EP3757460B1 - Moteur à turbine à gaz comportant une protection active contre l'extinction de flamme et procédé de fonctionnement d'un moteur à turbine à gaz - Google Patents

Moteur à turbine à gaz comportant une protection active contre l'extinction de flamme et procédé de fonctionnement d'un moteur à turbine à gaz Download PDF

Info

Publication number
EP3757460B1
EP3757460B1 EP19183461.3A EP19183461A EP3757460B1 EP 3757460 B1 EP3757460 B1 EP 3757460B1 EP 19183461 A EP19183461 A EP 19183461A EP 3757460 B1 EP3757460 B1 EP 3757460B1
Authority
EP
European Patent Office
Prior art keywords
temperature
flame
combustor assembly
gas turbine
turbine engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19183461.3A
Other languages
German (de)
English (en)
Other versions
EP3757460A1 (fr
Inventor
Richard Smith
Patricia SIERRA SANCHEZ
Ghislain Singla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
Ansaldo Energia Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ansaldo Energia Switzerland AG filed Critical Ansaldo Energia Switzerland AG
Priority to EP19183461.3A priority Critical patent/EP3757460B1/fr
Publication of EP3757460A1 publication Critical patent/EP3757460A1/fr
Application granted granted Critical
Publication of EP3757460B1 publication Critical patent/EP3757460B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/16Flame sensors using two or more of the same types of flame sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/06Fail safe for flame failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/10Fail safe for component failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines

Definitions

  • the present invention relates to a gas turbine engine with active protection from flame extinction and to a method of operating a gas turbine engine.
  • a typical monitoring configuration includes three optical flame detectors that provide binary flame signals (flame ON/flame OFF) handled by a control system with a two-out-of-three, or 2oo3, redundancy logic. This means that the monitoring system can tolerate failure of one of the three available flame detectors and allow operation of the gas turbine engine while both the other two flame detectors correctly work.
  • the mentioned monitoring systems fulfil the requirements set by the standards and are capable of effectively preventing dangerous conditions which may result in continued fuel supply in the absence of flame.
  • EP 0 677 706 A1 discloses multiple optical (UV wave length) flame detectors for fast fuel control preventing lean blow out in an annular turbine combustor.
  • EP 2 930 330 A1 discloses a sequential combustor with fuel modulation of the first combustor to control a first combustor exit temperature.
  • a gas turbine engine comprising:
  • the above identified solution provides for maintaining Hardware Failure Tolerance of 1, while allowing two of the available flame monitors (i.e. the three optical flame detectors and the temperature monitoring assembly) to be marked as being of bad quality, which case would otherwise be counted as indication of absence of flame and would lead to safety shutdown.
  • two of the available flame monitors i.e. the three optical flame detectors and the temperature monitoring assembly
  • the possibility of safe operation is extended and availability of the gas turbine engine is increased.
  • Availability of the gas turbine engine is improved also in case of failure of one of the optical flame detectors, which are frequently critical components.
  • the gas turbine engine comprises a high-pressure turbine between the annular first combustor assembly and the second combustor assembly, wherein the control temperature is a temperature at an outlet of the high-pressure turbine.
  • the temperature monitoring assembly comprises a plurality of first temperature sensors arranged downstream of the first combustor assembly, e.g. downstream of the high-pressure turbine, and configured to provide respective temperature measurements, and wherein the control function of the control temperature includes an average of the temperature measurements provided by the first temperature sensors.
  • the gas turbine engine comprises a compressor for supplying a flow of compressed air to the first combustor assembly and a second temperature sensor, configured to detect an air temperature of compressed air at an outlet of the compressor, wherein, when the second combustor assembly is not activated, the control function includes a combination of the average of the temperature measurements provided by the first temperature sensors and of the air temperature of compressed air provided by the second temperature sensor.
  • control function is scarcely affected by variations of ambient temperature.
  • the difference of the gas temperature at the outlet of the HP turbine and the air temperature at the outlet of the compressor does not remarkably vary with ambient temperature, especially at idle and during transients.
  • the working setpoint of gas temperature at the outlet of the HP turbine is weakly or not at all dependent on variations of ambient temperature when the second combustor is in operation.
  • the processing unit is configured to determine partial flame failure in the control range of operating conditions based on the temperature measurements provided by the first temperature sensors and based on P-out-of-Q activation redundancy, wherein P is at least 3 and Q is a number of the first temperature sensors in the first combustor assembly.
  • the processing unit is configured to determine dangerous flame failure when the control function is outside an admissible range.
  • the processing unit is configured to determine dangerous flame failure based on comparison of the control function with a first temperature threshold when the second combustor assembly is not activated and with a second temperature threshold when the second combustor assembly is activated.
  • control function can be selected and correctly used depending on whether the second combustor assembly is working.
  • the flame detectors are configured to mark any of the flame monitoring signals as bad data quality if programmed plausibility criteria are not met and the processing unit is configured to mark the control temperature as bad data quality if the control temperature or one or more of the temperature measurements temporarily fall outside of plausibility ranges and to determine dangerous flame failure when at least one of the following conditions is met:
  • Identification and handling of signals affected by bad data quality allows to improve availability of the gas turbine engine without affecting safe operation. Conditions of suspect hardware failure can in fact be duly taken into account and criteria for emergency shutdown of the gas turbine engine may be completely safely relaxed.
  • the processing unit is configured to determine dangerous flame failure based, outside the control range of operating conditions, on the flame monitoring signals and based on 2-out-of-3 activation redundancy.
  • the control range may be advantageously selected to cover most operating conditions of the gas turbine engine. During transient conditions, which amount to a relatively small part of the lifetime of the gas turbine engine, flame failure may be monitored through reliable, albeit less performant systems. Neither safe operation nor engine reliability and availability are significantly affected.
  • M is 3 and N is 4.
  • the gas turbine engine has a rated speed, wherein the control range of operating conditions includes speeds above a speed threshold, the speed threshold being a fraction of the rated speed.
  • the processing unit is configured to trigger emergency shutdown in response to dangerous flame failure.
  • a method of operating a gas turbine engine comprising an annular first combustor assembly and a second combustor assembly; the method comprising:
  • detecting the control temperature comprises taking a plurality of simultaneous temperature measurements, and wherein the control function of the control temperature includes an average of the temperature measurements.
  • the method comprises supplying a flow of compressed air to the first combustor assembly by a compressor and detecting a temperature of compressed air at an outlet of the compressor, wherein, when the second combustor assembly is not activated, the control function includes a combination of the average of the temperature measurements and of the temperature of compressed air provided by the second temperature sensor.
  • number 1 defines a gas turbine plant as a whole comprising a gas turbine engine 2 and a control system 3.
  • the gas turbine engine 2 comprises a compressor 4, a first combustor assembly 5, a high-pressure turbine or HP turbine 6, a second combustor assembly 8 and a low pressure turbine or LP turbine 10, all extending about an axis, which is indicated by A in figure 2 .
  • the compressor 4 ( figure 1 ) feeds the first combustor assembly 5 with a flow of compressed air drawn from outside. Air supply to the compressor 4 is controllable by the control system 3 by adjusting orientation of inlet guide vanes 11 of the compressor 4 through first actuation signals SA1.
  • the first combustor assembly 5 comprises an annular combustion chamber 12 and is provided with a plurality of combustor units 13, which are circumferentially distributed about the axis A,.
  • the combustor units 13 admix air from the compressor 4 and fuel from a fuel feed system 15 to form a mixture for combustion.
  • the fuel may be gaseous, for example natural gas or syngas, or liquid, for example gasoil.
  • the gas turbine engine 2 can be structured to use different types of fuel, both gaseous and liquid.
  • Fuel supply is controllable by the control system 3 through the fuel feed system 15 and second actuation signals SA2.
  • the HP turbine 6 receives and expands a flow of hot gas from the first combustor assembly 5 to extract mechanical work, which is transferred to an external user, typically an electric generator, here not shown.
  • the hot gas is then conveyed along a hot gas path to the second combustor assembly 8, which is annular as well and comprises a plurality of combustor units (not shown in the drawings).
  • the second combustor assembly 8 additional fuel and possibly fresh air are added to the hot gas flow to form a mixture for sequential combustion.
  • the control system may activate the first combustor assembly 5 alone or both the first combustor assembly 5 and the second combustor assembly 8 together as required by the operating conditions.
  • the LP turbine 10 receives the hot gas flow from the second combustor assembly 8 for further extraction of mechanical work and discharges exhaust gas out of the gas turbine engine 2, for example to a heat recovery steam generator.
  • the control system 3 comprises a controller 16, a processing unit 17 and a plurality of sensors and/or detectors as explained hereinafter.
  • the definition "control system” as used herein is to be broadly understood as meaning a system supervising all functions and operation of the gas turbine, including at least control or regulation functions, such as load control, determining set-points and driving actuators to reach the set-points, primary and secondary frequency control, and protection functions, such as protection against flame failure.
  • a control system may comprise a first subsystem for control functions and a second subsystem for protection functions.
  • the controller 16 is configured to operate the gas turbine engine 2 in accordance with received load request.
  • the controller 16 determines set-points for the gas turbine engine 2 so that the load request may be met and, based on determined set-points and feedback signals from selected sensors and/or detectors, it drives the inlet guide vanes 11 of the compressor 4 and the fuel feed system 15 through the actuation signals SA1, SA2.
  • the control system 3 comprises at least three flame detectors 18, arranged to monitor flame presence in the first combustor assembly 5 as indicated schematically in figure 2 .
  • the flame detectors 18 supply respective flame monitoring signals SFM1, SFM2, SFM3 having a first state FON when a flame is detected in the first combustor assembly 5 and a second state FOFF otherwise.
  • the flame detectors 18 are of an optical type and may comprise respective optical wave guides facing a flame region in the combustion chamber 12 of the first combustor assembly 5 and image detectors.
  • the optical flame detectors 18 may be responsive to radiation in wavelength bands in the visible and/or infrared range.
  • the control system 3 further comprises a temperature monitoring assembly 20, configured to detect a control temperature TC of hot gas flowing from the first combustor assembly 5 to the second combustor assembly 8.
  • the monitoring assembly 20 is arranged at a location downstream of the first combustor assembly 5, in one embodiment at the outlet of the HP turbine 6. More precisely, the temperature monitoring assembly 20 comprises a plurality of first temperature sensors 21 circumferentially arranged around the axis A downstream of the HP turbine 6.
  • the first temperature sensors 21 provide respective temperature measurements TM1, ... TMK, e.g. 12 or 24.
  • the temperature monitoring assembly 20 may exploit an internal processing module 17a of the processing unit 17 to calculate the control temperature TC from the temperature measurements TM1, ... TMK.
  • the control system 3 further comprises a second temperature sensor 25 is configured to detect an air temperature TA of compressed air at an outlet of the compressor 4.
  • the processing unit 17 is configured to determine dangerous flame failure based, at least in a control range of operating conditions, on the flame monitoring signals SFM1, SFM2, SFM3 and a control function of the control temperature TC. Moreover, determination of dangerous flame failure is based on M-out-of-N activation redundancy with Hardware Failure Tolerance of at least 1, wherein M is at least 3 and N is at least 4. In the embodiment described herein M is 3 and N is 4. In a range of operating conditions outside the control range, i.e. below the speed threshold ST, the processing unit 17 determines dangerous flame failure based on the flame monitoring signals SFM1, SFM2, SFM3 and 2-out-of-3 activation redundancy.
  • the control range of operating conditions includes speeds above a speed threshold ST of the rated speed.
  • the speed threshold ST is 90% of the rated speed.
  • the control function is based on the control temperature TC, which in one embodiment may be an average of the temperature measurements TM1, ... TMK simultaneously provided by first temperature sensors 21, and depends on whether or not the second combustor assembly 8 has been activated.
  • the control function when the second combustor assembly 8 is not activated and while it remains in inactive condition, the control function includes a combination of the control temperature TC, which is the average of the temperature measurements TM1, ... TMK, and of the air temperature TA of compressed air provided by the second temperature sensor 25.
  • the control function is the difference TC-TA of the control temperature TC and of the air temperature TA of compressed air provided by the second temperature sensor 25.
  • the control function is the control temperature TC (i.e. the average of the temperature measurements TM1, ... TMK) alone. In both cases, a correction, e.g. a proportionality factor, may be applied.
  • the control function is considered as indicating normal operation within an admissible range AR of values and flame failure outside the admissible range AR of values.
  • the admissible range AR of values includes the range above a first temperature threshold TH1, when the second combustor assembly 8 has not been activated yet, and the range above a second temperature threshold TH2, when the second combustor assembly 8 is active.
  • values of the control function outside the admissible range AR i.e. below the first temperature threshold TH1 or the second temperature threshold TH2, depending on the state of the second combustor assembly 8) are used by the processing unit 17 to detect dangerous flame failure.
  • the processing unit 17 is configured to weigh also data quality of the flame monitoring signals SFM1, SFM2, SFM3 and of the control temperature TC to use data quality assessment in determining flame failure.
  • the flame monitoring signals SFM1, SFM2, SFM3 come from the flame detectors 18 with additional information relating to data quality, i.e. flame detectors 18 are available that are configured to mark any of the flame monitoring signals SFM1, SFM2, SFM3 as bad data quality if, upon internal check, programmed plausibility criteria are not met.
  • the processing unit 17 is configured to mark the control temperature TC as bad data quality if the control temperature TC or one or more of the temperature measurements TM1, ... TMK temporarily fall outside of plausibility ranges. Bad data quality too is taken into account by the processing unit 17 in determination of dangerous flame failure.
  • the processing unit 17 determines dangerous flame failure when at least one of the following conditions is met:
  • the processing unit triggers a safety shutdown or trip of the gas turbine engine trip 1, either directly or through the controller 16.
  • Time response to trigger the engine trip is selected to meet process safety times, which may depend on the kind of fuel currently used at the time when dangerous flame failure is detected.
  • the processing unit 17 is also configured to determine partial flame failure in the control range of operating conditions based on the temperature measurements provided by the first temperature sensors 21 and based on P-out-of-Q activation redundancy, wherein P is at least 3 and Q is a number of the first temperature sensors in the first combustor assembly 5, e.g. 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Claims (15)

  1. Moteur de turbine à gaz comprenant :
    un premier ensemble chambre de combustion annulaire (5) ;
    un second ensemble chambre de combustion (8) ;
    au moins trois détecteurs de flammes optiques (18), agencés pour surveiller la présence d'une flamme dans le premier ensemble chambre de combustion (5), et configurés pour fournir des signaux de surveillance de flamme respectifs (SFM1, SFM2, SFM3) qui présentent un premier état (FON) quand une flamme est détectée dans le premier ensemble chambre de combustion (5), et sinon un second état (FOFF) ;
    un ensemble surveillance de température (20), configuré pour détecter la température de commande (TC) des gaz chauds qui circulent à partir du premier ensemble chambre de combustion (5), vers le second ensemble chambre de combustion (8), en un emplacement en aval du premier ensemble chambre de combustion (5) ; et
    une unité de traitement (17), configurée pour déterminer une défaillance de flamme dangereuse sur la base, au moins dans une plage de commande des états de fonctionnement, des signaux de surveillance de flamme (SFM1, SFM2, SFM3), et d'une fonction de commande de la température de commande (TC), et sur la base d'une redondance d'activation M parmi N avec une tolérance de panne du matériel au moins égale à 1, où M est au moins égal à 3 et N est au moins égal à 4.
  2. Moteur de turbine à gaz selon la revendication 1, comprenant une turbine à haute pression (6) située entre le premier ensemble chambre de combustion annulaire (5), et le second ensemble chambre de combustion (8), dans lequel la température de commande (TC) est la température au niveau d'une sortie de la turbine à haute pression (6).
  3. Moteur de turbine à gaz selon la revendication 1 ou 2, dans lequel l'ensemble surveillance de température (20) comprend une pluralité de premiers capteurs de température (21) agencés en aval du premier ensemble chambre de combustion (5), par exemple en aval de la turbine à haute pression (6), et configurés pour fournir des mesures de température respectives (TM1, ... , TMK), et dans lequel la fonction de commande de la température de commande (TC) comprend une moyenne des mesures de température (TM1, ... , TMK) fournies par les premiers capteurs de température (21).
  4. Moteur de turbine à gaz selon la revendication 3, comprenant un compresseur (4) destiné à fournir un flux d'air comprimé au premier ensemble chambre de combustion (5), et un second capteur de température (25), configuré pour détecter la température de l'air (TA) de l'air comprimé au niveau d'une sortie du compresseur (4), dans lequel, lorsque le second ensemble chambre de combustion (8) n'est pas activé, la fonction de commande comprend une association de la température de commande (TC) et de la température de l'air (TA) de l'air comprimé fournie par le second capteur de température (25).
  5. Moteur de turbine à gaz selon la revendication 3 ou 4, dans lequel l'unité de traitement (17) est configurée pour déterminer une défaillance de flamme partielle dans la plage de commande des états de fonctionnement, sur la base des mesures de température (TM1, ... , TMK) fournies par les premiers capteurs de température (21), et sur la base d'une redondance d'activation P parmi Q, dans lequel P est au moins égal à 3, et Q est égal au nombre de premiers capteurs de température (21) dans le premier ensemble chambre de combustion (5).
  6. Moteur de turbine à gaz selon l'une quelconque des revendications précédentes, dans lequel l'unité de traitement (17) est configurée pour déterminer une défaillance de flamme dangereuse, lorsque la fonction de commande se situe en dehors d'une plage admissible (AR).
  7. Moteur de turbine à gaz selon la revendication 6, dans lequel l'unité de traitement (17) est configurée pour déterminer une défaillance de flamme dangereuse sur la base d'une comparaison de la fonction de commande, à un premier seuil de température (TH1) lorsque le second ensemble chambre de combustion (8) n'est pas activé, et à un second seuil de température (TH2) lorsque le second ensemble chambre de combustion (8) est activé.
  8. Moteur de turbine à gaz selon la revendication 6 ou 7, dans lequel les détecteurs de flammes (18) sont configurés pour marquer l'un quelconque des signaux de surveillance de flamme (SFM1, SFM2, SFM3) comme présentant une qualité de données médiocre, si des critères de plausibilité programmés ne sont pas satisfaits, et dans lequel l'unité de traitement (17) est configurée pour marquer la température de commande (TC) comme présentant une qualité de données médiocre, si la température de commande (TC) ou une ou plusieurs des mesures de température (TM1, ... , TMK) tombent temporairement en dehors des plages de plausibilité, et pour déterminer une défaillance de flamme dangereuse lorsque l'une au moins des conditions suivantes est remplie :
    tous les signaux de surveillance de flamme (SFM1, SFM2, SFM3) présentent le second état (FOFF) ;
    deux des trois signaux de surveillance de flamme (SFM1, SFM2, SFM3) présentent le second état (FOFF), et la fonction de commande se situe en dehors de la plage admissible (AR) ;
    l'un des signaux de surveillance de flamme (SFM1, SFM2, SFM3) est identifié comme présentant une qualité de données médiocre, et deux des trois signaux de surveillance de flamme (SFM1, SFM2, SFM3) présentent le second état (FOFF) ;
    la fonction de commande est identifiée comme présentant une qualité de données médiocre, et deux des trois signaux de surveillance de flamme (SFM1, SFM2, SFM3) présentent le second état (FOFF) ;
    deux des signaux de surveillance de flamme (SFM1, SFM2, SFM3) sont identifiés comme présentant une qualité de données médiocre, et l'un des trois signaux de surveillance de flamme (SFM1, SFM2, SFM3) présente le second état (FOFF) ;
    deux des signaux de surveillance de flamme (SFM1, SFM2, SFM3) sont identifiés comme présentant une qualité de données médiocre, et la fonction de commande se situe en dehors de la plage admissible (AR).
  9. Moteur de turbine à gaz selon l'une quelconque des revendications précédentes, dans lequel l'unité de traitement (17) est configurée pour déterminer une défaillance de flamme dangereuse sur la base, en dehors de la plage de commande des états de fonctionnement, des signaux de surveillance de flamme (SFM1, SFM2, SFM3), et sur la base d'une redondance d'activation 2 parmi 3.
  10. Moteur de turbine à gaz selon l'une quelconque des revendications précédentes, dans lequel M est égal à 3, et N est égal à 4.
  11. Moteur de turbine à gaz selon l'une quelconque des revendications précédentes, présentant une vitesse nominale, dans lequel la plage de commande des états de fonctionnement, comprend des vitesses supérieures à un seuil de vitesse (ST), le seuil de vitesse (ST) étant une fraction de la vitesse nominale.
  12. Moteur de turbine à gaz selon l'une quelconque des revendications précédentes, dans lequel l'unité de traitement (17) est configurée pour déclencher un arrêt d'urgence en réponse à une défaillance de flamme dangereuse.
  13. Procédé destiné à actionner un moteur de turbine à gaz comprenant un premier ensemble chambre de combustion annulaire (5), et un second ensemble chambre de combustion (8) ;
    le procédé comprenant les étapes suivantes :
    surveiller la présence d'une flamme dans le premier ensemble chambre de combustion (5) avec au moins trois détecteurs de flammes (18), qui fournissent des signaux de surveillance de flamme respectifs (SFM1, SFM2, SFM3) qui présentent un premier état (FON) quand une flamme est détectée dans le premier ensemble chambre de combustion (5), et sinon un second état (FOFF) ;
    détecter la température de commande (TC) des gaz chauds qui circulent à partir du premier ensemble chambre de combustion (5), vers le second ensemble chambre de combustion (8), en un emplacement en aval du premier ensemble chambre de combustion (5) ; et
    déterminer une défaillance de flamme dangereuse sur la base, au moins dans une plage de commande des états de fonctionnement, des signaux de surveillance de flamme (SFM1, SFM2, SFM3), et d'une fonction de commande de la température de commande (TC), et sur la base d'une redondance d'activation M parmi N avec une tolérance de panne du matériel au moins égale à 1, où M est au moins égal à 3 et N est au moins égal à 4.
  14. Procédé selon la revendication 13, dans lequel l'étape consistant à détecter la température de commande (TC), comprend une étape consistant à procéder à une pluralité de mesures de températures simultanées (TM1, ... , TMK), et dans lequel la fonction de commande de la température de commande (TC) comprend une moyenne des mesures de températures (TM1, ... , TMK).
  15. Procédé selon la revendication 14, comprenant une étape consistant à fournir un flux d'air comprimé au premier ensemble chambre de combustion (5) avec un compresseur (4), et à détecter la température de l'air (TA) de l'air comprimé au niveau d'une sortie du compresseur (4), dans lequel, lorsque le second ensemble chambre de combustion (8) n'est pas activé, la fonction de commande comprend une association de la température de commande (TC) et de la température de l'air (TA) de l'air comprimé fournie par le second capteur de température (25).
EP19183461.3A 2019-06-28 2019-06-28 Moteur à turbine à gaz comportant une protection active contre l'extinction de flamme et procédé de fonctionnement d'un moteur à turbine à gaz Active EP3757460B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19183461.3A EP3757460B1 (fr) 2019-06-28 2019-06-28 Moteur à turbine à gaz comportant une protection active contre l'extinction de flamme et procédé de fonctionnement d'un moteur à turbine à gaz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19183461.3A EP3757460B1 (fr) 2019-06-28 2019-06-28 Moteur à turbine à gaz comportant une protection active contre l'extinction de flamme et procédé de fonctionnement d'un moteur à turbine à gaz

Publications (2)

Publication Number Publication Date
EP3757460A1 EP3757460A1 (fr) 2020-12-30
EP3757460B1 true EP3757460B1 (fr) 2022-06-22

Family

ID=67137756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19183461.3A Active EP3757460B1 (fr) 2019-06-28 2019-06-28 Moteur à turbine à gaz comportant une protection active contre l'extinction de flamme et procédé de fonctionnement d'un moteur à turbine à gaz

Country Status (1)

Country Link
EP (1) EP3757460B1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487266A (en) * 1992-05-05 1996-01-30 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy
DE102006015230A1 (de) * 2006-03-30 2007-10-18 Alstom Technology Ltd. Brennkammer
GB201406386D0 (en) * 2014-04-09 2014-05-21 Rolls Royce Plc Gas turbine engine

Also Published As

Publication number Publication date
EP3757460A1 (fr) 2020-12-30

Similar Documents

Publication Publication Date Title
RU2429993C2 (ru) Электромонтажная система для защиты от перегрева установки для подачи воздуха, отбираемого от двигателя воздушного судна, и установка для подачи отбираемого воздуха, содержащая эту систему
CA1072364A (fr) Detecteur de panne pour turbine a gaz
US20130236290A1 (en) System and method for turbomachine monitoring
EP0815354B1 (fr) Procede et appareil permettant de detecter les ruptures dans la chambre de combustion d'une turbine a gaz
US8224552B2 (en) Methods and systems to facilitate over-speed protection
US6810669B2 (en) Clutch engagement detector and uniaxial combined plant having the detector
JP5779313B2 (ja) 過回転防止を可能にする方法及びシステム
CA2665798A1 (fr) Methodes et systemes facilitant la protection contre les survitesses
JP4113728B2 (ja) フレームアウトを検出する方法、フレームアウト検出装置及びガスタービンエンジン
EP3954877A1 (fr) Système et procédé de détection de débit excessif dans un système de fluide
EP3757460B1 (fr) Moteur à turbine à gaz comportant une protection active contre l'extinction de flamme et procédé de fonctionnement d'un moteur à turbine à gaz
US20150075170A1 (en) Method and system for augmenting the detection reliability of secondary flame detectors in a gas turbine
JP6739388B2 (ja) 制御装置
US5497712A (en) Low-temperature carbonization/combustion process and low-temperature carbonization/combustion plant with pressure control
EP3415434A1 (fr) Diagnostic de défaillance pour un système à deux valves d'un système anti-glace de nacelle
CA2626035C (fr) Methode de protection des parties de gaz chaudes d'une installation a turbine a gaz contre une surchauffe et de detection d'une extinction de flamme dans la chambre de combustion
CN114321872B (zh) 锅炉保护方法及锅炉保护装置
US20110060482A1 (en) Control assembly
JPS61160529A (ja) ガスタ−ビンの保護装置
JP5457256B2 (ja) 原子力発電プラント
CN114645783A (zh) 具有火焰失效保护的燃气涡轮发动机及其操作方法
JP2001254606A (ja) 蒸気タービンの運転方法
JPH05240435A (ja) ガスタービン燃焼監視装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210629

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019016070

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1499987

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1499987

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221024

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019016070

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220628

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220628

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231122

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 5

Ref country code: DE

Payment date: 20231121

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622