EP3743322B1 - Measuring arrangement and method for detecting a derailment - Google Patents

Measuring arrangement and method for detecting a derailment Download PDF

Info

Publication number
EP3743322B1
EP3743322B1 EP19710302.1A EP19710302A EP3743322B1 EP 3743322 B1 EP3743322 B1 EP 3743322B1 EP 19710302 A EP19710302 A EP 19710302A EP 3743322 B1 EP3743322 B1 EP 3743322B1
Authority
EP
European Patent Office
Prior art keywords
measurement
hand
facility
distance
progression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19710302.1A
Other languages
German (de)
French (fr)
Other versions
EP3743322A1 (en
Inventor
Jacob Johannes KOHLRUSS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility GmbH
Original Assignee
Siemens Mobility GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Mobility GmbH filed Critical Siemens Mobility GmbH
Publication of EP3743322A1 publication Critical patent/EP3743322A1/en
Application granted granted Critical
Publication of EP3743322B1 publication Critical patent/EP3743322B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates

Definitions

  • any derailment is nowadays recognized by the operating personnel, in particular the vehicle driver, who manually brakes the rail vehicle in an emergency in the event of a derailment.
  • a measuring arrangement for a track-bound vehicle in particular a rail vehicle, which has an evaluation device which is set up to compare values recorded during a current journey in at least one predetermined spatial measurement orientation with locally corresponding reference values recorded during one or more previous journeys on the same route and, in the event that a deviation has a predetermined deviation characteristic, to generate a derailment warning signal.
  • a derailment detection device for an electric locomotive which has detectors, for example proximity switches. If one of the detectors determines that the distance between the locomotive body or respective wheel and the track is greater than a predetermined value, then a control unit can determine that the electric locomotive has derailed.
  • the pamphlet DE 10 2015 119392 A1 discloses a measurement data correlation to detect a derailment of a rail vehicle.
  • the invention is therefore based on the object of specifying a measuring arrangement which can reliably detect a derailment of a rail-bound vehicle.
  • An essential advantage of the measuring arrangement according to the invention can be seen in the fact that it can detect a derailment of a vehicle in a very simple manner, since only distance values are measured and compared with reference values. A derailment can thus be detected with a minimal outlay on components and great reliability.
  • a laser scanner for example, can be used as the distance measuring device.
  • the evaluation device generates a derailment warning signal that indicates a derailment of the vehicle offset parallel to the track if the deviations of the right and left measured value curve from the associated right and left reference curve each exceed a predetermined threshold and the deviations have different signs.
  • the evaluation device generates a derailment warning signal that indicates a lateral twisting of the vehicle relative to the specified lane if the right and left measured value curves over the vehicle location compared to the assigned reference curves each soften a local offset that exceeds a predetermined threshold, and the offsets have different offset directions or different signs.
  • the measurement alignment or alignments or at least one of the measurement alignments are preferably inclined relative to the horizontal.
  • the distance measuring device it is considered advantageous if this has a transmitting device that generates at least one measuring beam and emits it permanently or at least in sections over time in the specified spatial measuring alignment, and a receiving device that receives the received radiation of the measuring beam reflected or scattered on the object side and generates the distance values based on the received radiation, in particular based on the time delay between the transmission of the radiation and the reception of the received radiation.
  • the distance measuring device in particular its transmission device, emits several measuring beams simultaneously in different spatial measuring alignments.
  • the distance measuring device in particular its transmitting device, changes the orientation of the measuring beam or beams over time and successively emits radiation in a plurality of spatial measuring orientations.
  • the distance measuring device allows the measuring beam or beams to rotate in a plane about an axis of rotation or each about its own axis of rotation.
  • the axis or axes of rotation are preferably inclined to the vertical.
  • the distance measuring device preferably changes the inclination of the axis of rotation(s) while driving.
  • the comparison of recorded distance values with the associated reference values can also be limited to selected objects on the route.
  • an object is first recognized and/or classified on the basis of the recorded distance values, with a derailment warning signal being generated, for example, only if an object has been recognized and/or classified and at the same time the recorded distance values deviate from the recorded reference values by more than a predetermined amount.
  • the invention also relates to a method for detecting lane departure, in particular derailment, in a track-bound vehicle, in particular a rail vehicle, in which values recorded during a current journey in at least one predetermined spatial measurement orientation are compared with locally corresponding reference values recorded during one or more previous journeys on the same route and in the event that a deviation has a predetermined deviation characteristic, a derailment warning signal is generated.
  • the figure 1 shows a rail vehicle 10 in a schematic top view, which moves on a rail system 20 along the direction of travel X.
  • the rail vehicle 10 is driving through a tunnel 30, which is shown in FIG 1 is denoted by reference numeral 31 on the right tunnel wall.
  • the one in the figure 1 left tunnel wall bears the reference number 32.
  • the rail vehicle 10 is equipped with a measuring arrangement 40 which—simultaneously or sequentially—emits a measuring beam M1 to the right and a measuring beam M2 to the left.
  • the right measurement beam M1 is pivoted by a pivot angle ⁇ 1 relative to the direction of travel X; the left measurement beam M2 is pivoted to the left by a pivot angle ⁇ 2 relative to the direction of travel X.
  • Both pivot angles ⁇ 1 and ⁇ 2 are in the embodiment according to figure 1 same size.
  • the measuring arrangement 40 scans the right tunnel wall 31 and the left tunnel wall 32 with the two measuring beams M1 and M2 and thereby determines the respective distance to the tunnel wall.
  • the distance values are compared with stored reference values that have been recorded during one or more previous journeys, and a derailment warning signal is generated if the deviation between the current distance values and the stored reference values exceeds a predetermined threshold.
  • the figure 2 shows an exemplary embodiment of the measuring arrangement 40 according to FIG figure 1 closer in detail.
  • the measuring arrangement 40 comprises a distance measuring device 41, a locating device 42, a memory 43 and an evaluation device 44.
  • the distance measuring device 41 has a transmitting device 41a, which transmits the two measuring beams M1 and M2 in accordance with figure 1 generated and sent out.
  • a receiving device 41b of the distance-measuring device 41 measures the reflected or scattered radiation, which—seen in the measurement alignment—from the surrounding area Objects reflected back to the distance measuring device 41 or scattered back.
  • the receiving device 41b uses the received radiation E1 and E2 to generate distance values which are transmitted to the evaluation device 44 .
  • the distance value generated with the measuring beam M1 is in FIG figure 2 with the reference symbol A( ⁇ 1) and the one with the in FIG figure 1
  • the distance value generated on the left measuring beam M2 is denoted by the reference symbol A( ⁇ 2).
  • the evaluation device 44 receives location information from the locating device 42 which indicates the respective location X0 of the rail vehicle 10 on the rail system 20 .
  • the evaluation device 44 queries reference values R(X0, ⁇ 1) and R(X0, ⁇ 2) for the two measuring beams M1 and M2 stored in the memory 43 for the respective location X0.
  • the reference values R(X0, ⁇ 1) and R(X0, ⁇ 2) are compared with the current distance values A( ⁇ 1) and A( ⁇ 2) and evaluated with a view to a possible derailment of the rail vehicle 10 .
  • the state shown is that the rail vehicle 10 is in a normal state, i.e. it has not derailed, so that the current distance values A( ⁇ 1) and A( ⁇ 2) will at least essentially match the respective reference values R(X0, ⁇ 1) and R(X0, ⁇ 2) for the respective location X0. It applies here: A ⁇ 1 ⁇ R X 0 , ⁇ 1 ⁇ GW and A ⁇ 2 ⁇ R X 0 , ⁇ 2 ⁇ GW where GW denotes a predetermined threshold or a predetermined tolerance value.
  • the measuring arrangement 40 will not generate a derailment warning signal.
  • the figure 3 shows the rail vehicle 10 on the rail system 20 in a state of derailment, in which the rail vehicle 10 is displaced parallel to the track of the rail system 20 is.
  • the offset is in the figure 3 marked with the reference symbol V.
  • the offset V is reflected in the distance values A( ⁇ 1) and A( ⁇ 2), as exemplified in FIGS Figures 4 and 5 is shown.
  • the figure 4 shows the course of measured values MV1 of the distance values A( ⁇ 2), which are supplied by the left measuring beam M2. It can be seen that the distance values A( ⁇ 2) are larger by the offset V than the reference values R(X, ⁇ 2) stored in the memory 43 due to the offset derailment and the measured value curve MVl is shifted by the offset V compared to the reference curve RVl to larger distance values.
  • the distance values A( ⁇ 1), which are generated by the right measuring beam M1 will be smaller than the associated reference values R(X, ⁇ 2), so that the right measured value profile MVr, which is generated with the right measuring beam M1, is shifted to smaller distance values compared to the corresponding right reference profile RVr.
  • the evaluation device 44 detects such an opposite shift in the measured value curves MVl and MVr compared to the associated reference curves RVl and RVr, it concludes that the rail vehicle 10 has derailed parallel to the track and a corresponding derailment warning signal, which indicates a derailment of the vehicle parallel to the track, must be generated.
  • the generated derailment warning signal contributes in the figure 2 the reference EWS.
  • the figure 6 shows the rail vehicle 10 according to FIGS figures 1 and 3 in the event that the rail vehicle 10 has derailed, in which case the rail vehicle 10 has twisted laterally relative to the lane of the rail system 20 . Due to the twisting of the rail vehicle 10 and due to the twisting of the measuring arrangement 40, the measuring beams M1 and M2 become the respectively assigned tunnel wall 31 or sample 32 in a temporally and spatially offset manner. For example, the one in the figure 6 with the reference numeral 33 are identified by the measuring arrangement 40 earlier in time or at an earlier location than the locally corresponding right-hand projection 34 on the right-hand tunnel wall 31.
  • the measured value curves and the associated reference curves are in the Figures 7 and 8 shown. It can be seen that the left measured value curve MVl is shifted to the left by a local offset ⁇ dX compared to the reference curve RVl, since—as explained—due to the lateral rotation of the rail vehicle 10—compared to the normal alignment of the measuring arrangement 40—there is premature object detection on the left.
  • the right-hand measured value profile MVr is offset to the right by an offset +dX in relation to the associated right-hand reference profile RVr, as in FIG figure 8 is shown, since due to the lateral rotation of the rail vehicle 10--compared to the normal alignment of the measuring arrangement 40--there is a delayed object detection on the right.
  • the evaluation device 44 will conclude that the rail vehicle 10 is twisting to the side and generate a derailment warning signal EWS, which indicates a lateral twisting of the rail vehicle 10 relative to the specified lane.
  • the figure 9 shows an exemplary embodiment of a rail vehicle 10 in which the measuring arrangement 40 allows a measuring beam M to rotate in a plane about an axis of rotation 100 .
  • the tunnel 30 is thus scanned through 360°.
  • the figure 10 shows the measurement arrangement 40 of the rail vehicle 10 according to FIG figure 9 in a side view. It's possible note that the axis of rotation 100 is tilted from the vertical by a tilt angle ⁇ . The inclination of the axis of rotation 100 ensures that the measuring beam M also scans the space in front of the rail vehicle 10 during travel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Description

Bei Schienenfahrzeugen der Eisenbahntechnik wird ein etwaiges Entgleisen heutzutage durch das Betriebspersonal, insbesondere den Fahrzeugführer, erkannt, der im Falle eines Entgleisens das Schienenfahrzeug manuell notbremst.In the case of rail vehicles in railway technology, any derailment is nowadays recognized by the operating personnel, in particular the vehicle driver, who manually brakes the rail vehicle in an emergency in the event of a derailment.

Aus der Druckschrift US 2017/253228 A1 ist eine Messanordnung für ein spurgebundenes Fahrzeug, insbesondere Schienenfahrzeug, bekannt, welche eine Auswerteinrichtung aufweist, die eingerichtet ist, während einer aktuellen Fahrt in mindestens einer vorgegebenen räumlichen Messausrichtung aufgenommene Werte mit örtlich korrespondierenden, während einer oder mehrerer vorheriger Fahrten auf derselben Strecke aufgenommenen Referenzwerten zu vergleichen und im Falle, dass eine Abweichung eine vorgegebene Abweichungscharakteristik aufweist, ein Entgleisungswarnsignal zu erzeugen.From the pamphlet U.S. 2017/253228 A1 a measuring arrangement for a track-bound vehicle, in particular a rail vehicle, is known, which has an evaluation device which is set up to compare values recorded during a current journey in at least one predetermined spatial measurement orientation with locally corresponding reference values recorded during one or more previous journeys on the same route and, in the event that a deviation has a predetermined deviation characteristic, to generate a derailment warning signal.

Aus der Druckschrift CN 203 496 924 U ist eine Entgleisungserkennungsvorrichtung einer elektrischen Lokomotive bekannt, welche Detektoren, beispielsweise Näherungsschalter aufweist. Wenn einer der Detektoren feststellt, dass der Abstand zwischen dem Wagenkasten der Lokomotive oder dem jeweiligen Rad und dem Gleis größer als ein vorgegebener Wert ist, dann kann eine Steuereinheit feststellen, dass die elektrische Lokomotive entgleist ist.From the pamphlet CN 203 496 924 U a derailment detection device for an electric locomotive is known which has detectors, for example proximity switches. If one of the detectors determines that the distance between the locomotive body or respective wheel and the track is greater than a predetermined value, then a control unit can determine that the electric locomotive has derailed.

Die Druckschrift DE 10 2015 119392 A1 offenbart eine Messdaten-Korrelation um eine Entgleisung eines Schienenfahrzeugs zu erfassen.The pamphlet DE 10 2015 119392 A1 discloses a measurement data correlation to detect a derailment of a rail vehicle.

Aufgrund der fortschreitenden Automatisierung, insbesondere mit Blick auf ein fahrerloses Fahren von Schienenfahrzeugen, besteht das Problem, ein Entgleisen automatisiert zuverlässig erkennen zu können.Due to the increasing automation, in particular with regard to driverless driving of rail vehicles, there is the problem of being able to reliably detect a derailment in an automated manner.

Der Erfindung liegt somit die Aufgabe zugrunde, eine Messanordnung anzugeben, die ein Entgleisen eines spurgebundenen Fahrzeugs zuverlässig erkennen kann.The invention is therefore based on the object of specifying a measuring arrangement which can reliably detect a derailment of a rail-bound vehicle.

Diese Aufgabe wird erfindungsgemäß durch eine Messanordnung mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind in Unteransprüchen angegeben.According to the invention, this object is achieved by a measuring arrangement with the features according to patent claim 1 . Advantageous refinements of the method according to the invention are specified in the dependent claims.

Danach ist erfindungsgemäß vorgesehen, dass

  • eine Abstandsmesseinrichtung eingerichtet ist, in mindestens zwei vorgegebenen räumlichen Messausrichtungen, von denen eine um einen vorgegebenen Schwenkwinkel nach rechts - nachfolgend rechte Messausrichtung genannt - und die andere um denselben Schwenkwinkel nach links - nachfolgend linke Messausrichtung genannt - relativ zur Längsrichtung des Fahrzeugs ausgerichtet ist, den jeweiligen Wert als Abstand zwischen der Abstandsmesseinrichtung und - in den zwei Messausrichtungen gesehen - befindlichen Objekten in der Umgebung unter Bildung eines rechten Messwertverlaufs und eines linken Messwertverlaufs zu messen, und
  • die Auswerteinrichtung eingerichtet ist, während einer aktuellen Fahrt den rechten und linken Messwertverlauf der aktuell gemessenen Abstandswerte mit korrespondierenden rechten und linken Referenzwertverläufen der örtlich korrespondierenden Referenzwerte zu vergleichen und die Erzeugung des Entgleisungswarnsignals davon abhängig zu machen, ob etwaige Abweichungen zwischen einem der Messwertverläufe und dem korrespondierenden Referenzverlauf mit Abweichungen zwischen dem anderen Messwertverlauf und dessen korrespondierenden Referenzverlauf korrelieren.
According to the invention, it is provided that
  • a distance measuring device is set up, in at least two specified spatial measurement alignments, one of which is aligned by a specified pivot angle to the right - hereinafter referred to as the right measurement alignment - and the other by the same pivot angle to the left - hereinafter referred to as the left measurement alignment - relative to the longitudinal direction of the vehicle, to measure the respective value as the distance between the distance measurement device and - seen in the two measurement alignments - objects in the area, forming a right measured value curve and a left measured value curve, and
  • the evaluation device is set up to compare the right and left measured value profile of the currently measured distance values with corresponding right and left reference value profiles of the locally corresponding reference values during a current journey and to make the generation of the derailment warning signal dependent on whether any deviations between one of the measured value profiles and the corresponding reference profile correlate with deviations between the other measured value profile and its corresponding reference profile.

Ein wesentlicher Vorteil der erfindungsgemäßen Messanordnung ist darin zu sehen, dass diese ein Entgleisen eines Fahrzeugs auf sehr einfache Weise erkennen kann, da lediglich Abstandswerte gemessen und mit Referenzwerten verglichen werden. Ein Entgleisen kann somit mit einem minimalen Komponentenaufwand und großer Zuverlässigkeit erkannt werden.An essential advantage of the measuring arrangement according to the invention can be seen in the fact that it can detect a derailment of a vehicle in a very simple manner, since only distance values are measured and compared with reference values. A derailment can thus be detected with a minimal outlay on components and great reliability.

Als Abstandsmesseinrichtung kann beispielsweise ein Laserscanner eingesetzt werden.A laser scanner, for example, can be used as the distance measuring device.

Vorteilhaft ist es, wenn die Auswerteinrichtung ein Entgleisungswarnsignal erzeugt, das ein parallel zur Spur versetztes Entgleisen des Fahrzeugs anzeigt, wenn die Abweichungen des rechten und linken Messwertverlaufs von dem zugeordneten rechten und linken Referenzverlauf jeweils eine vorgegebene Schwelle überschreiten und die Abweichungen unterschiedliche Vorzeichen aufweisen.It is advantageous if the evaluation device generates a derailment warning signal that indicates a derailment of the vehicle offset parallel to the track if the deviations of the right and left measured value curve from the associated right and left reference curve each exceed a predetermined threshold and the deviations have different signs.

Alternativ oder zusätzlich kann vorgesehen sein, dass die Auswerteinrichtung ein Entgleisungswarnsignal erzeugt, das eine seitliche Verdrehung des Fahrzeugs relativ zur vorgegebenen Fahrspur anzeigt, wenn die rechten und linken Messwertverläufe über dem Fahrzeugort gegenüber den zugeordneten Referenzverläufen jeweils einen örtlichen Versatz aufweichen, der eine vorgegebene Schwelle überschreitet, und die Versätze unterschiedliche Versatzrichtungen bzw. unterschiedliche Vorzeichen aufweisen. Der oder die Messausrichtungen oder zumindest eine der Messausrichtungen sind vorzugsweise relativ zur Horizontalen geneigt.Alternatively or additionally, it can be provided that the evaluation device generates a derailment warning signal that indicates a lateral twisting of the vehicle relative to the specified lane if the right and left measured value curves over the vehicle location compared to the assigned reference curves each soften a local offset that exceeds a predetermined threshold, and the offsets have different offset directions or different signs. The measurement alignment or alignments or at least one of the measurement alignments are preferably inclined relative to the horizontal.

Bezüglich der Abstandsmesseinrichtung wird es als vorteilhaft angesehen, wenn diese eine Sendeeinrichtung, die zumindest einen Messstrahl erzeugt und diesen dauerhaft oder zumindest zeitlich abschnittsweise in der vorgegebenen räumlichen Messausrichtung aussendet, und eine Empfangseinrichtung aufweist, die objektseitig reflektierte oder gestreute Empfangsstrahlung des Messstrahls empfängt und anhand der Empfangsstrahlung, insbesondere anhand des Zeitverzugs zwischen dem Senden der Strahlung und dem Empfang der Empfangsstrahlung, die Abstandswerte erzeugt.With regard to the distance measuring device, it is considered advantageous if this has a transmitting device that generates at least one measuring beam and emits it permanently or at least in sections over time in the specified spatial measuring alignment, and a receiving device that receives the received radiation of the measuring beam reflected or scattered on the object side and generates the distance values based on the received radiation, in particular based on the time delay between the transmission of the radiation and the reception of the received radiation.

Auch kann in vorteilhafter Weise vorgesehen sein, dass die Abstandsmesseinrichtung, insbesondere deren Sendeeinrichtung, mehrere Messstrahlen gleichzeitig in unterschiedlichen räumlichen Messausrichtungen aussendet.Advantageously, it can also be provided that the distance measuring device, in particular its transmission device, emits several measuring beams simultaneously in different spatial measuring alignments.

Alternativ oder zusätzlich kann in vorteilhafter Weise vorgesehen sein, dass die Abstandsmesseinrichtung, insbesondere deren Sendeeinrichtung, die Ausrichtung des oder der Messstrahlen über der Zeit verändert und Strahlung nacheinander in mehreren räumlichen Messausrichtungen aussendet.Alternatively or additionally, it can advantageously be provided that the distance measuring device, in particular its transmitting device, changes the orientation of the measuring beam or beams over time and successively emits radiation in a plurality of spatial measuring orientations.

Besonders vorteilhaft ist es, wenn die Abstandsmesseinrichtung den oder die Messstrahlen in einer Ebene um eine Rotationsachse oder jeweils um eine eigene Rotationsachse rotieren lässt.It is particularly advantageous if the distance measuring device allows the measuring beam or beams to rotate in a plane about an axis of rotation or each about its own axis of rotation.

Die Rotationsachse oder die Rotationsachsen sind vorzugsweise zur Vertikalen geneigt.The axis or axes of rotation are preferably inclined to the vertical.

Die Abstandsmesseinrichtung verändert vorzugsweise die Neigung der Rotationsachse(n) während der Fahrt.The distance measuring device preferably changes the inclination of the axis of rotation(s) while driving.

Der Vergleich von aufgenommenen Abstandswerten mit den zugeordneten Referenzwerten kann im Übrigen auch auf ausgewählte Objekte auf der Strecke begrenzt werden. Bei dieser Ausgestaltung erfolgt auf der Basis der aufgenommenen Abstandswerte zunächst eine Objekterkennung und/oder eine Objektklassifizierung, wobei die Erzeugung eines Entgleisungswarnsignals beispielsweise ausschließlich dann erfolgt, wenn ein Objekt erkannt und/oder klassifiziert wurde und gleichzeitig die aufgenommenen Abstandswerte von den erfassten Referenzwerten über ein vorgegebenes Maß hinaus abweichen.The comparison of recorded distance values with the associated reference values can also be limited to selected objects on the route. In this embodiment, an object is first recognized and/or classified on the basis of the recorded distance values, with a derailment warning signal being generated, for example, only if an object has been recognized and/or classified and at the same time the recorded distance values deviate from the recorded reference values by more than a predetermined amount.

Die Erfindung bezieht sich darüber hinaus auf ein Verfahren zum Erkennen eines Spurverlassens, insbesondere Entgleisens, bei einem spurgebundenen Fahrzeug, insbesondere Schienenfahrzeug, bei dem während einer aktuellen Fahrt in mindestens einer vorgegebenen räumlichen Messausrichtung aufgenommene Werte mit örtlich korrespondierenden, während einer oder mehrerer vorheriger Fahrten auf derselben Strecke aufgenommenen Referenzwerten verglichen werden und im Falle, dass eine Abweichung eine vorgegebene Abweichungscharakteristik aufweist, ein Entgleisungswarnsignal erzeugt wird.The invention also relates to a method for detecting lane departure, in particular derailment, in a track-bound vehicle, in particular a rail vehicle, in which values recorded during a current journey in at least one predetermined spatial measurement orientation are compared with locally corresponding reference values recorded during one or more previous journeys on the same route and in the event that a deviation has a predetermined deviation characteristic, a derailment warning signal is generated.

Erfindungsgemäß ist bezüglich eines solchen Verfahrens vorgesehen, dass

  • eine Abstandsmesseinrichtung in mindestens zwei vorgegebenen räumlichen Messausrichtungen, von denen eine um einen vorgegebenen Schwenkwinkel nach rechts - nachfolgend rechte Messausrichtung genannt - und die andere um denselben Schwenkwinkel nach links - nachfolgend linke Messausrichtung genannt - relativ zur Längsrichtung des Fahrzeugs ausgerichtet ist, den jeweiligen Wert als Abstand zwischen der Abstandsmesseinrichtung und - in den zwei Messausrichtungen gesehen - befindlichen Objekten in der Umgebung unter Bildung eines rechten Messwertverlaufs und eines linken Messwertverlaufs misst, und
  • die Auswerteinrichtung während einer aktuellen Fahrt den rechten und linken Messwertverlauf der aktuell gemessenen Abstandswerte mit korrespondierenden rechten und linken Referenzwertverläufen der örtlich korrespondierenden Referenzwerte vergleicht und die Erzeugung des Entgleisungswarnsignals davon abhängig macht, ob etwaige Abweichungen zwischen einem der Messwertverläufe und dem korrespondierenden Referenzverlauf mit Abweichungen zwischen dem anderen Messwertverlauf und dessen korrespondierenden Referenzverlauf korrelieren.
According to the invention, with regard to such a method, it is provided that
  • a distance measuring device in at least two specified spatial measurement alignments, one of which is aligned by a specified pivot angle to the right - hereinafter referred to as the right measurement alignment - and the other by the same pivot angle to the left - hereinafter referred to as the left measurement alignment - relative to the longitudinal direction of the vehicle, measuring the respective value as the distance between the distance measurement device and - seen in the two measurement alignments - objects in the area, forming a right measured value curve and a left measured value curve, and
  • the evaluation device compares the right and left measured value profile of the currently measured distance values with corresponding right and left reference value profiles of the locally corresponding reference values during a current trip and makes the generation of the derailment warning signal dependent on whether any deviations between one of the measured value profiles and the corresponding reference profile correlate with deviations between the other measured value profile and its corresponding reference profile.

Bezüglich der Vorteile des erfindungsgemäßen Verfahrens sei auf die obigen Ausführungen im Zusammenhang mit der erfindungsgemäßen Messanordnung verwiesen.With regard to the advantages of the method according to the invention, reference is made to the above statements in connection with the measuring arrangement according to the invention.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert; dabei zeigen beispielhaft

Figur 1
ein Ausführungsbeispiel für ein erfindungsgemäßes Schienenfahrzeug, das mit einem Ausführungsbeispiel für eine erfindungsgemäße Messanordnung ausgestattet ist, wobei die Figur 1 das Schienenfahrzeug im Normalbetrieb bzw. vor einem Entgleisen zeigt,
Figur 2
die Messanordnung des Schienenfahrzeugs gemäß Figur 1 näher im Detail,
Figur 3
das Schienenfahrzeug gemäß Figur 1 nach einem Entgleisen, bei dem das Schienenfahrzeug parallel zur Spur versetzt ist,
Fig. 4-5
Messwertverläufe für den in der Figur 3 gezeigten Entgleisungszustand,
Figur 6
das Schienenfahrzeug gemäß der Figur 1 im Falle eines Entgleisens, bei dem das Schienenfahrzeug gegenüber der vorgegebenen Fahrspur seitlich verdreht ist,
Fig. 7-8
Messwertverläufe für den in der Figur 6 gezeigten Entgleisungszustand,
Figur 9
ein Ausführungsbeispiel für ein erfindungsgemäßes Schienenfahrzeug, bei dem die Messanordnung einen Messstrahl in einer Ebene um eine Rotationsachse um 360° rotieren lässt, und
Figur 10
die Anordnung der Rotationsachse bei der Messanordnung gemäß Figur 9 in einer Sicht von der Seite.
The invention is explained in more detail below using exemplary embodiments; show examples
figure 1
an embodiment of a rail vehicle according to the invention, which is equipped with an embodiment of a measuring arrangement according to the invention, wherein the figure 1 the rail vehicle shows in normal operation or before a derailment,
figure 2
the measuring arrangement of the rail vehicle according to FIG. 1 in more detail,
figure 3
the rail vehicle according to figure 1 after a derailment in which the rail vehicle is offset parallel to the track,
Figures 4-5
Measurement curves for the in the figure 3 shown derailment state,
figure 6
the rail vehicle according to the figure 1 in the event of a derailment in which the rail vehicle is twisted laterally in relation to the specified lane,
Figures 7-8
Measurement curves for the in the figure 6 shown derailment state,
figure 9
an exemplary embodiment of a rail vehicle according to the invention, in which the measuring arrangement allows a measuring beam to rotate by 360° in a plane about an axis of rotation, and
figure 10
the arrangement of the axis of rotation in the measurement arrangement according to figure 9 in a side view.

In den Figuren werden der Übersicht halber für identische oder vergleichbare Komponenten stets dieselben Bezugszeichen verwendet.For the sake of clarity, the figures always use the same reference symbols for identical or comparable components.

Die Figur 1 zeigt in einer schematischen Draufsicht ein Schienenfahrzeug 10, das sich auf einer Schienenanlage 20 entlang der Fahrtrichtung X bewegt. Bei der Darstellung gemäß Figur 1 wird beispielhaft davon ausgegangen, dass das Schienenfahrzeug 10 durch einen Tunnel 30 fährt, dessen in der Figur 1 rechte Tunnelwand mit dem Bezugszeichen 31 bezeichnet ist. Die in der Figur 1 linke Tunnelwand trägt das Bezugszeichen 32.The figure 1 shows a rail vehicle 10 in a schematic top view, which moves on a rail system 20 along the direction of travel X. In the representation according to figure 1 it is assumed, for example, that the rail vehicle 10 is driving through a tunnel 30, which is shown in FIG 1 is denoted by reference numeral 31 on the right tunnel wall. The one in the figure 1 left tunnel wall bears the reference number 32.

Das Schienenfahrzeug 10 ist mit einer Messanordnung 40 ausgestattet, die - gleichzeitig oder zeitlich nacheinander - einen Messstrahl M1 nach rechts und einen Messstrahl M2 nach links aussendet. Der rechte Messstrahl M1 ist um einen Schwenkwinkel ϕ1 gegenüber der Fahrtrichtung X geschwenkt; der linke Messstrahl M2 ist um einen Schwenkwinkel ϕ2 gegenüber der Fahrtrichtung X nach links verschwenkt. Beide Schwenkwinkel ϕ1 und ϕ2 sind bei dem Ausführungsbeispiel gemäß der Figur 1 gleich groß.The rail vehicle 10 is equipped with a measuring arrangement 40 which—simultaneously or sequentially—emits a measuring beam M1 to the right and a measuring beam M2 to the left. The right measurement beam M1 is pivoted by a pivot angle φ1 relative to the direction of travel X; the left measurement beam M2 is pivoted to the left by a pivot angle φ2 relative to the direction of travel X. Both pivot angles φ1 and φ2 are in the embodiment according to figure 1 same size.

Während der Fahrt durch den Tunnel 30 tastet die Messanordnung 40 mit den beiden Messstrahlen M1 und M2 die rechte Tunnelwand 31 und die linke Tunnelwand 32 ab und bestimmt dabei den jeweiligen Abstand zur Tunnelwand. Die Abstandswerte werden mit abgespeicherten Referenzwerten, die bei einer oder mehreren früheren Fahrten aufgenommen worden sind, verglichen und es wird ein Entgleisungswarnsignal erzeugt, wenn die Abweichung zwischen aktuellen Abstandswerten und den abgespeicherten Referenzwerten eine vorgegebene Schwelle überschreitet.While driving through the tunnel 30, the measuring arrangement 40 scans the right tunnel wall 31 and the left tunnel wall 32 with the two measuring beams M1 and M2 and thereby determines the respective distance to the tunnel wall. The distance values are compared with stored reference values that have been recorded during one or more previous journeys, and a derailment warning signal is generated if the deviation between the current distance values and the stored reference values exceeds a predetermined threshold.

Die Figur 2 zeigt ein Ausführungsbeispiel für die Messanordnung 40 gemäß Figur 1 näher im Detail.The figure 2 shows an exemplary embodiment of the measuring arrangement 40 according to FIG figure 1 closer in detail.

Die Messanordnung 40 umfasst eine Abstandsmesseinrichtung 41, eine Ortungseinrichtung 42, einen Speicher 43 und eine Auswerteinrichtung 44.The measuring arrangement 40 comprises a distance measuring device 41, a locating device 42, a memory 43 and an evaluation device 44.

Die Abstandsmesseinrichtung 41 weist eine Sendeeinrichtung 41a auf, die die beiden Messstrahlen M1 und M2 gemäß Figur 1 erzeugt und aussendet.The distance measuring device 41 has a transmitting device 41a, which transmits the two measuring beams M1 and M2 in accordance with figure 1 generated and sent out.

Eine Empfangseinrichtung 41b der Abstandsmesseinrichtung 41 misst die reflektierte oder gestreute Strahlung, die - in Messausrichtung gesehen - von in der Umgebung befindlichen Objekten zurück zur Abstandsmesseinrichtung 41 reflektiert bzw. zurück gestreut wird. Anhand der Empfangsstrahlung E1 und E2 erzeugt die Empfangseinrichtung 41b Abstandswerte, die zur Auswerteinrichtung 44 übermittelt werden. Der mit dem Messstrahl M1 erzeugte Abstandswert ist in der Figur 2 mit dem Bezugszeichen A(ϕ1) und der mit dem in der Figur 1 linken Messstrahl M2 erzeugte Abstandswert mit dem Bezugszeichen A(ϕ2) bezeichnet.A receiving device 41b of the distance-measuring device 41 measures the reflected or scattered radiation, which—seen in the measurement alignment—from the surrounding area Objects reflected back to the distance measuring device 41 or scattered back. The receiving device 41b uses the received radiation E1 and E2 to generate distance values which are transmitted to the evaluation device 44 . The distance value generated with the measuring beam M1 is in FIG figure 2 with the reference symbol A(φ1) and the one with the in FIG figure 1 The distance value generated on the left measuring beam M2 is denoted by the reference symbol A(φ2).

Die Auswerteinrichtung 44 empfängt von der Ortungseinrichtung 42 eine Ortsangabe, die den jeweiligen Ort X0 des Schienenfahrzeugs 10 auf der Schienenanlage 20 angibt. Die Auswerteinrichtung 44 fragt für den jeweiligen Ort X0 aus dem Speicher 43 abgespeicherte Referenzwerte R(X0, ϕ1) und R(X0, ϕ2) für die beiden Messstrahlen M1 und M2 ab. Die Referenzwerte R(X0, ϕ1) und R(X0, ϕ2) werden mit den aktuellen Abstandswerten A(ϕ1) und A(ϕ2) verglichen und mit Blick auf eine mögliche Entgleisung des Schienenfahrzeugs 10 ausgewertet.The evaluation device 44 receives location information from the locating device 42 which indicates the respective location X0 of the rail vehicle 10 on the rail system 20 . The evaluation device 44 queries reference values R(X0, φ1) and R(X0, φ2) for the two measuring beams M1 and M2 stored in the memory 43 for the respective location X0. The reference values R(X0, φ1) and R(X0, φ2) are compared with the current distance values A(φ1) and A(φ2) and evaluated with a view to a possible derailment of the rail vehicle 10 .

Bei dem in der Figur 1 gezeigten Zustand befindet sich das Schienenfahrzeug 10 in einem normalen, also nichtentgleisten Zustand, so dass die aktuellen Abstandswerte A(ϕ1) und A(ϕ2) mit den jeweiligen Referenzwerten R(X0, ϕ1) und R(X0, ϕ2) für den jeweiligen Ort X0 zumindest im Wesentlichen übereinstimmen werden. Es gilt hier: A φ 1 R X 0 , φ 1 < GW

Figure imgb0001
und A φ 2 R X 0 , φ 2 < GW
Figure imgb0002
wobei GW eine vorgegebenen Schwelle bzw. einen vorgegebenen Toleranzwert bezeichnet.At the in the figure 1 The state shown is that the rail vehicle 10 is in a normal state, i.e. it has not derailed, so that the current distance values A(φ1) and A(φ2) will at least essentially match the respective reference values R(X0, φ1) and R(X0, φ2) for the respective location X0. It applies here: A φ 1 R X 0 , φ 1 < GW
Figure imgb0001
and A φ 2 R X 0 , φ 2 < GW
Figure imgb0002
where GW denotes a predetermined threshold or a predetermined tolerance value.

Wird die Schwelle nicht überschritten, wird die Messanordnung 40 kein Entgleisungswarnsignal erzeugen.If the threshold is not exceeded, the measuring arrangement 40 will not generate a derailment warning signal.

Die Figur 3 zeigt das Schienenfahrzeug 10 auf der Schienenanlage 20 in einem Entgleisungszustand, bei dem das Schienenfahrzeug 10 parallel zur Spur der Schienenanlage 20 versetzt ist. Der Versatz ist in der Figur 3 mit dem Bezugszeichen V gekennzeichnet.The figure 3 shows the rail vehicle 10 on the rail system 20 in a state of derailment, in which the rail vehicle 10 is displaced parallel to the track of the rail system 20 is. The offset is in the figure 3 marked with the reference symbol V.

Der Versatz V schlägt sich in den Abstandswerten A(ϕ1) und A(ϕ2) nieder, wie beispielhaft in den Figuren 4 und 5 dargestellt ist.The offset V is reflected in the distance values A(ϕ1) and A(ϕ2), as exemplified in FIGS Figures 4 and 5 is shown.

Die Figur 4 zeigt den Messwertverlauf MVl der Abstandswerte A(ϕ2), die von dem linken Messstrahl M2 geliefert werden. Es lässt sich erkennen, dass die Abstandswerte A(ϕ2) durch das versetzte Entgleisen um den Versatz V größer als die in dem Speicher 43 abgespeicherten Referenzwerte R(X, ϕ2) werden und der Messwertverlauf MVl um den Versatz V gegenüber dem Referenzverlauf RVl zu größeren Abstandswerten verschoben wird.The figure 4 shows the course of measured values MV1 of the distance values A(φ2), which are supplied by the left measuring beam M2. It can be seen that the distance values A(φ2) are larger by the offset V than the reference values R(X, φ2) stored in the memory 43 due to the offset derailment and the measured value curve MVl is shifted by the offset V compared to the reference curve RVl to larger distance values.

In entsprechender Weise werden die Abstandswerte A(ϕ1), die von dem rechten Messstrahl M1 erzeugt werden, kleiner als die zugeordneten Referenzwerte R(X, ϕ2) sein, so dass der rechte Messwertverlauf MVr, der mit dem rechten Messstrahl M1 erzeugt wird, gegenüber dem korrespondierenden rechten Referenzverlauf RVr zu kleineren Abstandswerten verschoben wird.Correspondingly, the distance values A(ϕ1), which are generated by the right measuring beam M1, will be smaller than the associated reference values R(X, ϕ2), so that the right measured value profile MVr, which is generated with the right measuring beam M1, is shifted to smaller distance values compared to the corresponding right reference profile RVr.

Stellt die Auswerteinrichtung 44 ein solches gegenläufiges Verschieben der Messwertverläufe MVl und MVr gegenüber den zugeordneten Referenzverläufen RVl und RVr fest, so schließt sie daraus, dass das Schienenfahrzeug 10 parallel zur Spur versetzt entgleist ist und ein entsprechendes Entgleisungswarnsignal, das ein parallel zur Spur versetztes Entgleisen des Fahrzeugs anzeigt, erzeugt werden muss. Das erzeugte Entgleisungswarnsignal trägt in der Figur 2 das Bezugszeichen EWS.If the evaluation device 44 detects such an opposite shift in the measured value curves MVl and MVr compared to the associated reference curves RVl and RVr, it concludes that the rail vehicle 10 has derailed parallel to the track and a corresponding derailment warning signal, which indicates a derailment of the vehicle parallel to the track, must be generated. The generated derailment warning signal contributes in the figure 2 the reference EWS.

Die Figur 6 zeigt das Schienenfahrzeug 10 gemäß den Figuren 1 und 3 für den Fall, dass es zu einem Entgleisen des Schienenfahrzeugs 10 gekommen ist, bei dem sich das Schienenfahrzeug 10 seitlich gegenüber der Fahrspur der Schienenanlage 20 verdreht hat. Aufgrund der Verdrehung des Schienenfahrzeugs 10 und aufgrund der Verdrehung der Messanordnung 40 werden die Messstrahlen M1 und M2 die jeweils zugeordnete Tunnelwand 31 bzw. 32 zeitlich und örtlich versetzt abtasten. So wird beispielsweise der in der Figur 6 mit dem Bezugszeichen 33 bezeichnete linke Vorsprung von der Messanordnung 40 zeitlich früher bzw. an einem früheren Ort erkannt werden als der örtlich korrespondierende rechte Vorsprung 34 an der rechten Tunnelwand 31.The figure 6 shows the rail vehicle 10 according to FIGS figures 1 and 3 in the event that the rail vehicle 10 has derailed, in which case the rail vehicle 10 has twisted laterally relative to the lane of the rail system 20 . Due to the twisting of the rail vehicle 10 and due to the twisting of the measuring arrangement 40, the measuring beams M1 and M2 become the respectively assigned tunnel wall 31 or sample 32 in a temporally and spatially offset manner. For example, the one in the figure 6 with the reference numeral 33 are identified by the measuring arrangement 40 earlier in time or at an earlier location than the locally corresponding right-hand projection 34 on the right-hand tunnel wall 31.

Die Messwertverläufe und die zugehörigen Referenzverläufe sind in den Figuren 7 und 8 dargestellt. Es lässt sich erkennen, dass der linke Messwertverlauf MVl gegenüber dem Referenzverlauf RVl um einen örtlichen Versatz -dX nach links verschoben ist, da es - wie erläutert - aufgrund der seitlichen Verdrehung des Schienenfahrzeugs 10 - verglichen mit der Normalausrichtung der Messanordnung 40 - links zu einer verfrühten Objekterkennung kommt.The measured value curves and the associated reference curves are in the Figures 7 and 8 shown. It can be seen that the left measured value curve MVl is shifted to the left by a local offset −dX compared to the reference curve RVl, since—as explained—due to the lateral rotation of the rail vehicle 10—compared to the normal alignment of the measuring arrangement 40—there is premature object detection on the left.

In entsprechender Weise wird der rechte Messwertverlauf MVr gegenüber dem zugeordneten rechten Referenzverlauf RVr um einen Versatz +dX nach rechts versetzt, wie in der Figur 8 dargestellt ist, da es aufgrund der seitlichen Verdrehung des Schienenfahrzeugs 10 - verglichen mit der Normalausrichtung der Messanordnung 40 - rechts zu einer verspäteten Objekterkennung kommt.In a corresponding manner, the right-hand measured value profile MVr is offset to the right by an offset +dX in relation to the associated right-hand reference profile RVr, as in FIG figure 8 is shown, since due to the lateral rotation of the rail vehicle 10--compared to the normal alignment of the measuring arrangement 40--there is a delayed object detection on the right.

Die Auswerteinrichtung 44 wird bei dem Auftreten eines entsprechenden gegenläufigen Versatzes der Messwertverläufe MVl und MVr gegenüber den zugeordneten Referenzverläufen RVl und RVr auf ein seitliches Verdrehen des Schienenfahrzeugs 10 schließen und ein Entgleisungswarnsignal EWS erzeugen, das eine seitliche Verdrehung des Schienenfahrzeugs 10 relativ zur vorgegebenen Fahrspur anzeigt.When a corresponding opposite offset of the measured value curves MVl and MVr occurs compared to the associated reference curves RVl and RVr, the evaluation device 44 will conclude that the rail vehicle 10 is twisting to the side and generate a derailment warning signal EWS, which indicates a lateral twisting of the rail vehicle 10 relative to the specified lane.

Die Figur 9 zeigt ein Ausführungsbeispiel für ein Schienenfahrzeug 10, bei dem die Messanordnung 40 einen Messstrahl M in einer Ebene um eine Rotationsachse 100 rotieren lässt. Es erfolgt somit eine Abtastung des Tunnels 30 um 360°.The figure 9 shows an exemplary embodiment of a rail vehicle 10 in which the measuring arrangement 40 allows a measuring beam M to rotate in a plane about an axis of rotation 100 . The tunnel 30 is thus scanned through 360°.

Die Figur 10 zeigt die Messanordnung 40 des Schienenfahrzeugs 10 gemäß Figur 9 in einer Sicht von der Seite. Es lässt sich erkennen, dass die Rotationsachse 100 gegenüber der Vertikalen um einen Neigungswinkel θ geneigt ist. Durch die Neigung der Rotationsachse 100 wird sichergestellt, dass der Messstrahl M bei der Fahrt auch den vor dem Schienenfahrzeug 10 befindlichen Raum abtastet.The figure 10 shows the measurement arrangement 40 of the rail vehicle 10 according to FIG figure 9 in a side view. It's possible note that the axis of rotation 100 is tilted from the vertical by a tilt angle θ. The inclination of the axis of rotation 100 ensures that the measuring beam M also scans the space in front of the rail vehicle 10 during travel.

Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Ansprüche zu verlassen.Although the invention has been illustrated and described in detail by means of preferred exemplary embodiments, the invention is not restricted by the disclosed examples and other variations can be derived therefrom by a person skilled in the art without departing from the protective scope of the claims.

BezugszeichenlisteReference List

1010
Schienenfahrzeugrail vehicle
2020
Schienenanlagerail system
3030
Tunneltunnel
3131
rechte Tunnelwandright tunnel wall
3232
linke Tunnelwandleft tunnel wall
3333
linker Vorsprungleft ledge
3434
rechter Vorsprungright ledge
4040
Messanordnungmeasuring arrangement
4141
Abstandsmesseinrichtungdistance measuring device
41a41a
Sendeeinrichtungtransmission device
41b41b
Empfangseinrichtungreceiving device
4242
Ortungseinrichtungtracking device
4343
SpeicherStorage
4444
Auswerteinrichtungevaluation device
100100
Rotationsachseaxis of rotation
A(ϕ1)A(ϕ1)
Abstandswertdistance value
A(ϕ2)A(ϕ2)
Abstandswertdistance value
E1E1
Empfangsstrahlungreceived radiation
E2E2
Empfangsstrahlungreceived radiation
EWSEWS
Entgleisungswarnsignalderailment warning signal
MM
Messstrahlmeasuring beam
M1M1
rechter Messstrahlright measuring beam
M2M2
linker Messstrahlleft measuring beam
MVlMVl
linker Messwertverlaufleft course of measured values
MVrMVr
rechter Messwertverlaufright course of measured values
RVlRVl
linker Referenzverlaufleft reference history
RVrRVr
rechter Referenzverlaufright reference history
R(X0, ϕ1)R(X0, ϕ1)
Referenzwertreference value
R(X0, ϕ2)R(X0, ϕ2)
Referenzwertreference value
VV
Versatzoffset
XX
Fahrtrichtungdriving direction
X0X0
OrtLocation
ϕ1ϕ1
Schwenkwinkelswivel angle
ϕ2ϕ2
Schwenkwinkelswivel angle
θθ
Neigungswinkeltilt angle
-dX-dX
Versatzoffset
+dX+dX
Versatzoffset

Claims (11)

  1. Measurement arrangement (40) for a rail-bound vehicle, in particular rail vehicle (10),
    - wherein the measurement arrangement (40) has an evaluation facility (44), which is configured to compare values (A(ϕ1), A(ϕ2)) recorded during a current journey in at least one predefined spatial measurement orientation with spatially corresponding reference values (R(X0, ϕ1), R(X0, ϕ2)) recorded during one or more previous journeys on the same route, and in the event that a deviation has a predefined deviation characteristic, to generate a derailment warning signal (EWS),
    characterised in that
    - a distance measurement facility (41) is configured, in at least two predefined spatial measurement orientations, of which one is oriented about a predefined tilt angle (ϕ1) to the right - referred to as the right-hand measurement orientation in the following - and the other about the same tilt angle (ϕ2) to the left - referred to as the left-hand measurement orientation in the following - relative to the longitudinal direction of the vehicle, to measure the respective value (A(ϕ1), A(ϕ2)) as a distance between the distance measurement facility (41) and - when viewed in the two measurement orientations - objects situated in the surrounding area with the formation of a right-hand measurement value progression (MVr) and a left-hand measurement value progression (MVl), and
    - the evaluation facility (44) is configured, during a current journey, to compare the right-hand and left-hand measurement value progression (MVr, MVl) of the currently measured distance values (A(ϕ1), A(ϕ2)) with corresponding right-hand and left-hand reference value progressions (RVr, RVl) of the spatially corresponding reference values (R(X0, ϕ1), R(X0, ϕ2)), and to make the generation of the derailment warning signal (EWS) dependent upon whether any deviations between one of the measurement value progressions (MVr, MVl) and the corresponding reference progression (RVr, RVl) correlate with deviations between the other measurement value progression (MVr, MVl) and the corresponding reference progression (RVr, RVl) thereof.
  2. Measurement arrangement (40) according to claim 1,
    characterised in that
    the evaluation facility (44) generates a derailment warning signal (EWS), which indicates a derailment of the vehicle offset in parallel with the track, when the deviations of the right-hand and left-hand measurement value progression (MVr, MVl) from the assigned right-hand and left-hand reference progression (RVr, RVl) in each case exceed a predefined threshold and the deviations have different signs.
  3. Measurement arrangement (40) according to one of the preceding claims,
    characterised in that
    the evaluation facility (44) generates a derailment warning signal (EWS), which indicates a lateral skewing of the vehicle relative to the predefined travel lane, when the right-hand and left-hand measurement value progressions (MVr, MVl) about the vehicle location (XO) in each case deviate by a spatial offset (V) in relation to the assigned reference progressions (RVr, RVl) which exceeds a predefined threshold, and the offsets (V) have different offset directions or different signs.
  4. Measurement arrangement (40) according to one of the preceding claims,
    characterised in that
    the at least one predefined spatial measurement orientation or the at least one of the measurement orientations is inclined relative to the horizontal.
  5. Measurement arrangement (40) according to one of the preceding claims,
    characterised in that
    - the distance measurement facility (41) has a transmit facility (41a), which generates at least one measurement beam (M, M1, M2) and emits it, on a permanent basis or at least for some periods of time, in the predefined spatial measurement orientation, and
    - the distance measurement facility (41) has a receive facility (41b), which receives receive radiation (E1, E2) of the measurement beam (M, M1, M2) reflected or scattered on the object side and, on the basis of the receive radiation (E1, E2), in particular on the basis of the time delay between the transmission of the radiation and the receipt of the receive radiation (E1, E2), generates the distance values (A(ϕ1), A(ϕ2)).
  6. Measurement arrangement (40) according to one of the preceding claims,
    characterised in that
    the distance measurement facility (41) transmits a plurality of measurement beams (M, M1, M2) at the same time in different spatial measurement orientations.
  7. Measurement arrangement (40) according to one of the preceding claims,
    characterised in that
    the distance measurement facility (41) alters the orientation of the measurement beam or measurement beams (M, M1, M2) over time and transmits radiation in succession in a plurality of spatial measurement orientations.
  8. Measurement arrangement (40) according to one of the preceding claims,
    characterised in that
    the distance measurement facility (41) allows the measurement beam or measurement beams (M, M1, M2) to rotate in a plane about an axis of rotation (100).
  9. Measurement arrangement (40) according to claim 8,
    characterised in that
    the axis of rotation (100) is inclined in relation to the vertical.
  10. Measurement arrangement (40) according to one of the preceding claims 8 to 9,
    characterised in that
    the distance measurement facility (41) alters the inclination of the axis of rotation (100) during the journey.
  11. Method for identifying a departure from a track, in particular derailment, in a rail-bound vehicle, in particular rail vehicle (10),
    - values (A(ϕ1), A(ϕ2)) recorded during a current journey in at least one predefined spatial measurement orientation are compared with spatially corresponding reference values (R(X0, ϕ1), R(X0, ϕ2)) recorded during one or more previous journeys on the same route, and in the event that a deviation has a predefined deviation characteristic, a derailment warning signal (EWS) is generated, characterised in that
    - a distance measurement facility (41), in at least two predefined spatial measurement orientations, of which one is oriented about a predefined tilt angle (ϕ1) to the right - referred to as the right-hand measurement orientation in the following - and the other about the same tilt angle (ϕ2) to the left - referred to as the left-hand measurement orientation in the following - relative to the longitudinal direction of the vehicle, measures the respective value (A(ϕ1), A(ϕ2)) as a distance between the distance measurement facility (41) and - when viewed in the two measurement orientations - objects situated in the surrounding area with the formation of a right-hand measurement value progression (MVr) and a left-hand measurement value progression (MVl), and
    - the evaluation facility (44), during a current journey, compares the right-hand and left-hand measurement value progression (MVr, MVl) of the currently measured distance values (A(ϕ1), A(ϕ2)) with corresponding right-hand and left-hand reference value progressions (RVr, RVl) of the spatially corresponding reference values (R(X0, ϕ1), R(X0, ϕ2)), and makes the generation of the derailment warning signal (EWS) dependent upon whether any deviations between one of the measurement value progressions (MVr, MVl) and the corresponding reference progression (RVr, RVl) correlate with deviations between the other measurement value progression (MVr, MVl) and the corresponding reference progression (RVr, RVl) thereof.
EP19710302.1A 2018-03-23 2019-02-25 Measuring arrangement and method for detecting a derailment Active EP3743322B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018204481.3A DE102018204481A1 (en) 2018-03-23 2018-03-23 Measuring arrangement and method for detecting a derailment
PCT/EP2019/054529 WO2019179720A1 (en) 2018-03-23 2019-02-25 Measuring arrangement and method for detecting a derailment

Publications (2)

Publication Number Publication Date
EP3743322A1 EP3743322A1 (en) 2020-12-02
EP3743322B1 true EP3743322B1 (en) 2023-07-26

Family

ID=65729291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19710302.1A Active EP3743322B1 (en) 2018-03-23 2019-02-25 Measuring arrangement and method for detecting a derailment

Country Status (3)

Country Link
EP (1) EP3743322B1 (en)
DE (1) DE102018204481A1 (en)
WO (1) WO2019179720A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19908850A1 (en) * 1999-03-01 2000-09-28 Siemens Ag Method and device for monitoring a vehicle
DE19953677C1 (en) * 1999-11-09 2001-06-21 Deutsche Bahn Ag Rail vehicle derailment detection method, uses detection of acceleration of rail vehicle component in vertical or transverse direction relative to rail track
JP2005069700A (en) * 2003-08-25 2005-03-17 East Japan Railway Co Three-dimensional data acquisition device
CN203496924U (en) * 2013-08-28 2014-03-26 中国恩菲工程技术有限公司 Derailment detecting device of electric locomotive and electric locomotive with same
DE112015003657T5 (en) * 2014-08-07 2017-04-20 Mitsubishi Electric Corporation Rail position measuring device
DE102015119392A1 (en) * 2015-11-11 2017-05-11 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Method and device for comparison-controlled derailment detection
US10399551B2 (en) * 2016-03-07 2019-09-03 Westinghouse Air Brake Technologies Corporation System, method, and apparatus for improving safety of ECP-equipped trains with flammable cargo
DE102017208760A1 (en) * 2017-05-23 2018-11-29 Bombardier Transportation Gmbh Method for detecting a derailment of a rail vehicle

Also Published As

Publication number Publication date
DE102018204481A1 (en) 2019-09-26
WO2019179720A1 (en) 2019-09-26
EP3743322A1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
DE69920916T2 (en) METHOD AND DEVICE FOR DETERMINING DEFECTIVE RAILWAY WHEELS
EP3038879B1 (en) Determining the position of a rail vehicle
EP3746346B1 (en) Rail vehicle and method for surveying a track section
EP3445635B1 (en) Method for operating a positioning device, and positioning device
DE19509696C2 (en) Procedure for mutual contact between trains and facility for carrying out the procedure
EP2531391B1 (en) Method and device for monitoring train integrity
EP3105103B1 (en) Method and system configuration for re-determining the location of a rail vehicle
WO2016075138A1 (en) Operation of a rail vehicle comprising an image generation system
WO2014044249A9 (en) Arrangement and method for controlling train platform doors
DE202010006811U1 (en) Schienenprüfvorrichtung
EP0715579B1 (en) System for releasing the opening of the doors of rail vehicles
WO2016030208A1 (en) Method for positioning a track-bound vehicle, use of the method, and system for positioning a rail-bound vehicle
DE102012107918A1 (en) Rail vehicle location system for rail vehicle, has digital data base with route data of rail vehicle of traveling track section, where evaluation device is adapted to current location of rail vehicle using current data of ambient sensor
EP4077098A1 (en) Method and monitoring system for determining a position of a rail vehicle
EP1977950A2 (en) Method for effect-related assessment of the placing of a track
DE102019109417A1 (en) Measurement module for a coupling device for a track-guided vehicle, coupling device with such a module and method for mechanically coupling such vehicles
DE102015205608A1 (en) Method for operating vehicles and device for a vehicle
EP3787950B1 (en) Method and device for detecting vehicles travelling behind
EP3401702B1 (en) Sensor system
DE102015214425A1 (en) Method for detecting a course of rails
EP3743322B1 (en) Measuring arrangement and method for detecting a derailment
EP3481695B1 (en) Method and collision warning system for detecting oncoming vehicles
EP3795451B1 (en) Method for locating a vehicle on a station provided for the vehicle stopping
EP3458333B1 (en) Method and device for detecting the length of a rail-bound vehicle
EP3778344A2 (en) Device for the recognition of the derailing of a wheelset which can be displayed for information purposes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008653

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240109

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726