EP3711551A1 - Système de substitution du tabac - Google Patents

Système de substitution du tabac Download PDF

Info

Publication number
EP3711551A1
EP3711551A1 EP19020183.0A EP19020183A EP3711551A1 EP 3711551 A1 EP3711551 A1 EP 3711551A1 EP 19020183 A EP19020183 A EP 19020183A EP 3711551 A1 EP3711551 A1 EP 3711551A1
Authority
EP
European Patent Office
Prior art keywords
heat dissipation
aerosol
housing
heating element
smoking substitute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP19020183.0A
Other languages
German (de)
English (en)
Inventor
designation of the inventor has not yet been filed The
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nerudia Ltd
Original Assignee
Nerudia Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nerudia Ltd filed Critical Nerudia Ltd
Priority to EP19020183.0A priority Critical patent/EP3711551A1/fr
Priority to PCT/EP2020/056777 priority patent/WO2020193178A1/fr
Priority to EP20715698.5A priority patent/EP3941256A1/fr
Publication of EP3711551A1 publication Critical patent/EP3711551A1/fr
Priority to US17/481,889 priority patent/US20220095684A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the present invention relates to a smoking substitute system and particularly, although not exclusively, to a smoking substitute system comprising a heat dissipation element.
  • the smoking of tobacco is generally considered to expose a smoker to potentially harmful substances. It is generally thought that a significant amount of the potentially harmful substances are generated through the heat caused by the burning and/or combustion of the tobacco and the constituents of the burnt tobacco in the tobacco smoke itself.
  • Conventional combustible smoking articles such as cigarettes, typically comprise a cylindrical rod of tobacco comprising shreds of tobacco which is surrounded by a wrapper, and usually also a cylindrical filter axially aligned in an abutting relationship with the wrapped tobacco rod.
  • the filter typically comprises a filtration material which is circumscribed by a plug wrap.
  • the wrapped tobacco rod and the filter are joined together by a wrapped band of tipping paper that circumscribes the entire length of the filter and an adjacent portion of the wrapped tobacco rod.
  • a conventional cigarette of this type is used by lighting the end opposite to the filter, and burning the tobacco rod. The smoker receives mainstream smoke into their mouth by drawing on the mouth end or filter end of the cigarette.
  • Such smoking substitute systems can form part of nicotine replacement therapies aimed at people who wish to stop smoking and overcome a dependence on nicotine.
  • Smoking substitute systems include electronic systems that permit a user to simulate the act of smoking by producing an aerosol (also referred to as a "vapour") that is drawn into the lungs through the mouth (inhaled) and then exhaled.
  • aerosol also referred to as a "vapour”
  • the inhaled aerosol typically bears nicotine and/or flavourings without, or with fewer of, the odour and health risks associated with traditional smoking.
  • smoking substitute systems are intended to provide a substitute for the rituals of smoking, whilst providing the user with a similar experience and satisfaction to those experienced with traditional smoking and with combustible tobacco products.
  • Some smoking substitute systems use smoking substitute articles (also referred to as a "consumables”) that are designed to resemble a traditional cigarette and are cylindrical in form with a mouthpiece at one end.
  • HT Heated Tobacco
  • HNB Heat not burn
  • the tobacco may be leaf tobacco or reconstituted tobacco.
  • the vapour may contain nicotine and/or flavourings.
  • the intention is that the tobacco is heated but not burned, i.e. the tobacco does not undergo combustion.
  • a typical HT smoking substitute system may include a device and a consumable.
  • the consumable may include the tobacco material.
  • the device and consumable may be configured to be physically coupled together.
  • heat may be imparted to the tobacco material by a heating element of the device, wherein airflow through the tobacco material causes components in the tobacco material to be released as vapour.
  • a vapour may also be formed from a carrier in the tobacco material (this carrier may for example include propylene glycol and/or vegetable glycerine) and additionally volatile compounds released from the tobacco.
  • the released vapour may be entrained in the airflow drawn through the tobacco.
  • the vapour passes through the consumable (entrained in the airflow) from the location of vaporisation to an outlet of the consumable (e.g. a mouthpiece), the vapour cools and condenses to form an aerosol for inhalation by the user.
  • the aerosol will normally contain the volatile compounds.
  • HT smoking substitute systems heating as opposed to burning the tobacco material is believed to cause fewer, or smaller quantities, of the more harmful compounds ordinarily produced during smoking. Consequently, the HT approach may reduce the odour and/or health risks that can arise through the burning, combustion and pyrolytic degradation of tobacco.
  • heating of the consumable can result in a housing of the device becoming hot. This can make the housing uncomfortable to hold by a user and, in some cases, can present a safety risk.
  • the present invention relates to a smoking substitute device having a heat dissipation element in the housing.
  • a smoking substitute device having a housing defining an outer surface of the smoking substitute device, a heating element disposed in the housing, and at least one heat dissipation element disposed between the heating element and the outer surface of the housing, the at least one heat dissipation element configured to dissipate heat across the outer surface.
  • the heat from the heating element is dissipated by the heating dissipation element by distributing the heat across a greater surface area.
  • the heat dissipation element provides a thermal mass adjacent to or in proximity of the heating element. This may help to avoid localised heating and may provide faster heat dissipation by increasing the overall surface area available for heat loss. This may improve the user experience and may also avoid injury or other safety hazards that could otherwise result from localized heating. Further, having improved heat dissipation in the smoking substitute device may also protect components of the smoking substitute device from heat related damage and may result in improved life and low maintenance costs of the smoking substitute device.
  • heat dissipation element is intended to refer to a part or portion of the device that is provided for absorbing heat and distributing heat over an area so as to avoid the issue of localised "hot spots".
  • the heat dissipation is a thermal conductor rather than a thermal insulator.
  • the heat dissipation element may have a thermal conductivity of above 10 W/mK at room temperature, or above 50 W/mK at room temperature, or above e.g. 100 W/mK at room temperature.
  • the at least one heat dissipation element may be metallic.
  • the at least one heat dissipation element may be formed of copper or aluminium.
  • the at least one heat dissipation element may comprise a coating or surface treatment. The coating or surface treatment may facilitate heat dissipation of the heat dissipation element.
  • the at least one heat dissipation element may be ceramic.
  • the at least one heat dissipation element may be formed of a combination of materials. Alternatively, the at least one heat dissipation element may be formed of a single material.
  • the at least one heat dissipation element may be a plate. That is, one dimension of the at least one heat dissipation element may be significantly smaller than the other two dimensions.
  • the at least one heat dissipation element may be substantially planar or may have a curved profile. As should be appreciated, the at least one heat dissipation element may vary in size or shape depending on the heat dissipation requirements of the device.
  • a surface of the at least one heat dissipation element facing the heating element may have a surface area of at least 2 cm 2 , or at least 3 cm 2 , or e.g. at least 4 cm 2 .
  • the at least one heat dissipation element may be mounted at an internal surface of the housing.
  • the housing may comprise an outer wall, an outer surface of which may define an outer surface of the device.
  • the at least one heat dissipation element may be mounted at or to an inner surface of the outer wall of the housing. In this respect, the at least one heat dissipation element may be separated from the outer surface of the device by a wall of the housing.
  • the smoking substitute device may comprise first and second heat dissipation elements mounted to the housing.
  • the first and second heat dissipation elements may be formed of different materials.
  • One of the first and second heat dissipation elements may be formed of aluminium and another of the first and second heat dissipation elements may be formed of copper.
  • the heat dissipation element formed of copper may be located in a cooler part of the housing (during operation) than the heat dissipation element formed of aluminium.
  • the housing may comprise first and second housing portions detachable from one another.
  • One of the first and second heat dissipation elements e.g. the first heat dissipation element
  • the other of the first and second heat dissipation elements e.g. the second heat dissipation element
  • both of the first and second heat dissipation elements may be mounted to the first or second housing portion.
  • the heat dissipation elements may come into contact (i.e. thermal or physical contact) when the housing portions are engaged with one another (i.e. not detached).
  • the first housing portion may be a body (which may be elongate) comprising the heating element (e.g. the heating element may be mounted to the body).
  • the second housing portion may be a cap engagable with the body for at least partially enclosing the heating element.
  • a heat dissipation element mounted to the cap may be formed of aluminium (e.g. anodised aluminium) whilst a heat dissipation element mounted to the body may be formed of copper.
  • the at least one heat dissipation element may be laterally spaced from the heating element. In this respect, there may be an air gap between the at least one heat dissipation element and the heating element.
  • the housing may comprise an internal wall between the at least one heat dissipation element and the heating element and there may be an air gap between the internal wall and the at least one heat dissipation element.
  • the housing may comprise first and second spaced opposing lateral sides.
  • the first heat dissipation element may be mounted at the first side of the housing and the second heat dissipation element may be mounted at the second side of the housing.
  • the heating element may be located between the sides.
  • the first heat dissipation element may be mounted between the first side of the housing and the heating element
  • the second heat dissipation element may be mounted between the second side of the housing and the heating element.
  • the heating element may be generally elongate so as to define a longitudinal axis.
  • the at least one heat dissipation element may be located laterally adjacent to the heating element.
  • the at least one heat dissipation element may be spaced along the longitudinal axis so as not to be laterally in line with the heating element. That is, the at least one heat dissipation element may be above or below the heating element in the housing.
  • the housing may be made of polymeric material.
  • the housing may comprise a slot or recess for receipt of the at least one heat dissipation element.
  • the at least one heat dissipation element may be mounted to the housing without adhesive.
  • the at least one heat dissipation element may be mounted to the housing by way of an adhesive.
  • the outer surface of the housing may comprise a metallic portion.
  • the metallic portion may be thermally (or physically) connected to the at least one heat dissipation element. In this way, heat from the heat dissipation element may be dissipated via the metallic portion.
  • An end of the elongate body may be configured for engagement with an aerosol-forming article.
  • the body may be configured for engagement with a heated tobacco (HT) consumable (or heat-not-burn (HNB) consumable).
  • HT heated tobacco
  • HNB heat-not-burn
  • the terms "heated tobacco” and “heat-not-burn” are used interchangeably herein to describe a consumable that is of the type that is heated rather than combusted (or are used interchangeably to describe a device for use with such a consumable).
  • the device may comprise a cavity that is configured for receipt of at least a portion of the consumable (i.e. for engagement with the consumable).
  • the at least one heat dissipation element may at least partially define the cavity (e.g. the at least one heat dissipation element may be a wall of the cavity).
  • the aerosol-forming article may be of the type that comprises an aerosol former (e.g. carried by an aerosol-forming substrate).
  • the heating element may form part of a heater for heating the aerosol-forming article.
  • the heating element may be in the form of a rod that extends from the body of the device.
  • the heating element may extend from the end of the body that is configured for engagement with the aerosol-forming article.
  • the heater (and thus the heating element) may be rigidly mounted to the body.
  • the heating element may be elongate so as to define a longitudinal axis and may, for example, have a transverse profile (i.e. transverse to a longitudinal axis of the heating element) that is substantially circular (i.e. the heating element may be generally cylindrical).
  • the heating element may have a transverse profile that is rectangular (i.e. the heater may be a "blade heater”).
  • the heating element may alternatively be in the shape of a tube (i.e. the heater may be a "tube heater”).
  • the heating element may take other forms (e.g. the heating element may have an elliptical transverse profile).
  • the shape and/or size (e.g. diameter) of the transverse profile of the heating element may be generally consistent for the entire length (or substantially the entire length) of the heating element.
  • the heating element may be between 15 mm and 25 mm long, e.g. between 18 mm and 20 mm long, e.g. around 19 mm long.
  • the heating element may have a diameter of between 1.5 mm and 2.5 mm, e.g. a diameter between 2 mm and 2.3 mm, e.g. a diameter of around 2.15 mm.
  • the heating element may be formed of ceramic.
  • the heating element may comprise a core (e.g. a ceramic core) comprising Al2O3.
  • the core of the heating element may have a diameter of 1.8 mm to 2.1 mm, e.g. between 1.9 mm and 2 mm.
  • the heating element may comprise an outer layer (e.g. an outer ceramic layer) comprising Al2O3.
  • the thickness of the outer layer may be between 160 ⁇ m and 220 ⁇ m, e.g. between 170 ⁇ m and 190 ⁇ m, e.g. around 180 ⁇ m.
  • the heating element may comprise a heating track, which may extend longitudinally along the heating element.
  • the heating track may be sandwiched between the outer layer and the core of the heating element.
  • the heating track may comprise tungsten and/or rhenium.
  • the heating track may have a thickness of around 20 ⁇ m.
  • the heating element may be located in the cavity (of the device), and may extend (e.g. along a longitudinal axis) from an internal base of the cavity towards an opening of the cavity.
  • the length of the heating element i.e. along the longitudinal axis of the heater
  • the heating element may be less than the depth of the cavity.
  • the heating element may extend for only a portion of the length of the cavity. That is, the heating element may not extend through (or beyond) the opening of the cavity.
  • the heating element may be configured for insertion into an aerosol-forming article (e.g. a HT consumable) when an aerosol-forming article is received in the cavity.
  • a distal end (i.e. distal from a base of the heating element where it is mounted to the device) of the heating element may comprise a tapered portion, which may facilitate insertion of the heating element into the aerosol-forming article.
  • the heating element may fully penetrate an aerosol-forming article when the aerosol-forming article is received in the cavity. That is, the entire length, or substantially the entire length, of the heating element may be received in the aerosol-forming article.
  • the heating element may have a length that is less than, or substantially the same as, an axial length of an aerosol-forming substrate forming part of an aerosol-forming article (e.g. a HT consumable).
  • an aerosol-forming substrate forming part of an aerosol-forming article (e.g. a HT consumable).
  • the heating element may only penetrate the aerosol-forming substrate, rather than other components of the aerosol-forming article.
  • the heating element may penetrate the aerosol-forming substrate for substantially the entire axial length of the aerosol forming-substrate of the aerosol-forming article.
  • heat may be transferred from (e.g. an outer circumferential surface of) the heating element to the surrounding aerosol-forming substrate, when penetrated by the heating element. That is, heat may be transferred radially outwardly (in the case of a cylindrical heating element) or e.g. radially inwardly (in the case of a tube heater).
  • the heating element of the tube heater may surround at least a portion of the cavity.
  • the heating element may surround a portion of the aerosol-forming article (i.e. so as to heat that portion of the aerosol-forming article).
  • the heating element may surround an aerosol forming substrate of the aerosol-forming article. That is, when an aerosol-forming article is engaged with the device, the aerosol forming substrate of the aerosol-forming article may be located adjacent an inner surface of the (tubular) heating element. When the heating element is activated, heat may be transferred radially inwardly from the inner surface of the heating element to heat the aerosol forming substrate.
  • the cavity may comprise a (e.g. circumferential) wall (or walls) and the (tubular) heating element may extend around at least a portion of the wall(s).
  • the wall may be located between the inner surface of the heating element and an outer surface of the aerosol-forming article.
  • the wall (or walls) of the cavity may be formed from a thermally conductive material (e.g. a metal) to allow heat conduction from the heating element to the aerosol-forming article.
  • heat may be conducted from the heating element, through the cavity wall (or walls), to the aerosol-forming substrate of an aerosol-forming article received in the cavity.
  • the cap may be disposed at the end of the body that is configured for engagement with an aerosol-forming article.
  • the cap may be moveable between an open position in which access is provided to the heating element, and a closed position in which the cap at least partially encloses the heating element.
  • the cap may be slideably engaged with the body of the device, and may be slideable between the open and closed positions.
  • the cap may define at least a portion of the cavity of the device. That is, the cavity may be fully defined by the cap, or each of the cap and body may define a portion of the cavity. Where the cap fully defines the cavity, the cap may comprise an aperture for receipt of the heating element into the cavity (when the cap is in the closed position).
  • the cap may comprise an opening to the cavity. The opening may be configured for receipt of at least a portion of an aerosol-forming article. That is, an aerosol-forming article may be inserted through the opening and into the cavity (so as to be engaged with the device).
  • the cap may comprise an internal wall defining the cavity for receipt of the article.
  • the at least one heat dissipation element mounted in the cap may be located between the internal wall of the cap and an external wall of the cap (i.e. defining an outer wall of the housing). There may be an air gap between the at least one heat dissipation element and the internal wall defining the cavity.
  • the cap may be configured such that when an aerosol-forming article is engaged with the device (e.g. received in the cavity), only a portion of the aerosol-forming article is received in the cavity. That is, a portion of the aerosol-forming article (not received in the cavity) may protrude from (i.e. extend beyond) the opening.
  • This (protruding) portion of the aerosol-forming article may be a terminal (e.g. mouth) end of the aerosol-forming article, which may be received in a user's mouth for the purpose of inhaling aerosol formed by the device.
  • the outer surface of the device may be defined by the body or the cap or partly by the body and partly by the cap.
  • the outer surface may include a first outer surface defined at one lateral side of the device, a second outer surface defined at a second lateral side laterally opposite to the first lateral side. Further, the outer surface may also include a third outer surface disposed laterally adjacent to the first outer surface.
  • the device may include more than one heat dissipation elements.
  • at least one heat dissipation element may be disposed between the heating element and any one or more of the first outer surface, second outer surface and third outer surface.
  • a heat dissipation element may be disposed internally of the outer surface on all four sides of the device surrounding the heating element.
  • the outer surface may be of the cap and/or the body. The heat dissipation element may be disposed in proximity to the heating element so as to be able to absorb heat from the heating element.
  • the device may comprise a power source or may be connectable to a power source (e.g. a power source separate to the device).
  • the power source may be electrically connectable to the heater. In that respect, altering (e.g. toggling) the electrical connection of the power source to the heater may affect a state of the heater. For example, toggling the electrical connection of the power source to the heater may toggle the heater between an on state and an off state.
  • the power source may be a power store.
  • the power source may be a battery or rechargeable battery (e.g. a lithium ion battery).
  • the device may comprise an input connection (e.g. a USB port, Micro USB port, USB-C port, etc.).
  • the input connection may be configured for connection to an external source of electrical power, such as a mains electrical supply outlet.
  • the input connection may, in some cases, be used as a substitute for an internal power source (e.g. battery or rechargeable battery). That is, the input connection may be electrically connectable to the heater (for providing power to the heater).
  • the input connection may form at least part of the power source of the device.
  • the input connection may be used to charge and recharge the power source.
  • the device may comprise a user interface (Ul).
  • the UI may include input means to receive operative commands from the user.
  • the input means of the UI may allow the user to control at least one aspect of the operation of the device.
  • the input means may comprise a power button to switch the device between an on state and an off state.
  • the UI may additionally or alternatively comprise output means to convey information to the user.
  • the output means may comprise a light to indicate a condition of the device (and/or the aerosol-forming article) to the user.
  • the condition of the device (and/or aerosol-forming article) indicated to the user may comprise a condition indicative of the operation of the heater.
  • the condition may comprise whether the heater is in an off state or an on state.
  • the UI unit may comprise at least one of a button, a display, a touchscreen, a switch, a light, and the like.
  • the output means may comprise one or more (e.g. two, three, four, etc.) light-emitting diodes ("LEDs") that may be located on the body of the device.
  • LEDs light-emitting diodes
  • the device may further comprise a puff sensor (e.g. airflow sensor), which form part of the input means of the Ul.
  • the puff sensor may be configured to detect a user drawing on an end (i.e. a terminal (mouth) end) of the aerosol-forming article.
  • the puff sensor may, for example, be a pressure sensor or a microphone.
  • the puff sensor may be configured to produce a signal indicative of a puff state.
  • the signal may be indicative of the user drawing (an aerosol from the aerosol-forming article) such that it is e.g. in the form of a binary signal.
  • the signal may be indicative of a characteristic of the draw (e.g. a flow rate of the draw, length of time of the draw, etc).
  • the device may comprise a controller, or may be connectable to a controller that may be configured to control at least one function of the device.
  • the controller may comprise a microcontroller that may e.g. be mounted on a printed circuit board (PCB).
  • the controller may also comprise a memory, e.g. non-volatile memory.
  • the memory may include instructions, which, when implemented, may cause the controller to perform certain tasks or steps of a method. Where the device comprises an input connection, the controller may be connected to the input connection.
  • the controller may be configured to control the operation of the heater (and e.g. the heating element).
  • the controller may be configured to control vaporisation of an aerosol forming part of an aerosol-forming article engaged with the device.
  • the controller may be configured to control the voltage applied by power source to the heater.
  • the controller may be configured to toggle between applying a full output voltage (of the power source) to the heater and applying no voltage to the heater.
  • the control unit may implement a more complex heater control protocol.
  • the device may further comprise a voltage regulator to regulate the output voltage supplied by the power source to form a regulated voltage.
  • the regulated voltage may subsequently be applied to the heater.
  • the controller may be operatively connected to one or more components of the UI.
  • the controller may be configured to receive command signals from an input means of the UI.
  • the controller may be configured to control the heater in response to the command signals.
  • the controller may be configured to receive "on" and "off command signals from the UI and, in response, may control the heater so as to be in a corresponding on or off state.
  • the controller may be configured to send output signals to a component of the UI.
  • the UI may be configured to convey information to a user, via an output means, in response to such output signals (received from the controller).
  • the LEDs may be operatively connected to the controller.
  • the controller may configured to control the illumination of the LEDs (e.g. in response to an output signal).
  • the controller may be configured to control the illumination of the LEDs according to (e.g. an on or off) state of the heater.
  • the controller may be operatively connected to the sensor.
  • the controller may be configured to receive a signal from the sensor (e.g. indicative of a condition of the device and/or engaged aerosol-forming article).
  • the controller may be configured to control the heater, or an aspect of the output means, based on the signal from the sensor.
  • the device may comprise a wireless interface configured to communicate wirelessly (e.g. via Bluetooth (e.g. a Bluetooth low-energy connection) or WiFi) with an external device.
  • the input connection may be configured for wired connection to an external device so as to provide communication between the device and the external device.
  • the external device may be a mobile device.
  • the external device may be a smart phone, tablet, smart watch, or smart car.
  • An application e.g. app
  • the application may facilitate communication between the device and the external device via the wired or wireless connection.
  • the wireless or wired interface may be configured to transfer signals between the external device and the controller of the device.
  • the controller may control an aspect of the device in response to a signal received from an external device.
  • an external device may respond to a signal received from the device (e.g. from the controller of the device).
  • a system comprising a device according to the first aspect and an aerosol-forming article.
  • the aerosol-forming article may comprise an aerosol-forming substrate at an upstream end of the aerosol-forming article.
  • the article may be in the form of a smoking substitute article, e.g. heated tobacco (HT) consumable (also known as a heat-not-burn (HNB) consumable).
  • HT heated tobacco
  • HNB heat-not-burn
  • upstream and downstream are intended to refer to the flow direction of the vapour/aerosol i.e. with the downstream end of the article/consumable being the mouth end or outlet where the aerosol exits the consumable for inhalation by the user.
  • the upstream end of the article/consumable is the opposing end to the downstream end.
  • the aerosol-forming substrate is capable of being heated to release at least one volatile compound that can form an aerosol.
  • the aerosol-forming substrate may be located at the upstream end of the article/consumable.
  • the aerosol-forming substrate comprises at least one volatile compound that is intended to be vaporised/aerosolised and that may provide the user with a recreational and/or medicinal effect when inhaled.
  • Suitable chemical and/or physiologically active volatile compounds include the group consisting of: nicotine, cocaine, caffeine, opiates and opoids, cathine and cathinone, kavalactones, mysticin, beta-carboline alkaloids, salvinorin A together with any combinations, functional equivalents to, and/or synthetic alternatives of the foregoing.
  • the aerosol-forming substrate may comprise plant material.
  • the plant material may comprise least one plant material selected from the list including Amaranthus dubius, Arctostaphylos uva-ursi (Bearberry), Argemone mexicana, Amica, Artemisia vulgaris, Yellow Tees, Galea zacatechichi, Canavalia maritima (Baybean), Cecropia mexicana (Guamura), Cestrum noctumum, Cynoglossum virginianum (wild comfrey), Cytisus scoparius, Damiana, Entada rheedii, Eschscholzia califomica (California Poppy), Fittonia albivenis, Hippobroma longiflora, Humulus japonica (Japanese Hops), Humulus lupulus (Hops), Lactuca virosa (Lettuce Opium), Laggera alata, Leonotis
  • the plant material may be tobacco. Any type of tobacco may be used. This includes, but is not limited to, flue-cured tobacco, burley tobacco, Maryland Tobacco, dark-air cured tobacco, oriental tobacco, dark-fired tobacco, perique tobacco and rustica tobacco. This also includes blends of the above mentioned tobaccos.
  • the tobacco may comprise one or more of leaf tobacco, stem tobacco, tobacco powder, tobacco dust, tobacco derivatives, expanded tobacco, homogenised tobacco, shredded tobacco, extruded tobacco, cut rag tobacco and/or reconstituted tobacco (e.g. slurry recon or paper recon).
  • the aerosol-forming substrate may comprise a gathered sheet of homogenised (e.g. paper/slurry recon) tobacco or gathered shreds/strips formed from such a sheet.
  • homogenised e.g. paper/slurry recon
  • the aerosol-forming substrate may comprise one or more additives selected from humectants, flavourants, fillers, aqueous/non-aqueous solvents and binders.
  • the flavourant may be provided in solid or liquid form. It may include menthol, liquorice, chocolate, fruit flavour (including e.g. citrus, cherry etc.), vanilla, spice (e.g. ginger, cinnamon) and tobacco flavour.
  • the flavourant may be evenly dispersed throughout the aerosol-forming substrate or may be provided in isolated locations and/or varying concentrations throughout the aerosol-forming substrate.
  • the aerosol-forming substrate may be formed in a substantially cylindrical shape such that the article/consumable resembles a conventional cigarette. It may have a diameter of between 5 and 10mm e.g. between 6 and 9mm or 6 and 8mm e.g. around 7 mm. It may have an axial length of between 10 and 15mm e.g. between 11 and 14mm such as around 12 or 13mm.
  • the article/consumable may comprise at least one filter element. There may be a terminal filter element at the downstream/mouth end of the article/consumable.
  • the or at least one of the filter element(s) may be comprised of cellulose acetate or polypropylene tow.
  • the at least one filter element e.g. the terminal filter element
  • the at least one filter element may be comprised of activated charcoal.
  • the at least one filter element (e.g. the terminal element) may be comprised of paper.
  • the or each filter element may be at least partly (e.g. entirely) circumscribed with a plug wrap e.g. a paper plug wrap.
  • the terminal filter element (at the downstream end of the article/consumable) may be joined to the upstream elements forming the article/consumable by a circumscribing tipping layer e.g. a tipping paper layer.
  • the tipping paper may have an axial length longer than the axial length of the terminal filter element such that the tipping paper completely circumscribes the terminal filter element plus the wrapping layer surrounding any adjacent upstream element.
  • the article/consumable may comprise an aerosol-cooling element which is adapted to cool the aerosol generated from the aerosol-forming substrate (by heat exchange) before being inhaled by the user.
  • the article/consumable may comprise a spacer element that defines a space or cavity between the aerosol-forming substrate and the downstream end of the consumable.
  • the spacer element may comprise a cardboard tube.
  • the spacer element may be circumscribed by the (paper) wrapping layer.
  • the invention includes the combination of the aspects and preferred features described except where such a combination is clearly impermissible or expressly avoided.
  • FIG 1 is a schematic providing a general overview of a smoking substitute system 100.
  • the system 100 includes a substitute smoking device 101 and an aerosol-forming article in the form of a consumable 102, which comprises an aerosol former 103.
  • the system is configured to vaporise the aerosol former by heating the aerosol former 103 (so as to form a vapour/aerosol for inhalation by a user).
  • the heater 104 forms part of the device 101 and is configured to heat the aerosol former 103.
  • the heater 104 is electrically connected to the power source 105. Heat from the heater 104 vaporises the aerosol former 103 to produce a vapour. The vapour subsequently condenses to form an aerosol, which is ultimately inhaled by the user.
  • the system 100 further comprises a power source 105 that forms part of the device 101.
  • the power source 105 may be external to (but connectable to) the device 101.
  • the power source 105 is electrically connected to the heater 104 such that it is able to supply power to the heater 104 (i.e. for the purpose of heating the aerosol former 103).
  • control of the electrical connection of the power source 105 to the heater 104 provides control of the state of the heater 104.
  • the power source 105 may be a power store, for example a battery or rechargeable battery (e.g. a lithium ion battery).
  • the system 100 further comprises a heat dissipation element 127.
  • the heat dissipation element dissipates heat to prevent localised heating.
  • the system 100 further comprises an I/O module comprising a connector 106 (e.g. in the form of a USB port, Micro USB port, USB-C port, etc.).
  • the connector 106 is configured for connection to an external source of electrical power, e.g. a mains electrical supply outlet.
  • the connector 106 may be used in substitution for the power source 105. That is the connector 106 may be electrically connectable to the heater 104 so as to supply electricity to the heater 104.
  • the device may not include a power source, and the power source of the system may instead comprise the connector 106 and an external source of electrical power (to which the connector 106 provides electrical connection).
  • the connector 106 may be used to charge and recharge the power source 105 where the power source 105 includes a rechargeable battery.
  • the system 100 also comprises a user interface (Ul) 107.
  • the UI 107 may include input means to receive commands from a user.
  • the input means of the UI 107 allows the user to control at least one aspect of the operation of the system 100.
  • the input means may, for example, be in the form of a button, touchscreen, switch, microphone, etc.
  • the UI 107 also comprises output means to convey information to the user.
  • the output means may, for example, comprise lights (e.g. LEDs), a display screen, speaker, vibration generator, etc.
  • the system 100 further comprises a controller 108 that is configured to control at least one function of the device 101.
  • the controller 108 is a component of the device 101, but in other embodiments may be separate from (but connectable to) the device 101.
  • the controller 108 is configured to control the operation of the heater 104 and, for example, may be configured to control the voltage applied from the power source 105 to the heater 104.
  • the controller 108 may be configured to toggle the supply of power to the heater 104 between an on state, in which the full output voltage of the power source 105 is applied to the heater 104, and an off state, in which the no voltage is applied to the heater 104.
  • the system 100 may also comprise a voltage regulator to regulate the output voltage from the power source 105 to form a regulated voltage.
  • the regulated voltage may then be applied to the heater 104.
  • the controller 108 is operatively connected to the UI 107.
  • the controller 108 may receive an input signal from the input means of the UI 107.
  • the controller 108 may transmit output signals to the UI 107.
  • the output means of the UI 107 may convey information, based on the output signals, to a user.
  • the controller also comprises a memory 109, which is a non-volatile memory.
  • the memory 109 includes instructions, which, when implemented, cause the controller to perform certain tasks or steps of a method.
  • FIGs 2A and 2B illustrate a heated-tobacco (HT) smoking substitute system 200.
  • the system 200 is an example of the system 100 described in relation to Figure 1 .
  • System 200 includes an HT device 201 and an HT consumable 202.
  • the description of Figure 1 above is applicable to the system 200 of Figures 2A and 2B , and will thus not be repeated.
  • the device 201 and the consumable 202 are configured such that the consumable 202 can be engaged with the device 201.
  • Figure 2A shows the device 201 and the consumable 202 in an engaged state
  • Figure 2B shows the device 201 and the consumable 202 in a disengaged state.
  • the device 201 comprises a housing.
  • the housing defines an outer surface 228 of the device 201.
  • the housing includes a body 209 and cap 210.
  • the cap 210 is engaged at an end of the body 209.
  • the cap 210 is moveable relative to the body 209.
  • the cap 210 is slideable and can slide along a longitudinal axis of the body 209.
  • the device 201 comprises an output means (forming part of the UI of the device 201) in the form of a plurality of light-emitting diodes (LEDs) 211 arranged linearly along the longitudinal axis of the device 201 and on an outer surface of the body 209 of the device 201.
  • a button 212 is also arranged on an outer surface of the body 209 of the device 201 and is axially spaced (i.e. along the longitudinal axis) from the plurality of LEDs 211.
  • FIG. 2C show a detailed section view of the consumable of 202 of the system 200.
  • the consumable 202 generally resembles a cigarette.
  • the consumable 202 has a generally cylindrical form with a diameter of 7 mm and an axial length of 70 mm.
  • the consumable 202 comprises an aerosol forming substrate 213, a terminal filter element 214, an upstream filter element 215 and a spacer element 216.
  • the consumable may further comprise a cooling element.
  • a cooling element may exchange heat with vapour that is formed by the aerosol-forming substrate 213 in order to cool the vapour so as to facilitate condensation of the vapour.
  • the aerosol-forming substrate 213 is substantially cylindrical and is located at an upstream end 217 of the consumable 202, and comprises the aerosol former of the system 200.
  • the aerosol forming substrate 213 is configured to be heated by the device 201 to release a vapour.
  • the released vapour is subsequently entrained in an airflow flowing through the aerosol-forming substrate 213.
  • the airflow is produced by the action of the user drawing on a downstream 218 (i.e. terminal or mouth) end of the consumable 202.
  • the aerosol forming substrate 213 comprises tobacco material that may, for example, include any suitable parts of the tobacco plant (e.g. leaves, stems, roots, bark, seeds and flowers).
  • the tobacco may comprise one or more of leaf tobacco, stem tobacco, tobacco powder, tobacco dust, tobacco derivatives, expanded tobacco, homogenised tobacco, shredded tobacco, extruded tobacco, cut rag tobacco and/or reconstituted tobacco (e.g. slurry recon or paper recon).
  • the aerosol-forming substrate 213 may comprise a gathered sheet of homogenised (e.g. paper/slurry recon) tobacco or gathered shreds/strips formed from such a sheet.
  • the aerosol forming substrate 213 comprises at least one volatile compound that is intended to be vaporised/aerosolised and that may provide the user with a recreational and/or medicinal effect when inhaled.
  • the aerosol-forming substrate 213 may further comprise one or more additives.
  • additives may be in the form of humectants (e.g. propylene glycol and/or vegetable glycerine), flavourants, fillers, aqueous/non-aqueous solvents and/or binders.
  • the terminal filter element 214 is also substantially cylindrical, and is located downstream of the aerosol forming substrate 213 at the downstream end 218 of the consumable 202.
  • the terminal filter element 214 is in the form of a hollow bore filter element having a bore 219 (e.g. for airflow) formed therethrough. The diameter of the bore 219 is 2 mm.
  • the terminal filter element 214 is formed of a porous (e.g. monoacetate) filter material.
  • the downstream end 218 of the consumable 202 i.e. where the terminal filter 214 is located
  • Airflow is drawn from the upstream end 217, thorough the components of the consumable 202, and out of the downstream end 218.
  • the airflow is driven by the user drawing on the downstream end 218 (i.e. the mouthpiece portion) of the consumable 202.
  • the upstream filter element 215 is located axially adjacent to the aerosol-forming substrate 213, between the aerosol-forming substrate 213 and the terminal filter element 214. Like the terminal filter 214, the upstream filter element 215 is in the form of a hollow bore filter element, such that it has a bore 220 extending axially therethrough. In this way, the upstream filter 215 may act as an airflow restrictor.
  • the upstream filter element 215 is formed of a porous (e.g. monoacetate) filter material.
  • the bore 220 of the upstream filter element 215 has a larger diameter (3 mm) than the terminal filter element 214.
  • the spacer 216 is in the form of a cardboard tube, which defines a cavity or chamber between the upstream filter element 215 and the terminal filter element 214.
  • the spacer 216 acts to allow both cooling and mixing of the vapour/aerosol from the aerosol-forming substrate 213.
  • the spacer has an external diameter of 7 mm and an axial length of 14mm.
  • the aerosol-forming substrate 213, upstream filter 215 and spacer 216 are circumscribed by a paper wrapping layer.
  • the terminal filter 214 is circumscribed by a tipping layer that also circumscribes a portion of the paper wrapping layer (so as to connect the terminal filter 214 to the remaining components of the consumable 202).
  • the upstream filter 215 and terminal filter 214 are circumscribed by further wrapping layers in the form of plug wraps.
  • FIG. 2D illustrates a detailed view of the end of the device 201 that is configured to engage with the consumable 202.
  • the cap 210 of the device 201 includes an opening 221 to an internal cavity 222 (more apparent from Figure 2D ) defined by the cap 210.
  • the opening 221 and the cavity 222 are formed so as to receive at least a portion of the consumable 202.
  • a portion of the consumable 202 is received through the opening 221 and into the cavity 222.
  • the downstream end 218 of the consumable 202 protrudes from the opening 221 and thus also protrudes from the device 201.
  • the opening 221 includes laterally disposed notches 226. When a consumable 202 is received in the opening 221, these notches 226 remain open and could, for example, be used for retaining a cover in order to cover the end of the device 201.
  • Figure 2E shows a cross section through a central longitudinal plane through the device 201.
  • the device 201 is shown with the consumable 202 engaged therewith.
  • the device 201 comprises a heater 204 comprising heating element 223.
  • the heater 204 forms part of the body 209 of the device 201 and is rigidly mounted to the body 209.
  • the heater 204 is a rod heater with a heating element 223 having a circular transverse profile.
  • the heater may be in the form of a blade heater (e.g. heating element with a rectangular transverse profile) or a tube heater (e.g. heating element with a tubular form).
  • the heating element 223 of the heater 204 projects from an internal base of the cavity 222 along a longitudinal axis towards the opening 221. As is apparent from the figure, the length (i.e. along the longitudinal axis) of the heating element is less than a depth of the cavity 222. In this way, the heating element 223 does not protrude from or extend beyond the opening 221.
  • the heating element 223 penetrates the aerosol-forming substrate 213 of the consumable 202.
  • the heating element 223 extends for nearly the entire axial length of the aerosol-forming substrate 213 when inserted therein.
  • the heater 204 is activated, heat is transferred radially from an outer circumferential surface the heating element 223 to the aerosol-forming substrate 213.
  • the device 201 further comprises an electronics cavity 224.
  • a power source in the form of a rechargeable battery (a lithium ion battery), is located in electronics cavity 224.
  • the device 201 includes a connector (i.e. forming part of an IO module of the device 201) in the form of a USB port 206.
  • the connector may alternatively be, for example, a micro-USB port or a USB-C port for examples.
  • the USB port 206 may be used to recharge the rechargeable battery 205.
  • the device 201 includes a controller 208 located in the electronics cavity 224.
  • the controller comprises a microcontroller mounted on a printed circuit board (PCB).
  • PCB printed circuit board
  • the USB port 206 is also connected to the controller 208 (i.e. connected to the PCB and microcontroller).
  • the controller 208 is configured to control at least one function of the device 202.
  • the controller 208 is configured to control the operation of the heater 204.
  • Such control of the operation of the heater 204 may be accomplished by the controller toggling the electrical connection of the rechargeable battery 205 to the heater 204.
  • the controller 208 is configured to control the heater 204 in response to a user depressing the button 212. Depressing the button 212 may cause the controller to allow a voltage (from the rechargeable battery 205) to be applied to the heater 204 (so as to cause the heating element 223 to be heated).
  • the controller is also configured to control the LEDs 211 in response to (e.g. a detected) a condition of the device 201 or the consumable 202.
  • the controller may control the LEDs to indicate whether the device 201 is in an on state or an off state (e.g. one or more of the LEDs may be illuminated by the controller when the device is in an on state).
  • the device 201 comprises a further input means (i.e. in addition to the button 212) in the form of a puff sensor 225.
  • the puff sensor 225 is configured to detect a user drawing (i.e. inhaling) at the downstream end 218 of the consumable 202.
  • the puff sensor 225 may, for example, be in the form of a pressure sensor, flowmeter or a microphone.
  • the puff sensor 225 is operatively connected to the controller 208 in the electronics cavity 224, such that a signal from the puff sensor 225, indicative of a puff state (i.e. drawing or not drawing), forms an input to the controller 208 (and can thus be responded to by the controller 208).
  • the device 201 further includes first 227a and second 227b heat dissipation elements for thermal management of the device 201. These are shown in Figure 2F and Figure 2G . As will be described in more detail below, both of the heat dissipation elements 227 are disposed between the heating element 223 and an outer surface 228 of the body 209 (or housing). In this way, heat from the heating element 223 may absorb heat radiated from the heating element 228 and may distribute that heat over an increased area.
  • the first heat dissipation element 227a is shown in Figure 2F .
  • This figure shows a portion of the body 209 of the device 201.
  • This portion of the body 209 comprises a lower section 234 and an upper section 235.
  • the upper section 235 supports the heating element 223 and is tubular so as to define a cavity into which the heating element 223 projects.
  • the lower section 234 comprises a panel 230 that (when the body is full assembled) defines part of the electronics cavity 224 of the device 201.
  • This panel 230 comprises an internal surface 229, and the first heat dissipation element 227a is mounted to this internal surface 229.
  • the first heat dissipation element 227a may be attached to the internal surface 229 by an adhesive.
  • the heat dissipation element 227a may be embedded in the housing during manufacturing of the housing and/or may be retained in the housing using a snap lock arrangement.
  • the first heat dissipation element 227a is in the form of a rectangular plate that is formed of copper.
  • the positioning of the first heat dissipation element 227a, and its shape, mean that heat from the heating element 223 may be distributed across the panel 230 of the body 209. This helps to avoid localised "hot spots" on the outer surface of the body 209.
  • the second heat dissipation element 227b is shown in Figure 2G.
  • Figure 2G is a bottom view of the cap 210 of the device 201.
  • the cap 210 comprises an internal tubular wall 236 that defines a cavity for receipt of a consumable 202.
  • the base of the internal wall 236 comprises an opening 237, through which the heating element 223 projects when the cap 210 is engaged with the body 209.
  • the cap 210 further comprises two lateral sidewalls 231, 232 spaced either side of the internal tubular wall 236 (and thus either side of the heating element 223 when the cap 210 is engaged with the body 209).
  • the second heat dissipation element 227b is mounted to an internal surface of one of the lateral side walls 231. In this way, the second heat dissipation element 227b is spaced from the internal tubular wall 236 by an air gap.
  • the second heat dissipation element 227b is located directly laterally of the heating element 223.
  • the second heat dissipation element 227b is formed of aluminium. In particular, the aluminium of the second heat dissipation element 227b is anodised so as have a dark appearance.
  • the cap 210 further comprises a metallic portion 238 defining part of the outer surface of the lateral side wall 231. Whilst not apparent from the figure, this metallic portion is in physical contact with the second heat dissipation element 227b such that heat can be distributed from the heat dissipation element 227b to the metallic portion 238 and can then be dissipated to the external environment.
EP19020183.0A 2019-03-22 2019-03-22 Système de substitution du tabac Ceased EP3711551A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19020183.0A EP3711551A1 (fr) 2019-03-22 2019-03-22 Système de substitution du tabac
PCT/EP2020/056777 WO2020193178A1 (fr) 2019-03-22 2020-03-13 Système de substitution pour fumeurs
EP20715698.5A EP3941256A1 (fr) 2019-03-22 2020-03-13 Système de substitution pour fumeurs
US17/481,889 US20220095684A1 (en) 2019-03-22 2021-09-22 Smoking Substitute System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19020183.0A EP3711551A1 (fr) 2019-03-22 2019-03-22 Système de substitution du tabac

Publications (1)

Publication Number Publication Date
EP3711551A1 true EP3711551A1 (fr) 2020-09-23

Family

ID=65955003

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19020183.0A Ceased EP3711551A1 (fr) 2019-03-22 2019-03-22 Système de substitution du tabac
EP20715698.5A Pending EP3941256A1 (fr) 2019-03-22 2020-03-13 Système de substitution pour fumeurs

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20715698.5A Pending EP3941256A1 (fr) 2019-03-22 2020-03-13 Système de substitution pour fumeurs

Country Status (2)

Country Link
EP (2) EP3711551A1 (fr)
WO (1) WO2020193178A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239384A1 (fr) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 Unité d'alimentation électrique pour dispositif de génération d'aérosol
WO2022239385A1 (fr) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 Unité d'alimentation électrique pour dispositif de génération d'aérosol
WO2024046869A1 (fr) * 2022-08-31 2024-03-07 Imperial Tobacco Limited Dispositif de génération d'aérosol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140360515A1 (en) * 2011-09-06 2014-12-11 British American Tobacco (Investments) Limited Heating smokeable material
US20170042243A1 (en) * 2014-05-21 2017-02-16 Philip Morris Products S.A. Electrically heated aerosol-generating system with end heater
WO2018220558A1 (fr) * 2017-05-31 2018-12-06 Philip Morris Products S.A. Composant chauffant dans des dispositifs de production d'aérosol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140360515A1 (en) * 2011-09-06 2014-12-11 British American Tobacco (Investments) Limited Heating smokeable material
US20170042243A1 (en) * 2014-05-21 2017-02-16 Philip Morris Products S.A. Electrically heated aerosol-generating system with end heater
WO2018220558A1 (fr) * 2017-05-31 2018-12-06 Philip Morris Products S.A. Composant chauffant dans des dispositifs de production d'aérosol

Also Published As

Publication number Publication date
WO2020193178A1 (fr) 2020-10-01
EP3941256A1 (fr) 2022-01-26

Similar Documents

Publication Publication Date Title
EP3711550A1 (fr) Système de substitution du tabac
WO2020193178A1 (fr) Système de substitution pour fumeurs
EP3711552B1 (fr) Système de substitution du tabac
WO2020193217A1 (fr) Système de substitution pour fumeurs
EP3941252A1 (fr) Système de substitution au tabac
WO2020193220A1 (fr) Système de substitution pour fumeurs
WO2020193191A1 (fr) Système de substitution pour fumeur
EP3711539A1 (fr) Système de chauffage sans combustion
EP3711548A1 (fr) Système de substitution du tabac
WO2021028561A1 (fr) Système de substitution pour fumeur
EP3711568A1 (fr) Système de substitution du tabac
EP3711545A1 (fr) Appareil de chauffage pour système de substitution du tabac
EP3711527A1 (fr) Système de substitution du tabac
EP3941235B1 (fr) Système de substitution du tabac
EP3711517A1 (fr) Système de substitution du tabac
EP3711559A1 (fr) Système de substitution du tabac
EP3711575A1 (fr) Système de substitution du tabac
EP3711555A1 (fr) Système de substitution du tabac technique
EP3711564A1 (fr) Système de substitution du tabac
EP3711579A1 (fr) Système de substitution du tabac

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

18R Application refused

Effective date: 20201228