EP3706928B1 - Rolling stand having a seal to prevent lubricant escaping - Google Patents

Rolling stand having a seal to prevent lubricant escaping Download PDF

Info

Publication number
EP3706928B1
EP3706928B1 EP18796922.5A EP18796922A EP3706928B1 EP 3706928 B1 EP3706928 B1 EP 3706928B1 EP 18796922 A EP18796922 A EP 18796922A EP 3706928 B1 EP3706928 B1 EP 3706928B1
Authority
EP
European Patent Office
Prior art keywords
seal
roll
chock
journal
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18796922.5A
Other languages
German (de)
French (fr)
Other versions
EP3706928A1 (en
Inventor
Johannes Alken
Daniel Knie
Andrej TUCAK
Ralf Seidel
Matthias Kipping
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3706928A1 publication Critical patent/EP3706928A1/en
Application granted granted Critical
Publication of EP3706928B1 publication Critical patent/EP3706928B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/07Adaptation of roll neck bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/07Adaptation of roll neck bearings
    • B21B31/078Sealing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/07Adaptation of roll neck bearings
    • B21B31/074Oil film bearings, e.g. "Morgoil" bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • F16C13/02Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/12Rolling apparatus, e.g. rolling stands, rolls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/441Free-space packings with floating ring

Definitions

  • the invention relates to a roll stand with a seal for sealing a lubricant space against leakage of lubricant.
  • Ring seals with cavities to achieve a dynamic sealing effect depending on the pressure conditions in the ring or lubricant gap of a bearing are e.g. B. known from the U.S. 5,169,159 or the EP 3 098 486 A1 .
  • Roll stands with seals, as they are the basis of the present invention, are basically known in the prior art, for. B. from the German Offenlegungsschriften DE 10 2013 224 117 A1 or DE 10 2015 209 637 A1 . Both laid-open documents each disclose a roll stand with at least one roll for rolling, in particular, metallic rolling stock. The roll has two roll journals and a roll barrel.
  • the roll stand has chocks - here for example each with a bearing bush - for the rotatable mounting of the roll in the roll stand.
  • the chocks or the bearing bushes each span a receiving opening for receiving one of the roll journals, optionally with a drawn-on journal bushing.
  • An annular gap for receiving a lubricant is formed between the roller and the chock. Both at its end on the ball side and at its end remote from the ball, the annular gap is sealed by an annular seal detachably attached to the bearing bush.
  • the ring seal is designed in such a way that it prevents or reduces a lateral outflow of the lubricant from the annular gap in a predetermined circumferential angle range.
  • sealing systems known from the prior art such as. B. used radial shaft seals or labyrinth seals.
  • the preamble of claim 1 is based on DE 10 2015 209 637 A1 .
  • the preload with which the Ring seal is pressed in the radial direction on the roll journal or the journal bushing is structurally determined when designing the roll stand.
  • the preload does not adapt to the pressure of the lubricant which varies in time and place in the annular gap. The result is that if the predetermined preload is too small, the annular gap is only inadequately sealed; ie there are leaks. In the opposite case, ie if the predetermined preload is too great, there is increased friction between the seal and the roll journal or the journal bush, as a result of which excessive wear of the seal occurs. This increased wear can quickly lead to the destruction of the seal.
  • the seal can be destroyed by extrusion into an annular gap with low or atmospheric pressure.
  • the seal typically does not extrude into the annular gap between the roll neck and the chock because there is a very high counterpressure there. Instead, there is a risk that the seal will extrude in the opposite direction because there is no counter pressure there.
  • ring seals for sealing ring gaps in roll stands which have a circumferential groove open towards the ring gap on their side faces facing the ring gap.
  • the invention is based on the object of developing a seal in a known roll stand to the effect that the pressing force with which the seal against a surface in the roll stand, for example the surface of the Journal bushing or the roll journal is pressed, is suitably adapted or set to the local pressure conditions in the annular gap to be sealed.
  • bearing means in particular - but not only - oil film bearings.
  • a first annular gap or lubricant space is part of the actual bearing, in particular an oil film bearing; it is therefore also referred to below as the annular gap or lubricant space of the bearing. It is formed between the bearing bush and the trunnion bush. If the roll stand is designed without a bearing bush and journal bushing, it is located between the chock and the roll journal. The lubricant in this first annular gap bears the entire load during the rolling operation, at least in places.
  • a second annular gap or lubricant space is not part of the actual bearing, but adjoins it. It is also referred to below as the annular gap or lubricant space under the seal. It is located between the running surface of the seal and the opposite journal bushing or the opposite roll journal. If the first annular gap is sealed on both sides by a seal, there are two second annular gaps under the seals per roll in a roll stand.
  • both annular gaps or lubricant spaces are in fluid-conducting connection with one another.
  • the radial height and thus the volume of the first annular gap are significantly greater than in the case of the second annular gap. That's why it stands Lubricant in the first annular gap during operation of the roll stand under a much greater pressure than in the second annular gap.
  • the pressure in the first annular gap is typically distributed differently over the circumference.
  • the cavities in the seal are each individually connected in a fluid-conducting manner to the pressurized lubricant space of the bearing.
  • the cavities fill with the lubricant and, moreover, the cavities are also exposed to the same pressure, which varies in the circumferential direction and over time, as the lubricant in the lubricant chamber of the bearing. Due to the elasticity of the material from which the seal is made, the cavities expand to a greater or lesser extent depending on the strength of the pressurization.
  • the expansion of the cavities leads to an increase in the volume of the seal and thus automatically to an increase in the pressure with which the seal acts on a surface to be sealed, in particular a journal bushing or a roll journal.
  • the volume of the seal and the pressing force also vary accordingly.
  • the claimed design of the seal advantageously ensures that the pressure force with the pressure conditions in the lubricant chamber of the bearing is distributed over the circumference and varies over time, or that the pressure force automatically adapts to the pressure conditions in the lubricant chamber in a suitable manner.
  • the lubricant and the pressure to which it is exposed can get into the cavities; that is, there must be a fluid-conducting connection between the cavities and the pressurized lubricant space of the bearing.
  • This fluid-conducting connection can, for example, either be implemented in that the cavities are formed as a recess on the surface of the seal and are open to the lubricant chamber of the bearing and / or that the cavities on the surface or inside the seal are fed into the lubricant chamber of the Open into the camp.
  • the cavities are in fluid or pressure-conducting connection with the lubricant in the lubricant space of the bearing.
  • the properties of the lubricating film in the second annular gap between the seal and the contact surface of the journal bushing or of the roll journal can be adjusted.
  • the individual cavities in the seal can be designed differently in shape and size; they are preferably designed differently in groups.
  • the strength of the pressing force can also be controlled with the size and shape of the cavities. The larger the cavities, the greater the achievable increase in volume of the seal and, consequently, the achievable pressing force and vice versa.
  • the individual separate cavities in the seal are preferably evenly distributed over the length or the circumference of the seal. This offers the advantage that the seal has the same properties in every circumferential angular position and thus - assuming the same pressure - the same sealing effect can be achieved.
  • the training is the seal makes sense as a ring seal.
  • the running or sealing surface of the seal is typically formed on the inside of the ring seal, ie facing the center or midpoint of the ring seal. This ensures that, particularly when the seal is used on roll necks, the sealing surface faces the outer surface of the roll neck.
  • the advantages of the claimed roll stand essentially correspond to the advantages mentioned above with reference to the claimed seal.
  • the surface of the roll neck now forms the contact surface against which the seal is pressed with its running surface.
  • the pressing force is now automatically adapted to the possibly very high pressure level in the annular gap between the roll neck and the chock or in the annular gap between the roll neck and the running surface of the seal.
  • This said variation of the pressing force as a function of the pressure conditions in the annular gap can be superimposed on a preset preload with which the running surface of the seal presses on a contact surface.
  • the total radial pressure force realized in this way from the superimposition of preload and variable pressure force must be balanced or adjusted so that it is not too large on the one hand, but also not too small on the other.
  • the total pressing force must not become too great because a lubricating film must be maintained between the running surface of the seal and the contact surface of the rotating roll neck in order to prevent solid body friction between the seal and the rotating roll neck. The solid body friction would have the consequence that the seal would wear and thereby become unusable or destroyed in the long run.
  • the total sealing force must not be too small, so that the thickness of the lubricating film is significantly less than the thickness / height of the first annular gap between the roll neck and the chock. Only if the thickness of the lubricating film in the second annular gap is significantly less than the thickness of the lubricating film in the first annular gap, the seal can also bring about the desired - not absolute, but extensive - sealing effect.
  • a complete seal is typically not desired, but only a seal in a specific circumferential angle range, namely where the smallest lubricant film thickness occurs. Therefore, the seal does not necessarily have to be designed as a full circumferential ring seal; rather, z. B. for the said application, a sealing strip or ring segment of limited length in said circumferential angle range.
  • a groove open towards the roll neck is formed on the end of the roll barrel side and / or on the end of the chock or the bearing bush remote from the roll barrel.
  • the groove is used to accommodate the ring seal.
  • the axially outside of the groove i. H. the outside of the groove facing away from the bearing bushing can be formed by a perforated disk that can be releasably connected to the chock or the bearing bushing, for example a screwable perforated disk.
  • a perforated disk that can be releasably connected to the chock or the bearing bushing, for example a screwable perforated disk.
  • the annular seal has at least one elevation on its front side facing the chock and / or on its front side facing away from the chock.
  • the recesses or cavities open directly into those surface areas of the seal which delimit the pressurized lubricant space of the bearing.
  • further recesses can also be formed in those areas of the surface of the seal which, when the seal is clamped in the groove, are pressed against the walls or the bottom of the groove and are thus sealed by being pressed on.
  • These further recesses or cavities are then preferably in fluid-conducting connection with the lubricant chamber of the bearing via the supply channels.
  • the chock or the bearing bush can preferably have pins protruding in the axial direction. These pins are arranged in such a way that they engage in said recesses on the surface of the seal.
  • the pins advantageously serve, on the one hand, as an anti-twist device for the seal, in particular during the rolling operation, and, on the other hand, to limit the deformation of the seal. Another possibility is the radial arrangement of the pins with the same functionality.
  • the volume of the recesses can be greater than the volume of the pins which protrude into the recesses when the seal is installed. This embodiment offers the advantage that, despite the pins protruding into the recesses, a remaining cavity remains which, if it is connected to the annular gap via a feed channel, can function as a cavity within the meaning of the present invention.
  • a design of the inner diameter of the ring seal larger than the outer diameter of the roll neck - optionally with a drawn-on journal bushing - at the axial height of the ring seal offers the advantage that the bearing formed by the chock with the roll neck stored therein can be operated as an oil film bearing.
  • the prerequisite for this is that the ring seal reduces the annular gap between the running surface and the contact surface only in a limited circumferential angle range, where the minimum lubricant film density prevails, down to the said lubricant film, while the seal does not have to achieve any significant sealing effect in the remaining circumferential angle range. In the area of the minimum lubricant film thickness, the entire pressing force is maximized and thus the annular gap is reduced down to the lubricant film.
  • Figure 1 shows the seal 100 designed according to the invention. It can be used to seal a lubricant space (in Figure 1 not shown) serve against leakage of lubricant. It is made at least partially from an elastic material and has a plurality of arbitrarily shaped cavities 110 in its interior.
  • the cavities 110 are in Figure 1 designed merely by way of example as cylindrical recesses 110 which are open towards the surface of the seal. Alternatively, the cavities 110 can also be formed completely in the interior of the seal; they are then connected to the surface of the seal in a fluid-conducting manner via supply channels 120.
  • the supply channels serve to supply the lubricant from the lubricant space 300 of a bearing, in particular an oil film bearing, into the respective cavities 110.
  • the underside of the seal 100 forms a running surface 112 with which the seal against a contact surface of a typically moving object, e.g. B. a roll neck is pressed.
  • the recesses or the supply channels 120 open into a first lubricant chamber 300 of the bearing that is to be sealed. This ensures that the lubricant and the pressure are transmitted from the first annular gap 300 into the cavities. It then turns into the Cavities always enter the possibly varying pressure from the lubricant chamber.
  • the reference numeral 225 and the hatching indicate wall areas of a groove into which the seal can typically be inserted. These wall areas then largely cover areas of the surface of the seal. Only the feed channels and / or recesses in the uncovered areas of the surface of the seal are in fluid-conducting connection with the first lubricant chamber 300; see also Figure 4 .
  • the recesses 110 can also be opened to other surface sections of the seal than to the lubricant chamber 300. This is particularly advantageous for these recesses to interact with the pins on the chock, which will be described below.
  • FIG. 12 also shows, by way of example, a first group of cutouts 110 and a second group of cutouts 110, the volume of the cutouts in the first group being greater than the volume of the cutouts in the second group.
  • the different volumes cause a different expansion of the seal and thus possibly a different proportion of a sealing force exerted by the seal.
  • the seal in Figure 1 has a width a; this width also corresponds, for example, to the width of the running surface 112. It can also be seen that the seal has, for example, a rectangular cross section.
  • the separate cavities 110 or recesses 110 are preferably evenly distributed over the length or the circumference of the seal. This has the advantage that the seal 100 therefore also dies at each point or each length section has the same properties.
  • the seal 100 can be designed in the form of an annular ring as a ring seal; please refer Figure 5 .
  • the running surface 112 is then designed to face the center or the midpoint of the ring seal or, in other words, the surface or contact surface of the cylinder; please refer Figure 5 .
  • FIG Figure 2 shows a roll stand according to the prior art, as is also the basis of the present invention.
  • the roll stand 200 has at least one, here by way of example four rolls 210, each with two roll journals 212 and one roll barrel 214 each. In particular, those in FIG Figure 2 The two middle work rolls shown are used for rolling rolling stock.
  • the rollers 210 are each rotatably mounted with their roller journals 212 in a chock 220, also called a bearing housing.
  • FIG. 3 shows this storage in a longitudinal section in detail.
  • the roller 210 can be seen with its roller journal 212 and its roller barrel 214.
  • a journal bushing 216 is pulled onto the roller journal.
  • the roll journal with the journal bush is mounted in a receiving opening which is spanned by a bearing bush 222.
  • the bearing bush 222 is arranged non-rotatably in the chock 220.
  • An annular gap 300 is formed between the non-rotatably arranged bearing bush 222 and the journal bush 216 rotating with the roll neck 212 and is filled with lubricant 320 during operation of the roll stand.
  • the lubricant is then under a high pressure, typically a few 100 bar, in the annular gap.
  • the annular gap 300 is sealed by the ring seal 100 according to the invention both at its end on the roller barrel side and at its end remote from the roller barrel.
  • the ring seal 100 does not have to be designed according to the invention over its entire circumference; in principle, only a section of the ring seal can be designed accordingly.
  • the bearing bushing 222 has, at its end on the side of the roll barrel and at its end remote from the roll barrel, a groove 230 which is open towards the roll journal 212 and into which the ring seal 100 is inserted.
  • the outsides of the two grooves 230 are in the in Figure 3
  • the example shown is not formed by the bearing bush 222. Rather, the outer sides of the grooves are each formed there by perforated disks 240 which are screwed onto the bearing bush 222 with screws 245.
  • the width a of the ring seal 100 in the unloaded state and, if necessary, taking into account the elevations 130, see Figure 1 are deliberately designed slightly larger in the axial direction R according to the invention than the width A of the groove structurally predetermined by the bearing bush 222, it is possible that by tightening the screws 245 the axial force with which the ring seals 100 are squeezed in the groove is variable can be adjusted. Due to the isotropic behavior of the material of the seal 100, the axial squeezing or upsetting causes not only a reduction in the width of the ring seal, but also an expansion of the ring seal in the radial direction. A variation in the axial clamping force therefore also automatically causes a variation in the preload or the radial pressing force with which the running surface 112 of the seal 100 is pressed against the opposite contact surface of the trunnion bushing 216.
  • Figure 4 shows the installation of the seal 100 in the bearing bush 222 again in detail.
  • the reference numeral 225 denotes the wall areas of the groove in the chock or the bearing bushing, against which the seal 100 is pressed when it is installed in the groove.
  • the seal and the cavities on the surface of the seal are optionally covered and sealed by these wall areas. Cavities or feed channels arranged only radially further inward open into the first annular gap 300.
  • the thickness of the lubricating film 330 in the second annular gap 140 between the running surface 112 of the seal 100 and the opposite contact surface 218 of the journal bushing 216 is significantly less than the thickness of the annular gap 300 largely protrudes in the radial direction into the annular gap 300 originally present there. In Figure 4 the proportions are shown exaggerated.
  • the ring seal actually presses on the contact surface 218 of the trunnion bushing 216 due to the radial pressing force FR. Due to the aforementioned high pressure ratios, however, the said lubricating film 330 with a thickness of only a few ⁇ m forms between the running surface 112 and the contact surface 218. The pressure in the first annular gap 300 is significantly greater than in the second annular gap 140.
  • the ring seal 100 is inserted into the groove 230 in such a way that its recesses 110 engage with pins 228 which extend from the end face of the bearing bush 222 delimiting the groove 230, preferably in the axial direction R.
  • the pins extend perpendicular to the axial direction.
  • the remaining cavity 116 is sealed off from the bearing bush 222 due to the axial or radial pressing force with which the ring seal 100 is pressed into the groove with the aid of the perforated disk 240; it therefore functions as a cavity 110 in the sense of the invention, which opens into the lubricant chamber 300 of the (oil film) bearing via a feed channel 120.
  • Figure 5 has already been briefly described in the introduction. It shows a cross section through the receiving space spanned by the bearing bush for receiving the roll neck 212. As seen from a synopsis of the Figures 4 and 5 can be seen, the receiving space is not only provided by the bearing bush 222, but in particular also limited in the radial direction by the ring seal 100, which typically protrudes further inward. Inside the receiving space, the roll journal 212 rotates, if necessary with the journal bushing 216 drawn on. For operation of the roll bearing as a hydrodynamic oil film bearing, the inner diameter dD of the ring seal 100 is greater than the outer diameter DZ of the roll journal 212 at the axial height of the ring seal, optionally with the journal bushing 216 drawn open.
  • the ring seal 100 During operation as a hydrodynamic oil film bearing, the ring seal 100 then presses itself so closely against the surface or contact surface 218 of the roll neck that only the Lubricant film 330 forms. In the remaining circumferential angular range, the running surface 112 of the ring seal 100 no longer rests on the contact surface 218 of the roll neck 212; rather, the distance between these two surfaces is greater than the thickness of the lubricating film in the region of the maximum rolling force; this applies in particular to the oversizing of the ring seal 100.
  • the oversizing and the resulting larger gap between the running surface 112 and the contact surface 218 advantageously enable an axial drainage of lubricant in the circumferential angle area outside the area of the maximum rolling force.
  • the outer diameter DD of the ring seal 100 typically corresponds to the inner diameter of the bottom of the groove 230.

Description

Die Erfindung betrifft ein Walzgerüst mit einer Dichtung zum Abdichten eines Schmiermittelraumes gegen einen Austritt von Schmiermittel.The invention relates to a roll stand with a seal for sealing a lubricant space against leakage of lubricant.

Ringdichtungen mit Hohlräumen zur Realisierung einer dynamischen Dichtwirkung in Abhängigkeit der Druckverhältnisse in dem Ring - bzw. Schmiermittelspalt eines Lagers sind z. B. bekannt aus der US 5,169,159 oder der EP 3 098 486 A1 . Walzgerüste mit Dichtungen, wie sie der vorliegenden Erfindung zugrunde liegen, sind im Stand der Technik grundsätzlich bekannt, z. B. aus den deutschen Offenlegungsschriften DE 10 2013 224 117 A1 oder DE 10 2015 209 637 A1 . Beide Offenlegungsschriften offenbaren jeweils ein Walzgerüst mit mindestens einer Walze zum Walzen von insbesondere metallischem Walzgut. Die Walze weist zwei Walzenzapfen und einen Walzenballen auf. Das Walzgerüst weist Einbaustücke - hier beispielsweise jeweils mit einer Lagerbuchse - auf zum drehbaren Lagern der Walze in dem Walzgerüst. Die Einbaustücke bzw. die Lagerbuchsen spannen jeweils eine Aufnahmeöffnung auf zur Aufnahme von einem der Walzenzapfen, optional mit einer aufgezogenen Zapfenbuchse. Zwischen der Walze und dem Einbaustück ist ein Ringspalt ausgebildet zur Aufnahme eines Schmiermittels. Sowohl an seinem ballenseitigen wie auch an seinem ballenfernen Ende ist der Ringspalt durch eine an der Lagerbuchse lösbar befestigte Ringdichtung abgedichtet. Die Ringdichtung ist dabei so ausgelegt, dass sie einen seitlichen Abfluss des Schmiermittels aus dem Ringspalt in einem vorbestimmten Umfangswinkelbereich verhindert bzw. reduziert. Für diesen Zweck wurden aus dem Stand der Technik bekannte Dichtsysteme, wie z. B. Radialwellendichtringe oder Labyrinthdichtungen verwendet. Der Oberbegriff von Anspruch 1 basiert auf der DE 10 2015 209 637 A1 .Ring seals with cavities to achieve a dynamic sealing effect depending on the pressure conditions in the ring or lubricant gap of a bearing are e.g. B. known from the U.S. 5,169,159 or the EP 3 098 486 A1 . Roll stands with seals, as they are the basis of the present invention, are basically known in the prior art, for. B. from the German Offenlegungsschriften DE 10 2013 224 117 A1 or DE 10 2015 209 637 A1 . Both laid-open documents each disclose a roll stand with at least one roll for rolling, in particular, metallic rolling stock. The roll has two roll journals and a roll barrel. The roll stand has chocks - here for example each with a bearing bush - for the rotatable mounting of the roll in the roll stand. The chocks or the bearing bushes each span a receiving opening for receiving one of the roll journals, optionally with a drawn-on journal bushing. An annular gap for receiving a lubricant is formed between the roller and the chock. Both at its end on the ball side and at its end remote from the ball, the annular gap is sealed by an annular seal detachably attached to the bearing bush. The ring seal is designed in such a way that it prevents or reduces a lateral outflow of the lubricant from the annular gap in a predetermined circumferential angle range. For this purpose, sealing systems known from the prior art, such as. B. used radial shaft seals or labyrinth seals. The preamble of claim 1 is based on DE 10 2015 209 637 A1 .

Alle verwendeten bzw. ausprobierten Dichtungssysteme erwiesen sich jedoch aus folgenden Gründen als ungeeignet: Die Vorspannung, mit welcher die Ringdichtung in radialer Richtung auf den Walzenzapfen bzw. die Zapfenbuchse gedrückt wird, wird bei Auslegung des Walzgerüstes konstruktiv festgelegt. Die Vorspannung passt sich nicht dem in dem Ringspalt wirkenden zeitlich und örtlich variierenden Druck des Schmiermittels an. Die Folge ist, dass bei zu kleiner vorbestimmter Vorspannung eine nur unzureichende Abdichtung des Ringspaltes erfolgt; d. h. es kommt zu Leckagen. Im umgekehrten Fall, d. h. bei zu großer vorbestimmter Vorspannung ergibt sich eine erhöhte Reibung zwischen der Dichtung und dem Walzenzapfen bzw. der Zapfenbuchse, wodurch ein übermäßiger Verschleiß der Dichtung entsteht. Dieser erhöhte Verschleiß kann schnell zu einer Zerstörung der Dichtung führen. Außerdem kann es passieren, dass bei zu hoher Vorspannung die Dichtung durch Extrusion in einen Ringspalt mit geringem bzw. mit Atmosphärendruck zerstört wird. Die Dichtung extrudiert typischerweise nicht in den Ringspalt zwischen dem Walzenzapfen und dem Einbaustück, weil dort ein sehr hoher Gegendruck herrscht. Stattdessen besteht die Gefahr, dass die Dichtung in die entgegengesetzte Richtung extrudiert, weil dort eben kein Gegendruck herrscht.However, all sealing systems used or tried out turned out to be unsuitable for the following reasons: The preload with which the Ring seal is pressed in the radial direction on the roll journal or the journal bushing, is structurally determined when designing the roll stand. The preload does not adapt to the pressure of the lubricant which varies in time and place in the annular gap. The result is that if the predetermined preload is too small, the annular gap is only inadequately sealed; ie there are leaks. In the opposite case, ie if the predetermined preload is too great, there is increased friction between the seal and the roll journal or the journal bush, as a result of which excessive wear of the seal occurs. This increased wear can quickly lead to the destruction of the seal. In addition, if the preload is too high, the seal can be destroyed by extrusion into an annular gap with low or atmospheric pressure. The seal typically does not extrude into the annular gap between the roll neck and the chock because there is a very high counterpressure there. Instead, there is a risk that the seal will extrude in the opposite direction because there is no counter pressure there.

Bekannt sind auch Ringdichtungen zur Abdichtung von Ringspalten in Walzgerüsten, welche jeweils an ihren dem Ringspalt zugewandten Seitenflächen eine zu dem Ringspalt hin geöffnete umlaufende Nut aufweisen.Also known are ring seals for sealing ring gaps in roll stands, which have a circumferential groove open towards the ring gap on their side faces facing the ring gap.

Der Druck in dieser umlaufenden Nut - und damit die Dichtwirkung der Ringdichtung - ist jedoch in allen Umfangswinkelbereichen gleich, weil sich der Druck über den Umfang ausgleicht. Diese bekannte Ringdichtung mit umlaufender Nut ist deshalb nicht geeignet, in einzelnen Umfangswinkelbereichen wirkenden unterschiedlichen Druckverhältnissen durch unterschiedlich starke Dichtwirkungen Rechnung zu tragen.The pressure in this circumferential groove - and thus the sealing effect of the ring seal - is, however, the same in all circumferential angular areas because the pressure is equalized over the circumference. This known ring seal with a circumferential groove is therefore not suitable for taking into account different pressure ratios acting in individual circumferential angular areas by means of differently strong sealing effects.

Der Erfindung liegt die Aufgabe zugrunde, eine Dichtung in einem bekannten Walzgerüst dahingehend weiterzubilden, dass die Andrückkraft, mit welcher die Dichtung gegen eine Fläche in dem Walzgerüst, beispielsweise die Oberfläche der Zapfenbuchse bzw. des Walzenzapfens, gedrückt wird, geeignet an die lokalen Druckverhältnisse in dem abzudichtenden Ringspalt angepasst bzw. eingestellt wird.The invention is based on the object of developing a seal in a known roll stand to the effect that the pressing force with which the seal against a surface in the roll stand, for example the surface of the Journal bushing or the roll journal is pressed, is suitably adapted or set to the local pressure conditions in the annular gap to be sealed.

Diese Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst.This object is achieved by the subject matter of claim 1.

Der Begriff "Lager" meint im Rahmen der vorliegenden Erfindung insbesondere - aber nicht nur - Ölfilmlager.In the context of the present invention, the term “bearing” means in particular - but not only - oil film bearings.

Bei der vorliegenden Erfindung sind zwei Arten von Ringspalten, nachfolgend auch Schmiermittelräume genannt, zu unterscheiden:
Ein erster Ringspalt bzw. Schmiermittelraum ist Teil des eigentlichen Lagers insbesondere Ölfilmlagers; er wird deshalb nachfolgend auch als Ringspalt bzw. Schmiermittelraum des Lagers bezeichnet. Er ist zwischen der Lagerbuchse und der Zapfenbuchse ausgebildet. Bei Ausführung des Walzgerüstes ohne Lagerbuchse und Zapfenbuchse befindet er sich zwischen dem Einbaustück und dem Walzenzapfen. Das Schmiermittel in diesem ersten Ringspalt trägt zumindest stellenweise die gesamte Belastung beim Walzbetrieb.
In the present invention, a distinction must be made between two types of annular gaps, also referred to below as lubricant spaces:
A first annular gap or lubricant space is part of the actual bearing, in particular an oil film bearing; it is therefore also referred to below as the annular gap or lubricant space of the bearing. It is formed between the bearing bush and the trunnion bush. If the roll stand is designed without a bearing bush and journal bushing, it is located between the chock and the roll journal. The lubricant in this first annular gap bears the entire load during the rolling operation, at least in places.

Ein zweiter Ringspalt bzw. Schmiermittelraum ist nicht Teil des eigentlichen Lagers, sondern grenzt an dieses an. Er wird nachfolgend auch Ringspalt bzw. Schmiermittelraum unter der Dichtung genannt. Er befindet sich zwischen der Lauffläche der Dichtung und der gegenüberliegenden Zapfenbuchse bzw. dem gegenüberliegenden Walzenzapfen. Wenn der erste Ringspalt beidseitig von jeweils einer Dichtung abgedichtet wird, gibt es zwei zweite Ringspalte unter den Dichtungen pro Walze in einem Walzgerüst.A second annular gap or lubricant space is not part of the actual bearing, but adjoins it. It is also referred to below as the annular gap or lubricant space under the seal. It is located between the running surface of the seal and the opposite journal bushing or the opposite roll journal. If the first annular gap is sealed on both sides by a seal, there are two second annular gaps under the seals per roll in a roll stand.

Beide Ringspalte bzw. Schmiermittelräume stehen in fluidleitender Verbindung miteinander. Die radiale Höhe und damit das Volumen des ersten Ringspaltes sind jedoch deutlich größer als bei dem zweiten Ringspalt. Deshalb steht das Schmiermittel in dem ersten Ringspalt während des Betriebs des Walzgerüstes unter einem wesentlich größeren Druck als in dem zweiten Ringspalt. Der Druck in dem ersten Ringspalt ist jedoch typischerweise über den Umfang unterschiedlich verteilt.Both annular gaps or lubricant spaces are in fluid-conducting connection with one another. However, the radial height and thus the volume of the first annular gap are significantly greater than in the case of the second annular gap. That's why it stands Lubricant in the first annular gap during operation of the roll stand under a much greater pressure than in the second annular gap. However, the pressure in the first annular gap is typically distributed differently over the circumference.

Durch die beanspruchte fluidleitende Verbindung sind die Hohlräume in der Dichtung jeweils individuell fluidleitend mit dem unter Druck stehenden Schmiermittelraum des Lagers verbunden. Demzufolge füllen sich die Hohlräume bei Verwendung der Dichtung mit dem Schmiermittel und außerdem sind die Hohlräume dadurch auch demselben in Umfangsrichtung und zeitlich variierenden Druck ausgesetzt, wie das Schmiermittel in dem Schmiermittelraum des Lagers. Aufgrund der Elastizität des Materials, aus dem die Dichtung gefertigt ist, dehnen sich die Hohlräume je nach Stärke der Druckbeaufschlagung mehr oder weniger aus. Die Ausdehnung der Hohlräume führt aufgrund der isotropen Eigenschaften des Dichtungsmaterials zu einer Vergrößerung des Volumens der Dichtung und damit automatisch auch zu einer Vergrößerung der Andrückkraft, mit welcher die Dichtung auf eine abzudichtende Fläche, insbesondere eine Zapfenbuchse oder einen Walzenzapfen wirkt. Bei variablen Druckverhältnissen variiert dementsprechend auch das Volumen der Dichtung und die Andrückkraft. Anders ausgedrückt: Durch die beanspruchte Ausgestaltung der Dichtung wird vorteilhafterweise erreicht, dass die Andrückkraft mit den Druckverhältnissen in dem Schmiermittelraum des Lagers über den Umfang verteilt und zeitlich variiert bzw. dass sich die Andrückkraft automatisch in geeigneter Weise an die Druckverhältnisse in dem Schmiermittelraum anpasst. Die Anpassung der Andrückkraft an die in Umfangsrichtung unterschiedlichen Druckverhältnisse in dem Schmiermittelraum des Lagers wird bei der erfindungsgemäßen Dichtung insbesondere dadurch erreicht, dass keine umlaufende Nut, sondern eine Mehrzahl von in Umfangsrichtung getrennt voneinander ausgebildete Hohlräume vorgesehen sind, welche in unterschiedlichen Umfangsbereichen mit dem Schmiermittelraum des Lagers in fluidleitender Verbindung stehen.As a result of the stressed fluid-conducting connection, the cavities in the seal are each individually connected in a fluid-conducting manner to the pressurized lubricant space of the bearing. As a result, when the seal is used, the cavities fill with the lubricant and, moreover, the cavities are also exposed to the same pressure, which varies in the circumferential direction and over time, as the lubricant in the lubricant chamber of the bearing. Due to the elasticity of the material from which the seal is made, the cavities expand to a greater or lesser extent depending on the strength of the pressurization. Due to the isotropic properties of the sealing material, the expansion of the cavities leads to an increase in the volume of the seal and thus automatically to an increase in the pressure with which the seal acts on a surface to be sealed, in particular a journal bushing or a roll journal. With variable pressure ratios, the volume of the seal and the pressing force also vary accordingly. In other words, the claimed design of the seal advantageously ensures that the pressure force with the pressure conditions in the lubricant chamber of the bearing is distributed over the circumference and varies over time, or that the pressure force automatically adapts to the pressure conditions in the lubricant chamber in a suitable manner. The adaptation of the pressing force to the different circumferential pressure conditions in the lubricant space of the bearing is achieved in the seal according to the invention in particular that no circumferential groove, but rather a plurality of cavities formed separately from one another in the circumferential direction are provided, which are in different circumferential areas with the lubricant space Bearing are in fluid communication.

Für das Funktionieren der erfindungsgemäßen Dichtung ist es wichtig, dass, wie gesagt, das Schmiermittel und der Druck, dem es ausgesetzt ist, in die Hohlräume gelangen kann; das heißt, es muss eine fluidleitende Verbindung zwischen den Hohlräumen und dem unter Druck stehenden Schmiermittelraum des Lagers bestehen. Diese fluidleitende Verbindung kann beispielsweise entweder dadurch realisiert sein, dass die Hohlräume als Aussparung an der Oberfläche der Dichtung ausgebildet und zu dem Schmiermittelraum des Lagers hin geöffnet sind und/oder dass die Hohlräume an der Oberfläche oder im Inneren der Dichtung über Zuführkanäle in den Schmiermittelraum des Lagers münden. Bei beiden Varianten stehen die Hohlräume in fluid- bzw. druckleitender Verbindung mit dem Schmiermittel in dem Schmiermittelraum des Lagers.For the seal according to the invention to function, it is important that, as said, the lubricant and the pressure to which it is exposed can get into the cavities; that is, there must be a fluid-conducting connection between the cavities and the pressurized lubricant space of the bearing. This fluid-conducting connection can, for example, either be implemented in that the cavities are formed as a recess on the surface of the seal and are open to the lubricant chamber of the bearing and / or that the cavities on the surface or inside the seal are fed into the lubricant chamber of the Open into the camp. In both variants, the cavities are in fluid or pressure-conducting connection with the lubricant in the lubricant space of the bearing.

Durch eine Profilierung der Lauffläche der Dichtung können die Eigenschaften des Schmierfilms in dem zweiten Ringspalt zwischen der Dichtung und der Anlagefläche der Zapfenbuchse bzw. des Walzenzapfens eingestellt werden.By profiling the running surface of the seal, the properties of the lubricating film in the second annular gap between the seal and the contact surface of the journal bushing or of the roll journal can be adjusted.

Die einzelnen Hohlräume in der Dichtung können in Form und Größe unterschiedlich ausgebildet sein; vorzugsweise sind sie gruppenweise unterschiedlich ausgebildet. Mit der Größe und Form der Hohlräume kann auch die Stärke der Andrückkraft gesteuert werden. Je größer die Hohlräume desto größer ist die erzielbare Volumenvergrößerung der Dichtung und damit einhergehend die erzielbare Andrückkraft und umgekehrt.The individual cavities in the seal can be designed differently in shape and size; they are preferably designed differently in groups. The strength of the pressing force can also be controlled with the size and shape of the cavities. The larger the cavities, the greater the achievable increase in volume of the seal and, consequently, the achievable pressing force and vice versa.

Gemäß einem weiteren Ausführungsbeispiel sind die einzelnen separaten Hohlräume in der Dichtung über die Länge bzw. den Umfang der Dichtung vorzugsweise gleichmäßig verteilt. Dies bietet den Vorteil, dass die Dichtung in jeder Umfangswinkellage die gleichen Eigenschaften und damit - ein gleicher Druck vorausgesetzt - eine gleiche Dichtwirkung erzielt werden kann.According to a further exemplary embodiment, the individual separate cavities in the seal are preferably evenly distributed over the length or the circumference of the seal. This offers the advantage that the seal has the same properties in every circumferential angular position and thus - assuming the same pressure - the same sealing effect can be achieved.

Für die Verwendung der Dichtung in Walzgerüsten zur Abdichtung von Ringspalten, d. h. ringförmigen Schmiermittelspalten von Lagern ist die Ausbildung der Dichtung als Ringdichtung sinnvoll. Bei der Ausbildung als Ringdichtung ist die Lauf- bzw. Dichtfläche der Dichtung typischerweise an der Innenseite der Ringdichtung, d. h. dem Zentrum bzw. Mittelpunkt der Ringdichtung zugewandt ausgebildet. Dann ist gewährleistet, dass insbesondere bei der Verwendung der Dichtung an Walzenzapfen die Dichtfläche der äußeren Oberfläche der Walzenzapfen zugewandt ist.For the use of the seal in roll stands for sealing annular gaps, ie annular lubricant gaps of bearings, the training is the seal makes sense as a ring seal. When designed as a ring seal, the running or sealing surface of the seal is typically formed on the inside of the ring seal, ie facing the center or midpoint of the ring seal. This ensures that, particularly when the seal is used on roll necks, the sealing surface faces the outer surface of the roll neck.

Die Vorteile des beanspruchten Walzgerüstes entsprechen im Wesentlichen den oben mit Bezug auf die beanspruchte Dichtung genannten Vorteilen. Die Oberfläche des Walzenzapfens bildet jetzt die Anlagefläche, gegen welche die Dichtung mit ihrer Lauffläche angedrückt wird. Wie oben beschrieben, wird jetzt aufgrund der besonderen konstruktiven Ausgestaltung der Dichtung die Andrückkraft automatisch an das eventuell sehr hohe Druckniveau in dem Ringspalt zwischen Walzenzapfen und Einbaustück bzw. in den Ringspalt zwischen Walzenzapfen und Lauffläche der Dichtung angepasst.The advantages of the claimed roll stand essentially correspond to the advantages mentioned above with reference to the claimed seal. The surface of the roll neck now forms the contact surface against which the seal is pressed with its running surface. As described above, due to the special structural design of the seal, the pressing force is now automatically adapted to the possibly very high pressure level in the annular gap between the roll neck and the chock or in the annular gap between the roll neck and the running surface of the seal.

Diese besagte Variation der Andrückkraft in Abhängigkeit der Druckverhältnisse in dem Ringspalt kann einer voreingestellten Vorspannung, mit welcher die Lauffläche der Dichtung auf eine Anlagefläche drückt, überlagert sein. Die auf diese Weise aus der Überlagerung von Vorspannung und variabler Andrückkraft realisierte radiale gesamte Andrückkraft ist so auszutarieren bzw. einzustellen, dass sie einerseits nicht zu groß, aber andererseits auch nicht zu klein ist. Die gesamte Andrückkraft darf nicht zu groß werden, weil ein Schmierfilm zwischen der Lauffläche der Dichtung und der Anlagefläche des rotierenden Walzenzapfens erhalten werden muss, um eine Festkörperreibung zwischen der Dichtung und dem rotierenden Walzenzapfen zu verhindern. Die Festkörperreibung hätte zur Folge, dass die Dichtung verschleißt und dadurch auf Dauer unbrauchbar bzw. zerstört werden würde. Andererseits darf die gesamte Dichtkraft auch nicht zu klein sein, damit die Dicke des Schmierfilms deutlich geringer wird als die Dicke/Höhe des ersten Ringspaltes zwischen dem Walzenzapfen und dem Einbaustück. Nur wenn die Dicke des Schmierfilms in dem zweiten Ringspalt deutlich geringer ist als die Dicke des Schmierfilms in dem ersten Ringspalt, kann die Dichtung auch die gewünschte - nicht absolute, aber weitgehende - Dichtwirkung bewirken.This said variation of the pressing force as a function of the pressure conditions in the annular gap can be superimposed on a preset preload with which the running surface of the seal presses on a contact surface. The total radial pressure force realized in this way from the superimposition of preload and variable pressure force must be balanced or adjusted so that it is not too large on the one hand, but also not too small on the other. The total pressing force must not become too great because a lubricating film must be maintained between the running surface of the seal and the contact surface of the rotating roll neck in order to prevent solid body friction between the seal and the rotating roll neck. The solid body friction would have the consequence that the seal would wear and thereby become unusable or destroyed in the long run. On the other hand, the total sealing force must not be too small, so that the thickness of the lubricating film is significantly less than the thickness / height of the first annular gap between the roll neck and the chock. Only if the thickness of the lubricating film in the second annular gap is significantly less than the thickness of the lubricating film in the first annular gap, the seal can also bring about the desired - not absolute, but extensive - sealing effect.

Insbesondere bei hydrodynamischen Ölfilmlagern ist typischerweise keine vollumfängliche Abdichtung, sondern nur eine Abdichtung in einem bestimmten Umfangswinkelbereich, nämlich dort, wo die kleinste Schmierfilmdicke auftritt, gewünscht. Deshalb muss die Dichtung nicht zwingend notwendig als vollumfängliche Ringdichtung ausgebildet sein; vielmehr genügt z. B. für den besagten Anwendungsfall ein Dichtungsstreifen bzw. Ringsegment begrenzter Länge in dem besagten Umfangswinkelbereich.In the case of hydrodynamic oil film bearings in particular, a complete seal is typically not desired, but only a seal in a specific circumferential angle range, namely where the smallest lubricant film thickness occurs. Therefore, the seal does not necessarily have to be designed as a full circumferential ring seal; rather, z. B. for the said application, a sealing strip or ring segment of limited length in said circumferential angle range.

Bei dem beanspruchten Walzgerüst ist an dem walzenballenseitigen Ende und/oder an dem walzenballenfernen Ende des Einbaustücks oder der Lagerbuchse eine zu dem Walzenzapfen hin geöffnete Nut ausgebildet. Die Nut dient zur Aufnahme der Ringdichtung.In the case of the claimed roll stand, a groove open towards the roll neck is formed on the end of the roll barrel side and / or on the end of the chock or the bearing bush remote from the roll barrel. The groove is used to accommodate the ring seal.

Beispielsweise kann die axiale Außenseite der Nut, d. h. die der Lagerbuchse abgewandte Außenseite der Nut durch eine mit dem Einbaustück oder mit der Lagerbuchse lösbar verbindbare, beispielsweise verschraubbare Lochscheibe gebildet sein. Weil die Breite der Ringdichtung in unbelastetem Zustand größer ist als die Breite der Nut in axialer Richtung, dann kann durch das Anschrauben der Lochscheibe die Vorspannkraft eingestellt werden, mit welcher die Dichtung in radialer Richtung auf den Walzenzapfen wirkt. Grund dafür ist, dass sich die elastische Dichtung bei Einspannung in axialer Richtung in der Nut isotrop, d. h. auch in radialer Richtung ausdehnt. In Abhängigkeit des durch die Verschraubung ausgeübten Drucks in axialer Richtung kann auch die besagte Vorspannkraft in gewünschter Weise eingestellt werden.For example, the axially outside of the groove, i. H. the outside of the groove facing away from the bearing bushing can be formed by a perforated disk that can be releasably connected to the chock or the bearing bushing, for example a screwable perforated disk. Because the width of the ring seal in the unloaded state is greater than the width of the groove in the axial direction, the pretensioning force with which the seal acts on the roll neck in the radial direction can be adjusted by screwing on the perforated disk. The reason for this is that the elastic seal is isotropic when it is clamped in the axial direction in the groove. H. also expands in the radial direction. Depending on the pressure exerted by the screw connection in the axial direction, said pretensioning force can also be set in the desired manner.

Um Fertigungstoleranzen bei der Dichtung auszugleichen und um sicherzustellen, dass die Dichtung in ihrer axialen Breite in jedem Fall zumindest geringfügig größer ist als die Breite der Ringnut, ist es vorteilhaft, wenn die Ringdichtung an ihrer dem Einbaustück zugewandten Stirnseite und/oder an ihrer dem Einbaustück abgewandten Stirnseite mindestens eine Überhöhung aufweist.To compensate for manufacturing tolerances in the seal and to ensure that the seal is at least slightly in its axial width is greater than the width of the annular groove, it is advantageous if the annular seal has at least one elevation on its front side facing the chock and / or on its front side facing away from the chock.

Wie oben bereits ausgeführt, münden die Aussparungen oder Hohlräume direkt in diejenigen Oberflächenbereiche der Dichtung, die den unter Druck stehenden Schmiermittelraum des Lagers begrenzen. Alternativ oder zusätzlich können aber auch weitere Aussparungen an denjenigen Bereichen der Oberfläche der Dichtung ausgebildet sein, welche bei Einspannung der Dichtung in die Nut gegen deren Wände oder den Boden der Nut gedrückt werden und so durch das Andrücken abgedichtet werden. Diese weiteren Aussparungen bzw. Hohlräume stehen dann vorzugsweise über die Zuführkanäle mit dem Schmiermittelraum des Lagers in fluidleitender Verbindung.As already stated above, the recesses or cavities open directly into those surface areas of the seal which delimit the pressurized lubricant space of the bearing. Alternatively or additionally, however, further recesses can also be formed in those areas of the surface of the seal which, when the seal is clamped in the groove, are pressed against the walls or the bottom of the groove and are thus sealed by being pressed on. These further recesses or cavities are then preferably in fluid-conducting connection with the lubricant chamber of the bearing via the supply channels.

An seiner/ihrer der Ringdichtung zugewandten Stirnseite kann das Einbaustück oder die Lagerbuchse vorzugsweise in axialer Richtung vorstehende Stifte aufweisen. Diese Stifte sind so angeordnet, dass sie in die besagten Aussparungen an der Oberfläche der Dichtung eingreifen. Die Stifte dienen dabei vorteilhafterweise zum einen als Verdrehsicherung für die Dichtung, insbesondere während des Walzbetriebs, und zum anderen zur Begrenzung der Verformung der Dichtung. Eine weitere Möglichkeit ist die radiale Anordnung der Stifte bei gleicher Funktionsweise.On its end face facing the ring seal, the chock or the bearing bush can preferably have pins protruding in the axial direction. These pins are arranged in such a way that they engage in said recesses on the surface of the seal. The pins advantageously serve, on the one hand, as an anti-twist device for the seal, in particular during the rolling operation, and, on the other hand, to limit the deformation of the seal. Another possibility is the radial arrangement of the pins with the same functionality.

Das Volumen der Aussparungen kann größer sein als das Volumen der Stifte, welche in eingebautem Zustand der Dichtung in die Aussparungen hineinragen. Diese Ausgestaltung bietet den Vorteil, dass trotz des Hineinragens der Stifte in die Aussparungen ein restlicher Hohlraum verbleibt, welcher, wenn er über einen Zuführkanal mit dem Ringspalt verbunden ist, als Hohlraum im Sinne der vorliegenden Erfindung fungieren kann.The volume of the recesses can be greater than the volume of the pins which protrude into the recesses when the seal is installed. This embodiment offers the advantage that, despite the pins protruding into the recesses, a remaining cavity remains which, if it is connected to the annular gap via a feed channel, can function as a cavity within the meaning of the present invention.

Eine Ausbildung des Innendurchmessers der Ringdichtung größer als der Außendurchmesser des Walzenzapfens - optional mit aufgezogener Zapfenbuchse - auf axialer Höhe der Ringdichtung bietet den Vorteil, dass das durch das Einbaustück mit dem darin gelagerten Walzenzapfen gebildete Lager als Ölfilmlager betrieben werden kann. Voraussetzung dafür ist, dass die Ringdichtung den Ringspalt zwischen Lauffläche und Anlagefläche nur in einem begrenzten Umfangswinkelbereich, wo die minimale Schmierfilmdichte herrscht, bis auf den besagten Schmierfilm reduziert, während die Dichtung in dem übrigen Umfangswinkelbereich keine nennenswerte Dichtwirkung erzielen muss. Im Bereich der minimalen Schmierfilmdicke wird die gesamte Andrückkraft maximal und damit der Ringspalt bis auf den Schmierfilm reduziert. In dem übrigen Umfangswinkelbereich ist die Andrückkraft vernachlässigbar gering und das Schmiermittel kann dort aufgrund der Überdimensionierung der Ringdichtung an dieser vorbei in axialer Richtung aus dem Ringspalt austreten. Für den Betrieb als Ölfilmlager ist dies dann so gewollt.A design of the inner diameter of the ring seal larger than the outer diameter of the roll neck - optionally with a drawn-on journal bushing - at the axial height of the ring seal offers the advantage that the bearing formed by the chock with the roll neck stored therein can be operated as an oil film bearing. The prerequisite for this is that the ring seal reduces the annular gap between the running surface and the contact surface only in a limited circumferential angle range, where the minimum lubricant film density prevails, down to the said lubricant film, while the seal does not have to achieve any significant sealing effect in the remaining circumferential angle range. In the area of the minimum lubricant film thickness, the entire pressing force is maximized and thus the annular gap is reduced down to the lubricant film. In the rest of the circumferential angular range, the pressing force is negligibly small and the lubricant can escape from the annular gap there in the axial direction due to the overdimensioning of the annular seal. This is what is intended for operation as an oil film bearing.

Weitere vorteilhafte Ausgestaltungen der Dichtung und des Walzgerüstes mit der Dichtung sind Gegenstand der abhängigen Ansprüche.Further advantageous configurations of the seal and of the roll stand with the seal are the subject of the dependent claims.

Der Beschreibung sind 5 Figuren beigefügt, wobei

Figur 1
die erfindungsgemäße Dichtung;
Figur 2
ein Walzgerüst aus dem Stand der Technik;
Figur 3
die Lagerung einer Walze in einem Einbaustück;
Figur 4
die Ausbildung und Anordnung der Dichtung in der Lagerung nach Figur 3 in einer vergrößerten Ansicht; und
Figur 5
einen Querschnitt durch den von einer Lagerbuchse oder einem Einbaustück aufgespannten Aufnahmeraum mit eingesetztem Walzenzapfen
zeigt.The description is accompanied by 5 figures, where
Figure 1
the seal according to the invention;
Figure 2
a roll stand from the prior art;
Figure 3
the storage of a roller in a chock;
Figure 4
the design and arrangement of the seal in the storage Figure 3 in an enlarged view; and
Figure 5
a cross-section through the receiving space spanned by a bearing bush or a chock with inserted roll journal
shows.

Die Erfindung wird nachfolgend unter Bezugnahme auf die genannten Figuren in Form von Ausführungsbeispielen detailliert beschrieben. In allen Figuren sind gleiche technische Elemente mit gleichen Bezugszeichen bezeichnet.The invention is described in detail below in the form of exemplary embodiments with reference to the figures mentioned. In all figures, the same technical elements are denoted by the same reference symbols.

Figur 1 zeigt die erfindungsgemäß ausgebildete Dichtung 100. Sie kann zum Abdichten eines Schmiermittelraumes (in Figur 1 nicht gezeigt) gegen einen Austritt von Schmiermittel dienen. Sie ist zumindest teilweise aus einem elastischen Material gefertigt und weist in ihrem Inneren eine Mehrzahl von beliebig geformten Hohlräumen 110 auf. Die Hohlräume 110 sind in Figur 1 lediglich beispielhaft als zylindrische Aussparungen 110 ausgebildet, die zur Oberfläche der Dichtung hin geöffnet sind. Alternativ können die Hohlräume 110 auch vollständig im Inneren der Dichtung ausgebildet sein; sie sind dann über Zuführkanäle 120 fluidleitend mit der Oberfläche der Dichtung verbunden. Die Zuführkanäle dienen zum Zuführen des Schmiermittels aus dem Schmiermittelraum 300 eines Lagers, insbesondere eines Ölfilmlagers in die jeweiligen Hohlräume 110. Figure 1 shows the seal 100 designed according to the invention. It can be used to seal a lubricant space (in Figure 1 not shown) serve against leakage of lubricant. It is made at least partially from an elastic material and has a plurality of arbitrarily shaped cavities 110 in its interior. The cavities 110 are in Figure 1 designed merely by way of example as cylindrical recesses 110 which are open towards the surface of the seal. Alternatively, the cavities 110 can also be formed completely in the interior of the seal; they are then connected to the surface of the seal in a fluid-conducting manner via supply channels 120. The supply channels serve to supply the lubricant from the lubricant space 300 of a bearing, in particular an oil film bearing, into the respective cavities 110.

In Figur 1 bildet die Unterseite der Dichtung 100 eine Lauffläche 112, mit welcher die Dichtung gegen eine Anlagefläche eines typischerweise bewegten Objektes, z. B. eines Walzenzapfens, gedrückt wird.In Figure 1 the underside of the seal 100 forms a running surface 112 with which the seal against a contact surface of a typically moving object, e.g. B. a roll neck is pressed.

Zumindest weitgehend münden die Aussparungen oder die Zuführkanäle 120 in einen abzudichtenden ersten Schmiermittelraum 300 des Lagers. Auf diese Weise wird sichergestellt, dass das Schmiermittel und der Druck aus dem ersten Ringspalt 300 in die Hohlräume übertragen wird. Es stellt sich dann in den Hohlräumen immer der eventuell variierende Druck aus dem Schmiermittelraum ein. Bezüglich des damit verbundenen Zweckes sei auf die obigen Ausführungen im allgemeinen Teil der Beschreibung verwiesen.At least largely, the recesses or the supply channels 120 open into a first lubricant chamber 300 of the bearing that is to be sealed. This ensures that the lubricant and the pressure are transmitted from the first annular gap 300 into the cavities. It then turns into the Cavities always enter the possibly varying pressure from the lubricant chamber. With regard to the purpose associated therewith, reference is made to the above statements in the general part of the description.

Das Bezugszeichen 225 und die Schraffur deuten Wandbereiche einer Nut an, in welche die Dichtung typischerweise einsetzbar ist. Diese Wandbereiche überdecken dann größtenteils Bereiche der Oberfläche der Dichtung. Lediglich die Zuführkanäle und/oder Aussparungen an den nicht überdeckten Bereichen der Oberfläche der Dichtung stehen mit dem ersten Schmiermittelraum 300 in fluidleitender Verbindung; siehe auch Figur 4.The reference numeral 225 and the hatching indicate wall areas of a groove into which the seal can typically be inserted. These wall areas then largely cover areas of the surface of the seal. Only the feed channels and / or recesses in the uncovered areas of the surface of the seal are in fluid-conducting connection with the first lubricant chamber 300; see also Figure 4 .

Wie in Figur 1 zu erkennen ist, können die Aussparungen 110 auch zu anderen Oberflächenabschnitten der Dichtung als zu dem Schmiermittelraum 300 hin geöffnet sein. Dies ist insbesondere vorteilhaft für ein Zusammenwirken dieser Aussparungen mit nachfolgend noch beschriebenen Stiften an dem Einbaustück.As in Figure 1 As can be seen, the recesses 110 can also be opened to other surface sections of the seal than to the lubricant chamber 300. This is particularly advantageous for these recesses to interact with the pins on the chock, which will be described below.

Figur 1 zeigt weiterhin beispielhaft eine erste Gruppe von Aussparungen 110 und eine zweite Gruppe von Aussparungen 110, wobei das Volumen der Aussparungen der ersten Gruppe jeweils größer ist als das Volumen der Aussparungen der zweiten Gruppe. Die unterschiedlichen Volumina bewirken bei jeweils gleichem zugeführtem Druck eine unterschiedliche Expansion der Dichtung und damit gegebenenfalls einen jeweils unterschiedlichen Anteil an einer von der Dichtung ausgeübten Dichtkraft. Figure 1 FIG. 12 also shows, by way of example, a first group of cutouts 110 and a second group of cutouts 110, the volume of the cutouts in the first group being greater than the volume of the cutouts in the second group. With the same applied pressure, the different volumes cause a different expansion of the seal and thus possibly a different proportion of a sealing force exerted by the seal.

Die Dichtung in Figur 1 hat eine Breite a; diese Breite entspricht beispielhaft auch der Breite der Lauffläche 112. Es ist weiterhin zu erkennen, dass die Dichtung beispielhaft einen rechteckigen Querschnitt aufweist. Die separaten Hohlräume 110 bzw. Aussparungen 110 sind über die Länge bzw. den Umfang der Dichtung vorzugsweise gleichmäßig verteilt angeordnet. Dies hat den Vorteil, dass die Dichtung 100 deshalb auch an jedem Punkt bzw. jedem Längenabschnitt die gleichen Eigenschaften aufweist. Zur Abdichtung von Zylindern, wie beispielsweise einem Walzenzapfen 212 kann die Dichtung 100 ringförmig als Ringdichtung ausgebildet sein; siehe Figur 5. Die Lauffläche 112 ist dann dem Zentrum bzw. dem Mittelpunkt der Ringdichtung oder anders ausgedrückt der Oberfläche bzw. Anlagefläche des Zylinders zugewandt ausgebildet; siehe Figur 5.The seal in Figure 1 has a width a; this width also corresponds, for example, to the width of the running surface 112. It can also be seen that the seal has, for example, a rectangular cross section. The separate cavities 110 or recesses 110 are preferably evenly distributed over the length or the circumference of the seal. This has the advantage that the seal 100 therefore also dies at each point or each length section has the same properties. In order to seal cylinders, such as a roll neck 212, the seal 100 can be designed in the form of an annular ring as a ring seal; please refer Figure 5 . The running surface 112 is then designed to face the center or the midpoint of the ring seal or, in other words, the surface or contact surface of the cylinder; please refer Figure 5 .

Figur 2 zeigt ein Walzgerüst gemäß dem Stand der Technik, wie es auch der vorliegenden Erfindung zugrunde liegt. Das Walzgerüst 200 weist mindestens eine, hier beispielhaft vier Walzen 210 auf mit jeweils zwei Walzenzapfen 212 und jeweils einem Walzenballen 214. Insbesondere die in Figur 2 gezeigten beiden mittleren Arbeitswalzen dienen zum Walzen von Walzgut. Die Walzen 210 sind mit ihren Walzenzapfen 212 jeweils in einem Einbaustück 220, auch Lagergehäuse genannt, drehbar gelagert. Figure 2 shows a roll stand according to the prior art, as is also the basis of the present invention. The roll stand 200 has at least one, here by way of example four rolls 210, each with two roll journals 212 and one roll barrel 214 each. In particular, those in FIG Figure 2 The two middle work rolls shown are used for rolling rolling stock. The rollers 210 are each rotatably mounted with their roller journals 212 in a chock 220, also called a bearing housing.

Figur 3 zeigt diese Lagerung in einem Längsschnitt im Detail. Zu erkennen ist die Walze 210 mit ihrem Walzenzapfen 212 und ihrem Walzenballen 214. Auf den Walzenzapfen ist eine Zapfenbuchse 216 aufgezogen. Der Walzenzapfen mit der Zapfenbuchse ist gelagert in einer Aufnahmeöffnung, die von einer Lagerbuchse 222 aufgespannt wird. Die Lagerbuchse 222 ist in dem Einbaustück 220 drehfest angeordnet. Zwischen der drehfest angeordneten Lagerbuchse 222 und der mit dem Walzenzapfen 212 rotierenden Zapfenbuchse 216 ist ein Ringspalt 300 ausgebildet, welcher während eines Betriebs des Walzgerüstes mit Schmiermittel 320 befüllt ist. Das Schmiermittel steht dann in dem Ringspalt unter einem hohen Druck, typischerweise von einigen 100 bar. In Figur 3 ist der Ringspalt 300 beispielhaft sowohl an seinem walzenballenseitigen Ende wie auch an seinem walzenballenfernen Ende durch die erfindungsgemäße Ringdichtung 100 abgedichtet. Die Ringdichtung 100 muss nicht über ihren gesamten Umfang erfindungsgemäß ausgebildet sein; grundsätzlich kann auch nur ein Abschnitt der Ringdichtung entsprechend ausgebildet sein. Figure 3 shows this storage in a longitudinal section in detail. The roller 210 can be seen with its roller journal 212 and its roller barrel 214. A journal bushing 216 is pulled onto the roller journal. The roll journal with the journal bush is mounted in a receiving opening which is spanned by a bearing bush 222. The bearing bush 222 is arranged non-rotatably in the chock 220. An annular gap 300 is formed between the non-rotatably arranged bearing bush 222 and the journal bush 216 rotating with the roll neck 212 and is filled with lubricant 320 during operation of the roll stand. The lubricant is then under a high pressure, typically a few 100 bar, in the annular gap. In Figure 3 For example, the annular gap 300 is sealed by the ring seal 100 according to the invention both at its end on the roller barrel side and at its end remote from the roller barrel. The ring seal 100 does not have to be designed according to the invention over its entire circumference; in principle, only a section of the ring seal can be designed accordingly.

In Figur 3 ist weiterhin zu erkennen, dass die Lagerbuchse 222 an ihrem walzenballenseitigen Ende und an ihrem walzenballenfernen Ende jeweils eine zu dem Walzenzapfen 212 hin geöffnete Nut 230 aufweist, in welche die Ringdichtung 100 eingesetzt ist. Die Außenseiten der beiden Nuten 230 sind bei dem in Figur 3 gezeigten Beispiel nicht durch die Lagerbuchse 222 gebildet. Vielmehr sind die Außenseiten der Nuten dort jeweils durch Lochscheiben 240 gebildet, welche mit Schrauben 245 an die Lagerbuchse 222 angeschraubt sind. Weil die Breite a der Ringdichtung 100 in unbelastetem Zustand und gegebenenfalls unter Berücksichtigung der Überhöhungen 130, siehe Figur 1 in axialer Richtung R erfindungsgemäß bewusst geringfügig größer gestaltet sind als die durch die Lagerbuchse 222 konstruktiv vorgegebene Breite A der Nut, ist es möglich, dass durch das Anziehen der Schrauben 245 die axiale Kraft, mit welcher die Ringdichtungen 100 in der Nut gequetscht werden, variabel eingestellt werden kann. Aufgrund des isotropen Verhaltens des Materials der Dichtung 100 bewirkt die axiale Quetschung bzw. Stauchung nicht nur eine Reduzierung der Ringdichtung in ihrer Breite, sondern auch eine Expansion der Ringdichtung in radialer Richtung. Eine Variation der axialen Einspannkraft bewirkt deshalb automatisch auch eine Variation der Vorspannung bzw. der radialen Andrückkraft, mit welcher die Lauffläche 112 der Dichtung 100 gegen die gegenüberliegende Anlagefläche der Zapfenbuchse 216 gedrückt wird.In Figure 3 it can also be seen that the bearing bushing 222 has, at its end on the side of the roll barrel and at its end remote from the roll barrel, a groove 230 which is open towards the roll journal 212 and into which the ring seal 100 is inserted. The outsides of the two grooves 230 are in the in Figure 3 The example shown is not formed by the bearing bush 222. Rather, the outer sides of the grooves are each formed there by perforated disks 240 which are screwed onto the bearing bush 222 with screws 245. Because the width a of the ring seal 100 in the unloaded state and, if necessary, taking into account the elevations 130, see Figure 1 are deliberately designed slightly larger in the axial direction R according to the invention than the width A of the groove structurally predetermined by the bearing bush 222, it is possible that by tightening the screws 245 the axial force with which the ring seals 100 are squeezed in the groove is variable can be adjusted. Due to the isotropic behavior of the material of the seal 100, the axial squeezing or upsetting causes not only a reduction in the width of the ring seal, but also an expansion of the ring seal in the radial direction. A variation in the axial clamping force therefore also automatically causes a variation in the preload or the radial pressing force with which the running surface 112 of the seal 100 is pressed against the opposite contact surface of the trunnion bushing 216.

Figur 4 zeigt den Einbau der Dichtung 100 in die Lagerbuchse 222 nochmals im Detail. Figure 4 shows the installation of the seal 100 in the bearing bush 222 again in detail.

Das Bezugszeichen 225 bezeichnet die Wandbereiche der Nut in dem Einbaustück oder der Lagerbuchse, gegen welche die Dichtung 100 bei Einbau in die Nut gedrückt wird. Anders ausgedrückt wird die Dichtung und werden die Hohlräume an der Oberfläche der Dichtung gegebenenfalls durch diese Wandbereiche abgedeckt und abgedichtet. Lediglich radial weiter innen angeordnete Hohlräume oder Zuführkanäle münden in den ersten Ringspalt 300. Zu erkennen ist weiterhin, dass die Dicke des Schmierfilms 330 in dem zweiten Ringspalt 140 zwischen der Lauffläche 112 der Dichtung 100 und der gegenüberliegenden Anlagefläche 218 der Zapfenbuchse 216 wesentlich geringer ist als die Dicke des Ringspaltes 300. Dies wird dadurch erreicht, dass die Ringdichtung 100 in radialer Richtung weitgehend in den dort ursprünglich vorhandenen Ringspalt 300 hineinragt. In Figur 4 sind die Größenverhältnisse überzeichnet dargestellt. Tatsächlich drückt die Ringdichtung aufgrund der radialen Andrückkraft FR auf die Anlagefläche 218 der Zapfenbuchse 216. Aufgrund der besagten hohen Druckverhältnisse bildet sich aber dennoch zwischen der Lauffläche 112 und der Anlagefläche 218 der besagte Schmierfilm 330 mit einer Dicke von nur wenigen µm aus. Der Druck in dem ersten Ringspalt 300 ist wesentlich größer als in dem zweiten Ringspalt 140.The reference numeral 225 denotes the wall areas of the groove in the chock or the bearing bushing, against which the seal 100 is pressed when it is installed in the groove. In other words, the seal and the cavities on the surface of the seal are optionally covered and sealed by these wall areas. Cavities or feed channels arranged only radially further inward open into the first annular gap 300. It can also be seen that the thickness of the lubricating film 330 in the second annular gap 140 between the running surface 112 of the seal 100 and the opposite contact surface 218 of the journal bushing 216 is significantly less than the thickness of the annular gap 300 largely protrudes in the radial direction into the annular gap 300 originally present there. In Figure 4 the proportions are shown exaggerated. The ring seal actually presses on the contact surface 218 of the trunnion bushing 216 due to the radial pressing force FR. Due to the aforementioned high pressure ratios, however, the said lubricating film 330 with a thickness of only a few μm forms between the running surface 112 and the contact surface 218. The pressure in the first annular gap 300 is significantly greater than in the second annular gap 140.

Es ist weiterhin zu erkennen, dass die Ringdichtung 100 derart in die Nut 230 eingesetzt ist, dass ihre Aussparungen 110 mit Stiften 228, die sich von der die Nut 230 begrenzenden Stirnseite der Lagerbuchse 222 vorzugsweise in axialer Richtung R erstrecken, in Eingriff stehen. Bei Ausführung von radial angeordneten Hohlräumen erstrecken sich die Stifte senkrecht zur axialen Richtung. Der verbleibende Hohlraum 116 ist aufgrund der axialen bzw. radialen Andrückkraft, mit welcher die Ringdichtung 100 mit Hilfe der Lochscheibe 240 in die Nut gedrückt wird, zu der Lagerbuchse 222 hin abgedichtet; er fungiert deshalb als Hohlraum 110 im Sinne der Erfindung, der über einen Zuführkanal 120 in den Schmiermittelraum 300 des (Ölfilm-)Lagers mündet. Der durch den Zuführkanal bewirkte Effekt der Variation, insbesondere der Vergrößerung, der radialen Gesamtkraft in Abhängigkeit der Druckverhältnisse im Bereich des Schmierfilms 330 wurde oben ausführlich beschrieben.It can also be seen that the ring seal 100 is inserted into the groove 230 in such a way that its recesses 110 engage with pins 228 which extend from the end face of the bearing bush 222 delimiting the groove 230, preferably in the axial direction R. In the case of radially arranged cavities, the pins extend perpendicular to the axial direction. The remaining cavity 116 is sealed off from the bearing bush 222 due to the axial or radial pressing force with which the ring seal 100 is pressed into the groove with the aid of the perforated disk 240; it therefore functions as a cavity 110 in the sense of the invention, which opens into the lubricant chamber 300 of the (oil film) bearing via a feed channel 120. The effect of the variation, in particular the enlargement, of the total radial force as a function of the pressure conditions in the region of the lubricating film 330 has been described in detail above.

Figur 5 wurde einleitend bereits kurz beschrieben. Sie zeigt einen Querschnitt durch den von der Lagerbuchse aufgespannten Aufnahmeraum zur Aufnahme des Walzenzapfens 212. Wie aus einer Zusammenschau der Figuren 4 und 5 erkennbar ist, wird der Aufnahmeraum nicht nur durch die Lagerbuchse 222, sondern insbesondere auch durch die typischerweise weiter nach innen ragende Ringdichtung 100 in radialer Richtung begrenzt. Im Inneren des Aufnahmeraumes rotiert der Walzenzapfen 212, gegebenenfalls mit aufgezogener Zapfenbuchse 216. Für einen Betrieb des Walzenlagers als hydrodynamisches Ölfilmlager ist der Innendurchmesser dD der Ringdichtung 100 größer als der Außendurchmesser DZ des Walzenzapfens 212 auf axialer Höhe der Ringdichtung, optional mit aufgezogener Zapfenbuchse 216. Während des Betriebs als hydrodynamisches Ölfilmlager drückt sich die Ringdichtung 100 dann lediglich im Umfangswinkelbereich des minimalen Schmierfilmes, welcher in etwa im Bereich der maximal wirkenden Walzkraft FWmax liegt, so eng an die Oberfläche bzw. Anlagefläche 218 des Walzenzapfens an, dass sich dort nur noch der Schmierfilm 330 ausbildet. In dem übrigen Umfangswinkelbereich liegt die Lauffläche 112 der Ringdichtung 100 nicht mehr an der Anlagefläche 218 des Walzenzapfens 212 an; vielmehr ist der Abstand zwischen diesen beiden Flächen größer als die Dicke des Schmierfilms im Bereich der maximalen Walzkraft; dies gilt insbesondere aufgrund der besagten Überdimensionierung der Ringdichtung 100. Die besagte Überdimensionierung und der dadurch bedingte größere Spalt zwischen Lauffläche 112 und Anlagefläche 218 ermöglicht vorteilhafterweise einen axialen Abfluss von Schmiermittel in dem Umfangswinkelbereich außerhalb des Bereiches der maximalen Walzkraft. Der Außendurchmesser DD der Ringdichtung 100 entspricht typischerweise dem Innendurchmesser des Bodens der Nut 230. Figure 5 has already been briefly described in the introduction. It shows a cross section through the receiving space spanned by the bearing bush for receiving the roll neck 212. As seen from a synopsis of the Figures 4 and 5 can be seen, the receiving space is not only provided by the bearing bush 222, but in particular also limited in the radial direction by the ring seal 100, which typically protrudes further inward. Inside the receiving space, the roll journal 212 rotates, if necessary with the journal bushing 216 drawn on. For operation of the roll bearing as a hydrodynamic oil film bearing, the inner diameter dD of the ring seal 100 is greater than the outer diameter DZ of the roll journal 212 at the axial height of the ring seal, optionally with the journal bushing 216 drawn open. During operation as a hydrodynamic oil film bearing, the ring seal 100 then presses itself so closely against the surface or contact surface 218 of the roll neck that only the Lubricant film 330 forms. In the remaining circumferential angular range, the running surface 112 of the ring seal 100 no longer rests on the contact surface 218 of the roll neck 212; rather, the distance between these two surfaces is greater than the thickness of the lubricating film in the region of the maximum rolling force; this applies in particular to the oversizing of the ring seal 100. The oversizing and the resulting larger gap between the running surface 112 and the contact surface 218 advantageously enable an axial drainage of lubricant in the circumferential angle area outside the area of the maximum rolling force. The outer diameter DD of the ring seal 100 typically corresponds to the inner diameter of the bottom of the groove 230.

BezugszeichenlisteList of reference symbols

100100
Dichtungpoetry
110110
Hohlraum bzw. AussparungCavity or recess
111111
LaufflächenprofilierungTread profiling
112112
LaufflächeTread
116116
verbleibender Hohlraumremaining cavity
120120
ZuführkanalFeed channel
130130
ÜberhöhungCant
140140
Ringspalt bzw. Schmiermittelraum unter der DichtungAnnular gap or lubricant space under the seal
200200
WalzgerüstRoll stand
210210
Walzeroller
212212
WalzenzapfenRoll neck
214214
WalzenballenRoll barrel
216216
ZapfenbuchseTrunnion
218218
AnlageflächeContact surface
220220
EinbaustückChock
222222
LagerbuchseBearing bush
225225
Wandbereiche der NutWall areas of the groove
228228
Stiftpen
230230
NutGroove
240240
LochscheibePerforated disc
245245
Schraubescrew
300300
Ringspalt bzw. Schmiermittelraum des LagersAnnular gap or lubricant space of the bearing
320320
Schmiermittellubricant
330330
SchmierfilmLubricating film
aa
Breite der Ringdichtung in axialer RichtungWidth of the ring seal in the axial direction
AA.
Breite der Nut in axialer RichtungWidth of the groove in the axial direction
DDDD
Außendurchmesser der RingdichtungOuter diameter of the ring seal
DZDouble room
Außendurchmesser des Walzenzapfens ggf. mit ZapfenbuchseOuter diameter of the roll neck, if necessary with neck bush
dDdD
Innendurchmesser der RingdichtungInner diameter of the ring seal
RR.
axiale Richtungaxial direction
FRFR
radiale Andrückkraft auf die Dichtungradial pressure on the seal
FWmaxFWmax
maximale Walzkraftmaximum rolling force

Claims (11)

  1. Roll stand (200) comprising:
    at least one roll (210) with two roll journals (212) and a roll barrel (214) for the rolling of a rolling material;
    at least one chock (220), optionally with a bearing bush (222), for rotatable mounting of the roll (210) in the roll stand (200), wherein the chock (220) or the bearing bush spans a receiving opening for reception of one of the roll journals (212), optionally with a drawn-on journal bush (216), wherein the inner diameter of the receiving opening is formed to be larger by comparison with the outer diameter of the roll journal, optionally with drawn-on journal bush, in such a way that an annular gap (300) for receiving a lubricant (320) is formed between the chock or the bearing bush and the roll journal or the journal bush; and
    a seal, which is arranged at the end at the chock (220) or bearing bush (222) at the roll barrel side and/or at the end of the chock (220) or bearing bush (222) remote from the roll barrel to be secure against rotation relative to the rotatable roll, for sealing the annular gap - which represents a lubricant chamber - at least in a predetermined circumferential angular region;
    characterised in that
    the seal (100) is formed at least partly from a resilient material;
    the seal has at least two cavities (110) which are separate from one another in circumferential direction and which are open towards the lubricant chamber of the bearing in order to feed the lubricant (320) from the lubricant chamber (300), which is to be sealed, of the bearing to the cavities;
    a groove (230) which is open towards the roll journal (212) and into which the seal (100) is insertable is formed at the end of the chock (220) or bearing bush (222) at the roll barrel side and/or at the end of the chock (220) or bearing bush (222) remote from the roll barrel; and the axial width a of the seal (100) in unloaded state is greater than the width A of the groove (230) in axial direction R.
  2. Roll stand according to claim 1, characterised in that the seal (100) is constructed as a segment of a ring and has a predetermined limited length L in which L < total circumference of the annular gap.
  3. Roll stand according to claim 1, characterised in that the seal (100) is constructed in the form of an annular seal.
  4. Roll stand (200) according to claim 3, characterised in that the outer diameter (DD) of the annular seal in unloaded state is substantially equal to the diameter of the groove (240) at the base thereof.
  5. Roll stand (200) according to one of claims 3 and 4, characterised in that the inner diameter (dD) of the annular seal (100) is greater than the outer diameter (DZ) of the roll journal (212), optionally with drawn-on journal bush (216), at the axial height of the annular seal.
  6. Roll stand (200) according to claim 1, characterised in that the axial outer side of the groove is formed by an apertured disc (240) which is detachably connectible, for example screw-connectible, with the chock or the bearing bush (222).
  7. Roll stand (200) according to any one of claims 1 to 6, characterised in that the seal (100) has at least one elevation (130) at the end thereof remote from and/or facing the chock.
  8. Roll stand (200) according to claims 1 to 7, characterised in that the seal (100) has a rectangular cross-section and the sealing surface of the seal faces the roll journal.
  9. Roll stand (200) according to any one of claims 1 to 8, characterised in that the recesses (110) at the surface of the annular seal are also formed to be open towards the chock (220) or the bearing bush (222).
  10. Roll stand (200) according to claim 9, characterised in that the chock (220) or the bearing bush (222) has, at the end face thereof facing the seal, pins (228), which project in axial or radial direction, for engagement in the recesses (110) at the surface of the seal (100).
  11. Roll stand (200) according to claim 10, characterised in that the volume of the recesses (110) into which the pins project is greater than the volume of the pins (228) engaging in the recesses.
EP18796922.5A 2017-11-09 2018-11-02 Rolling stand having a seal to prevent lubricant escaping Active EP3706928B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017219935.0A DE102017219935A1 (en) 2017-11-09 2017-11-09 Seal against leakage of lubricant and rolling stand with the seal
PCT/EP2018/079984 WO2019091861A1 (en) 2017-11-09 2018-11-02 Seal to prevent lubricant escaping, and rolling stand having said seal

Publications (2)

Publication Number Publication Date
EP3706928A1 EP3706928A1 (en) 2020-09-16
EP3706928B1 true EP3706928B1 (en) 2021-06-09

Family

ID=64109871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18796922.5A Active EP3706928B1 (en) 2017-11-09 2018-11-02 Rolling stand having a seal to prevent lubricant escaping

Country Status (10)

Country Link
US (1) US11717869B2 (en)
EP (1) EP3706928B1 (en)
JP (1) JP6920554B2 (en)
KR (1) KR102456312B1 (en)
CN (1) CN111432949B (en)
DE (1) DE102017219935A1 (en)
ES (1) ES2882556T3 (en)
RU (1) RU2741581C1 (en)
TW (1) TWI699246B (en)
WO (1) WO2019091861A1 (en)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE346602B (en) * 1971-01-26 1972-07-10 Forsheda Ideutveckling Ab
US3912345A (en) * 1973-08-31 1975-10-14 Republic Steel Corp Bearing chocking assembly for mill rolls
US4426090A (en) * 1982-09-24 1984-01-17 Halogen Insulator & Seal Corp. Pressure relief exclusion seal
US5033872A (en) * 1989-09-06 1991-07-23 Toyoda Gosei Co., Ltd. Bushing
JPH0388062U (en) * 1989-12-26 1991-09-09
US5169159A (en) * 1991-09-30 1992-12-08 General Electric Company Effective sealing device for engine flowpath
US5558341A (en) * 1995-01-11 1996-09-24 Stein Seal Company Seal for sealing an incompressible fluid between a relatively stationary seal and a movable member
US6145843A (en) * 1998-10-19 2000-11-14 Stein Seal Company Hydrodynamic lift seal for use with compressible fluids
US6189896B1 (en) * 1999-04-08 2001-02-20 Caterpillar Inc. Controlled leakage rotating seal ring with elements for receiving and holding a lubricant on a face thereof
US6851676B2 (en) * 2002-12-17 2005-02-08 Morgan Construction Company Inner seal ring for rolling mill oil film bearing
DE10360382A1 (en) * 2003-12-16 2005-07-21 Sms Demag Ag sealing device
BRPI0418347A (en) * 2004-01-03 2007-05-02 Sms Demag Ag cylinder bearing sealing device
RU2391158C1 (en) * 2007-01-29 2010-06-10 Смс Зимаг Аг Journal seal for bearing of roller
US9358595B2 (en) * 2011-09-28 2016-06-07 Siemens Industry, Inc. Rolling stand roll neck seal
DE102013224117A1 (en) 2013-11-26 2015-05-28 Sms Siemag Ag Roller arrangement for rolls in a rolling mill
CN105917151A (en) * 2014-01-24 2016-08-31 Nok株式会社 Seal ring
CN204602807U (en) * 2015-04-27 2015-09-02 鞍钢股份有限公司 Roll mill bearing pedestal seal device
DE102015209637A1 (en) * 2015-05-26 2016-12-01 Sms Group Gmbh roll arrangement
US10443655B2 (en) * 2017-09-11 2019-10-15 Kaydon Ring & Seal, Inc. Combination bearing and seal assembly with common outer body

Also Published As

Publication number Publication date
US20210170461A1 (en) 2021-06-10
KR20200078626A (en) 2020-07-01
JP6920554B2 (en) 2021-08-18
ES2882556T3 (en) 2021-12-02
KR102456312B1 (en) 2022-10-19
CN111432949B (en) 2022-04-08
EP3706928A1 (en) 2020-09-16
US11717869B2 (en) 2023-08-08
TWI699246B (en) 2020-07-21
JP2021502257A (en) 2021-01-28
RU2741581C1 (en) 2021-01-27
WO2019091861A1 (en) 2019-05-16
DE102017219935A1 (en) 2019-05-09
CN111432949A (en) 2020-07-17
TW201922369A (en) 2019-06-16

Similar Documents

Publication Publication Date Title
DE19900469B4 (en) roller bearing
WO2006039899A1 (en) Pin cage, particularly for larger radial or axial roller bearings
DE1525193A1 (en) Training and assignment of warehouse parts
DE2356817A1 (en) SELF-SUPPLIED HYDROSTATIC BEARING FOR A REVOLVING SHAFT
DE102009054794A1 (en) Radial rotary feedthrough and socket for this
EP1179149B1 (en) Sealing device for a piston which is subjected to the action of a pressure medium and which is arranged in a working cylinder
EP3302836B1 (en) Roll assembly
DE2109080C3 (en) Installation in a hydrostatic bearing provided with pressure chambers
EP1110017A1 (en) LOW-FRICTION SEAL and hydraulic cylinder
DE2938580C2 (en) Deflection controllable roller
EP3706928B1 (en) Rolling stand having a seal to prevent lubricant escaping
DE3509613A1 (en) BEARING FOR A ROTATING SHAFT
DE102011007729B3 (en) Press plate mounted on press plunger of pressing device, has sealing ring arranged around the inner diameter such that a radial gap is formed between inner conical surface and outer conical surface of filler piece
DE2550366B2 (en) Deflection compensation roller
EP3371471B1 (en) Bearing body for a linear bearing having an attachment element for long-term lubrication
WO2020098973A1 (en) Roll lever module
DE2931348C2 (en) Radial cylindrical roller bearings
EP2858768B1 (en) Roll arrangement
EP1699574B1 (en) Device for pre-stressing tapered roller bearings of a rolling mill roller
CH682318A5 (en)
WO2005028888A1 (en) Bearing assembly for receiving axial loads
EP1089000A2 (en) Controlled deflection roll and method for operating it
DE2020126C3 (en) Roller arrangement that can withstand deflection
DE19947398C2 (en) Deflection adjustment roller
EP0110001A1 (en) Combination of a hydrostatic bearing and a roller bearing

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1400041

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005692

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210401928

Country of ref document: GR

Effective date: 20210813

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2882556

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211011

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005692

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

26N No opposition filed

Effective date: 20220310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221118

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230125

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181102

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231120

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20231121

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231030

Year of fee payment: 6

Ref country code: SE

Payment date: 20231120

Year of fee payment: 6

Ref country code: IT

Payment date: 20231124

Year of fee payment: 6

Ref country code: FR

Payment date: 20231120

Year of fee payment: 6

Ref country code: FI

Payment date: 20231121

Year of fee payment: 6

Ref country code: DE

Payment date: 20231121

Year of fee payment: 6

Ref country code: AT

Payment date: 20231121

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231120

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240130

Year of fee payment: 6