EP3700015A1 - Antenne à plaque multibandes - Google Patents
Antenne à plaque multibandes Download PDFInfo
- Publication number
- EP3700015A1 EP3700015A1 EP19158830.0A EP19158830A EP3700015A1 EP 3700015 A1 EP3700015 A1 EP 3700015A1 EP 19158830 A EP19158830 A EP 19158830A EP 3700015 A1 EP3700015 A1 EP 3700015A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- patch
- field
- fields
- multiband
- antenna according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/357—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
- H01Q5/364—Creating multiple current paths
- H01Q5/371—Branching current paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
Definitions
- the invention is concerned with a multiband patch antenna.
- Multiband patch antennas are known and are used for wireless communication devices with no external antennas, i.e. devices in which the antenna is within a housing.
- multiband patch antennas are weakly directional meaning that the emitted electromagnetic radiation is also radiated deeper into the housing of the device. This leads to adverse effects, like interference with the electronic components within the housing.
- Multiband patch antennas with highly directional radiation characteristics that do not interfere with the electronic components are usually very thick and thus occupy valuable space within the housing.
- a multiband patch antenna in particular a multiband printed circuit board (PCB) antenna
- PCB printed circuit board
- a multiband patch antenna comprising a ground plane, at least one feedpoint, and at least two different patch fields being of at least two different patch field types, wherein each patch field type is designed for a different predefined resonance frequency.
- At least two of the patch fields have overlapping areas, and the feedpoint is positioned in a way that, when a feed signal is fed to the feedpoint, each of the at least two patch fields emits electromagnetic radiation having the frequency of the predefined resonance frequency of the respective patch field and/or a combination of two or more of the at least two patch field emits electromagnetic radiation having a frequency of one of the resonance frequencies or a further frequency.
- the patch fields emit electromagnetic radiation in conjunction with the ground plane.
- the patch fields emit the electromagnetic radiation.
- the at least two patch fields are free of cutouts and/or define a continuous antenna area so that the fabrication of the antenna is simplified.
- the at least two patch fields may have a rectangular geometry and/or the patch fields of the at least two patch field types may have different sizes. This way, the resonance frequency of the patch fields may be tuned easily.
- the vertical length and/or the horizontal length of the patch fields may depend on the resonance frequency of the respective patch field type.
- two patch fields are provided in order to improve radiation performance.
- the multiband patch antenna is symmetrical with respect to an axis, particularly wherein the axis extend through the geometric center of the patch fields. This way, the radiation characteristics may be improved further.
- the geometric center of the patch fields is, in particular, the geometric center of the antenna area.
- the antenna area is thus also symmetrical.
- the ground plane is quadratic and/or has a cutout for each of the at least one feedpoint only, in particular that the ground plane is free of cutouts.
- the multiband patch antenna comprises a support layer being provided between the at least one patch field and the ground plane, wherein the support layer has a via for each of the at least one feedpoint only, in particular that the support layer is free of vias.
- the at least one feedpoint is provided as a coaxial feed or an insert feed.
- a first patch field of a first patch field type with a first resonance frequency at least one second patch field of a second patch field type with a second resonance frequency and at least one third patch field of a third patch field type with a third resonance frequency are provided, wherein the first patch field partly overlaps with the at least one second patch field and the at least one third patch field, particularly wherein the at least one second patch field and the at least one third patch field do not overlap.
- the radiation characteristic of each of the resonance frequencies is highly directional.
- the at least one feedpoint may be located at the at least one second patch field and/or at the least one third patch field.
- the at least one second patch field and at the least one third patch field may be spaced apart by a vertical distance, wherein the sum of the vertical distance, the vertical length of the at least one second patch field and the vertical length of the at least one third patch field is about equal to the horizontal length of the first patch field.
- exactly one first patch field, exactly two second patch fields and exactly two third patch fields are provided, particularly wherein the two second and two third patch fields each overlap with one of the corners of the first patch field.
- the two third patch fields may be spaced apart by a third horizontal distance, wherein the third horizontal distance is about equal to the horizontal length of the third patch fields and/or the two second patch fields may be spaced apart by a second horizontal distance, wherein either the second horizontal distance is about equal to half of the horizontal length of the second patch fields or the second horizontal distance is about equal to the third horizontal distance.
- the geometric center of the first patch field may be the geometric center of the patch fields, in particular the geometric center of the antenna area.
- FIGS 1 and 2 show a multiband patch antenna 10, in the shown embodiment a multiband printed circuit board (PCB) antenna.
- PCB printed circuit board
- the multiband patch antenna 10 may be used in devices requiring wireless communication, like routers, access points, weather stations, and mobile devices, like mobile phones, tablets, laptop computers, Internet of Things (loT) devices and any other device with a communication interface.
- devices requiring wireless communication like routers, access points, weather stations, and mobile devices, like mobile phones, tablets, laptop computers, Internet of Things (loT) devices and any other device with a communication interface.
- LoT Internet of Things
- the multiband patch antenna 10 is for example used for Wi-Fi communication, for example for MU-MIMO WLAN access points.
- the multiband patch antenna 10 may be one of a plurality of similar or identical antennas in an antenna array.
- the multiband patch antenna 10 comprises a ground plane 12, a support layer 14, a plurality of patch fields 16 and a feedpoint 18.
- the support layer 14 may be a known substrate for printed circuit boards, like a wafer or FR-4.
- the ground plane 12 and the patch field 16 are located on opposite sides of the support layer 14.
- the patch fields 16 are created of a conductive material directly onto the support layer 14 and all of them have the same thickness.
- the ground plane 12 is, for example, quadratic.
- the sides of the quadratic ground plane 12 may be 50 mm long.
- the ground plane 12 may be made of a conductive layer created directly on the support layer 14.
- the ground plane 12 extends in the plane of the support layer 14 further than the patch fields 16.
- the feedpoint 18 is located in one of the patch fields 16 and is connected to a signal source 20 located on the side of the ground plane 12 facing away from the support layer 14.
- ground plane 12 and the support layer 14 have a cutout and a via, respectively. Apart from the cutout and the via for the feedpoint 18, the ground plane 12 and the support layer 14 are free of cutouts and vias, respectively.
- the multiband patch antenna 10 comprises several patch fields 16.
- the patch fields 16 are drawn distinctly from one another, in reality, however, the patch fields 16 define a continuous antenna area 22. In particular, the patch fields 16 and thus the antenna area 22 are/is free of cutouts.
- the multiband patch antenna 10 comprises five rectangular patch fields 16 being of different patch field types.
- the multiband patch antenna 10 comprises patch fields 16 of three different patch field types, namely a first patch field type A, a second patch field type B and a third patch field type C.
- the multiband patch antenna 10 comprises exactly one patch field 16 of the first patch field type A, called first patch field 24 in the following.
- second patch field type B two patch fields 16 are provided, called second patch fields 26 in the following.
- third patch field type C two patch fields 16 are provided, called third patch fields 28 in the following.
- patch fields 16 and patch field types A, B, C are only exemplary. Other numbers of patch fields 16 and patch field types are of course conceivable.
- all patch fields 16, regardless of the patch field type A, B, C are rectangular, wherein in the patch fields 16 of different patch field type A, B, C differ from one another in size.
- the first patch field 24 is the center of the antenna area 22, i.e. of the multiband patch antenna 10 in a top view, and overlaps partly with each of the other patch fields 16, namely the two second patch fields 26 and the two third patch fields 28.
- Each of the corners of the patch field 24 is overlapped with a corner of one of the other patch fields 16.
- the areas, in which the patch field 16 overlap are called overlapping areas O.
- the upper left corner and the upper right corner of the first patch field 24 overlap each with a corner of one of the second patch fields 26 and the bottom right-hand corner and the bottom left-hand corner of the first patch field 24 overlap each with a corner of one of the third patch fields 28, respectively.
- the feedpoint 18 is provided in the bottom left third patch field 28, in particular outside of the overlapping area O.
- the feedpoint 18 could also be arranged on any other patch field 16, for example on one of the second patch fields 26.
- the feedpoint 18 is for example a coaxial feed or an insert feed.
- FIG. 3 shows the patch fields 16, i.e. the antenna area 22, in greater detail.
- the direction of the y-axis of Figure 3 is referred to as the vertical direction and the direction of the x-axis is referred as the horizontal direction.
- This nomenclature is, of course, independent of the mounting position of the multiband patch antenna 10.
- each patch field type A, B, C are chosen such that a respective patch field has a predefined resonance frequency.
- the resonance frequency is the frequency of electromagnetic radiation emitted by the respective patch field 16 in conjunction with the ground plane 12, when fed with a feed signal through the feedpoint 18.
- First patch fields 24 of the first patch field type A have a first resonance frequency f 1 , for example 2.44 GHz
- the second patch fields 26 of the second patch field type B have a second resonance frequency f 2 , for example 5.25 GHz
- the third patch fields 28 of the third patch field type C have a third resonance frequency f 3 , for example 5.6 GHz.
- the first resonance frequency f 1 , the second resonance frequency f 2 and the third resonance frequency f 3 differ from one another.
- the first patch field 24, the second patch field 26 and the third patch field 28 together may emit electromagnetic radiation - when fed with a feed signal through feedpoint 18 - with a further frequency or one of the resonance frequencies f 1 , f 2 , f 3 .
- the resonance frequency of a patch field can be determined by the so-called cavity model, which is known in the art, that yields the horizontal and vertical length of the patch field for a desired resonance frequency and a desired mode.
- the horizontal length a 1 and the vertical length a 2 of the first patch field 24 of the first patch field type A, the horizontal length b 1 and vertical length b 2 of the second patch fields 26 of the second patch field type B and the horizontal length c 1 and vertical length c 2 of the third patch fields 28 of the third patch field type C may be determined as shown in the following table, wherein c 0 is the speed of light in vacuum, and ⁇ reff is the effective permittivity at the specified frequency. The calculations are carried out for the dominant TM 10 mode.
- the arrangement of the patch fields 16, and thus the antenna area 22, is symmetrical with respect to an axis S that runs vertically, i.e. parallel to the y-axis, and through the geometric center D of the patch fields 16, i.e. antenna area 22, which is in the shown embodiment also the geometric center of the first patch field 24.
- This geometric center of the antenna area 22 is regarded as the origin of the coordinate system of Figure 3 .
- the second patch fields 26 are spaced apart by a distance d 2 and the third patch fields 28 are spaced apart by a distance d 3 .
- distance d 2 and distance d 3 are about, in particular exactly equal to one another and correspond to the horizontal length c 1 of the third patch fields 28. Because of the symmetry, the distance of the second patch fields 26 and the third patch fields 28 from the vertical axis S (y-axis) amounts to half of distance d 2 , half of distance d 3 , respectively.
- distances d 2 , d 3 are different from one another.
- distances d 2 , d 3 may be about or particularly exactly equal to the horizontal length b 1 , c 1 of the second and third patch fields 26, respectively.
- the left-hand side second patch field 26 and third patch field 28 are spaced apart by a vertical distance e.
- the right-hand side second patch field 26 and third patch field 28 are also spaced apart by the same vertical distance e.
- the vertical distance e may be chosen such that the sum of the vertical distance e, the vertical length b 2 and the vertical length c 2 is about or exactly equal the horizontal length a 1 so that the vertical length of the whole antenna area 22 is the horizontal length a 1 and thus half a wavelength of electromagnetic radiation with a frequency f 1 .
- the location of the feedpoint 18 is 10.691 mm in the horizontal direction and 13.586 mm in the vertical direction on one of the third patch fields 28.
- the thickness of the ground plane 12 and support layers 14 is 0.035 mm and the thickness of the support layer 14 is 1.55 mm.
- the multiband patch antenna 10 of this design has an improved radiation characteristic meaning that it has a highly directional radiation characteristic, wherein at the same time the thickness of the multiband patch antenna 10 is small.
Landscapes
- Waveguide Aerials (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19158830.0A EP3700015A1 (fr) | 2019-02-22 | 2019-02-22 | Antenne à plaque multibandes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19158830.0A EP3700015A1 (fr) | 2019-02-22 | 2019-02-22 | Antenne à plaque multibandes |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3700015A1 true EP3700015A1 (fr) | 2020-08-26 |
Family
ID=65529532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19158830.0A Pending EP3700015A1 (fr) | 2019-02-22 | 2019-02-22 | Antenne à plaque multibandes |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3700015A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1070366A1 (fr) * | 1997-12-22 | 2001-01-24 | Her Majesty the Queen in Right of Canada as represented by the Minister of Industry through the Communications Research Centre | Couplage parasite a partir des elements d'une antenne a plaque interieure a des elements d'une antenne a plaque exterieure |
US20090058731A1 (en) * | 2007-08-30 | 2009-03-05 | Gm Global Technology Operations, Inc. | Dual Band Stacked Patch Antenna |
US20170358863A1 (en) * | 2015-09-23 | 2017-12-14 | Limited Liability Company "Topcon" Positioning Systems" | Compact Broadband Antenna System with Enhanced Multipath Rejection |
KR101942343B1 (ko) * | 2017-08-30 | 2019-01-25 | 한국과학기술원 | 공동 분극화 기생 패치를 갖는 직렬 급전 e-형 패치 안테나 어레이 |
-
2019
- 2019-02-22 EP EP19158830.0A patent/EP3700015A1/fr active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1070366A1 (fr) * | 1997-12-22 | 2001-01-24 | Her Majesty the Queen in Right of Canada as represented by the Minister of Industry through the Communications Research Centre | Couplage parasite a partir des elements d'une antenne a plaque interieure a des elements d'une antenne a plaque exterieure |
US20090058731A1 (en) * | 2007-08-30 | 2009-03-05 | Gm Global Technology Operations, Inc. | Dual Band Stacked Patch Antenna |
US20170358863A1 (en) * | 2015-09-23 | 2017-12-14 | Limited Liability Company "Topcon" Positioning Systems" | Compact Broadband Antenna System with Enhanced Multipath Rejection |
KR101942343B1 (ko) * | 2017-08-30 | 2019-01-25 | 한국과학기술원 | 공동 분극화 기생 패치를 갖는 직렬 급전 e-형 패치 안테나 어레이 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9698487B2 (en) | Array antenna | |
US10978797B2 (en) | Electronic devices having antenna array apertures mounted against a dielectric layer | |
JP6500859B2 (ja) | 無線モジュール | |
EP4156411A1 (fr) | Module d'antenne à ondes millimétriques et dispositif électronique | |
CN110854548B (zh) | 天线结构及具有该天线结构的无线通信装置 | |
US11336016B2 (en) | Cavity supported patch antenna | |
EP3465823B1 (fr) | Antenne alimentée en c formée sur le bord d'une carte de circuit imprimé multicouche | |
KR20140117309A (ko) | 평면형 안테나 장치 및 방법 | |
US20180123236A1 (en) | Antenna System and Antenna Module With a Parasitic Element For Radiation Pattern Improvements | |
CN115275557A (zh) | 具有折叠天线模块的电子设备 | |
WO2020195110A1 (fr) | Dispositif antenne | |
CN210272672U (zh) | 天线以及电子设备 | |
JP2019220886A (ja) | パッチアンテナ及びこれを備えるアンテナモジュール | |
EP3700015A1 (fr) | Antenne à plaque multibandes | |
CN111816988A (zh) | 天线装置 | |
EP4340127A1 (fr) | Antenne à large bande, antenne de boîtier et dispositif de communication | |
CN114389005B (zh) | 一种电子设备 | |
CN115810906A (zh) | 具有紧凑超宽带天线模块的电子设备 | |
US20170054197A1 (en) | Antenna device and communication module | |
US9722311B2 (en) | Antenna device with continuous bending structure and application system using the same | |
JP7415820B2 (ja) | アンテナ装置 | |
JP7567452B2 (ja) | 無線通信装置 | |
EP4435969A1 (fr) | Structure d'antenne, antenne en boîtier, puce et dispositif électronique | |
EP4075601A1 (fr) | Structure d'antenne et dispositif de communication sans fil | |
US20230187839A1 (en) | Radio frequency interference (rfi) shielded substrate-integrated-waveguide (siw) cavity antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210208 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20221108 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |