EP3717273B1 - Coding system for forming a security feature in or on a security document or value document or a plurality of security documents or value documents - Google Patents

Coding system for forming a security feature in or on a security document or value document or a plurality of security documents or value documents Download PDF

Info

Publication number
EP3717273B1
EP3717273B1 EP18821988.5A EP18821988A EP3717273B1 EP 3717273 B1 EP3717273 B1 EP 3717273B1 EP 18821988 A EP18821988 A EP 18821988A EP 3717273 B1 EP3717273 B1 EP 3717273B1
Authority
EP
European Patent Office
Prior art keywords
luminous substances
security
combinations
color
coding system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18821988.5A
Other languages
German (de)
French (fr)
Other versions
EP3717273A1 (en
Inventor
Detlef Starick
Manfred Paeschke
Christian Kunath
Gustav Martin BARTEL
Roland HEISE
Cornelia VANDAHL
Sylke RÖSLER
Sven RÖSLER
Wolfgang Kempfert
Guido HAUßMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesdruckerei GmbH
Original Assignee
Bundesdruckerei GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesdruckerei GmbH filed Critical Bundesdruckerei GmbH
Publication of EP3717273A1 publication Critical patent/EP3717273A1/en
Application granted granted Critical
Publication of EP3717273B1 publication Critical patent/EP3717273B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/24Passports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/382Special inks absorbing or reflecting infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/387Special inks absorbing or reflecting ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/004Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using digital security elements, e.g. information coded on a magnetic thread or strip
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/202Testing patterns thereon using pattern matching
    • G07D7/2033Matching unique patterns, i.e. patterns that are unique to each individual paper

Definitions

  • the invention relates to a coding system for forming a security feature in or on a security document or document of value or a plurality of documents of security or value. Furthermore, the invention relates to a security feature which is in the form of a plurality of security elements. In addition, the invention also relates to a security document or document of value comprising a security feature according to the invention.
  • Luminescent organic and/or inorganic materials have long been used in a variety of ways as security features in security and value documents, such as banknotes, passports, ID cards, driver's licenses, etc., but also in product protection.
  • the spectral distance between the individual emission lines of the phosphors used to implement a coding system should be at least 10 nm.
  • the use of phosphor pigments emitting exclusively outside the visible spectral range is regarded as a significant advantage over the prior art known up to that point.
  • the pamphlet DE 601 18 472 T2 relates to a device for protecting documents, in which at least two printable motifs are provided with two inks, which produce identical (luminescent) colors upon a first UV excitation with a first wavelength and upon a second UV excitation with a different, second wavelength emit different (luminescent) colors.
  • the document WO 2017/080654 A1 relates to a pigment system of different capsule luminescence pigments which have different emission spectra and different color impressions of the luminescence emissions and which are said to have essentially the same chemical stability.
  • the document EP 1 647 947 A1 describes a device and a method for checking luminescence security features, the response signals measured after excitation having overlapping spectral bands.
  • the document U.S. 2013/221656 A1 discloses a light-emitting medium which is applied to a substrate in the form of a motif and in turn comprises two different fluorescent materials which emit in mutually distinguishable colors both when excited with a first and with a second UV wavelength.
  • luminescent security elements belonging to this class of features can already be found in countless security and value documents (passports, identity cards, theater tickets), but such “quasi-level 1” features often lack the required security against forgery.
  • luminescent security features also have a level 3 security characteristic in addition to their level 2 functionality, which could consist in the provision of machine-readable codes. Such codes could be used to verify the authenticity, to encode the nominal value or to sort, for example, different denominations of banknotes or products of value.
  • the invention is based on the technical problem of providing a coding system for forming a security feature in or on a security document or document of value and a system for forming security features in the form of security elements in which the security features can be made visible using simple excitation sources and at the same time an increased and required protection against counterfeiting is provided.
  • Luminescence is the electromagnetic radiation emitted by a physical system during the transition from an excited state to the ground state.
  • different types of luminescence are distinguished (e.g. photoluminescence, cathodoluminescence, X-ray luminescence, electroluminescence, etc.).
  • photoluminescence refers to the type of luminescence in which excitation takes place with the aid of UV radiation and the resulting luminescence radiation is emitted in the visible spectral range (VIS, approx. 380 to 780 nm).
  • Anti-Stokes luminescence is a special case of luminescence, in which multi-stage IR-induced excitation also emits in the visible spectral range.
  • Luminescent substances are organic or inorganic chemical compounds which show luminescence when excited by electromagnetic or particle radiation or when excited by electric fields.
  • activator and optionally additional coactivator ions acting as radiation centers are built into the phosphor basic lattices (phosphor matrices) formed by the chemical compounds. These phosphors are often present as solid bodies, in particular in the form of luminescence pigments.
  • An emission spectrum describes the spectral distribution of the electromagnetic radiation emitted by the phosphors or of the light emitted by them.
  • Such an emission spectrum can consist of emission lines and/or emission bands.
  • a code is generally a mapping rule for assigning characters, symbols or measurable properties to a set of characters.
  • the measurement data to be assigned result from the spectral sequence of the emission lines and/or emission bands of the selected phosphors and/or phosphor combinations, which are generally determined by the wavelengths of the emission maxima ( ⁇ max values), the intensity ratios between the selected emission lines and/or bands and possibly also characterized by the half-widths of these emissions.
  • the CIE standard valence system (also called CIE standard color system) is a three-dimensional colorimetric system that was defined by the Commission Internationale de l'éclairage (CIE) in 1931 and enables colors and self-luminous objects to be described using the standard color values X, Y and Z. These result from linear, additive evaluation of the respective emission spectrum with one of the three standard spectral value functions x ( ⁇ ), y ( ⁇ ) and e.g ( ⁇ ).
  • CIE standard valence system and “CIE standard color system” are used equivalently in the present invention.
  • the CIE color coordinates x, y and z denote the ratios of the standard color values X, Y and Z to their sum.
  • the representation of the color coordinates x and y results in the two-dimensional standard color chart, which then no longer contains the brightness information. Due to the physiology of the eye, different spectral distributions can lead to identical color coordinates.
  • the CIE normal valence system is based on the definition of an ideal normal observer whose spectral value functions are the normal spectral value functions x ( ⁇ ), y ( ⁇ ) and e.g ( ⁇ ) correspond. Colors and self-luminous materials (e.g. phosphors) that have the same color coordinates are referred to as color-identical.
  • Color sensation and color perception of an individual observer can deviate from those of the defined standard observer.
  • Color discrimination characterizes the extent to which color differences are perceived by individual observers.
  • MacAdam ellipses describe tolerance ranges in the standard value table, which are distinguished by the fact that they are on different x, y coordinates based color differences of different colors under defined visual conditions and with a certain probability of individual observers are not perceived. A tolerance for the color differences can thus be specified for the perceived color equality, which can be dependent on the color value.
  • the acceptable color differences of the objectively measured color coordinates, which individual observers still regard as having the same color, can thus be predetermined.
  • color-identical or “color identity” is thus understood in the present invention to mean that two phosphors have identical color coordinates in the CIE standard valence system under specified excitation conditions.
  • equal color or “equal color” is understood in the present invention to mean that two phosphors under a specified excitation that are within a tolerance color range of the CIE standard color system, for example a MacAdam ellipse, by a sufficiently large collective of observers among the given excitation conditions are rated as indistinguishable with a specified probability.
  • One aspect of the invention relates to the coding system defined in claim 1.
  • Another aspect of the invention relates to the security feature defined in claim 19.
  • the object described above is achieved in that the codes forming the respective codes in the ultraviolet spectral range (namely at wavelengths between 380 and 315 nm (UV-A), 315 and 280 nm (UV-B) and between 280 and 200 nm ( UV-C)) or phosphors that can be excited in the infrared spectral range (IR, for example at 950 or 980 nm) and that emit in the visible range are assembled and combined to form security elements, for example corresponding markings, in such a way that the For example, with a specific UV radiation source, color impressions of different security elements of a security feature are perceived by the human eye as having the same color.
  • UV-A ultraviolet spectral range
  • UV-B 315 and 280 nm
  • UV-C UV-C
  • the security elements of a security feature that are perceived as having the same color in terms of their luminescence can be used in different security or valuable documents (for example banknotes, ID cards, passports, driving licenses, etc.) or also in product protection. Markings that appear the same color but have different codes can be used, for example, for the purpose of coding the denomination of different currency denominations. On the other hand, however, it is also possible to integrate the markings perceived as having the same color as security features several times in the same, similar or different designs of one and the same security or value document.
  • color-identical or color-same security elements can be produced both with emission lines and/or emission bands that are close together but also with emission lines that are further apart.
  • the spectral distance of the individual emission lines is not directly decisive for the desired identical color impression of the emitted luminescence of the individual markings, but it is for the effort that has to be made for reliable spectrometric verification.
  • Further criteria for the selection of the phosphors for the coding system are, for example, the highest possible luminescence yield, sufficiently high stability and aging resistance to environmental influences, and a grain size distribution of the luminescent pigments adapted to the selected printing and application processes. These properties are also of great importance, for example, for the manner in which the security elements are used on or in the respective security and value documents and for reliable verifiability over the entire life or useful life of the security or value document.
  • the application of the security elements can take place, for example, using conventional printing technologies (gravure printing, flexographic printing, offset printing or screen printing processes, etc.) or using other types of coating processes, the materials to be coated being made of paper, different Plastics or can also consist of other organic or inorganic substances. Furthermore, provision can also be made to use the security elements by adding the phosphors to plastics, with the plastics then being introduced into the security document or document of value.
  • phosphors are available both for excitation with UV radiation and for IR excitation for the realization of color-identical or color-same security elements, for example in the form of markings.
  • the resulting emission spectra are mostly highly complex. Codes formed using these combinations have a level 3 security level and can only be verified with the help of powerful and possibly very complex luminescence measurement technology and with the special or secret knowledge about which of the diverse and different emission lines or bands are used for the evaluation .
  • borates e.g. LaBO 3 , SrB 6 O 10 , CaYBO 4 , SrB 4 O 7 , YAl 3 B 4 O 12 , SrB 8 O 13' Ca 2 B 5 O 9 Br
  • nitrides e.g. CaAlSiN 3 , Sr 2 Si 5 N 8 , MgSiN 2 , GaN
  • oxynitrides e.g. SrSi 2 N 2 O 2 , ⁇ -SiAlON , ⁇ -SiAlON, oxides (e.g.
  • YPO 4 Ca 2 P 2 O 7 , MgBaP 2 O 7 , Ca 3 (PO 4 ) 2 , MgBa 2 (PO 4 ) 2 ), halophosphates (e.g. Ca 5 (PO 4 ) 3 Cl, Sr 5 (PO 4 ) 3 Cl), sulfides (e.g. ZnS, CaS, SrS, BaS, SrGa 2 S 4 , ZnGa 2 S 4 , ZnBa 2 S 3 ), oxysulfides (e.g. Y 2 O 2 S, La 2 O 2 S, Gd 2 O 2 S, Lu 2 O 2 S), sulfates (e.g.
  • Mg 2 Ca (SO 4 ) 3 gallates (e.g. Y 3 Ga 5 O 12 , CaGa 2 O 4 , Gd 3 Ga 5 O 12 ), vanadates (e.g. YVO 4 ), molybdates and tungstates (e.g. CaMoO 4 , Sr 3 WO 6 , La 2 W 3 O 12 , Tb 2 Mo 3 O 12 , Li 3 Ba 2 La 3 (MoO 4 ) 8 ), or also such inorganic substance classes as, for example, borides, carbides, scandates, titanates, germanates and yttrates. This enumeration does not represent any restriction; other material classes or individual compounds can also be included in the selection of the inorganic solid-state compounds suitable as the phosphor basic lattice.
  • gallates e.g. Y 3 Ga 5 O 12 , CaGa 2 O 4 , Gd 3 Ga 5 O 12
  • vanadates e.g. YVO 4
  • the selected basic lattice is activated by the targeted incorporation of one or more foreign ions into the respective phosphor matrix.
  • foreign ions In the case of phosphors that can be excited in the ultraviolet spectral range and emit in the visible range, primarily rare earth ions and/or ions of transition metals are used for doping or co-doping .
  • These activator ions and any additionally introduced coactivator ions form the radiation centers in the respective basic lattices and, in interaction with them, determine the luminescence properties of the inorganic phosphors.
  • trivalent ions of the rare earths such as Pr 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Er 3+ , Dy 3+ , Tm 3+ or 3d 3 ions such as Cr 3+ , Mn 4+ usually linear emissions after UV excitation, while doping the basic lattice mentioned by way of example with ions such as Mn 2+ , Cu + , Ag + , Sn 2+ , Sb 3+ , Pb 2+ , Bi 3+ , Ce 3+ and Eu 2+ emission bands are obtained with high probability.
  • the basic lattice for such inorganic phosphors that can be used according to the invention are primarily oxidic compounds (e.g. Y 2 O 3 , ZrO 2 , La 2 MoO 6 , LaNbO 4 , LiYSiO 4 ), oxyhalides (e.g.
  • organic phosphors that can be excited in the UV or IR spectral range and emit in the visible range, such as different, rare earth-activated organic complex compounds, can of course also be used in the context of the invention to produce color-identical security elements. These can optionally be combined with selected inorganic luminescent pigments.
  • photoluminescent inorganic or organic nanoscale phosphors or correspondingly configured quantum dots are also suitable as components for providing the required phosphor components.
  • the phosphors selected for the respective application of the coding system are modified by deliberately changing the chemical composition of the respective host (basic) lattice, i.e. by deliberately made substitutions in the cation and/or anion partial lattice, so that the Emission spectra of these exclusive phosphors differ significantly from those of the luminophores used in conventional technical applications or from those that have been described in detail in the specialist literature.
  • the protection against forgery of the value or security documents equipped with the coding system can be further increased by the preferred use of such phosphors with exclusive emission spectra.
  • the coding system according to the invention offers a variety of embodiments for different security levels and possible applications.
  • Color-identical or color-same markings can be provided, the authenticity of which can be checked with simple hand-held sensors, but also those where high-resolution spectrometers are required for reliable verification of the code.
  • the span of the Verification options range from forensic testing in a special laboratory to high-speed detection of machine-readable codes.
  • An advantageous embodiment of the invention relates to a coding system, wherein the luminescence codes assigned to the luminescent security elements are formed from the different spectral sequence of the individually marked emission lines and/or emission bands of the phosphors and/or phosphor combinations.
  • a further embodiment of the invention relates to a coding system, the luminescence codes assigned to the luminescent security elements being formed from the intensity ratios of the individually marked emission lines and/or emission bands of the phosphors and/or phosphor combinations.
  • Yet another exemplary embodiment of the invention relates to a coding system, wherein at least one additional phosphor and thus additional phosphor combinations are provided to form additional luminescent security elements with other luminescent codes.
  • a particularly advantageous embodiment of the invention relates to a coding system in which the color coordinates of the luminescent security elements are adjusted via mixing ratios of the phosphors used for phosphor combinations, resulting in defined relative intensity ratios of the individually marked emission lines and/or emission bands for the phosphor combination.
  • Another embodiment of the invention relates to a coding system, wherein at least one of the phosphors has an organic phosphor, in particular a rare earth-activated organic complex compound.
  • An advantageous embodiment of the invention relates to a coding system, wherein at least one of the phosphors has an inorganic phosphor.
  • Another embodiment of the invention relates to a coding system, wherein both inorganic and organic phosphors of different particle size, and for example also nanoscale phosphors or quantum dots, as well as corresponding phosphor combinations can be used.
  • An advantageous embodiment of the invention relates to a coding system, the phosphors being modified by targeted substitutions in the phosphor lattice, so that they have an exclusive emission spectrum.
  • Yet another embodiment of the invention relates to a coding system, the phosphors and/or phosphor combinations in one or more ultraviolet wavelength ranges, namely at wavelengths between 380 nm and 315 nm (UV-A) and/or at wavelengths between 315 nm and 280 nm ( UV-B) and/or can be excited at wavelengths between 280 nm and 200 nm (UV-C).
  • UV-A at wavelengths between 380 nm and 315 nm
  • UV-B wavelengths between 315 nm and 280 nm
  • UV-C can be excited at wavelengths between 280 nm and 200 nm
  • a particular embodiment of the invention relates to a coding system in which the luminescent security elements of the security feature are identical in color under at least two excitation conditions that can be set in the ultraviolet spectral range, i.e. in the UV-A and/or in the UV-B and/or in the UV-C spectral range or be perceived in the same color.
  • a further embodiment of the invention relates to a coding system, wherein the luminescent security elements of the security feature are color-identical or are perceived as the same color for each of the specified excitations in the UV-A, UV-B or UV-C spectral range.
  • An advantageous embodiment of the invention relates to a coding system in which the luminescent security elements of the security feature have different color coordinates in the CIE standard color system for different predefined stimuli, or at least such color coordinates that lie within a different tolerance color range of the CIE standard color system, so that the luminescent security elements do not have a certain given suggestions are perceived as color-identical or the same color, but have a different color identity or color sameness in the case of another given suggestion.
  • An exemplary embodiment of the invention relates to a coding system, in which the phosphors and/or phosphor combinations can be excited in the infrared wavelength range, namely at wavelengths between 950 nm and 980 nm.
  • Another embodiment of the invention relates to a coding system, wherein the maxima of the individually marked emission lines and/or emission bands of the phosphors and/or phosphor combinations are only a few nanometers apart, in particular a distance of less than 10 nm, particularly preferably a distance of less than 5 nm, most preferably have a distance of less than 3 nm.
  • Another embodiment of the invention relates to a coding system, wherein further information about the manner in which the security elements of the security feature are arranged, for example about the location or a form of the security element, for example in the form of a symbol, number or pictogram, is assigned to the security element.
  • An advantageous embodiment of the invention relates to a coding system, wherein all color coordinates of the phosphors comprised by the coding system essentially lie on a straight line in the CIE standard color system.
  • a further embodiment of the invention relates to a coding system, in which the phosphors and/or phosphor combinations have essentially the same or similar aging resistance.
  • the inventive coding system for forming a security feature in or on a security or valuable document or a plurality of security or valuable documents is particularly characterized in that it is based on the use of different non-visible spectral range, especially in the ultraviolet (UV) or phosphors and/or phosphor combinations that can be excited in the infrared (IR) spectral range and emit in the visible spectral range, the phosphors and/or phosphor combinations each having different emission spectra in the visible spectral range under specified excitation conditions, so that each of the phosphors and/or phosphor combinations is characterized by at least one individually distinguished Characterized emission line or emission band is, which differs from the individually distinguished emission lines or emission bands of the other phosphors and/or phosphor combinations.
  • UV ultraviolet
  • IR infrared
  • the coding system is also characterized in that it comprises at least three, preferably exclusive, phosphors and/or the phosphor combinations created from these phosphors, which are combined in the form of security elements to form security features, and each security element is assigned a code that consists of the spectral Sequence of the individually distinguished emission lines or emission bands of the at least three phosphors and/or phosphor combinations and/or the intensity ratios of these emission lines and/or emission bands is formed.
  • the inventive solution is characterized in that all luminescent security elements combined to form a security feature have identical color coordinates in a CIE standard color system under the specified excitation conditions, or at least such color coordinates that are within a tolerance color range of the CIE standard color system, for example a MacAdam ellipse.
  • a tolerance color range of the CIE standard color system for example a MacAdam ellipse.
  • the color coordinates of the emission spectra of the individual phosphors in the CIE standard color system must lie largely on a straight line in order to be able to provide several different luminescence codes with identical color coordinates by combining these phosphors.
  • at least three distinguishable codes can be generated with exactly identical color coordinates and a different spectral sequence of the individually marked emission lines, which are generated by combining two of the three selected phosphors (pairs of phosphors) and by a corresponding combination of three ( Phosphor triple) can be formed.
  • the intensity ratios between the selected emissions are also used to set the code, there are further possibilities for the formation of distinguishable combinations of three.
  • the exact setting of the color coordinates of the individual combinations is based on specific mixing ratios bound between the individual phosphors.
  • the possibilities for providing distinguishable luminescence codes can be further increased. It must be taken into account that the number of codes that can be generated also depends, for example, on the specific positioning of the target color location and on the permitted spectral distances between the maxima of the individually marked emission lines and/or bands.
  • the luminophores used in practice for example modified rare earth-activated phosphors, usually have several emission lines and often complex line spectra even as individual components. This also increases the number of possible code assignments at the level 3 security level.
  • a further essential aspect of the invention provides a method for producing a security feature of a coding system for use in security documents or documents of value and in product protection.
  • a first step decisions must be made about the excitation conditions for the inventive luminescence feature, about the desired target color location or a correspondingly defined tolerance color range for the realization of the desired color identity of the individual security elements required for the security feature and the number of codes required for authenticity protection. These decisions depend on the type and use of the value and security documents to be protected or the products worthy of protection, the permitted effort for the verification of the luminescence codes and the design specifications for the feature.
  • a further step concerns the selection of the phosphors required for the production of the required security elements.
  • the selection can be made on the basis of the measured emission spectra of the phosphors to be evaluated, preferably with exclusive emission characteristics.
  • the CIE color coordinates of the individual phosphors which can be calculated from the emission spectra, provide information on whether and how many combinations of these phosphors are available for realizing the specified target color location or a corresponding tolerance color range.
  • the mixing ratios of the components that are important for the production of the phosphor combinations can be calculated in advance.
  • the subsequent step of the method is aimed at the experimental verification that may be required and the determination of the mixing ratios for the creation of the color-identical security elements of the security feature.
  • the mixing ratios valid under application conditions for the combination of the selected phosphors to form color-identical security elements.
  • the experimental verification is necessary to determine interactions between the phosphors used and other influencing factors that affect the independent and different optical properties (self-emission, absorption and reflection behavior) of the other organic and inorganic components (binders, additives) for the application of the security feature color compositions used and the optical effects of the carrier materials used.
  • the selected phosphors and/or phosphor combinations are applied or introduced onto or into the carrier materials of the respective security or value documents.
  • This process step can be carried out, for example, with the help of the usual printing processes (gravure, flexographic, offset or screen printing). etc.) or using other coating technologies.
  • a final step in the method for producing a security feature according to the invention is reserved for the final code assignment.
  • the code-forming emission maxima ( ⁇ max values) required and suitable for the authenticity verification of the individually marked, preferably exclusive emission lines and/or emission bands as well as those emission lines and/or bands for which the ratio of the respective luminescence intensities can be viewed as a property representing a code are selected and assigned to a set of characters, for example a sequence of numbers or letters.
  • the essence of the invention is determined by the provision of a method for reading out the luminescence codes and for verifying the authenticity of the security elements, embodied for example as markings, of a security feature of the coding system according to the invention.
  • This method includes: stimulating the phosphors and/or phosphor combinations present in the security elements with a predetermined invisible stimulating radiation, which is generated in particular by suitable UV or IR radiation sources, detecting the electromagnetic spectra of these phosphors and/or phosphor combinations in a predetermined visible range spectral range with the help of suitable optical spectrometers, as well as the evaluation of the measurement results and the subsequent authenticity assessment, whereby the presence of the deposited code-relevant emission characteristics is checked and compared with the deposited code information.
  • the technical outlay required for the secure verification of the luminescent codes of identical color or of the same color introduced into the individual security elements forming the respective security feature of the coding system depends on various factors. These include the width of the spectral range to be detected in the visible and the extent of the complexity of the individual, preferably exclusive emission spectra of the phosphors and/or phosphor combinations used, with in particular small spectral distances between the maxima of the characteristic emission lines and/or bands relevant for code formation use from high-performance optical spectrometers with a high spectral resolution.
  • a further essential factor relates to the requirements for the detection speed resulting from the practical application of the security features according to the invention in value and security documents or in product protection.
  • Extensive investigations have shown that on the basis of the invention, machine-readable Level 3 security features can be compiled whose luminescence codes can be reliably verified both at the detection speeds that are usual in ATMs (Cash Management System) and in the sorting machines of central banks .
  • the advantage of the invention lies in the great scope for the concrete design of the security elements belonging to an inventive security feature, which is opened up by the diverse possible combinations of the different phosphors. It is thus possible to decide exactly how small the spectral distance of the at least two individually marked emission lines, for example, should be with regard to the highest level of protection against forgery and how small it should be in view of the verification circumstances, for example under the conditions of high-speed detection can.
  • the maxima of at least two of the individually marked, preferably exclusive emission lines of the security elements belonging to a security feature in the electromagnetic spectrum are only a few nanometers apart, with these preferably being at a distance of less than 10 nm, more preferably have a distance of less than 5 nm and, most preferably have a distance of less than 3 nm.
  • a particularly advantageous embodiment of the invention consists in the fact that the security elements put together to form security features not only in the case of a predetermined optical stimulus, but also at least in the case of a further, the first fundamentally distinguishable optical stimulus, are perceived by the human eye as having the same color.
  • the ultraviolet spectral range is divided into the UV-A (380-315 nm), UV-B (315-280 nm) and UV-C (315-280 nm) ranges in the literature and in technical applications. Radiation range (280-100 nm) subdivided, with different radiation sources being available for the individually defined types of radiation.
  • such phosphors and phosphor combinations can also be selected whose preferably exclusive emission spectra, for example both when excited with UV-A and UV-B radiation sources in the CIE - Standard color system have identical color coordinates or those that lie within designated tolerance color ranges, so that all security elements of the corresponding security feature equipped with different luminescence codes are perceived by the viewer as having the same color under both excitation conditions.
  • luminescent security elements can also be provided for changing between UV-A and UV-C excitation or for changing between UV-B and UV-C excitation, in which the color impressions perceptible after the excitation are retained even if the excitation conditions change.
  • the security elements selected for the formation of a security feature of the coding system are of the same color for all excitation conditions that can be set in the ultraviolet spectral range, i.e. both for excitation with UV-A, UV-B or UV-C radiation sources identified.
  • the variety of possible variations for the implementation of the invention is also expressed in the fact that even if the perceptible color impressions of the security elements change as a result of changing the UV excitation sources, the emission spectra of the selected phosphors and phosphor combinations can advantageously be adjusted in such a way that the luminescent elements are evaluated as having the same color as one another under the respectively defined excitation conditions. This means that the observer perceives all security elements as red in the same color for one type of excitation, for example, and as green for the other type of excitation, for example.
  • the security elements used to form an inventive security feature which have the same color impressions under different excitation conditions, preferably in the UV spectral range, can also be equipped in such a way that the individually marked, and in particular exclusive emission lines and/or emission bands are only emitted with one of the different types of excitation and are therefore only available for authenticity verification under these excitation conditions.
  • the coding system forms further information about an arrangement and/or a contour of the security elements on or in the security document or document of value.
  • Such an arrangement can be, for example, a specific position on the security document or document of value.
  • the security element itself can also have a specific contour, for example the shape of a character, a symbol, a number or a pictogram.
  • Fig. 1a a schematic representation of the CIE standard color chart 5 of the CIE standard valence system is shown.
  • the CIE standard valence system was defined in order to establish a relation between human color perception and the physical causes of the color stimulus and typically covers all perceptible colors, whereby it refers to a defined standard observer.
  • Fig. 1a shows Fig. 1a and in particular the enlarged portion in the Fig. 1b the x and y color coordinates 10, 20, 30 of the emission lines of three simulated possible ones individual phosphors in the CIE standard color table.
  • the color coordinates 10, 20, 30 are shown with different symbols, namely color coordinate 10 as a triangle ⁇ , color coordinate 20 as a square ⁇ and color coordinate 30 as a circle o, the Figures 1c to 1e then branch the associated emission spectra (emission lines) 1, 2, 3.
  • FIG. 1c to 1e shows the emission spectrum 1, 2, 3 of the three selected, modeled and narrow-band emitting (fictitious) phosphors used for model calculations.
  • the Figures 1c to 1e show the Figures 1c to 1e the emission spectra, which correspond to the x and y color coordinates in the Figure 1b belong to the color coordinates 10, 20, 30 shown and the symbols ⁇ , ⁇ and o, respectively.
  • the wavelengths of the emission maxima of the emission lines are 619.8 nm for emission spectrum 1 ( ⁇ symbol), 624.2 nm for emission spectrum 2 ( ⁇ symbol) and 626.4 nm for emission spectrum 3 (o symbol). nm very close together.
  • the half-widths of the individually marked emission lines were fixed at 1 nm.
  • the Figures 2a and 2b show again (like also Fig.1a ) a representation of the x and y color coordinates 10, 20, 30 of the emission spectra/emission lines 1, 2, 3 of the three simulated, possible individual phosphors in the CIE standard color table as already shown in the 1 were presented.
  • a possible defined target color coordinate/a target color location 50 is also specified and marked with the symbol *.
  • the number of color-identical security elements that can be generated in this way depends on whether only the different spectral sequence of the selected linear emissions is used for the code assignment or whether the intensity ratios between the individual individually marked emission lines are also included as a code-forming property.
  • exactly three distinguishable emission spectra with identical color coordinates can be created on the basis of the selected phosphors. These relate to the paired combination of two of the three phosphors ( Figures 2c and 2d ) a corresponding combination of three. Examples of the emission spectrum of this one triple combination are given in the Figures 2e and 2f shown.
  • Figure 2c the emission spectrum 12, which is a combination of a first and a second phosphor.
  • Fig. 2d shows the emission spectrum 13, which is a combination of the first and third phosphor and the Figure 2e shows the emission spectrum 123-1, which represents a possible triple combination of the first, second and third model phosphor.
  • Fig. 2f shows the emission spectrum 123-2, an alternative triple combination of the first, second and third model phosphor, which is characterized by a different mixing ratio.
  • Fig. 2f shows a possible example of a further combination of the emission spectra of the three fictitious phosphors, in which the set intensity ratios of the code-forming lines are significantly different from those of the Figure 2e differentiate.
  • the Figures 3a to 3e and Figures 4a to 4e and the associated Tables 3 and 4 illustrate another possible example of creating a coding system based on three other model phosphors, which also have singular emissions and color coordinates, which again lie on a straight line in the CIE chromaticity diagram.
  • the emission spectra 1′, 2′, 3′ of the three selected, modeled (fictitious) phosphors used for model calculations are shown. From them, the x and y color coordinates 10', 20', 30' can be derived from those in FIGS Figures 3a and 3b the symbols ⁇ , ⁇ and o are assigned.
  • the fictitious phosphors selected for this example have significantly larger distances between the different emission maxima.
  • the half-value widths of the model phosphors were set in such a way that both linear (cf. e.g. Figure 3e ) as well as band-shaped emissions (cf. e.g. 3d ) result. From the Figures 3a and 3b shows that due to the comparatively large spectral distances, the color coordinates of the example phosphors in the CIE standard color table are also far apart. The corresponding color impressions show a clear color shift and thus a clear color difference and vary from green to red.
  • FIG. 5 Another example is shown to illustrate the invention, with the associated data being given in Tables 5 and 6.
  • the emission lines of four fictitious phosphors were compared with those in the Figure 5a color coordinates 10", 20", 30", 40" shown (again shown with the symbols: triangle ⁇ , square ⁇ , circle o and circle with cross ⁇ ) grouped in the form of a square around a target color location 50" (* symbol).
  • the positioning of the target color point 50" was carried out in such a way that it lies between two of the assumed color coordinates of the model phosphors, ie on the diagonals of the respectively opposite color coordinates.
  • the Figures 6 to 9 and Tab. 7 describe an example of the configuration of an inventive security feature based on the use of real phosphors with correspondingly characteristic emission spectra 1′′′,2′′′,3′′′.
  • three inorganic, europium-activated rare earth pigments were selected and applied to a paper base in the form of standardized markings (printed strips).
  • the emission spectra of these three phosphors measured for a given excitation in the UV-B range (313 nm excitation source) are shown in FIG 6a to 6c shown.
  • the emission spectra 1′′′,2′′′,3′′′ of the three real (individual) phosphors show an ensemble of several characteristic emission lines. This results in further possibilities for code assignment, which can relate not only to the respective main emission lines of these phosphors, but also to different secondary lines.
  • the exemplary emission spectra 12′′′, 13′′′, 23′′′, 123-1′′′, 123-2′′′ and 123-3′′′ contain numerous sufficiently separate lines and stable intensity constellations to which a luminescence code can be assigned. This affects both the main emission lines of the individual phosphors included in the combinations and other lines and characteristic line groupings.
  • the sometimes small spectral distances between the code-relevant emissions pose a challenge in terms of spectral resolution and the performance of the detection devices used, but it has been shown that on the basis of the phosphors and phosphor combinations described in this exemplary embodiment, security elements can be provided whose code-forming Emission characteristics can also be reliably verified at comparatively high reading speeds (e.g. in ATMs or in central bank sorting machines).
  • test persons were able to decide on the color equality or perceived color differences of the security elements equipped with the exemplary phosphors and phosphor combinations and present in the form of printed strips.
  • the results are in the Figure 9a shown.
  • the Figure 9a shows that the color coordinates of almost all presented luminescent security features (i.e. also those of the individual components 20′′′ and 30′′′) lie in a tolerance ellipse 51 determined on the basis of the psychometric measurements, which means that the test persons have a very high probability that they have the same color were noticed.
  • the only exception is the color coordinate 10"' calculated for the individual phosphor, which lies outside the tolerance ellipse/tolerance color range 51.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Finance (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Accounting & Taxation (AREA)
  • Business, Economics & Management (AREA)
  • Computer Security & Cryptography (AREA)
  • Credit Cards Or The Like (AREA)
  • Storage Device Security (AREA)
  • Luminescent Compositions (AREA)

Description

Die Erfindung betrifft ein Codierungssystem zum Ausbilden eines Sicherheitsmerkmals in oder an einem Sicherheits- oder Wertdokument oder einer Mehrzahl von Sicherheits-oder Wertdokumenten. Des Weiteren betrifft die Erfindung ein Sicherheitsmerkmal, welches in Form von mehreren Sicherheitselementen ausgebildet ist. Darüber hinaus betrifft die Erfindung ferner ein Sicherheits- oder Wertdokument umfassend ein erfindungsgemäßes Sicherheitsmerkmal.The invention relates to a coding system for forming a security feature in or on a security document or document of value or a plurality of documents of security or value. Furthermore, the invention relates to a security feature which is in the form of a plurality of security elements. In addition, the invention also relates to a security document or document of value comprising a security feature according to the invention.

Hintergrund der ErfindungBackground of the Invention

Lumineszierende organische und/oder anorganische Materialien werden seit langem in vielfältiger Art und Weise als Sicherheitsmerkmale in Sicherheits- und Wertdokumenten, wie beispielsweise Banknoten, Reisepässen, Personalausweisen, Führerscheinen usw., aber auch im Produktschutz, angewendet.Luminescent organic and/or inorganic materials have long been used in a variety of ways as security features in security and value documents, such as banknotes, passports, ID cards, driver's licenses, etc., but also in product protection.

Aus der GB 1 143 362 A und der GB 1 186 251 A ist es bekannt, Kombinationen von insbesondere schmalbandig im sichtbaren oder infraroten Spektralbereich emittierenden anorganischen und/oder organischen seltenerdaktivierten Leuchtstoffen in Sicherheits-oder Wertdokumenten einzusetzen, um mit ihrer Hilfe Lumineszenzcodes zu erzeugen. Zugunsten eines sicheren Wiedererkennens der Codes wurden dabei in den aufgeführten Druckschriften Leuchtstoffe ausgewählt, die durch vergleichsweise große spektrale Abstände zwischen den einzelnen Emissionslinien gekennzeichnet sind.From the GB 1 143 362 A and the GB 1 186 251 A it is known to use combinations of inorganic and/or organic rare-earth-activated phosphors, which emit in particular in a narrow-band manner in the visible or infrared spectral range, in security documents or documents of value in order to use them to generate luminescence codes. In favor of reliable recognition of the codes, phosphors were selected in the publications listed which are characterized by comparatively large spectral distances between the individual emission lines.

Auch aus der DE 103 46 685 A1 ist bekannt, dass der spektrale Abstand zwischen den einzelnen Emissionslinien der für die Realisierung eines Codierungssystems verwendeten Leuchtstoffe zumindest 10 nm betragen sollte. Als ein wesentlicher Vorteil gegenüber dem bis dahin bekannten Stand der Technik wird in der zuletzt aufgeführten Druckschrift die Verwendung von ausschließlich außerhalb des sichtbaren Spektralbereiches emittierenden Leuchtstoffpigmenten angesehen.Also from the DE 103 46 685 A1 It is known that the spectral distance between the individual emission lines of the phosphors used to implement a coding system should be at least 10 nm. In the publication last cited, the use of phosphor pigments emitting exclusively outside the visible spectral range is regarded as a significant advantage over the prior art known up to that point.

Die Druckschrift DE 601 18 472 T2 betrifft eine Vorrichtung zum Schutz von Dokumenten, wobei mindestens zwei aufdruckbare Motive mit zwei Tinten vorgesehen sind, die bei einer ersten UV-Anregung mit einer ersten Wellenlänge identische (Lumineszenz-)Farben und bei einer zweiten UV-Anregung mit einer anderen, zweiten Wellenlänge jeweils unterschiedlichen (Lumineszenz-)Farben aussenden.The pamphlet DE 601 18 472 T2 relates to a device for protecting documents, in which at least two printable motifs are provided with two inks, which produce identical (luminescent) colors upon a first UV excitation with a first wavelength and upon a second UV excitation with a different, second wavelength emit different (luminescent) colors.

Das Dokument WO 2017/080654 A1 betrifft ein Pigmentsystem unterschiedlicher Kapsel-Lumineszenzpigmente, die unterschiedliche Emissionsspektren und unterschiedliche Farbeindrücke der Lumineszenz-Emissionen aufweisen und die im Wesentlichen die gleiche chemische Stabilität besitzen sollen.The document WO 2017/080654 A1 relates to a pigment system of different capsule luminescence pigments which have different emission spectra and different color impressions of the luminescence emissions and which are said to have essentially the same chemical stability.

Aus dem Dokument US 2009/141961 A1 ist ein Verfahren zum Aufbringen und zum sicheren Authentifizieren der Emissionsspektren lumineszierender Sicherheitsmerkmale unter Zuhilfenahme multivariabler statistischer Methoden bekannt.From the document U.S. 2009/141961 A1 a method is known for applying and reliably authenticating the emission spectra of luminescent security features with the aid of multivariable statistical methods.

Das Dokument EP 1 647 947 A1 beschreibt eine Vorrichtung und ein Verfahren zum Überprüfen von Lumineszenz Sicherheitsmerkmalen, wobei die nach erfolgter Anregung gemessenen Antwortsignale überlappende Spektralbänder aufweisen.The document EP 1 647 947 A1 describes a device and a method for checking luminescence security features, the response signals measured after excitation having overlapping spectral bands.

Das Dokument US 2013/221656 A1 offenbart ein lichtemittierendes Medium, welches in Form eines Motives auf ein Substrat aufgebracht ist und wiederum zwei unterschiedliche fluoreszierende Materialien umfasst, die sowohl bei der Anregung mit einer ersten als auch mit einer zweiten UV-Wellenlänge in jeweils voneinander unterscheidbaren Farben emittieren.The document U.S. 2013/221656 A1 discloses a light-emitting medium which is applied to a substrate in the form of a motif and in turn comprises two different fluorescent materials which emit in mutually distinguishable colors both when excited with a first and with a second UV wavelength.

Aufgabe der Erfindungobject of the invention

Sowohl im Bereich des Sicherheits- und Wertdruckes als auch im Bereich des Produktschutzes gibt es ein zunehmendes Interesse an der Anwendung von "Public Security Features" (Level-1-Merkmalen, welche ohne zusätzliche Vorrichtungen vom Menschen durch Sehen und Erfühlen überprüfbar sind) und an der Verwendung von auf optischen Effekten beruhenden Level-2-Merkmalen, die auf Grund der zunehmenden allgemeinen Verfügbarkeit von einfachen Handgeräten zur optischen Anregung (beispielsweise in Form von einfach zu bedienenden UV- oder Infrarot LEDs) immer mehr auch von "Normalbürgern" als Sicherheitsmerkmale wahrgenommen und bewertet werden können.Both in the area of security and value printing and in the area of product protection, there is increasing interest in the use of "Public Security Features" (Level 1 features that can be checked by humans without additional devices by sight and touch) and in the use of Level 2 features based on optical effects, which, due to the increasing general availability of simple hand-held devices for optical stimulation (e.g. in the form of easy-to-use UV or infrared LEDs), are also increasingly perceived as security features by "normal citizens". and can be evaluated.

Einige der zu dieser Merkmalsklasse gehörenden lumineszierenden Sicherheitselemente finden sich bereits in zahllosen Sicherheits- und Wertdokumenten wieder (Reisepässe, Ausweise, Theaterkarten), wobei es derartigen "Quasi-Level-1"-Merkmalen aber häufig an einer erforderlichen Fälschungssicherheit mangelt.Some of the luminescent security elements belonging to this class of features can already be found in countless security and value documents (passports, identity cards, theater tickets), but such “quasi-level 1” features often lack the required security against forgery.

Es ist deshalb wünschenswert, in entsprechenden Sicherheits- und Wertdokumenten exklusive lumineszierende Sicherheitsmerkmale einzusetzen, welche mit einfachen Hilfsmitteln sichtbar gemacht werden können, gleichzeitig aber über den optischen Eindruck hinausgehende, weiterreichende Informationen beinhalten würden.It is therefore desirable to use exclusive luminescent security features in corresponding security and value documents, which can be made visible with simple tools, but at the same time would contain more extensive information that goes beyond the visual impression.

Insbesondere ist es wünschenswert, wenn diese lumineszierenden Sicherheitsmerkmale zusätzlich zu ihrer Level-2 Funktionalität auch eine Level-3-Sicherheitscharakteristik aufweisen, die in der Bereitstellung maschinell auslesbarer Codes bestehen könnte. Derartige Codes könnten zur Verifizierung der Echtheit, zur Nominalwertcodierung oder auch zur Sortierung, beispielsweise von unterschiedlichen Banknotendenominationen oder Wertprodukten genutzt werden.In particular, it is desirable if these luminescent security features also have a level 3 security characteristic in addition to their level 2 functionality, which could consist in the provision of machine-readable codes. Such codes could be used to verify the authenticity, to encode the nominal value or to sort, for example, different denominations of banknotes or products of value.

Der Erfindung liegt das technische Problem zu Grunde, ein Codierungssystem zum Ausbilden eines Sicherheitsmerkmals in oder an einem Sicherheits- oder Wertdokument und ein System zum Ausbilden von Sicherheitsmerkmalen in Form von Sicherheitselementen bereitzustellen, bei denen mit Hilfe einfacher Anregungsquellen eine Sichtbarmachung der Sicherheitsmerkmale möglich ist und gleichzeitig eine erhöhte und erforderliche Fälschungssicherheit bereitgestellt wird.The invention is based on the technical problem of providing a coding system for forming a security feature in or on a security document or document of value and a system for forming security features in the form of security elements in which the security features can be made visible using simple excitation sources and at the same time an increased and required protection against counterfeiting is provided.

Die technische Aufgabe wird erfindungsgemäß durch ein Codierungssystem gemäß Anspruch 1, ein Sicherheitsmerkmal gemäß Anspruch 19 und ein Sicherheits- oder Wertdokument gemäß Anspruch 20 gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.The technical problem is solved according to the invention by a coding system according to claim 1, a security feature according to claim 19 and a security or valuable document according to claim 20. Advantageous configurations of the invention result from the dependent claims.

Definitionendefinitions

Lumineszenz ist die von einem physikalischen System beim Übergang von einem angeregten Zustand in den Grundzustand emittierte elektromagnetische Strahlung. Je nach Anregungsbedingungen und dem spektralen Bereich der emittierten elektromagnetischen Strahlung werden verschiedene Lumineszenzarten unterschieden (beispielsweise Photolumineszenz, Kathodolumineszenz, Röntgenlumineszenz, Elektrolumineszenz etc.). Photolumineszenz bezeichnet hier diejenige Lumineszenzart, bei der die Anregung mit der Hilfe von UV-Strahlung erfolgt und die resultierende Lumineszenzstrahlung im sichtbaren Spektralbereich (VIS, ca. 380 bis 780 nm) emittiert wird.Luminescence is the electromagnetic radiation emitted by a physical system during the transition from an excited state to the ground state. Depending on the excitation conditions and the spectral range of the emitted electromagnetic radiation, different types of luminescence are distinguished (e.g. photoluminescence, cathodoluminescence, X-ray luminescence, electroluminescence, etc.). Here, photoluminescence refers to the type of luminescence in which excitation takes place with the aid of UV radiation and the resulting luminescence radiation is emitted in the visible spectral range (VIS, approx. 380 to 780 nm).

Anti-Stokes-Lumineszenz (Up-Conversion) ist ein Spezialfall der Lumineszenz, wobei nach mehrstufiger IR-induzierter Anregung ebenfalls eine Emission im sichtbaren Spektralbereich erfolgt.Anti-Stokes luminescence (up-conversion) is a special case of luminescence, in which multi-stage IR-induced excitation also emits in the visible spectral range.

Leuchtstoffe sind organische oder anorganische chemische Verbindungen, die bei Anregung mit elektromagnetischer oder Teilchenstrahlung oder nach Anregung mittels elektrischer Felder Lumineszenzerscheinungen zeigen. Um dies zu ermöglichen, werden in die von den chemischen Verbindungen gebildeten Leuchtstoffgrundgittern (Leuchtstoffmatrizen), als Strahlungszentren wirkende Aktivator- und gegebenenfalls zusätzlich Coaktivatorionen eingebaut. Häufig liegen diese Leuchtstoffe als Festkörper, insbesondere in Form von Lumineszenzpigmenten, vor.Luminescent substances are organic or inorganic chemical compounds which show luminescence when excited by electromagnetic or particle radiation or when excited by electric fields. In order to make this possible, activator and optionally additional coactivator ions acting as radiation centers are built into the phosphor basic lattices (phosphor matrices) formed by the chemical compounds. These phosphors are often present as solid bodies, in particular in the form of luminescence pigments.

Ein Emissionsspektrum beschreibt die spektrale Verteilung der von den Leuchtstoffen emittierten elektromagnetischen Strahlung bzw. des von ihnen emittierten Lichtes. Ein solches Emissionsspektrum kann aus Emissionslinien und/oder Emissionsbanden bestehen.An emission spectrum describes the spectral distribution of the electromagnetic radiation emitted by the phosphors or of the light emitted by them. Such an emission spectrum can consist of emission lines and/or emission bands.

Ein Code ist im Allgemeinen eine Abbildungsvorschrift für die Zuordnung von Zeichen, Symbolen oder messbaren Eigenschaften zu einem Zeichenvorrat. Im Falle von Lumineszenzcodes ergeben sich die zuzuordnenden Messdaten aus der spektralen Abfolge der Emissionslinien und/oder Emissionsbanden der ausgewählten Leuchtstoffe und/oder Leuchtstoffkombinationen, die in der Regel durch die Wellenlängen der Emissionsmaxima (λmax- Werte), die Intensitätsverhältnisse zwischen den ausgewählten Emissionslinien und/oder -banden und ggf. auch durch die Halbwertbreiten dieser Emissionen charakterisiert werden können.A code is generally a mapping rule for assigning characters, symbols or measurable properties to a set of characters. In the case of luminescent codes the measurement data to be assigned result from the spectral sequence of the emission lines and/or emission bands of the selected phosphors and/or phosphor combinations, which are generally determined by the wavelengths of the emission maxima (λ max values), the intensity ratios between the selected emission lines and/or bands and possibly also characterized by the half-widths of these emissions.

Das CIE-Normvalenzsystem (auch CIE-Normfarbsystem genannt) ist ein dreidimensionales farbmetrisches System, das von der Commission internationale de l'éclairage (CIE) 1931 definiert wurde und die Beschreibung von Farben und Selbstleuchtern durch die Normfarbwerte X, Y und Z ermöglicht. Diese ergeben sich durch lineare, additive Bewertung des jeweiligen Emissionsspektrums mit je einer der drei Normspektralwertfunktionen x (λ), y (λ) und z (λ).The CIE standard valence system (also called CIE standard color system) is a three-dimensional colorimetric system that was defined by the Commission Internationale de l'éclairage (CIE) in 1931 and enables colors and self-luminous objects to be described using the standard color values X, Y and Z. These result from linear, additive evaluation of the respective emission spectrum with one of the three standard spectral value functions x ( λ ), y ( λ ) and e.g ( λ ).

Die Begriffe "CIE-Normvalenzsystem" und "CIE-Normfarbsystem" werden in der vorliegenden Erfindung äquivalent zueinander benutzt.The terms "CIE standard valence system" and "CIE standard color system" are used equivalently in the present invention.

Die CIE-Farbkoordinaten x, y und z bezeichnen die Verhältnisse der Normfarbwerte X, Y und Z zu ihrer Summe. Die Darstellung der Farbkoordinaten x und y ergibt die zweidimensionale Normfarbtafel, die dann die Helligkeitsinformation nicht mehr enthält. Aufgrund der Physiologie des Auges können verschiedene Spektralverteilungen zu identischen Farbkoordinaten führen.The CIE color coordinates x, y and z denote the ratios of the standard color values X, Y and Z to their sum. The representation of the color coordinates x and y results in the two-dimensional standard color chart, which then no longer contains the brightness information. Due to the physiology of the eye, different spectral distributions can lead to identical color coordinates.

Das CIE-Normalvalenzsystem beruht auf der Definition eines idealen Normalbeobachters, dessen Spektralwertfunktionen den Normspektralwertfunktionen x (λ), y (λ) und z (λ) entsprechen. Farben und selbstleuchtende Materialien (beispielsweise Leuchtstoffe), die gleiche Farbkoordinaten aufweisen, werden als farbidentisch bezeichnet.The CIE normal valence system is based on the definition of an ideal normal observer whose spectral value functions are the normal spectral value functions x ( λ ), y ( λ ) and e.g ( λ ) correspond. Colors and self-luminous materials (e.g. phosphors) that have the same color coordinates are referred to as color-identical.

Farbempfindung und Farbwahrnehmung eines individuellen Beobachters können von denen des definierten Normalbeobachters abweichen.Color sensation and color perception of an individual observer can deviate from those of the defined standard observer.

Das Farbunterscheidungsvermögen kennzeichnet das Ausmaß der Wahrnehmung von Farbunterschieden durch individuelle Betrachter.Color discrimination characterizes the extent to which color differences are perceived by individual observers.

So beschreiben beispielsweise die sogenannten MacAdam-Ellipsen Toleranzbereiche in der Normwerttafel, die dadurch ausgezeichnet sind, dass die auf unterschiedlichen x, y-Koordinaten beruhenden Farbdifferenzen verschiedener Farben unter definierten Sehbedingungen und mit einer bestimmten Wahrscheinlichkeit von individuellen Beobachtern nicht wahrgenommen werden. Es kann somit für die empfundene Farbgleichheit eine Toleranz für die Farbdifferenzen vorgegeben werden, die farbwertabhängig sein kann.For example, the so-called MacAdam ellipses describe tolerance ranges in the standard value table, which are distinguished by the fact that they are on different x, y coordinates based color differences of different colors under defined visual conditions and with a certain probability of individual observers are not perceived. A tolerance for the color differences can thus be specified for the perceived color equality, which can be dependent on the color value.

Maximal zulässige Farbdifferenzen im Sinne der wahrgenommenen Farbgleichheit können durch Befragungen von Testpersonen ermittelt werden. Derartige Untersuchungen werden als psychometrische Messungen bezeichnet, bei denen die Wahrscheinlichkeit für die Wahrnehmung eines Farbunterschiedes bestimmt wird. Als farbgleich gelten zwei Farbproben, wenn Sie von einem genügend großen Beobachterkollektiv unter den vorgegebenen Anregungsbedingungen mit einer festgelegten Wahrscheinlichkeit als nicht unterscheidbar bewertet werden. Messverfahren hierzu sind beispielsweise bei BACKHAUS, W. G. K. KLIEGL, R. WERNER, J. S.: Color Vision. Perspectives from different Disciplines. Kap. 2.3. "Psychophysics of Color Vision " sowie IRTEL, H.: "Methoden der Psychophysik ". und in ERDFELDER, E.: Handbuch quantitative Methoden (S. 479-489), Physiologie Verlags Union Weinheim 1996 , beschrieben.Maximum permissible color differences in the sense of perceived color equality can be determined by questioning test persons. Such investigations are referred to as psychometric measurements, in which the probability of perceiving a color difference is determined. Two color samples are considered to have the same color if they are judged by a sufficiently large collective of observers to be indistinguishable with a specified probability as being indistinguishable under the specified excitation conditions. Measurement methods for this are, for example, BACKHAUS, WGK KLIEGL, R. WERNER, JS: Color Vision. Perspectives from different disciplines. Cape. 2.3. "Psychophysics of Color Vision " as IRTEL, H.: "Methods of Psychophysics ". and in ERDFELDER, E.: Handbook of quantitative methods (pp. 479-489), Physiology Verlags Union Weinheim 1996 , described.

Die akzeptierbaren Farbdifferenzen der objektiv gemessenen Farbkoordinaten, die von Individualbeobachtern noch als farbgleich angesehen werden, können somit vorfestgelegt werden.The acceptable color differences of the objectively measured color coordinates, which individual observers still regard as having the same color, can thus be predetermined.

Der Begriff "farbidentisch" oder "Farbidentität" wird in der vorliegenden Erfindung also so verstanden, dass zwei Leuchtstoffe unter vorgegebenen Anregungsbedingungen identische Farbkoordinaten im CIE-Normvalenzsystem aufweisen.The term "color-identical" or "color identity" is thus understood in the present invention to mean that two phosphors have identical color coordinates in the CIE standard valence system under specified excitation conditions.

Der Begriff "farbgleich" oder "Farbgleichheit" wird in der vorliegenden Erfindung also so verstanden, dass zwei Leuchtstoffe unter einer vorgegebenen Anregung, die innerhalb eines Toleranzfarbbereiches des CIE-Normfarbsystems, beispielsweise einer MacAdam-Ellipse, liegen, von einem genügend großen Beobachterkollektiv unter den vorgegebenen Anregungsbedingungen mit einer festgelegten Wahrscheinlichkeit als nicht unterscheidbar bewertet werden.The term "equal color" or "equal color" is understood in the present invention to mean that two phosphors under a specified excitation that are within a tolerance color range of the CIE standard color system, for example a MacAdam ellipse, by a sufficiently large collective of observers among the given excitation conditions are rated as indistinguishable with a specified probability.

Grundidee der Erfindungbasic idea of the invention

Ein Aspekt der Erfindung betrifft das in Anspruch 1 definierte Codierungssystem.One aspect of the invention relates to the coding system defined in claim 1.

Ein weiterer Aspekt der Erfindung betrifft das in Anspruch 19 definierte Sicherheitsmerkmal.Another aspect of the invention relates to the security feature defined in claim 19.

Erfindungsgemäß wird die oben beschriebene Aufgabe dadurch gelöst, dass die die jeweiligen Codes bildenden, im ultravioletten Spektralbereich (nämlich bei Wellenlängen zwischen 380 und 315 nm (UV-A), 315 und 280 nm (UV-B) sowie zwischen 280 und 200 nm (UV-C)) oder im infraroten Spektralbereich (IR, beispielsweise bei 950 bzw. 980 nm) anregbaren und im sichtbaren Bereich emittierenden Leuchtstoffe jeweils so zu Sicherheitselementen, beispielsweise zu entsprechenden Markierungen, zusammengestellt und kombiniert werden, dass die bei einer vorgegebenen optischen Anregung, beispielsweise mit einer bestimmten UV-Strahlungsquelle, hervorgerufenen Farbeindrücke verschiedener Sicherheitselemente eines Sicherheitsmerkmals vom menschlichen Auge als farbgleich wahrgenommen werden. Das bedeutet, dass der Betrachter die unterschiedlichen, unter den jeweils festgelegten Anregungsbedingungen sichtbar lumineszierenden Sicherheitselemente, zum Beispiel in Form von Markierungen, welche als Sicherheitsmerkmale jeweils auf, an oder in einem Wert- oder Sicherheitsdokument angebracht sind, als farbgleich empfindet und sie damit mutmaßlich für spektral identisch hält, obwohl diese tatsächlich unterschiedliche elektromagnetische Spektren und über diese definierte Codes aufweisen, die nur mit Hilfe einer speziellen Lumineszenzmesstechnik verifiziert werden können.According to the invention, the object described above is achieved in that the codes forming the respective codes in the ultraviolet spectral range (namely at wavelengths between 380 and 315 nm (UV-A), 315 and 280 nm (UV-B) and between 280 and 200 nm ( UV-C)) or phosphors that can be excited in the infrared spectral range (IR, for example at 950 or 980 nm) and that emit in the visible range are assembled and combined to form security elements, for example corresponding markings, in such a way that the For example, with a specific UV radiation source, color impressions of different security elements of a security feature are perceived by the human eye as having the same color. This means that the viewer sees the different, under visibly luminescent security elements under the specified excitation conditions, for example in the form of markings, which are attached as security features to, on or in a value or security document, as having the same color and thus presumably considering them to be spectrally identical, although they actually have different electromagnetic spectra and codes defined via them that can only be verified with the help of a special luminescence measurement technique.

Die bezüglich ihrer Lumineszenz als farbgleich wahrgenommenen Sicherheitselemente eines Sicherheitsmerkmals können in unterschiedlichen Sicherheits- oder Wertdokumenten (beispielsweise Banknoten, Ausweise, Reisepässe, Führerscheine etc.) oder auch im Produktschutz eingesetzt werden. Farbgleich erscheinende, aber unterschiedliche Codes aufweisende Markierungen können beispielsweise zum Zwecke der Nominalwertcodierung von unterschiedlichen Währungs-Denominationen eingesetzt werden. Andererseits ist es jedoch auch möglich, die als farbgleich wahrgenommenen Markierungen als Sicherheitsmerkmale mehrmals in gleiche, gleichartige oder unterschiedliche Designs ein und desselben Sicherheits- oder Wertdokumentes zu integrieren.The security elements of a security feature that are perceived as having the same color in terms of their luminescence can be used in different security or valuable documents (for example banknotes, ID cards, passports, driving licenses, etc.) or also in product protection. Markings that appear the same color but have different codes can be used, for example, for the purpose of coding the denomination of different currency denominations. On the other hand, however, it is also possible to integrate the markings perceived as having the same color as security features several times in the same, similar or different designs of one and the same security or value document.

Auf der Grundlage von Modellrechnungen und durch praktische Versuche konnte nachgewiesen werden, dass zur Realisierung farbgleicher oder farbidentischer Sicherheitselemente sowohl linienförmig als auch bandenförmig im sichtbaren Spektralbereich emittierende Leuchtstoffe und/oder deren Kombinationen eingesetzt werden können. Theoretisch gibt es für die Realisierung identischer x-y-Koordinaten innerhalb des CIE-Normvalenzsystems zahllose Möglichkeiten. Die konkrete Auswahl und die Anzahl der eingesetzten Leuchtstoffe und Leuchtstoffkombinationen mit exklusiver schmal- und/oder breitbandiger Emission hängt dabei von dem gewünschten Farbeindruck, gleichzeitig aber auch vom jeweiligen Sicherheitsanspruch und vom zugelassenen Aufwand für die Detektion der emittierten Lumineszenz und die Verifikation der Codes ab.On the basis of model calculations and through practical tests, it was possible to prove that to realize security elements of the same color or of identical color, phosphors emitting in the visible spectral range both linearly and in bands and/or combinations thereof can be used. Theoretically, there are countless possibilities for the realization of identical x-y coordinates within the CIE standard valence system. The specific selection and the number of phosphors and phosphor combinations used with exclusive narrow-band and/or broad-band emission depends on the desired color impression, but at the same time also on the respective security requirement and the permitted effort for the detection of the emitted luminescence and the verification of the code.

Weiterhin hat sich gezeigt, dass farbidentische bzw. farbgleiche Sicherheitselemente sowohl mit eng beieinander aber auch mit weiter auseinander liegenden Emissionslinien und/oder Emissionsbanden erzeugt werden können. Der spektrale Abstand der einzelnen Emissionslinien ist für den angestrebten gleichen Farbeindruck der emittierten Lumineszenz der einzelnen Markierungen nicht unmittelbar entscheidend, sehr wohl aber für den Aufwand, der zur sicheren spektrometrischen Verifikation betrieben werden muss. Weitere Kriterien für die Auswahl der Leuchtstoffe für das Codierungssystem sind beispielsweise eine möglichst hohe Lumineszenzausbeute, eine genügend hohe Stabilität und Alterungsbeständigkeit gegenüber Umwelteinflüssen, sowie eine an die ausgewählten Druck- und Applikationsverfahren angepasste Korngrößenverteilung der Lumineszenzpigmente. Diese Eigenschaften sind beispielsweise auch für die Art und Weise der Anwendung der Sicherheitselemente auf oder in den jeweiligen Sicherheits- und Wertdokumenten als auch für die sichere Verifizierbarkeit über die gesamte Lebens- oder Gebrauchsdauer des Sicherheits- oder Wertdokuments von großer Wichtigkeit.Furthermore, it has been shown that color-identical or color-same security elements can be produced both with emission lines and/or emission bands that are close together but also with emission lines that are further apart. The spectral distance of the individual emission lines is not directly decisive for the desired identical color impression of the emitted luminescence of the individual markings, but it is for the effort that has to be made for reliable spectrometric verification. Further criteria for the selection of the phosphors for the coding system are, for example, the highest possible luminescence yield, sufficiently high stability and aging resistance to environmental influences, and a grain size distribution of the luminescent pigments adapted to the selected printing and application processes. These properties are also of great importance, for example, for the manner in which the security elements are used on or in the respective security and value documents and for reliable verifiability over the entire life or useful life of the security or value document.

Das Aufbringen der Sicherheitselemente, beispielsweise in Form von Markierungen, kann beispielsweise mit Hilfe üblicher Drucktechnologien (Tiefdruck-, Flexodruck-, Offsetdruck-oder Siebdruckverfahren etc.) oder aber auch unter Ausnutzung andersgearteter Beschichtungsverfahren erfolgen, wobei die zu beschichtenden Materialien sowohl aus Papier, unterschiedlichen Kunststoffen oder aber auch aus anderen organischen oder anorganischen Substanzen bestehen können. Ferner kann auch vorgesehen sein, die Sicherheitselemente über Beimengungen der Leuchtstoffe in Kunststoffen zu verwenden, wobei die Kunststoffe anschließend in das Sicherheits- oder Wertdokument eingebracht werden.The application of the security elements, for example in the form of markings, can take place, for example, using conventional printing technologies (gravure printing, flexographic printing, offset printing or screen printing processes, etc.) or using other types of coating processes, the materials to be coated being made of paper, different Plastics or can also consist of other organic or inorganic substances. Furthermore, provision can also be made to use the security elements by adding the phosphors to plastics, with the plastics then being introduced into the security document or document of value.

Zur Realisierung farbidentischer bzw. farbgleicher Sicherheitselemente, beispielsweise in Form von Markierungen, stehen sowohl für die Anregung mit UV-Strahlung als auch für die IR-Anregung zahlreiche Leuchtstoffe zur Verfügung. Insbesondere im erfindungsgemäßen Fall der Verwendung von Kombinationen mehrerer Leuchtstoffe sind die resultierenden Emissionsspektren zumeist hochkomplex. Mittels dieser Kombinationen ausgebildete Codes besitzen ein Level-3-Sicherheitsniveau und können nur mit der Hilfe einer leistungsfähigen und gegebenenfalls sehr aufwendigen Lumineszenzmesstechnik und mit dem Spezial- oder Geheimwissen darüber, welche der vielfältigen und verschiedenen Emissionslinien oder -banden zur Auswertung herangezogen werden, verifiziert werden.Numerous phosphors are available both for excitation with UV radiation and for IR excitation for the realization of color-identical or color-same security elements, for example in the form of markings. In particular in the case of the use according to the invention of combinations of several phosphors, the resulting emission spectra are mostly highly complex. Codes formed using these combinations have a level 3 security level and can only be verified with the help of powerful and possibly very complex luminescence measurement technology and with the special or secret knowledge about which of the diverse and different emission lines or bands are used for the evaluation .

Als Grundgitter (Matrix) für die zur Herstellung der erfindungsgemäßen Sicherheitselemente verwendeten UV-anregbaren anorganischen Leuchtstoffe können beispielsweise die im Folgenden ausgeführten Materialien eingesetzt werden: Borate (z.B. LaBO3, SrB6O10, CaYBO4, SrB4O7, YAl3B4O12, SrB8O13' Ca2B5O9Br), Nitride (z.B. CaAlSiN3, Sr2Si5N8, MgSiN2, GaN), Oxynitride (z.B. SrSi2N2O2, α-SiAlON, β-SiAlON, Oxide (z.B. Al2O3, CaO, Sc2O3, TiO2, ZnO, Y2O3, ZrO2, La2O3, Gd2O3, Lu2O3), Halogenide und Oxyhalogenide (z.B. CaF2, CaCl2, K2SiF6, LaOBr), Aluminate (z.B. LiAlO3, SrAl2O4, Y3Al5O12, BaMgAl11O17, CaAl2O4, Sr4Al14O25), Silikate (z.B. Ba2SiO4, Sr3SiO5, Sr3MgSi2O8, Sr2MgSi2O7, CaSiO3, Zn2SiO4, Ba2SiO4, Y2SiO5, CaMgSi2O6, Ba2Li2Si2O7, LiCeBa4Si4O14, Ca3Al2Si3O12), Halosilikate (z.B. LaSiO3Cl, Ba5SiO4Cl6, Sr5Si4O10Cl6), Phosphate (z.B. YPO4, Ca2P2O7, MgBaP2O7, Ca3(PO4)2, MgBa2(PO4)2), Halophosphate (z.B. Ca5(PO4)3Cl, Sr5(PO4)3Cl), Sulfide (z.B. ZnS, CaS, SrS, BaS, SrGa2S4, ZnGa2S4, ZnBa2S3), Oxysulfide (z.B. Y2O2S, La2O2S, Gd2O2S, Lu2O2S), Sulfate (z B. Mg2Ca(SO4)3), Gallate (z.B. Y3Ga5O12, CaGa2O4, Gd3Ga5O12), Vanadate (z. B. YVO4), Molybdate und Wolframate (z.B. CaMoO4, Sr3WO6, La2W3O12, Tb2Mo3O12, Li3Ba2La3(MoO4)8),
oder aber auch solche anorganischen Substanzklassen wie beispielsweise Boride, Carbide, Scandate, Titanate, Germanate und Yttrate. Diese Aufzählung stellt keine Einschränkung dar, es können auch weitere Materialklassen oder Einzelverbindungen in die Auswahl der als Leuchtstoffgrundgitter geeigneten anorganischen Festkörperverbindungen einbezogen werden.
The materials listed below can be used as the basic lattice (matrix) for the UV-excitable inorganic phosphors used to produce the security elements according to the invention: borates (e.g. LaBO 3 , SrB 6 O 10 , CaYBO 4 , SrB 4 O 7 , YAl 3 B 4 O 12 , SrB 8 O 13' Ca 2 B 5 O 9 Br), nitrides (e.g. CaAlSiN 3 , Sr 2 Si 5 N 8 , MgSiN 2 , GaN), oxynitrides (e.g. SrSi 2 N 2 O 2 , α-SiAlON , β-SiAlON, oxides (e.g. Al 2 O 3 , CaO, Sc 2 O 3 , TiO 2 , ZnO, Y 2 O 3 , ZrO 2 , La 2 O 3 , Gd 2 O 3 , Lu 2 O 3 ), halides and oxyhalides (e.g. CaF 2 , CaCl 2 , K 2 SiF 6 , LaOBr), aluminates (e.g. LiAlO 3 , SrAl 2 O 4 , Y 3 Al 5 O 12 , BaMgAl 11 O 17 , CaAl 2 O 4 , Sr 4 Al 14 O 25 ), silicates (e.g. Ba 2 SiO 4 , Sr 3 SiO 5 , Sr 3 MgSi 2 O 8 , Sr 2 MgSi 2 O 7 , CaSiO 3 , Zn 2 SiO 4 , Ba 2 SiO 4 , Y 2 SiO 5 , CaMgSi 2 O 6 , Ba 2 Li 2 Si 2 O 7 , LiCeBa 4 Si 4 O 14 , Ca 3 Al 2 Si 3 O 12 ), halosilicates (e.g. LaSiO 3 Cl, Ba 5 SiO 4 Cl 6 , Sr 5 Si 4 O 10 Cl 6 ), phosphates (e.g. YPO 4 , Ca 2 P 2 O 7 , MgBaP 2 O 7 , Ca 3 (PO 4 ) 2 , MgBa 2 (PO 4 ) 2 ), halophosphates (e.g. Ca 5 (PO 4 ) 3 Cl, Sr 5 (PO 4 ) 3 Cl), sulfides (e.g. ZnS, CaS, SrS, BaS, SrGa 2 S 4 , ZnGa 2 S 4 , ZnBa 2 S 3 ), oxysulfides (e.g. Y 2 O 2 S, La 2 O 2 S, Gd 2 O 2 S, Lu 2 O 2 S), sulfates (e.g. Mg 2 Ca (SO 4 ) 3 ), gallates (e.g. Y 3 Ga 5 O 12 , CaGa 2 O 4 , Gd 3 Ga 5 O 12 ), vanadates (e.g. YVO 4 ), molybdates and tungstates (e.g. CaMoO 4 , Sr 3 WO 6 , La 2 W 3 O 12 , Tb 2 Mo 3 O 12 , Li 3 Ba 2 La 3 (MoO 4 ) 8 ),
or also such inorganic substance classes as, for example, borides, carbides, scandates, titanates, germanates and yttrates. This enumeration does not represent any restriction; other material classes or individual compounds can also be included in the selection of the inorganic solid-state compounds suitable as the phosphor basic lattice.

Die Aktivierung der ausgewählten Grundgitter erfolgt durch den gezielten Einbau von jeweils einem oder mehreren Fremdionen in die jeweilige Leuchtstoffmatrix, wobei im Falle der im ultravioletten Spektralbereich anregbaren und im Sichtbaren emittierenden Leuchtstoffe vor allem Seltenerdionen und/oder Ionen von Übergangsmetallen zur Dotierung bzw. Codotierung verwendet werden. Diese Aktivator- und die ggf. zusätzlich eingebrachten Coaktivatorionen bilden die Strahlungszentren in den jeweiligen Grundgittern und bestimmen in Wechselwirkung mit diesen die Lumineszenzeigenschaften der anorganischen Leuchtstoffe. So resultieren im Falle der beispielhaften Verwendung von dreiwertigen Ionen der Seltenen Erden wie etwa Pr3+, Sm3+, Eu3+, Tb3+, Er3+, Dy3+, Tm3+ oder von 3d3-Ionen wie Cr3+, Mn4+ nach UV-Anregung in aller Regel linienhafte Emissionen, während bei der Dotierung der bespielhaft genannten Grundgitter mit Ionen wie Mn2+, Cu+, Ag+, Sn2+, Sb3+, Pb2+, Bi3+, Ce3+ und Eu2+ mit hoher Wahrscheinlichkeit Emissionsbanden erhalten werden.The selected basic lattice is activated by the targeted incorporation of one or more foreign ions into the respective phosphor matrix. In the case of phosphors that can be excited in the ultraviolet spectral range and emit in the visible range, primarily rare earth ions and/or ions of transition metals are used for doping or co-doping . These activator ions and any additionally introduced coactivator ions form the radiation centers in the respective basic lattices and, in interaction with them, determine the luminescence properties of the inorganic phosphors. In the case of the exemplary use of trivalent ions of the rare earths such as Pr 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Er 3+ , Dy 3+ , Tm 3+ or 3d 3 ions such as Cr 3+ , Mn 4+ usually linear emissions after UV excitation, while doping the basic lattice mentioned by way of example with ions such as Mn 2+ , Cu + , Ag + , Sn 2+ , Sb 3+ , Pb 2+ , Bi 3+ , Ce 3+ and Eu 2+ emission bands are obtained with high probability.

Die mit der Hilfe von Leuchtstoffen bewirkte Umwandlung von infraroter Anregungsstrahlung in sichtbares Licht wird als Anti-Stokes-Lumineszenz bzw. Up-Conversion bezeichnet. Sie gelingt nur durch die Bereitstellung solcher Leuchtstoffmaterialien, die in der Lage sind, die anregende IR-Strahlung durch mehrstufige Anregungsprozesse in den sichtbaren Spektralbereich zu transformieren. Als Grundgitter für derartige, erfindungsgemäß einsetzbare anorganische Leuchtstoffe stehen vor allem oxidische Verbindungen (z.B. Y2O3, ZrO2, La2MoO6, LaNbO4, LiYSiO4), Oxyhalogenide (z.B. YOCl, LaOCl, LaOBr, YOF, LaOF), Oxysulfide (z.B. Y2O2S, La2O2S, Gd2O2S, Lu2O2S) und Fluoride (z.B. YF3, LaF3, LiYF4, NaYF4, NaLaF4, BaYF5) zur Verfügung. Zur Absicherung einer genügend hohen Lumineszenzausbeute werden als Strahlungszentren in den Anti-Stokes-Leuchtstoffen zumeist die Seltenerdionenkombinationen Yb3+-Er3+, Yb3+-Tm3+ und Yb3+-Ho3+ verwendet. Daneben sind aber auch weitere Leuchtstoffe wie beispielsweise die Materialien SrF2:Er3+, YF3:Yb3+, Tb3+ oder CaF2:Eu2+ bekannt, die ebenfalls als IR-VIS-Strahlungswandler genutzt werden können.The conversion of infrared excitation radiation into visible light, brought about with the help of phosphors, is referred to as anti-Stokes luminescence or up-conversion. It is only possible by providing such phosphor materials that are capable of transforming the stimulating IR radiation into the visible spectral range through multi-stage excitation processes. The basic lattice for such inorganic phosphors that can be used according to the invention are primarily oxidic compounds (e.g. Y 2 O 3 , ZrO 2 , La 2 MoO 6 , LaNbO 4 , LiYSiO 4 ), oxyhalides (e.g. YOCl, LaOCl, LaOBr, YOF, LaOF), Oxysulfides (e.g. Y 2 O 2 S, La 2 O 2 S, Gd 2 O 2 S, Lu 2 O 2 S) and fluorides (e.g. YF 3 , LaF 3 , LiYF 4 , NaYF 4 , NaLaF 4 , BaYF 5 ). Disposal. To ensure a sufficiently high Due to the luminescence yield, the rare earth ion combinations Yb 3+ -Er 3+ , Yb 3+ -Tm 3+ and Yb 3+ -Ho 3+ are mostly used as radiation centers in the anti-Stokes phosphors. In addition, however, other phosphors such as the materials SrF 2 :Er 3+ , YF 3 :Yb 3+ , Tb 3+ or CaF 2 :Eu 2+ are also known, which can also be used as IR-VIS radiation converters.

Neben den anorganischen Lumineszenzpigmenten können im Sinne der Erfindung natürlich auch im UV- bzw. IR-Spektralbereich anregbare und im Sichtbaren emittierende organische Leuchtstoffe, wie beispielsweise unterschiedliche, seltenerdaktivierte organische Komplexverbindungen zur Herstellung farbidentischer Sicherheitselemente verwendet werden. Diese können gegebenenfalls mit ausgewählten anorganischen Lumineszenzpigmenten kombiniert werden.In addition to the inorganic luminescent pigments, organic phosphors that can be excited in the UV or IR spectral range and emit in the visible range, such as different, rare earth-activated organic complex compounds, can of course also be used in the context of the invention to produce color-identical security elements. These can optionally be combined with selected inorganic luminescent pigments.

Darüber hinaus sind in Abhängigkeit von der konkreten Anwendung, vom angestrebten Design des Sicherheitsmerkmals und von der vorgesehenen Technologie für die Herstellung der Sicherheitselemente auch photolumineszierende anorganische oder organische nanoskalierte Leuchtstoffe oder entsprechend konfigurierte Quantendots als Komponenten für die Bereitstellung der erforderlichen Leuchtstoffkomponenten geeignet.In addition, depending on the specific application, the desired design of the security feature and the technology envisaged for the production of the security elements, photoluminescent inorganic or organic nanoscale phosphors or correspondingly configured quantum dots are also suitable as components for providing the required phosphor components.

In einer besonders bevorzugten Ausführungsform werden die für den jeweiligen Anwendungsfall des Codierungssystems ausgewählten Leuchtstoffe durch gezielte Veränderung der chemischen Zusammensetzung der jeweiligen Wirts-(Grund)-Gitter, d.h. durch gezielt vorgenommene Substitutionen im Kationen- und/oder Anionenteilgitter, so modifiziert, dass sich die Emissionsspektren dieser exklusiven Leuchtstoffe deutlich von denen der in konventionellen technischen Anwendungen verwendeten Luminophoren oder auch von solchen, die ausführlich in der Fachliteratur beschrieben wurden, unterscheiden. Durch die bevorzugte Verwendung derartiger Leuchtstoffe mit exklusiven Emissionsspektren kann die Fälschungssicherheit der mit dem Codierungssystem ausgestatteten Wert- oder Sicherheitsdokumente noch weiter erhöht werden.In a particularly preferred embodiment, the phosphors selected for the respective application of the coding system are modified by deliberately changing the chemical composition of the respective host (basic) lattice, i.e. by deliberately made substitutions in the cation and/or anion partial lattice, so that the Emission spectra of these exclusive phosphors differ significantly from those of the luminophores used in conventional technical applications or from those that have been described in detail in the specialist literature. The protection against forgery of the value or security documents equipped with the coding system can be further increased by the preferred use of such phosphors with exclusive emission spectra.

Das erfindungsgemäße Codierungssystem bietet eine Vielfalt von Ausführungsformen für unterschiedliche Sicherheitsniveaus und Anwendungsmöglichkeiten. Es können farbidentische bzw. farbgleiche Markierungen bereitgestellt werden, deren Echtheit mit einfachen Handsensoren geprüft werden kann, aber auch solche, bei denen für das sichere Verifizieren der Codes hochauflösende Spektrometer erforderlich sind. Die Spannweite der Verifikationsmöglichkeiten reicht von der forensischen Prüfung im Speziallaboratorium bis hin zur Hochgeschwindigkeitsdetektion der maschinell auslesbaren Codes.The coding system according to the invention offers a variety of embodiments for different security levels and possible applications. Color-identical or color-same markings can be provided, the authenticity of which can be checked with simple hand-held sensors, but also those where high-resolution spectrometers are required for reliable verification of the code. The span of the Verification options range from forensic testing in a special laboratory to high-speed detection of machine-readable codes.

Besondere AusführungsformenSpecial embodiments

Eine vorteilhafte Ausführungsform der Erfindung betrifft ein Codierungssystem , wobei die den lumineszierenden Sicherheitselementen zugeordneten Lumineszenzcodes aus der unterschiedlichen spektralen Abfolge der individuell ausgezeichneten Emissionslinien und/oder Emissionsbanden der Leuchtstoffe und/oder Leuchtstoffkombinationen gebildet werden.An advantageous embodiment of the invention relates to a coding system, wherein the luminescence codes assigned to the luminescent security elements are formed from the different spectral sequence of the individually marked emission lines and/or emission bands of the phosphors and/or phosphor combinations.

Eine weitere Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei die den lumineszierenden Sicherheitselementen zugeordneten Lumineszenzcodes aus den Intensitätsverhältnissen der individuell ausgezeichneten Emissionslinien und/oder Emissionsbanden der Leuchtstoffe und/oder Leuchtstoffkombinationen gebildet werden.A further embodiment of the invention relates to a coding system, the luminescence codes assigned to the luminescent security elements being formed from the intensity ratios of the individually marked emission lines and/or emission bands of the phosphors and/or phosphor combinations.

Wiederum eine andere beispielhafte Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei mindestens ein weiterer Leuchtstoff und damit weitere Leuchtstoffkombinationen zur Bildung von weiteren lumineszierenden Sicherheitselementen mit anderen Lumineszenzcodes vorgesehen ist.Yet another exemplary embodiment of the invention relates to a coding system, wherein at least one additional phosphor and thus additional phosphor combinations are provided to form additional luminescent security elements with other luminescent codes.

Eine besonders vorteilhafte Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei die Farbkoordinaten der lumineszierenden Sicherheitselemente über Mischungsverhältnisse der verwendeten Leuchtstoffe für Leuchtstoffkombinationen eingestellt werden, wodurch sich definierte relative Intensitätsverhältnisse der individuell ausgezeichnete Emissionslinien und/oder Emissionsbanden für die Leuchtstoffkombination ergeben.A particularly advantageous embodiment of the invention relates to a coding system in which the color coordinates of the luminescent security elements are adjusted via mixing ratios of the phosphors used for phosphor combinations, resulting in defined relative intensity ratios of the individually marked emission lines and/or emission bands for the phosphor combination.

Eine andere Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei mindestens einer der Leuchtstoffe einen organischen Leuchtstoff, insbesondere eine seltenerdaktivierte organische Komplexverbindung, aufweist.Another embodiment of the invention relates to a coding system, wherein at least one of the phosphors has an organic phosphor, in particular a rare earth-activated organic complex compound.

Eine vorteilhafte Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei mindestens einer der Leuchtstoffe einen anorganischen Leuchtstoff aufweist.An advantageous embodiment of the invention relates to a coding system, wherein at least one of the phosphors has an inorganic phosphor.

Eine weitere Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei sowohl anorganische als auch organische Leuchtstoffe unterschiedlicher Korngröße, und beispielsweise auch nanoskalierte Leuchtstoffe oder Quantendots, sowie entsprechende Leuchtstoffkombinationen verwendet werden.Another embodiment of the invention relates to a coding system, wherein both inorganic and organic phosphors of different particle size, and for example also nanoscale phosphors or quantum dots, as well as corresponding phosphor combinations can be used.

Eine vorteilhafte Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei die Leuchtstoffe durch gezielte Substitutionen im Leuchtstoffgitter modifiziert werden, so dass diese ein exklusives Emissionsspektrum aufweisen.An advantageous embodiment of the invention relates to a coding system, the phosphors being modified by targeted substitutions in the phosphor lattice, so that they have an exclusive emission spectrum.

Wiederum eine andere Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei die Leuchtstoffe und/oder Leuchtstoffkombinationen in einem oder mehreren ultravioletten Wellenlängenbereiche, nämlich bei Wellenlängen zwischen 380 nm und 315 nm (UV-A) und/oder bei Wellenlängen zwischen 315 nm und 280 nm (UV-B) und/oder bei Wellenlängen zwischen 280 nm und 200 nm (UV-C) anregbar sind.Yet another embodiment of the invention relates to a coding system, the phosphors and/or phosphor combinations in one or more ultraviolet wavelength ranges, namely at wavelengths between 380 nm and 315 nm (UV-A) and/or at wavelengths between 315 nm and 280 nm ( UV-B) and/or can be excited at wavelengths between 280 nm and 200 nm (UV-C).

Eine besondere Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei die lumineszierenden Sicherheitselemente des Sicherheitsmerkmals bei mindestens zwei im ultravioletten Spektralbereich einstellbaren Anregungsbedingungen, also im UV-A-und/oder im UV-B- und/oder im UV-C-Spektralbereich, farbidentisch sind oder farbgleich wahrgenommen werden.A particular embodiment of the invention relates to a coding system in which the luminescent security elements of the security feature are identical in color under at least two excitation conditions that can be set in the ultraviolet spectral range, i.e. in the UV-A and/or in the UV-B and/or in the UV-C spectral range or be perceived in the same color.

Eine weitere Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei die lumineszierenden Sicherheitselemente des Sicherheitsmerkmals bei jeder der vorgegebenen Anregungen im UV-A-, UV-B- oder UV-C-Spektralbereich farbidentisch sind oder farbgleich wahrgenommen werden.A further embodiment of the invention relates to a coding system, wherein the luminescent security elements of the security feature are color-identical or are perceived as the same color for each of the specified excitations in the UV-A, UV-B or UV-C spectral range.

Eine vorteilhafte Ausführungsform der Erfindung betrifft ein Codierungssystem wobei die lumineszierenden Sicherheitselemente des Sicherheitsmerkmals bei unterschiedlichen vorgegebenen Anregungen unterschiedliche Farbkoordinaten im CIE-Normfarbsystem oder zumindest solche Farbkoordinaten aufweisen, die innerhalb eines anderen Toleranzfarbbereiches des CIE-Normfarbsystems liegen, so dass die lumineszierenden Sicherheitselemente zwar bei einer bestimmten vorgegebenen Anregungen farbidentisch oder farbgleich wahrgenommen werden, jedoch bei einem anderen vorgegebenen Anregungen eine andere Farbidentität oder Farbgleichheit aufweisen.An advantageous embodiment of the invention relates to a coding system in which the luminescent security elements of the security feature have different color coordinates in the CIE standard color system for different predefined stimuli, or at least such color coordinates that lie within a different tolerance color range of the CIE standard color system, so that the luminescent security elements do not have a certain given suggestions are perceived as color-identical or the same color, but have a different color identity or color sameness in the case of another given suggestion.

Eine beispielhafte Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei die Leuchtstoffe und/oder Leuchtstoffkombinationen im Infraroten Wellenlängenbereich, nämlich bei Wellenlängen zwischen 950 nm und 980 nm anregbar sind.An exemplary embodiment of the invention relates to a coding system, in which the phosphors and/or phosphor combinations can be excited in the infrared wavelength range, namely at wavelengths between 950 nm and 980 nm.

Eine weitere Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei die Maxima der individuell ausgezeichneten Emissionslinien und/oder Emissionsbanden der Leuchtstoffe und/oder Leuchtstoffkombinationen nur wenige Nanometer voneinander beabstandet sind, insbesondere einen Abstand von weniger als 10 nm, besonders bevorzugt einen Abstand von weniger als 5 nm, ganz besonders bevorzugt einen Abstand von weniger als 3 nm aufweisen.Another embodiment of the invention relates to a coding system, wherein the maxima of the individually marked emission lines and/or emission bands of the phosphors and/or phosphor combinations are only a few nanometers apart, in particular a distance of less than 10 nm, particularly preferably a distance of less than 5 nm, most preferably have a distance of less than 3 nm.

Eine andere Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei eine weitere Information über die Art und Weise der Anordnung der Sicherheitselemente des Sicherheitsmerkmales, beispielsweise über den Ort oder eine Form des Sicherheitselementes, beispielsweise in Form eines Symbols, Ziffer oder Piktogramms, dem Sicherheitselemente zugeordnet ist.Another embodiment of the invention relates to a coding system, wherein further information about the manner in which the security elements of the security feature are arranged, for example about the location or a form of the security element, for example in the form of a symbol, number or pictogram, is assigned to the security element.

Eine vorteilhafte Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei alle Farbkoordinaten, der vom Codierungssystem umfassten Leuchtstoffe im CIE-Normfarbsystem im Wesentlichen auf einer Geraden liegen.An advantageous embodiment of the invention relates to a coding system, wherein all color coordinates of the phosphors comprised by the coding system essentially lie on a straight line in the CIE standard color system.

Eine weitere Ausführungsform der Erfindung betrifft ein Codierungssystem, wobei die Leuchtstoffe und/oder Leuchtstoffkombinationen eine im Wesentlichen gleiche oder ähnliche Alterungsbeständigkeit aufweisen.A further embodiment of the invention relates to a coding system, in which the phosphors and/or phosphor combinations have essentially the same or similar aging resistance.

Die vorangehenden besonderen Ausführung Beispiele der Erfindung werden nachfolgend weiter im Detail beschrieben.The foregoing specific embodiment examples of the invention are described in further detail below.

Das erfinderische Codierungssystem zum Ausbilden eines Sicherheitsmerkmals in oder an einem Sicherheits- oder Wertdokument oder einer Mehrzahl von Sicherheits- oder Wertdokumenten ist im besonderen Maße dadurch gekennzeichnet, dass es auf der Verwendung von unterschiedlichen im nicht-sichtbaren Spektralbereich, insbesondere im ultravioletten (UV) oder infrarotem (IR) Spektralbereich anregbaren und im sichtbaren Spektralbereich emittierenden Leuchtstoffen und/oder Leuchtstoffkombinationen basiert, wobei die Leuchtstoffe und/oder Leuchtstoffkombinationen unter vorgegebenen Anregungsbedingungen jeweils unterschiedliche Emissionsspektren im sichtbaren Spektralbereich aufweisen, so dass jeder der Leuchtstoffe und/oder Leuchtstoffkombinationen durch mindestens eine individuell ausgezeichnete Emissionslinie oder Emissionsbande charakterisiert ist, welche sich von den individuell ausgezeichneten Emissionslinien oder Emissionsbanden der anderen Leuchtstoffe und/oder Leuchtstoffkombinationen unterscheidet.The inventive coding system for forming a security feature in or on a security or valuable document or a plurality of security or valuable documents is particularly characterized in that it is based on the use of different non-visible spectral range, especially in the ultraviolet (UV) or phosphors and/or phosphor combinations that can be excited in the infrared (IR) spectral range and emit in the visible spectral range, the phosphors and/or phosphor combinations each having different emission spectra in the visible spectral range under specified excitation conditions, so that each of the phosphors and/or phosphor combinations is characterized by at least one individually distinguished Characterized emission line or emission band is, which differs from the individually distinguished emission lines or emission bands of the other phosphors and/or phosphor combinations.

Das Codierungssystem ist darüber hinaus dadurch gekennzeichnet, dass es mindestens drei, vorzugsweise exklusive, Leuchtstoffe und/oder die aus diesen Leuchtstoffen erstellten Leuchtstoffkombinationen umfasst, die in Form von Sicherheitselementen zu Sicherheitsmerkmalen zusammengestellt werden und wobei jedem Sicherheitselement ein Code zugeordnet ist, der aus der spektralen Abfolge der individuell ausgezeichneten Emissionslinien oder Emissionsbanden der mindestens drei Leuchtstoffe und/oder Leuchtstoffkombinationen und/oder den Intensitätsverhältnissen dieser Emissionslinien und/oder Emissionsbanden gebildet wird.The coding system is also characterized in that it comprises at least three, preferably exclusive, phosphors and/or the phosphor combinations created from these phosphors, which are combined in the form of security elements to form security features, and each security element is assigned a code that consists of the spectral Sequence of the individually distinguished emission lines or emission bands of the at least three phosphors and/or phosphor combinations and/or the intensity ratios of these emission lines and/or emission bands is formed.

Gleichzeitig ist die erfinderische Lösung dadurch charakterisiert, dass alle zu einem Sicherheitsmerkmal zusammengestellten lumineszierenden Sicherheitselemente bei den vorgegebenen Anregungsbedingungen identische Farbkoordinaten in einem CIE-Normfarbsystem oder zumindest solche Farbkoordinaten aufweisen, die innerhalb eines Toleranzfarbbereiches des CIE-Normfarbsystems, beispielsweise einer MacAdam-Ellipse, liegen. Auf diese Weise kann sichergestellt werden, dass alle mit Lumineszenzcodes ausgestatteten Sicherheitselemente eines erfindungsgemäßen Sicherheitsmerkmals unter definierten Anregungsbedingungen vom Betrachter als farbgleich wahrgenommen werden.At the same time, the inventive solution is characterized in that all luminescent security elements combined to form a security feature have identical color coordinates in a CIE standard color system under the specified excitation conditions, or at least such color coordinates that are within a tolerance color range of the CIE standard color system, for example a MacAdam ellipse. In this way, it can be ensured that all security elements of a security feature according to the invention that are equipped with luminescence codes are perceived by the viewer as having the same color under defined excitation conditions.

Bei der Verwendung von genau drei Leuchtstoffen zum Ausbilden eines Sicherheitsmerkmals des Codierungssystems müssen die Farbkoordinaten der Emissionsspektren der einzelnen Leuchtstoffe im CIE-Normfarbsystem weitestgehend auf einer Geraden liegen, um durch Kombination dieser Leuchtstoffe mehrere unterschiedliche Lumineszenzcodes mit identischen Farbkoordinaten bereitstellen zu können. Wie Modellrechnungen und praktische Versuche ergaben, lassen sich in diesem Falle zumindest drei unterscheidbare Codes mit exakt identischen Farbkoordinaten und unterschiedlicher spektraler Abfolge der individuell ausgezeichneten Emissionslinien generieren, die durch die Kombination von jeweils zwei der ausgewählten drei Leuchtstoffe (Leuchtstoffpaare) und durch eine entsprechende Dreierkombination (Leuchtstofftripel) gebildet werden können. Werden neben der spektralen Charakteristik auch die Intensitätsverhältnisse zwischen den ausgewählten Emissionen zur Codeeinstellung herangezogen, ergeben sich weitere Möglichkeiten für die Ausbildung unterscheidbarer Dreierkombinationen. Die exakte Einstellung der Farbkoordinaten der einzelnen Kombinationen ist an bestimmte Mischungsverhältnisse zwischen den einzelnen Leuchtstoffen gebunden. Bei einer dreieckförmigen Anordnung der aus den Emissionsspektren resultierenden Farbkoordinaten von drei unterschiedlichen Leuchtstoffen um eine vorgegebene Zielfarbkoordinate herum, gibt es dagegen nur eine einzige Möglichkeit, den exakten Zielfarbort einzustellen. Das bedeutet, dass sich auf diese Weise nur ein einziger Lumineszenzcode erzeugen ließe.When using exactly three phosphors to form a security feature of the coding system, the color coordinates of the emission spectra of the individual phosphors in the CIE standard color system must lie largely on a straight line in order to be able to provide several different luminescence codes with identical color coordinates by combining these phosphors. As model calculations and practical tests have shown, in this case at least three distinguishable codes can be generated with exactly identical color coordinates and a different spectral sequence of the individually marked emission lines, which are generated by combining two of the three selected phosphors (pairs of phosphors) and by a corresponding combination of three ( Phosphor triple) can be formed. If, in addition to the spectral characteristics, the intensity ratios between the selected emissions are also used to set the code, there are further possibilities for the formation of distinguishable combinations of three. The exact setting of the color coordinates of the individual combinations is based on specific mixing ratios bound between the individual phosphors. In contrast, with a triangular arrangement of the color coordinates of three different phosphors resulting from the emission spectra around a predetermined target color coordinate, there is only one possibility of setting the exact target color location. This means that only a single luminescence code could be generated in this way.

Allerdings können mit Lumineszenzcodes ausgestattete Sicherheitselemente vom Betrachter auch dann als farbgleich wahrgenommen werden, wenn die jeweiligen Farbkoordinaten nicht exakt identisch, sondern innerhalb eines Toleranzfarbbereiches des CIE-Normfarbwertsystems (beispielsweise einer MacAdam-Ellipse) positioniert sind. Entsprechende Untersuchungen haben ergeben, dass es selbst bei der Verwendung von nur drei Leuchtstoffen unter diesen Bedingungen möglich ist, beispielsweise bis zu sieben unterschiedliche, von Probanden aber als farbgleich bewertete Lumineszenzcodes bereitzustellen. Neben der spektralen Abfolge der individuellen Emissionslinien und/oder -banden müssen in diesem Fall dann aber auch die unterschiedlich eingestellten Intensitätsverhältnisse zwischen diesen Linien und/oder Banden als charakteristische Eigenschaften in die Codebildung einbezogen werden.However, security elements equipped with luminescence codes can also be perceived by the viewer as having the same color if the respective color coordinates are not exactly identical but are positioned within a tolerance color range of the CIE standard color value system (for example a MacAdam ellipse). Corresponding investigations have shown that even when only three phosphors are used under these conditions, it is possible, for example, to provide up to seven different luminescence codes that are evaluated by subjects as having the same color. In addition to the spectral sequence of the individual emission lines and/or bands, the differently adjusted intensity ratios between these lines and/or bands must then also be included in the code formation as characteristic properties.

Durch das Hinzufügen weiterer, vorzugsweise exklusiv modifizierter Leuchtstoffe können die Möglichkeiten für die Bereitstellung unterscheidbarer Lumineszenzcodes weiter erhöht werden. Dabei ist in Rechnung zu stellen, dass die Anzahl der generierbaren Codes beispielsweise auch von der konkreten Positionierung des Zielfarbortes sowie von den zugelassenen spektralen Abständen zwischen den Maxima der individuell ausgezeichneten Emissionslinien und/oder -banden abhängt. Darüber hinaus ist beachten, dass die in der Praxis zur Anwendung gelangenden Luminophore, beispielweise modifizierte seltenerdaktivierte Leuchtstoffe, bereits als Einzelkomponenten zumeist mehrere Emissionslinien und häufig komplexe Linienspektren aufweisen. Auch dadurch steigt die Anzahl der möglichen Code-Zuweisungen auf dem Level-3-Sicherheitsniveau.By adding further, preferably exclusively modified, phosphors, the possibilities for providing distinguishable luminescence codes can be further increased. It must be taken into account that the number of codes that can be generated also depends, for example, on the specific positioning of the target color location and on the permitted spectral distances between the maxima of the individually marked emission lines and/or bands. In addition, it should be noted that the luminophores used in practice, for example modified rare earth-activated phosphors, usually have several emission lines and often complex line spectra even as individual components. This also increases the number of possible code assignments at the level 3 security level.

In einem weiteren wesentlichen Aspekt der Erfindung wird ein Verfahren zum Herstellen eines Sicherheitsmerkmals eines Codierungssystems für die Anwendung in Sicherheits-oder Wertdokumenten sowie im Produktschutz bereitgestellt.A further essential aspect of the invention provides a method for producing a security feature of a coding system for use in security documents or documents of value and in product protection.

Dabei müssen in einem ersten Schritt Entscheidungen über die Anregungsbedingungen für das erfinderische Lumineszenzmerkmal, über den gewünschten Zielfarbort bzw. einen entsprechend definierten Toleranzfarbbereich für die Realisierung der angestrebten Farbidentität der einzelnen, für das Sicherheitsmerkmal erforderlichen Sicherheitselemente sowie über die Anzahl der für den Echtheitsschutz erforderlichen Codes getroffen werden. Diese Entscheidungen sind abhängig von der Art und der Verwendung der zu schützenden Wert- und Sicherheitsdokumente oder der schützenswerten Produkte, vom zugelassenen Aufwand für die Verifizierung der Lumineszenzcodes und von den Design-Vorgaben für das Merkmal.In a first step, decisions must be made about the excitation conditions for the inventive luminescence feature, about the desired target color location or a correspondingly defined tolerance color range for the realization of the desired color identity of the individual security elements required for the security feature and the number of codes required for authenticity protection. These decisions depend on the type and use of the value and security documents to be protected or the products worthy of protection, the permitted effort for the verification of the luminescence codes and the design specifications for the feature.

Ein weiterer Schritt betrifft die Auswahl der für die Herstellung der benötigten Sicherheitselemente erforderlichen Leuchtstoffe. Die Auswahl kann auf der Grundlage der gemessenen Emissionsspektren der zu bewerteten Leuchtstoffe mit vorzugsweise exklusiver Emissionscharakteristik erfolgen. Die aus den Emissionsspektren berechenbaren CIE-Farbkoordinaten der Einzelleuchtstoffe geben Auskunft darüber, ob und wie viele Kombinationen dieser Leuchtstoffe für die Realisierung des vorgegebenen Zielfarbortes bzw. eines entsprechenden Toleranzfarbbereiches zur Verfügung stehen. Darüber können auf der Grundlage dieser Messergebnisse die für die Herstellung der Leuchtstoffkombinationen wichtigen Mischungsverhältnisse der Komponenten vorausberechnet werden.A further step concerns the selection of the phosphors required for the production of the required security elements. The selection can be made on the basis of the measured emission spectra of the phosphors to be evaluated, preferably with exclusive emission characteristics. The CIE color coordinates of the individual phosphors, which can be calculated from the emission spectra, provide information on whether and how many combinations of these phosphors are available for realizing the specified target color location or a corresponding tolerance color range. On the basis of these measurement results, the mixing ratios of the components that are important for the production of the phosphor combinations can be calculated in advance.

Der nachfolgende Schritt des Verfahrens ist auf die gegebenenfalls erforderliche experimentelle Überprüfung und das Festlegen der Mischungsverhältnisse der für die Erstellung der farbidentischen Sicherheitselemente des Sicherheitsmerkmals gerichtet. In aller Regel sind nur wenige praktische Versuche erforderlich, um auf der Grundlage der durchgeführten farbmetrischen Berechnungen die unter Applikationsbedingungen gültigen Mischungsverhältnisse für die Kombination der ausgewählten Leuchtstoffe zu farbidentischen Sicherheitselementen zu ermitteln. Die experimentelle Überprüfung ist aber erforderlich, um Wechselwirkungen zwischen den verwendeten Leuchtstoffen sowie weitere Einflussfaktoren, die auf den eigenständigen und unterschiedlichen optischen Eigenschaften (Eigenemission, Absorptions- und Reflexionsverhalten) der weiteren organischen und anorganischen Bestandteile (Bindemittel, Additive) der für die Applizierung des Sicherheitsmerkmals verwendeten Farbkompositionen sowie den optischen Effekten der verwendeten Trägermaterialien beruhen, berücksichtigen zu können.The subsequent step of the method is aimed at the experimental verification that may be required and the determination of the mixing ratios for the creation of the color-identical security elements of the security feature. As a rule, only a few practical tests are required to determine, on the basis of the colorimetric calculations carried out, the mixing ratios valid under application conditions for the combination of the selected phosphors to form color-identical security elements. However, the experimental verification is necessary to determine interactions between the phosphors used and other influencing factors that affect the independent and different optical properties (self-emission, absorption and reflection behavior) of the other organic and inorganic components (binders, additives) for the application of the security feature color compositions used and the optical effects of the carrier materials used.

In einem weiteren Verfahrensschritt erfolgt das Auf- oder Einbringen der ausgewählten Leuchtstoffe und/oder Leuchtstoffkombinationen auf oder in die Trägermaterialien der jeweiligen Sicherheits- oder Wertdokumente. Dieser Prozessschritt kann beispielweise mit Hilfe der üblichen Druckverfahren (Tiefdruck-, Flexodruck-, Offsetdruck- oder Siebdruckverfahren etc.) oder aber unter Verwendung anderer Beschichtungstechnologien ausgeführt werden.In a further method step, the selected phosphors and/or phosphor combinations are applied or introduced onto or into the carrier materials of the respective security or value documents. This process step can be carried out, for example, with the help of the usual printing processes (gravure, flexographic, offset or screen printing). etc.) or using other coating technologies.

Ein letzter Schritt des Verfahrens zur Herstellung eines erfindungsgemäßen Sicherheitsmerkmals ist der abschließenden Codezuweisung vorbehalten. Auf der Grundlage der unter definierten Anregungsbedingungen gemessenen Emissionsspektren der einzelnen mit farbidentischen oder farbgleichen Leuchtstoffen und/oder Leuchtstoffkombinationen ausgestatteten Sicherheitselemente werden die für die Echtheitsverifizierung erforderlichen und geeigneten codebildenden Emissionsmaxima (λmax- Werte) der individuell ausgezeichneten, vorzugsweise exklusiven Emissionslinien und/oder Emissionsbanden sowie solche Emissionslinien und/oder -banden, bei denen das Verhältnis der jeweiligen Lumineszenzintensitäten als Code repräsentierende Eigenschaft angesehen werden kann, ausgewählt und einem Zeichenvorrat, beispielsweise einer Zahlen- oder Buchstabenabfolge zugeordnet.A final step in the method for producing a security feature according to the invention is reserved for the final code assignment. On the basis of the emission spectra measured under defined excitation conditions of the individual security elements equipped with phosphors and/or phosphor combinations of the same color or the same color, the code-forming emission maxima (λ max values) required and suitable for the authenticity verification of the individually marked, preferably exclusive emission lines and/or emission bands as well as those emission lines and/or bands for which the ratio of the respective luminescence intensities can be viewed as a property representing a code are selected and assigned to a set of characters, for example a sequence of numbers or letters.

Weiterhin wird das Wesen der Erfindung durch die Bereitstellung eines Verfahren zum Auslesen der Lumineszenzcodes und zur Echtheitsverifizieren der beispielsweise als Markierungen ausgebildeten Sicherheitselemente eines Sicherheitsmerkmals des erfindungsgemäßen Codierungssystems bestimmt. Dieses Verfahren umfasst: das Anregen der in den Sicherheitselementen vorhandenen Leuchtstoffe und/oder Leuchtstoffkombinationen mit einer vorgegebenen unsichtbaren Anregungsstrahlung, die insbesondere von geeigneten UV- oder IR- Strahlungsquellen erzeugt wird, das Erfassen der elektromagnetischen Spektren diese Leuchtstoffe und/oder Leuchtstoffkombinationen in einem vorbestimmten sichtbaren Spektralbereich mit der Hilfe geeigneter optischer Spektrometer, sowie das Auswerten der Messergebnisse und die abschießende Echtheitsbewertung, wobei die Anwesenheit der hinterlegten Code relevanten Emissionscharakteristika geprüft und mit der hinterlegten Codeinformation verglichen wird.Furthermore, the essence of the invention is determined by the provision of a method for reading out the luminescence codes and for verifying the authenticity of the security elements, embodied for example as markings, of a security feature of the coding system according to the invention. This method includes: stimulating the phosphors and/or phosphor combinations present in the security elements with a predetermined invisible stimulating radiation, which is generated in particular by suitable UV or IR radiation sources, detecting the electromagnetic spectra of these phosphors and/or phosphor combinations in a predetermined visible range spectral range with the help of suitable optical spectrometers, as well as the evaluation of the measurement results and the subsequent authenticity assessment, whereby the presence of the deposited code-relevant emission characteristics is checked and compared with the deposited code information.

Der erforderliche technische Aufwand für die sichere Verifikation der in die einzelnen, das jeweilige Sicherheitsmerkmal des Codierungssystems bildenden, Sicherheitselemente eingebrachten farbidentischen bzw. farbgleichen Lumineszenzcodes hängt von verschiedenen Faktoren ab. Dazu gehören die Breite des im Sichtbaren zu detektierenden Spektralbereiches und das Ausmaß der Komplexität der individuellen, vorzugsweise exklusiven Emissionsspektren der verwendeten Leuchtstoffe und/oder Leuchtstoffkombinationen, wobei insbesondere geringe spektrale Abstände zwischen den Maxima der für die Codebildung relevanten charakteristischen Emissionslinien und/oder -banden die Verwendung von leistungsfähigen optischen Spektrometern mit einem hohen spektralen Auflösungsvermögen erfordern.The technical outlay required for the secure verification of the luminescent codes of identical color or of the same color introduced into the individual security elements forming the respective security feature of the coding system depends on various factors. These include the width of the spectral range to be detected in the visible and the extent of the complexity of the individual, preferably exclusive emission spectra of the phosphors and/or phosphor combinations used, with in particular small spectral distances between the maxima of the characteristic emission lines and/or bands relevant for code formation use from high-performance optical spectrometers with a high spectral resolution.

Ein weiterer wesentlicher Faktor betrifft darüber hinaus die sich aus der praktischen Anwendung der erfindungsgemäßen Sicherheitsmerkmale in Wert- und Sicherheitsdokumenten bzw. im Produktschutz ergebenden Anforderungen an die Detektionsgeschwindigkeit. Umfangreiche Untersuchungen haben ergeben, dass sich auf der Grundlage der Erfindung maschinenlesbare Level-3-Sicherheitsmerkmale zusammenstellen lassen, deren Lumineszenzcodes sowohl bei den in Geldautomaten (ATM, Cash Management System) als auch bei den in den Sortiermaschinen der Zentralbanken üblichen Detektionsgeschwindigkeiten sicher verifiziert werden können.A further essential factor relates to the requirements for the detection speed resulting from the practical application of the security features according to the invention in value and security documents or in product protection. Extensive investigations have shown that on the basis of the invention, machine-readable Level 3 security features can be compiled whose luminescence codes can be reliably verified both at the detection speeds that are usual in ATMs (Cash Management System) and in the sorting machines of central banks .

Andererseits ist es im Sinne der Fälschungssicherheit natürlich durchaus vorteilhaft, wenn beispielsweise zumindest zwei der individuell ausgezeichneten Emissionslinien der farbidentischen Sicherheitselemente so eng beieinander liegen, dass sie nicht ohne größeren technischen Aufwand voneinander unterschieden werden können.On the other hand, in terms of security against forgery, it is of course quite advantageous if, for example, at least two of the individually labeled emission lines of the color-identical security elements are so close together that they cannot be distinguished from one another without major technical effort.

Der Vorteil der Erfindung liegt hier in dem großen Spielraum für die konkrete Ausgestaltung der zu einem erfinderischen Sicherheitsmerkmal gehörenden Sicherheitselemente, der durch die vielfältigen Kombinationsmöglichkeiten der unterschiedlichen Leuchtstoffe eröffnet wird. So kann für das jeweils auszubildende Sicherheitsmerkmal genau entschieden werden, wie gering der spektrale Abstand der beispielsweise zumindest zwei individuell ausgezeichneten Emissionslinien mit Blick auf das höchste Maß an Fälschungssicherheit sein sollte und wie gering er in Anbetracht der Verifikationsumstände, beispielsweise unter den Bedingungen einer Hochgeschwindigkeitsdetektion, sein kann. In einer vorteilhaften Ausführungsform der Erfindung ist deshalb vorgesehen, dass die Maxima von zumindest zwei der individuell ausgezeichneten, vorzugsweisen exklusiven Emissionslinien der zu einem Sicherheitsmerkmal gehörenden Sicherheitselemente im elektromagnetischen Spektrum nur wenige Nanometer voneinander entfernt liegen, wobei diese bevorzugt einen Abstand von weniger als 10 nm, besonders bevorzugt einen Abstand von weniger als 5 nm und, ganz besonders bevorzugt einen Abstand von weniger als 3 nm aufweisen.The advantage of the invention lies in the great scope for the concrete design of the security elements belonging to an inventive security feature, which is opened up by the diverse possible combinations of the different phosphors. It is thus possible to decide exactly how small the spectral distance of the at least two individually marked emission lines, for example, should be with regard to the highest level of protection against forgery and how small it should be in view of the verification circumstances, for example under the conditions of high-speed detection can. In an advantageous embodiment of the invention, it is therefore provided that the maxima of at least two of the individually marked, preferably exclusive emission lines of the security elements belonging to a security feature in the electromagnetic spectrum are only a few nanometers apart, with these preferably being at a distance of less than 10 nm, more preferably have a distance of less than 5 nm and, most preferably have a distance of less than 3 nm.

Eine besonders vorteilhafte Ausführungsform der Erfindung besteht im Weiteren darin, dass die zu Sicherheitsmerkmalen zusammengestellten Sicherheitselemente nicht nur bei einer vorgegebenen optischen Anregung, sondern zumindest auch bei einer weiteren, von der ersten grundsätzlich unterscheidbaren optischen Anregung, vom menschlichen Auge als farbgleich wahrgenommen werden. Wie allgemein bekannt und bereits beschrieben, wird der ultraviolette Spektralbereich in der Literatur und in der technischen Abwendung in die Bereiche UV-A- (380-315 nm), UV-B- (315-280 nm) und in den UV-C-Strahlungsbereich (280-100 nm) unterteilt, wobei für die einzelnen definierten Strahlungsarten auch jeweils unterschiedliche Strahlungsquellen zur Verfügung stehen. In diesem Zusammenhang hat sich überraschenderweise gezeigt, dass für die Herstellung eines erfindungsgemäßen Sicherheitsmerkmals des Codierungssystems auch solche Leuchtstoffe und Leuchtstoffkombinationen ausgewählt werden können, deren vorzugsweise exklusiven Emissionsspektren, beispielsweise sowohl bei der Anregung mit UV-A- als auch UV-B-Strahlungsquellen im CIE-Normfarbsystem identische Farbkoordinaten bzw. solche aufweisen, die innerhalb ausgewiesener Toleranzfarbbereiche liegen, so das alle mit unterschiedlichen Lumineszenzcodes ausgestatteten Sicherheitselemente des entsprechenden Sicherheitsmerkmals unter beiden Anregungsbedingungen von Betrachter als farbgleich wahrgenommen werden.A particularly advantageous embodiment of the invention consists in the fact that the security elements put together to form security features not only in the case of a predetermined optical stimulus, but also at least in the case of a further, the first fundamentally distinguishable optical stimulus, are perceived by the human eye as having the same color. As is generally known and already described, the ultraviolet spectral range is divided into the UV-A (380-315 nm), UV-B (315-280 nm) and UV-C (315-280 nm) ranges in the literature and in technical applications. Radiation range (280-100 nm) subdivided, with different radiation sources being available for the individually defined types of radiation. In this context, it has surprisingly been shown that for the production of a security feature of the coding system according to the invention, such phosphors and phosphor combinations can also be selected whose preferably exclusive emission spectra, for example both when excited with UV-A and UV-B radiation sources in the CIE - Standard color system have identical color coordinates or those that lie within designated tolerance color ranges, so that all security elements of the corresponding security feature equipped with different luminescence codes are perceived by the viewer as having the same color under both excitation conditions.

Darüber hinaus konnte nachgewiesen werden, dass auf der Grundlage der Erfindung auch für den Wechsel zwischen UV-A- und UV-C-Anregung oder aber für den Wechsel zwischen UV-B und UV-C-Anregung lumineszierende Sicherheitselemente bereitgestellt werden können, bei denen die nach der Anregung wahrnehmbaren Farbeindrücke auch bei Änderung der Anregungsbedingungen erhalten bleiben. In einer ganz besonders vorteilhaften Ausführungsform der Erfindung werden die für die Ausbildung eines Sicherheitsmerkmals des Codierungssystems ausgewählten Sicherheitselemente bei allen in ultravioletten Spektralbereich einstellbaren Anregungsbedingungen, also sowohl bei Anregung mit UV-A-, UV-B oder UV-C-Strahlungsquellen vom Betrachter als farbgleich identifiziert.In addition, it could be demonstrated that, on the basis of the invention, luminescent security elements can also be provided for changing between UV-A and UV-C excitation or for changing between UV-B and UV-C excitation, in which the color impressions perceptible after the excitation are retained even if the excitation conditions change. In a particularly advantageous embodiment of the invention, the security elements selected for the formation of a security feature of the coding system are of the same color for all excitation conditions that can be set in the ultraviolet spectral range, i.e. both for excitation with UV-A, UV-B or UV-C radiation sources identified.

Die Vielfalt der Variationsmöglichkeiten für die Ausführung der Erfindung kommt auch darin zum Ausdruck, dass selbst bei einer durch den Wechsel der UV- Anregungsquellen verursachten Änderung der wahrnehmbaren Farbeindrücke der Sicherheitselemente die Emissionsspektren der ausgewählten Leuchtstoffe und Leuchtstoffkombinationen in vorteilhafter Weise so eingestellt werden können, dass die lumineszierenden Elemente unter den jeweils definierten Anregungsbedingungen als untereinander farbgleich bewertet werden. Das bedeutet, dass der Betrachter alle Sicherheitselemente bei der einen Anregungsart beispielweise als farbgleich rot und bei der anderen Anregungsart beispielsweise als farbgleich grün wahrnimmt.The variety of possible variations for the implementation of the invention is also expressed in the fact that even if the perceptible color impressions of the security elements change as a result of changing the UV excitation sources, the emission spectra of the selected phosphors and phosphor combinations can advantageously be adjusted in such a way that the luminescent elements are evaluated as having the same color as one another under the respectively defined excitation conditions. This means that the observer perceives all security elements as red in the same color for one type of excitation, for example, and as green for the other type of excitation, for example.

In einer weiteren bevorzugten Ausführungsform der Erfindung können die für die Ausbildung eines erfinderischen Sicherheitsmerkmals verwendeten Sicherheitselemente, die bei unterschiedlichen Anregungsbedingungen vorzugsweise in UV-Spektralbereich gleiche Farbeindrücke aufweisen auch so ausgestattet werden, dass die für die Ausbildung der Level-3- Sicherheitscodes erforderlichen individuell ausgezeichneten, und insbesondere exklusiven Emissionslinien und/oder Emissionsbanden nur bei einer der unterschiedlichen Anregungsarten emittiert werden und somit nur unter diesen Anregungsbedingungen für die Echtheitsverifikation zur Verfügung stehen.In a further preferred embodiment of the invention, the security elements used to form an inventive security feature, which have the same color impressions under different excitation conditions, preferably in the UV spectral range, can also be equipped in such a way that the individually marked, and in particular exclusive emission lines and/or emission bands are only emitted with one of the different types of excitation and are therefore only available for authenticity verification under these excitation conditions.

Um die Sicherheit der Sicherheitselemente weiter zu erhöhen, kann es zweckmäßig sein, weitere Informationen mit in die Verifikation einzubeziehen. Deshalb ist in einer weiteren vorteilhaften Ausführungsform ferner vorgesehen, dass das Codierungssystem eine weitere Information über eine Anordnung und/oder eine Kontur der Sicherheitselemente auf oder in dem Sicherheits- oder Wertdokument ausbildet. Eine solche Anordnung kann beispielsweise eine bestimmte Position auf dem Sicherheits- oder Wertdokument sein. Das Sicherheitselement selber kann aber auch eine bestimmte Kontur aufweisen, beispielsweise die Form eines Zeichens, eines Symbols, einer Ziffer oder eines Piktogramms. Bei der Verifikation werden dann zusätzlich die Position auf dem Sicherheits- oder Wertdokument und/oder die Anordnung und/oder das Vorliegen der entsprechenden Kontur des Sicherheitselements überprüft.In order to further increase the security of the security elements, it can be expedient to include further information in the verification. Therefore, in a further advantageous embodiment, it is also provided that the coding system forms further information about an arrangement and/or a contour of the security elements on or in the security document or document of value. Such an arrangement can be, for example, a specific position on the security document or document of value. However, the security element itself can also have a specific contour, for example the shape of a character, a symbol, a number or a pictogram. During verification, the position on the security or value document and/or the arrangement and/or the presence of the corresponding contour of the security element are then additionally checked.

Nachfolgend wird die Erfindung anhand bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Figuren näher erläutert. Hierbei zeigen:

Fig. 1a - e:
die Emissionsspektren von drei Modellleuchtstoffen sowie die dazugehörigen Farbkoordinaten, dargestellt in einem CIE- Normfarbsystem bzw. der Normfarbtafel des CIE-Normfarbsystems,
Fig. 2a - f:
die Emissionsspektren von Leuchtstoffkombinationen, die aus den in den Fig. 1a bis Fig. 1e gezeigten drei Modellleuchtstoffen gebildet sind, und deren Farbkoordinaten mit dem vorgegebenen Zielfarbort übereinstimmen,
Fig. 3a - e:
weitere Emissionsspektren von drei anderen Modellleuchtstoffen sowie die dazugehörigen - in einem CIE- Normfarbsystem bzw. der Normfarbtafel - dargestellte Farbkoordinaten dieser Modellleuchtstoffe,
Fig. 4a - e:
die Emissionsspektren von Leuchtstoffkombinationen, die aus den in den Fig. 3a bis Fig. 3e gezeigten drei anderen Modellleuchtstoffen gebildet sind, und deren Farbkoordinaten mit dem in der Fig. 4a gekennzeichneten Zielfarborts übereinstimmen,
Fig. 5a - e:
Beispiele für weitere farbidentische Emissionsspektren von weiteren Leuchtstoffkombinationen aus vier Modellleuchtstoffen, wobei die Farbkoordinaten der vier einzelnen Modellleuchtstoffe gemäß Fig. 5a in Form eines Vierecks um einen möglichen Zielfarbort positioniert sind,
Fig. 6a - c:
beispielhaft drei reale Emissionsspektren von drei ausgewählten realen Leuchtstoffen,
Fig. 7a - e:
beispielhaft Emissionsspektren von Leuchtstoffkombinationen, insbesondere Leuchtstoffpaaren und Dreierkombinationen, die aus den in den Fig. 6a bis Fig. 6c gezeigten drei ausgewählten realen Leuchtstoffen gebildet sind,
Fig. 8
die Farbkoordinaten in der CIE-Normfarbtafel der in den Fig. 7a - e gezeigten Emissionsspektren der Leuchtstoffpaare und Dreierkombinationen der drei ausgewählten realen Leuchtstoffen, und
Fig. 9 a & b
die Farbkoordinaten in der CIE-Normfarbtafel der in den Fig. 6a - c sowie ind den Fig. 7a - e gezeigten Emissionsspektren der ausgewählten realen Leuchtstoffe und Leuchtstoffkombinationen sowie einen ermittelten Toleranzfarbbereiche für die beschriebenen realen Leuchtstoffe und Leuchtstoffkombinationen bei unterschiedlichen Anregungsbedingungen, nämlich einmal bei einer 313 nm-Anregung (Fig. 9a:) und ein anders Mal bei einer 365 nm-Anregung (Fig. 9a).
The invention is explained in more detail below on the basis of preferred exemplary embodiments with reference to the figures. Here show:
Fig. 1a - e:
the emission spectra of three model phosphors and the associated color coordinates, shown in a CIE standard color system or the standard color table of the CIE standard color system,
Fig. 2a - f:
the emission spectra of phosphor combinations resulting from the Figures 1a to 1e three model phosphors shown are formed, and whose color coordinates match the specified target color location,
Fig. 3a - e:
other emission spectra of three other model phosphors and the associated - in a CIE standard color system or the Standard color chart - displayed color coordinates of these model phosphors,
Fig. 4a - e:
the emission spectra of phosphor combinations resulting from the Figures 3a to 3e shown three other model phosphors are formed, and their color coordinates with the in the Figure 4a marked target color location match,
Fig. 5a - e:
Examples of further color-identical emission spectra of further phosphor combinations from four model phosphors, the color coordinates of the four individual model phosphors according to Figure 5a are positioned in the form of a square around a possible target color location,
Fig. 6a - c:
exemplarily three real emission spectra of three selected real phosphors,
Fig. 7a - e:
exemplary emission spectra of phosphor combinations, in particular phosphor pairs and combinations of three, from the in the Figures 6a to 6c shown three selected real phosphors are formed,
8
the color coordinates in the CIE standard color table in the Fig. 7a - e shown emission spectra of the phosphor pairs and triple combinations of the three selected real phosphors, and
Fig. 9a & b
the color coordinates in the CIE standard color table in the Fig. 6a - c as well as in the Fig. 7a - e shown emission spectra of the selected real phosphors and phosphor combinations as well as a determined tolerance color range for the described real phosphors and phosphor combinations under different excitation conditions, namely once with a 313 nm excitation ( Figure 9a :) and another time with a 365 nm excitation ( Figure 9a ).

Darüber hinaus werden bevorzugte Ausführungsbeispiele der Erfindung auch unter Bezugnahme auf die nachfolgenden Tabellen näher erläutert, wobei diese das Folgende beschreiben, nämlich:

Tab. 1
Lumineszenz-spezifische Daten von drei ausgewählten Modellleuchtstoffen wie sie insbesondere in den Fig. 1c bis 1e beschrieben sind,
Tab. 2
Mischungsverhältnisse für die Ausbildung von Leuchtstoffkombinationen, deren Farbkoordinaten mit dem vorgegebenen Zielfarbort übereinstimmen, wie sie in den Fig. 2a bis 2j beschrieben sind,
Tab. 3
Lumineszenz-spezifische Daten von weiteren drei ausgewählten Modellleuchtstoffen wie sie insbesondere in den Fig. 3c bis 3e beschrieben sind,
Tab. 4
Mischungsverhältnisse für die Ausbildung von Kombinationen der weiteren drei Modellleuchtstoffe, deren Farbkoordinaten mit dem vorgegebenen Zielfarbort übereinstimmen, wie sie in den Fig. 4a bis 4e beschrieben sind,
Tab. 5
Lumineszenz-spezifische Daten von vier ausgewählten Modellleuchtstoffen wie sie insbesondere in den Fig. 5a bis 5e beschrieben sind,
Tab. 6
Mischungsverhältnisse für die Ausbildung von farbidentischen Kombinationen der vier Modellleuchtstoffe, und
Tab. 7
Farbkoordinaten der ausgewählten drei realen Leuchtstoffe sowie der nach den angegebenen Mischungsverhältnissen aus diesen Leuchtstoffen gebildeten Kombinationen.
In addition, preferred embodiments of the invention are also explained in more detail with reference to the following tables, which describe the following, namely:
Table 1
Luminescence-specific data of three selected model luminescent materials such as those in particular in the Figures 1c to 1e are described
Table 2
Mixing ratios for the formation of phosphor combinations whose color coordinates match the specified target color locus, as in the Figure 2a are described up to 2j,
Table 3
Luminescence-specific data of another three selected model phosphors as they are in particular in the Figures 3c to 3e are described
Table 4
Mixing ratios for the formation of combinations of the other three model phosphors whose color coordinates match the specified target color locus, as in the Figures 4a to 4e are described
Table 5
Luminescence-specific data of four selected model luminescent materials, as shown in particular in the Figures 5a to 5e are described
Table 6
Mixing ratios for the formation of color-identical combinations of the four model phosphors, and
Table 7
Color coordinates of the selected three real phosphors and the combinations formed from these phosphors according to the specified mixing ratios.

In der Fig. 1a ist eine schematische Darstellung der CIE-Normfarbtafel 5 des CIE-Normvalenzsystems dargestellt. Das CIE-Normvalenzsystem wurde definiert, um eine Relation zwischen der menschlichen Farbwahrnehmung und den physikalischen Ursachen des Farbreizes herzustellen und erfasst typischerweise die Gesamtheit aller wahrnehmbaren Farben, wobei es sich dabei auf einen definierten Normalbeobachter bezieht.In the Fig. 1a a schematic representation of the CIE standard color chart 5 of the CIE standard valence system is shown. The CIE standard valence system was defined in order to establish a relation between human color perception and the physical causes of the color stimulus and typically covers all perceptible colors, whereby it refers to a defined standard observer.

Darüber hinaus zeigen Fig. 1a und insbesondere der vergrößerte Teilbereich in der Fig. 1b die x- und y-Farbkoordinaten 10, 20, 30 der Emissionslinien von drei simulierten, möglichen Einzelleuchtstoffes in der CIE-Normfarbtafel. Dabei zeigt die Vergrößerung gemäß Fig. 1b, dass diese Farbkoordinaten 10, 20, 30 in der CIE-Normfarbtafel im Wesentlichen auf einer Geraden liegen. Zur Verdeutlichung sind die Farbkoordinaten 10, 20, 30 mit unterschiedlichen Symbolen, nämlich Farbkoordinate 10 als Dreieck Δ, Farbkoordinate 20 als Quadrat □ und Farbkoordinate 30 als Kreis o dargestellt, wobei die Fig. 1c bis 1e dann die dazugehörigen Emissionsspektren (Emissionslinien) 1, 2, 3 zweigen.In addition, show Fig. 1a and in particular the enlarged portion in the Fig. 1b the x and y color coordinates 10, 20, 30 of the emission lines of three simulated possible ones individual phosphors in the CIE standard color table. The magnification according to Fig. 1b that these color coordinates 10, 20, 30 lie essentially on a straight line in the CIE chromaticity diagram. For clarification, the color coordinates 10, 20, 30 are shown with different symbols, namely color coordinate 10 as a triangle Δ, color coordinate 20 as a square □ and color coordinate 30 as a circle o, the Figures 1c to 1e then branch the associated emission spectra (emission lines) 1, 2, 3.

Trotz der geringen spektralen Abstände der Emissionslinien und der geringen Abstände der berechneten Farbkoordinaten ist es nicht möglich, unter Verwendung der ausgewählten modellierten Einzelleuchtstoffe farbgleiche Sicherheitselemente zur Ausbildung eines von Sicherheitsmerkmalen bereitzustellen. Untersuchungen haben ergeben, dass eine Fläche des durch die Farbkoordinaten der zu Simulationszwecken verwendeten Emissionslinien aufgespannten Farbbereiches in etwa das 7-fache der nächstliegenden MacAdam-Ellipse ausmacht.Despite the small spectral spacing of the emission lines and the small spacing of the calculated color coordinates, it is not possible to provide security elements of the same color for forming one of security features using the selected modeled individual phosphors. Investigations have shown that an area of the color range spanned by the color coordinates of the emission lines used for simulation purposes is approximately 7 times that of the nearest MacAdam ellipse.

In den Fig. 1c bis 1e sind die für Modellrechnungen verwendeten Emissionsspektrum 1, 2, 3 der drei ausgewählten, modellierten und schmalbandig emittierenden (fiktiven) Leuchtstoffe dargestellt. Mit anderen Worten zeigen die Fig. 1c bis 1e die Emissionsspektren, welche zu den x- und y- Farbkoordinaten der in der Figur 1b gezeigten Farbkoordinaten 10, 20, 30 bzw. den Symbolen Δ, □ und o gehören. Die Wellenlängen der Emissionsmaxima der Emissionslinien liegen für das Emissionsspektrum 1 (Δ-Symbol) bei 619,8 nm, für das Emissionsspektrum 2 (□-Symbol) bei 624,2 nm und für das Emissionsspektrum 3 (o-Symbol) bei 626,4 nm sehr eng beieinander. Die Halbwertbreiten der individuell ausgezeichneten Emissionslinien wurden auf 1 nm festgelegt. Die charakteristischen Daten der ausgewählten Modellleuchtstoffe sind nochmals in der nachfolgenden Tab. 1 zusammengefasst. Tab. 1 Emissionswellenlänge Farbkoordinaten Halbwertbreite λmax/nm x y nm Modellleuchtstoff 1 (Dreieck Δ) 619,8 0,691 0,309 1 Modellleuchtstoff 2 (Quadrat □) 624,2 0,699 0,301 1 Modellleuchtstoff 3 626,4 0,703 0,297 1 (Kreis o) In the Figures 1c to 1e shows the emission spectrum 1, 2, 3 of the three selected, modeled and narrow-band emitting (fictitious) phosphors used for model calculations. In other words, show the Figures 1c to 1e the emission spectra, which correspond to the x and y color coordinates in the Figure 1b belong to the color coordinates 10, 20, 30 shown and the symbols Δ, □ and o, respectively. The wavelengths of the emission maxima of the emission lines are 619.8 nm for emission spectrum 1 (Δ symbol), 624.2 nm for emission spectrum 2 (□ symbol) and 626.4 nm for emission spectrum 3 (o symbol). nm very close together. The half-widths of the individually marked emission lines were fixed at 1 nm. The characteristic data of the selected model phosphors are summarized again in Table 1 below. Table 1 emission wavelength color coordinates full width at half maximum λmax /nm x y nm Model phosphor 1 (triangle Δ) 619.8 0.691 0.309 1 Model phosphor 2 (square □) 624.2 0.699 0.301 1 model phosphor 3 626.4 0.703 0.297 1 (circle o)

Die Fig. 2a und 2b zeigen erneut (wie auch Fig.1a) eine Darstellung derx- und y-Farbkoordinaten 10, 20, 30 der Emissionsspektren/Emissionslinien 1, 2, 3 der drei simulierten, möglichen Einzelleuchtstoffe in der CIE-Normfarbtafel wie sie bereits in der Fig. 1 dargestellt wurden. Darüber hinaus ist auch eine mögliche definierte Zielfarbkoordinate / ein Zielfarbort 50 vorgegeben und mit dem Symbol * gekennzeichnet.the Figures 2a and 2b show again (like also Fig.1a ) a representation of the x and y color coordinates 10, 20, 30 of the emission spectra/emission lines 1, 2, 3 of the three simulated, possible individual phosphors in the CIE standard color table as already shown in the 1 were presented. In addition, a possible defined target color coordinate/a target color location 50 is also specified and marked with the symbol *.

Die in der Fig. 2 zusammengefassten Darstellungen, sowie die in der Tab. 2 aufgeführten Daten zeigen, dass sich die mögliche, vorgegebene Zielkoordinate bzw. der vorgegebene Zielfarbort 50 (vergl. Fig. 2b) durch unterschiedliche Kombinationen der drei ausgewählten Modellleuchtstoffes realisieren lässt. In diesem Falle werden mehrere farbidentische Emissionsspektren 12, 13, 123-1 oder 123-2 erhalten, die zur Ausbildung farbgleicher Lumineszenzcodes verwendet werden können. Tab. 2 Zielfarbort (* Symbol) x = 0,696, y = 0,304 Mischungsverhältnis/Stoffmengenanteil/% Leuchtstoff 1 Leuchtstoff 2 Leuchtstoff 3 Mischung 12 32 68 Mischung 13 50 50 Mischung 123-1 44 27 29 Mischung 123-2 46 17 37 The one in the 2 The summarized representations and the data listed in Tab. 2 show that the possible, specified target coordinates or the specified target color location 50 (cf. Figure 2b ) can be realized by different combinations of the three selected model phosphors. In this case, several color-identical emission spectra 12, 13, 123-1 or 123-2 are obtained, which can be used to form luminescence codes of the same color. Table 2 Target color locus (* symbol) x = 0.696, y = 0.304 Mixing ratio/mole fraction/% phosphor 1 phosphor 2 phosphor 3 mix 12 32 68 mix 13 50 50 Mixture 123-1 44 27 29 Mixture 123-2 46 17 37

Dabei ist die Anzahl der auf diese Weise generierbaren farbidentischen Sicherheitselemente davon abhängig, ob zur Codezuweisung ausschließlich die unterschiedliche spektrale Abfolge der ausgewählten linienhaften Emissionen herangezogen wird oder ob auch die Intensitätsverhältnisse zwischen den einzelnen individuell ausgezeichneten Emissionslinien als codebildende Eigenschaft einbezogen werden. Im zuerst betrachteten Fall können auf der Grundlage der ausgewählten Leuchtstoffe also exakt drei unterscheidbare Emissionsspektren mit identischen Farbkoordinaten erstellt werden. Diese betreffen die jeweils paarweise Kombination von zwei der drei Leuchtstoffe (Fig. 2c und 2d) eine entsprechende Dreierkombination. Beispiele für das Emissionsspektrum dieser einen Dreierkombination sind in den Fig. 2e und 2f dargestellt.The number of color-identical security elements that can be generated in this way depends on whether only the different spectral sequence of the selected linear emissions is used for the code assignment or whether the intensity ratios between the individual individually marked emission lines are also included as a code-forming property. In the first case considered, exactly three distinguishable emission spectra with identical color coordinates can be created on the basis of the selected phosphors. These relate to the paired combination of two of the three phosphors ( Figures 2c and 2d ) a corresponding combination of three. Examples of the emission spectrum of this one triple combination are given in the Figures 2e and 2f shown.

Hierbei zeigen Fig. 2c das Emissionsspektrum 12, welches eine Kombination aus einem ersten und einem zweiten Leuchtstoff ist. Fig. 2d zeigt das Emissionsspektrum 13, welches eine Kombination aus dem ersten und dritten Leuchtstoffes ist und die Fig. 2e zeigt das Emissionsspektrum 123-1, welches für eine mögliche Dreierkombination des ersten, zweiten und dritten Modellleuchtstoffes steht. Fig. 2f zeigt das Emissionsspektrum 123-2, einer alternativen Dreierkombination des ersten, zweiten und dritten Modellleuchtstoffes, welche durch ein anderes Mischungsverhältnis gekennzeichnet ist.show here Figure 2c the emission spectrum 12, which is a combination of a first and a second phosphor. Fig. 2d shows the emission spectrum 13, which is a combination of the first and third phosphor and the Figure 2e shows the emission spectrum 123-1, which represents a possible triple combination of the first, second and third model phosphor. Fig. 2f shows the emission spectrum 123-2, an alternative triple combination of the first, second and third model phosphor, which is characterized by a different mixing ratio.

Werden auch die unterschiedlichen Intensitätsverhältnisse (wie z.B. bei Fig. 2e und Fig. 2f) zwischen den einzelnen charakteristischen Emissionslinien zur Codeerstellung verwendet, ergeben sich weitere Möglichkeiten, durch Variation der Mischungsverhältnisse farbgleiche Emissionsspektren von unterschiedlichen Dreierkombinationen bereitzustellen. Fig. 2f zeigt ein mögliches Beispiel für eine weitere Kombination der Emissionsspektren der drei fiktiven Leuchtstoffe, bei der sich die eingestellten Intensitätsverhältnisse der codebildenden Linien signifikant von denen der Fig. 2e unterscheiden.If the different intensity ratios (like e.g 2e and 2f ) between the individual characteristic emission lines for code creation, there are further possibilities to provide emission spectra of the same color from different combinations of three by varying the mixing ratios. Fig. 2f shows a possible example of a further combination of the emission spectra of the three fictitious phosphors, in which the set intensity ratios of the code-forming lines are significantly different from those of the Figure 2e differentiate.

Die Fig. 3a bis 3e und Fig. 4a bis 4e sowie die dazugehörigen Tabellen 3 und 4 (siehe unten) veranschaulichen ein weiteres mögliches Beispiel für die Erstellung eines Codierungssystems auf der Grundlage von drei anderen Modellleuchtstoffen, die ebenfalls singuläre Emissionen und Farbkoordinaten aufweisen, die in der CIE-Farbtafel wiederum auf einer Geraden liegen. In den Fig. 3c bis 3e sind die für Modellrechnungen verwendeten Emissionsspektren 1', 2', 3' der drei ausgewählten, modellierten (fiktiven) Leuchtstoffen dargestellt. Aus ihnen lassen sich die x- und y- Farbkoordinaten 10', 20', 30' denen in den Figuren 3a und 3b die Symbole Δ, □ und o zugeordnet sind.the Figures 3a to 3e and Figures 4a to 4e and the associated Tables 3 and 4 (see below) illustrate another possible example of creating a coding system based on three other model phosphors, which also have singular emissions and color coordinates, which again lie on a straight line in the CIE chromaticity diagram. In the Figures 3c to 3e the emission spectra 1′, 2′, 3′ of the three selected, modeled (fictitious) phosphors used for model calculations are shown. From them, the x and y color coordinates 10', 20', 30' can be derived from those in FIGS Figures 3a and 3b the symbols Δ, □ and o are assigned.

Im Vergleich zu den in den vorausgegangenen Fig. 1 und Fig. 2 beschriebenen Modellleuchtstoffen weisen die für dieses Beispiel ausgewählten fiktiven Leuchtstoffe deutlich größere Abstände zwischen den unterschiedlichen Emissionsmaxima auf. Darüber hinaus wurden die Halbwertbreiten der Modellleuchtstoffe so eingestellt, dass sowohl linienförmige (vgl. z. B. Fig. 3e) als auch bandenförmige Emissionen (vgl. z. B. Fig. 3d) resultieren. Aus den Fig. 3a und 3b geht hervor, dass auf Grund der vergleichsweise großen spektralen Abstände auch die Farbkoordinaten der Beispielleuchtstoffe in der CIE-Normfarbtafel weit auseinander liegen. Die entsprechenden Farb-eindrücke weisen einen deutlichen Farbshift und damit einen deutlichen Farbunterschied auf und variieren von Gün zu Rot. Tab. 3 Emissionswellenlänge Farbkoordinaten Halbwertbreite λmax/nm x y nm Modellleucht-stoff 1 (Dreieck Δ) 545 0,268 0,721 13 Modellleuchtstoff 2 (Quadrat □) 574 0,473 0,526 25 Modellleuchtstoff 3 (Kreis o) 600 0.627 0.373 4 Tab. 4 Zielfarbort (* Symbol) x = 0,443, y = 0,554 Mischungsverhältnis/Stoffmengenanteil/% Modellleuchtstoff 1 Modellleuchtstoff 2 Modellleuchtstoff 3 Mischung 12' 31 69 Mischung 13' 63 37 Mischung 123-1' 22 73 5 Mischung 123-2' 47 36 17 Compared to those in the previous ones 1 and 2 described model phosphors, the fictitious phosphors selected for this example have significantly larger distances between the different emission maxima. In addition, the half-value widths of the model phosphors were set in such a way that both linear (cf. e.g. Figure 3e ) as well as band-shaped emissions (cf. e.g. 3d ) result. From the Figures 3a and 3b shows that due to the comparatively large spectral distances, the color coordinates of the example phosphors in the CIE standard color table are also far apart. The corresponding color impressions show a clear color shift and thus a clear color difference and vary from green to red. Table 3 emission wavelength color coordinates full width at half maximum λmax /nm x y nm Model phosphor 1 (triangle Δ) 545 0.268 0.721 13 Model phosphor 2 (square □) 574 0.473 0.526 25 Model phosphor 3 (circle o) 600 0.627 0.373 4 Target color locus (* symbol) x = 0.443, y = 0.554 Mixing ratio/mole fraction/% model phosphor 1 model phosphor 2 model phosphor 3 mix 12' 31 69 mix 13' 63 37 Mixture 123-1' 22 73 5 Mixture 123-2' 47 36 17

Auch in diesem Fall können durch gezielte Kombination der Leuchtstoffe unterscheidbare Emissionsspektren 12', 13', 123-1', 123-2' mit identischen Farbkoordinaten (der Zielfarbort wurde wieder mit dem Symbol * gekennzeichnet, vgl. Fig. 4a). und auf dieser Grundlage farbidentische bzw. zumindest farbgleiche Sicherheitselemente erstellt werden. Die Fig. 4b und 4c zeigen die Emissionsspektren 12', 13' der entsprechend konfigurierten Leuchtstoffpaare, die Fig. 4d und 4e die Emissionsspektren 123-1', 123-2' von zwei beispielhaft ausgewählten Dreierkombinationen, die durch unterschiedliche Intensitätsverhältnisse der individuell ausgezeichneten Emissionslinien und Emissionsbanden gekennzeichnet sind.In this case, too, through a targeted combination of the phosphors, distinguishable emission spectra 12', 13', 123-1', 123-2' with identical color coordinates (the target color location was again marked with the symbol *, cf. Figure 4a ). and on this basis color-identical or at least color-same security elements are created. the Figures 4b and 4c show the emission spectra 12 ', 13' of the appropriately configured pairs of phosphors, the Figures 4d and 4e the emission spectra 123-1', 123-2' of two combinations of three selected by way of example, which are characterized by different intensity ratios of the individually marked emission lines and emission bands.

In den Abbildungen der Figur 5 ist ein weiteres Beispiel zur Verdeutlichung der Erfindung dargestellt, wobei die zugehörigen Daten den Tab. 5 und 6 zu entnehmen sind. In diesem Falle wurden die Emissionslinien von vier fiktiven Leuchtstoffen mit denen in der Fig. 5a dargestellten Farbkoordinaten 10", 20", 30", 40" (wiederum dargestellt mit den Symbolen: Dreieck Δ, Quadrat □ , Kreis o und Kreis mit Kreuz ⊗) in der Form eines Vierecks um einen Zielfarbort 50" (* Symbol) herum gruppiert. Gleichzeitig wurde die Positionierung des Zielfarbortes 50" so vorgenommen, dass er zwischen jeweils zwei der angenommenen Farbkoordinaten der Modellleuchtstoffe liegt, d.h. auf den Diagonalen der sich jeweils gegenüberliegenden Farbkoordinaten. Dadurch ergeben sich neben zahlreichen Varianten für Viererkombinationen (für die beispielsweise die Fig. 5b, 5d und 5f stehen, weitere sind möglich) auch zwei Emissionsspektren 13", 24" mit einer paarweisen Anordnung der ausgewählten individuellen Emissionslinien (vergl. Fig. 5c und 5e). Bei andersgearteten Vorgaben für den Zielfarbort wäre es auch möglich, zu Lasten einer der Zweierkombination eine farbidentische Dreierkombination einzustellen. Tab. 5 Emissionswellenlänge Farbkoordinaten Halbwertbreite λmax/nm x y nm Modellleuchtstoff 1 (Dreieck Δ) 450 0,156 0,019 15 Modellleuchtstoff 2 (Quadrat □) 500 0,018 0,529 15 Modellleuchtstoff 3 (Kreis o) 550 0,305 0,688 15 Modellleuchtstoff 4 (Kreis mit Kreuz ⊗) 630 0,705 0,295 15 Tab. 6 Zielfarbort (* Symbol) x = 0,250, y = 0,450 Mischungsverhältnis/Stoffmengenanteil/% Leuchtstoff 1 Leuchtstoff 2 Leuchtstoff 3 Leuchtstoff 4 Mischung 13" 27 73 Mischung 24" 74 26 Mischung 1234-1" 19 22 52 7 Mischung 1234-2" 12 41 33 14 Mischung 1234-3" 6 58 16 20 In the illustrations of figure 5 Another example is shown to illustrate the invention, with the associated data being given in Tables 5 and 6. In this case the emission lines of four fictitious phosphors were compared with those in the Figure 5a color coordinates 10", 20", 30", 40" shown (again shown with the symbols: triangle Δ, square □ , circle o and circle with cross ⊗) grouped in the form of a square around a target color location 50" (* symbol). . At the same time, the positioning of the target color point 50" was carried out in such a way that it lies between two of the assumed color coordinates of the model phosphors, ie on the diagonals of the respectively opposite color coordinates. This results in numerous variants for four-way combinations (for which, for example, the Figures 5b, 5d and 5f stand, more are possible) also two emission spectra 13", 24" with a paired arrangement of the selected individual emission lines (cf. Figures 5c and 5e ). If there were different specifications for the target color location, it would also be possible to set a color-identical three-color combination at the expense of a two-color combination. Table 5 emission wavelength color coordinates full width at half maximum λmax /nm x y nm Model phosphor 1 (triangle Δ) 450 0.156 0.019 15 Model phosphor 2 (square □) 500 0.018 0.529 15 Model phosphor 3 (circle o) 550 0.305 0.688 15 Model phosphor 4 (circle with cross ⊗) 630 0.705 0.295 15 Target color locus (* symbol) x = 0.250, y = 0.450 Mixing ratio/mole fraction/% phosphor 1 phosphor 2 phosphor 3 phosphor 4 mix 13" 27 73 mix 24" 74 26 Mixture 1234-1" 19 22 52 7 Mixture 1234-2" 12 41 33 14 Mixture 1234-3" 6 58 16 20

Die durch das Hinzufügen eines weiteren Leuchtstoffes deutlich erhöhte Anzahl möglicher Codezuweisungen wird allerdings vor allem durch die große Vielfalt von farbidentischen Viererkombinationen mit unterschiedlichen Intensitätsverhältnissen verursacht. Dabei ist allerdings zu berücksichtigen, dass in den Fällen, in denen bei gleicher spektraler Abfolge lediglich die Intensitätsverhältnisse zwischen den kombinierten Emissionslinien oder Emissionsbanden als codebildendes Kriterium herangezogen werden (vergl. auch die Fig. 2e und 2f sowie die Fig. 4d und 4e), geprüft werden muss, ob diese Intensitätsrelationen unter den Bedingungen der praktischen Anwendung auch sicher verifiziert werden können. Dies betrifft sowohl die Leistungsfähigkeit der zur Verfügung stehenden Detektionstechnik als auch die Fragestellung, ob die Verhältnisse der Emissionsintensitäten der unterschiedlichen Einzelleuchtstoffen, bei denen es sich ja in aller Regel um Leuchtstoffe mit unterschiedlicher chemischer Zusammensetzung handelt, auch über den gesamten Lebenszyklus der mit den Sicherheitselementen ausgestatteten Sicherheits- und Wertdokumente in akzeptierbaren Toleranzgrenzen erhalten bleiben. Die unterschiedliche Alterungsbeständigkeit der ausgewählten Leuchtstoffe kann einerseits dazu führen, dass die Farbgleichheit der erstellten Sicherheitselemente über die Nutzungsdauer verloren geht und andererseits dazu, dass eine auf definierten Intensitätsverhältnissen beruhende Codezuweisung im Extremfall nicht mehr sicher erkannt werden kann.However, the significantly increased number of possible code assignments due to the addition of a further phosphor is mainly caused by the large variety of color-identical combinations of four with different intensity ratios. However, it must be taken into account that in those cases in which, with the same spectral sequence, only the intensity ratios between the combined emission lines or emission bands are used as a code-forming criterion (cf. also the Figures 2e and 2f as well as the Figures 4d and 4e ), it must be checked whether these intensity relations can also be reliably verified under the conditions of practical application. This affects both the performance of the available detection technology and the question of whether the ratios of the emission intensities of the different individual phosphors, which are usually phosphors with different chemical compositions, also over the entire life cycle of the security and valuable documents equipped with the security elements are preserved within acceptable tolerance limits. The different aging resistance of the selected luminescent materials can lead to the color equality of the created security elements being lost over the service life on the one hand and to a code assignment based on defined intensity ratios no longer being reliably recognizable in extreme cases on the other.

Die Figuren 6 bis 9 und Tab. 7 beschreiben ein Beispiel zur Konfigurierung eines erfinderischen Sicherheitsmerkmals, das auf der Verwendung realer Leuchtstoffe mit entsprechend charakteristischen Emissionsspektren 1‴,2‴,3‴ beruht. Dabei wurden zur Herstellung der benötigten farbgleichen Sicherheitselemente drei anorganische, europiumaktivierte Seltenerdpigmente ausgewählt, und in Form standardisierter Markierungen (Druckstreifen) auf eine Papierunterlage appliziert. Die bei einer vorgegebenen Anregung im UV-B-Bereich (313 nm-Anregungsquelle) gemessenen Emissionsspektren dieser drei Leuchtstoffe sind in der Fig. 6 a bis Fig. 6c dargestellt. Die Emissionsspektren 1‴,2‴,3‴ der drei realen (Einzel-)Leuchtstoffe weisen ein Ensemble mehrerer charakteristische Emissionslinien auf. Daraus ergeben sich weitere Möglichkeiten für eine Codezuordnung, die nicht nur die jeweiligen Hauptemissionslinien dieser Leuchtstoffe, sondern auch unterschiedliche Nebenlinien betreffen kann.the Figures 6 to 9 and Tab. 7 describe an example of the configuration of an inventive security feature based on the use of real phosphors with correspondingly characteristic emission spectra 1‴,2‴,3‴. To produce the required security elements of the same colour, three inorganic, europium-activated rare earth pigments were selected and applied to a paper base in the form of standardized markings (printed strips). The emission spectra of these three phosphors measured for a given excitation in the UV-B range (313 nm excitation source) are shown in FIG 6a to 6c shown. The emission spectra 1‴,2‴,3‴ of the three real (individual) phosphors show an ensemble of several characteristic emission lines. This results in further possibilities for code assignment, which can relate not only to the respective main emission lines of these phosphors, but also to different secondary lines.

Andererseits wird aus Fig. 6 jedoch deutlich, dass einige der in den Emissionsspektren 1‴,2‴,3‴ der verschiedenen Leuchtstoffe anzutreffenden Emissionslinien sehr eng beieinander liegen oder sich sogar überlappen. In diesen Fällen muss abgewogen werden, ob eine Einbeziehung derartiger Linien in die Codebildung unter Beachtung des Gebotes einer sicheren Verifizierung und des für die geplante technische Anwendung vertretbaren Aufwandes sinnvoll ist.On the other hand, off 6 However, it is clear that some of the emission lines found in the emission spectra 1‴,2‴,3‴ of the different phosphors are very close together or even overlap. In these cases, it must be weighed up whether it makes sense to include such lines in the code formation, taking into account the requirement for secure verification and the effort that is justifiable for the planned technical application.

In der Fig. 7a bis Fig. 7e sind die (bei einer 313 nm-Anregung) gemessenen Emissionsspektren 12‴, 13‴, 23‴, 123-1‴, 123-2‴ und 123-3‴ der bei vorgegebenen Mischungsverhältnissen (vergl. Tab. 7) unter Standardbedingungen hergestellten Andrucke unterschiedlicher Leuchtstoffkombinationen (drei Leuchtstoffpaare sowie zwei Dreierkombinationen mit unterschiedlichen Intensitätsverhältnissen) zusammengestellt. Tab. 7 Farbkoordinaten Mischungsverhältnis/Stoffmengenanteil/% Anregung 313 nm Anregung 365 nm Erster Leuchtstoff 1‴ Zweiter Leuchtstoff 2‴ Dritter Leuchtstoff 3‴ x y x y Leuchtstoff 1‴ 0,6690 0,3283 0,6665 0,3240 Leuchtstoff 2‴ 0,6737 0,3226 0,6723 0,3215 Leuchtstoff 3‴ 0,6740 0.3219 0,6724 0,3216 Mischung 12‴ 0,6720 0,3250 0,6728 0,3221 20 80 Mischung 13‴ 0,6710 0,3253 0,6695 0,3216 20 80 Mischung 23‴ 0,6742 0,3224 0,6729 0,3217 Mischung 123-1‴ 0,6710 0,3251 0,6702 0,3216 17 41 42 Mischung 123-2‴ 0,6723 0.3243 0,6172 0,3216 11 44 45 In the Figures 7a to 7e are the emission spectra measured (at 313 nm excitation) 12‴, 13‴, 23‴, 123-1‴, 123-2‴ and 123-3‴ of the proofs produced under standard conditions with specified mixing ratios (see Table 7). different combinations of phosphors (three pairs of phosphors and two combinations of three with different intensity ratios). Table 7 color coordinates Mixing ratio/mole fraction/% excitation 313 nm excitation 365 nm First phosphor 1‴ Second phosphor 2‴ Third phosphor 3‴ x y x y phosphor 1‴ 0.6690 0.3283 0.6665 0.3240 phosphor 2‴ 0.6737 0.3226 0.6723 0.3215 phosphor 3‴ 0.6740 0.3219 0.6724 0.3216 mixture 12‴ 0.6720 0.3250 0.6728 0.3221 20 80 mixture 13‴ 0.6710 0.3253 0.6695 0.3216 20 80 mixture 23‴ 0.6742 0.3224 0.6729 0.3217 mixture 123-1‴ 0.6710 0.3251 0.6702 0.3216 17 41 42 mixture 123-2‴ 0.6723 0.3243 0.6172 0.3216 11 44 45

Trotz der vergleichsweise hohen Komplexität enthalten die beispielhaften Emissionsspektren 12‴, 13‴, 23‴, 123-1‴, 123-2‴ und 123-3‴ zahlreiche hinreichend separate Linien und stabile Intensitätskonstellationen, denen ein Lumineszenzcode zugewiesen werden kann. Dies betrifft sowohl die Hauptemissionslinien der in die Kombinationen eingegangenen Einzelleuchtstoffe als auch weitere Linien und charakteristische Liniengruppierungen. Die teilweise geringen spektralen Abstände zwischen den coderelevanten Emissionen stellen zwar bezüglich des spektralen Auflösungsvermögens und der Leistungsfähigkeit der verwendeten Detektionseinrichtungen eine Herausforderung dar, es hat sich aber gezeigt, dass auf der Grundlage der in diesem Ausführungsbeispiel beschriebenen Leuchtstoffe und Leuchtstoffkombinationen Sicherheitselemente bereitgestellt werden können, deren codebildende Emissionscharakteristika auch bei vergleichsweise hohen Auslesegeschwindigkeiten (beispielweise in Geldautomaten oder in Sortiermaschinen von Zentralbanken) sicher verifiziert werden können.Despite the comparatively high complexity, the exemplary emission spectra 12‴, 13‴, 23‴, 123-1‴, 123-2‴ and 123-3‴ contain numerous sufficiently separate lines and stable intensity constellations to which a luminescence code can be assigned. This affects both the main emission lines of the individual phosphors included in the combinations and other lines and characteristic line groupings. The sometimes small spectral distances between the code-relevant emissions pose a challenge in terms of spectral resolution and the performance of the detection devices used, but it has been shown that on the basis of the phosphors and phosphor combinations described in this exemplary embodiment, security elements can be provided whose code-forming Emission characteristics can also be reliably verified at comparatively high reading speeds (e.g. in ATMs or in central bank sorting machines).

Bleibt die Frage nach der Farbgleichheit der dargestellten Emissionsspektren 12"', 13"', 23"', 123-1‴, 123-2‴ und 123-3‴ der beispielhaften Leuchtstoffe und Leuchtstoffkombinationen. In der Fig. 8 sind die aus den jeweiligen Emissionsspektren 12"', 13‴, 23‴, 123-1‴, 123-2‴ und 123-3‴ errechneten Farbkoordinaten 10"', 20"', 30‴ 130"', 230"', 1230-1‴, 1230-2‴ und 1230-3‴ in einem Ausschnitt der CIE-Normfarbtafel dargestellt. Es wird deutlich, dass diese Koordinaten, wie zu erwarten, zumindest tendenziell auf einer Geraden liegen, wobei sie allerdings eine deutlich wahrnehmbare Streuung aufweisen. Dabei sind einerseits die starke Vergrößerung des ausgewählten Bereiches der CIE-Normfarbtafel, andererseits aber auch die Tatsache, dass die Mischungsverhältnisse für die Bereitstellung der unterschiedlichen Leuchtstoffkombinationen zunächst vergleichsweise willkürlich gewählt wurden, in Rechnung zu stellen.The question of the color equality of the illustrated emission spectra 12"', 13"', 23"', 123-1‴, 123-2‴ and 123-3‴ of the exemplary phosphors and phosphor combinations remains 8 the color coordinates calculated from the respective emission spectra 12"', 13‴, 23‴, 123-1‴, 123-2‴ and 123-3‴ are 10"', 20"', 30‴ 130"', 230"', 1230-1‴, 1230-2‴ and 1230-3‴ are shown in a section of the CIE standard color chart It is clear that these coordinates, as expected, at least tend to lie on a straight line, although they exhibit a clearly perceptible scattering There are on the one hand, the strong enlargement of the selected area of the CIE standard color table, but on the other hand also the fact that the mixing ratios for the provision of the different phosphor combinations were initially chosen comparatively arbitrarily.

Zur Ermittlung des Ausmaßes an wahrgenommenen Farbunterschieden bzw. wahrgenommener Farbgleichheit wurden im Folgenden weiterführenden Untersuchungen auf der Grundlagen der Befragung von Testpersonen durchgeführt. Dabei konnten die Probanden unter definierten Anregungs- und Betrachtungsbedingungen über die Farbgleichheit oder wahrgenommenen Farbunterschiede der mit den beispielhaften Leuchtstoffen und Leuchtstoffkombinationen ausgestatteten und in Form von Druckstreifen vorliegenden Sicherheitselemente entscheiden.To determine the extent of perceived color differences or perceived color sameness, further investigations were carried out below based on the survey of test persons. Under defined excitation and viewing conditions, the test persons were able to decide on the color equality or perceived color differences of the security elements equipped with the exemplary phosphors and phosphor combinations and present in the form of printed strips.

Die Ergebnisse sind in der Fig. 9a dargestellt. Die Fig. 9a zeigt, dass die Farbkoordinaten nahezu aller vorgelegten lumineszierenden Sicherheitsmerkmale (also auch die der Einzelkomponenten 20‴ und 30‴) in einer auf der Grundlage der psychometrischen Messungen ermittelten Toleranzellipse 51 liegen, was bedeutet, dass sie von den Probanden mit einer sehr hohen Wahrscheinlichkeit als farbgleich wahrgenommen wurden. Eine Ausnahme bildet lediglich die für den Einzelleuchtstoff berechnete Farbkoordinate 10"', welcher außerhalb der Toleranzellipse/Toleranzfarbbereich 51 liegt.The results are in the Figure 9a shown. the Figure 9a shows that the color coordinates of almost all presented luminescent security features (i.e. also those of the individual components 20‴ and 30‴) lie in a tolerance ellipse 51 determined on the basis of the psychometric measurements, which means that the test persons have a very high probability that they have the same color were noticed. The only exception is the color coordinate 10"' calculated for the individual phosphor, which lies outside the tolerance ellipse/tolerance color range 51.

Ein vergleichbares Bild ergibt sich auch, wenn die beispielhaften Sicherheitselemente nicht bei 313 nm (UV-B), sondern bei 365 nm, also im UV-A-Bereich angeregt werden. Auch in diesem Falle (vergl. Fig. 9b) liegen sieben der acht Farbkoordinaten der geprüften Druckstreifen innerhalb einer auf der Grundlage wissenschaftlicher Untersuchungen erstellten Toleranzellipse. Die Form des Toleranzfarbbereiches unterscheidet sich etwas von demjenigen Bereich, der für die Anregung mit einer 313 nm- Bestrahlungsquelle ermittelt wurde. Dennoch kann die Wahrscheinlichkeit dafür, dass die entsprechenden Sicherheitselemente nicht nur unter den jeweils gewählten Anregungsbedingungen, sondern auch bei einem Wechsel zwischen der UV-A- und der UV- B-Anregung als farbidentisch wahrgenommen werden, als sehr hoch eingeschätzt werden.A comparable picture also emerges if the exemplary security elements are not excited at 313 nm (UV-B) but at 365 nm, i.e. in the UV-A range. Also in this case (cf. Figure 9b ) seven of the eight color coordinates of the tested print strips lie within a tolerance ellipse based on scientific studies. The shape of the tolerance color area differs somewhat from that determined for excitation with a 313 nm radiation source. Nevertheless, the probability that the corresponding security elements are perceived as having the same color not only under the respective selected excitation conditions, but also when changing between UV-A and UV-B excitation can be assessed as very high.

BezugszeichenlisteReference List

1,1',1"1,1',1"
Emissionsspektrum eines ersten (Einzel-)LeuchtstoffesEmission spectrum of a first (single) phosphor
2,2',2"2.2'.2"
Emissionsspektrum eines zweiten (Einzel-)LeuchtstoffesEmission spectrum of a second (single) phosphor
3,3',3"3,3',3"
Emissionsspektrum eines dritten (Einzel-)LeuchtstoffesEmission spectrum of a third (single) phosphor
4,4',4"4.4'.4"
Emissionsspektrum eines weiterem (Einzel-)LeuchtstoffesEmission spectrum of another (single) phosphor
55
CIE-Normfarbtafel des CIE-NormvalenzsystemCIE standard color table of the CIE standard valence system
12,12',12"12,12',12"
Emissionsspektrum einer Kombination des ersten und zweiten LeuchtstoffsEmission spectrum of a combination of the first and second phosphors
13,13',13"13,13',13"
Emissionsspektrum einer Kombination des ersten und dritten LeuchtstoffesEmission spectrum of a combination of the first and third phosphors
23,23',23"23,23',23"
Emissionsspektrum einer Kombination des zweiten und dritten LeuchtstoffesEmission spectrum of a combination of the second and third phosphors
24,24',24"24,24',24"
Emissionsspektrum einer Kombination des zweiten und des weiteren LeuchtstoffesEmission spectrum of a combination of the second and the further phosphor
10,10',10"10,10',10"
Farbkoordinaten im CIE-Normfarbsystem des ersten (Einzel-)LeuchtstoffesColor coordinates in the CIE standard color system of the first (individual) phosphor
20,20',20"20,20',20"
Farbkoordinate im CIE-Normfarbsystem des zweiten (Einzel-)LeuchtstoffesColor coordinate in the CIE standard color system of the second (single) phosphor
30,30',30"30,30',30"
Farbkoordinate im CIE-Normfarbsystem des dritten (Einzel-)LeuchtstoffesColor coordinates in the CIE standard color system of the third (individual) phosphor
40,40',40"40,40',40"
Farbkoordinate im CIE-Normfarbsystem des weiteren (Einzel-)LeuchtstoffesColor coordinate in the CIE standard color system of the additional (individual) phosphor
50,50',50"50,50',50"
Zielkoordinate/Zielfarbort im CIE-NormfarbsystemTarget coordinates/target color location in the CIE standard color system
123-1123-1
Emissionsspektrum einer ersten Dreierkombination des ersten, zweiten und dritten Leuchtstoffes,Emission spectrum of a first triple combination of the first, second and third phosphor,
123-2123-2
Emissionsspektrum einer weiteren Dreierkombination des ersten, zweiten und dritten Leuchtstoffes,Emission spectrum of another triple combination of the first, second and third phosphor,
1234-11234-1
Emissionsspektrum einer ersten Viererkombination des ersten, zweiten, dritten und des weiteren Leuchtstoffes,Emission spectrum of a first combination of four of the first, second, third and the further phosphor,
1234-21234-2
Emissionsspektrum einer weiteren Viererkombination des ersten, zweiten, dritten und des weiteren Leuchtstoffes,Emission spectrum of another four-combination of the first, second, third and the further phosphor,
1234-31234-3
Emissionsspektrum einer weiteren Viererkombination des ersten, zweiten, dritten und des weiteren Leuchtstoffes,Emission spectrum of another four-combination of the first, second, third and the further phosphor,
1‴1‴
Emissionsspektrum eines ersten realen (Einzel-)LeuchtstoffesEmission spectrum of a first real (single) phosphor
2‴2‴
Emissionsspektrum eines zweiten realen (Einzel-)LeuchtstoffesEmission spectrum of a second real (single) phosphor
3‴3‴
Emissionsspektrum eines dritten realen (Einzel-)LeuchtstoffesEmission spectrum of a third real (single) phosphor
4‴4‴
Emissionsspektrum eines weiterem realen (Einzel-)LeuchtstoffesEmission spectrum of another real (single) phosphor
12‴12‴
Emissionsspektrum einer Kombination des ersten und zweiten realen LeuchtstoffsEmission spectrum of a combination of the first and second real phosphors
13‴13‴
Emissionsspektrum einer Kombination des ersten und dritten realen LeuchtstoffesEmission spectrum of a combination of the first and third real phosphors
24‴24‴
Emissionsspektrum einer Kombination des zweiten und dritten realen LeuchtstoffesEmission spectrum of a combination of the second and third real phosphors
123-1‴123-1‴
Emissionsspektrum einer dreier Kombination des ersten, zweiten und dritten realen LeuchtstoffesEmission spectrum of a three combination of the first, second and third real phosphor
123-2‴123-2‴
Emissionsspektrum einer weiteren dreier Kombination des ersten, zweiten und dritten realen LeuchtstoffesEmission spectrum of another three combination of the first, second and third real phosphor
10‴10‴
Farbkoordinate für das Emissionsspektrum 1‴ des ersten realen (Einzel) LeuchtstoffesColor coordinate for the emission spectrum 1‴ of the first real (single) phosphor
20‴20‴
Farbkoordinate für das Emissionsspektrum 2‴ des zweiten realen (Einzel)LeuchtstoffesColor coordinate for the emission spectrum 2‴ of the second real (single) phosphor
30‴30‴
Farbkoordinate für das Emissionsspektrum 3‴ des dritten realen (Einzel) LeuchtstoffesColor coordinate for the emission spectrum 3‴ of the third real (single) phosphor
120‴120‴
Farbkoordinate für das Emissionsspektrum 12‴ einer paarweisen Kombination des ersten und zweiten realen LeuchtstoffsColor coordinate for the emission spectrum 12‴ of a pairwise combination of the first and second real phosphor
130‴130‴
Farbkoordinate für das Emissionsspektrum 13‴ einer paarweisen Kombination des ersten und dritten realen LeuchtstoffsColor coordinate for the emission spectrum 13‴ of a pairwise combination of the first and third real phosphor
230‴230‴
Farbkoordinate für das Emissionsspektrum 23‴ einer paarweisen Kombination des zweiten und dritten realen LeuchtstoffsColor coordinate for the emission spectrum 23‴ of a pairwise combination of the second and third real phosphor
240‴240‴
Farbkoordinate für das Emissionsspektrum 24‴ einer paarweisen Kombination des zweiten und des weiteren realen LeuchtstoffsColor coordinate for the emission spectrum 24‴ of a paired combination of the second and the further real phosphor
1230-1‴1230-1‴
Farbkoordinate für das Emissionsspektrum 123-1‴Color coordinate for the emission spectrum 123-1‴
1230-2‴1230-2‴
Farbkoordinate für das Emissionsspektrum 7123-1‴Color coordinate for the emission spectrum 7123-1‴
12340-1‴12340-1‴
Farbkoordinate für das Emissionsspektrum einer ersten ViererkombinationColor coordinate for the emission spectrum of a first four-combination
12340-2‴12340-2‴
Farbkoordinate für das Emissionsspektrum einer zweiten ViererkombinationColor coordinate for the emission spectrum of a second four-combination
12340-3‴12340-3‴
Farbkoordinate für das Emissionsspektrum einer dritten ViererkombinationColor coordinate for the emission spectrum of a third four-combination
5151
durch Probandenbefragung ermittelter Toleranzfarbbereich in der CIE-NormfarbtafelTolerance color range in the CIE standard color table determined by questioning test persons

Claims (20)

  1. A coding system for forming a security feature in or on one or several security documents or documents of value, comprising different luminous substances, and/or combinations of luminous substances obtainable therefrom, which may be excited in the invisible spectral range and which emit in the visible spectral range, wherein, for a predefined excitation, said luminous substances and/or combinations of luminous substances will each yield different emission spectra in the visible spectral range, such that each of said luminous substances and/or combinations of luminous substances is characterised by at least one individually distinct emission line and/or emission band that differs from the individually distinct emission lines and/or emission bands of the other luminous substances and/or combinations of luminous substances, wherein
    - the coding system comprises at least three luminous substances, said at least three luminous substances, and/or combinations of luminous substances obtained from these luminous substances, each being applied or affixed onto a given location of the security document or document of value in the form of at least three luminescent security elements forming said security feature, and wherein
    - each of said at least three luminescent security elements has a different luminescence code associated therewith, and
    - when exposed to the predefined excitation using its respectively associated luminescence code, each of said at least three luminescent security elements has identical chromaticity coordinates in a CIE standard colorimetric system or has at least chromaticity coordinates lying within a range of chromaticity tolerances of said CIE standard colorimetric system, for example within a MacAdam ellipsis, such that, for a given excitation, the luminescent security elements of the security feature are identical in colour or are perceived as having the same colour.
  2. The coding system as claimed in claim 1, characterised in that the luminescence codes associated with the luminescent security elements are formed from the different spectral sequence of the individually distinct emission lines and/or emission bands of the luminous substances and/or combinations of luminous substances.
  3. The coding system as claimed in claim 1 and/or 2, characterised in that the luminescence codes associated with the luminescent security elements are formed from intensity ratios of the individually distinct emission lines and/or emission bands of the luminous substances and/or combinations of luminous substances.
  4. The coding system as claimed in at least one of the preceding claims, characterised in that at least one further luminous substance, and thus further available combinations of luminous substances, are provided for forming further luminescent security elements having other luminescence codes.
  5. The coding system as claimed in at least one of the preceding claims, characterised in that the chromaticity coordinates of the luminescent security element are set via mixing ratios of the luminous substances used for forming combinations of luminous substances, thus yielding defined, relative intensity ratios of the individually distinct emission lines and/or emission bands for the combinations of luminous substances.
  6. The coding system as claimed in at least one of the preceding claims, characterised in that at least one of the luminous substances has an organic luminous substance.
  7. The coding system as claimed in at least one of the preceding claims, characterised in that at least one of the luminous substances has an inorganic luminous substance.
  8. The coding system as claimed in at least one of the preceding claims, characterised in that both inorganic and organic luminous substances of different grain size including, for example, nano-scaled luminous substances or quantum dots as well as corresponding combinations of such luminous substances are used.
  9. The coding system as claimed in at least one of the preceding claims, characterised in that the luminous substances are modified by targeted substitutions in the luminous substance lattice, such that these will each have an exclusive emission spectrum.
  10. The coding system as claimed in at least one of the preceding claims, characterised in that the luminous substances and/or combinations of luminous substances may be excited in one or more ultraviolet wavelength ranges, that is at wavelengths of between 380 nm and 315 nm (UV-A) and/or at wavelengths of between 315 nm and 280 nm (UV-B) and/or at wavelengths of between 280 nm and 200 nm (UV-C).
  11. The coding system as claimed in claim 10, characterised in that under at least two excitation conditions which may be set in the ultraviolet spectral range, that is in the UV-A and/or the UV-B and/or the UV-C spectral range(s), the luminescent security elements of the security feature are identical in colour or are perceived as having the same colour.
  12. The coding system as claimed in claim 10, characterised in that subjected to any of the predetermined excitations in the UV-A, UV-B or UV-C spectral range, the luminescent security elements of the security feature are identical in colour or are perceived as having the same colour.
  13. The coding system as claimed in claim 10, characterised in that the luminescent security elements of the security feature, when subjected to different predetermined excitations, have different chromaticity coordinates within the CIE standard colorimetric system, or have at least chromaticity coordinates lying within a different range of chromaticity tolerances of said CIE standard colorimetric system, such that the luminescent security elements, while being perceived as identical in colour or as having the same colour when subjected to a given predetermined excitation, will have another colour identity or colour uniformity when subjected to a different predetermined excitation.
  14. The coding system as claimed in at least one of the preceding claims, characterised in that the luminous substances and/or combinations of luminous substances may be excited in the infrared wavelength range, that is at wavelengths of between 950 nm and 980 nm.
  15. The coding system as claimed in at least one of the preceding claims, characterised in that the maxima of the individually distinct emission lines and/or emission bands of the luminous substances and/or combinations of luminous substances are spaced apart from one another by no more than a few nanometers.
  16. The coding system as claimed in at least one of the preceding claims, characterised in that the security element has a further information associated therewith concerning the manner in which the security elements of the security feature are arranged, for example concerning the location or the shape of the security elements, which may, for example, be in the form of a symbol, a numeral, or a pictogram.
  17. The coding system as claimed in at least one of the preceding claims, characterised in that all chromaticity coordinates of the luminous substances encompassed by the coding system are essentially located on a straight line in the CIE standard colorimetric system.
  18. The coding system as claimed in at least one of the preceding claims, characterised in that the luminous substances and/or combinations of luminous substances have an essentially identical, or similar, ageing resistance.
  19. A security feature in or on one or several security documents or documents of value, comprising different luminous substances, and/or combinations of luminous substances obtainable therefrom, which may be excited in the invisible spectral range and which emit in the visible spectral range, wherein, for a predefined excitation, said luminous substances and/or combinations of luminous substances will each yield different emission spectra in the visible spectral range, such that each of said luminous substances and/or combinations of luminous substances is characterised by at least one individually distinct emission line and/or emission band that differs from the individually distinct emission lines and/or emission bands of the other luminous substances and/or combinations of luminous substances,
    wherein
    - the security feature comprises at least three luminous substances, said at least three luminous substances, and/or combinations of luminous substances obtained from these luminous substances, each being applied or affixed onto a given location of the security document or document of value in the form of at least three luminescent security elements forming said security feature, and wherein
    - each of said at least three luminescent security elements has a different luminescence code associated therewith, and
    - when exposed to the predefined excitation using its respectively associated luminescence code, each of said at least three luminescent security elements has identical chromaticity coordinates in a CIE standard colorimetric system or has at least chromaticity coordinates lying within a range of chromaticity tolerances of said CIE standard colorimetric system, for example within a MacAdam ellipsis, such that, for a given excitation, the luminescent security elements of the security feature are identical in colour or are perceived as having the same colour.
  20. A security document or document of value comprising a document body, said document body comprising at least one security feature as claimed in claim 19.
EP18821988.5A 2017-11-27 2018-11-06 Coding system for forming a security feature in or on a security document or value document or a plurality of security documents or value documents Active EP3717273B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017127923.7A DE102017127923A1 (en) 2017-11-27 2017-11-27 An encoding system for forming a security feature in or on a security or value document or a plurality of security or value documents
PCT/DE2018/100901 WO2019101267A1 (en) 2017-11-27 2018-11-06 Coding system for forming a security feature in or on a security document or value document or a plurality of security documents or value documents

Publications (2)

Publication Number Publication Date
EP3717273A1 EP3717273A1 (en) 2020-10-07
EP3717273B1 true EP3717273B1 (en) 2022-12-28

Family

ID=64744340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18821988.5A Active EP3717273B1 (en) 2017-11-27 2018-11-06 Coding system for forming a security feature in or on a security document or value document or a plurality of security documents or value documents

Country Status (4)

Country Link
EP (1) EP3717273B1 (en)
DE (1) DE102017127923A1 (en)
ES (1) ES2940684T3 (en)
WO (1) WO2019101267A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018129365A1 (en) * 2018-11-21 2020-05-28 Bundesdruckerei Gmbh Coding system for forming a security feature in or on a security or value document or a plurality of security or value documents
DE102019006315A1 (en) * 2019-09-06 2021-03-11 Giesecke+Devrient Currency Technology Gmbh Optically variable security element
DE102019008116A1 (en) * 2019-11-21 2021-05-27 Giesecke+Devrient Currency Technology Gmbh Luminescent element with luminescent motif area
DE102022000932A1 (en) * 2022-03-17 2023-09-21 Giesecke+Devrient Currency Technology Gmbh Method for producing valuable documents and sensor system for quality control in the production of valuable documents

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6603007A (en) 1965-03-08 1966-09-09
GB1143362A (en) 1965-03-08 1969-02-19 American Cyanamid Co Information recording
EP1179807A1 (en) * 2000-08-09 2002-02-13 Banque Nationale De Belgique S.A. Anti-tampering element for document
DE10346685A1 (en) 2003-10-08 2005-05-04 Giesecke & Devrient Gmbh Coding system for value documents
EP1647947A1 (en) * 2004-10-14 2006-04-19 Giesecke & Devrient GmbH Apparatus and method for checking a luminescent security feature
US7926730B2 (en) * 2005-11-30 2011-04-19 Pitney Bowes Inc. Combined multi-spectral document markings
US20070138306A1 (en) * 2005-12-19 2007-06-21 Pitney Bowes Incorporated Printed marking hidden authentication
US8330122B2 (en) * 2007-11-30 2012-12-11 Honeywell International Inc Authenticatable mark, systems for preparing and authenticating the mark
JP5699313B2 (en) * 2010-08-09 2015-04-08 大日本印刷株式会社 Luminescent medium
DE102015014560A1 (en) * 2015-11-11 2017-05-11 Giesecke & Devrient Gmbh Pigment system, luminescence color system and value document

Also Published As

Publication number Publication date
ES2940684T3 (en) 2023-05-10
EP3717273A1 (en) 2020-10-07
DE102017127923A1 (en) 2019-06-13
WO2019101267A1 (en) 2019-05-31

Similar Documents

Publication Publication Date Title
EP3717273B1 (en) Coding system for forming a security feature in or on a security document or value document or a plurality of security documents or value documents
EP2512821B1 (en) Authenticity feature in the form of luminescent substances
EP3181659B1 (en) Valuable document
DE3020652C2 (en)
EP2869997B1 (en) Value document, method for checking the presence of same and value document system
WO1999038701A1 (en) Printed document having a value and comprising a luminescent authenticity feature based on a host lattice
DE102010007566A1 (en) Luminescent safety element for product protection
EP1458836A1 (en) Security printing liquid and method using nanoparticles
EP2920004B1 (en) Security element for a document of value and/or a security document
WO1998039392A1 (en) Non-green anti-stokes luminescent substance
EP3409500B1 (en) Arrangement, article having a security feature and method of manufacturing an assembly for a security feature
WO2020052812A1 (en) Valuable document system
EP3883783B1 (en) Coding system for forming a security feature in or on one security or valuable document or a plurality of security or valuable documents
WO2023011760A1 (en) Luminescent printing ink for security printing, item having luminescent feature, and production method
EP3883783A1 (en) Coding system for forming a security feature in or on one security or valuable document or a plurality of security or valuable documents
WO2008132223A2 (en) Use of a luminophore as security feature security printing ink method and device for checking a document and document and security feature
WO2000063317A2 (en) Inorganic illuminants made of finest grains
DE10326645A1 (en) Value document with a security element and method for producing the value document
EP1383959B1 (en) Colour coding system for identifying objects
WO2023046319A1 (en) Method for producing a data carrier having a luminescent security element, and data carrier
EP3866126A1 (en) Method for verifying a smartphone-verifiable security feature, smartphone-verifiable security feature and valuable or security document
DE102011122243A1 (en) Security feature with multiple components

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220727

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011340

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1540224

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2940684

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230428

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011340

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231215

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 6

Ref country code: FR

Payment date: 20231122

Year of fee payment: 6

Ref country code: DE

Payment date: 20231120

Year of fee payment: 6

Ref country code: CH

Payment date: 20231201

Year of fee payment: 6

Ref country code: AT

Payment date: 20231117

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130