EP3724160A1 - Process for the hydroxylation of an aromatic compound - Google Patents

Process for the hydroxylation of an aromatic compound

Info

Publication number
EP3724160A1
EP3724160A1 EP18819106.8A EP18819106A EP3724160A1 EP 3724160 A1 EP3724160 A1 EP 3724160A1 EP 18819106 A EP18819106 A EP 18819106A EP 3724160 A1 EP3724160 A1 EP 3724160A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
aromatic compound
reaction
alkoxy group
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18819106.8A
Other languages
German (de)
French (fr)
Inventor
Laurent Garel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Specialty Operations France SAS
Original Assignee
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations SAS filed Critical Rhodia Operations SAS
Publication of EP3724160A1 publication Critical patent/EP3724160A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups

Definitions

  • the present invention relates to a process for the hydroxylation of an aromatic compound comprising at least one alkoxy group by reaction of said aromatic compound with hydrogen peroxide in the presence of a catalyst.
  • Hydroxylated aromatic compounds are important in the field of organic synthesis. Different synthetic routes of these products have been developed over time, in particular by hydroxylation of phenol in the presence of a catalyst. For example, the hydroxylation reaction of phenol leads to the production of two isomers, namely 1,4-dihydroxybenzene or hydroquinone (HQ) and 1,2-dihydroxybenzene or catechol (PC), which are compounds having a strong industrial potential.
  • HQ hydroquinone
  • PC 1,2-dihydroxybenzene or catechol
  • aromatic hydroxy compounds are used in many fields of application such as polymerization inhibitors, pharmaceutical agents, agrochemical agents, perfumery or the food industry.
  • aromatic dihydroxy compounds are produced by hydroxylation of phenol with hydrogen peroxide in the presence of an acid catalyst which is a strong protic acid (see FR 2 071 464) or in the presence of a solid catalyst having acidic properties as, for example, a solid catalyst having acidic properties such as, for example, a zeolite TS-1 (FR 2,489,816), or a zeolite titanosilicalite MEL (EP 1 131 264), a zeolite titanosilicalite MFI (EP 1 123 159) or an MCM-22 zeolite.
  • an acid catalyst which is a strong protic acid
  • a solid catalyst having acidic properties such as, for example, a zeolite TS-1 (FR 2,489,816), or a zeolite titanosilicalite MEL (EP 1 131 264), a zeolite titanosilicalite MFI (EP 1 123 159) or an MCM-22 zeolite.
  • the settings Optimized may include reaction yields, the ratio of hydroxy aromatic isomers, or the energy efficiency of the reaction.
  • the present invention solves the problem of providing a process for producing a hydroxy aromatic compound comprising at least one alkoxy group, preferably for producing a monohydroxy aromatic compound, the process being highly selective for an isomer relative to at the other isomer, while limiting the amount of by-products formed and maintaining a high yield and high productivity.
  • the reaction of the present invention may also be adjusted to select the major isomer. Indeed, depending on the end use of the hydroxylated aromatic compound, only one isomer may be required.
  • guaifenesin vanillin or ethyl vanillin
  • guaiacol or guethol would be required, which are the respective orthohydroxylated products of anisole and phenetol, while for polymerization inhibitor functions.
  • para-methoxyphenol would be used, which is a product of para-hydroxylation of anisole.
  • the present invention relates to a process for the hydroxylation of an aromatic compound, comprising at least one alkoxy group, comprising a step (a) of reaction of said aromatic compound comprising at least one alkoxy group with hydrogen peroxide in the presence of a catalyst, in a solvent comprising water, an alcohol, or a mixture of alcohols.
  • Another object of the present invention is a hydroxy aromatic compound comprising at least one alkoxy group obtainable by the process of the present invention.
  • alkyl denotes a linear or branched hydrocarbon chain, saturated or unsaturated, comprising from 1 to 6 carbon atoms.
  • alkoxy represents an alkyl group bonded to an oxygen atom: RO.
  • a first aspect of the present invention relates to a process for the hydroxylation of an aromatic compound, comprising at least one alkoxy group, comprising the step (a) of reacting said aromatic compound comprising at least one alkoxy group with hydrogen peroxide. in the presence of a catalyst, in a solvent comprising water, an alcohol or a mixture of alcohols.
  • Step (a) is a hydroxylation reaction of an aromatic compound, comprising at least one alkoxy group.
  • Step (a) typically leads to the formation of hydroxylated aromatic compounds in the form of isomers.
  • the method according to the present invention makes it possible to predict the ratio between the isomers.
  • the aromatic compound comprising at least one alkoxy group according to the present invention is a compound of formula (I) in which R is a linear or branched, saturated or unsaturated alkyl group comprising from 1 to 6 carbon atoms, preferably R is chosen from the group consisting of methyl, ethyl, isopropyl, butyl, tert-butyl, preferably the R group is selected from the group consisting of methyl or ethyl.
  • the compound of formula (I) is substituted with 1 or 2 alkoxy groups, in a preferred aspect, the compound of formula (I) is substituted with 1 alkoxy group. Therefore, in a preferred aspect of the present invention, the compound of formula (I) is selected from the group consisting of anisole or phenetol.
  • the compound of formula (I) may be substituted by other groups, for example the substituted aromatic compound comprising at least one alkoxy group may further comprise an alkyl group optionally substituted with heteroatoms.
  • the compound of formula (I) may be substituted one, two, three or four times with a group selected from methyl, ethyl, propyl, butyl.
  • the hydroxylation reaction allows, in the case of anisole, to produce a mixture of guaiacol (GA) and para-methoxyphenol (PMP), and in the case of phenetol, to produce a mixture of guetol (GE) and para-ethoxyphenol (PEP). More generally, the hydroxylation reaction allows the production of a mixture of ortho-alkoxyphenol and para-alkoxyphenol.
  • the method according to the present invention makes it possible to select the desired ortho / para ratio.
  • the ortho / para ratio is less than 1, more preferably less than or equal to 0.7, still more preferably less than or equal to 0.4, and most preferably less than or equal to 0.2.
  • the molar ratio GA / PMP is less than 1, more preferably less than or equal to 0.7, still more preferably less than or equal to 0.4, and most preferably less than or equal to 0. 2.
  • the GE / PEP molar ratio is less than 1, more preferably less than or equal to 0.7, still more preferably less than or equal to 0.4, and most preferably less than or equal to 0.2.
  • the present invention may be conducted by any of a batch process, a semi-batch process and a continuous flow process.
  • Different types of reactor can be used to conduct the process according to the invention.
  • the process according to the invention is carried out in a stirred reactor or a cascade of stirred reactors or, alternatively, in a plug flow reactor, for example a tubular reactor placed horizontally, vertically or inclined.
  • the catalyst of the present invention is a heterogeneous catalyst, preferably a zeolite comprising titanium and, more preferably, a titanosilicate zeolite, preferably selected from the group consisting of MFI, MEL, TS-1, TS-2, Ti-MWW, T-MCM68, and still more preferably TS-1.
  • the zeolite has a molar ratio Ti / (Ti + Si) of 0.0001 to 0.10 and preferably of 0.0001 to 0.05, for example from 0.005 to 0.04.
  • Titanosilicalite can be prepared by any publicly known method.
  • the titanosilicate catalyst can be used as it is, it can be used after being molded.
  • extrusion molding, tabletting, tumbling granulation, spray granulation or the like is generally used.
  • extrusion molding or tabletting is preferable.
  • spray granulation is preferable and, as described in, for example, US 4,701,428, a process comprising mixing a titanosilicate slurry prepared in advance with a binder, for example, silica or alumina and conducting spray granulation using a spray dryer is a general method.
  • a binder for example, silica or alumina
  • the amount of titanosilicate catalyst used is preferably in the range of 0.1 to 30% by weight, more preferably 0.5 to 20% by weight, and most preferably all 1 to 20% by weight in terms of external ratio based on the total mass of the reaction medium.
  • the amount of the catalyst is not less than 0.1% by weight, preferably not less than 0.5% by weight, more preferably not less than 1% by mass, the reaction is complete in a short time and the productivity is increased, so that such quantity is preferable.
  • the amount thereof is not more than 30% by weight, preferably not more than 20% by weight, the amount of the catalyst to be separated and recovered is small, so that such amount is preferable.
  • the oxidizing agent is used in a molar ratio with respect to the aromatic compound comprising at least one alkoxy group, from 0.005 to 0.60, preferably from 0.05 to 0.50 and even more preferably from 0, 15 to 0.35.
  • concentration of hydrogen peroxide used is not specifically restricted, a usual aqueous solution having a concentration of 30% can be used, or an aqueous solution of hydrogen peroxide of a higher concentration can be used as is or can be used after being diluted with a solvent that is inert in the reaction system.
  • the solvent used for the dilution examples include an alcohol, preferably selected from the group consisting of methanol, ethanol, isopropanol, n-butanol or tert-butanol and water.
  • the hydrogen peroxide can be added at one time or can be added little by little over a long period.
  • the process of the present invention is conducted in a solvent comprising water, an alcohol or a mixture of alcohols.
  • the alcohol is chosen among alcohols having 1 to 6 carbon atoms, preferably alcohols comprising a tertiary or quaternary carbon atom.
  • examples of alcohols comprising a tertiary or quaternary carbon atom include tert-butanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2,2 dimethylpropanol, 2-methyl-2-butanol and 3-methyl-2-butanol. Of these, tert-butanol, 2,2-dimethyl-1-propanol and isopropanol are preferable.
  • the solvent may be used alone or in the presence of a co-solvent.
  • the co-solvent may be chosen from water, acetone, acetonitrile, 1,4-dioxane or another alcohol, preferably chosen from the group consisting of methanol, ethanol and isopropanol. n-propanol, n-butanol or tert-butanol.
  • the mass ratio between the solvent and the co-solvent used in the reaction is between 1: 99 and 99: 1, preferably between 10:90 and 90:10.
  • the amount of the alcohol or mixture of The alcohols used is preferably in the range of 1 to 90% by weight, more preferably 3 to 50% by weight, based on the total mass of the reaction liquid.
  • the amount of water used in the present invention may be the water contained in the aqueous solution of hydrogen peroxide.
  • the amount of water is preferably in the range of 5 to 90% by weight, more preferably in the range of 8 to 90% by weight, still more preferably in the range of 8 to 85% by weight based on of the total mass of the reaction liquid.
  • the temperature of the reaction may be greater than or equal to 30 ° C, preferably greater than or equal to 40 ° C.
  • the temperature of the reaction may be less than or equal to 130 ° C, preferably less than or equal to 100 ° C.
  • the reaction can be conducted under atmospheric pressure.
  • the reaction can be carried out at a pressure equal to or less than 10 bar, preferably equal to or less than 6 bar.
  • the present reaction may be conducted batchwise, or may be conducted semi-batchwise, or may be conducted continuously, for example in a fixed bed flow type plug flow reactor model.
  • a plurality of reactors may be connected in series and / or in parallel.
  • the number of reactors is preferably 1 to 4 from the point of view of equipment cost. When a plurality of reactors are used, the hydrogen peroxide can be divided into them.
  • a step of separating the catalyst from the reaction liquid is included.
  • a precipitation separation for the separation of the catalyst, a centrifugal filter, a vacuum belt filter, a pressure filter, a filter press, a cloth filter, a rotary filter or the like is used, whether in the horizontal or vertical configuration.
  • a Continuous filter such as a rotary filter
  • a concentrated catalyst slurry which is that obtained after a liquid phase has been removed from the reaction liquid containing the catalyst, can be used for the reaction again.
  • the liquid phase is taken continuously.
  • the catalyst When the catalyst is separated not in the form of a suspension, but in the form of a cake, it can be used for the reaction again as such, or it can be used for the reaction again after being subjected to to a regeneration treatment.
  • the regeneration treatment comprises multiple steps of catalyst washing, inerting, solvent evaporation, controlled organic deposition oxidation.
  • a tray dryer, a belt dryer, a rotary dryer, a spray dryer, an instant drier or the like is used.
  • the regeneration treatment can be conducted in an atmosphere of an inert gas such as nitrogen, an air atmosphere, an air atmosphere diluted with an inert gas, preferably the amount of oxygen during the regeneration treatment is controlled, the amount of oxygen is generally less than 10%, preferably less than 8%, most preferably less than 5%, a water vapor atmosphere, a water vapor atmosphere diluted with inert gas, or the like.
  • the drying temperature is preferably from 60 to 800 ° C, particularly preferably from 100 to 700 ° C, most preferably from 150 ° C to 650 ° C. When the regeneration temperature is this temperature, the adhered organic substances can be removed without significant degradation of the catalyst performance.
  • the regeneration treatment may also be conducted by combining a plurality of different temperature regions.
  • Regeneration can be performed at a given frequency on the total catalytic charge or only a portion thereof after separation from the filtration medium.
  • the portion may be in the range of 1 to 50% of the catalytic charge, preferably 2 to 40%, more preferably 5 to 20% of the catalyst charge.
  • fresh catalyst can be introduced to maintain the performance.
  • the amount of fresh catalyst is in the range of 0 to 20%, as expressed in terms of the total amount of catalyst, more preferably 0.2 to 10%, still more preferably 0.5 to 2%.
  • a purification treatment such as separation of the unreacted components and by-products can be carried out on the reaction liquid or a separated liquid containing a hydroxyl aromatic compound comprising at least one alkoxy group, said separated liquid being that after separation of the catalyst.
  • the process according to the present invention may further comprise a step (b) of purifying the composition obtained after step (a).
  • the purification treatment may be conducted more preferably on the separated liquid containing a hydroxyl aromatic compound comprising at least one alkoxy group, said separated liquid being that after separation of the catalyst.
  • the process for the purification treatment is not specifically limited, and specific examples of the methods include decantation, extraction, distillation, crystallization and combinations of these methods.
  • the process, the purification treatment procedure is not specifically limited, but for example, the following method purifies the reaction liquid and the separated liquid containing a hydroxyl aromatic compound comprising at least one alkoxy group, said separated liquid being obtained after separation of the catalyst.
  • the process according to the present invention may further comprise a step (c) of shaping the composition obtained after step (a) or (b) in the form of an amorphous or crystallized powder, beads, pearls, pellets, granules or flakes.
  • Another subject of the present invention relates to a hydroxyl aromatic compound comprising at least one alkoxy group obtained by the process of the present invention.
  • the aromatic hydroxy compound obtained by the process of the present invention contains certain impurities which are derived from the process described in the present invention and, in particular, derived from the use of a specific solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention relates to a process for the hydroxylation of an aromatic compound comprising at least one alkoxy group, said process comprising step (a) reacting said aromatic compound comprising at least one alkoxy group with hydrogen peroxide in the presence of a catalyst, in a solvent containing water, an alcohol, or a mixture of alcohols, or the catalyst is a zeolite comprising titanium.

Description

PROCÉDÉ D’HYDROXYLATION D’UN COMPOSÉ AROMATIQUE  PROCESS FOR HYDROXYLATION OF AN AROMATIC COMPOUND
La présente invention concerne un procédé d’hydroxylation d’un composé aromatique comprenant au moins un groupe alcoxy par réaction dudit composé aromatique avec du peroxyde d’hydrogène en présence d’un catalyseur. The present invention relates to a process for the hydroxylation of an aromatic compound comprising at least one alkoxy group by reaction of said aromatic compound with hydrogen peroxide in the presence of a catalyst.
Les composés aromatiques hydroxylés sont importants dans le domaine de la synthèse organique. Différentes voies de synthèse de ces produits ont été développées au cours du temps, en particulier par hydroxylation du phénol en présence d’un catalyseur. Par exemple, la réaction d’hydroxylation du phénol conduit à la production de deux isomères, à savoir le 1,4- dihydroxybenzène ou hydroquinone (HQ) et le l,2-dihydroxybenzène ou catéchol (PC), qui sont des composés ayant un fort potentiel industriel. Ces composés aromatiques hydroxylés sont utilisés dans de nombreux domaines d’applications telles que les inhibiteurs de polymérisation, les agents pharmaceutiques, les agents agrochimiques, la parfumerie ou l’industrie alimentaire. Hydroxylated aromatic compounds are important in the field of organic synthesis. Different synthetic routes of these products have been developed over time, in particular by hydroxylation of phenol in the presence of a catalyst. For example, the hydroxylation reaction of phenol leads to the production of two isomers, namely 1,4-dihydroxybenzene or hydroquinone (HQ) and 1,2-dihydroxybenzene or catechol (PC), which are compounds having a strong industrial potential. These aromatic hydroxy compounds are used in many fields of application such as polymerization inhibitors, pharmaceutical agents, agrochemical agents, perfumery or the food industry.
Compte tenu de ce large domaine d’exploitation, il est nécessaire de fabriquer ces produits à l’échelle industrielle et de disposer de procédés de fabrication optimisés.  Given this wide area of operation, it is necessary to manufacture these products on an industrial scale and to have optimized manufacturing processes.
Conventionnellement, des composés aromatiques dihydroxylés sont produits par hydroxylation de phénol avec du peroxyde d’hydrogène en présence d’un catalyseur acide qui est un acide protique fort (voir FR 2 071 464) ou en présence d’un catalyseur solide présentant des propriétés acides tel que, par exemple, un catalyseur solide présentant des propriétés acides telles que, par exemple, une zéolite TS-l (FR 2 489 816), ou une zéolite titanosilicalite MEL (EP 1 131 264), une zéolite titanosilicalite MFI (EP 1 123 159) ou une zéolite MCM-22.  Conventionally, aromatic dihydroxy compounds are produced by hydroxylation of phenol with hydrogen peroxide in the presence of an acid catalyst which is a strong protic acid (see FR 2 071 464) or in the presence of a solid catalyst having acidic properties as, for example, a solid catalyst having acidic properties such as, for example, a zeolite TS-1 (FR 2,489,816), or a zeolite titanosilicalite MEL (EP 1 131 264), a zeolite titanosilicalite MFI (EP 1 123 159) or an MCM-22 zeolite.
L’hydroxylation de composés aromatiques est également décrite dans les documents suivants : J. Chem. Soc. Chem. Commun. 1995, 349-350, Applied Catalysis A : General 327 (2007) 295-299, Microporous and Mesoporous Materials 21 (1998) 497-504, Catalysis Today 49 (1999) 185-191, Ind. Eng. Chem. Res. 2007, 46, 8657-8664, J. Mater. Chem. 2000, 10, 1365-1370, US 5,426,244, EP 0 919 531, FR 2 489 816, EP 0 200 260, Catal. Sci. Technol. 2015, 5, 2602-2611, Tetrahedron Lett. 1983, 24(44), 4847-4850, J. Am. Chem. Soc. 1988, 110, 7472-7478, Bull. Chem. Soc. 1989, 62, 148-152, Chem. Sci. 2017, 8, 8373-8383, Adv. Synth. Catal. 2015, 357, 2017-2021, Journ. Mol. Catal. A : Chemical, 2015, 408, 262-270.  The hydroxylation of aromatic compounds is also described in the following documents: J. Chem. Soc. Chem. Common. 1995, 349-350, Applied Catalysis A: General 327 (2007) 295-299, Microporous and Mesoporous Materials 21 (1998) 497-504, Catalysis Today 49 (1999) 185-191, Ind. Eng. Chem. Res. 2007, 46, 8657-8664, J. Mater. Chem. 2000, 10, 1365-1370, US 5,426,244, EP 0 919 531, FR 2 489 816, EP 0 200 260, Catal. Sci. Technol. 2015, 5, 2602-2611, Tetrahedron Lett. 1983, 24 (44), 4847-4850, J. Am. Chem. Soc. 1988, 110, 7472-7478, Bull. Chem. Soc. 1989, 62, 148-152, Chem. Sci. 2017, 8, 8373-8383, Adv. Synth. Catal. 2015, 357, 2017-2021, Journ. Mol. Catal. A: Chemical, 2015, 408, 262-270.
Une des difficultés de ces procédés est généralement d’optimiser la productivité de la réaction pour répondre à la demande desdits composés aromatiques hydroxylés. Les paramètres optimisés peuvent comprendre les rendements de réaction, le rapport entre les isomères aromatiques hydroxylés, ou l’efficacité énergétique de la réaction. One of the difficulties of these processes is generally to optimize the productivity of the reaction to meet the demand of said hydroxylated aromatic compounds. The settings Optimized may include reaction yields, the ratio of hydroxy aromatic isomers, or the energy efficiency of the reaction.
Afin de répondre à ce problème général de productivité, de nombreux documents mentionnent des conditions de réaction spécifiques. Par exemple, la nature du solvant ou des solvants utilisés pour la réaction est décrite dans la publication scientifique de Thangaraj et al., Indian Journal of Chemistry, vol. 33A, Mars 1994, p. 255-258.  In order to address this general problem of productivity, many documents mention specific reaction conditions. For example, the nature of the solvent or solvents used for the reaction is described in the scientific publication of Thangaraj et al., Indian Journal of Chemistry, vol. 33A, March 1994, p. 255-258.
Dans ces circonstances, la présente invention résout le problème de fournir un procédé de production d’un composé aromatique hydroxylé comprenant au moins un groupe alcoxy, de préférence de production d’un composé aromatique monohydroxylé, le procédé étant hautement sélectif pour un isomère par rapport à l’autre isomère, tout en limitant la quantité de sous-produits formés et en maintenant un rendement élevé et une productivité élevée. La réaction de la présente invention peut également être ajustée afin de sélectionner l’isomère majeur. En effet, suivant l’utilisation finale du composé aromatique hydroxylé, un seul isomère peut être requis. Par exemple, pour la synthèse de guaifénésine, de vanilline ou d’éthylvanilline, le guaiacol ou le guéthol seraient nécessaires, qui sont les produits ortho-hydroxylés respectifs de l’anisole et du phénétol, tandis que pour des fonctionnalités d’inhibiteur de polymérisation, le para-méthoxyphénol serait utilisé, qui est un produit de para-hydroxylation de l’anisole.  In these circumstances, the present invention solves the problem of providing a process for producing a hydroxy aromatic compound comprising at least one alkoxy group, preferably for producing a monohydroxy aromatic compound, the process being highly selective for an isomer relative to at the other isomer, while limiting the amount of by-products formed and maintaining a high yield and high productivity. The reaction of the present invention may also be adjusted to select the major isomer. Indeed, depending on the end use of the hydroxylated aromatic compound, only one isomer may be required. For example, for the synthesis of guaifenesin, vanillin or ethyl vanillin, guaiacol or guethol would be required, which are the respective orthohydroxylated products of anisole and phenetol, while for polymerization inhibitor functions. para-methoxyphenol would be used, which is a product of para-hydroxylation of anisole.
La présente invention concerne un procédé d’hydroxylation d’un composé aromatique, comprenant au moins un groupe alcoxy, comprenant une étape (a) de réaction dudit composé aromatique comprenant au moins un groupe alcoxy avec du peroxyde d’hydrogène en présence d’un catalyseur, dans un solvant comprenant de l’eau, un alcool, ou un mélange d’alcools. The present invention relates to a process for the hydroxylation of an aromatic compound, comprising at least one alkoxy group, comprising a step (a) of reaction of said aromatic compound comprising at least one alkoxy group with hydrogen peroxide in the presence of a catalyst, in a solvent comprising water, an alcohol, or a mixture of alcohols.
Un autre objet de la présente invention concerne un composé aromatique hydroxylé comprenant au moins un groupe alcoxy pouvant être obtenu par le procédé de la présente invention.  Another object of the present invention is a hydroxy aromatic compound comprising at least one alkoxy group obtainable by the process of the present invention.
Dans la présente description, et sauf indication contraire, l’expression « compris entre ... et ... » inclut les limites. In this description, unless otherwise indicated, the phrase "between ... and ..." includes the limits.
Dans la présente description, et sauf indication contraire, l’expression « alkyle » désigne une chaîne hydrocarbonée linéaire ou ramifiée, saturée ou insaturée, comprenant de 1 à 6 atomes de carbone.  In the present description, and unless otherwise indicated, the term "alkyl" denotes a linear or branched hydrocarbon chain, saturated or unsaturated, comprising from 1 to 6 carbon atoms.
Dans la présente description, et sauf indication contraire, l’expression « alcoxy » représente un groupe alkyle lié à un atome d’oxygène : R-O. Un premier aspect de la présente invention concerne un procédé d’hydroxylation d’un composé aromatique, comprenant au moins un groupe alcoxy, comprenant l’étape (a) de réaction dudit composé aromatique comprenant au moins un groupe alcoxy avec du peroxyde d’hydrogène en présence d’un catalyseur, dans un solvant comprenant de l’eau, un alcool ou un mélange d’alcools. In the present description, and unless otherwise indicated, the term "alkoxy" represents an alkyl group bonded to an oxygen atom: RO. A first aspect of the present invention relates to a process for the hydroxylation of an aromatic compound, comprising at least one alkoxy group, comprising the step (a) of reacting said aromatic compound comprising at least one alkoxy group with hydrogen peroxide. in the presence of a catalyst, in a solvent comprising water, an alcohol or a mixture of alcohols.
L’étape (a) est une réaction d’hydroxylation d’un composé aromatique, comprenant au moins un groupe alcoxy. L’étape (a) conduit typiquement à la formation de composés aromatiques hydroxylés sous la forme d’isomères. Avantageusement, le procédé selon la présente invention permet de prévoir le rapport entre les isomères.  Step (a) is a hydroxylation reaction of an aromatic compound, comprising at least one alkoxy group. Step (a) typically leads to the formation of hydroxylated aromatic compounds in the form of isomers. Advantageously, the method according to the present invention makes it possible to predict the ratio between the isomers.
Le composé aromatique comprenant au moins un groupe alcoxy selon la présente invention est un composé de formule (I) dans lequel R est un groupe alkyle linéaire ou ramifié, saturé ou insaturé comprenant de 1 à 6 atomes de carbone, de préférence R est choisi dans le groupe constitué de méthyle, éthyle, isopropyle, butyle, tert-butyle, de manière préférée le groupement R est choisi dans le groupe constitué de méthyle ou éthyle. The aromatic compound comprising at least one alkoxy group according to the present invention is a compound of formula (I) in which R is a linear or branched, saturated or unsaturated alkyl group comprising from 1 to 6 carbon atoms, preferably R is chosen from the group consisting of methyl, ethyl, isopropyl, butyl, tert-butyl, preferably the R group is selected from the group consisting of methyl or ethyl.
Dans un aspect préféré de la présente invention, le composé de formule (I) est substitué par 1 ou 2 groupes alcoxy, dans un aspect préféré, le composé de formule (I) est substitué par 1 groupe alcoxy. Par conséquent, dans un aspect préféré de la présente invention, le composé de formule (I) est choisi dans le groupe constitué de l’anisole ou du phénétol.  In a preferred aspect of the present invention, the compound of formula (I) is substituted with 1 or 2 alkoxy groups, in a preferred aspect, the compound of formula (I) is substituted with 1 alkoxy group. Therefore, in a preferred aspect of the present invention, the compound of formula (I) is selected from the group consisting of anisole or phenetol.
Facultativement, le composé de formule (I) peut être substitué par d’autres groupes, par exemple le composé aromatique substitué comprenant au moins un groupe alcoxy peut comprendre en outre un groupe alkyle facultativement substitué par des hétéroatomes. Par exemple, le composé de formule (I) peut être substitué une, deux, trois ou quatre fois par un groupe choisi parmi méthyle, éthyle, propyle, butyle.  Optionally, the compound of formula (I) may be substituted by other groups, for example the substituted aromatic compound comprising at least one alkoxy group may further comprise an alkyl group optionally substituted with heteroatoms. For example, the compound of formula (I) may be substituted one, two, three or four times with a group selected from methyl, ethyl, propyl, butyl.
Lorsque le composé de formule (I) est l’anisole ou le phénétol, les réactions et produits sont décrits dans le schéma 1 : When the compound of formula (I) is anisole or phenetol, the reactions and products are described in Scheme 1:
Schéma 1  Diagram 1
La réaction d’hydroxylation (étape(a)) permet, dans le cas de G anisole, de produire un mélange de guaiacol (GA) et de para-méthoxyphénol (PMP), et dans le cas du phénétol, de produire un mélange de guétol (GE) et de para-éthoxyphénol (PEP). Plus généralement la réaction d’hydroxylation permet la production de mélange d’ortho-alcoxyphénol et de para- alcoxyphénol. Avantageusement, le procédé selon la présente invention permet de sélectionner le rapport ortho/para souhaité. De préférence, le rapport ortho/para est inférieur à 1, plus préférablement inférieur ou égal à 0,7, encore plus préférablement inférieur ou égal à 0,4, et de manière préférée entre toutes inférieur ou égal à 0,2. Dans un mode de réalisation préféré, le rapport molaire GA/PMP est inférieur à 1, plus préférablement inférieur ou égal à 0,7, encore plus préférablement inférieur ou égal à 0,4, et de manière préférée entre toutes inférieur ou égal à 0,2. Dans un autre mode de réalisation préféré, le rapport molaire GE/PEP est inférieur à 1, plus préférablement inférieur ou égal à 0,7, encore plus préférablement inférieur ou égal à 0,4, et de manière préférée entre toutes inférieur ou égal à 0,2.  The hydroxylation reaction (step (a)) allows, in the case of anisole, to produce a mixture of guaiacol (GA) and para-methoxyphenol (PMP), and in the case of phenetol, to produce a mixture of guetol (GE) and para-ethoxyphenol (PEP). More generally, the hydroxylation reaction allows the production of a mixture of ortho-alkoxyphenol and para-alkoxyphenol. Advantageously, the method according to the present invention makes it possible to select the desired ortho / para ratio. Preferably, the ortho / para ratio is less than 1, more preferably less than or equal to 0.7, still more preferably less than or equal to 0.4, and most preferably less than or equal to 0.2. In a preferred embodiment, the molar ratio GA / PMP is less than 1, more preferably less than or equal to 0.7, still more preferably less than or equal to 0.4, and most preferably less than or equal to 0. 2. In another preferred embodiment, the GE / PEP molar ratio is less than 1, more preferably less than or equal to 0.7, still more preferably less than or equal to 0.4, and most preferably less than or equal to 0.2.
La présente invention peut être conduite par l’un quelconque parmi un procédé discontinu, un procédé semi-discontinu et un procédé à flux continu. Différents types de réacteur peuvent être utilisé pour conduire le procédé selon l’invention. Avantageusement, le procédé selon l’invention est conduit dans un réacteur agité ou une cascade de réacteurs agités ou, en variante, dans un réacteur à écoulement piston, par exemple un réacteur tubulaire placé horizontalement, verticalement ou incliné. De préférence, le catalyseur de la présente invention est un catalyseur hétérogène, de préférence une zéolite comprenant du titane et, plus préférablement, une zéolite titanosilicate, de préférence choisie dans le groupe constitué de MFI, MEL, TS-l, TS-2, Ti-MWW, TÎ-MCM68, et encore plus préférablement TS-l. De préférence, la zéolite a un rapport molaire Ti/(Ti+Si) de 0,0001 à 0,10 et de préférence de 0,0001 à 0,05, par exemple de 0,005 à 0,04. Le titanosilicalite peut être préparé par un procédé publiquement connu quelconque. Bien que le catalyseur au titanosilicate puisse être utilisé tel quel, celui-ci peut être utilisé après avoir été moulé. En tant que procédé pour mouler le catalyseur, le moulage par extrusion, la fabrication de comprimés, la granulation par culbutage, la granulation par pulvérisation ou similaire est généralement utilisé. Lorsque le catalyseur est utilisé dans le procédé à lit fixe, le moulage par extrusion ou la fabrication de comprimés est préférable. Dans le cas du procédé à lit en suspension, la granulation par pulvérisation est préférable et, comme décrit dans, par exemple, US 4 701 428, un procédé comprenant le mélange d’une suspension de titanosilicate préparée à l’avance avec un liant, par exemple la silice ou l’alumine et la conduite d’une granulation par pulvérisation en utilisant un séchoir à pulvérisation est un procédé général. The present invention may be conducted by any of a batch process, a semi-batch process and a continuous flow process. Different types of reactor can be used to conduct the process according to the invention. Advantageously, the process according to the invention is carried out in a stirred reactor or a cascade of stirred reactors or, alternatively, in a plug flow reactor, for example a tubular reactor placed horizontally, vertically or inclined. Preferably, the catalyst of the present invention is a heterogeneous catalyst, preferably a zeolite comprising titanium and, more preferably, a titanosilicate zeolite, preferably selected from the group consisting of MFI, MEL, TS-1, TS-2, Ti-MWW, T-MCM68, and still more preferably TS-1. Preferably, the zeolite has a molar ratio Ti / (Ti + Si) of 0.0001 to 0.10 and preferably of 0.0001 to 0.05, for example from 0.005 to 0.04. Titanosilicalite can be prepared by any publicly known method. Although the titanosilicate catalyst can be used as it is, it can be used after being molded. As a method for molding the catalyst, extrusion molding, tabletting, tumbling granulation, spray granulation or the like is generally used. When the catalyst is used in the fixed bed process, extrusion molding or tabletting is preferable. In the case of the slurry bed process, spray granulation is preferable and, as described in, for example, US 4,701,428, a process comprising mixing a titanosilicate slurry prepared in advance with a binder, for example, silica or alumina and conducting spray granulation using a spray dryer is a general method.
Avantageusement, si la réaction est conduite en suspension concentrée, la quantité du catalyseur au titanosilicate utilisé est de préférence dans la plage de 0,1 à 30 % en masse, plus préférablement 0,5 à 20 % en masse, et de manière préférée entre toutes 1 to 20 % en masse en termes de rapport externe sur la base de la masse totale du milieu de réaction. Lorsque la quantité du catalyseur n’est pas inférieure à 0,1 % en masse, de préférence pas inférieure à 0,5 % en masse, plus préférablement pas inférieure à 1 % en masse, la réaction est complète dans un temps court et la productivité est augmentée, de sorte qu’une telle quantité est préférable. Lorsque la quantité de celui-ci n’est pas supérieure à 30 % en masse, de préférence pas supérieure à 20 % en masse, la quantité du catalyseur devant être séparée et récupérée est faible, de sorte qu’une telle quantité est préférable.  Advantageously, if the reaction is conducted in concentrated suspension, the amount of titanosilicate catalyst used is preferably in the range of 0.1 to 30% by weight, more preferably 0.5 to 20% by weight, and most preferably all 1 to 20% by weight in terms of external ratio based on the total mass of the reaction medium. When the amount of the catalyst is not less than 0.1% by weight, preferably not less than 0.5% by weight, more preferably not less than 1% by mass, the reaction is complete in a short time and the productivity is increased, so that such quantity is preferable. When the amount thereof is not more than 30% by weight, preferably not more than 20% by weight, the amount of the catalyst to be separated and recovered is small, so that such amount is preferable.
De préférence, l’agent oxydant est utilisé dans un rapport molaire par rapport au composé aromatique comprenant au moins un groupe alcoxy, de de 0,005 à 0,60, de préférence de 0,05 à 0,50 et encore plus préférablement de 0,15 à 0,35. Bien que la concentration de peroxyde d’hydrogène utilisée ne soit pas spécifiquement restreinte, une solution aqueuse usuelle ayant une concentration de 30 %peut être utilisée, ou une solution aqueuse de peroxyde d’hydrogène d’une concentration supérieure peut être utilisée telle quelle ou peut être utilisée après avoir été diluée avec un solvant qui est inerte dans le système de réaction. Des exemples du solvant utilisé pour la dilution comprennent un alcool, de préférence choisi dans le groupe constitué du méthanol, de l’éthanol, de l’isopropanol, du n-butanol ou du tert-butanol et de l’eau. Suivant le choix du mode de réaction, le peroxyde d’hydrogène peut être ajouté en une fois ou peut être ajouté petit à petit sur une longue durée.  Preferably, the oxidizing agent is used in a molar ratio with respect to the aromatic compound comprising at least one alkoxy group, from 0.005 to 0.60, preferably from 0.05 to 0.50 and even more preferably from 0, 15 to 0.35. Although the concentration of hydrogen peroxide used is not specifically restricted, a usual aqueous solution having a concentration of 30% can be used, or an aqueous solution of hydrogen peroxide of a higher concentration can be used as is or can be used after being diluted with a solvent that is inert in the reaction system. Examples of the solvent used for the dilution include an alcohol, preferably selected from the group consisting of methanol, ethanol, isopropanol, n-butanol or tert-butanol and water. Depending on the choice of the reaction mode, the hydrogen peroxide can be added at one time or can be added little by little over a long period.
Avantageusement, le procédé de la présente invention est conduit dans un solvant comprenant de l’eau, un alcool ou un mélange d’alcools. De préférence, l’alcool est choisi parmi des alcools ayant 1 à 6 atomes de carbone, de préférence des alcools comprenant un atome de carbone tertiaire ou quaternaire. Des exemples d’alcools comprenant un atome de carbone tertiaire ou quaternaire comprennent le tert-butanol, le 2-méthyl-l-propanol, le 2- méthyl- 1 -butanol, le 3-méthyl-l-butanol, le 2,2-diméthylpropanol, le 2-méthyl-2-butanol et le 3-méthyl-2-butanol. Parmi ceux-ci, le tert-butanol, le 2,2-diméthyl-l-propanol et l’isopropanol sont préférables. Le solvant peut être utilisé seul ou en présence d’un co-solvant. Le co-solvant peut être choisi parmi l’eau, l’acétone, l’acétonitrile, le l,4-dioxane ou un autre alcool, de préférence choisi dans le groupe constitué du méthanol, de l’éthanol, de l’isopropanol, du n- propanol, du n-butanol ou du tert-butanol. Avantageusement, le rapport en masse entre le solvant et le co-solvant utilisé dans la réaction est comprise entre 1 :99 et 99: 1, de préférence entre 10:90 et 90: 10. La quantité de l’alcool ou mélange d’alcools utilisée est de préférence dans la plage de 1 à 90 % en masse, plus préférablement 3 à 50 % en masse, sur la base de la masse totale du liquide de réaction. Advantageously, the process of the present invention is conducted in a solvent comprising water, an alcohol or a mixture of alcohols. Preferably, the alcohol is chosen among alcohols having 1 to 6 carbon atoms, preferably alcohols comprising a tertiary or quaternary carbon atom. Examples of alcohols comprising a tertiary or quaternary carbon atom include tert-butanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2,2 dimethylpropanol, 2-methyl-2-butanol and 3-methyl-2-butanol. Of these, tert-butanol, 2,2-dimethyl-1-propanol and isopropanol are preferable. The solvent may be used alone or in the presence of a co-solvent. The co-solvent may be chosen from water, acetone, acetonitrile, 1,4-dioxane or another alcohol, preferably chosen from the group consisting of methanol, ethanol and isopropanol. n-propanol, n-butanol or tert-butanol. Advantageously, the mass ratio between the solvent and the co-solvent used in the reaction is between 1: 99 and 99: 1, preferably between 10:90 and 90:10. The amount of the alcohol or mixture of The alcohols used is preferably in the range of 1 to 90% by weight, more preferably 3 to 50% by weight, based on the total mass of the reaction liquid.
La quantité d’eau utilisée dans la présente invention peut être l’eau contenue dans la solution aqueuse de peroxyde d’hydrogène. La quantité d’eau est, de préférence, dans la plage de 5 à 90 % en masse, plus préférablement dans la plage de 8 à 90 % en masse, encore plus préférablement dans la plage de 8 à 85 % en masse sur la base de la masse totale du liquide de réaction.  The amount of water used in the present invention may be the water contained in the aqueous solution of hydrogen peroxide. The amount of water is preferably in the range of 5 to 90% by weight, more preferably in the range of 8 to 90% by weight, still more preferably in the range of 8 to 85% by weight based on of the total mass of the reaction liquid.
La température de la réaction peut être supérieure ou égale à 30 °C, de préférence supérieure ou égale à 40 °C. La température de la réaction peut être inférieure ou égale à 130 °C, de préférence inférieure ou égale à 100 °C. La réaction peut être conduite sous pression atmosphérique. La réaction peut être conduite à une pression égale ou inférieure à 10 bar, de préférence égale ou inférieure à 6 bar.  The temperature of the reaction may be greater than or equal to 30 ° C, preferably greater than or equal to 40 ° C. The temperature of the reaction may be less than or equal to 130 ° C, preferably less than or equal to 100 ° C. The reaction can be conducted under atmospheric pressure. The reaction can be carried out at a pressure equal to or less than 10 bar, preferably equal to or less than 6 bar.
La présente réaction peut être conduite de façon discontinue, ou peut être conduite de façon semi-discontinue, ou peut être conduite en continu, par exemple dans un modèle de réacteur à écoulement piston de type à écoulement à lit fixe. De plus, une pluralité de réacteurs peuvent être raccordés en série et/ou en parallèle. Le nombre de réacteurs est, de préférence, de 1 à 4 du point de vue du coût d’équipement. Lorsqu’une pluralité de réacteurs sont utilisés, le peroxyde d’hydrogène peut être placé de façon divisée dans ceux-ci.  The present reaction may be conducted batchwise, or may be conducted semi-batchwise, or may be conducted continuously, for example in a fixed bed flow type plug flow reactor model. In addition, a plurality of reactors may be connected in series and / or in parallel. The number of reactors is preferably 1 to 4 from the point of view of equipment cost. When a plurality of reactors are used, the hydrogen peroxide can be divided into them.
Lorsque la présente réaction est conduite dans un mode en suspension concentrée, il est préférable qu’une étape de séparation du catalyseur à partir du liquide de réaction soit incluse. Pour la séparation du catalyseur, une séparation par précipitation, un filtre centrifuge, un filtre à bande sous vide, un filtre à pression, un filtre-presse, un filtre à toile, un filtre rotatif ou similaire est utilisé, que ce soit dans la configuration horizontale ou verticale. Dans le cas d’un filtre continu tel qu’un filtre rotatif, une suspension concentrée de catalyseur, qui est celle obtenue après qu’une phase liquide ait été prélevée à partir du liquide de réaction contenant le catalyseur, peut être utilisé pour la réaction à nouveau. Lorsque la réaction est conduite en continu, la phase liquide est prélevée en continu. Lorsque le catalyseur est séparé non sous la forme d’une suspension, mais sous la forme d’un gâteau, il peut être utilisé pour la réaction à nouveau tel quel, ou bien il peut être utilisé pour la réaction à nouveau après avoir été soumis à un traitement de régénération. Le traitement de régénération comprend des étapes multiples de lavage du catalyseur, d’inertisation, d’évaporation du solvant, d’oxydation de dépôt organique contrôlée. Pour le traitement de régénération, un séchoir à plateaux, un séchoir à bande, un séchoir rotatif, un séchoir à pulvérisation, un séchoir instantané ou similaire est utilisé. Le traitement de régénération peut être conduit dans une atmosphère d’un gaz inerte tel que l’azote, une atmosphère d’air, une atmosphère d’air dilué avec un gaz inerte, de préférence la quantité d’oxygène pendant le traitement de régénération est contrôlée, la quantité d’oxygène est généralement inférieure à 10 %, de préférence inférieure à 8 %, de manière préférée entre toutes inférieure à 5 %, une atmosphère de vapeur d’eau, une atmosphère de vapeur d’eau diluée avec un gaz inerte, ou similaire. La température de séchage est, de préférence, de 60 à 800 °C, de façon particulièrement préférable de 100 à 700 °C, de manière préférée entre toutes de 150 °C à 650 °C. Lorsque la température de régénération est cette température, les substances organiques ayant adhéré peuvent être éliminées sans dégradation significative des performances du catalyseur. Le traitement de régénération peut également être conduit par combinaison d’une pluralité de régions de température différentes. La régénération peut être effectuée à une fréquence donnée sur la charge catalytique totale ou uniquement sur une partie de celui-ci après une séparation du milieu de filtration. La partie peut être dans la plage de 1 à 50 % de la charge catalytique, de préférence de 2 à 40 %, plus préférablement de 5 à 20 % de la charge catalytique. Afin de compenser la désactivation irréversible au cours du temps du catalyseur, du catalyseur frais peut être introduit pour maintenir les performances. La quantité de catalyseur frais est dans la plage de 0 à 20 %, telle qu’exprimée en fonction de la quantité totale de catalyseur, plus préférablement de 0,2 à 10 %, encore plus préférablement de 0,5 à 2 %. When the present reaction is conducted in a concentrated suspension mode, it is preferred that a step of separating the catalyst from the reaction liquid is included. For the separation of the catalyst, a precipitation separation, a centrifugal filter, a vacuum belt filter, a pressure filter, a filter press, a cloth filter, a rotary filter or the like is used, whether in the horizontal or vertical configuration. In the case of a Continuous filter such as a rotary filter, a concentrated catalyst slurry, which is that obtained after a liquid phase has been removed from the reaction liquid containing the catalyst, can be used for the reaction again. When the reaction is conducted continuously, the liquid phase is taken continuously. When the catalyst is separated not in the form of a suspension, but in the form of a cake, it can be used for the reaction again as such, or it can be used for the reaction again after being subjected to to a regeneration treatment. The regeneration treatment comprises multiple steps of catalyst washing, inerting, solvent evaporation, controlled organic deposition oxidation. For the regeneration treatment, a tray dryer, a belt dryer, a rotary dryer, a spray dryer, an instant drier or the like is used. The regeneration treatment can be conducted in an atmosphere of an inert gas such as nitrogen, an air atmosphere, an air atmosphere diluted with an inert gas, preferably the amount of oxygen during the regeneration treatment is controlled, the amount of oxygen is generally less than 10%, preferably less than 8%, most preferably less than 5%, a water vapor atmosphere, a water vapor atmosphere diluted with inert gas, or the like. The drying temperature is preferably from 60 to 800 ° C, particularly preferably from 100 to 700 ° C, most preferably from 150 ° C to 650 ° C. When the regeneration temperature is this temperature, the adhered organic substances can be removed without significant degradation of the catalyst performance. The regeneration treatment may also be conducted by combining a plurality of different temperature regions. Regeneration can be performed at a given frequency on the total catalytic charge or only a portion thereof after separation from the filtration medium. The portion may be in the range of 1 to 50% of the catalytic charge, preferably 2 to 40%, more preferably 5 to 20% of the catalyst charge. In order to compensate for the irreversible deactivation over time of the catalyst, fresh catalyst can be introduced to maintain the performance. The amount of fresh catalyst is in the range of 0 to 20%, as expressed in terms of the total amount of catalyst, more preferably 0.2 to 10%, still more preferably 0.5 to 2%.
Afin d’obtenir un composé aromatique hydroxylé comprenant au moins un groupe alcoxy à partir du liquide de réaction, un traitement de purification tel que la séparation des composants n’ayant pas réagi et des sous-produits peut être conduit sur le liquide de réaction ou un liquide séparé contenant un composé aromatique hydroxylé comprenant au moins un groupe alcoxy, ledit liquide séparé étant celui après séparation du catalyseur. Le procédé selon la présente invention peut comprendre en outre une étape (b) de purification de la composition obtenue après l’étape (a). Le traitement de purification peut être conduit plus préférablement sur le liquide séparé contenant un composé aromatique hydroxylé comprenant au moins un groupe alcoxy, ledit liquide séparé étant celui après séparation du catalyseur. Le procédé pour le traitement de purification n’est pas spécifiquement limité, et des exemples spécifiques des procédés comprennent la décantation, l’extraction, la distillation, la cristallisation et des combinaisons de ces procédés. Le procédé, la procédure du traitement de purification ne sont pas spécifiquement limités, mais par exemple, le procédé suivant permet de purifier le liquide de réaction et le liquide séparé contenant un composé aromatique hydroxylé comprenant au moins un groupe alcoxy, ledit liquide séparé étant obtenu après séparation du catalyseur. In order to obtain a hydroxyl aromatic compound comprising at least one alkoxy group from the reaction liquid, a purification treatment such as separation of the unreacted components and by-products can be carried out on the reaction liquid or a separated liquid containing a hydroxyl aromatic compound comprising at least one alkoxy group, said separated liquid being that after separation of the catalyst. The process according to the present invention may further comprise a step (b) of purifying the composition obtained after step (a). The purification treatment may be conducted more preferably on the separated liquid containing a hydroxyl aromatic compound comprising at least one alkoxy group, said separated liquid being that after separation of the catalyst. The process for the purification treatment is not specifically limited, and specific examples of the methods include decantation, extraction, distillation, crystallization and combinations of these methods. The process, the purification treatment procedure is not specifically limited, but for example, the following method purifies the reaction liquid and the separated liquid containing a hydroxyl aromatic compound comprising at least one alkoxy group, said separated liquid being obtained after separation of the catalyst.
Le procédé selon la présente invention peut comprendre en outre une étape (c) de façonnage de la composition obtenue après l’étape (a) ou (b) sous la forme d’une poudre amorphe ou cristallisée, de billes, de perles, de pastilles, de granules ou de flocons. Un autre objet de la présente invention concerne un composé aromatique hydroxylé comprenant au moins un groupe alcoxy obtenu par le procédé de la présente invention. Le composé aromatique hydroxylé obtenu par le procédé de la présente invention contient certaines impuretés qui sont dérivées du procédé décrit dans la présente invention et, en particulier, dérivées de l’utilisation d’un solvant spécifique.  The process according to the present invention may further comprise a step (c) of shaping the composition obtained after step (a) or (b) in the form of an amorphous or crystallized powder, beads, pearls, pellets, granules or flakes. Another subject of the present invention relates to a hydroxyl aromatic compound comprising at least one alkoxy group obtained by the process of the present invention. The aromatic hydroxy compound obtained by the process of the present invention contains certain impurities which are derived from the process described in the present invention and, in particular, derived from the use of a specific solvent.

Claims

REVENDIC ATION S CLAIMING S
1. Procédé d’hydroxylation d’un composé aromatique comprenant au moins un groupe alcoxy comprenant une étape (a) de réaction dudit composé aromatique comprenant au moins un groupe alcoxy avec du peroxyde d’hydrogène en présence d’un catalyseur, dans un solvant comprenant de l’eau, un alcool ou un mélange d’alcools, dans lequel le catalyseur est une zéolite comprenant du titane et dans lequel l’alcool est choisi parmi les alcools ayant 1 à 6 atomes de carbone et comprenant un atome de carbone tertiaire ou quaternaire. A method of hydroxylating an aromatic compound comprising at least one alkoxy group comprising a step (a) of reacting said aromatic compound comprising at least one alkoxy group with hydrogen peroxide in the presence of a catalyst, in a solvent comprising water, an alcohol or a mixture of alcohols, wherein the catalyst is a zeolite comprising titanium and wherein the alcohol is selected from alcohols having 1 to 6 carbon atoms and comprising a tertiary carbon atom or quaternary.
2. Procédé selon la revendication 1 dans lequel la zéolithe est choisie dans le groupe constitué de MFI, MEL, TS-l, TS-2, Ti-MWW, TÎ-MCM68, et encore plus préférablement TS-l. The method of claim 1 wherein the zeolite is selected from the group consisting of MFI, MEL, TS-1, TS-2, Ti-MWW, T-MCM68, and even more preferably TS-1.
3. Procédé selon l’une quelconque des revendications 1 à 2, dans lequel l’alcool est choisi dans le groupe constitué de l’isopropanol, le 2,2-diméthylpropanol ou le tert-butanol. The process of any one of claims 1 to 2, wherein the alcohol is selected from the group consisting of isopropanol, 2,2-dimethylpropanol or tert-butanol.
4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel le solvant comprend un co-solvant choisi dans le groupe constitué de l’eau, l’acétone, l’acétonitrile, le l,4-dioxane ou un autre alcool, de préférence choisi parmi l’eau, le méthanol, l’éthanol, l’isopropanol, le n-propanol, le n-butanol ou le tert-butanol. The process according to any one of claims 1 to 3, wherein the solvent comprises a co-solvent selected from the group consisting of water, acetone, acetonitrile, 1,4-dioxane or another alcohol, preferably selected from water, methanol, ethanol, isopropanol, n-propanol, n-butanol or tert-butanol.
5. Procédé selon l’une quelconque des revendications 1 à 4 comprenant une étape additionnelle (b) de purification de la composition obtenue après l’étape (a). 5. Method according to any one of claims 1 to 4 comprising an additional step (b) of purification of the composition obtained after step (a).
6. Procédé selon l’une quelconque des revendications 1 à 5 comprenant une étape (c) de façonnage de la composition obtenue après l’étape (a) ou (b) sous la forme d’une poudre amorphe ou cristallisée, de billes, de perles, de pastilles, de granules ou de flocons. 6. Process according to any one of claims 1 to 5 comprising a step (c) of shaping the composition obtained after step (a) or (b) in the form of an amorphous or crystallized powder, beads, pearls, pellets, granules or flakes.
7. Composé aromatique hydroxylé comprenant au moins un groupe alcoxy obtenu par le procédé défini dans les revendications 1 à 6. A hydroxylated aromatic compound comprising at least one alkoxy group obtained by the process defined in claims 1 to 6.
EP18819106.8A 2017-12-15 2018-12-14 Process for the hydroxylation of an aromatic compound Pending EP3724160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1762235A FR3075198B1 (en) 2017-12-15 2017-12-15 PROCESS FOR HYDROXYLATION OF AN AROMATIC COMPOUND
PCT/EP2018/084932 WO2019115760A1 (en) 2017-12-15 2018-12-14 Process for the hydroxylation of an aromatic compound

Publications (1)

Publication Number Publication Date
EP3724160A1 true EP3724160A1 (en) 2020-10-21

Family

ID=61224124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18819106.8A Pending EP3724160A1 (en) 2017-12-15 2018-12-14 Process for the hydroxylation of an aromatic compound

Country Status (6)

Country Link
US (1) US20200369587A1 (en)
EP (1) EP3724160A1 (en)
JP (1) JP2021506830A (en)
CN (1) CN111542510A (en)
FR (1) FR3075198B1 (en)
WO (1) WO2019115760A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2071464A5 (en) 1969-12-30 1971-09-17 Rhone Poulenc Sa
IT1195029B (en) * 1980-09-09 1988-09-28 Anic Spa PROCEDURE FOR THE OXIDRILATION OF AROMATIC HYDROCARBONS
IT1187661B (en) * 1985-04-23 1987-12-23 Enichem Sintesi HIGH MECHANICAL RESISTANCE SILICON AND TITANIUM BASED CATALYST
US5426244A (en) * 1991-12-20 1995-06-20 Mitsubishi Gas Chemical Company, Inc. Method for preparing dihydric phenols
IT1296573B1 (en) * 1997-11-27 1999-07-14 Enichem Spa PROCEDURE FOR THE OXIDATION OF AROMATIC TO HYDROXYAROMATIC COMPOUNDS
FR2784672B1 (en) 1998-10-19 2000-12-29 Rhodia Chimie Sa PROCESS FOR THE PREPARATION OF MEL-TYPE TITANIUM SILICALITY, PRODUCT OBTAINED AND ITS APPLICATIONS IN CATALYSIS
FR2784671B1 (en) 1998-10-19 2001-01-12 Rhodia Chimie Sa PROCESS FOR THE PREPARATION OF A TITANOZEOSILITE OF THE MFI TYPE, PRODUCT OBTAINED AND ITS APPLICATIONS IN CATALYSIS
ATE453603T1 (en) * 2003-02-03 2010-01-15 Repsol Quimica Sa INTEGRATED PROCESS FOR THE SELECTIVE OXYDATION OF ORGANIC COMPOUNDS
FR2987046B1 (en) * 2012-02-17 2014-03-21 Rhodia Operations HYDROXYLATION PROCESS FOR AROMATIC COMPOUNDS, HYDROXYLATION CATALYST AND PROCESS FOR PREPARING THE SAME

Also Published As

Publication number Publication date
CN111542510A (en) 2020-08-14
FR3075198B1 (en) 2020-04-03
WO2019115760A1 (en) 2019-06-20
US20200369587A1 (en) 2020-11-26
JP2021506830A (en) 2021-02-22
FR3075198A1 (en) 2019-06-21

Similar Documents

Publication Publication Date Title
EP2760815B1 (en) Method for producing alkoxy-hydroxybenzaldehyde that is substantially free of alkyl-alkoxy-hydroxybenzaldehyde
EP2099739B1 (en) Method for the synthesis of (meth)acrylic esters catalysed by a polyol titanate.
EP2760816B1 (en) Method for producing alkoxyphenol and alkoxy-hydroxybenzaldehyde
FR2630734A1 (en) PROCESS FOR THE PREPARATION OF DIHYDROXYBENZENES
EP0770051B1 (en) Aromatic ether acylation process
EP1625108B1 (en) Separation of a diacetal of glyoxal by means of counter-current liquid-liquid extraction
FR2486072A1 (en) PROCESS FOR THE PRODUCTION OF B-HYDROXYBUTYRIC ACID AND ITS OLIGOCONDENSATES
EP3724160A1 (en) Process for the hydroxylation of an aromatic compound
CA1082738A (en) Process for the preparation of 3,5,5-trimethyl-2- cyclohexene-1,4-dione
FR2984313A1 (en) PROCESS FOR THE PREPARATION OF A MIXTURE OF ALCOHOLS
FR2984312A1 (en) PROCESS FOR THE PREPARATION OF A MIXTURE OF ALCOHOLS
EP4423053A1 (en) Improved method for producing high-purity butyl acrylate
WO2015059401A1 (en) Use of alkane sulphonic acid for preparing phenolic alcohol
EP0172761B1 (en) Process for the preparation of pure hydrates of fluoral and hexafluoroacetone from hemiacetals
CA2886790A1 (en) Method for processing fluoric acid
FR3067348B1 (en) COMPOSITIONS COMPRISING HYDROQUINONE AND CATECHOL, PROCESS FOR PREPARING THESE COMPOSITIONS
CA1251468A (en) Process for synthesizing 2,2,2-trifluoro-ethanol
WO2019106142A1 (en) Compositions comprising 4-alkoxyphenol and 2-alkoxyphenol, and process for producing same
WO2021116608A1 (en) Process for the continuous preparation of heavy alkyl acrylates
WO2020234123A1 (en) Process for the purification of eugenol and novel compositions comprising eugenol
EP3902782A1 (en) Purification of alkyl hydroperoxide by distillation in the presence of methanol and water
FR2728565A1 (en) PROCESS FOR THE PRODUCTION OF ALCOXY-SUBSTITUTED TRIPHENYLAMINES
CH322989A (en) A process for the preparation of a dimethyl acetal of a B-keto-aldehyde.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHODIA OPERATIONS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SPECIALTY OPERATIONS FRANCE