EP3740555B1 - Détergent à lessive - Google Patents

Détergent à lessive Download PDF

Info

Publication number
EP3740555B1
EP3740555B1 EP19700209.0A EP19700209A EP3740555B1 EP 3740555 B1 EP3740555 B1 EP 3740555B1 EP 19700209 A EP19700209 A EP 19700209A EP 3740555 B1 EP3740555 B1 EP 3740555B1
Authority
EP
European Patent Office
Prior art keywords
composition
fragrance formulation
fragrance
total weight
weight based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19700209.0A
Other languages
German (de)
English (en)
Other versions
EP3740555A1 (fr
Inventor
Sarah Adams
Nathan Robert BELL
Heather Elaine COTTRELL
Alison CUMMINS
Christopher Clarkson Jones
David Richard Arthur Mealing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Global IP Ltd
Unilever IP Holdings BV
Original Assignee
Unilever Global IP Ltd
Unilever IP Holdings BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61002909&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3740555(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unilever Global IP Ltd, Unilever IP Holdings BV filed Critical Unilever Global IP Ltd
Publication of EP3740555A1 publication Critical patent/EP3740555A1/fr
Application granted granted Critical
Publication of EP3740555B1 publication Critical patent/EP3740555B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
    • C11D2111/12

Definitions

  • the present invention relates to liquid laundry detergents which contain fragrance, and especially concerns liquid laundry detergents which contain a combination of encapsulated and free fragrance.
  • fragrance at key moments is a difficult task since laundry washing liquids are usually designed to carry oily materials or particulate solids away from the laundered fabric. Fragrances, however, are also typically oily materials.
  • WO 2010/079467 A2 disclose detergent compositions comprising encapsulated fragrance and free fragrance dispersed in the composition.
  • Encapsulation of fragrance allows for improved deposition of fragrance to fabric, as well as delaying the release of fragrance when the consumer garment is being worn.
  • Another important moment to the consumer is when the laundry is in the "damp" phase, which extends from when the garments are being removed from the washing machine, to when they are almost dry.
  • the present invention addresses this problem.
  • the present invention provides a liquid laundry detergent composition comprising:
  • the fragrance formulation (f1) will typically contain a blend of selected fragrant components, optionally mixed with one or more excipients.
  • the combined odours of the various fragrant components produce a pleasant or desired fragrance.
  • fragment component in the context of this invention denotes a material which is used essentially for its ability to impart a pleasant odour to a composition (into which it is incorporated), and/or a surface (to which it is applied), either on its own or in admixture with other such materials. Materials having these characteristics are generally small, lipophilic molecules of sufficient volatility to be transported to the olfactory system in the upper part of the nose.
  • Fragrant components for use in the invention will typically have molecular weights of less than 325 atomic mass units, preferably less than 300 atomic mass units and more preferably less than 275 atomic mass units.
  • the molecular weight is preferably greater than 100 atomic mass units and more preferably greater than 125 atomic mass units, since lower masses may be too volatile and/or insufficiently lipophilic to be effective.
  • Fragrant components for use in the invention will preferably have a molecular structure which does not contain halogen atoms and/or strongly ionizing functional groups such as sulfonates, sulfates, or quaternary ammonium ions.
  • Fragrant components for use in the invention will more preferably have a molecular structure containing only atoms from among, but not necessarily all, of the following: hydrogen, carbon, oxygen, nitrogen and sulphur. Most preferably the fragrant components will have a molecular structure containing only atoms from among, but not necessarily all, of the following: hydrogen, carbon and oxygen.
  • fragrant components include aromatic, aliphatic and araliphatic hydrocarbons having molecular weights from about 90 to about 250; aromatic, aliphatic and araliphatic esters having molecular weights from about 130 to about 250; aromatic, aliphatic and araliphatic nitriles having molecular weights from about 90 to about 250; aromatic, aliphatic and araliphatic alcohols having molecular weights from about 90 to about 240; aromatic, aliphatic and araliphatic ketones having molecular weights from about 150 to about 270; aromatic, aliphatic and araliphatic lactones having molecular weights from about 130 to about 290; aromatic, aliphatic and araliphatic aldehydes having molecular weights from about 90 to about 230; aromatic, aliphatic and araliphatic ethers having molecular weights from about 150 to about 270; and condensation products of aldehydes and amines having molecular weights from about
  • fragrant components for use in the invention include:
  • Essential oils are usually extracted by processes of steam distillation, solid-phase extraction, cold pressing, solvent extraction, supercritical fluid extraction, hydrodistillation or simultaneous distillation-extraction.
  • Essential oils may be derived from several different parts of the plant, including for example leaves, flowers, roots, buds, twigs, rhizomes, heartwood, bark, resin, seeds and fruits.
  • the major plant families from which essential oils are extracted include Asteraceae, Myrtaceae, Lauraceae, Lamiaceae, Myrtaceae, Rutaceae and Zingiberaceae.
  • the oil is "essential" in the sense that it carries a distinctive scent, or essence, of the plant.
  • Essential oils are understood by those skilled in the art to be complex mixtures which generally consist of several tens or hundreds of constituents. Most of these constiuents possess an isoprenoid skeleton with 10 atoms of carbon (monoterpenes), 15 atoms of carbon (sesquiterpenes) or 20 atoms of carbon (diterpenes). Lesser quantities of other constituents can also be found, such as alcohols, aldehydes, esters and phenols. However, an individual essential oil is usually considered as a single ingredient in the context of practical fragrance formulation. Therefore, an individual essential oil may be considered as a single fragrant component for the purposes of this invention.
  • essential oils for use as fragrant components in the invention include cedarwood oil, juniper oil, cumin oil, cinnamon bark oil, camphor oil, rosewood oil, ginger oil, basil oil, eucalyptus oil, lemongrass oil, peppermint oil, rosemary oil, spearmint oil, tea tree oil, frankincense oil, chamomile oil, clove oil, jasmine oil, lavender oil, rose oil, ylang-ylang oil, bergamot oil, grapefruit oil, lemon oil, lime oil, orange oil, fir needle oil, galbanum oil, geranium oil, grapefruit oil, pine needle oil, caraway oil, labdanum oil, lovage oil, marjoram oil, mandarin oil, clary sage oil, nutmeg oil, myrtle oil, clove oil, neroli oil, patchouli oil, sandalwood oil, thyme oil, verbena oil, vetiver oil and wintergreen oil.
  • the number of different fragrant components contained in the fragrance formulation (f1) will generally be at least 4, preferably at least 6, more preferably at least 8 and most preferably at least 10, such as from 10 to 200 and more preferably from 10 to 100.
  • no single fragrant component will comprise more than 70% by weight of the total weight of fragrance formulation (f1).
  • no single fragrant component will comprise more than 60% by weight of the total weight of fragrance formulation (f1) and more preferably no single fragrant component will comprise more than 50% by weight of the total weight of fragrance formulation (f1).
  • fragrance formulation in the context of this invention denotes the fragrant components as defined above, plus any optional excipients.
  • Excipients may be included within fragrance formulations for various purposes, for example as solvents for insoluble or poorly-soluble components, as diluents for the more potent components or to control the vapour pressure and evaporation characteristics of the fragrance formulation. Excipients may have many of the characteristics of fragrant components but they do not have strong odours in themselves. Accordingly, excipients may be distinguished from fragrant components because they can be added to fragrance formulations in high proportions such as 30% or even 50% by weight of the total weight of the fragrance formulation without significantly changing the odour quality of the fragrance formulation.
  • excipients include ethanol, isopropanol, diethylene glycol monoethyl ether, dipropylene glycol, diethyl phthalate and triethyl citrate. Mixtures of any of the above described materials may also be suitable.
  • a suitable fragrance formulation (f1) for use in the invention comprises a blend of at least 10 fragrant components selected from hydrocarbons i); aliphatic and araliphatic alcohols ii); aliphatic aldehydes and their acetals iv); aliphatic carboxylic acids and esters thereof viii); acyclic terpene alcohols ix); cyclic terpene aldehydes and ketones xii); cyclic and cycloaliphatic ethers xiii); esters of cyclic alcohols xvi); esters of araliphatic alcohols and aliphatic carboxylic acids xviii); araliphatic ethers and their acetals xix); aromatic and araliphatic aldehydes and ketones xx) and aromatic and araliphatic carboxylic acids and esters thereof xxi); as are further described and exemplified above.
  • the content of fragrant components preferably ranges from 50 to 100%, more preferably from 60 to 100% and most preferably from 75 to 100% by weight based on the total weight of fragrance formulation (f1); with one or more excipients (as described above) making up the balance of the fragrance formulation (f1) as necessary.
  • Fragrance formulation (f1) is in the form of free droplets dispersed in the composition.
  • free droplets in the context of this invention denotes droplets which are not entrapped within discrete polymeric microparticles.
  • the level of fragrance formulation (f1) will generally range from 0.1 to 0.75%, and preferably ranges from 0.3 to 0.6% (by weight based on the total weight of the composition).
  • a fragrance formulation (f2) for use in the invention will typically contain a blend of selected fragrant components, optionally mixed with one or more excipients, as described above for fragrance formulation (f1).
  • Fragrance formulation (f2) and fragrance formulation (f1) may be the same or different. Fragrance formulation (f2) is entrapped within discrete polymeric microparticles dispersed within the composition.
  • the microparticle for use in the invention is a microcapsule.
  • Microencapsulation may be defined as the process of surrounding or enveloping one substance within another substance on a very small scale, yielding capsules ranging from less than one micron to several hundred microns in size.
  • the material that is encapsulated may be called the core, the active ingredient or agent, fill, payload, nucleus, or internal phase.
  • the material encapsulating the core may be referred to as the coating, membrane, shell, or wall material.
  • the microcapsules have at least one generally spherical continuous shell surrounding the core.
  • the shell may contain pores, vacancies or interstitial openings depending on the materials and encapsulation techniques employed.
  • Multiple shells may be made of the same or different encapsulating materials, and may be arranged in strata of varying thicknesses around the core.
  • the shell may have a barrier function protecting the core material from the environment external to the microcapsule, but it may also act as a means of modulating the release of core materials such as fragrance.
  • a shell may be water soluble or water swellable and fragrance release may be actuated in response to exposure of the microcapsules to a moist environment.
  • a microcapsule might release fragrance in response to elevated temperatures.
  • Microcapsules may also release fragrance in response to shear forces applied to the surface of the microcapsules.
  • the polymeric microparticle for use in the invention is a polymeric core-shell microcapsule in which at least one generally spherical continuous shell of polymeric material surrounds a core containing the fragrance formulation (f2).
  • the shell will typically comprise at most 20% by weight based on the total weight of the microcapsule.
  • the fragrance formulation (f2) will typically comprise from about 10 to about 60% and preferably from about 20 to about 40% by weight based on the total weight of the microcapsule.
  • the amount of fragrance (f2) may be measured by taking a slurry of the microcapsules, extracting into ethanol and measuring by liquid chromatography.
  • Polymeric core-shell microcapsules may be prepared using methods known to those skilled in the art such as coacervation, interfacial polymerization, and polycondensation.
  • Coacervation typically involves encapsulation of a generally water-insoluble core material by the precipitation of colloidal material(s) onto the surface of droplets of the material.
  • Coacervation may be simple e.g. using one colloid such as gelatin, or complex where two or possibly more colloids of opposite charge, such as gelatin and gum arabic or gelatin and carboxymethyl cellulose, are used under carefully controlled conditions of pH, temperature and concentration.
  • Interfacial polymerisation typically proceeds with the formation of a fine dispersion of oil droplets (the oil droplets containing the core material) in an aqueous continuous phase.
  • the dispersed droplets form the core of the future microcapsule and the dimensions of the dispersed droplets directly determine the size of the subsequent microcapsules.
  • Microcapsule shell-forming materials are contained in both the dispersed phase (oil droplets) and the aqueous continuous phase and they react together at the phase interface to build a polymeric wall around the oil droplets thereby to encapsulate the droplets and form core-shell microcapsules.
  • An example of a core-shell microcapsule produced by this method is a polyurea microcapsule with a shell formed by reaction of diisocyanates or polyisocyanates with diamines or polyamines.
  • Polycondensation involves forming a dispersion or emulsion of the core material in an aqueous solution of precondensate of polymeric materials under appropriate conditions of agitation to produce capsules of a desired size, and adjusting the reaction conditions to cause condensation of the precondensate by acid catalysis, resulting in the condensate separating from solution and surrounding the dispersed core material to produce a coherent film and the desired microcapsules.
  • An example of a core-shell microcapsule produced by this method is an aminoplast microcapsule with a shell formed from the polycondensation product of melamine (2,4,6-triamino-1,3,5-triazine) or urea with formaldehyde.
  • Suitable cross-linking agents e.g. toluene diisocyanate, divinyl benzene, butanediol diacrylate
  • secondary wall polymers may also be used as appropriate, e.g. anhydrides and their derivatives, particularly polymers and copolymers of maleic anhydride.
  • the polymeric core-shell microcapsule for use in the invention is an aminoplast microcapsule with an aminoplast shell surrounding a core containing the fragrance formulation (f2). More preferably such an aminoplast shell is formed from the polycondensation product of melamine with formaldehyde.
  • Polymeric microparticles suitable for use in the invention will generally have an average particle size between 100 nanometers and 50 microns. Particles larger than this are entering the visible range.
  • particles in the sub-micron range include latexes and mini-emulsions with a typical size range of 100 to 600 nanometers.
  • the preferred particle size range is in the micron range.
  • particles in the micron range include polymeric core-shell microcapsules (such as those further described above) with a typical size range of 1 to 50 microns, preferably 5 to 30 microns.
  • the average particle size can be determined by light scattering using a Malvern Mastersizer with the average particle size being taken as the median particle size D (0.5) value.
  • the particle size distribution can be narrow, broad or multimodal. If necessary, the microcapsules as initially produced may be filtered or screened to produce a product of greater size uniformity.
  • Polymeric microparticles for use in the invention are provided with a deposition aid at the outer surface of the microparticle.
  • Deposition aids serve to modify the properties of the exterior of the microparticle, for example to make the microparticle more substantive to a desired substrate.
  • Desired substrates include cellulosics (including cotton) and polyesters (including those employed in the manufacture of polyester fabrics).
  • a deposition aid is attached to the outside of the shell by means of covalent bonding. While it is preferred that the deposition aid is attached directly to the outside of the shell, it may also be attached via a linking species.
  • Deposition aids for use in the invention may suitably be selected from polysaccharides having an affinity for cellulose.
  • polysaccharides may be naturally occurring or synthetic and may have an intrinsic affinity for cellulose or may have been derivatised or otherwise modified to have an affinity for cellulose.
  • Suitable polysaccharides have a 1-4 linked ⁇ glycan (generalised sugar) backbone structure with at least 4, and preferably at least 10 backbone residues which are ⁇ 1-4 linked, such as a glucan backbone (consisting of ⁇ 1-4 linked glucose residues), a mannan backbone (consisting of ⁇ 1-4 linked mannose residues) or a xylan backbone (consisting of ⁇ 1-4 linked xylose residues).
  • ⁇ 1-4 linked polysaccharides examples include xyloglucans, glucomannans, mannans, galactomannans, ⁇ (1-3),(1-4) glucan and the xylan family incorporating glucurono-, arabino- and glucuronoarabinoxylans.
  • Preferred ⁇ 1-4 linked polysaccharides for use in the invention may be selected from xyloglucans of plant origin, such as pea xyloglucan and tamarind seed xyloglucan (TXG) (which has a ⁇ 1-4 linked glucan backbone with side chains of ⁇ -D xylopyranose and ⁇ -D-galactopyranosyl-(1-2)- ⁇ -D-xylo-pyranose, both 1-6 linked to the backbone); and galactomannans of plant origin such as locust bean gum (LBG) (which has a mannan backbone of ⁇ 1-4 linked mannose residues, with single unit galactose side chains linked ⁇ 1-6 to the backbone).
  • TXG pea xyloglucan and tamarind seed xyloglucan
  • LBG locust bean gum
  • polysaccharides which may gain an affinity for cellulose upon hydrolysis, such as cellulose mono-acetate; or modified polysaccharides with an affinity for cellulose such as hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxypropyl guar, hydroxyethyl ethylcellulose and methylcellulose.
  • Deposition aids for use in the invention may also be selected from phthalate containing polymers having an affinity for polyester.
  • phthalate containing polymers may have one or more nonionic hydrophilic segments comprising oxyalkylene groups (such as oxyethylene, polyoxyethylene, oxypropylene or polyoxypropylene groups), and one or more hydrophobic segments comprising terephthalate groups.
  • the oxyalkylene groups will have a degree of polymerization of from 1 to about 400, preferably from 100 to about 350, more preferably from 200 to about 300.
  • a suitable example of a phthalate containing polymer of this type is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide terephthalate.
  • Deposition aids for use in the invention will generally have a weight average molecular weight (M w ) in the range of from about 5 kDa to about 500 kDa, preferably from about 10 kDa to about 500 kDa and more preferably from about 20 kDa to about 300 kDa.
  • M w weight average molecular weight
  • One example of a particularly preferred polymeric core-shell microcapsule for use in the invention is an aminoplast microcapsule with a shell formed by the polycondensation of melamine with formaldehyde; surrounding a core containing the fragrance formulation (f2); in which a deposition aid is attached to the outside of the shell by means of covalent bonding.
  • the preferred deposition aid is selected from ⁇ 1-4 linked polysaccharides, and in particular the xyloglucans of plant origin, as are further described above.
  • the present inventors have surprisingly observed that it is possible to reduce the total level of fragrance included in the composition of the invention without sacrificing the overall fragrance experience delivered to the consumer at key stages in the laundry process. A reduction in the total level of fragrance is advantageous for cost and environmental reasons.
  • the weight ratio of fragrance formulation (f1) to fragrance formulation (f2) in the composition of the invention preferably ranges from 60:40 to 45:55. Particularly good results have been obtained at a weight ratio of fragrance formulation (f1) to fragrance formulation (f2) of around 50:50.
  • fragrance (f1) and fragrance (f2) are typically incorporated at different stages of formation of the composition of the invention.
  • the discrete polymeric microparticles (e.g. microcapsules) entrapping fragrance formulation (f2) are added in the form of a slurry to a warmed base formulation comprising other components of the composition (such as surfactants and solvents).
  • Fragrance (f1) is typically post-dosed later after the base formulation has cooled.
  • laundry detergent in the context of this invention denotes formulated compositions intended for and capable of wetting and cleaning domestic laundry such as clothing, linens and other household textiles.
  • the term “linen” is often used to describe certain types of laundry items including bed sheets, pillow cases, towels, tablecloths, table napkins and uniforms.
  • Textiles can include woven fabrics, non-woven fabrics, and knitted fabrics; and can include natural or synthetic fibres such as silk fibres, linen fibres, cotton fibres, polyester fibres, polyamide fibres such as nylon, acrylic fibres, acetate fibres, and blends thereof including cotton and polyester blends.
  • liquid laundry detergents include heavy-duty liquid laundry detergents for use in the wash cycle of automatic washing machines, as well as liquid fine wash and liquid colour care detergents such as those suitable for washing delicate garments (e.g. those made of silk or wool) either by hand or in the wash cycle of automatic washing machines.
  • liquid laundry detergents include heavy-duty liquid laundry detergents for use in the wash cycle of automatic washing machines, as well as liquid fine wash and liquid colour care detergents such as those suitable for washing delicate garments (e.g. those made of silk or wool) either by hand or in the wash cycle of automatic washing machines.
  • liquid in the context of this invention denotes that a continuous phase or predominant part of the composition is liquid and that the composition is flowable at 15°C and above. Accordingly, the term “liquid” may encompass emulsions, suspensions, and compositions having flowable yet stiffer consistency, known as gels or pastes.
  • the viscosity of the composition may suitably range from about 200 to about 10,000 mPa.s at 25°C at a shear rate of 21 sec -1 . This shear rate is the shear rate that is usually exerted on the liquid when poured from a bottle.
  • Pourable liquid detergent compositions generally have a viscosity of from 200 to 1,500 mPa.s, preferably from 200 to 500 mPa.s.
  • Liquid detergent compositions which are pourable gels generally have a viscosity of from 1,500 mPa.s to 6,000 mPa.s, preferably from 1,500 mPa.s to 2,000 mPa.s.
  • compositions according to the invention may suitably have an aqueous continuous phase.
  • aqueous continuous phase is meant a continuous phase which has water as its basis.
  • Compositions with an aqueous continuous phase will generally comprise from 15 to 95%, preferably from 20 to 90%, more preferably from 25 to 85% water (by weight based on the total weight of the composition).
  • a composition according to the invention may also have a low water content, for example when the composition is intended for packaging in polymeric film soluble in the wash water.
  • Low water content compositions will generally comprise no more than 20%, and preferably no more than 10%, such as from 5 to 10% water (by weight based on the total weight of the composition).
  • a composition of the invention with an aqueous continuous phase preferably has a pH in the range of 5 to 9, more preferably 6 to 8, when measured on dilution of the composition to 1% using demineralised water.
  • composition of the invention comprises from 3 to 60%, preferably from 5 to 40%, and more preferably from 6 to 30% by weight based on the total weight of the composition of one or more detersive surfactants selected from non-soap anionic surfactants, nonionic surfactants and mixtures thereof.
  • detersive surfactant in the context of this invention denotes a surfactant which provides a detersive (i.e. cleaning) effect to laundry treated as part of a domestic laundering process.
  • Non-soap anionic surfactants for use in the invention are typically salts of organic sulfates and sulfonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term "alkyl” being used to include the alkyl portion of higher acyl radicals. Examples of such materials include alkyl sulfates, alkyl ether sulfates, alkaryl sulfonates, alphaolefin sulfonates and mixtures thereof.
  • the alkyl radicals preferably contain from 10 to 18 carbon atoms and may be unsaturated.
  • the alkyl ether sulfates may contain from one to ten ethylene oxide or propylene oxide units per molecule, and preferably contain one to three ethylene oxide units per molecule.
  • the counterion for anionic surfactants is generally an alkali metal such as sodium or potassium; or an ammoniacal counterion such as monoethanolamine, (MEA) diethanolamine (DEA) or triethanolamine (TEA). Mixtures of such counterions may also be employed.
  • a preferred class of non-soap anionic surfactant for use in the invention includes alkylbenzene sulfonates, particularly linear alkylbenzene sulfonates (LAS) with an alkyl chain length of from 10 to 18 carbon atoms.
  • LAS linear alkylbenzene sulfonates
  • Commercial LAS is a mixture of closely related isomers and homologues alkyl chain homologues, each containing an aromatic ring sulfonated at the " para " position and attached to a linear alkyl chain at any position except the terminal carbons.
  • the linear alkyl chain typically has a chain length of from 11 to 15 carbon atoms, with the predominant materials having a chain length of about C12.
  • Each alkyl chain homologue consists of a mixture of all the possible sulfophenyl isomers except for the 1-phenyl isomer.
  • LAS is normally formulated into compositions in acid (i.e. HLAS) form and then at least partially neutralized in-situ.
  • alkyl ether sulfates having a straight or branched chain alkyl group having 10 to 18, more preferably 12 to 14 carbon atoms and containing an average of 1 to 3EO units per molecule.
  • a preferred example is sodium lauryl ether sulfate (SLES) in which the predominantly C12 lauryl alkyl group has been ethoxylated with an average of 3EO units per molecule.
  • alkyl sulfate surfactant may be used, such as non-ethoxylated primary and secondary alkyl sulphates with an alkyl chain length of from 10 to 18.
  • a preferred mixture of non-soap anionic surfactants for use in the invention comprises linear alkylbenzene sulfonate (preferably C 11 to C 15 linear alkyl benzene sulfonate) and sodium lauryl ether sulfate. (preferably C 10 to C 18 alkyl sulfate ethoxylated with an average of 1 to 3 EO)
  • the total level of non-soap anionic surfactant may suitably range from 5 to 15% (by weight based on the total weight of the composition).
  • Nonionic surfactants for use in the invention are typically polyoxyalkylene compounds, i.e. the reaction product of alkylene oxides (such as ethylene oxide or propylene oxide or mixtures thereof) with starter molecules having a hydrophobic group and a reactive hydrogen atom which is reactive with the alkylene oxide.
  • Such starter molecules include alcohols, acids, amides or alkyl phenols. Where the starter molecule is an alcohol, the reaction product is known as an alcohol alkoxylate.
  • the polyoxyalkylene compounds can have a variety of block and heteric (random) structures. For example, they can comprise a single block of alkylene oxide, or they can be diblock alkoxylates or triblock alkoxylates.
  • the blocks can be all ethylene oxide or all propylene oxide, or the blocks can contain a heteric mixture of alkylene oxides.
  • examples of such materials include C 8 to C 22 alkyl phenol ethoxylates with an average of from 5 to 25 moles of ethylene oxide per mole of alkyl phenol; and aliphatic alcohol ethoxylates such as C 8 to C 18 primary or secondary linear or branched alcohol ethoxylates with an average of from 2 to 40 moles of ethylene oxide per mole of alcohol.
  • a preferred class of nonionic surfactant for use in the invention includes aliphatic C 8 to C 18 , more preferably C 12 to C 15 primary linear alcohol ethoxylates with an average of from 3 to 20, more preferably from 5 to 10 moles of ethylene oxide per mole of alcohol.
  • the total level of nonionic surfactant will suitably range from 1 to 10% (by weight based on the total weight of the composition).
  • a mixture of non-soap anionic and nonionic surfactants for use in the invention comprises linear alkylbenzene sulfonate (preferably C 11 to C 15 linear alkyl benzene sulfonate), sodium lauryl ether sulfate (preferably C 10 to C 18 alkyl sulfate ethoxylated with an average of 1 to 3 EO) and ethoxylated aliphatic alcohol (preferably C 12 to C 15 primary linear alcohol ethoxylate with an average of from 5 to 10 moles of ethylene oxide per mole of alcohol).
  • linear alkylbenzene sulfonate preferably C 11 to C 15 linear alkyl benzene sulfonate
  • sodium lauryl ether sulfate preferably C 10 to C 18 alkyl sulfate ethoxylated with an average of 1 to 3 EO
  • ethoxylated aliphatic alcohol preferably C 12 to C 15 primary linear alcohol ethoxy
  • the weight ratio of total non-soap anionic surfactant to total nonionic surfactant in a composition of the invention suitably ranges from about 3:1 to about 1:1.
  • composition of the invention may contain further optional ingredients to enhance performance and/or consumer acceptability, as follows:
  • a composition of the invention may incorporate non-aqueous carriers such as hydrotropes, co-solvents and phase stabilizers.
  • non-aqueous carriers such as hydrotropes, co-solvents and phase stabilizers.
  • Such materials are typically low molecular weight, water-soluble or water-miscible organic liquids such as C1 to C5 monohydric alcohols (such as ethanol and n- or i-propanol); C2 to C6 diols (such as monopropylene glycol and dipropylene glycol); C3 to C9 triols (such as glycerol); polyethylene glycols having a weight average molecular weight (M w ) ranging from about 200 to 600; C1 to C3 alkanolamines such as mono-, di- and triethanolamines; and alkyl aryl sulfonates having up to 3 carbon atoms in the lower alkyl group (such as the sodium and potassium xylene, toluene,
  • Non-aqueous carriers when included, may be present in an amount ranging from 0.1 to 20%, preferably from 1 to 15%, and more preferably from 3 to 12% (by weight based on the total weight of the composition).
  • a composition of the invention may contain one or more cosurfactants (such as amphoteric (zwitterionic) and/or cationic surfactants) in addition to the non-soap anionic and/or nonionic detersive surfactants described above.
  • cosurfactants such as amphoteric (zwitterionic) and/or cationic surfactants
  • Specific cationic surfactants include C8 to C18 alkyl dimethyl ammonium halides and derivatives thereof in which one or two hydroxyethyl groups replace one or two of the methyl groups, and mixtures thereof.
  • Cationic surfactant when included, may be present in an amount ranging from 0.1 to 5% (by weight based on the total weight of the composition).
  • amphoteric (zwitterionic) surfactants include alkyl amine oxides, alkyl betaines, alkyl amidopropyl betaines, alkyl sulfobetaines (sultaines), alkyl glycinates, alkyl carboxyglycinates, alkyl amphoacetates, alkyl amphopropionates, alkylamphoglycinates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates, having alkyl radicals containing from about 8 to about 22 carbon atoms, the term "alkyl” being used to include the alkyl portion of higher acyl radicals.
  • Amphoteric (zwitterionic) surfactant when included, may be present in an amount ranging from 0.1 to 5% (by weight based on the total weight of the composition).
  • a composition of the invention may contain one or more builders.
  • Builders enhance or maintain the cleaning efficiency of the surfactant, primarily by reducing water hardness. This is done either by sequestration or chelation (holding hardness minerals in solution), by precipitation (forming an insoluble substance), or by ion exchange (trading electrically charged particles).
  • Builders for use in the invention can be of the organic or inorganic type, or a mixture thereof.
  • Suitable inorganic builders include hydroxides, carbonates, sesquicarbonates, bicarbonates, silicates, zeolites, and mixtures thereof. Specific examples of such materials include sodium and potassium hydroxide, sodium and potassium carbonate, sodium and potassium bicarbonate, sodium sesquicarbonate, sodium silicate and mixtures thereof.
  • Suitable organic builders include polycarboxylates, in acid and/or salt form.
  • alkali metal e.g. sodium and potassium
  • alkanolammonium salts are preferred.
  • Specific examples of such materials include sodium and potassium citrates, sodium and potassium tartrates, the sodium and potassium salts of tartaric acid monosuccinate, the sodium and potassium salts of tartaric acid disuccinate, sodium and potassium ethylenediaminetetraacetates, sodium and potassium N(2-hydroxyethyl)-ethylenediamine triacetates, sodium and potassium nitrilotriacetates and sodium and potassium N-(2-hydroxyethyl)-nitrilodiacetates.
  • Polymeric polycarboxylates may also be used, such as polymers of unsaturated monocarboxylic acids (e.g. acrylic, methacrylic, vinylacetic, and crotonic acids) and/or unsaturated dicarboxylic acids (e.g. maleic, fumaric, itaconic, mesaconic and citraconic acids and their anhydrides).
  • unsaturated monocarboxylic acids e.g. acrylic, methacrylic, vinylacetic, and crotonic acids
  • unsaturated dicarboxylic acids e.g. maleic, fumaric, itaconic, mesaconic and citraconic acids and their anhydrides
  • Specific examples of such materials include polyacrylic acid, polymaleic acid, and copolymers of acrylic and maleic acid.
  • the polymers may be in acid, salt or partially neutralised form and may suitably have a molecular weight (Mw) ranging from about 1,000 to 100,000, preferably from about 2,000 to about 85,000, and more
  • Preferred builders for use in the invention may be selected from polycarboxylates (e.g. citrates) in acid and/or salt form and mixtures thereof.
  • Builder when included, may be present in an amount ranging from about 0.1 to about 20%, preferably from about 0.5 to about 15%, more preferably from about 1 to about 10% (by weight based on the total weight of the composition).
  • Transition metal ion chelating agents
  • a composition of the invention may contain one or more chelating agents for transition metal ions such as iron, copper and manganese. Such chelating agents may help to improve the stability of the composition and protect for example against transition metal catalyzed decomposition of certain ingredients.
  • Suitable transition metal ion chelating agents include phosphonates, in acid and/or salt form.
  • alkali metal e.g. sodium and potassium
  • alkanolammonium salts are preferred.
  • Specific examples of such materials include aminotris(methylene phosphonic acid) (ATMP), 1-hydroxyethylidene diphosphonic acid (HEDP) and diethylenetriamine penta(methylene phosphonic acid (DTPMP) and their respective sodium or potassium salts [PA1] HEDP is preferred. Mixtures of any of the above described materials may also be used.
  • Transition metal ion chelating agents when included, may be present in an amount ranging from about 0.1 to about 10%, preferably from about 0.1 to about 3% (by weight based on the total weight of the composition).
  • a composition of the invention will preferably contain one or more fatty acids and/ or salts thereof.
  • Suitable fatty acids in the context of this invention include aliphatic carboxylic acids of formula RCOOH, where R is a linear or branched alkyl or alkenyl chain containing from 6 to 24, more preferably 10 to 22, most preferably from 12 to 18 carbon atoms and 0 or 1 double bond.
  • R is a linear or branched alkyl or alkenyl chain containing from 6 to 24, more preferably 10 to 22, most preferably from 12 to 18 carbon atoms and 0 or 1 double bond.
  • saturated C12-18 fatty acids such as lauric acid, myristic acid, palmitic acid or stearic acid
  • fatty acid mixtures in which 50 to 100% (by weight based on the total weight of the mixture) consists of saturated C12-18 fatty acids.
  • Such mixtures may typically be derived from natural fats and/or optionally hydrogenated natural oils (such as coconut oil, palm kernel oil or tallow).
  • the fatty acids may be present in the form of their sodium, potassium or ammonium salts and/or in the form of soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • Fatty acids and/or their salts when included, may be present in an amount ranging from about 0.25 to 5%, more preferably from 0.5 to 5%, most preferably from 0.75 to 4% (by weight based on the total weight of the composition).
  • fatty acids and/or their salts are not included in the level of surfactant or in the level of builder.
  • a composition of the invention will preferably contain one or more additional polymeric cleaning boosters such as antiredeposition polymers.
  • Anti-redeposition polymers stabilise the soil in the wash solution thus preventing redeposition of the soil.
  • Suitable soil release polymers for use in the invention include alkoxylated polyethyleneimines.
  • Polyethyleneimines are materials composed of ethylene imine units -CH 2 CH 2 NH- and, where branched, the hydrogen on the nitrogen is replaced by another chain of ethylene imine units.
  • Preferred alkoxylated polyethyleneimines for use in the invention have a polyethyleneimine backbone of about 300 to about 10000 weight average molecular weight (M w ).
  • the polyethyleneimine backbone may be linear or branched. It may be branched to the extent that it is a dendrimer.
  • the alkoxylation may typically be ethoxylation or propoxylation, or a mixture of both.
  • a nitrogen atom is alkoxylated
  • a preferred average degree of alkoxylation is from 10 to 30, preferably from 15 to 25 alkoxy groups per modification.
  • a preferred material is ethoxylated polyethyleneimine, with an average degree of ethoxylation being from 10 to 30, preferably from 15 to 25 ethoxy groups per ethoxylated nitrogen atom in the polyethyleneimine backbone.
  • a composition of the invention will preferably comprise from 0.25 to 8%, more preferably from 0.5 to 6% (by weight based on the total weight of the composition) of one or more anti-redeposition polymers such as, for example, the alkoxylated polyethyleneimines which are described above.
  • a composition of the invention may comprise one or more polymeric thickeners.
  • Suitable polymeric thickeners for use in the invention include hydrophobically modified alkali swellable emulsion (HASE) copolymers.
  • HASE copolymers for use in the invention include linear or crosslinked copolymers that are prepared by the addition polymerization of a monomer mixture including at least one acidic vinyl monomer, such as (meth)acrylic acid (i.e. methacrylic acid and/or acrylic acid); and at least one associative monomer.
  • associative monomer in the context of this invention denotes a monomer having an ethylenically unsaturated section (for addition polymerization with the other monomers in the mixture) and a hydrophobic section.
  • a preferred type of associative monomer includes a polyoxyalkylene section between the ethylenically unsaturated section and the hydrophobic section.
  • Preferred HASE copolymers for use in the invention include linear or crosslinked copolymers that are prepared by the addition polymerization of (meth)acrylic acid with (i) at least one associative monomer selected from linear or branched C 8 -C 40 alkyl (preferably linear C 12 -C 22 alkyl) polyethoxylated (meth)acrylates; and (ii) at least one further monomer selected from C 1 -C 4 alkyl (meth) acrylates, polyacidic vinyl monomers (such as maleic acid, maleic anhydride and/or salts thereof) and mixtures thereof.
  • the polyethoxylated portion of the associative monomer (i) generally comprises about 5 to about 100, preferably about 10 to about 80, and more preferably about 15 to about 60 oxyethylene repeating units.
  • a composition of the invention will preferably comprise from 0.1 to 5% (by weight based on the total weight of the composition) of one or more polymeric thickeners such as, for example, the HASE copolymers which are described above.
  • compositions of the invention may have their rheology further modified by use of one or more external structurants which form a structuring network within the composition.
  • external structurants include hydrogenated castor oil, microfibrous cellulose and citrus pulp fibre.
  • the presence of an external structurant may provide shear thinning rheology and may also enable materials such as encapsulates and visual cues to be suspended stably in the liquid.
  • a composition of the invention may comprise an effective amount of one or more enzyme selected from the group comprising, pectate lyase, protease, amylase, cellulase, lipase, mannanase and mixtures thereof.
  • the enzymes are preferably present with corresponding enzyme stabilizers.
  • a composition of the invention may contain further optional ingredients to enhance performance and/or consumer acceptability.
  • additional optional ingredients include foam boosting agents, preservatives (e.g. bactericides), polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents, ironing aids, colorants, pearlisers and/or opacifiers, and shading dye.
  • foam boosting agents e.g. bactericides
  • preservatives e.g. bactericides
  • polyelectrolytes e.g. bactericides
  • anti-shrinking agents e.g. bactericides
  • anti-wrinkle agents e.g. bactericides
  • anti-oxidants e.g. s, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents, ironing aids, colorants, pearlisers and/or opacifiers, and shading dye.
  • a composition of the invention may be packaged as unit doses in polymeric film soluble in the wash water.
  • a composition of the invention may be supplied in multidose plastics packs with a top or bottom closure.
  • a dosing measure may be supplied with the pack either as a part of the cap or as an integrated system.
  • a method of laundering fabric using a composition of the invention will usually involve diluting the dose of detergent composition with water to obtain a wash liquor, and washing fabrics with the wash liquor so formed.
  • the dilution step preferably provides a wash liquor which comprises inter alia from about 3 to about 20 g/wash of detersive surfactants (as are further defined above).
  • the dose of detergent composition is typically put into a dispenser and from there it is flushed into the machine by the water flowing into the machine, thereby forming the wash liquor. From 5 up to about 65 litres of water may be used to form the wash liquor depending on the machine configuration.
  • the dose of detergent composition may be adjusted accordingly to give appropriate wash liquor concentrations.
  • dosages for a typical front-loading washing machine (using 10 to 15 litres of water to form the wash liquor) may range from about 10 ml to about 60 ml, preferably about 15 to 40 ml.
  • Dosages for a typical top-loading washing machine (using from 40 to 60 litres of water to form the wash liquor) may be higher, e.g. up to about 100 ml.
  • a subsequent aqueous rinse step and drying the laundry is preferred.
  • Detergent compositions having various ratios of encapsulated fragrance to free fragrance were prepared having ingredients as shown in Table 1 . All weight percentages are by weight based on total weight of the formulation, unless otherwise specified. Table 1 Ingredient wt% (active ingredient) A 1 B C D E F 2 3 Water, minors q.s.
  • fragrance intensity was assessed for each test formulation per se (i.e. prior to use). Each test formulation was then used to machine wash 2kg loads of test fabric (50:50 cotton / polyester split) using a 30°C cotton short wash programme. Fragrance intensity of the washed test fabric was assessed at the damp stage (1 hour after removal from the washing machine) and at the dry stage (24 hours after removal from the washing machine).
  • Example A containing only free fragrance, has little effect on the fragrance intensity of the dry test fabric.
  • Example 1 formulation (according to the invention) provides a comparable fragrance intensity to Example A for the formulation per se and on the damp test fabric, and a significantly better result on the dry test fabric, despite containing a lower level of total fragrance than Example A.
  • Example F contains essentially the same amount of total fragrance as Example 2 (according to the invention), but the Example 2 formulation performs significantly better in the tests on the formulation per se and the damp test fabric.
  • Example D contains a similar amount of total fragrance as Example 3 (according to the invention). The two formulations gave similar results in the test on the formulation per se but the Example 3 formulation performs significantly better in the tests on both the damp and the dry test fabric.

Claims (7)

  1. Composition de détergent de lessive liquide comprenant :
    a) de 3 à 60 % en masse sur la base de la masse totale de la composition d'un ou plusieurs tensioactifs détersifs choisis parmi des tensioactifs anioniques, tensioactifs non ioniques non savonneux et mélanges de ceux-ci ;
    b) de 0,01 à 1 % en masse sur la base de la masse totale de la composition d'une formulation de parfum (f1) qui est dans la forme de gouttelettes libres dispersées dans la composition ;
    c) de 0,01 à 1 % en masse sur la base de la masse totale de la composition d'une formulation de parfum (f2) qui est piégée à l'intérieur de microparticules polymères discrètes dispersées dans la composition, dans laquelle les microparticules polymères sont des microparticules noyau-enveloppe polymères dans lesquelles au moins une enveloppe continue généralement sphérique de matériau polymère entoure un noyau contenant la formulation de parfum (f2) ;
    dans laquelle la quantité totale de formulation de parfum (f1) et formulation de parfum (f2) est de 0,6 à 0,9 % en masse sur la base de la masse totale de la composition ;
    et dans laquelle le rapport massique de formulation de parfum (f1) à formulation de parfum (f2) dans la composition est de 40:60 à 60:40 ; et dans laquelle la microcapsule noyau-enveloppe polymère est une microcapsule d'aminoplaste avec une enveloppe d'aminoplaste entourant un noyau contenant la formulation de parfum (f2) ; dans laquelle un agent d'aide au dépôt est fixé à l'extérieur de l'enveloppe au moyen d'une liaison covalente.
  2. Composition selon la revendication 1, dans laquelle la formulation de parfum (f1) et la formulation de parfum (f2) comprennent chacune une combinaison d'au moins 10 constituants de parfum choisis parmi des hydrocarbures ; alcools aliphatiques et araliphatiques ; aldéhydes aliphatiques et leurs acétals ; acides carboxyliques aliphatiques et leurs esters ; alcools de terpènes acycliques ; aldéhydes et cétones de terpènes cycliques ; éthers cycliques et cycloaliphatiques ; esters d'alcools cycliques ; esters d'alcools araliphatiques et acides carboxyliques aliphatiques ; éthers araliphatiques et leurs acétals ; aldéhydes et cétones aromatiques et araliphatiques ; et acides carboxyliques aromatiques et araliphatiques et leurs esters.
  3. Composition selon la revendication 1 ou revendication 2, dans laquelle la teneur en formulation de parfum (f1) est de 0,1 à 0,75 % en masse sur la base de la masse totale de la composition.
  4. Composition selon l'une quelconque des revendications 1 à 3, dans laquelle la teneur en formulation de parfum (f2) est de 0,05 à 0,7 % en masse sur la base de la masse totale de la composition.
  5. Composition selon l'une quelconque des revendications 1 à 4, dans laquelle le rapport massique de formulation de parfum (f1) la formulation de parfum (f2) est de 60:40 à 45:55.
  6. Composition selon l'une quelconque des revendications 1 à 5, dans laquelle la quantité de tensioactif détersif est de 6 à 30 % en masse sur la base de la masse totale de la composition.
  7. Procédé de lavage de textile utilisant une composition selon l'une quelconque des revendications 1 à 6, le procédé comprenant la dilution d'une dose de la composition pour obtenir une liqueur de lavage, et le lavage de textiles avec la liqueur de lavage ainsi formée.
EP19700209.0A 2018-01-17 2019-01-07 Détergent à lessive Active EP3740555B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18152121 2018-01-17
PCT/EP2019/050244 WO2019141530A1 (fr) 2018-01-17 2019-01-07 Détergent textile

Publications (2)

Publication Number Publication Date
EP3740555A1 EP3740555A1 (fr) 2020-11-25
EP3740555B1 true EP3740555B1 (fr) 2021-10-13

Family

ID=61002909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19700209.0A Active EP3740555B1 (fr) 2018-01-17 2019-01-07 Détergent à lessive

Country Status (5)

Country Link
EP (1) EP3740555B1 (fr)
CN (1) CN111770982B (fr)
BR (1) BR112020014211A2 (fr)
ES (1) ES2902550T3 (fr)
WO (1) WO2019141530A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116723766A (zh) * 2021-01-13 2023-09-08 联合利华知识产权控股有限公司 有益剂递送颗粒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664223B2 (en) 1999-09-02 2003-12-16 Colgate-Palmolive Co. Fabric care composition containing polycarboxylate polymer and compound derived from urea
US20050227907A1 (en) 2004-04-13 2005-10-13 Kaiping Lee Stable fragrance microcapsule suspension and process for using same
WO2010079467A2 (fr) 2010-04-28 2010-07-15 The Procter & Gamble Company Particules de distribution
WO2013087364A1 (fr) 2011-12-16 2013-06-20 Unilever Plc Améliorations relatives à des compositions de traitement de tissus
WO2017004339A1 (fr) 2015-06-30 2017-01-05 The Procter & Gamble Company Composition comprenant de multiples populations de microcapsules contenant du parfum

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016432A2 (fr) * 1993-12-07 1995-06-22 The Procter & Gamble Company Composition cosmetique de nettoyage avec systeme de parfum diffusant deux aromes
DE102008059448A1 (de) * 2008-11-27 2010-06-02 Henkel Ag & Co. Kgaa Parfümiertes Wasch- oder Reinigungsmittel
ES2662421T3 (es) * 2013-01-22 2018-04-06 The Procter & Gamble Company Composiciones tratantes que comprenden microcápsulas, aminas primarias o secundarias y eliminadores de formaldehído
EP3061500B1 (fr) * 2015-02-25 2019-07-10 Symrise AG Dispersions stables

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664223B2 (en) 1999-09-02 2003-12-16 Colgate-Palmolive Co. Fabric care composition containing polycarboxylate polymer and compound derived from urea
US20050227907A1 (en) 2004-04-13 2005-10-13 Kaiping Lee Stable fragrance microcapsule suspension and process for using same
WO2010079467A2 (fr) 2010-04-28 2010-07-15 The Procter & Gamble Company Particules de distribution
WO2013087364A1 (fr) 2011-12-16 2013-06-20 Unilever Plc Améliorations relatives à des compositions de traitement de tissus
WO2017004339A1 (fr) 2015-06-30 2017-01-05 The Procter & Gamble Company Composition comprenant de multiples populations de microcapsules contenant du parfum

Also Published As

Publication number Publication date
EP3740555A1 (fr) 2020-11-25
CN111770982B (zh) 2022-05-27
CN111770982A (zh) 2020-10-13
ES2902550T3 (es) 2022-03-28
WO2019141530A1 (fr) 2019-07-25
BR112020014211A2 (pt) 2020-12-01

Similar Documents

Publication Publication Date Title
EP3853332A1 (fr) Composition
WO2021099095A1 (fr) Composition
US20220213410A1 (en) Compound and detergent composition
EP3740555B1 (fr) Détergent à lessive
EP3824061B1 (fr) Particules de distribution d'agent bénéfique
EP3824062B1 (fr) Particules d'administration d'agent bénéfique
GB2579876A (en) Composition
WO2020216707A1 (fr) Systèmes tensioactifs
EP3850074B1 (fr) Particules d'administration d'agent bénéfique
EP3740554B1 (fr) Détergent à lessive
EP3790952B1 (fr) Composition
AU2021306453B2 (en) Irritation mitigating surfactants
EP3947620A1 (fr) Composition
WO2020057844A1 (fr) Composition

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20201217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019008348

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1438187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211013

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1438187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211013

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2902550

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602019008348

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

26 Opposition filed

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20220712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220107

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230106

Year of fee payment: 5

Ref country code: GB

Payment date: 20230119

Year of fee payment: 5

Ref country code: DE

Payment date: 20220620

Year of fee payment: 5

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230405

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240228

Year of fee payment: 6