EP3717435A1 - Isosorbidderivate als reaktive zusätze in reaktivharzen und chemischen dübeln - Google Patents

Isosorbidderivate als reaktive zusätze in reaktivharzen und chemischen dübeln

Info

Publication number
EP3717435A1
EP3717435A1 EP18799570.9A EP18799570A EP3717435A1 EP 3717435 A1 EP3717435 A1 EP 3717435A1 EP 18799570 A EP18799570 A EP 18799570A EP 3717435 A1 EP3717435 A1 EP 3717435A1
Authority
EP
European Patent Office
Prior art keywords
reactive resin
component
reactive
dianhydrohexitol
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18799570.9A
Other languages
English (en)
French (fr)
Inventor
Jens Bunzen
Thomas Bürgel
Beate GNAß
Gerald Gaefke
Klaus Jaehnichen
Brigitte Voit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilti AG
Original Assignee
Hilti AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti AG filed Critical Hilti AG
Publication of EP3717435A1 publication Critical patent/EP3717435A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/16Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/06Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
    • C04B40/0666Chemical plugs based on hydraulic hardening materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00715Uses not provided for elsewhere in C04B2111/00 for fixing bolts or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages

Definitions

  • the present invention relates to a reactive resin with a vinyl ester resin based on renewable raw materials, in particular a dianhydrohexitol-based vinyl ester resin as a base resin, a reactive resin containing this reactive resin component and their use for chemical attachment.
  • base resins usually vinyl ester resins and in particular Vinylesterurethanharze be used in conventional reactive resins and reactive resin components, the by reaction of monomeric or polymeric aromatic diisocyanates and hydroxy-substituted methacrylates, such as hydroxyalkyl methacrylate.
  • EP 0 713 015 B1 describes dowel compositions comprising unsaturated polyester resins, vinyl ester resins including vinyl ester urethane resins as base resins.
  • DE 10 201 1017 626 B4 also describes vinyl ester urethane resins.
  • the raw materials for the base resins in such systems come from classical petroleum chemistry, in which the raw materials from fossil sources such as crude oil, are obtained.
  • DE 10 2014 103 923 A1 describes, for example, reactive resin components to which biogenic fillers, such as, for example, flours of kernels or shells of known fruits (walnuts, cherries, olives) or of plant fibers, lignins, tannins, polysaccharides or sugar have been added to increase the biogenic fraction.
  • biogenic fillers such as, for example, flours of kernels or shells of known fruits (walnuts, cherries, olives) or of plant fibers, lignins, tannins, polysaccharides or sugar have been added to increase the biogenic fraction.
  • the reactive components of the described resin compositions are based on fossil fuels.
  • base resins and reactive diluents which are available from biogenic raw materials.
  • One class of biogenic monomer components for polymers that has recently attracted great scientific and technical interest is the dianhydrohexitols, and particularly isosorbide.
  • the present invention was not only based on the idea to replace components of multicomponent reactive resin systems derived from fossil sources in whole or in part by sugars which have been functionalized with one or more (meth) acrylate group (s) to form a higher proportion of biogenic resins. Rather, the invention had the goal of finding a biogenic reactive resin whose curing behavior is comparable to the fossil reactive resins. In addition, a reactive resin component of the biogenic reactive resin should have an acceptable failure composite stress.
  • This object is achieved by using a (meth) acrylate based on a dianhydrohexitol derivative, in particular a dianhydrohexitol bis-glycidyl ether.
  • a (meth) acrylate based on a dianhydrohexitol derivative in particular a dianhydrohexitol bis-glycidyl ether.
  • This has the advantage that it is possible to resort to starting compounds for the synthesis of the reactive resin components, which can be obtained in sufficient quantity and quality from renewable raw materials.
  • functionalized dianhydrohexitol compounds which are obtainable by reacting a dianhydrohexitol bis-glycidyl ether with (meth) acrylic acid have proven to be advantageous in the context of the present invention. As the experiments described here in the examples show, such compounds have a good curing profile.
  • Compounds contain, in an acceptable range.
  • “Sugar” is a saccharide, in particular a monosaccharide, preferably an aldose or ketose.
  • pentoses or hexoses are preferably used for the further sugar compounds.
  • the sugar in the other sugar compounds may, unless stated otherwise, be used in its open-chain form or, if such a form exists, in its cyclic form.
  • a furanose or pyranose, ie the cyclic hemiacetal or acetal of a hexose is preferably used as sugar in the further sugar compound.
  • a sugar methacrylate is preferred as a further sugar compound.
  • sugar derivative means a derivative of a sugar, in particular a derivative derived from a sugar by reduction or dehydration.
  • the sugar derivatives also include the dianhydrohexitols present in the dianhydrohexitol compounds used according to the invention, which, however, are to be described below;
  • Base resin means a usually solid or highly viscous radically polymerizable resin which cures by polymerization (e.g., after addition of an initiator in the presence of an accelerator);
  • Reactive resin masterbatch the reaction product of the reaction for the preparation of the base resin, ie typically a mixture of base resin, stabilizer and further constituents of the reaction mixture;
  • HezinharZ' is a mixture of a reactive resin masterbatch, an accelerator and an inhibitor (also referred to as an accelerator-inhibitor system) Reactive diluents and optionally further additives;
  • the reactive resin is typically liquid or viscous and can be further processed to a reactive resin component;
  • “Inhibitor” or “polymerization inhibitor” means a substance which suppresses unwanted radical polymerization during the synthesis or storage of a resin or a resin-containing composition (these substances are also referred to in the art as “stabilisato”) or a radical polymerization of a resin after addition of an initiator (usually in conjunction with an accelerator) delayed in time (these substances are also referred to in professional circles as “inhibitor” - the meaning of the term is derived from the context);
  • Initiator means a substance that forms (usually in combination with an accelerator) reaction-initiating radicals
  • “Accelerator” means a reagent which reacts with the initiator such that larger amounts of free radicals are already generated by the initiator at low temperatures, and / or which catalyzes the decomposition reaction of the initiator;
  • Reactive diluents liquid or low viscosity monomers and base resins which dilute other base resins or the reactive resin masterbatch and thereby impart the viscosity necessary for their application, contain functional groups capable of reacting with the base resin, and predominantly constituents in the polymerization (curing) the hardened mass (eg of the mortar); Reactive diluents are also called co-polymerisable monomer;
  • Reactive resin component means a liquid or viscous mixture of reactive resin and fillers and optionally further components, e.g. additives; typically, the reactive resin component is one of the two components of a two component reactive resin system for chemical attachment;
  • Hardener component means a composition containing an initiator for the polymerization of a base resin; the hardener component may be solid or liquid and in addition to the initiator, a solvent and fillers and / or Contain additives; typically the hardener component, in addition to the reactive resin component, is the other of the two components of a two component reactive resin chemical attachment system;
  • two-component system or “two-component reactive resin system” a reactive resin system comprising two separately stored components, a reactive resin component (A) and a hardener component (B), so that a hardening of the contained in the reactive resin component Base resin takes place only after mixing the two components;
  • multi-component system or “multi-component reactive resin system” a reactive resin system comprising a plurality of separately stored components, including a reactive resin component (A) and a curing agent component (B), so that a curing of the in the reactive resin component Base resin contained takes place only after mixing all components; that the "methacrylic ... / ... methacryl " - as well as the “Acrylic ... /...acrylic” compounds should be meant; preferred in the present invention are "methacrylic ... / ... methacrylic”compounds;
  • the terms “include”, “include” and “include” mean the term “consist of” - “approximately” or “approximately” or “approximately” before a numerical value, a range of ⁇ 5% of this value, preferably ⁇ 2% of this value, more preferably! 1% of this value, more preferably ⁇ 0% of this value (ie exactly this value);
  • a number-limited range e.g., "from 100 ° C to 120 ° C"
  • the two vertices and each value within that range are disclosed individually.
  • a first subject of the invention relates to a reactive resin comprising at least one dianhydrohexitol compound of the formula (I),
  • R represents a hydrogen atom or a methyl group
  • X represents a dianhydrohexitol
  • L independently represent a bridging Ci-Cs-alkylene group which may be unsubstituted or hydroxy-substituted
  • n may be 1 to 5.
  • the inventors have succeeded, based on a dianhydrohexitol compound of the formula (I), to provide a component which can be used as a base resin or as a reactive diluent, can be prepared from renewable raw materials and has an acceptable curing time.
  • the reactive resin of the invention comprises at least one dianhydrohexitol compound of the formula (I), wherein X is a dianhydrohexitol.
  • Dianhydrohexitols are by-products of the starch industry and are thus obtained from renewable raw material compounds. They are obtainable, for example, by dehydrogenation of D-hexitols, which in turn are obtainable by simple reduction from hexose sugars. The dianhydrohexitols are thus chiral products obtainable from biomass.
  • the dianhydrohexitols used as the starting compound for the compound of the formula (I) may thus be an isosorbide, isomannide or isoidide or a mixture of these dianhydrohexitols.
  • the term dianhydrohexitols is understood to mean the particular discrete compound as well as any desired mixture of the various individual compounds.
  • the isosorbide is the most widely used, it is preferably used as the starting compound for the dianhydrohexitol compounds of the present invention.
  • the dianhydrohexitols described herein typically contain one or more stereocenters.
  • dianhydrohexitols used in the invention are advantageously biogenic dianhydrohexitols, they typically have the same stereochemistry as their natural precursors, e.g. D-isosorbide has the same stereochemistry as its natural precursor D-glucose. When no stereochemistry is given below, stereochemistry is typically natural stereochemistry. However, the use of sugars, sugar derivatives or dianhydrohexitols with non-natural stereochemistry is also possible.
  • the dianhydrohexitol compounds used according to the invention preferably contain a dianhydrohexitol selected from the group consisting of isosorbide, isomannide and isoidide or a mixture of two or more of these compounds.
  • the dianhydrohexitol compounds used according to the invention particularly preferably contain isosorbide or a mixture of isosorbide and one or more other dianhydrohexitols.
  • the dianhydrohexitol compounds of the formula (I) contain at least one (meth) acrylic ester group which is linked to the dianhydrohexitol X via a bridging alkylene group L which may be unsubstituted or hydroxy-substituted.
  • the dianhydrohexitol X is etherified at least one, more preferably at all hydroxyl groups with the bridging alkylene group L, which is esterified with at least one (meth) acrylic ester group.
  • the dianhydrohexitol compounds according to the invention without the stereochemistry on the chiral carbon atoms are preferably a compound of the formula (Ia)
  • the dianhydrohexitol X is isosorbide.
  • the dianhydrohexitol compound according to the invention is preferably a compound of the formula (Ib)
  • the bridging alkylene group L is according to the invention a Cr Ce-alkylene group which may be unsubstituted or hydroxy-substituted.
  • the bridging alkylene group L is a C 2 -C 6 - alkylene group, more preferably a ß C -Cs-alkylene. According to a special In the preferred embodiment, the bridging alkylene group L is a C3-alkylene group.
  • the bridging alkylene group L may be unsubstituted or hydroxy-substituted. Preferably, the bridging alkylene group is hydroxy-substituted. Accordingly, the bridging alkylene group L is preferably substituted by at least one hydroxy group.
  • the bridging alkylene group L is a C ⁇ -alkylene group which is substituted by at least one hydroxyl group, particularly preferably by a hydroxy group.
  • the bridging alkylene group L preferably has the following structure:
  • the L groups may be different from each other, but are preferably the same.
  • the substituent R is preferably a methyl group.
  • the parameter n preferably has values in the range from 1 to 3, more preferably 1 to 2. Particularly preferably, the parameter n has the value 1.
  • the dianhydrohexitol compound used according to the invention thus preferably has the following structure without specifying the stereochemistry on the chiral carbon atoms:
  • the starting material for the dianhydrohexitol compounds according to the invention is preferably a dianhydrohexitol bis-glycidyl ether of the following structure:
  • WO 2010/040464 describes the synthesis of isosorbide-bis-glycidyl ether by reacting isosorbide with epichlorohydrin.
  • a dianhydrohexitol bis-glycidyl ether is reacted with (meth) acrylic acid in the presence of a catalyst to synthesize the dianhydrohexitol compound.
  • the catalyst is a quaternary ammonium halide, more preferably tetraethylammonium bromide.
  • the dianhydrohexitol compounds according to the invention typically also contain residues of non-esterified or only monoesterified dianhydrohexitol bis-glycidyl ether.
  • the dianhydrohexitol compounds according to the invention can also contain small amounts of non-epoxidized or only epoxidized dianhydrohexitol, which in the reaction with (meth) acrylic acid is converted to dianhydrohexitol di (meth) acrylate or dianhydrohexitol (meth) acrylate.
  • the dianhydrohexitol compounds according to the invention may contain impurities of the following structures:
  • the reactive resin of the invention preferably contains up to 70% by weight, more preferably up to 60% by weight, even more preferably up to 30% by weight, even more preferably up to 12% by weight, especially preferably up to 10% by weight of the at least one dianhydrohexitol compound of the formula (I), based on the total weight of the reactive resin.
  • the reactive resin according to the invention preferably comprises at least one co-polymerisable monomeric compound which carries at least two (meth) acrylate groups.
  • Suitable co-polymerizable monomeric compounds are, for example
  • Vinylesterharze which have unsaturated groups only in the terminal position. These are obtained, for example, by reacting epoxide monomers, oligomers or polymers (for example bisphenol A digylcidyl ether, epoxides of the phenol novolak type or epoxide oligomers based on tetrabromobisphenol A) with, for example, (meth) acrylic acid or ( Meth) acrylamide obtained.
  • Preferred vinyl ester resins are (meth) acrylate-functionalized resins and resins obtained by reacting an epoxy monomer, oligomer or polymer with methacrylic acid or methacrylamide, preferably with methacrylic acid. Examples of such compounds are known from applications US 3 297 745 A, US 3 772 404 A, US 4 618 658 A, GB 2 217 722 A1, DE 37 44 390 A1 and DE 41 31 457 A1.
  • Particularly suitable and preferred vinyl ester resins are (meth) acrylate-functionalized resins which are obtained, for example, by reaction of difunctional and / or higher-functional isocyanates with suitable acrylic compounds, if appropriate with the participation of Hydroxy compounds containing at least two hydroxyl groups, as described for example in DE 3940309 A1, are obtained.
  • isocyanates it is possible to use aliphatic (cyclic or linear) and / or aromatic di- or higher-functional isocyanates or prepolymers thereof.
  • the use of such compounds serves to increase the wettability and thus the improvement of the adhesion properties.
  • tolylene diisocyanate (TDI), diisocyanatodiphenylmethane (MDI) and polymeric diisocyanatodiphenylmethane (pMDl) can be mentioned to increase chain stiffening and hexane diisocyanate (HDI) and isophorone diisocyanate (IPDI) which improve flexibility, of which polymeric diisocyanatodiphenylmethane (pMDl) is most preferred ,
  • Suitable acrylic compounds are acrylic acid and acrylic acid substituted on the hydrocarbon radical, such as methacrylic acid, hydroxyl-containing esters of acrylic or methacrylic acid with polyhydric alcohols, pentaerythritol tri (meth) acrylate, glycerol di (meth) acrylate, such as trimethylolpropane di (meth) acrylate, neopentyl glycol mono (meth) acrylate , Preference is given to acrylic or methacrylic acid hydroxyalkyl esters, such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, polyoxyethylene (meth) acrylate, polyoxypropylene (meth) acrylate, especially since such compounds serve steric hindrance of the saponification reaction.
  • methacrylic acid such as methacrylic acid, hydroxyl-containing esters of acrylic or methacrylic acid with polyhydric alcohols, pentaerythritol
  • hydroxy compounds are suitable dihydric or higher alcohols, such as derivatives of ethylene or propylene oxide, such as ethanediol, di- or triethylene glycol, propanediol, dipropylene glycol, other diols, such as 1, 4-butanediol, 1, 6-hexanediol, Neopentyl glycol, diethanolamine, further bisphenol A or F or their ethoxylation / propoxylation and / or hydrogenation or halogenation products, higher alcohols such as glycerol, trimethylolpropane, hexanetriol and pentaerythritol, hydroxyl-containing polyethers, for example oligomers of aliphatic or aromatic oxiranes and / or higher cyclic ethers, such as ethylene oxide, propylene oxide, styrene oxide and furan, polyethers containing aromatic structural units in the main chain, such as those of bisphenol A or F, hydroxyl
  • hydroxy compounds having aromatic structural units for chain-stiffening the resin hydroxy compounds containing unsaturated structural units, such as fumaric acid, for increasing the crosslinking density
  • hydroxy compounds containing unsaturated structural units such as fumaric acid
  • branched or star-shaped hydroxy compounds in particular trihydric or higher alcohols and / or polyethers or polyesters, containing the structural units, branched or star-shaped urethane (meth) acrylates to achieve lower viscosity of the resins or their solutions in reactive diluents and higher reactivity and crosslinking density.
  • the vinyl ester resin is a reaction product of diisocyanatodiphenylmethane (MDI), hydroxypropyl (meth) acrylate, and dipropylene glycol.
  • MDI diisocyanatodiphenylmethane
  • hydroxypropyl (meth) acrylate hydroxypropyl (meth) acrylate
  • dipropylene glycol dipropylene glycol
  • the reactive resin according to the invention preferably contains up to 99.0% by weight, more preferably 70.0 to 95.0% by weight, even more preferably 80.0 to 94.0% by weight, particularly preferably 85.0 to 90.0% by weight of the co-polymerisable monomeric compound, based on the total weight of the reactive resin.
  • the reactive resin according to the invention preferably contains up to 70 wt .-%, more preferably up to 60 wt .-%, even more preferably up to 30 wt .-%, even more preferably up to 12 wt .-%, particularly preferably up to 10% by weight of the at least one dianhydrohexitol compound of the formula (I) and up to 99.0% by weight, more preferably 70.0 to 95.0% by weight, even more preferably 80.0 to 94.0% by weight, particularly preferably 85.0 to 90.0 wt .-% of the co-polymerizable monomeric compound, based on the total weight of the reactive resin.
  • Reactive resins are generally prepared by the required for the preparation of the base resin starting compounds optionally together with catalysts and solvents, in particular reactive diluents, placed in a reactor and reacted with each other. After completion of the reaction and optionally already at the beginning of the reaction are added to the Reaction mixture polymerization inhibitors for storage stability, whereby the so-called resin masterbatch is obtained.
  • accelerators for curing the base resin optionally further polymerization inhibitors, which may be identical or different from the polymerization inhibitor for storage stability, for adjusting the gel time, and optionally further solvent, in particular reactive diluents, are added to the resin masterbatch, giving the reactive resin .
  • This reactive resin is added to adjust various properties, such as rheology and the concentration of the base resin, with inorganic and / or organic additives, whereby a reactive resin component is obtained.
  • a preferred reactive resin accordingly contains at least one base resin, at least one reactive diluent and at least one polymerization inhibitor.
  • a reactive resin component contains, in addition to the reactive resin just described inorganic and / or organic additives, with inorganic additives are particularly preferred, as described in more detail below.
  • the reactive resin contains further low-viscosity, free-radically polymerizable compounds, preferably those which are obtainable from renewable raw materials, as reactive diluents, in order to adjust the viscosity of the vinyl ester urethane resins or the precursors during their preparation, if necessary.
  • the reactive resin contains further low-viscosity, free-radically polymerizable compounds, preferably those which are obtainable from renewable raw materials, as reactive diluents, in order to adjust the viscosity of the vinyl ester urethane resins or the precursors during their preparation, if necessary.
  • the reactive resin may contain any suitable reactive diluent.
  • the reactive resin contains as reactive diluents an aliphatic or aromatic C 5 -C 5 - (meth) acrylic acid ester, more preferably (meth) acrylic esters being selected from the group consisting of hydroxypropyl (meth) acrylate, 1,2-ethanediol di (meth) acrylate , 1,3-Propanediol di (meth) acrylate, 1,2-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, phenethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, ethyltriglycol (meth) acrylate, / V, / V-dimethylaminoethyl (meth) acrylate, L
  • the reactive resin according to the invention contains 5.0 to 50.0 wt .-%, more preferably 10.0 to 30.0 wt .-%, even more preferably 15.0 to 25.0 wt .-%, particularly preferably 18.0 to 20.0 wt .-% of the reactive diluent, based on the total weight of the reactive resin.
  • the reactive resin according to the invention preferably contains up to 70 wt .-%, more preferably up to 60 wt .-%, even more preferably up to 30 wt .-%, even more preferably up to 12 wt .-%, particularly preferably up to 10% by weight of the at least one dianhydrohexitol compound of the formula (I) and up to 99.0% by weight, more preferably 70.0 to 95.0% by weight, even more preferably 80.0 to 94.0% by weight, particularly preferably 85.0 to 90.0% by weight of the co-polymerizable monomeric compound and 5.0 to 50.0% by weight, more preferably 10.0 to 30.0% by weight, even more preferably 15.0 to 25.0% by weight, particularly preferably 18.0 to 20.0% by weight of the reactive diluent, based on the total weight of the reactive resin.
  • the reactive resin may contain a polymerization inhibitor.
  • the polymerization inhibitor is preferably in an amount of 0.0005 to 2% by weight, more preferably 0.01 to 1 part by weight. %, based on the total weight of the reactive resin.
  • the reactive resin may additionally contain 0.005 to 3% by weight, preferably 0.05 to 1% by weight, of a polymerization inhibitor.
  • Suitable polymerization inhibitors according to the invention are the polymerization inhibitors customarily used for free-radically polymerizable compounds, as are known to the person skilled in the art.
  • reactive resin and reactive resin components usually contain polymerization inhibitors such as hydroquinone, substituted hydroquinones, e.g. 4-methoxyphenol, phenothiazine, benzoquinone or tert-butyl catechol, as described for example in EP 1935860 A1 or EP 0965619 A1, stable nitroxyl radicals, also called N-oxyl radicals, such as piperidinyl-N-oxyl or tetrahydropyrrole N-oxyl, as For example, described in DE 19531649 A1. Particularly preferred is 4-hydroxy-2, 2,6,6-tetramethylpiperidine-N-oxyl (also referred to as TEMPOL) used for stabilization, which has the advantage that it can be used to adjust the gel time.
  • polymerization inhibitors such as hydroquinone, substituted hydroquinones, e.g. 4-methoxyphenol, phenothiazine, benzoquinone or tert-butyl catechol, as described for example in EP 1935
  • the polymerization inhibitors are selected from phenolic compounds and non-phenolic compounds such as stable radicals and / or phenothiazines.
  • phenols which are often constituents of commercial free radical curing reactive resins, are phenols, such as 2-methoxyphenol, 4-methoxyphenol, 2,6-di-fe / f-butyl-4-methylphenol, 2,4-di-Fe / f-butylphenol, 2,6-di-tert-butylphenol, 2,4,6-trimethylphenol, 2,4,6-tris (dimethylaminomethyl) phenol, 4,4'-thio bis (3-methyl-6-fe / f-butylphenol), 4,4'-isopropylidenediphenol, 6,6'-di-Fe / f-butyl-4,4'-bis (2,6-di-Fe / f-butylphenol), 1, 3, 5-trimethyl-2,4,6-tris (3,5-di-fe / f-butyl-4-hydroxybenzyl) benzene, 2,2'-methylene-di-p-
  • Suitable stable / V-oxyl radicals can be chosen from 1-oxyl-2,2,6,6-tetramethylpiperidine, 1-oxyl-2,2,6,6-tetramethylpiperidin-4-ol (also referred to as TEMPOL).
  • 1 -Oxyl-2,2,6,6-tetramethylpiperidin-4-one also referred to as TEMPON
  • 1 -Oxyl-2,2,6,6-tetramethyl-4-carboxy-piperidine also as 4-carboxy TEMPO
  • 1 -Oxyl-2,2,5,5-tetramethylpyrrolidine 1 -Oxyl-2, 2,5, 5-tetramethyl-3-carboxylpyrrolidine (also referred to as 3-carboxy-PROXYL)
  • aluminum-N - Nitrosophenylhydroxylamin, diethylhydroxylamine are selected, as described in DE 199 56 509.
  • suitable / V-oxyl compounds are oximes such as acetaldoxime, acetone oxime, methyl ethyl ketoxime, salicyloxime, benzoxime, glyoximes, dimethylglyoxime, acetone-O- (benzyloxycarbonyl) oxime, and the like.
  • oximes such as acetaldoxime, acetone oxime, methyl ethyl ketoxime, salicyloxime, benzoxime, glyoximes, dimethylglyoxime, acetone-O- (benzyloxycarbonyl) oxime, and the like.
  • oximes such as acetaldoxime, acetone oxime, methyl ethyl ketoxime, salicyloxime, benzoxime, glyoximes, dimethylglyoxime, acetone-O- (benzyloxycarbonyl) oxime, and the like.
  • pyrimidinol or pyridinol compounds
  • the polymerization inhibitors may be used either alone or in combination of two or more, depending on the desired properties and the use of the reactive resin.
  • the combination of the phenolic and non-phenolic inhibitors thereby allows a synergistic effect, such as a substantially drift-free adjustment of the gel time of the reactive resin.
  • the reactive resin according to the invention more preferably consists of, up to 70 wt .-%, more preferably up to 60 wt .-%, even more preferably up to 30 wt%, even more preferably up to 12 wt .-% , more preferably up to 10% by weight of the at least one dianhydrohexitol compound of the formula (I) and up to 99.0% by weight, more preferably 70.0 to 95.0% by weight, even more preferably 80.0 to 94.0% by weight , particularly preferably 85.0 to 90.0 wt .-% of the co-polymerizable monomeric compound and 5.0 to 50.0 wt .-%, more preferably 10.0 to 30.0 wt .-%, even more preferably 15.0 to 25.0 wt .-%, particularly preferably 18.0 bis 20.0 wt .-% of the reactive diluent and 0.0005 to 2 wt .-%, more preferably 0.01 to 1
  • the curing of the resin component is initiated with a free radical initiator, such as a peroxide.
  • a free radical initiator such as a peroxide.
  • an accelerator can additionally be used.
  • Accelerators usually added to the reactive resin are known to those skilled in the art. These are, for example, amines, preferably tertiary amines and / or metal salts. Suitable amines are selected from the following compounds, which are described, for example, in the application US 2011071234 A1: dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-propylamine, isopropylamine, diisopropylamine, triisopropylamine , n-butylamine, isobutylamine, tert-butylamine, di-n-butylamine, diisobutylamine, tri-isobutylamine, pentylamine, isopentylamine, diisopentylamine, hexylamine, octylamine, dodecylamine, laurylamine, ste
  • Preferred amines are aniline derivatives and N, N-bisalkylarylamines, such as N, N, -dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N, N-bis (hydroxyalkyl) -aryl amines, N, N-bis (2-hydropoxyethyl) anilines, N, N-bis (2-hydroxyethyl) toluidine, N, N-bis (2-hydroxypropyl) aniline, N, N-bis (2-hydroxypropyl) toluidine, N, N- Bis (3-methacryloyl-2-hydroxypropyl) -p-toluidine, N, N-dibutoxyhydroxypropyl-p-toluidine and 4,4'-bis (dimethylamino) diphenylmethane.
  • N, N-bisalkylarylamines such as N, N, -dimethylaniline, N, N-dieth
  • Polymeric amines such as those obtained by polycondensation of N, N-bis (hydroxylalkyl) aniline with dicarboxylic acids or by polyaddition of ethylene oxide to these amines, are also suitable as accelerators.
  • Suitable metal salts are, for example, cobalt octoate or cobalt naphthenoate as well as vanadium, potassium, calcium, copper, manganese or zirconium carboxylate.
  • an accelerator it is used in an amount of from 0.01 to 10% by weight, preferably from 0.2 to 5% by weight, based on the total weight of the reactive resin.
  • Another object of the present invention is the use of the above-described reactive resin for chemical attachment of an anchoring agent in a borehole.
  • the anchoring means is made of steel or iron.
  • the borehole is a borehole in mineral or metallic substrate, preferably a substrate selected from the group consisting of concrete, aerated concrete, brickwork, sand-lime brick, sandstone, natural stone, glass and steel.
  • Another object of the invention is a reactive resin component containing in addition to the reactive resin just described inorganic and / or organic additives, such as fillers and / or other additives.
  • the proportion of the reactive resin in the reactive resin component is preferably 10 to 60% by weight, more preferably 20 to 35% by weight, based on the total weight of the reactive resin component. Accordingly, the proportion of the additives is preferably 90 to 40 wt .-%, more preferably 80 to 65 wt .-%, based on the total weight of the reactive resin component.
  • Fillers are customary fillers, preferably mineral or mineral-like fillers, such as quartz, glass, sand, quartz sand, quartz flour, porcelain, corundum, ceramics, talc, silicic acid (eg fumed silica), silicates, clay, titanium dioxide, chalk, barite , Feldspar, basalt, aluminum hydroxide, granite or sandstone, polymeric fillers, such as thermosets, hydraulically hardenable fillers, such as gypsum, quicklime or cement (for example, alumina or Portland cement), metals, such as aluminum, carbon black, furthermore wood, mineral or organic fibers, or the like, or mixtures of two or more thereof, which may be added as a powder, in a granular form or in the form of shaped articles, use.
  • mineral or mineral-like fillers such as quartz, glass, sand, quartz sand, quartz flour, porcelain, corundum, ceramics, talc, silicic acid (eg fumed silica), si
  • the fillers may be in any form, for example as a powder or flour or as a shaped body, for.
  • a powder or flour or as a shaped body, for.
  • the globular, inert substances (spherical form) have a preferential and more pronounced strengthening effect.
  • Fillers are present in the respective component preferably in an amount of up to 90, in particular 3 to 85, especially 5 to 70 wt .-% present.
  • additives are thixotropic agents, such as optionally organically aftertreated fumed silica, bentonites, alkyl and methylcelluloses, castor oil derivatives or the like, plasticizers, such as phthalic or sebacic acid esters, stabilizers, antistatic agents, thickeners, flexibilizers, curing catalysts, rheology aids, wetting agents, coloring additives, such as dyes or in particular pigments, for example for different staining of the components for better control of their mixing, or the like, or mixtures of two or more thereof possible.
  • Non-reactive diluents (solvents) may also be present, preferably in an amount of up to 30% by weight, based on the particular component (reactive resin component, hardener component), for example from 1 to 20% by weight, such as
  • Lower alkyl ketones e.g., acetone, di-lower alkyl-lower alkanoylamides, such as dimethylacetamide, lower alkylbenzenes, such as xylenes or toluene, phthalic acid esters or paraffins, or water.
  • the reactive resin component according to the invention is formulated as a two-component or multi-component system, in particular a two-component system, wherein the reactive resin component and the hardener component are arranged so as to be reaction-inhibiting.
  • Another object of the present invention is a
  • a two-component system comprising the above-described reactive resin component and a hardener component.
  • component A contains the reactive resin component and a second component, component B contains the curing agent. This ensures that the curable compounds and the hardener component are mixed together just prior to use and trigger the curing reaction.
  • the hardener component contains the curing agent for initiating the polymerization (curing) of the resin component.
  • a radical initiator preferably a peroxide.
  • All peroxides which are known to the person skilled in the art and are used for curing vinyl ester resins can be used according to the invention for curing the dianhydrohexitol-based vinyl ester urethane resins.
  • Such peroxides include organic and inorganic peroxides, either liquid or solid, with hydrogen peroxide also being used.
  • Suitable peroxides are peroxycarbonates (of the formula -OC (O) OO-), peroxyesters (of the formula -C (O) OO-), diacyl peroxides (of the formula -C (0) 00C (0) -), dialkyl peroxides (of the formula -OO-) and the like. These may be present as oligomer or polymer. A comprehensive set of examples of suitable peroxides is described, for example, in application US 2002/0091214-A1, paragraph [0018].
  • the peroxides are preferably selected from the group of organic peroxides.
  • Suitable organic peroxides are: tertiary alkyl hydroperoxides such as tert-butyl hydroperoxide and other hydroperoxides such as cumene hydroperoxide, peroxyesters or peracids such as tert-butyl peresters, benzoyl peroxide, peracetates and perbenzoates, lauryl peroxide including (di) peroxyesters, perethers such as peroxy diethyl ether, perketones, such as methyl ethyl ketone peroxide.
  • the organic peroxides used as curing agents are often tertiary peresters or tertiary hydroperoxides, i. Peroxide compounds having tertiary carbon atoms bonded directly to an -O-O-acyl or -OOH- group. But mixtures of these peroxides with other peroxides can be used according to the invention.
  • the peroxides may also be mixed peroxides, i. Peroxides which have two different peroxide-carrying units in one molecule.
  • benzoyl peroxide (BPO) is preferably used for curing.
  • the hardener component of the two-component system further contains inorganic additives, wherein the additives are the same as can be added to the reactive resin component.
  • component A additionally contains, in addition to the reactive resin component, a hydraulically setting or polycondensable inorganic compound and component B, in addition to the curing agent, water.
  • a hydraulically setting or polycondensable inorganic compound cement for example Portland cement or aluminate cement, wherein iron oxide-free or low-iron cements are particularly preferred.
  • a hydraulically setting inorganic compound and gypsum can be used as such or in admixture with the cement.
  • polycondensable inorganic compound and silicate polycondensable compounds, in particular soluble, dissolved and / or amorphous silica containing substances can be used.
  • the two-component system preferably comprises component A and component B reaction-inhibiting separately in different containers, for example a multi-chamber device, such as a multi-chamber cartridge and / or cartridge, from which containers the two components by the action of mechanical forces or under pressure Gas pressure squeezed out and mixed.
  • a multi-chamber device such as a multi-chamber cartridge and / or cartridge
  • Another possibility is to package the two-component system as two-component capsules, which are introduced into the borehole and destroyed by blowing set the fastener with simultaneous mixing of the two components of the mortar composition.
  • a cartridge system or an injection system is used, in which the two components are pressed out of the separate containers and passed through a static mixer in which they are mixed homogeneously and then discharged via a nozzle, preferably directly into the borehole.
  • the reactive resin according to the invention, the reactive resin component and the two-component system are used primarily in the construction sector, for example for the repair of concrete, as polymer concrete, as a coating material based on synthetic resin or as cold-curing road marking. They are particularly suitable for the chemical attachment of anchoring elements, such as anchors, rebars, screws and the like, in boreholes, especially in boreholes in various substrates, especially mineral substrates, such as those based on concrete, aerated concrete, brick, limestone, sandstone, natural stone and the same.
  • Another object of the present invention is the use of the above-described reactive resin component for chemical attachment of an anchoring agent in a borehole.
  • the anchoring means is made of steel or iron.
  • the borehole is a borehole in mineral or metallic substrate, preferably a substrate selected from the group consisting of concrete, aerated concrete, brickwork, sand-lime brick, sandstone, natural stone, glass and steel.
  • TEABr tetraethylammonium bromide
  • the reactor was sealed, connected to a bubble counter and heated with stirring (500 U / min) to 100 ° C melt temperature.
  • the mass was stirred for a maximum of 6 h at 100 ° C.
  • the reaction of the epoxide groups was monitored by NMR. At the latest after 6 h, the reaction was stopped and the mass was cooled as quickly as possible to about 50 ° C and removed. If necessary, the reaction products can be removed from the reactor by adding a mixture of (2-hydroxypropyl) methacrylate (HPMA) (70 g) and Tempol (70 mg). The mass is ready for blending into reactive resins.
  • HPMA (2-hydroxypropyl) methacrylate
  • Tempol 70 mg
  • the Dianhydrohexitol compounds prepared in Example A1 were added to reactive resins and then examined their curing behavior.
  • the standard resin used here was a mixture of reactive resin masterbatch C1, hydroxypropyl methacrylate (HPMA), the commercial reactive diluent 1, 4-butanediol dimethacrylate (1,4-BDDMA), an aromatic amine (as accelerator for peroxide decomposition) and various stabilizers.
  • HPMA hydroxypropyl methacrylate
  • 1,4-BDDMA the commercial reactive diluent 1,4-BDDMA
  • an aromatic amine as accelerator for peroxide decomposition
  • various stabilizers To this reactive resin were added various amounts of the prepared dianhydrohexitol compounds.
  • the reactive resin component thus obtained was blended with benzoyl peroxide in a corresponding ratio (see Table 1).
  • a temperature sensor (K-type, 150 mm long 0 1, 5 mm) in the middle 2 cm deep immersed in the mixture. Since the ambient temperature was registered until the time of immersion of the sensors, the curve at the beginning of the measurement is not relevant, which is why the temperature-time curves were used for the analysis only from 100 seconds.
  • the temperature profile was recorded by means of the sensors connected to a Voltkraft Datalogger K202 (connected to PC). The maximum curve temperature (T max ) and the time at 35 ° C. were read as results in the curve (schematic evaluation shown in FIG. 1). There were 3 duplicate determinations per system.
  • T max comparable to the reference (a measure of the heat of polymerization released during curing) indicates the desired incorporation of the added reaction products into the forming network.
  • the percentages given in Table 2 for the addition of the new monomers in mol% are based on the proportion of 1, 4-BDDMA in the mixture. In these calculations, the number of double bonds in the new reactive diluent is taken into account so that there is always an approximately constant amount of reactive double bonds in the mixture.
  • Di-isopropanol-p-toluidine (DiPT; BASF SE), 4.6 g (0.23% by weight) of catechol (catechol flakes, RHODIA) and 1 g (0.05% by weight) of tert-butyl catechol ( tBBK, CFS EUROPE SpA (Borregaard Italia SpA)) and stirred until complete homogenization.
  • catechol catechol flakes, RHODIA
  • tBBK tert-butyl catechol
  • tBBK CFS EUROPE SpA (Borregaard Italia SpA)
  • the reactive resin components C5 and C6 were prepared as follows:
  • the mixing was carried out with a PC Laboratory System Dissolver of the type LDV 0.3-1 for 8 minutes (2 min: 2500 rpm, then 6 min: 3500 rpm, each at a pressure ⁇ 100 mbar) with a 55 mm dissolver disc and an edge scraper ,
  • the bond stresses of the two-component Reactive resin systems determined.
  • M12 anchor threaded studs were inserted into 14 mm diameter concrete C20 / 25 boreholes and 72 mm bore depth filled with the reactive resin component compositions.
  • the composite stresses were determined by centric extension of the Ankergewindeterrorism.
  • five anchor threaded rods were placed and after 24 hours of storage, the bond tension was determined.
  • the fixing compounds were pressed out of the cartridges via a static mixer (HIT-RE-M mixer; Hilti Aktiengesellschaft) and injected into the drilled holes.
  • Figure 1 shows a schematic representation of the evaluation of temperature-time curves
  • FIG. 2 shows the temperature-time curves measured in Example B.

Abstract

Die vorliegende Erfindung betrifft ein Reaktivharz mit einem Vinylesterharz auf Basis nachwachsender Rohstoffe, insbesondere mit einem Dianhydrohexitol-basierten Vinylesterharz als Basisharz, eine dieses Reaktivharz enthaltende Reaktivharzkomponente sowie deren Verwendung zur chemischen Befestigung.

Description

Isosorbidderivate als reaktive Zusätze in Reaktivharzen und chemischen Dübeln
BESCHREIBUNG
Die vorliegende Erfindung betrifft ein Reaktivharz mit einem Vinylesterharz auf Basis nachwachsender Rohstoffe, insbesondere einem Dianhydrohexitol-basierten Vinylesterharz als Basisharz, eine dieses Reaktivharz enthaltende Reaktivharzkomponente sowie deren Verwendung zur chemischen Befestigung.
Die Verwendung von chemischen Befestigungsmitteln auf Basis radikalisch härtbarer Reaktivharze ist seit langem bekannt. Im Bereich der Befestigungstechnik hat sich die Verwendung von Reaktivharzen als organisches Bindemittel für die chemische Befestigungstechnik, z.B. als Dübelmasse, durchgesetzt. Es handelt sich dabei um Verbundmassen, die als Mehrkomponenten-Systeme konfektioniert sind, wobei eine Komponente (die Reaktivharzkomponente) das Reaktivharz und die andere Komponente (die Härterkomponente) das Härtungsmittel enthält. Andere, übliche Bestandteile, wie beispielsweise Füllmittel, Beschleuniger, Stabilisatoren, Lösungsmittel und Reaktivverdünner, können in der einen und/oder der anderen Komponente enthalten sein. Durch Vermischen der beiden Komponenten wird dann durch Radikalbildung die Härtungsreaktion, d.h. die Polymerisation, in Gang gebracht und das Harz zum Duromeren gehärtet. Als Basisharze werden in konventionellen Reaktivharzen und Reaktivharzkomponenten üblicherweise Vinylesterharze und insbesondere Vinylesterurethanharze eingesetzt, die durch Reaktion von monomeren oder polymeren aromatischen Diisocyanaten und Hydroxy-substituierten Methacrylaten, wie Hydroxyalkylmethacrylat, erhältlich sind. Die EP 0 713 015 B1 beispielsweise beschreibt Dübelmassen mit ungesättigten Polyesterharzen, Vinylesterharzen einschließlich Vinylesterurethanharzen als Basisharze. Auch die DE 10 201 1 017 626 B4 beschreibt Vinylesterurethanharze. Die Rohstoffe für die Basisharze in derartigen Systemen stammen aus der klassischen Erdölchemie, bei der die Rohstoffe aus fossilen Rohstoffquellen, wie Erdöl, erhalten werden.
Es ist allgemein bekannt, dass die fossilen Rohstoffquellen, wie Erdöl, nicht unerschöpflich sind und irgendwann versiegen werden. Für den Fall, dass die Verfügbarkeit der fossilen Rohstoffquellen abnimmt, besteht die Gefahr, dass die Verbindungen, die für die hohen Anforderungen, die an die chemischen Befestigungssysteme gestellt werden, unerlässlich sind, unter Umständen nicht mehr erhältlich sind.
Daher besteht zukünftig Bedarf an alternativen Systemen auf Basis nachwachsender Rohstoffe mit einem hohen Anteil an Kohlenstoff aus nachwachsenden Rohstoffen, um auch in Zukunft weiterhin hoch spezialisierte chemische Befestigungssysteme bereitstellen zu können.
Eine Aufgabe der Erfindung liegt demnach darin, ein Reaktivharz für die chemische Befestigungstechnik bereitzustellen, dessen Harzkomponente ein Basisharz und ggf. weitere Bestandteile, wie Reaktivverdünner, enthält, die einen sehr hohen Anteil an Kohlenstoff aus nachwachsenden Rohstoffen aufweisen.
Die DE 10 2014 103 923 A1 beschreibt beispielsweise Reaktivharzkomponenten, welchen zur Erhöhung des biogenen Anteils biogene Füllstoffe wie z.B. Mehle von Kernen oder Schalen bekannter Früchte (Walnüsse, Kirschen, Oliven), oder von Pflanzenfasern, Ligninen, Tanninen, Polysacchariden oder Zucker zugesetzt wurden. Die reaktiven Komponenten der beschriebenen Harzzusammensetzungen basieren jedoch auf fossilen Rohstoffen. Somit besteht auch ein Bedarf an Basisharzen und Reaktivverdünnern, welche aus biogenen Rohstoffen erhältlich sind. Eine Klasse von biogenen Monomerbestandteilen für Polymere, die in jüngster Zeit großes wissenschaftliches und technisches Interesse geweckt hat, sind die Dianhydrohexitole, und insbesondere Isosorbid. Ausgangsmaterial für diese Verbindungen sind natürlich vorkommende Hexosen (für Isosorbid z.B. D-Glucose), welche zu den entsprechenden Alkoholen hydriert und anschließend über doppelte Dehydratisierung zweimal zyklisiert werden. Die Dianhydrohexitole besitzen dadurch zwei sekundäre Hydroxygruppen, welche sie zu einer vielseitig verwendbaren Plattformchemikalie aus nachwachsenden Rohstoffen machen.
Es sind bereits Polymere bekannt, in denen Dianhydrohexitole entweder direkt oder nach Funktionalisierung der Hydroxygruppen als Monomere eingesetzt werden. DE 10 2012 219 476 beschreibt ein oligomeres Dianhydrohexitol-basiertes Vinylesterurethanharz, welches in Reaktivharzkomponenten zur chemischen Befestigung eingesetzt werden kann.
Der vorliegenden Erfindung lag jedoch nicht nur der Gedanke zugrunde, Bestandteile von Mehrkomponenten-Reaktivharz-Systemen, die aus fossilen Quellen stammen, ganz oder teilweise durch Zucker zu ersetzen, die mit einer oder mehreren (Meth)acrylatgruppe(n) funktionalisiert wurden, um einen höheren Anteil an biogenen Harzen zu erzielen. Die Erfindung hatte vielmehr das Ziel, ein biogenes Reaktivharz zu finden, dessen Härtungsverhalten mit dem fossiler Reaktivharze vergleichbar ist. Außerdem sollte eine Reaktivharzkomponente aus dem biogenen Reaktivharz eine annehmbare Versagensverbundspannung aufweisen.
Diese Aufgabe wird gelöst, indem ein (Meth)acrylat auf Basis eines Dianhydrohexitolderivats, insbesondere eines Dianhydrohexitol-bis-glycidethers, verwendet wird. Dies hat den Vorteil, dass zur Synthese der Reaktivharz-Komponenten auf Ausgangsverbindungen zurückgegriffen werden kann, die in ausreichender Menge und Qualität aus nachwachsenden Rohstoffen erhalten werden können. Insbesondere funktionalisierte Dianhydrohexitol-Verbindungen, welche durch Umsetzung eines Dianhydrohexitol-bis-glycidethers mit (Meth)acrylsäure erhältlich sind, haben sich hierbei im Rahmen der vorliegenden Erfindung als vorteilhaft erwiesen. Wie die hier in den Beispielen beschriebenen Versuche zeigen, weisen solche Verbindungen ein gutes Härtungsprofil auf. Außerdem liegt die Versagensverbundspannung von Reaktivharzharzkomponenten, welche die funktionalisierten Dianhydrohexitol-
Verbindungen enthalten, in einem akzeptablen Bereich.
Zum besseren Verständnis der vorliegenden Erfindung werden die folgenden
Erläuterungen der hierin verwendeten Terminologie als sinnvoll erachtet. Im Sinne der
Erfindung bedeuten:
- „Zucker“ ein Saccharid, insbesondere ein Monosaccharid, bevorzugt eine Aldose oder Ketose. Für die vorliegende Erfindung werden, falls neben der erfindungsgemäß verwendeten Dianhydrohexitol-Verbindung noch weitere Zuckerverbindungen im Reaktivharz oder der Reaktivharzkomponente vorhanden sind, für die weiteren Zuckerverbindungen bevorzugt Pentosen oder Hexosen verwendet. Der Zucker in den weiteren Zuckerverbindungen kann - soweit nicht anders angegeben - in seiner offenkettigen Form oder, falls eine solche Form existiert, in seiner zyklischen Form verwendet werden. Bevorzugt wird für die vorliegende Erfindung als Zucker in der weiteren Zuckerverbindung eine Furanose oder Pyranose verwendet, also das zyklische Halbacetal oder Acetal einer Hexose. Des Weiteren ist als weitere Zuckerverbindung ein Zuckermethacrylat bevorzugt;
- „Zuckerderivat“ ein Derivat eines Zuckers, insbesondere ein durch Reduktion oder Dehydratisierung aus einem Zucker hergeleitetes Derivat. Zu den Zuckerderivaten zählen auch die in den erfindungsgemäß verwendeten Dianhydrohexitol- Verbindungen vorhandenen Dianhydrohexitole, welche jedoch weiter unten beschrieben werden sollen;
- „Basisharz“ ein üblicherweise festes oder hochviskoses radikalisch polymerisierbares Harz, welches durch Polymerisation (z.B. nach Zugabe eines Initiators in Gegenwart eines Beschleunigers) härtet;
- „Reaktivharz-Masterbatch“ das Reaktionsprodukt der Reaktion zur Herstellung des Basisharzes, also typischerweise eine Mischung aus Basisharz, Stabilisator und weiteren Bestandteilen der Reaktionsmischung;
- ,HeaktivharZ‘ eine Mischung aus Reaktivharz-Masterbatch, einem Beschleuniger und einem Inhibitor (auch als Beschleuniger-Inhibitor-System bezeichnet), einem Reaktivverdünner und gegebenenfalls weiteren Additiven; das Reaktivharz ist typischerweise flüssig oder viskos und kann zu einer Reaktivharzkomponente weiterverarbeitet werden;
- „Inhibitor“ oder „Polymerisationsinhibitor“ einen Stoff, der eine unerwünschte radikalische Polymerisation während der Synthese oder der Lagerung eines Harzes oder einer Harz-haltigen Zusammensetzung unterdrückt (diese Stoffe werden in Fachkreisen auch als „ Stabilisato“ bezeichnet) bzw. der eine radikalische Polymerisation eines Harzes nach Zugabe eines Initiators (üblicherweise in Verbindung mit einem Beschleuniger) zeitlich verzögert (diese Stoffe werden in Fachkreisen auch als„Inhibitor“ bezeichnet - die jeweilige Bedeutung des Begriffes erschließt sich aus dem Kontext);
- „ Initiator“ einen Stoff, der (üblicherweise in Kombination mit einem Beschleuniger) reaktionsinitiierende Radikale bildet;
- „ Beschleuniger“ ein Reagenz, welches mit dem Initiator eine Reaktion eingeht, so dass bereits bei niedrigen Temperaturen durch den Initiator größere Mengen an Radikalen erzeugt werden, und/oder welches die Zerfallsreaktion des Initiators katalysiert;
- „Reaktivverdünner“ flüssige oder niedrigviskose Monomere und Basisharze, welche andere Basisharze oder den Reaktivharz-Masterbatch verdünnen und dadurch die zu deren Applikation notwendige Viskosität verleihen, zur Reaktion mit dem Basisharz befähigte funktionelle Gruppen enthalten und bei der Polymerisation (Härtung) zum überwiegenden Teil Bestandteil der gehärteten Masse (z.B. des Mörtels) werden; Reaktivverdünner werden auch co-polymerisierbares Monomer genannt;
- „Reaktivharzkomponente“ eine flüssige oder viskose Mischung aus Reaktivharz und Füllstoffen und optional weiteren Komponenten, z.B. Additiven; typischerweise ist die Reaktivharzkomponente eine der beiden Komponenten eines Zweikomponenten- Reaktivharz-Systems zur chemischen Befestigung;
- „hlärterkomponente“ eine Zusammensetzung, die einen Initiator für die Polymerisation eines Basisharzes enthält; die Härterkomponente kann fest oder flüssig sein und neben dem Initiator ein Lösungsmittel sowie Füllstoffe und/oder Additive enthalten; typischerweise ist die Härterkomponente neben der Reaktivharzkomponente die andere der beiden Komponenten eines Zweikomponenten-Reaktivharz-Systems zur chemischen Befestigung;
- „Zweikomponenten-System“ bzw. „Zweikomponenten-Reaktivharz-System“ ein Reaktivharz-System, das zwei voneinander getrennt gelagerte Komponenten, eine Reaktivharzkomponente (A) und eine Härterkomponente (B), umfasst, so dass eine Härtung des in der Reaktivharzkomponente enthaltenen Basisharzes erst nach dem Mischen der beiden Komponenten erfolgt;
- „Mehrkomponenten-System“ bzw. „Mehrkomponenten-Reaktivharz-System“ ein Reaktivharz-System, das mehrere voneinander getrennt gelagerte Komponenten umfasst, unter anderem eine Reaktivharzkomponente (A) und eine Härterkomponente (B), so dass eine Härtung des in der Reaktivharzkomponente enthaltenen Basisharzes erst nach dem Mischen aller Komponenten erfolgt; dass sowohl die„Methacryl.../...methacryl...“- als auch die„Acryl... /...acryl...“-Verbindungen gemeint sein sollen; bevorzugt sind in der vorliegenden Erfindung„Methacryl.../...methacryl...“-Verbindungen gemeint;
- „ein“,„eine“,„einer“ als Artikel vor einer chemischen Verbindungsklasse, z.B. vor dem Wort„Dianhydrohexitol-Verbindung“, dass eine oder mehrere unter diese chemische Verbindungsklasse fallende Verbindungen, z.B. verschiedene Dianhydrohexitol- Verbindungen, gemeint sein können. In einer bevorzugten Ausführungsform ist mit diesem Artikel nur eine einzelne Verbindung gemeint;
- „mindestens ein“, „mindestens eine“, „mindestens einer“ zahlenmäßig„ein oder mehrere“. In einer bevorzugten Ausführungsform ist mit diesem Begriff zahlenmäßig „ein“,„eine“,„einer“ gemeint;
- „enthalten“,„umfassen“ und„beinhalten“, dass neben den genannten Bestandteilen noch weitere vorhanden sein können. Diese Begriffe sind einschließlich gemeint und umfassen daher auch„bestehen aus“.„Bestehen aus“ ist abschließend gemeint und bedeutet, dass keine weiteren Bestandteile vorhanden sein können. In einer bevorzugten Ausführungsform bedeuten die Begriffe„enthalten“,„umfassen“ und „beinhalten“ den Begriff„bestehen aus“ - „etwa“ oder„circa“ oder„ca.“ vor einem Zahlenwert einen Bereich von ± 5% dieses Wertes, bevorzugt ± 2% dieses Wertes, bevorzugter ! 1 % dieses Wertes, besonders bevorzugt ± 0% dieses Wertes (also genau diesen Wert);
- ein durch Zahlen begrenzter Bereich, z.B.„von 100°C bis 120°C“, dass die beiden Eckwerte und jeder Wert innerhalb dieses Bereichs einzeln offenbart sind.
Ein erster Gegenstand der Erfindung betrifft ein Reaktivharz, umfassend mindestens eine Dianhydrohexitol-Verbindung der Formel (I),
(I), worin R für ein Wasserstoffatom oder eine Methylgruppe steht, X für ein Dianhydrohexitol steht, L unabhängig voneinander für eine verbrückende C-i-Cs-Alkylengruppe stehen, welche unsubstituiert oder Hydroxy-substituiert sein kann, und n 1 bis 5 sein kann.
Den Erfindern ist es gelungen, auf Basis einer Dianhydrohexitol-Verbindung der Formel (I) eine Komponente bereitzustellen, die als Basisharz oder als Reaktivverdünner einsetzbar ist, aus nachwachsenden Rohstoffen hergestellt werden kann und eine annehmbare Härtungszeit aufweist.
Das erfindungsgemäße Reaktivharz umfasst mindestens eine Dianhydrohexitol- Verbindung der Formel (I), wobei X für ein Dianhydrohexitol steht.
Dianhydrohexitole, genauer 1 ,4:3,6-Dianhydrohexitole, sind Nebenprodukte der Stärkeindustrie und werden somit aus nachwachsenden Rohstoffverbindungen erhalten. Sie sind beispielsweise durch Dehydrierung von D-Hexitolen erhältlich, die wiederum durch einfache Reduktion aus Hexosezuckern erhältlich sind. Die Dianhydrohexitole sind somit aus Biomasse erhältliche, chirale Produkte. Abhängig von der Konfiguration der zwei Hydroxygruppen wird zwischen drei Isomeren unterschieden, dem Isosorbid (Struktur A), dem Isomannid (Struktur B) und dem Isoidid (Struktur C), die durch Hydrogenierung und anschließende doppelte Dehydrierung aus der D-Glucose, D- Mannose bzw. der L-Fructose erhältlich sind.
Bei den als Ausgangsverbindung für die Verbindung der Formel (I) verwendeten Dianhydrohexitolen kann es sich somit um ein Isosorbid, Isomannid oder Isoidid oder um ein Gemisch dieser Dianhydrohexitole handeln. Im Folgenden ist demnach unter dem Begriff Dianhydrohexitole die jeweilige diskrete Verbindung wie auch ein beliebiges Gemisch der verschiedenen Einzelverbindungen zu verstehen. Nachdem das Isosorbid am weitesten verbreitet ist, wird es bevorzugt als Ausgangsverbindung für die erfindungsgemäßen Dianhydrohexitol-Verbindungen verwendet. Die hier beschriebenen Dianhydrohexitole enthalten typischerweise eines oder mehrere Stereozentren. Da die in der Erfindung verwendeten Dianhydrohexitole vorteilhafterweise biogene Dianhydrohexitole sind, haben sie typischerweise dieselbe Stereochemie wie ihre natürlichen Vorläufer, z.B. hat D-Isosorbid dieselbe Stereochemie wie sein natürlicher Vorläufer D-Glucose. Wenn im Folgenden keine Stereochemie angegeben wird, ist die Stereochemie typischerweise die natürliche Stereochemie. Die Verwendung von Zuckern, Zuckerderivaten oder Dianhydrohexitolen mit nicht- natürlicher Stereochemie ist jedoch ebenfalls möglich.
Die erfindungsgemäß verwendeten Dianhydrohexitol-Verbindungen enthalten bevorzugt ein Dianhydrohexitol ausgewählt aus der Gruppe bestehend aus Isosorbid, Isomannid und Isoidid oder einem Gemisch von zwei oder mehr dieser Verbindungen. Besonders bevorzugt enthalten die erfindungsgemäß verwendeten Dianhydrohexitol-Verbindungen Isosorbid oder eine Mischung aus Isosorbid und einem oder mehreren anderen Dianhydrohexitolen. Erfindungsgemäß enthalten die Dianhydrohexitol-Verbindungen der Formel (I) mindestens eine (Meth)acrylestergruppe, die über eine verbrückende Alkylengruppe L, welche unsubstituiert oder Hydroxy-substituiert sein kann, an das Dianhydrohexitol X gebunden ist. Bevorzugt ist das Dianhydrohexitol X an mindestens einer, mehr bevorzugt an allen Hydroxygruppen mit der verbrückenden Alkylengruppe L verethert, welche mit mindestens einer (Meth)acrylestergruppe verestert ist.
Demnach handelt es sich bei den erfindungsgemäßen Dianhydrohexitol-Verbindungen ohne Angabe der Stereochemie an den chiralen Kohlenstoffatomen bevorzugt um eine Verbindung der Formel (la),
(la), wobei R, L und n die oben genannten Bedeutungen haben.
Bevorzugt handelt es sich bei dem Dianhydrohexitol X um Isosorbid.
Demnach handelt es sich bei der erfindungsgemäßen Dianhydrohexitol-Verbindung bevorzugt um eine Verbindung der Formel (Ib),
(Ib), wobei R, L und n die oben genannten Bedeutungen haben. Bei der verbrückenden Alkylengruppe L handelt es sich erfindungsgemäß um eine Cr Ce-Alkylengruppe, welche unsubstituiert oder Hydroxy-substituiert sein kann.
Bevorzugt handelt es sich bei der verbrückenden Alkylengruppe L um eine C2-C6- Alkylengruppe, mehr bevorzugt um eine Cß-Cs-Alkylengruppe. Gemäß einer besonders bevorzugten Ausführungsform handelt es sich bei der verbrückenden Alkylengruppe L um eine C3-Alkylengruppe.
Die verbrückende Alkylengruppe L kann unsubstituiert oder Hydroxy-substituiert sein. Bevorzugt ist die verbrückende Alkylengruppe Hydroxy-substituiert. Demnach ist die verbrückende Alkylengruppe L bevorzugt mit mindestens einer Hydroxygruppe substituiert.
Gemäß einer besonders bevorzugten Ausführungsform handelt es sich bei der verbrückenden Alkylengruppe L um eine Cß-Alkylengruppe, die mit mindestens einer Hydroxygruppe, besonders bevorzugt mit einer Hydroxygruppe substituiert ist.
Demnach hat die verbrückende Alkylengruppe L bevorzugt die folgende Struktur:
Die L-Gruppen können voneinander verschieden sein, sind jedoch bevorzugt gleich.
Des Weiteren handelt es sich bei dem Substituenten R bevorzugt um eine Methylgruppe. Bevorzugt hat der Parameter n Werte im Bereich von 1 bis 3, mehr bevorzugt 1 bis 2. Besonders bevorzugt hat der Parameter n den Wert 1.
Die erfindungsgemäß verwendete Dianhydrohexitol-Verbindung hat somit ohne Angabe der Stereochemie an den chiralen Kohlenstoffatomen bevorzugt die folgende Struktur:
Ausgangsstoff für die erfindungsgemäßen Dianhydrohexitol-Verbindungen ist bevorzugt ein Dianhydrohexitol-bis-glycidether der folgenden Struktur:
Die Synthese solcher Dianhydrohexitol-bis-glycidether ist dem Fachmann bekannt. In WO 2010/040464 ist beispielsweise die Synthese von Isosorbid-bis-glycidether durch Umsetzung von Isosorbid mit Epichlorhydrin beschrieben.
Erfindungsgemäß wird zur Synthese der Dianhydrohexitol-Verbindung ein Dianhydrohexitol-bis-glycidether in Gegenwart eines Katalysators mit (Meth)acrylsäure umgesetzt. Bevorzugt handelt es sich bei dem Katalysator um ein quartäres Ammoniumhalogenid, insbesondere bevorzugt ist Tetraethylammoniumbromid.
Herstellungsbedingt enthalten die erfindungsgemäßen Dianhydrohexitol-Verbindungen typischerweise auch Reste von nicht verestertem oder nur einfach veresterten Dianhydrohexitol-bis-glycidether. Gleicherweise können die erfindungsgemäßen Dianhydrohexitol-Verbindungen auch geringe Anteile von nicht oder nur einfach epoxidiertem Dianhydrohexitol enthalten, welches bei der Umsetzung mit (Meth)acrylsäure zu Dianhydrohexitoldi(meth)acrylat oder Dianhydrohexitol- (meth)acrylat umgesetzt wird. Demnach können die erfindungsgemäßen Dianhydrohexitol-Verbindungen Verunreinigungen der folgenden Strukturen enthalten:
Trotz dieser Verunreinigungen werden diese Produkte im Rahmen der vorliegenden Erfindung als Dianhydrohexitol-Verbindungen bezeichnet, es sei denn es geht aus dem Kontext hervor, dass ein einzelnes Molekül dieser Verbindungen gemeint ist.
Werden alle Ausgangsverbindungen aus nachwachsenden Rohstoffen, wie Biomasse, erhalten, können bis zu 80 % des Kohlenstoffgehalts des Reaktivharzes aus nachwachsenden Rohstoffen stammen. Zusätzlich oder alternativ hierzu enthält das erfindungsgemäße Reaktivharz bevorzugt bis zu 70 Gew.-%, mehr bevorzugt bis zu 60 Gew.-%, noch mehr bevorzugt bis zu 30 Gew.-%, noch mehr bevorzugt bis zu 12 Gew.-%, besonders bevorzugt bis zu 10 Gew.-% der mindestens einen Dianhydrohexitol-Verbindung der Formel (I), bezogen auf das Gesamtgewicht des Reaktivharzes.
Bevorzugt enthält das erfindungsgemäße Reaktivharz neben der mindestens einen Dianhydrohexitol-Verbindung der Formel (I) mindestens eine co-polymerisierbaren monomere Verbindung, die mindestens zwei (Meth)acrylat-Gruppen trägt. Geeignete co-polymerisierbare monomere Verbindungen sind beispielsweise
Vinylesterharze, die nur in Endstellung ungesättigte Gruppen aufweisen. Diese werden zum Beispiel durch Umsetzung von Epoxid-Monomeren, -Oligomeren oder -Polymeren (z.B. Bisphenol-A-digylcidylether, Epoxide vom Phenol-Novolak-Typ oder Epoxid- Oligomere auf der Basis von Tetrabrombisphenol A) mit beispielsweise (Meth)acrylsäure oder (Meth)acrylamid erhalten. Bevorzugte Vinylester-Harze sind (Meth)acrylat- funktionalisierte Harze und Harze, die durch Umsetzung eines Epoxid-Monomers, - Oligomers oder -Polymers mit Methacrylsäure oder Methacrylamid, bevorzugt mit Methacrylsäure, erhalten werden. Beispiele solcher Verbindungen sind aus den Anmeldungen US 3 297 745 A, US 3 772 404 A, US 4 618 658 A, GB 2 217 722 A1 , DE 37 44 390 A1 und DE 41 31 457 A1 bekannt.
Als Vinylesterharz besonders geeignet und bevorzugt sind (Meth)acrylat- funktionalisierte Harze, die z.B. durch Umsetzung von di- und/oder höherfunktionellen Isocyanaten mit geeigneten Acrylverbindungen, gegebenenfalls unter Mitwirkung von Hydroxyverbindungen, die mindestens zwei Hydroxylgruppen enthalten, wie sie beispielsweise in der DE 3940309 A1 beschrieben sind, erhalten werden.
Als Isocyanate können aliphatische (cyclische oder lineare) und/oder aromatische di- oder höherfunktionelle Isocyanate bzw. Präpolymere davon verwendet werden. Die Verwendung solcher Verbindungen dient der Erhöhung der Benetzungsfähigkeit und damit der Verbesserung der Adhäsionseigenschaften. Bevorzugt sind aromatische di- oder höherfunktionelle Isocyanate bzw. Präpolymere davon, wobei aromatische di- oder höherfunktionelle Präpolymere besonders bevorzugt sind. Beispielhaft können Toluylendiisocyanat (TDI), Diisocyanatodiphenylmethan (MDI) und polymeres Diisocyanatodiphenylmethan (pMDl) zur Erhöhung der Kettenversteifung und Hexandiisocyanat (HDI) und Isophorondiisocyanat (IPDI), welche die Flexibilität verbessern, genannt werden, worunter polymeres Diisocyanatodiphenylmethan (pMDl) ganz besonders bevorzugt ist.
Als Acrylverbindungen sind Acrylsäure und am Kohlenwasserstoffrest substituierte Acrylsäuren wie Methacrylsäure, hydroxylgruppenhaltige Ester der Acryl- bzw. Methacrylsäure mit mehrwertigen Alkoholen, Pentaerythrittri(meth)acrylat, Glyceroldi(meth)acrylat, wie Trimethylolpropandi(meth)acrylat, Neopentylglycolmono- (meth)acrylat geeignet. Bevorzugt sind Acryl- bzw. Methacrylsäurehydroxylalkylester, wie Hydroxyethyl(meth)acrylat, Hydroxypropyl(meth)acrylat, Polyoxyethylen- (meth)acrylat, Polyoxypropylen(meth)acrylat, zumal solche Verbindungen der sterischen Hinderung der Verseifungsreaktion dienen.
Als gegebenenfalls einsetzbare Hydroxyverbindungen sind geeignet zwei- oder höherwertige Alkohole, etwa Folgeprodukte des Ethylen- bzw. Propylenoxids, wie Ethandiol, Di- bzw. Triethylenglycol, Propandiol, Dipropylenglycol, andere Diole, wie 1 ,4- Butandiol, 1 ,6-Hexandiol, Neopentylglycol, Diethanolamin, weiter Bisphenol A bzw. F bzw. deren Ethoxylierungs-/Propoxylierungs- und/oder Hydrierungs- bzw. Halogenierungsprodukte, höherwertige Alkohole, wie Glycerin, Trimethylolpropan, Hexantriol und Pentaerythrit, hydroxylgruppenhaltige Polyether, beispielsweise Oligomere aliphatischer oder aromatischer Oxirane und/oder höherer cyclischer Ether, wie Ethylenoxid, Propylenoxid, Styroloxid und Furan, Polyether, die in der Hauptkette aromatische Struktureinheiten enthalten, wie die des Bisphenol A bzw. F, hydroxylgruppenhaltige Polyester auf Basis der obengenannten Alkohole bzw. Polyether und Dicarbonsäuren bzw. ihrer Anhydride, wie Adipinsäure, Phthalsäure, Tetra- bzw. Hexahydrophthalsäure, Hetsäure, Maleinsäure, Fumarsäure, Itaconsäure, Sebacinsäure und dergleichen. Besonders bevorzugt sind Hydroxyverbindungen mit aromatischen Struktureinheiten zur Kettenversteifung des Harzes, Hydroxy- verbindungen, die ungesättigte Struktureinheiten enthalten, wie Fumarsäure, zur Erhöhung der Vernetzungsdichte, verzweigte bzw. sternförmige Hydroxyverbindungen, insbesondere drei- bzw. höherwertige Alkohole und/ oder Polyether bzw. Polyester, die deren Struktureinheiten enthalten, verzweigte bzw. sternförmige Urethan(meth)acrylate zur Erzielung niedrigerer Viskosität der Harze bzw. ihrer Lösungen in Reaktivverdünnern und höherer Reaktivität und Vernetzungsdichte.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei dem Vinylesterharz um ein Reaktionsprodukt aus Diisocyanatodiphenylmethan (MDI), Hydroxypropyl(meth)acrylat, und Dipropylenglycol. Die Herstellung des Vinylesterharzes ist in EP 0 713 015 A1 beschrieben, die hiermit als Referenz eingeführt und auf deren gesamte Offenbarung verwiesen wird.
Bevorzugt enthält das erfindungsgemäße Reaktivharz bis zu 99.0 Gew.-%, mehr bevorzugt 70.0 bis 95.0 Gew.-%, noch mehr bevorzugt 80.0 bis 94.0 Gew.-%, besonders bevorzugt 85.0 bis 90.0 Gew.-% der co-polymerisierbaren monomeren Verbindung, bezogen auf das Gesamtgewicht des Reaktivharzes.
Demnach enthält das erfindungsgemäße Reaktivharz bevorzugt bis zu 70 Gew.-%, mehr bevorzugt bis zu 60 Gew.-%, noch mehr bevorzugt bis zu 30 Gew.-%, noch mehr bevorzugt bis zu 12 Gew.-%, besonders bevorzugt bis zu 10 Gew.-% der mindestens einen Dianhydrohexitol-Verbindung der Formel (I) und bis zu 99.0 Gew.-%, mehr bevorzugt 70.0 bis 95.0 Gew.-%, noch mehr bevorzugt 80.0 bis 94.0 Gew.-%, besonders bevorzugt 85.0 bis 90.0 Gew.-% der co-polymerisierbaren monomeren Verbindung, bezogen auf das Gesamtgewicht des Reaktivharzes.
Reaktivharze werden in der Regel hergestellt, indem die zur Herstellung des Basisharzes erforderlichen Ausgangsverbindungen gegebenenfalls zusammen mit Katalysatoren und Lösungsmitteln, insbesondere Reaktivverdünner, in einen Reaktor gegeben und miteinander zur Reaktion gebracht werden. Nach Beendigung der Reaktion und gegebenenfalls bereits zu Beginn der Reaktion werden zu dem Reaktionsgemisch Polymerisationsinhibitoren für die Lagerstabilität gegeben, wodurch der sogenannte Harz-Masterbatch erhalten wird. Zu dem Harz-Masterbatch werden häufig Beschleuniger für die Härtung des Basisharzes, gegebenenfalls weitere Polymerisationsinhibitoren, die gleich oder ungleich dem Polymerisationsinhibitor für die Lagerstabilität sein können, zur Einstellung der Gelzeit, und gegebenenfalls weiteres Lösungsmittel, insbesondere Reaktivverdünner, gegeben, wodurch das Reaktivharz erhalten wird. Dieses Reaktivharz wird zur Einstellung verschiedener Eigenschaften, wie der Rheologie und der Konzentration des Basisharzes, mit anorganischen und/oder organischen Zuschlagstoffen versetzt, wodurch eine Reaktivharzkomponente erhalten wird.
Ein bevorzugtes Reaktivharz enthält dementsprechend mindestens ein Basisharz, mindestens einen Reaktivverdünner und mindestens einen Polymerisationsinhibitor. Eine Reaktivharzkomponente enthält neben dem eben beschriebenen Reaktivharz anorganische und/oder organische Zuschlagstoffe, wobei anorganische Zuschlagstoffe besonders bevorzugt sind, wie sie nachfolgend näher beschrieben werden.
In einer bevorzugten Ausführungsform der Erfindung enthält das Reaktivharz weitere niederviskose, radikalisch polymerisierbare Verbindungen, bevorzugt solche, die aus nachwachsenden Rohstoffen erhältlich sind, als Reaktivverdünner, um etwa die Viskosität der Vinylesterurethanharze bzw. der Vorstufen bei deren Herstellung anzupassen, falls erforderlich. In diesem Zusammenhang wird auf die WO 09/156648 A1 , die WO 10/061097 A1 , die WO 10/079293 A1 und die WO 10/099201 A1 , verwiesen, deren Inhalte hiermit in diese Anmeldung aufgenommen werden.
Alternativ kann das Reaktivharz jeden geeigneten Reaktivverdünner enthalten. Zweckmäßig enthält das Reaktivharz als Reaktivverdünner einen aliphatischen oder aromatischen C5-Ci5-(Meth)acrylsäureester, wobei besonders bevorzugt (Meth)acrylsäureester ausgewählt werden aus der Gruppe bestehend aus Hydroxypropyl(meth)acrylat, 1 ,2-Ethandioldi(meth)acrylat, 1 ,3-Propandioldi- (meth)acrylat, 1 ,2-Butandioldi(meth)acrylat, 1 ,4-Butandioldi(meth)acrylat, Trimethylol- propantri(meth)acrylat, Phenethyl(meth)acrylat, Tetrahydrofurfuryl(meth)acrylat, Ethyltriglykol(meth)acrylat, /V,/V-Dimethylaminoethyl(meth)acrylat, L/,/V-Dimethyl- aminomethyl(meth)acrylat, Acetoacetoxyethyl(meth)acrylat, lsobornyl(meth)acrylat, 2- Ethylhexyl(meth)acrylat, Diethylenglykoldi(meth)acrylat, Methoxypolyethylenglykol- mono(meth)acrylat, T rimethylcyclohexyl(meth)acrylat, 2-Hydroxyethyl(meth)acrylat, Dicyclopentenyloxyethyl(meth)acrylat und/oder T ricyclopentadienyldi(meth)acrylat, Bisphenol-A-(meth)acrylat, Novolakepoxidi(meth)acrylat, Di-[(meth)acryloyl-maleoyl]- tricyclo-5.2.1.0.26-decan, Dicyclopentenyloxyethylcrotonat, 3-(Meth)acryloyl-oxymethyl- tricylo-5.2.1.0.26-decan, 3-(Meth)cyclopentadienyl(meth)acrylat, lsobornyl(meth)acrylat und Decalyl-2-(meth)acrylat; PEG-Di(meth)acrylat, wie PEG200Di(meth)acrylat, Tetraehtylenglykoldi(meth)acrylat, Solketal(meth)acrylat, Cyclohexyl(meth)acrylat, Phenoxyethyldi(meth)acrylat, Methoxyethyl(meth)acrylat, Tetrahydrofurfuryl- (meth)acrylat, tert- Butyl(meth)acrylat und Norbornyl(meth)acrylat. Grundsätzlich können auch andere übliche radikalisch polymerisierbaren Verbindungen, allein oder im Gemisch mit den (Meth)acrylsäureestern, eingesetzt werden, z. B. Styrol, a-Methylstyrol, alkylierte Styrole, wie fe/f-Butylstyrol, Divinylbenzol und Allylverbindungen, wobei die Vertreter davon bevorzugt sind, die aus Grundchemikalien auf Basis nachwachsender Rohstoffe erhältlich sind.
Bevorzugt enthält das erfindungsgemäße Reaktivharz 5.0 bis 50.0 Gew.-%, mehr bevorzugt 10.0 bis 30.0 Gew.-%, noch mehr bevorzugt 15.0 bis 25.0 Gew.-%, besonders bevorzugt 18.0 bis 20.0 Gew.-% des Reaktivverdünners, bezogen auf das Gesamtgewicht des Reaktivharzes.
Demnach enthält das erfindungsgemäße Reaktivharz bevorzugt bis zu 70 Gew.-%, mehr bevorzugt bis zu 60 Gew.-%, noch mehr bevorzugt bis zu 30 Gew.-%, noch mehr bevorzugt bis zu 12 Gew.-%, besonders bevorzugt bis zu 10 Gew.-% der mindestens einen Dianhydrohexitol-Verbindung der Formel (I) und bis zu 99.0 Gew.-%, mehr bevorzugt 70.0 bis 95.0 Gew.-%, noch mehr bevorzugt 80.0 bis 94.0 Gew.-%, besonders bevorzugt 85.0 bis 90.0 Gew.-% der co-polymerisierbaren monomeren Verbindung und 5.0 bis 50.0 Gew.-%, mehr bevorzugt 10.0 bis 30.0 Gew.-%, noch mehr bevorzugt 15.0 bis 25.0 Gew.-%, besonders bevorzugt 18.0 bis 20.0 Gew.-% des Reaktivverdünners, bezogen auf das Gesamtgewicht des Reaktivharzes.
Zur Stabilisierung gegen vorzeitige Polymerisation (Lagerstabilität) und zur Einstellung der Gelzeit und der Reaktivität kann das Reaktivharz einen Polymerisationsinhibitor enthalten. Zur Sicherstellung der Lagerstabilität ist der Polymerisationsinhibitor bevorzugt in einer Menge von 0,0005 bis 2 Gew.-%, stärker bevorzugt 0,01 bis 1 Gew.- %, bezogen auf das Gesamtgewicht des Reaktivharzes, enthalten. Zur Einstellung der Gelzeit und der Reaktivität kann das Reaktivharz zusätzlich 0,005 bis 3 Gew.-%, vorzugsweise 0,05 bis 1 Gew.-% eines Polymerisationsinhibitors enthalten.
Als Polymerisationsinhibitoren sind erfindungsgemäß die für radikalisch polymerisierbare Verbindungen üblicherweise verwendeten Polymerisationsinhibitoren geeignet, wie sie dem Fachmann bekannt sind.
Zur Stabilisierung gegen vorzeitige Polymerisation enthalten Reaktivharz und Reaktivharzkomponenten üblicherweise Polymerisationsinhibitoren, wie Hydrochinon, substituierte Hydrochinone, z.B. 4-Methoxyphenol, Phenothiazin, Benzochinon odertert- Butylbrenzkatechin, wie beispielsweise in der EP 1935860 A1 oder EP 0965619 A1 beschrieben werden, stabile Nitroxylradikale, auch N-Oxyl-Radikale genannt, wie Piperidinyl-N-Oxyl oder Tetrahydropyrrol-N-Oxyl, wie beispielsweise in der DE 19531649 A1 beschrieben. Besonders bevorzugt wird 4-Hydroxy-2, 2,6,6- tetramethylpiperidin-N-oxyl (auch als TEMPOL bezeichnet) zur Stabilisierung verwendet, was den Vorteil hat, dass damit auch die Gelzeit eingestellt werden kann.
Bevorzugt sind die Polymerisationsinhibitoren unter phenolischen Verbindungen und nicht-phenolischen Verbindungen, wie stabilen Radikalen und/oder Phenothiazinen, ausgewählt.
Als phenolische Polymerisationsinhibitoren, die oft Bestandteil von kommerziellen radikalisch härtenden Reaktivharzen sind, kommen Phenole, wie 2-Methoxyphenol, 4- Methoxyphenol, 2,6-Di-fe/f-butyl-4-methylphenol, 2,4-Di-fe/f-butylphenol, 2,6-Di -tert- butylphenol, 2,4,6-Trimethylphenol, 2,4,6-Tris(dimethylaminomethyl)phenol, 4,4'-Thio- bis(3-methyl-6-fe/f-butylphenol), 4,4'-lsopropylidendiphenol, 6,6'-Di-fe/f-butyl-4,4'- bis(2,6-di-fe/f-butylphenol), 1 ,3,5-T rimethyl-2,4,6-tris(3,5-di-fe/f-butyl-4-hydroxybenzyl)- benzol, 2,2'-Methylen-di-p-cresol, Brenzkatechin und Butylbrenzkatechine, wie 4-tert- Butylbrenzkatechin, 4,6-Di-fe/f-butylbrenzkatechin, Hydrochinone, wie Hydrochinon, 2- Methylhydrochinon, 2-fe/f-Butylhydrochinon, 2,5-Di-fe/f-butylhydrochinon, 2,6-Di -tert- butylhydrochinon, 2,6-Dimethylhydrochinon, 2,3,5-Trimethylhydrochinon, Benzochinon, 2,3,5,6-Tetrachlor-1 ,4-benzochinon, Methylbenzochinon, 2,6-Dimethylbenzochinon, Naphthochinon, oder Gemische von zweien oder mehreren davon, in Frage. Als nicht-phenolische Polymerisationsinhibitoren kommen vorzugsweise Phenothiazine, wie Phenothiazin und/oder Derivate oder Kombinationen davon, oder stabile organische Radikale, wie Galvinoxyl- und /V-Oxyl-Radikale in Betracht.
Geeignete stabile /V-Oxyl-Radikale (Nitroxylradikale) können unter 1 -Oxyl-2, 2, 6, 6- tetramethylpiperidin, 1 -Oxyl-2,2,6,6-tetramethylpiperidin-4-ol (ebenso als TEMPOL bezeichnet), 1 -Oxyl-2,2,6,6-tetramethylpiperidin-4-on (ebenso als TEMPON bezeichnet), 1 -Oxyl-2,2,6,6-tetramethyl-4-carboxyl-piperidin (ebenso als 4-Carboxy- TEMPO bezeichnet), 1 -Oxyl-2,2,5,5-tetramethylpyrrolidin, 1 -Oxyl-2, 2,5, 5-tetramethyl-3- carboxylpyrrolidin (ebenso als 3-Carboxy-PROXYL bezeichnet), Aluminium-N- nitrosophenylhydroxylamin, Diethylhydroxylamin ausgewählt werden, wie sie in der DE 199 56 509 beschrieben sind. Ferner sind geeignete /V-Oxylverbindungen Oxime, wie Acetaldoxim, Acetonoxim, Methylethylketoxim, Salicyloxim, Benzoxim, Glyoxime, Dimethylglyoxim, Aceton-0-(benzyloxycarbonyl)oxim und dergleichen. Ferner können in para-Position zur Hydroxylgruppe substituierte Pyrimidinol- oder Pyridinol- Verbindungen, wie sie in der Patentschrift DE 10 201 1 077 248 B1 beschrieben sind als Stabilisatoren verwendet werden.
Die Polymerisationsinhibitoren können, abhängig von den gewünschten Eigenschaften und der Verwendung des Reaktivharzes, entweder alleine oder als Kombination von zweien oder mehreren davon verwendet werden. Die Kombination der phenolischen und der nicht-phenolischen Inhibitoren ermöglicht dabei einen synergistischen Effekt, wie eine im Wesentlichen driftfreien Einstellung der Gelzeit des Reaktivharzes.
Bevorzugt enthält das erfindungsgemäße Reaktivharz, mehr bevorzugt besteht aus, bis zu 70 Gew.-%, mehr bevorzugt bis zu 60 Gew.-%, noch mehr bevorzugt bis zu 30 Gew.- %, noch mehr bevorzugt bis zu 12 Gew.-%, besonders bevorzugt bis zu 10 Gew.-% der mindestens einen Dianhydrohexitol-Verbindung der Formel (I) und bis zu 99.0 Gew.-%, mehr bevorzugt 70.0 bis 95.0 Gew.-%, noch mehr bevorzugt 80.0 bis 94.0 Gew.-%, besonders bevorzugt 85.0 bis 90.0 Gew.-% der co-polymerisierbaren monomeren Verbindung und 5.0 bis 50.0 Gew.-%, mehr bevorzugt 10.0 bis 30.0 Gew.-%, noch mehr bevorzugt 15.0 bis 25.0 Gew.-%, besonders bevorzugt 18.0 bis 20.0 Gew.-% des Reaktivverdünners und 0,0005 bis 2 Gew.-%, mehr bevorzugt 0,01 bis 1 Gew.-% des Polymerisationsinhibitors, bezogen auf das Gesamtgewicht des Reaktivharzes. Bevorzugt wird die Härtung des Harzbestandteils mit einem Radikalinitiator, wie einem Peroxid initiiert. Neben dem Radikalinitiator kann zusätzlich ein Beschleuniger verwendet werden. Hierdurch werden schnellhärtende Reaktivharzkomponenten erhalten, die kalthärtend sind, d.h. die bei Raumtemperatur härten. Geeignete
Beschleuniger, die gewöhnlich dem Reaktivharz zugegeben werden, sind dem Fachmann bekannt. Diese sind beispielsweise Amine, bevorzugt tertiäre Amine und/oder Metallsalze. Geeignete Amine sind unter folgenden Verbindungen ausgewählt, die beispielsweise in der Anmeldung US 2011071234 A1 beschrieben sind: Dimethylamin, Trimethylamin, Ethylamin, Diethylamin, Triethylamin, n-Propylamin, Di-n-propylamin, Tri-n-propylamin, Isopropylamin, Diisopropylamin, Triisopropylamin, n-Butylamin, Isobutylamin, tert- Butylamin, Di-n-butylamin, Diisobutylamin, Tri-isobutylamin, Pentylamin, Isopentylamin, Diisopentylamin, Hexylamin, Octylamin, Dodecylamin, Laurylamin, Stearylamin,
Aminoethanol, Diethanolamin, Triethanolamin, Aminohexanol, Ethoxyaminoethan, Dimethyl-(2-chloroethyl)amin, 2-Ethylhexylamin, Bis-(2-chloroethyl)amin, 2- Ethylhexylamin, Bis-(2-ethylhexyl)amin, N-Methylstearylamin, Dialkylamine, Ethylendiamin, N,N'-Dimethylethylendiamin, Tetramethylethylendiamin, Diethylentriamin, Permethyldiethylentriamin, Triethylentetramin, Tetraethylenpentamin,
1 ,2-Diaminopropan, Di-propylentriamin, Tripropylentetramin, 1 ,4-Diaminobutan, 1 ,6- Diaminohexan, 4-Amino-1 -diethylaminopentan, 2,5-Diamino-2,5-dimethylhexan, Trimethylhexamethylendiamin, N,N-Dimethylaminoethanol, 2-(2-Diethylaminoethoxy)- ethanol, Bis-(2-hydroxyethyl)-oleylamin, Tris-[2-(2-hydroxy-ethoxy)-ethyl]amin, 3-Amino- 1-propanol, Methyl-(3-aminopropyl)ether, Ethyl-(3-aminopropyl)ether, 1 ,4-Butandiol- bis(3-aminopropylether), 3-Dimethylamino-1-propanol, 1-Amino-2-propanol, 1-
Diethylamino-2-propanol, Diisopropanolamin, Methyl-bis-(2-hydroxypropyl)-amin, Tris- (2-hydroxypropyl)amin, 4-Amino-2-butanol, 2-Amino-2-methylpropanol, 2-Amino-2- methyl-propandiol, 2-Amino-2-hydroxymethylpropandiol, 5-Aiethylamino-2-pentanon, 3- Methylaminopropionsäurenitril, 6-Aminohexansäure, 1 1-Aminoundecansäure, 6-
Aminohexansäureethylester, 1 1-Aminohexansäure-isopropylester, Cyclohexylamin, N- Methylcyclohexylamin, N,N-Dimethylcyclohexylamin, Dicyclohexylamin, N-
Ethylcyclohexylamin, N-(2-Hydroxyethyl)-cyclohexylamin, N,N-Bis-(2-hydroxyethyl)- cyclohexylamin, N-(3-Aminopropyl)-cyclohexylamin, Aminomethylcyclohexan, Hexahydrotoluidin, Hexahydrobenzylamin, Anilin, N-Methylanilin, N,N-Dimethylanilin, N,N-Diethylanilin, N,N-Di-propylanilin, iso-Butylanilin, Toluidine, Diphenylamin, Hydroxyethylanilin, Bis-(hydroxyethyl)anilin, Chloranilin, Aminophenole, Aminobenzoesäuren und deren Ester, Benzylamin, Dibenzylamin, Tribenzylamin, Methyldibenzylamin, a-Phenylethylamin, Xylidin, Diisopropylanilin, Dodecylanilin, Aminonaphthalin, N-Methylaminonaphthalin, N,N-Dimethylaminonaphthalin, N,N- Dibenzylnaphthalin, Diaminocyclohexan, 4,4'-Diamino-dicyclohexylmethan, Diamino- dimethyl-dicyclohexylmethan, Phenylendiamin, Xylylendiamin, Diaminobiphenyl, Naphthalindiamine, Toluidine, Benzidine, 2,2-Bis-(aminophenyl)-propan, Aminoanisole, Amino-thiophenole, Aminodiphenylether, Aminocresole, Morpholin, N-Methylmorpholin, N-Phenylmorpholin, Hydroxyethylmorpholin, N-Methylpyrrolidin, Pyrrolidin, Piperidin, Hydroxyethylpiperidin, Pyrrole, Pyridine, Chinoline, Indole, Indolenine, Carbazole, Pyrazole, Imidazole, Thiazole, Pyrimidine, Chinoxaline, Aminomorpholin, Dimorpholinethan, [2,2,2]-Diazabicyclooctan und N,N-Dimethyl-p-toluidin.
Bevorzugte Amine sind Anilin-Derivate und N,N-Bisalkylarylamine, wie N,N,- Dimethylanilin, N,N-Diethylanilin, N,N-Dimethyl-p-toluidin, N,N-Bis(hydroxyalkyl)- arylamine, N,N-Bis(2-hydropxyethyl)aniline, N,N-Bis(2-hydroxyethyl)toluidin, N,N-Bis(2- hydroxypropyl)anilin, N,N-Bis(2-hydroxypropyl)toluidin, N,N-Bis(3-methacryloyl-2- hydroxypropyl)-p-toluidin, N,N-Dibutoxyhydroxypropyl-p-toluidin und 4,4'- Bis(dimethylamino)diphenylmethan.
Polymere Amine, wie solche die durch Polykondensation von N,N- Bis(hydroxylalkyl)anilin mit Dicarbonsäuren oder durch Polyaddition von Ethylenoxid an diese Amine erhalten werden, sind ebenso als Beschleuniger geeignet.
Geeignete Metallsalze sind zum Beispiel Cobaltoctoat oder Cobaltnaphthenoat sowie Vanadium-, Kalium-, Kalzium-, Kupfer-, Mangan- oder Zirkoniumcarboxylat.
Sofern ein Beschleuniger verwendet wird, wird er in einer Menge von 0,01 bis 10 Gew.- %, bevorzugt 0,2 bis 5 Gew.-%, bezogen auf das Gesamtgewicht des Reaktivharzes, eingesetzt.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des oben beschriebenen Reaktivharzes zur chemischen Befestigung eines Verankerungsmittels in einem Bohrloch. Bevorzugt ist das Verankerungsmittel aus Stahl oder aus Eisen.
Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Bohrloch ein Bohrloch in mineralischem oder metallischem Untergrund, bevorzugt einem Untergrund ausgewählt aus der Gruppe bestehend aus Beton, Porenbeton, Ziegelwerk, Kalksandstein, Sandstein, Naturstein, Glas und Stahl.
Ein weiterer Gegenstand der Erfindung ist eine Reaktivharzkomponente, die neben dem eben beschriebenen Reaktivharz anorganische und/oder organische Zuschlagstoffe enthält, wie Füllstoffe und/oder weitere Additive.
Der Anteil des Reaktivharzes in der Reaktivharzkomponente beträgt bevorzugt 10 bis 60 Gew.-%, stärker bevorzugt 20 bis 35 Gew.-%, bezogen auf das Gesamtgewicht der Reaktivharzkomponente. Dementsprechend beträgt der Anteil der Zuschlagstoffe bevorzugt 90 bis 40 Gew.-%, stärker bevorzugt 80 bis 65 Gew.-%, bezogen auf das Gesamtgewicht der Reaktivharzkomponente.
Als Füllstoffe finden übliche Füllstoffe, vorzugsweise mineralische oder mineralähnliche Füllstoffe, wie Quarz, Glas, Sand, Quarzsand, Quarzmehl, Porzellan, Korund, Keramik, Talkum, Kieselsäure (z. B. pyrogene Kieselsäure), Silikate, Ton, Titandioxid, Kreide, Schwerspat, Feldspat, Basalt, Aluminiumhydroxid, Granit oder Sandstein, polymere Füllstoffe, wie Duroplaste, hydraulisch härtbare Füllstoffe, wie Gips, Branntkalk oder Zement (z. B. Tonerde- oder Portlandzement), Metalle, wie Aluminium, Ruß, ferner Holz, mineralische oder organische Fasern, oder dergleichen, oder Gemische von zwei oder mehr davon, die als Pulver, in körniger Form oder in Form von Formkörpern zugesetzt sein können, Verwendung. Die Füllstoffe können in beliebigen Formen vorliegen, beispielsweise als Pulver oder Mehl oder als Formkörper, z. B. in Zylinder-, Ring-, Kugel- , Plättchen-, Stäbchen-, Sattel- oder Kristallform, oder ferner in Faserform (fibrilläre Füllstoffe), und die entsprechenden Grundteilchen haben vorzugsweise einen maximalen Durchmesser von 10 mm. Bevorzugt und deutlicher verstärkend wirken sich die globulären, inerten Stoffe (Kugelform) aus. Füllstoffe liegen in der jeweiligen Komponente vorzugsweise in einer Menge von bis zu 90, insbesondere 3 bis 85, vor allem 5 bis 70 Gew.-% vorhanden. Weitere denkbare Additive sind ferner Thixotropiermittel, wie gegebenenfalls organisch nachbehandelte pyrogene Kieselsäure, Bentonite, Alkyl- und Methylcellulosen, Rhizinusölderivate oder dergleichen, Weichmacher, wie Phthalsäure- oder Sebacinsäureester, Stabilisatoren, Antistatikmittel, Verdickungsmittel, Flexibilisatoren, Härtungskatalysatoren, Rheologiehilfsmittel, Netzmittel, färbende Zusätze, wie Farbstoffe oder insbesondere Pigmente, beispielsweise zum unterschiedlichen Anfärben der Komponenten zur besseren Kontrolle von deren Durchmischung, oder dergleichen, oder Gemische von zwei oder mehr davon, möglich. Auch nicht reaktive Verdünnungsmittel (Lösungsmittel) können, vorzugsweise in einer Menge bis zu 30 Gew.-%, bezogen auf die jeweilige Komponente (Reaktivharzkomponente, Härterkomponente), beispielsweise von 1 bis 20 Gew.-%, vorliegen, wie
Niederalkylketone, z. B. Aceton, Diniederalkyl-niederalkanoylamide, wie Dimethylacet- amid, Niederalkylbenzole, wie Xylole oder Toluol, Phthalsäureester oder Paraffine, oder Wasser.
In einer bevorzugten Ausführungsform der Erfindung ist die erfindungsgemäße Reaktivharzkomponente als Zwei- oder Mehrkomponenten-System, insbesondere Zweikomponenten-System konfektioniert, wobei die Reaktivharzkomponente und die Härterkomponente reaktionsinhibierend getrennt angeordnet sind.
Demnach ist ein weiterer Gegenstand der vorliegenden Erfindung ein
Zweikomponenten-System, welches die oben beschriebene Reaktivharzkomponente und eine Härterkomponente umfasst.
Eine erste Komponente des erfindungsgemäßen Zweikomponenten-Systems, die Komponente A, enthält die Reaktivharzkomponente und eine zweite Komponente, die Komponente B enthält das Härtungsmittel. Hierdurch wird erreicht, dass die härtbaren Verbindungen und die Härterkomponente erst unmittelbar vor der Anwendung miteinander gemischt werden und die Härtungsreaktion auslösen.
Die Härterkomponente enthält das Härtungsmittel zur Initiierung der Polymerisation (Härtung) des Harzbestandteils. Dieses ist, wie bereits erwähnt, ein Radikalinitiator, bevorzugt ein Peroxid. Alle dem Fachmann bekannten Peroxide, die zum Härten von Vinylesterharzen verwendet werden, können erfindungsgemäß zur Härtung der Dianhydrohexitol- basierten Vinylesterurethanharze eingesetzt werden. Derartige Peroxide umfassen organische und anorganische Peroxide, entweder flüssig oder fest, wobei Wasserstoffperoxid auch verwendet werden kann. Beispiele geeigneter Peroxide sind Peroxycarbonate (der Formel -OC(O)OO-), Peroxyester (der Formel -C(O)OO-), Diacylperoxide (der Formel -C(0)00C(0)-), Dialkylperoxide (der Formel -OO-) und dergleichen. Diese können als Oligomer oder Polymer vorliegen. Eine umfassende Reihe an Beispielen für geeignete Peroxide ist zum Beispiel in der Anmeldung US 2002/0091214-A1 , Absatz [0018], beschrieben.
Bevorzugt sind die Peroxide aus der Gruppe der organischen Peroxide ausgewählt. Geeignete organische Peroxide sind: tertiäre Alkylhydroperoxide, wie tert- Butylhydroperoxid, und andere Hydroperoxide, wie Cumenhydroperoxid, Peroxyester oder Persäuren, wie tert- Butylperester, Benzoylperoxid, Peracetate und Perbenzoate, Laurylperoxid, einschließlich (Di)peroxyester, Perether, wie Peroxydiethylether, Perketone, wie Methylethylketonperoxid. Die als Härter verwendeten organischen Peroxide sind oft tertiäre Perester oder tertiäre Hydroperoxide, d.h. Peroxid- Verbindungen mit tertiären Kohlenstoffatomen, die direkt an eine -O-O-acyl- oder-OOH- Gruppe gebunden sind. Aber auch Gemische dieser Peroxide mit anderen Peroxiden können erfindungsgemäß eingesetzt werden. Die Peroxide können auch gemischte Peroxide sein, d.h. Peroxide, die zwei verschiedene Peroxid-tragende Einheiten in einem Molekül aufweisen. Bevorzugt wird zum Härten Benzoylperoxid (BPO) verwendet.
Bevorzugt enthält die Härterkomponente des Zweikomponenten-Systems ferner anorganische Zuschlagstoffe, wobei die Zuschlagstoffe dieselben sind, wie sie der Reaktivharzkomponente zugegeben werden können.
Bei einer besonders bevorzugten Ausführungsform des Zweikomponenten-Systems enthält die Komponente A neben der Reaktivharzkomponente zusätzlich noch eine hydraulisch abbindende oder polykondensierbare anorganische Verbindung und die Komponente B neben dem Härtungsmittel noch Wasser. Derartige Mörtelmassen sind ausführlich in der DE 42 31 161 A1 beschrieben. Dabei enthält die Komponente A vorzugsweise als hydraulisch abbindende oder polykondensierbare anorganische Verbindung Zement, beispielsweise Portlandzement oder Aluminatzement, wobei eisenoxidfreie oder eisenoxidarme Zemente besonders bevorzugt sind. Als hydraulisch abbindende anorganische Verbindung kann auch Gips als solcher oder in Mischung mit dem Zement eingesetzt werden. Als polykondensierbare anorganische Verbindung können auch silikatische, polykondensierbare Verbindungen, insbesondere lösliches, gelöstes und/oder amorphes Siliziumdioxid enthaltende Stoffe verwendet werden.
Das Zweikomponenten-System umfasst bevorzugt die Komponente A und die Komponente B reaktionsinhibierend getrennt in unterschiedlichen Behältern, beispielsweise einer Mehrkammer-Vorrichtung, wie eine Mehrkammer-Patrone und/oder -Kartusche, aus welchen Behältern die beiden Komponenten durch Einwirkung mechanischer Presskräfte oder unter Einwirkung eines Gasdruckes ausgepresst und vermischt werden. Eine weitere Möglichkeit besteht darin, das Zweikomponenten- System als Zweikomponenten-Kapseln zu konfektionieren, die in das Bohrloch eingeführt werden und durch schlagdrehendes Setzen des Befestigungselements zerstört werden unter gleichzeitiger Durchmischung der beiden Komponenten der Mörtelmasse. Vorzugsweise wendet man ein Patronensystem oder ein Injektionssystem an, bei dem die beiden Komponenten aus den getrennten Behältern ausgepresst und durch einen statischen Mischer geführt werden, in dem sie homogen vermischt und dann über eine Düse vorzugsweise direkt in das Bohrloch ausgetragen werden.
Das erfindungsgemäße Reaktivharz, die Reaktivharzkomponente sowie das Zweikomponenten-System finden vor allem im Baubereich Verwendung, etwa zur Instandsetzung von Beton, als Polymerbeton, als Beschichtungsmasse auf Kunstharzbasis oder als kalthärtende Straßenmarkierung. Besonders eigenen sie sich zur chemischen Befestigung von Verankerungselementen, wie Ankern, Bewehrungseisen, Schrauben und dergleichen, in Bohrlöchern, insbesondere in Bohrlöchern in verschiedenen Untergründen, insbesondere mineralischen Untergründen, wie solche auf der Grundlage von Beton, Porenbeton, Ziegelwerk, Kalksandstein, Sandstein, Naturstein und dergleichen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der oben beschriebenen Reaktivharzkomponente zur chemischen Befestigung eines Verankerungsmittels in einem Bohrloch.
Bevorzugt ist das Verankerungsmittel aus Stahl oder aus Eisen. Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Bohrloch ein Bohrloch in mineralischem oder metallischem Untergrund, bevorzugt einem Untergrund ausgewählt aus der Gruppe bestehend aus Beton, Porenbeton, Ziegelwerk, Kalksandstein, Sandstein, Naturstein, Glas und Stahl.
Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung.
AUSFÜHRUNGSBEISPIELE
A) Herstellung der Dianhydrohexitol-Verbindungen
A1 ) Synthese von Isosorbid-bis-glycidetherdimethacrylat 221 ,7 g Isosorbid-bis-glycidether (1 ,42 mol, DENACOL GSR-101 , Nagase ChemteX
Corp.) wurden in einem auf 50 °C vorgeheizten Reaktor (RC-1 , Mettler Toledo) vorgelegt. Dazu wurden 129,1 g Methacrylsäure (1 ,5 mol, Aldrich, 99%), 102 mg (0,595 mmol) 4-Hydroxy-2,2,6,6-tetramethylpiperidinyloxyl (Tempol, zerkleinert) und 102 mg (0,514 mmol) Phenylthiazin (zerkleinert, SIGMA-Aldrich, purum, > 98% ) gegeben. Anschließend wurde für 15 min gerührt. Danach wurden unter Rühren 3,734 g (17,77 mmol) Tetraethylammoniumbromid (TEABr) (Merck, 97%) vorsichtig in kleinen Portionen zugegeben. Der Reaktor wurde verschlossen, mit einem Blasenzähler verbunden und unter Rühren (500 U/min) auf 100 °C Massetemperatur erhitzt. Die Masse wurde maximal für 6 h bei 100 °C gerührt. Die Reaktion der Epoxidgruppen wurde mittels NMR verfolgt. Spätestens nach 6 h wurde die Umsetzung beendet und die Masse so schnell wie möglich auf ca. 50 °C abgekühlt und entnommen. Bei Bedarf können die Reaktionsprodukte unter Zugabe einer Mischung aus (2-Hydroxypropyl)methacrylat (HPMA) (70 g) und Tempol (70 mg) aus dem Reaktor entfernt werden. Die Masse ist einsatzbereit für die Abmischung zu Reaktivharzen.
In drei Wiederholungsversuchen wurden bei Reaktionszeiten zwischen 5 und maximal 6 h vergleichbare Produkte mit einem Restgehalt von ca. 9 - 13 mol% Methacrylsäure erhalten. Mittels NMR waren keine Epoxidgruppen mehr detektierbar. B) Untersuchung des Härtungsverhaltens
Die in Beispiel A1 hergestellten Dianhydrohexitol-Verbindungen wurden Reaktivharzen zugesetzt und anschließend deren Härtungsverhalten untersucht. Als Standardharz wurde hierbei eine Mischung aus Reaktivharz-Masterbatch C1 , Hydroxypropylmethacrylat (HPMA), dem kommerziellen Reaktivverdünner 1 ,4- Butandioldimethacrylat (1 ,4-BDDMA), einem aromatischen Amin (als Beschleuniger für die Peroxidzersetzung) und verschiedenen Stabilisatoren verwendet. Diesem Reaktivharz wurden unterschiedliche Mengen der hergestellten Dianhydrohexitol- Verbindungen zugegeben. Zur Härtung wurde die so erhaltene Reaktivharzkomponente mit Benzoylperoxid in einem entsprechenden Verhältnis abgemischt (siehe Tabelle 1 ).
Tabelle 1 : Zusammensetzung der jeweiligen Proben
Anschließend wurde die Temperatur-Zeit-Kurve der Härtung wie folgt aufgenommen:
In einem Kunststoffbecher wurden ca. 20 g des zu untersuchenden Reaktivharzes und die entsprechende Menge an Härter (Perkadox 20S, Masseverhältnis 70:30) abgewogen. Da das System empfindlich auf Umgebungstemperatur reagiert, müssen die Komponenten auf 25 °C temperiert werden. Die Temperierung erfolgte in einem Thermostaten (B12/C11 Prüfgerätewerk Medingen GmbH). Die Messung wurde unmittelbar vor dem Mischen der Reaktionskomponenten gestartet. Der Härter wurde der vorgelegten Harzkomponente zugegeben und mittels Holzspatel für 40 s gut verrührt. Die Mischung wurde in zwei Reagenzgläser ca. 6 cm hoch eingefüllt, diese separat jeweils in einen im Thermostaten befindlichen Messzylinder eingehängt. Anschließend wurde jeweils ein mit Silikonpaste eingestrichener Temperatursensor (K-Typ, 150 mm lang 0 1 ,5 mm) mittig 2 cm tief in die Mischung eingetaucht. Da die Umgebungstemperatur bis zum Zeitpunkt des Eintauchens der Sensoren registriert wurde, ist der Kurvenverlauf am Anfang der Messung nicht relevant, weshalb die Temperatur-Zeit-Kurven erst ab 100 Sekunden für die Auswertung verwendet wurden. Der Temperaturverlauf wurde mittels der Sensoren, die an einem Voltkraft Datalogger K202 (verbunden mit PC) angeschlossen sind, registriert. Als Ergebnisse wurden in dem Kurvenverlauf die Höchsttemperatur der Kurve (Tmax), sowie die Zeit bei 35 °C abgelesen (schematische Auswertung gezeigt in Figur 1 ). Es wurden jeweils 3 Doppelbestimmungen pro System vorgenommen.
Die Ergebnisse sind in Tabelle 2 zusammengefasst, die Temperatur-Zeit-Kurven werden in Figur 2 gezeigt.
Tabelle 2: Ergebnisse der Härtungsversuche
Als Ergebnisse dieser Messungen wurden die maximal erreichte Temperatur der Masse T max und die Zeit bis zum Erreichen dieser Temperatur ausgewertet. Eine der Referenz vergleichbare Tmax (ein Maß für die während der Härtung freiwerdende Polymerisationswärme) weist auf den gewünschten Einbau der zugesetzten Reaktionsprodukte in das sich bildende Netzwerk hin. Die in Tabelle 2 genannten Prozentangaben für den Zusatz der neuen Monomere in mol- % sind bezogen auf den Anteil 1 ,4-BDDMA in der Mischung. Bei diesen Berechnungen wird die Zahl der Doppelbindungen im neuen Reaktivverdünner berücksichtigt, so dass immer eine annähernd konstante Menge an reaktiven Doppelbindungen in der Mischung vorliegt.
Die Ergebnisse zeigen, dass die Maximaltemperaturen bei allen Versuchen bis zu 40 mol% Ersatz des 1 ,4-BDDMA etwa gleich bleiben. Erst bei Ersatz von 60 mol% 1 ,4- BDDMA nimmt Tmax auf 144°C ab. Das belegt den guten Einbau der Isosorbidderivate in das sich bildende Netzwerk. Dagegen verkürzen sich die Zeiten bis zur Einstellung der Tmax mit zunehmender Menge der Isosorbidderivate. Die Ergebnisse zeigen, dass 1 ,4- BDDMA durch die neuen, teilweise biobasierten reaktiven Zusätze ersetzt werden können, ohne dass sich dies negativ auf die Härtungsreaktion auswirkt. Darüber hinaus können anstelle des 1 ,4-BDDMA auch Teile des Basisharzes UMA durch die Isosorbidderivate ersetzt werden, ohne dass die Härtungsreaktion negativ beeinflusst wird. C) Herstellung von Reaktivharz-Systemen
Reaktivharz-Masterbatch C1
Ein Reaktivharz-Masterbatch mit 65 Gew.-% der Vergleichsverbindung 1 als Basisharz und 35 Gew.-% Hydroxypropylmethacrylat (Visiomer® HPMA; Evonik Degussa GmbH), jeweils bezogen auf das Gesamtgewicht des Reaktivharz-Masterbatches, wurde gemäß dem Verfahren in EP 0 713 015 A1 , die hiermit als Referenz eingeführt und auf deren gesamte Offenbarung verwiesen wird, synthetisiert. Das Produkt hat die folgende Struktur, wobei eine Oligomerenverteilung mit n = 0 bis 3 vorliegt:
Reaktivharz-Masterbatch C2:
531 ,1 g (26,57 Gew.-%) Masterbatch C1 wurde mit 400 g (20 Gew.-%) 1 ,4- Butandioldimethacrylat (Visiomer 1 ,4-BDDMA, Evonik Degussa GmbH), 400 g (20 Gew.-%) Hydroxypropylmethacrylat (GEO Specialty Chemicals), 46 g (2,3 Gew.-%)
Di-isopropanol-p-toluidin (DiPT; BASF SE), 4,6 g (0,23 Gew.-%) Catechol (Catechol Flakes, RHODIA) und 1 g (0,05 Gew.-%) tert-Butylbrenzkatechin (tBBK, CFS EUROPE S.p.A. (Borregaard Italia S.p.A.)) gemischt und bis zur vollständigen Homogenisierung gerührt.
Reaktivharz-Masterbatch C3 (Referenzreaktivharz)
345,7 g (69,15 Gew.-%) Masterbatch C2 wurde mit 154,1 g (30,77 Gew.-%) Masterbatch C1 , 0,3 g (0,06 Gew.-%) Catechol (Catechol Flakes, RHODIA) und 0,3 g (0,06 Gew.-%) tert-Butylbrenzkatechin (tBBK, CFS EUROPE S.p.A. (Borregaard Italia S.p.A.)) gemischt und bis zur vollständigen Homogenisierung gerührt.
Reaktivharz-Masterbatch C4
345,7 g (69,15 Gew.-%) Masterbatch C2 wurde mit 76,95 g (15,39 Gew.-%) Masterbatch C1 , 50 g (10 Gew.-%, dies entspricht einem Austausch von 10 Gew.-% im Reaktivharz gegen Vergleichsverbindung 1 ) Isosorbiddiglycidyldimethacrylat, 27 g (5,38 Gew.-%) Hydroxypropylmethacrylat (GEO Specialty Chemicals), 0,3 g (0,06 Gew.-%) Catechol (Catechol Flakes, RHODIA) und 0,3 g (0,06 Gew.-%) tert-Butylbrenzkatechin (tBBK, CFS EUROPE S.p.A. (Borregaard Italia S.p.A.)) gemischt und bis zur vollständigen Homogenisierung gerührt.
Aus den Reaktivharzen C3 und C4 wurden die Reaktivharzkomponenten C5 und C6 folgendermaßen herqestellt:
310,5 g (34,5 Gew.-%) des Reaktivharzes wurden mit 166,5 g (18,5 Gew.-%) Secar® 80 (Kerneos Inc.), 9 g (1 Gew.-%) Cab-O-Sil® TS-720 (Cabot Corporation), 16,2 g (1 ,8 Gew.-%) Aerosil® R-812 (Evonik) und 397,7 g (44,2 Gew.-%) Quarzsand F32 (Quarzwerke GmbH) im Dissolver unter Vakuum vermischt. Das Mischen erfolgte mit einem PC Laborsystem Dissolver vom Typ LDV 0.3-1 für 8 Minuten (2 min: 2500U/min; dann 6 min: 3500 U/min; jeweils bei einem Druck <100 mbar) mit einer 55 mm Dissolverscheibe und einem Randabstreifer.
Aus den Reaktivharzkomponenten C5 und C6 wurden nun die Zweikomponenten- Reaktivharz-Svsteme C7 (aus C5) und C8 (aus C6) folgendermaßen herqestellt:
Zur Herstellung der Zweikomponenten-Reaktivharz-Systeme wurden die Reaktivharzkomponenten (Komponente (A)) mit einer Härterkomponente (Komponente (B)) des kommerziell erhältlichen Produkts HIT HY-200 (Hilti Aktiengesellschaft) kombiniert und in Plastikkartuschen (Firma Ritter GmbH; Volumenverhältnis A:B = 5:1 ) mit den Innendurchmessern 32,5 mm (Komponente (A)) bzw. 14 mm (Komponente (B)) gefüllt.
D) Bestimmung der Verbundspannunq
Um die Auswirkungen des Isosorbiddiglycidylmethacrylat-Bausteins im Vergleich zu der Referenz zu untersuchen, wurden die Verbundspannungen der Zweikomponenten- Reaktivharz-Systeme bestimmt. Zur Bestimmung der Verbundspannungen (Lastwerte) der ausgehärteten Befestigungsmassen wurden Ankergewindestanden M12 in Bohrlöcher in Beton C20/25 mit einem Durchmesser von 14 mm und einer Bohrlochtiefe von 72 mm, die mit den Reaktivharzkomponenten-Zusammensetzungen gefüllt wurden, eingeführt. Die Verbundspannungen wurden durch zentrisches Ausziehen der Ankergewindestanden ermittelt. Es wurden jeweils fünf Ankergewindestangen gesetzt und nach 24 Stunden Lagerung die Verbundspannung bestimmt. Die Befestigungsmassen wurden über einen Statikmischer (Mischer HIT-RE-M; Hilti Aktiengesellschaft) aus den Kartuschen ausgepresst und in die Bohrlöcher injiziert. Zur Ermittlung der Verbundspannung wurden folgende Bohrlochbedingungen eingestellt: das Bohrloch wurde in trockenem Beton hammergebohrt und durch Reinigung staubfrei gemacht. Das Setzen und Aushärten des Mörtels erfolgte bei Raumtemperatur. Das Lagern und Ausziehen erfolgte entweder bei Raumtemperatur oder bei 80 °C. Tabelle 3 zeigt die Ergebnisse dieser Messungen. Bei den gezeigten Verbundspannungen handelt es sich um Mittelwerte aus fünf Messungen.
Tabelle 3: Verbundspannungen der Reaktivharz-Systeme
Auch wenn die Verbundspannungen des erfindungsgemäßen Reaktivharz-Systems C8 bei beiden Messtemperaturen niedriger als bei der Referenz C7 liegen, sind diese Lastwerte jedoch in einer mit aktuellen Marktprodukten (z.B. HILTI HIT HY-100) vergleichbaren Größenordnung, was die Verwendbarkeit des Isosorbid-Bausteins belegt.
KURZE BESCHREIBUNG DER FIGUREN
Figur 1 zeigt eine schematische Darstellung der Auswertung von Temperatur-Zeit- Kurven
Figur 2 zeigt die in Beispiel B gemessenen Temperatur-Zeit-Kurven

Claims

PATENTANSPRÜCHE
1. Reaktivharz, umfassend mindestens eine Dianhydrohexitol-Verbindung der Formel (I),
(I), worin R für ein Wasserstoffatom oder eine Methylgruppe steht, X für ein Dianhydrohexitol steht, L unabhängig voneinander für eine verbrückende C-i-Cs- Alkylengruppe stehen, welche unsubstituiert oder Hydroxy-substituiert sein kann, und n 1 bis 5 sein kann.
2. Reaktivharz nach Anspruch 1 oder 2, wobei X für Isosorbid, Isomannid oder Isoidid steht
3. Reaktivharz nach Anspruch 1 oder 2, wobei X für Isosorbid steht.
4. Reaktivharz nach einem der vorhergehenden Ansprüche, wobei die mindestens eine Dianhydrohexitol-Verbindung eine Isosorbid-Verbindung der Formel (Ib) ist,
(Ib), worin R für ein Wasserstoffatom oder eine Methylgruppe steht und L unabhängig voneinander für eine verbrückende C-i-Cs-Alkylgruppe stehen, welche unsubstituiert oder Hydroxy-substituiert sein kann, und n 1 bis 5 sein kann.
5. Reaktivharz nach einem der vorhergehenden Ansprüche, wobei L unabhängig voneinander für eine verbrückende Cß-Cs-Alkylgruppe stehen, welche Hydroxy- substituiert ist.
6. Reaktivharz nach einem der vorhergehenden Ansprüche, wobei L für steht.
7. Reaktivharz nach einem der vorhergehenden Ansprüche, enthaltend bis zu 70 Gew.-% der mindestens einen Dianhydrohexitol-Verbindung der Formel (I), bezogen auf das Gesamtgewicht des Reaktivharzes.
8. Verwendung eines Reaktivharzes nach einem der Ansprüche 1 bis 7 zur chemischen Befestigung eines Verankerungsmittels in einem Bohrloch.
9. Reaktivharzkomponente, enthaltend ein Reaktivharz nach einem der Ansprüche 1 bis 7 und anorganische und/oder organische Zuschlagstoffe.
10. Reaktivharzkomponente nach Anspruch 9, wobei der anorganische Zuschlagstoff aus der Gruppe bestehend aus Quarz, Glas, Korund, Porzellan, Steingut, Leichtspat, Schwerspat, Gips, Talk, Kreide oder Gemischen davon ausgewählt ist, und wobei der Zuschlagstoff in Form von Sand, Mehl, oder Formkörpern vorliegen kann.
1 1. Reaktivharzkomponente nach Anspruch 9 oder 10, wobei das Reaktivharz in einer Menge von 10 bis 60 Gew.-% enthalten ist, bezogen auf das Gesamtgewicht der Reaktivharzkomponente.
12. Zweikomponenten-System, umfassend eine Reaktivharzkomponente nach einem der Ansprüche 9 bis 1 1 und eine Härterkomponente.
13. Zweikomponenten-System nach Anspruch 12, wobei die Härterkomponente einen Radikalinitiator als Härtungsmittel und gegebenenfalls anorganische und/oder organische Zuschlagstoffe enthält.
14. Verwendung eines Zweikomponenten-Systems nach einem der Ansprüche 12 bis 13 zur chemischen Befestigung eines Verankerungsmittels in einem Bohrloch.
15. Verwendung nach Anspruch 8 oder 14, wobei das Verankerungsmittel aus Stahl oder Eisen ist.
16. Verwendung nach Anspruch 8, 14 oder 15, wobei das Bohrloch ein Bohrloch in mineralischem oder metallischem Untergrund ist, bevorzugt einem Untergrund ausgewählt aus der Gruppe bestehend aus Beton, Porenbeton, Ziegelwerk, Kalksandstein, Sandstein, Naturstein, Glas und Stahl.
EP18799570.9A 2017-11-28 2018-11-15 Isosorbidderivate als reaktive zusätze in reaktivharzen und chemischen dübeln Withdrawn EP3717435A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17204039.6A EP3489205A1 (de) 2017-11-28 2017-11-28 Isosorbidderivate als reaktive zusätze in reaktivharzen und chemischen dübeln
PCT/EP2018/081440 WO2019105754A1 (de) 2017-11-28 2018-11-15 Isosorbidderivate als reaktive zusätze in reaktivharzen und chemischen dübeln

Publications (1)

Publication Number Publication Date
EP3717435A1 true EP3717435A1 (de) 2020-10-07

Family

ID=60673087

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17204039.6A Withdrawn EP3489205A1 (de) 2017-11-28 2017-11-28 Isosorbidderivate als reaktive zusätze in reaktivharzen und chemischen dübeln
EP18799570.9A Withdrawn EP3717435A1 (de) 2017-11-28 2018-11-15 Isosorbidderivate als reaktive zusätze in reaktivharzen und chemischen dübeln

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17204039.6A Withdrawn EP3489205A1 (de) 2017-11-28 2017-11-28 Isosorbidderivate als reaktive zusätze in reaktivharzen und chemischen dübeln

Country Status (4)

Country Link
US (1) US20200262955A1 (de)
EP (2) EP3489205A1 (de)
CA (1) CA3078698A1 (de)
WO (1) WO2019105754A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4357313A1 (de) 2022-10-18 2024-04-24 Hilti Aktiengesellschaft Methacrylate aus zuckerderivaten als reaktive bestandteile in reaktivharzen für die chemische befestigung
EP4357390A1 (de) 2022-10-18 2024-04-24 Hilti Aktiengesellschaft Biogene methacrylate auf basis von polycarbonatdiolen als reaktive harze für die härtung von reaktivharzen

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297745A (en) 1962-04-05 1967-01-10 Robertson Co H H Ethylenically unsaturated di-and tetra-urethane monomers
GB1352063A (en) 1971-01-08 1974-05-15 Ici Ltd Polymerisable compositions and resins derived thererom
US4618658A (en) 1985-05-16 1986-10-21 The Dow Chemical Company Polymer modified epoxy resin compositions
DE3744390A1 (de) 1987-12-29 1989-07-13 Basf Ag Faserverbundwerkstoffe auf basis von modifizierten vinylesterurethanharzen
GB8810299D0 (en) 1988-04-29 1988-06-02 Scott Bader Co Vinyl terminated urethane containing resins
DE3940309A1 (de) 1989-12-06 1991-06-13 Hilti Ag Moertelmasse
DE4131457A1 (de) 1991-09-21 1993-03-25 Basf Ag Patrone oder kartusche fuer die chemische befestigungstechnik
DE4231161A1 (de) 1992-09-17 1994-03-24 Hilti Ag Mörtel und Vorrichtung zur Befestigung von Verankerungsmitteln in Bohrlöchern
DE4438577A1 (de) 1994-10-28 1996-05-02 Basf Ag Selbsttragende Dübelmasse für die chemische Befestigungstechnik
DE19531649A1 (de) 1995-08-29 1997-03-06 Basf Ag Dübelmasse für die chemische Befestigungstechnik
DE19826412C2 (de) 1998-06-16 2002-10-10 Roehm Gmbh Geruchsvermindertes, kalthärtendes (Meth)acrylat-Reaktionsharz für Bodenbeschichtungen, dieses Reaktionsharz aufweisende Bodenbeschichtungen sowie Verfahren zur Herstellung solcher Bodenbeschichtungen
DE19956509A1 (de) 1999-11-24 2001-01-18 Basf Ag Inhibitorkomposition zur Stabilisierung von ethylenisch ungesättigten Verbindungen gegen vorzeitige radikalische Polymerisation
EP1216991A1 (de) 2000-12-22 2002-06-26 Akzo Nobel N.V. Transportable reaktive Phlegmatisierungsmittel enthaltende organische Peroxidzusammensetzungen und ihre sichere Verpackung
CA2614050C (en) 2006-12-21 2015-04-21 Hilti Aktiengesellschaft Two-component reaction resin and method of fastening using the resin
FR2931822B1 (fr) 2008-05-30 2012-11-02 Arkema France Methacrylate de methyle derive de la biomasse, procede de fabrication, utilisations et polymeres correspondants.
ES2368551T3 (es) 2008-10-09 2011-11-18 Cognis Ip Management Gmbh Derivados de isosórbido.
FR2938838B1 (fr) 2008-11-27 2012-06-08 Arkema France Procede de fabrication d'un methacrylate de methyle derive de la biomasse
FR2940801B1 (fr) 2009-01-06 2012-08-17 Arkema France Procede de fabrication d'un methacrylate de methyle derive de la biomasse
WO2010099201A1 (en) 2009-02-24 2010-09-02 Gevo, Inc. Methods of preparing renewable butadiene and renewable isoprene
US9119774B2 (en) 2009-09-18 2015-09-01 Premier Dental Products Company Self-healing dental restorative formulations and related methods
DE102011017626B4 (de) 2011-04-27 2013-01-03 Hilti Aktiengesellschaft Verfahren zur Stabilisierung eines Reaktionsharzmörtels und dessen Vorläufermischungen, Harzmischung, Reaktionsharzmörtel, Mehrkomponenten - Mörtelsystem, dessen Verwendung sowie Patrone, Kartusche oder Folienbeutel umfassend das Mehrkomponenten - Mörtelsystem
DE102011077248B3 (de) 2011-06-09 2012-09-27 Hilti Aktiengesellschaft Verwendung eines Inhibitors, Harzmischung, Reaktionsharzmörtel, Zweikomponenten - Mörtelsystem und dessen Verwendung sowie Patrone, Kartusche oder Folienbeutel enthaltend ein Zweikomponenten - Mörtelsystem
EP2742055B1 (de) * 2011-08-10 2019-10-16 Drexel University Verfahren zur herstellung von polymeren mit erhöhter glasübergangstemperatur aus biobasierten erneuerbaren (meth)acrylierten monomeren in anwesenheit von vinylestermonomeren oder ungesättigten polyestermonomeren
DE102012219476A1 (de) 2012-10-24 2014-04-24 Hilti Aktiengesellschaft Harzmischung auf Vinylesterurethanharz-Basis und deren Verwendung
CN105102562B (zh) 2013-04-05 2019-01-29 费希尔厂有限责任两合公司 具有生物的反应性稀释剂和树脂的人造树脂-胶粘剂
CA2977710A1 (en) * 2015-02-26 2016-09-01 Basf Se Process for preparing isosorbide ethoxylate di(meth)acrylate
EP3262130B1 (de) * 2015-02-26 2020-10-28 Basf Se Verfahren zur herstellung von isosorbiddi(meth)acrylat

Also Published As

Publication number Publication date
EP3489205A1 (de) 2019-05-29
CA3078698A1 (en) 2019-06-06
US20200262955A1 (en) 2020-08-20
WO2019105754A1 (de) 2019-06-06

Similar Documents

Publication Publication Date Title
EP2912085B1 (de) Harzmischung auf vinylesterurethanharz-basis und deren verwendung
EP3024796B1 (de) Harzmischung, reaktionsharz-mörtel, mehrkomponenten-mörtelsystem und deren verwendung
WO2015011183A1 (de) Reaktionsharzmörtel, Mehrkomponenten-Mörtelsystem und deren Verwendung
EP3424972B1 (de) Urethanmethacrylat-verbindungen und deren verwendung
EP3717435A1 (de) Isosorbidderivate als reaktive zusätze in reaktivharzen und chemischen dübeln
EP3272777A1 (de) Reaktionsharz-zusammensetzung auf basis von zuckermethacrylat und deren verwendung
EP3649170B1 (de) Verzweigte urethanmethacrylat-verbindungen und deren verwendung
EP4077524A1 (de) Reaktivharzkomponente, diese enthaltendes reaktivharzsystem und deren verwendung
EP3851423A1 (de) Verwendung von reaktionsharzmischungen mit vordefinierter polarität zur einstellung der robustheit einer mörtelmasse sowie verfahren zur einstellung der robustheit einer mörtelmasse
EP3805301A1 (de) Lagerstabile härterzusammensetzung für ein reaktionsharz
EP3649168A1 (de) Urethanmethacrylat-verbindungen und deren verwendung
EP3424900A1 (de) Epoxymethacrylat-verbindungen und deren verwendung
EP3649169B1 (de) Urethanmethacrylat-verbindungen enthaltende reaktivharze, reaktivharzkomponenten sowie reaktivharz-systeme und deren verwendung
EP3898849B1 (de) Verwendung von urethanmethacrylat-verbindungen in reaktivharz- zusammensetzungen
EP3805179A1 (de) Mehrkomponentiges reaktionsharzsystem und dessen verwendung
WO2021069437A1 (de) Lagerstabiles mehrkomponentiges reaktionsharzsystem und dessen verwendung
EP3851424A1 (de) Verwendung von reaktionsharzmischungen mit vordefinierter polarität zur einstellung der gelzeit einer mörtelmasse sowie verfahren zur einstellung der gelzeit einer mörtelmasse

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210119