conjugated to one or more therapeutic agents using certain biochemical cross-linkers.
  • Cross- linking reagents form molecular bridges that tie together functional groups of two different molecules.
  • hetero-bifunctional cross-linkers can be used that eliminate unwanted homopolymer formation.
  • Peptidyl linkers cleavable by lysosomal proteases are also useful, for example, Val-Cit, Val-Ala or other dipeptides.
  • acid-labile linkers cleavable in the low-pH environment of the lysosome can be used, for example: bis-sialyl ether.
  • Other suitable linkers include cathepsin-labile substrates, particularly those that show optimal function at an acidic pH.
  • the conjugate can be designed so that the agent is delivered to the target but not released. This can be accomplished by attaching an agent to an AB either directly or via a non- cleavable linker.
  • non-cleavable linkers may include amino acids, peptides, D-amino acids or other organic compounds that can be modified to include functional groups that can subsequently be utilized in attachment to ABs by the methods described herein.
  • A-general formula for such an organic linker could be
  • W is either— NH— CH 2 — or -CH 2 — ;
  • Q is an amino acid, peptide
  • n is an integer from 0 to 20.
  • Non-Cleavable Conjugates In some embodiments, a compound can be attached to ABs that do not activate complement. When using ABs that are incapable of complement activation, this attachment can be accomplished using linkers that are susceptible to cleavage by activated complement or using linkers that are not susceptible to cleavage by activated complement.
  • the antibodies disclosed herein can also be formulated as immunoliposomes.
  • Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et ah, Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et ah, Proc. Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.
  • Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG- derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
  • Fab’ fragments of the antibody of the present disclosure can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction.
  • the antibody drug conjugates (ADCs) and activatable antibody drug conjugates (AADCs) can include one or more polypeptides that include the combination of a light chain sequence or a light chain variable domain sequence, and a heavy chain sequence or a heavy chain variable domain sequence, a linker, and a toxin in a given row of Table 9 or any combination of a light chain sequence or a light chain variable domain sequence, and a heavy chain sequence or a heavy chain variable domain sequence, a linker, and a toxin of Table 9.
  • Combination No. 1 comprises the heavy chain of SEQ ID No. 1, the light chain of SEQ ID No. 160, a vc linker, conjugated to MMAD toxin.
  • An antibody drug conjugate (ADC) of the present disclosure or activatable antibody drug conjugate (AADC) of the present disclosure may include one or more
  • an activatable antibody drug conjugate (ADC) of the present disclosure or activatable antibody drug conjugate (AADC) of the present disclosure that includes the combination of amino acid sequences, a linker, and a toxin listed in a given row or provided as a specific combination is described herein.
  • an activatable antibody drug conjugate of the present disclosure may include the amino acid sequences of combination no. 20, which includes a heavy chain comprising the amino acid sequence of SEQ ID NO: 19, a light chain comprising the amino acid sequence of SEQ ID NO: 262, and a spdb-DM4 linker-toxin.
  • an activatable antibody drug conjugate of the present disclosure may include the amino acid sequences of combination no. 70, which includes a heavy chain comprising the amino acid sequence of SEQ ID NO: 19, a light chain comprising the amino acid sequence of SEQ ID NO: 261, and a spdb-DM4 linker-toxin.
  • any of the combinations in Table 9 that list a heavy chain and light chain variable region can be combined with human immunoglobulin constant regions to result in fully human IgGs including IgGl, IgG2, IgG4 or mutated constant regions to result in human IgGs with altered functions such as IgGl N297A, IgGl N297Q, or IgG4 S228P.
  • the combinations described in Table 9 are not limited by the particular combinations shown in any given row, and thus can include any heavy chain sequence or heavy chain variable region sequence from column 2 of Table 9 combined with any light chain sequence or light chain variable region sequence from column 3 of Table 9 combined with any linker from column 4 combined with any toxin from column 5.
  • any heavy chain sequence or heavy chain variable region sequence disclosed herein can be used in a combination.
  • any light chain sequence or light chain variable region sequence disclosed herein can be used in a combination.
  • any linker disclosed herein can be used in a combination.
  • any toxin disclosed herein can be used in a combination.
  • the activatable CD147 antibody and/or conjugated activatable CD147 antibody is monospecific. In some embodiments, the activatable CD147 antibody and/or conjugated activatable CD147 antibody is multispecific, e.g ., by way of non limiting example, bispecific or trifunctional.
  • the activatable CD147 antibody and/or conjugated activatable CD147 antibody is formulated as part of a pro-Bi specific T Cell Engager (BITE) molecule.
  • the activatable CD147 antibody and/or conjugated activatable CD 147 antibody is formulated as part of a pro-Chimeric Antigen Receptor (CAR) modified T cell or other engineered receptor.
  • CAR pro-Chimeric Antigen Receptor
  • the disclosure accordingly also provides multispecific CD 147 antibodies.
  • the multispecific antibodies provided herein are multispecific antibodies that recognize CD147 and at least one or more different antigens or epitopes.
  • the disclosure also provides multispecific CD147 activatable antibodies.
  • the multispecific activatable antibodies provided herein are multispecific antibodies that recognize CD 147 and at least one or more different antigens or epitopes and that include at least one masking moiety (MM) linked to at least one antigen- or epitope-binding domain of the multispecific antibody such that coupling of the MM reduces the ability of the antigen- or epitope-binding domain to bind its target.
  • the MM is coupled to the antigen- or epitope-binding domain of the multispecific antibody via a cleavable moiety (CM) that functions as a substrate for at least one protease.
  • CM cleavable moiety
  • the activatable multispecific antibodies provided herein are stable in circulation, activated at intended sites of therapy and/or diagnosis but not in normal, i.e., healthy tissue, and, when activated, exhibit binding to a target that is at least comparable to the corresponding, unmodified multispecific antibody.
  • the activatable antibody or antigen-binding fragment thereof is incorporated in a multispecific activatable antibody or antigen-binding fragment thereof, where at least one arm of the multispecific activatable antibody specifically binds CD 147. In some embodiments, the activatable antibody or antigen-binding fragment thereof is incorporated in a bispecific antibody or antigen-binding fragment thereof, where at least one arm of the bispecific activatable antibody specifically binds CD147.
  • the antibody or antigen-binding fragment thereof is incorporated in a multispecific antibody or antigen-binding fragment thereof, where at least one arm of the multispecific antibody or antigen-binding fragment thereof specifically binds CD147. In some embodiments, the antibody or antigen-binding fragment thereof is incorporated in a bispecific antibody or antigen-binding fragment thereof, where at least one arm of the bispecific antibody or antigen-binding fragment thereof specifically binds CD147.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4.
  • at least one arm of the multispecific antibody or antigen-binding fragment thereof comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • at least one arm of the multispecific antibody or antigen-binding fragment thereof comprises a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a heavy chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a heavy chain variable region amino acid sequence c selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4.
  • at least one arm of the multispecific antibody or antigen binding fragment thereof comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4.
  • multispecific antibody or antigen-binding fragment thereof e.g., a bispecific antibody or antigen binding fragment thereof, comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • at least one arm of the multispecific antibody or antigen binding fragment thereof comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • at least one arm of the multispecific antibody or antigen binding fragment thereof comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • multispecific antibody or antigen-binding fragment thereof e.g., a bispecific antibody or antigen binding fragment thereof, comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4, and a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-9.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-3, and a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a combination of a variable heavy chain complementarity determining region 1 (VH CDR1, also referred to herein as CDRH1) sequence, a variable heavy chain complementarity determining region 2 (VH CDR2, also referred to herein as CDRH2) sequence, a variable heavy chain complementarity determining region 3 (VH CDR3, also referred to herein as CDRH3) sequence, a variable light chain complementarity determining region 1 (VL CDR1, also referred to herein as CDRL1) sequence, a variable light chain complementarity determining region 2 (VL CDR2, also referred to herein as CDRL2) sequence, and a variable light chain complementarity determining region 3 (VL CDR3, also referred to herein as CDRL3) sequence, wherein at least one complementarity determining region (CDR) sequence is selected from the
  • VH CDR2 sequence comprising the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 12); a VH CDR3 sequence comprising the amino acid sequence AGTDY (SEQ ID NO: 13); a VL CDR1 sequence comprising the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15); a VL CDR2 sequence comprising the amino acid sequence YSSNRYT (SEQ ID NO: 16); and a VL CDR3 sequence comprising the amino acid sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR1 sequence comprising the amino acid sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11); a VH CDR2 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 9
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence
  • the VH CDR1 sequence comprises the amino acid sequence GFTFSNYWMN (SEQ ID NO: 10) or GFTFSNYWMD (SEQ ID NO: 11)
  • the VH CDR2 sequence comprises the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 12)
  • the VH CDR3 sequence comprises the amino acid sequence AGTDY (SEQ ID NO: 13)
  • the VL CDR1 sequence comprises the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or RASQSVRTDVG (SEQ ID NO: 15)
  • the VL CDR2 sequence comprises the amino acid sequence
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the VH CDR1 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%,
  • the VH CDR2 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence EIRLKSYNYATH (SEQ ID NO: 12);
  • the VH CDR3 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence AGTDY (SEQ ID NO: 13);
  • the VL CDR1 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence KASQSVRTDVA (SEQ ID NO: 14) or
  • the VL CDR2 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence YSSNRYT (SEQ ID NO: 16); and the VL CDR3 sequence comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence QQDYSSPFT (SEQ ID NO: 17) or QQDYSSPYT (SEQ ID NO: 18).
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a heavy chain or a heavy chain variable region that comprises or is derived from a heavy chain amino acid sequence or heavy chain variable region amino acid sequence shown in Table 1.
  • at least one arm of the multispecific antibody or antigen-binding fragment thereof comprises a light chain or a light chain variable region that comprises or is derived from a light chain amino acid sequence or light chain variable region amino acid sequence shown in Table 1.
  • At least one arm of the multispecific antibody or antigen-binding fragment thereof comprises a heavy chain or a heavy chain variable region amino acid sequence that comprises or is derived from a heavy chain amino acid sequence or heavy chain variable region amino acid sequence shown in Table 1 and a light chain or a light chain variable region amino acid sequence that comprises or is derived from a light chain amino acid sequence or light chain variable region amino acid sequence shown in Table 1.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of the heavy chain variable region sequences shown in Table 1.
  • At least one arm of the multispecific antibody or antigen-binding fragment thereof comprises an amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence that is selected from the group consisting of the light chain variable region sequences shown in Table 1.
  • At least one arm of the multispecific antibody or antigen-binding fragment thereof comprises an amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of the heavy chain variable region sequences shown in Table 1 and a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of the light chain variable region sequences shown in Table 1.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a combination of a variable heavy chain complementarity determining region 1 (VH CDR1, also referred to herein as CDRH1) sequence, a variable heavy chain complementarity determining region 2 (VH CDR2, also referred to herein as CDRH2) sequence, a variable heavy chain complementarity determining region 3 (VH CDR3, also referred to herein as CDRH3) sequence, a variable light chain complementarity determining region 1 (VL CDR1, also referred to herein as CDRL1) sequence, a variable light chain complementarity determining region 2 (VL CDR2, also referred to herein as CDRL2) sequence, and a variable light chain complementarity determining region 3 (VL CDR3, also referred to herein as CDRL3) sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1, also referred to herein as CDRH1) sequence, a variable heavy chain complementarity determining region 2 (V
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR1 sequence shown in Table 2; a VH CD2 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR2 sequence shown in Table 2; a VH CDR3 sequence that includes
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the combination is a combination of the six CDR sequences (VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, and VL CDR3) shown in a single row in Table 2.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a light chain variable region that comprise a combination of a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the combination is a combination of the three light chain CDR sequences (VL CDR1, VL CDR2, VL CDR3) shown in a single row in Table 2.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a heavy chain variable region that comprise a combination of a VH CDR1 sequence, a VH CDR2 sequence, and a VH CDR3 sequence, wherein the combination is a combination of the three heavy chain CDR sequences (VH CDR1, VH CDR2, VH CDR3) shown in a single row in Table 2.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein each CDR sequence in the combination comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the corresponding CDR sequence in a combination of the six CDR sequences (VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, and VL CDR3) shown in a single row in Table 2.
  • VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, and VL CDR3 shown in a single row in Table 2.
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a heavy chain variable region that comprise a combination of a VH CDR1 sequence, a VH CDR2 sequence, and a VH CDR3 sequence, wherein each CDR sequence in the combination comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the corresponding CDR sequence in a combination of three heavy chain CDR sequences (VH CDR1, VH CDR2, VH CDR3) shown in a single row in Table 2.
  • VH CDR1, VH CDR2, VH CDR3 three heavy chain CDR sequences
  • At least one arm of the multispecific antibody or antigen binding fragment thereof comprises a light chain variable region that comprise a combination of a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein each CDR sequence in the combination comprises a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the corresponding CDR sequence in a combination of three light chain CDR sequences (VL CDR1, VL CDR2, VL CDR3) shown in a single row in Table 2.
  • VL CDR1, VL CDR2, VL CDR3 three light chain CDR sequences
  • the multispecific antibodies/activatable antibodies are designed to engage immune effector cells, also referred to herein as immune-effector cell engaging multispecific activatable antibodies.
  • the multispecific antibodies/activatable antibodies are designed to engage leukocytes, also referred to herein as leukocyte engaging multispecific activatable antibodies.
  • the multispecific antibodies/activatable antibodies are designed to engage T cells, also referred to herein as T-cell engaging multispecific antibodies/activatable antibodies.
  • the multispecific antibodies/activatable antibodies engage a surface antigen on a leukocyte, such as on a T cell, on a natural killer (NK) cell, on a myeloid mononuclear cell, on a macrophage, and/or on another immune effector cell.
  • the immune effector cell is a leukocyte.
  • the immune effector cell is a T cell.
  • the immune effector cell is aNK cell.
  • the immune effector cell is a mononuclear cell, such as a myeloid mononuclear cell.
  • the multispecific activatable antibodies are designed to bind or otherwise interact with more than one target and/or more than one epitope, also referred to herein as multi-antigen targeting activatable antibodies.
  • target and“antigen” are used interchangeably.
  • immune effector cell engaging multispecific activatable antibodies of the disclosure include a targeting antibody or antigen-binding fragment thereof that binds CD 147 and an immune effector cell engaging antibody or antigen-binding portion thereof, where at least one of the targeting antibody or antigen-binding fragment thereof and/or the immune effector cell engaging antibody or antigen-binding portion thereof is masked.
  • the immune effector cell engaging antibody or antigen binding fragment thereof includes a first antibody or antigen-binding fragment thereof (AB1) that binds a first, immune effector cell engaging target, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind the first target.
  • the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD147, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD147.
  • AB2 second antibody or antigen-binding fragment thereof
  • MM2 masking moiety
  • the immune effector cell engaging antibody or antigen binding fragment thereof includes a first antibody or antigen-binding fragment thereof (AB1) that binds a first, immune effector cell engaging target, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind the first target, and the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD147, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD147.
  • AB1 antibody or antigen-binding fragment thereof
  • MM1 masking moiety
  • the non-immune effector cell engaging antibody is a cancer targeting antibody. In some embodiments the non-immune cell effector antibody is an IgG. In some embodiments the immune effector cell engaging antibody is a scFv. In some embodiments the CD 147-targeting antibody (e.g., non-immune cell effector antibody) is an IgG and the immune effector cell engaging antibody is a scFv. In some embodiments, the immune effector cell is a leukocyte. In some embodiments, the immune effector cell is a T cell. In some embodiments, the immune effector cell is a NK cell. In some embodiments, the immune effector cell is a myeloid mononuclear cell.
  • T-cell engaging multispecific activatable antibodies of the disclosure include a CD 147-targeting antibody or antigen-binding fragment thereof and a T-cell engaging antibody or antigen-binding portion thereof, where at least one of the CD 147-targeting antibody or antigen-binding fragment thereof and/or the T-cell engaging antibody or antigen binding portion thereof is masked.
  • the T-cell engaging antibody or antigen binding fragment thereof includes a first antibody or antigen-binding fragment thereof (AB1) that binds a first, T-cell engaging target, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind the first target.
  • the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD147, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD147.
  • AB2 second antibody or antigen-binding fragment thereof
  • MM2 masking moiety
  • the T-cell engaging antibody or antigen binding fragment thereof includes a first antibody or antigen-binding fragment thereof (AB1) that binds a first, T-cell engaging target, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind the first target, and the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen binding fragment thereof (AB2) that binds CD147, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD147.
  • AB1 antibody or antigen-binding fragment thereof
  • MM1 masking moiety
  • the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen binding fragment thereof (AB2) that binds CD147, where the AB2 is attached to a masking moiety (MM2) such that coupling
  • one antigen is CD147, and another antigen is typically a stimulatory or inhibitory receptor present on the surface of a T-cell, natural killer (NK) cell, myeloid mononuclear cell, macrophage, and/or other immune effector cell, such as, but not limited to, B7-H4, BTLA, CD3, CD4, CD8, CDl6a, CD25, CD27, CD28, CD32, CD56, CD137, CTLA-4, GITR, HVEM, ICOS, LAG3, NKG2D, 0X40, PD-l, TIGIT, TIM3, or VISTA.
  • NK natural killer
  • the antigen is a stimulatory receptor present on the surface of a T cell or NK cell; examples of such stimulatory receptors include, but are not limited to, CD3, CD27, CD28, CD137 (also referred to as 4-1BB), GITR, HVEM, ICOS, NKG2D, and 0X40.
  • the antigen is an inhibitory receptor present on the surface of a T-cell; examples of such inhibitory receptors include, but are not limited to, BTLA, CTLA-4, LAG3, PD-l, TIGIT, TIM3, and NK-expressed KIRs.
  • the antibody domain conferring specificity to the T-cell surface antigen may also be substituted by a ligand or ligand domain that binds to a T-cell receptor, a NK-cell receptor, a macrophage receptor, and/or other immune effector cell receptor, such as, but not limited to, B7-1, B7-2, B7H3, PDL1, PDL2, or TNFSF9.
  • a ligand or ligand domain that binds to a T-cell receptor, a NK-cell receptor, a macrophage receptor, and/or other immune effector cell receptor, such as, but not limited to, B7-1, B7-2, B7H3, PDL1, PDL2, or TNFSF9.
  • the T-cell engaging multispecific activatable antibody includes an anti-CD3 epsilon (CD3e, also referred to herein as CD3e and CD3) scFv and a targeting antibody or antigen-binding fragment thereof, where at least one of the anti-CD3e scFv and/or the targeting antibody or antigen-binding portion thereof is masked.
  • CD3e anti-CD3 epsilon
  • CD3e also referred to herein as CD3e and CD3
  • the CD3e scFv includes a first antibody or antigen-binding fragment thereof (AB1) that binds CD3e, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind CD3e.
  • the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD 147, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD147.
  • the CD3e scFv includes a first antibody or antigen-binding fragment thereof (AB1) that binds CD3e, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind CD3e, and the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD147, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD147.
  • AB1 antibody or antigen-binding fragment thereof
  • MM1 masking moiety
  • the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD147, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2
  • the multi-antigen targeting antibodies and/or multi-antigen targeting activatable antibodies include at least a first antibody or antigen-binding fragment thereof that binds a first target and/or first epitope and a second antibody or antigen-binding fragment thereof that binds a second target and/or a second epitope.
  • the multi-antigen targeting antibodies and/or multi-antigen targeting activatable antibodies bind two or more different targets.
  • the multi-antigen targeting antibodies and/or multi-antigen targeting activatable antibodies bind two or more different epitopes on the same target.
  • the multi-antigen targeting antibodies and/or multi-antigen targeting activatable antibodies bind a combination of two or more different targets and two or more different epitopes on the same target.
  • a multispecific activatable antibody comprising an IgG has the IgG variable domains masked. In some embodiments, a multispecific activatable antibody comprising a scFv has the scFv domains masked. In some embodiments, a multispecific activatable antibody has both IgG variable domains and scFv domains, where at least one of the IgG variable domains is coupled to a masking moiety. In some embodiments, a multispecific activatable antibody has both IgG variable domains and scFv domains, where at least one of the scFv domains is coupled to a masking moiety.
  • a multispecific activatable antibody has both IgG variable domains and scFv domains, where at least one of the IgG variable domains is coupled to a masking moiety and at least one of the scFv domains is coupled to a masking moiety. In some embodiments, a multispecific activatable antibody has both IgG variable domains and scFv domains, where each of the IgG variable domains and the scFv domains is coupled to its own masking moiety. In some embodiments, one antibody domain of a multispecific activatable antibody has specificity for a target antigen and another antibody domain has specificity for a T-cell surface antigen.
  • one antibody domain of a multispecific activatable antibody has specificity for a target antigen and another antibody domain has specificity for another target antigen. In some embodiments, one antibody domain of a multispecific activatable antibody has specificity for an epitope of a target antigen and another antibody domain has specificity for another epitope of the target antigen.
  • a scFv in a multispecific activatable antibody, can be fused to the carboxyl terminus of the heavy chain of an IgG activatable antibody, to the carboxyl terminus of the light chain of an IgG activatable antibody, or to the carboxyl termini of both the heavy and light chains of an IgG activatable antibody.
  • a scFv in a multispecific activatable antibody, can be fused to the amino terminus of the heavy chain of an IgG activatable antibody, to the amino terminus of the light chain of an IgG activatable antibody, or to the amino termini of both the heavy and light chains of an IgG activatable antibody.
  • a scFv can be fused to any combination of one or more carboxyl termini and one or more amino termini of an IgG activatable antibody.
  • a masking moiety (MM) linked to a cleavable moiety (CM) is attached to and masks an antigen binding domain of the IgG.
  • a masking moiety (MM) linked to a cleavable moiety (CM) is attached to and masks an antigen binding domain of at least one scFv.
  • a masking moiety (MM) linked to a cleavable moiety (CM) is attached to and masks an antigen binding domain of an IgG and a masking moiety (MM) linked to a cleavable moiety (CM) is attached to and masks an antigen binding domain of at least one scFv.
  • the disclosure provides examples of multispecific activatable antibody structures which include, but are not limited to, the following: (VL-CL) 2 : (VH-CH 1-CH2-CH3-L4-VH* - L3-VL*-L2-CM-Ll-MM) 2 ; (VL-CL) 2 : (VH-CH l-CH2-CH3-L4-VL*-L3-VH*-L2-CM-Ll- MM) 2 ; (MM-L 1 -CM-L2- VL-CL) 2 : (VH-CH 1 -CH2-CH3 -L4-VH* -L3 - VL *) 2 ; (MM-L 1 -CM-L2- VL-CL) 2 : (VH-CH 1 -CH2-CH3 -L4- VL* -L3 - VH*) 2 ; (VL-CL) 2 :(MM-Ll-CM-L2-VL*-L3- VH*)
  • one antigen is CD147, and another antigen is typically a stimulatory (also referred to herein as activating) or inhibitory receptor present on the surface of a T-cell, natural killer (NK) cell, myeloid mononuclear cell, macrophage, and/or other immune effector cell, such as, but not limited to, B7-H4, BTLA, CD3, CD4, CD8, CDl6a, CD25, CD27, CD28, CD32, CD56, CD137 (also referred to as TNFRSF9), CTLA-4, GITR, HVEM, ICOS, LAG3, NKG2D, 0X40, PD-l, TIGIT, TIM3, or VISTA.
  • a stimulatory also referred to herein as activating
  • NK natural killer
  • CD137 also referred to as TNFRSF9
  • CTLA-4 GITR
  • HVEM HVEM
  • ICOS LAG3, NKG2D
  • 0X40 PD-l
  • TIGIT
  • the antibody domain conferring specificity to the T-cell surface antigen may also be substituted by a ligand or ligand domain that binds to a T-cell receptor, a NK-cell receptor, a macrophage receptor, and/or other immune effector cell receptor.
  • the targeting antibody is a CD147 antibody disclosed herein.
  • the targeting antibody can be in the form an activatable antibody.
  • the scFv(s) can be in the form of a Pro-scFv (see, e.g., WO 2009/025846, WO 2010/081173).
  • the scFv is specific for binding CD3e, and comprises or is derived from an antibody or fragment thereof that binds CD3e, e.g., CH2527, FN18, H2C,
  • the scFv is specific for binding CTLA-4 (also referred to herein as CTLA and CTLA4).
  • the anti-CTLA-4 scFv includes the amino acid sequence:
  • the anti-CTLA-4 scFv includes the amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence of SEQ ID NO: 643.
  • the anti-CD3s scFv includes the amino acid sequence:
  • the anti-CD3s scFv includes the amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to the amino acid sequence of SEQ ID NO: 644.
  • the scFv is specific for binding one or more T-cells, one or more NK-cells and/or one or more macrophages.
  • the scFv is specific for binding a target selected from the group consisting of B7-H4, BTLA, CD3, CD4, CD8, CDl6a, CD25, CD27, CD28, CD32, CD56, CD137, CTLA-4, GITR, HVEM, ICOS, LAG3, NKG2D, 0X40, PD-l, TIGIT, TIM3, or VISTA.
  • the multispecific antibody/activatable antibody also includes an agent conjugated to the AB.
  • the agent is a therapeutic agent.
  • the agent is an antineoplastic agent. In some embodiments, the agent is a toxin or fragment thereof. In some embodiments, the agent is conjugated to the multispecific antibody/activatable antibody via a linker. In some embodiments, the agent is conjugated to the AB via a cleavable linker. In some embodiments, the linker is a non-cleavable linker. In some embodiments, the agent is a microtubule inhibitor. In some embodiments, the agent is a nucleic acid damaging agent, such as a DNA alkylator or DNA intercalator, or other DNA damaging agent. In some embodiments, the linker is a cleavable linker.
  • the agent is an agent selected from the group listed in Table 6. In some embodiments, the agent is a dolastatin. In some embodiments, the agent is an auristatin or derivative thereof. In some embodiments, the agent is auristatin E or a derivative thereof. In some embodiments, the agent is monomethyl auristatin E (MMAE). In some embodiments, the agent is monomethyl auristatin D (MMAD). In some embodiments, the agent is a maytansinoid or maytansinoid derivative. In some embodiments, the agent is DM1 or DM4. In some embodiments, the agent is a
  • the agent is a calicheamicin or derivative thereof.
  • the agent is a pyrrolobenzodiazepine.
  • the agent is a pyrrolobenzodiazepine dimer.
  • the multispecific antibody/activatable antibody also includes a detectable moiety.
  • the detectable moiety is a diagnostic agent.
  • the multispecific antibody/activatable antibody naturally contains one or more disulfide bonds.
  • the multispecific activatable antibody can be engineered to include one or more disulfide bonds.
  • the disclosure also provides an isolated nucleic acid molecule encoding a multispecific antibody/activatable antibody described herein, as well as vectors that include these isolated nucleic acid sequences.
  • the disclosure provides methods of producing a multispecific antibody/activatable antibody by culturing a cell under conditions that lead to expression of the antibody/activatable antibody, wherein the cell comprises such a nucleic acid molecule. In some embodiments, the cell comprises such a vector.
  • the disclosure also provides a method of manufacturing multispecific CD147 antibodies of the disclosure by (a) culturing a cell comprising a nucleic acid construct that encodes the multispecific antibody under conditions that lead to expression of the multispecific antibody.
  • the disclosure also provides a method of manufacturing multispecific activatable CD147 antibodies of the disclosure by (a) culturing a cell comprising a nucleic acid construct that encodes the multispecific activatable antibody under conditions that lead to expression of the multispecific activatable antibody, and (b) recovering the multispecific activatable antibody.
  • Suitable AB, MM, and/or CM include any of the AB, MM, and/or CM disclosed herein.
  • the disclosure also provides multispecific activatable antibodies and/or multispecific activatable antibody compositions that include at least a first antibody or antigen binding fragment thereof (AB1) that specifically binds a first target or first epitope and a second antibody or antigen-biding fragment thereof (AB2) that binds a second target or a second epitope, where at least AB1 is coupled or otherwise attached to a masking moiety (MM1), such that coupling of the MM1 reduces the ability of AB1 to bind its target.
  • AB1 antibody or antigen binding fragment thereof
  • AB2 second antibody or antigen-biding fragment thereof
  • the MM1 is coupled to AB1 via a first cleavable moiety (CM1) sequence that includes a substrate for a protease, for example, a protease that is co-localized with the target of AB1 at a treatment site or a diagnostic site in a subject.
  • CM1 first cleavable moiety
  • the multispecific activatable antibodies provided herein are stable in circulation, activated at intended sites of therapy and/or diagnosis but not in normal, i.e., healthy tissue, and, when activated, exhibit binding to the target of AB1 that is at least comparable to the corresponding, unmodified multispecific antibody.
  • Suitable AB, MM, and/or CM include any of the AB, MM, and/or CM disclosed herein.
  • compositions and methods that include a
  • multispecific activatable antibody that includes at least a first antibody or antibody fragment (AB1) that specifically binds a target and a second antibody or antibody fragment (AB2), where at least the first AB in the multispecific activatable antibody is coupled to a masking moiety (MM1) that decreases the ability of AB1 to bind its target.
  • each AB is coupled to a MM that decreases the ability of its corresponding AB to each target.
  • AB1 is coupled to a first masking moiety (MM1) that decreases the ability of AB1 to bind its target
  • AB2 is coupled to a second masking moiety (MM2) that decreases the ability of AB2 to bind its target.
  • the multispecific activatable antibody comprises more than two AB regions; in such embodiments, AB1 is coupled to a first masking moiety (MM1) that decreases the ability of AB1 to bind its target, AB2 is coupled to a second masking moiety (MM2) that decreases the ability of AB2 to bind its target, AB3 is coupled to a third masking moiety (MM3) that decreases the ability of AB3 to bind its target, and so on for each AB in the multispecific activatable antibody.
  • Suitable AB, MM, and/or CM include any of the AB, MM, and/or CM disclosed herein.
  • the multispecific activatable antibody further includes at least one cleavable moiety (CM) that is a substrate for a protease, where the CM links a MM to an AB.
  • the multispecific activatable antibody includes at least a first antibody or antibody fragment (AB1) that specifically binds a target and a second antibody or antibody fragment (AB2), where at least the first AB in the multispecific activatable antibody is coupled via a first cleavable moiety (CM1) to a masking moiety (MM1) that decreases the ability of AB1 to bind its target.
  • AB1 is coupled via CM1 to MM1, and AB2 is coupled via a second cleavable moiety (CM2) to a second masking moiety (MM2) that decreases the ability of AB2 to bind its target.
  • the multispecific activatable antibody comprises more than two AB regions; in some of these embodiments, AB1 is coupled via CM1 to MM1, AB2 is coupled via CM2 to MM2, and AB3 is coupled via a third cleavable moiety (CM3) to a third masking moiety (MM3) that decreases the ability of AB3 to bind its target, and so on for each AB in the multispecific activatable antibody.
  • CM3 third cleavable moiety
  • MM3 third masking moiety
  • the disclosure also provides activatable antibodies that include non-binding steric moieties (NB) or binding partners (BP) for non-binding steric moieties, where the BP recruits or otherwise attracts the NB to the activatable antibody.
  • NB non-binding steric moieties
  • BP binding partners
  • the activatable antibodies provided herein include, for example, an activatable antibody that includes a non-binding steric moiety (NB), a cleavable linker (CL) and antibody or antibody fragment (AB) that binds a target; an activatable antibody that includes a binding partner for a non-binding steric moiety (BP), a CL and an AB; and an activatable antibody that includes a BP to which an NB has been recruited, a CL and an AB that binds the target.
  • NB non-binding steric moiety
  • CL cleavable linker
  • AB antibody or antibody fragment
  • Activatable antibodies in which the NB is covalently linked to the CL and AB of the activatable antibody or is associated by interaction with a BP that is covalently linked to the CL and AB of the activatable antibody are referred to herein as“NB -containing activatable antibodies.”
  • activatable or switchable is meant that the activatable antibody exhibits a first level of binding to a target when the activatable antibody is in an inhibited, masked or uncleaved state (i.e., a first conformation), and a second level of binding to the target when the activatable antibody is in an uninhibited, unmasked and/or cleaved state (i.e., a second conformation, i.e., activated antibody), where the second level of target binding is greater than the first level of target binding.
  • the activatable antibody compositions can exhibit increased bioavailability and more favorable biodistribution compared to conventional antibody therapeutics.
  • activatable antibodies provide for reduced toxicity and/or adverse side effects that could otherwise result from binding of the at non-treatment sites and/or non-diagnostic sites if the AB were not masked or otherwise inhibited from binding to such a site.
  • CD 147 activatable antibodies that include a non-binding steric moiety can be made using the methods set forth in PCT Publication No. WO 2013/192546, the contents of which are hereby incorporated by reference in their entirety.
  • the invention provides methods of preventing, delaying the progression of, treating, alleviating a symptom of, or otherwise ameliorating a CDl47-mediated disease in a subject by administering a therapeutically effective amount of a CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody described herein to a subject in need thereof.
  • CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody for use in preventing, delaying the progression of, treating, alleviating a symptom of, or otherwise ameliorating a CD147- mediated disease.
  • the invention also provides methods of preventing, delaying the progression of, treating, alleviating a symptom of, or otherwise ameliorating cancer in a subject by administering a therapeutically effective amount of a CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody described herein to a subject in need thereof.
  • CD147 antibody conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody for use in preventing, delaying the progression of, treating, alleviating a symptom of, or otherwise ameliorating cancer.
  • the invention also provides methods of treating, preventing and/or delaying the onset or progression of, or alleviating a symptom associated with aberrant expression and/or activity of CD147 in a subject using antibodies/activatable antibodies that bind CD147, particularly activatable antibodies that bind and neutralize or otherwise inhibit at least one biological activity of CD147 and/or CDl47-mediated signaling.
  • antibodies/activatable antibodies that bind CD 147 for use in treating, preventing and/or delaying the onset or progression of, ameliorating, or alleviating a symptom associated with aberrant expression and/or activity of CD147.
  • the invention also provides methods of treating, preventing and/or delaying the onset or progression of, or alleviating a symptom associated with the presence, growth, proliferation, metastasis, and/or activity of cells which are expressing CD 147 or aberrantly expressing CD147 in a subject using antibodies/activatable antibodies that bind CD147, particularly activatable antibodies that bind, target, neutralize, kill, or otherwise inhibit at least one biological activity of cells which are expressing or aberrantly expressing CD147.
  • the invention also provides methods of treating, preventing and/or delaying the onset or progression of, or alleviating a symptom associated with the presence, growth, proliferation, metastasis, and/or activity of cells which are expressing CD 147 in a subject using antibodies/activatable antibodies that bind CD147, particularly antibodies/activatable antibodies that bind, target, neutralize, kill, or otherwise inhibit at least one biological activity of cells which are expressing CD147.
  • the invention also provides methods of treating, preventing and/or delaying the onset or progression of, or alleviating a symptom associated with the presence, growth, proliferation, metastasis, and/or activity of cells which are aberrantly expressing CD147 in a subject using antibodies/activatable antibodies that bind CD147, particularly
  • antibodies/activatable antibodies that bind, target, neutralize, kill, or otherwise inhibit at least one biological activity of cells which are aberrantly expressing CD147.
  • CD147 is known to be expressed in a variety of cancers, such as, by way of non limiting example, adenocarcinoma, bile duct (biliary) cancer, bladder cancer, breast cancer, e.g., triple-negative breast cancer and Her2 -negative breast cancer; carcinoid cancer; cervical cancer; cholangiocarcinoma; colorectal; endometrial; esophageal cancer; glioma; head and neck cancer, e.g., head and neck squamous cell cancer; leukemia; liver cancer; lung cancer, e.g., NSCLC, SCLC; lymphoma; melanoma; osopharyngeal cancer; ovarian cancer; pancreatic cancer; prostate cancer, e.g., metastatic castration-resistant prostate carcinoma; renal cancer; skin cancer;
  • squamous cell cancer stomach cancer; testis cancer; thyroid cancer; and urothelial cancer.
  • the cancer is associated with a CDl47-expressing tumor.
  • the cancer is due to a CD 147-expressing tumor.
  • a CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD 147 antibody used in any of the embodiments of these methods and uses can be administered at any stage of the disease.
  • a CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody can be administered to a patient suffering cancer of any stage, from early to metastatic.
  • subject and patient are used interchangeably herein.
  • the subject is a mammal, such as a human, non-human primate, companion animal (e.g., cat, dog, horse), farm animal, work animal, or zoo animal.
  • the subject is a human.
  • the subject is a companion animal.
  • the subject is an animal in the care of a veterinarian.
  • the CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody and therapeutic formulations thereof are administered to a subject suffering from or susceptible to a disease or disorder associated with aberrant CD147 expression and/or activity.
  • a subject suffering from or susceptible to a disease or disorder associated with aberrant CD147 expression and/or activity is identified using any of a variety of methods known in the art.
  • subjects suffering from cancer or other neoplastic condition are identified using any of a variety of clinical and/or laboratory tests such as, physical examination and blood, urine and/or stool analysis to evaluate health status.
  • subjects suffering from inflammation and/or an inflammatory disorder are identified using any of a variety of clinical and/or laboratory tests such as physical examination and/or bodily fluid analysis, e.g., blood, urine and/or stool analysis, to evaluate health status.
  • a CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody to a patient suffering from a disease or disorder associated with aberrant CD147 expression and/or activity is considered successful if any of a variety of laboratory or clinical objectives is achieved.
  • administration of a CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody to a patient suffering from a disease or disorder associated with aberrant CD147 expression and/or activity is considered successful if one or more of the symptoms associated with the disease or disorder is alleviated, reduced, inhibited or does not progress to a further, z.e., worse, state.
  • CD147 antibody Administration of a CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody to a patient suffering from a disease or disorder associated with aberrant CD 147 expression and/or activity is considered successful if the disease or disorder enters remission or does not progress to a further, /. e. , worse, state.
  • the CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody and therapeutic formulations thereof are administered to a subject suffering from or susceptible to a disease or disorder, such as subjects suffering from cancer or other neoplastic condition, wherein the subject’s diseased cells are expressing CD147.
  • the diseased cells are associated with aberrant CD147 expression and/or activity.
  • the diseased cells are associated with normal CD147 expression and/or activity.
  • a subject suffering from or susceptible to a disease or disorder wherein the subject’s diseased cells express CD147 is identified using any of a variety of methods known in the art.
  • subjects suffering from cancer or other neoplastic condition are identified using any of a variety of clinical and/or laboratory tests such as, physical examination and blood, urine and/or stool analysis to evaluate health status.
  • subjects suffering from inflammation and/or an inflammatory disorder are identified using any of a variety of clinical and/or laboratory tests such as physical examination and/or bodily fluid analysis, e.g., blood, urine and/or stool analysis, to evaluate health status.
  • the CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody and therapeutic formulations thereof are administered to a subject suffering from or susceptible to a disease or disorder associated with cells expressing CD147 or the presence, growth, proliferation, metastasis, and/or activity of such cells, such as subjects suffering from cancer or other neoplastic conditions.
  • the cells are associated with aberrant CD147 expression and/or activity.
  • the cells are associated with normal CD147 expression and/or activity.
  • a subject suffering from or susceptible to a disease or disorder associated with cells that express CD 147 is identified using any of a variety of methods known in the art.
  • subjects suffering from cancer or other neoplastic condition are identified using any of a variety of clinical and/or laboratory tests such as, physical examination and blood, urine and/or stool analysis to evaluate health status.
  • subjects suffering from inflammation and/or an inflammatory disorder are identified using any of a variety of clinical and/or laboratory tests such as physical examination and/or bodily fluid analysis, e.g., blood, urine and/or stool analysis, to evaluate health status.
  • a CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody to a patient suffering from a disease or disorder associated with cells expressing CD147 is considered successful if any of a variety of laboratory or clinical objectives is achieved.
  • administration a CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD 147 antibody to a patient suffering from a disease or disorder associated with cells expressing CD147 is considered successful if one or more of the symptoms associated with the disease or disorder is alleviated, reduced, inhibited or does not progress to a further, z.e., worse, state.
  • CD147 antibody Administration of a CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody to a patient suffering from a disease or disorder associated with cells expressing CD147 is considered successful if the disease or disorder enters remission or does not progress to a further, z.e., worse, state.
  • the CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody is administered during and/or after treatment in combination with one or more additional agents such as, for example, a chemotherapeutic agent, an anti-inflammatory agent, and/or an immunosuppressive agent.
  • the CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody and the additional agent(s) are administered simultaneously.
  • the CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody and the additional agent(s) can be formulated in a single composition or administered as two or more separate compositions.
  • the CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody and the additional agent(s) are administered sequentially.
  • the disclosure also provides methods of treating, alleviating a symptom of, or delaying the progression of a disorder or disease in which diseased cells express CD147 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a
  • composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
  • the disorder or disease is cancer.
  • the disclosure also provides methods of treating, alleviating a symptom of, or delaying the progression of a disorder or disease associated with cells expressing CD147 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a
  • the disorder or disease associated with cells expressing CD147 is cancer.
  • the cancer is an adenocarcinoma, a bile duct (biliary) cancer, a bladder cancer, a bone cancer, a breast cancer, a triple-negative breast cancer, a Her2-negative breast cancer, a carcinoid cancer, a cervical cancer, a cholangiocarcinoma, a colorectal cancer, a colon cancer, an endometrial cancer, an esophageal cancer, a glioma, a head and neck cancer, a head and neck squamous cell cancer, a leukemia, a liver cancer, a lung cancer, a non-small cell lung cancer, a small cell lung cancer, a lymphoma, a melanoma, an oropharyngeal cancer
  • the disclosure also provides methods of inhibiting or reducing the growth, proliferation, or metastasis of cells expressing mammalian CD 147 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable
  • the method comprises administering an additional agent.
  • the additional agent is a therapeutic agent.
  • the disclosure also provides methods of inhibiting, blocking, or preventing the binding of a natural ligand to mammalian CD 147, comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a pharmaceutical composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
  • the expression and/or activity of the mammalian CD 147 is aberrant.
  • the method comprises administering an additional agent.
  • the additional agent is a therapeutic agent.
  • the disclosure also provides methods of treating, alleviating a symptom of, or delaying the progression of a disorder or disease in which diseased cells express CD147 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a
  • composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
  • the disorder or disease is cancer.
  • the disclosure also provides methods of treating, alleviating a symptom of, or delaying the progression of a disorder or disease associated with cells expressing CD147 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a pharmaceutical composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
  • the disorder or disease associated with cells expressing CD147 is cancer.
  • the cancer is an adenocarcinoma, a bile duct (biliary) cancer, a bladder cancer, a bone cancer, a breast cancer, a triple-negative breast cancer, a Her2-negative breast cancer, a carcinoid cancer, a cervical cancer, a cholangiocarcinoma, a colorectal cancer, a colon cancer, an endometrial cancer, an esophageal cancer, a glioma, a head and neck cancer, a head and neck squamous cell cancer, a leukemia, a liver cancer, a lung cancer, a non-small cell lung cancer, a small cell lung cancer, a lymphoma, a melanoma, an oropharyngeal cancer, an ovarian cancer, a pancreatic cancer, a prostate cancer, a metastatic castration-resistant prostate carcinoma, a renal cancer, a sarcoma, a skin cancer, a squamous cell
  • the disclosure also provides methods of inhibiting or reducing the growth, proliferation, or metastasis of cells expressing mammalian CD 147 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable
  • the method comprises administering an additional agent.
  • the additional agent is a therapeutic agent.
  • the disclosure also provides methods of inhibiting, blocking, or preventing the binding of a natural ligand to mammalian CD 147, comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a pharmaceutical composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
  • the expression and/or activity of the mammalian CD 147 is aberrant.
  • the method comprises administering an additional agent.
  • the additional agent is a therapeutic agent.
  • formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LipofectinTM), DNA conjugates, anhydrous absorption pastes, oil-in water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. Any of the foregoing mixtures may be appropriate in treatments and therapies in accordance with the present disclosure, provided that the active ingredient in the formulation is not inactivated by the formulation and the formulation is physiologically compatible and tolerable with the route of administration.
  • Therapeutic formulations of the disclosure which include a CD147 antibody and/or activatable CD147 antibody, such as by way of non-limiting example, an antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody, are used to prevent, treat or otherwise ameliorate a disease or disorder associated with aberrant target expression and/or activity.
  • therapeutic formulations of the disclosure which include an antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody, are used to treat or otherwise ameliorate a cancer or other neoplastic condition, inflammation, an inflammatory disorder, and/or an autoimmune disease.
  • the cancer is a solid tumor or a hematologic malignancy where the target is expressed.
  • the cancer is a solid tumor where the target is expressed. In some embodiments, the cancer is a hematologic malignancy where the target is expressed. In some embodiments, the target is expressed on parenchyma (e.g., in cancer, the portion of an organ or tissue that often carries out function(s) of the organ or tissue). In some embodiments, the target is expressed on a cell, tissue, or organ. In some embodiments, the target is expressed on stroma (i.e., the connective supportive framework of a cell, tissue, or organ). In some embodiments, the target is expressed on an osteoblast. In some embodiments, the target is expressed on the endothelium (vasculature). In some embodiments, the target is expressed on a cancer stem cell. In some embodiments, the agent to which the antibody and/or the activatable antibody is conjugated is a microtubule inhibitor. In some embodiments, the agent to which the antibody and/or the activatable antibody is conjugated is a nucleic acid damaging agent.
  • Efficaciousness of prevention, amelioration or treatment is determined in association with any known method for diagnosing or treating the disease or disorder associated with target expression and/or activity, such as, for example, aberrant target expression and/or activity. Prolonging the survival of a subject or otherwise delaying the progression of the disease or disorder associated with target expression and/or activity, e.g., aberrant target expression and/or activity, in a subject indicates that the antibody, conjugated antibody, activatable antibody and/or conjugated activatable antibody confers a clinical benefit.
  • An antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody can be administered in the form of pharmaceutical compositions.
  • Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington : The Science And Practice Of Pharmacy l9th ed. (Alfonso R. Gennaro, et ah, editors) Mack Pub. Co., Easton, Pa.: 1995; Drug Absorption Enhancement: Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhome, Pa., 1994; and Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.
  • the smallest fragment that specifically binds to the binding domain of the target protein is selected.
  • peptide molecules can be designed that retain the ability to bind the target protein sequence.
  • Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. (See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993)).
  • the formulation can also contain more than one active compounds as necessary for the particular indication being treated, for example, in some embodiments, those with complementary activities that do not adversely affect each other.
  • the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth- inhibitory agent.
  • an agent that enhances its function such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth- inhibitory agent.
  • Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
  • the active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example,
  • hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules
  • the formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
  • sustained-release preparations can be prepared.
  • suitable examples of sustained- release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g, films, or microcapsules.
  • sustained-release matrices include polyesters, hydrogels (for example, poly(2- hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No.
  • copolymers of L-glutamic acid and g ethyl-L-glutamate non-degradable ethylene-vinyl acetate
  • degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate)
  • poly- D-(-)-3-hydroxybutyric acid While polymers such as ethylene-vinyl acetate and lactic acid- glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.
  • the CD147 antibodies, conjugated CD147 antibodies, activatable CD147 antibodies and/or conjugated activatable CD147 antibodies described herein are used in conjunction with one or more additional agents or a combination of additional agents.
  • additional agents include current pharmaceutical and/or surgical therapies for an intended application, such as, for example, cancer.
  • the CD 147 antibodies, conjugated CD147 antibodies, activatable CD147 antibodies and/or conjugated activatable CD147 antibodies can be used in conjunction with an additional chemotherapeutic agent, anti neoplastic agent, anti-inflammatory agent, an immunosuppressive agent, an alkylating agent, an anti-metabolite, an anti-microtubule agent, a topoisomerase inhibitor, a cytotoxic antibiotic, and/or any other nucleic acid damaging agent.
  • the additional agent(s) is a chemotherapeutic agent, such as a chemotherapeutic agent selected from the group consisting of docetaxel, paclitaxel, abraxane (i.e., albumin-conjugated paclitaxel), doxorubicin, oxaliplatin, carboplatin, cisplatin, irinotecan, and gemcitabine.
  • a chemotherapeutic agent selected from the group consisting of docetaxel, paclitaxel, abraxane (i.e., albumin-conjugated paclitaxel), doxorubicin, oxaliplatin, carboplatin, cisplatin, irinotecan, and gemcitabine.
  • the additional agent(s) is a checkpoint inhibitor, a kinase inhibitor, an agent targeting inhibitors in the tumor microenvironment, and/or a T cell or NK agonist.
  • the additional agent(s) is radiation therapy, alone or in combination with another additional agent(s) such as a chemotherapeutic or anti-neoplastic agent.
  • the additional agent(s) is a vaccine, an oncovirus, and/or a DC- activating agent such as, by way of non-limiting example, a toll-like receptor (TLR) agonist and/or a-CD40.
  • the additional agent(s) is a tumor-targeted antibody designed to kill the tumor via ADCC or via direct conjugation to a toxin (e.g., an antibody drug conjugate (ADC).
  • ADC antibody drug conjugate
  • the checkpoint inhibitor is an inhibitor of a target selected from the group consisting of CTLA-4, LAG-3, PD-l, CD147, TIGIT, TIM-3, B7H4, and Vista.
  • the kinase inhibitor is selected from the group consisting of B-RAFi, MEKi, and Btk inhibitors, such as ibrutinib. In some embodiments, the kinase inhibitor is crizotinib.
  • the tumor microenvironment inhibitor is selected from the group consisting of an IDO inhibitor, an a-CSFlR inhibitor, an a-CCR4 inhibitor, a TGF-beta, a myeloid-derived suppressor cell, or a T-regulatory cell.
  • the agonist is selected from the group consisting of 0x40, GITR, CD137, ICOS, CD27, and HVEM.
  • the inhibitor is a CTLA-4 inhibitor. In some embodiments, the inhibitor is a LAG-3 inhibitor. In some embodiments, the inhibitor is a PD-l inhibitor. In some embodiments, the inhibitor is a CD147 inhibitor. In some embodiments, the inhibitor is a TIGIT inhibitor. In some embodiments, the inhibitor is a TIM-3 inhibitor. In some embodiments, the inhibitor is a B7H4 inhibitor. In some embodiments, the inhibitor is a Vista inhibitor. In some embodiments, the inhibitor is a B-RAFi inhibitor. In some embodiments, the inhibitor is a MEKi inhibitor. In some embodiments, the inhibitor is a Btk inhibitor. In some embodiments, the inhibitor is ibrutinib.
  • the inhibitor is crizotinib. In some embodiments, the inhibitor is an IDO inhibitor. In some embodiments, the inhibitor is an a-CSFlR inhibitor. In some embodiments, the inhibitor is an a-CCR4 inhibitor. In some embodiments, the inhibitor is a TGF-beta. In some embodiments, the inhibitor is a myeloid-derived suppressor cell. In some embodiments, the inhibitor is a T-regulatory cell.
  • the agonist is 0x40. In some embodiments, the agonist is GITR. In some embodiments, the agonist is CD137. In some embodiments, the agonist is ICOS. In some embodiments, the agonist is CD27. In some embodiments, the agonist is HVEM.
  • the CD147 antibody, conjugated antibody, activatable antibody and/or conjugated activatable antibody is administered during and/or after treatment in combination with one or more additional agents such as, for example, a chemotherapeutic agent, an anti-inflammatory agent, and/or a an immunosuppressive agent.
  • additional agents such as, for example, a chemotherapeutic agent, an anti-inflammatory agent, and/or a an immunosuppressive agent.
  • the CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD 147 antibody and the additional agent are formulated into a single therapeutic composition, and the CD147 antibody, conjugated CD147 antibody, activatable CD147 antibody and/or conjugated activatable CD147 antibody and additional agent are administered

Landscapes

  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

La présente invention concerne d'une manière générale des anticorps activables se liant à CD147 et des procédés de fabrication et d'utilisation de ces anticorps activables dans une pluralité d'applications thérapeutiques, prophylactiques et diagnostiques. Selon certains modes de réalisation de la présente invention, les anticorps activables de CD147 se lient à CD147 humain et du macaque crabier.
EP19712879.6A 2018-03-09 2019-03-08 Anticorps activables de cd147 et procédés de fabrication et d'utilisation associés Withdrawn EP3762420A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862641190P 2018-03-09 2018-03-09
PCT/US2019/021449 WO2019173771A1 (fr) 2018-03-09 2019-03-08 Anticorps activables de cd147 et procédés de fabrication et d'utilisation associés

Publications (1)

Publication Number Publication Date
EP3762420A1 true EP3762420A1 (fr) 2021-01-13

Family

ID=65895061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19712879.6A Withdrawn EP3762420A1 (fr) 2018-03-09 2019-03-08 Anticorps activables de cd147 et procédés de fabrication et d'utilisation associés

Country Status (2)

Country Link
EP (1) EP3762420A1 (fr)
WO (1) WO2019173771A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023174147A1 (fr) * 2022-03-18 2023-09-21 Alphelix Biotech Co., Ltd. Anticorps se liant spécifiquement à cd147 et leurs utilisations
WO2023183888A1 (fr) 2022-03-23 2023-09-28 Cytomx Therapeutics, Inc. Constructions de protéines de liaison à l'antigène activables et leurs utilisations
WO2023183923A1 (fr) 2022-03-25 2023-09-28 Cytomx Therapeutics, Inc. Molécules masquées à double ancrage activables et leurs procédés d'utilisation
WO2023192973A1 (fr) 2022-04-01 2023-10-05 Cytomx Therapeutics, Inc. Molécules multispécifiques activables et leurs méthodes d'utilisation
WO2023192606A2 (fr) 2022-04-01 2023-10-05 Cytomx Therapeutics, Inc. Protéines de liaison au cd3 et leurs procédés d'utilisation
WO2024030850A1 (fr) 2022-08-01 2024-02-08 Cytomx Therapeutics, Inc. Substrats à protéase clivable et procédé d'utilisation associé
WO2024030845A1 (fr) 2022-08-01 2024-02-08 Cytomx Therapeutics, Inc. Fractions clivables par protéase et procédés d'utilisation associés
WO2024030858A1 (fr) 2022-08-01 2024-02-08 Cytomx Therapeutics, Inc. Substrats clivables par protéase et procédés d'utilisation associés
WO2024030843A1 (fr) 2022-08-01 2024-02-08 Cytomx Therapeutics, Inc. Fractions clivables par protéase et leurs procédés d'utilisation
WO2024030847A1 (fr) 2022-08-01 2024-02-08 Cytomx Therapeutics, Inc. Fractions clivables par protéase et procédés d'utilisation associés

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4485045A (en) 1981-07-06 1984-11-27 Research Corporation Synthetic phosphatidyl cholines useful in forming liposomes
US4434156A (en) 1981-10-26 1984-02-28 The Salk Institute For Biological Studies Monoclonal antibodies specific for the human transferrin receptor glycoprotein
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US5330896A (en) 1983-02-24 1994-07-19 Billing Ronald J Monoclonal antibodies to an autocrine growth factor antigen that binds to activated lymphocytes and cancer cells
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
US5030719A (en) 1986-08-28 1991-07-09 Teijin Limited Cytotoxic antibody conjugates and a process for preparation thereof
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5151510A (en) 1990-04-20 1992-09-29 Applied Biosystems, Inc. Method of synethesizing sulfurized oligonucleotide analogs
US5648469A (en) 1992-04-20 1997-07-15 The Salk Institute For Biological Studies Monoclonal antibodies reactive with transferrin receptor cytoplasmic domain
DE69303494T2 (de) 1992-11-13 1997-01-16 Idec Pharma Corp Therapeutische verwendung von chimerischen und markierten antikörper gegen menschlichen b lymphozyt beschränkter differenzierung antigen für die behandlung von b-zell-lymphoma
DK1740616T3 (da) 2004-04-30 2012-03-26 Inst Nat Sante Rech Med Anti-TFR-antistof
WO2005121179A2 (fr) 2004-06-07 2005-12-22 Raven Biotechnologies, Inc. Anticorps vis-a-vis du recepteur de transferine
GB0521621D0 (en) 2005-10-24 2005-11-30 Domantis Ltd Tumor necrosis factor receptor 1 antagonists for treating respiratory diseases
US7736647B2 (en) 2005-06-15 2010-06-15 Monoclonal Antibodies Therapeutics Anti-CD71 monoclonal antibodies and uses thereof for treating malignant tumor cells
EP3181575B1 (fr) 2005-08-31 2021-03-17 The Regents of The University of California Bibliothèques cellulaires de séquences peptidiques (clips) et leurs procédés d'utilisation
CN101245107B (zh) 2007-02-14 2010-10-13 中国人民解放军军事医学科学院生物工程研究所 抗人转铁蛋白受体人源抗体及其应用
US8293685B2 (en) 2007-07-26 2012-10-23 The Regents Of The University Of California Methods for enhancing bacterial cell display of proteins and peptides
EP3492488A1 (fr) 2007-08-22 2019-06-05 The Regents of The University of California Polypeptides de liaison activables et procédés d'identification et utilisation de ceux-ci
CA2749339A1 (fr) 2009-01-12 2010-07-15 Cytomx Therapeutics, Llc Compositions d'anticorps modifiees et leurs procedes de production et d'utilisation
US9309325B2 (en) 2009-05-07 2016-04-12 The Regents Of The University Of California Antibodies and methods of use thereof
FR2953841B1 (fr) 2009-12-16 2011-12-30 Centre Nat Rech Scient Anticorps diriges contre le recepteur de la transferrine et leurs utilisations pour l'immunotherapie des tumeurs qui dependent du fer
FR2959416B1 (fr) 2010-05-03 2012-06-22 Monoclonal Antibodies Therapeutics Mat Biopharma Utilisation d'anticorps anti-cd71 pour la preparation d'un medicament
RU2013150331A (ru) 2011-04-20 2015-05-27 Рош Гликарт Аг СПОСОБ И УСТРОЙСТВА ДЛЯ рН-ЗАВИСИМОГО ПРОХОЖДЕНИЯ ГЕМАТОЭНЦЕФАЛИЧЕСКОГО БАРЬЕРА
US9598496B2 (en) 2011-05-09 2017-03-21 Perseus Proteomics Inc. Antibody capable of specifically recognizing transferrin receptor
TWI450727B (zh) 2011-12-29 2014-09-01 Ind Tech Res Inst 抗人類輸鐵蛋白受體的單域抗體與其應用
WO2013103800A1 (fr) 2012-01-06 2013-07-11 Bioalliance C.V. Anticorps de récepteur d'anti-transferrine et leurs procédés
US9856314B2 (en) 2012-06-22 2018-01-02 Cytomx Therapeutics, Inc. Activatable antibodies having non-binding steric moieties and methods of using the same
EP2880059A1 (fr) 2012-08-02 2015-06-10 Institut National de la Santé et de la Recherche Médicale (INSERM) Utilisation d'un antagoniste du récepteur de transferrine pour le traitement de la thalassémie
WO2014026136A2 (fr) 2012-08-10 2014-02-13 Cytomx Therapeutics, Inc. Systèmes résistant aux protéases pour présentation de polypeptides, leurs procédés de préparation et utilisation
US20140212423A1 (en) 2012-12-04 2014-07-31 Abbvie, Inc. Blood-brain barrier penetrating dual specific binding proteins
EP2971047A4 (fr) 2013-03-15 2016-11-30 Alper Biotech Llc Anticorps monoclonaux dirigés contre la transferrine et antigènes du récepteur de la transferrine, et leurs utilisations
CA2945485A1 (fr) * 2014-04-16 2015-10-22 Sorrento Therapeutics Inc. Agents therapeutiques de type anticorps se liant a cd147
MA41374A (fr) * 2015-01-20 2017-11-28 Cytomx Therapeutics Inc Substrats clivables par métalloprotéase matricielle et clivables par sérine protéase et procédés d'utilisation de ceux-ci
WO2018165619A1 (fr) * 2017-03-09 2018-09-13 Cytomx Therapeutics, Inc. Anticorps de cd147, anticorps activables de cd147 et procédés associés de fabrication et d'utilisation

Also Published As

Publication number Publication date
WO2019173771A1 (fr) 2019-09-12

Similar Documents

Publication Publication Date Title
US20220306759A1 (en) Anti-cd71 antibodies, activatable anti-cd71 antibodies, and methods of use thereof
US11753466B2 (en) Anti-CD166 antibodies, activatable anti-CD166 antibodies, and methods of use thereof
US20180303952A1 (en) Cd147 antibodies, activatable cd147 antibodies, and methods of making and use thereof
US20190309072A1 (en) Anti-itga3 antibodies, activatable anti-itga3 antibodies, and methods of use thereof
EP4034171A1 (fr) Anticorps anti-cd47, anticorps anti-cd47 activables, et leurs méthodes d'utilisation
AU2019394972A1 (en) Matrix metalloprotease-cleavable and serine or cysteine protease-cleavable substrates and methods of use thereof
US20220233705A1 (en) Combined therapies of activatable immune checkpoint inhibitors and conjugated activatable antibodies
WO2019173771A1 (fr) Anticorps activables de cd147 et procédés de fabrication et d'utilisation associés
AU2016233495A1 (en) Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of use thereof
AU2018324097A1 (en) Activatable anti-CD166 antibodies and methods of use thereof

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210427