EP3699478B1 - Vorrichtung, anlage und verfahren zur gasversorgung - Google Patents

Vorrichtung, anlage und verfahren zur gasversorgung Download PDF

Info

Publication number
EP3699478B1
EP3699478B1 EP20152779.3A EP20152779A EP3699478B1 EP 3699478 B1 EP3699478 B1 EP 3699478B1 EP 20152779 A EP20152779 A EP 20152779A EP 3699478 B1 EP3699478 B1 EP 3699478B1
Authority
EP
European Patent Office
Prior art keywords
gas
pressure
ambient temperature
temperature
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20152779.3A
Other languages
English (en)
French (fr)
Other versions
EP3699478A1 (de
Inventor
Fouad Ammouri
Stéphane BONNETIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3699478A1 publication Critical patent/EP3699478A1/de
Application granted granted Critical
Publication of EP3699478B1 publication Critical patent/EP3699478B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • F17C13/045Automatic change-over switching assembly for bottled gas systems with two (or more) gas containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0142Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/041Methods for emptying or filling vessel by vessel
    • F17C2227/042Methods for emptying or filling vessel by vessel with change-over from one vessel to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/034Control means using wireless transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/038Detecting leaked fluid

Definitions

  • the invention relates to a device, an installation and a method for supplying gas.
  • the invention relates more particularly to a gas supply device comprising an inversion unit, the inversion unit comprising two inlets intended to be connected respectively to two distinct sources of pressurized gas and an outlet intended to be connected to a member user, the reversing unit comprising an automatic and/or manual switching mechanism making it possible to switch the gas supply to the user body from one source or the other source in order to ensure continuity of supply, the device comprising a pressure sensor measuring the gas pressure at the outlet and/or at least one inlet of the inversion unit.
  • a gas bottle frame reversal unit is made up of a manual and/or automatic tilting system. This well-known system makes it possible to pass the gas supply to a power plant from a first bottle or a first frame of bottles to a second bottle or a second frame of bottles when the pressure level of the first frame being Use falls below a certain safety threshold.
  • the role of the reversing unit is to ensure a continuous supply of gas when changing frame or bottle(s).
  • the reversing unit is often equipped with a regulator allowing the reduction of the gas pressure in the source cylinders towards the pressure level necessary for the final use.
  • a pressure sensor powered by wires or a pressure gauge is often installed upstream of the regulator (downstream of the outlet of the inversion unit) to monitor the remaining pressure in the gas source and thus know if it is necessary to switch from 'one gas source to another.
  • Leak detection on a pipeline supplied with pressurized gas capacity is often carried out with one or more external detectors installed along the pipeline. This system therefore requires installing a gas detector at regular intervals. For a gas pipeline several tens of meters long, this represents a significant cost and a restrictive regular monitoring to calibrate the detectors in order to ensure their reliability over time.
  • An aim of the present invention is to overcome all or part of the disadvantages of the prior art noted above.
  • the device comprising an ambient temperature sensor and an electronic storage unit and data processing, the electronic data storage and processing unit receiving the measurement from the ambient temperature sensor and the measurement from the pressure sensor and being configured to calculate, from these pressure and ambient temperature measurements, the corrected gas pressure variation which is not due to the ambient temperature variation.
  • the invention also relates to an installation for supplying gas to a user body comprising a gas supply device conforming to any of the characteristics above or below and two sources of pressurized gas connected respectively to the two inlets of the inversion unit.
  • the invention also relates to a method of supplying gas to a user organ by means of a circuit including a reversing unit connected to two separate pressurized gas sources, the reversing unit comprising an automatic switching mechanism and/or manual for switching the gas supply to the user organ from one source or the other source in order to ensure continuity of supply, the method comprising a step of measuring the gas pressure in the circuit, in particular between the inversion unit and the user unit, a step of measuring the ambient temperature, a step of calculating the corrected pressure of the gas in the circuit from the measured pressure values and the temperature ambient, to determine pressure variations solely due to a transfer of gas from a source to the user organ.
  • the invention may also relate to any alternative device or method comprising any combination of the characteristics above or below within the scope of the claims.
  • FIG. 1 represents schematically and partially an example of structure and operation of the invention.
  • the gas supply installation illustrated in [ Fig. 1 ] comprises two frames 4, 5 of pressurized gas bottles connected respectively to two inlets of an inversion unit 2.
  • the circuit can include a pressure regulator 10 to regulate the pressure supplied to the user 3 at a determined value.
  • the installation includes a pressure sensor 6 measuring the pressure in the circuit before expansion.
  • the installation 1 further comprises an ambient temperature sensor 7, measuring for example the temperature around the frame of the sources 4, 5.
  • the installation includes (locally or remotely) an electronic data storage and processing unit 8.
  • This electronic organ 8 comprises for example a microprocessor, a computer, an electronic card and/or any other suitable device.
  • This electronic data storage and processing unit 8 is configured (connected) to receive the measurement from the ambient temperature sensor 7 and the measurement from the pressure sensor 6.
  • this electronic member 8 is configured (programmed or controlled in particular) to calculate, from these measurements, the corrected gas pressure variation which is not due to the variation in ambient temperature.
  • this electronic organ 8 is connected to the pressure measurement, to the measurement of the ambient temperature and receives information or a signal representative of the use or not of the installation (supply of gas or not).
  • the electronic member 8 can be physically located at the level of the pressure sensor 6.
  • Sensor signals can be transmitted by wire or wirelessly (Bluetooth signal or Internet of Things for example).
  • the device thus allows the detection of gas leaks in the circuit (in particular on a pipe downstream of the inversion unit 2) based on the pressure measurement profile measured by the pressure sensor 6 and on the ambient temperature measured by sensor 7.
  • the measured pressure value is corrected in relation to the variation in ambient temperature. This makes it possible to analyze, for example, the slope (variation) of the corrected pressure in order to detect the presence or not of a gas leak.
  • measuring the pressure (before relief in the event of relief), the ambient temperature and a signal representative of non-use/use of the gas makes it possible to determine the presence or not of a gas leak in the circuit ( between the source 4, 5 of pressurized gas and the place of final use of the gas downstream of the inversion plant 2).
  • This ratio depends on the pressure and the average temperature of the gas in the volume. However, it is very difficult to measure the temperature inside one or more gas cylinders. According to the invention the average temperature of the gas in the source or the circuit is deduced (approximate) from the ambient temperature measurement around it. To do this, variations in the temperature of the gas inside the bottles are deduced from variations in the ambient temperature.
  • the variation in the ambient temperature around the sources 4, 5 in fact influences the temperature of the gas in the sources through the heat flow which passes through the walls of the bottles.
  • the heat flow of a convective and radiative nature on the external wall of the bottles is transformed into a conductive flow through the wall of the bottles and then in convective form between the internal wall of the bottle and the gas inside.
  • m w is the mass (in kg) of the wall of a bottle and Cp w is the specific heat of the wall of the bottle (in W/(m 2 .K))
  • k e is the exchange coefficient total external surface (convective and radiative W/(m 2 .K)) around the wall of the bottle and S e is the external surface of the wall of the bottle (in m 2 ).
  • k cvi is the convective exchange coefficient between the gas in the bottle and the internal wall of this bottle
  • m g is the mass of gas contained in the bottle (in kg)
  • c pg is the specific heat thereof.
  • the order of magnitude of the total characteristic time is approximately 1 hour and it is clearly dominated by the characteristic time of external heat exchange which represents almost all (95%) of the total time.
  • the variation of the temperature of the gas in the bottle reaches that of the ambient temperature after approximately three times the total characteristic time.
  • the temperature T of the gas can be approximated by the moving average of the ambient temperature over a period of between one hour and five hours and in particular three hours.
  • the average temperature of the gas in the bottle without consumption (i.e. without withdrawal) can be approximated by the moving average over a period equal to three times the total characteristic time of the heat exchange between the medium ambient and the gas in the bottle.
  • f(T,P) is a function which depends on the nature of the gas, the pressure and the temperature of the gas in the cylinder. This function can be tabulated or fitted by a polynomial in T and P.
  • the corrected pressure Pc can be put in the form of a polynomial function of order 2 in T (temperature of the gas in the bottle) where the coefficients are polynomials of order 3 in P (pressure measured in the bottle(s) of the frame before expansion) with P in bara and T in K (the temperature can be expressed in degrees K or in degrees C but in this case the value of the coefficients is modified accordingly)
  • P vs T P HAS . P 3 + B . P 2 + VS . P + D . T 2 + E . P 3 + F . P 2 + G . P + H . T + I . P 3 + J . P 2 + K . P + L
  • the formula for the corrected pressure Pc involves the compressibility coefficient of the gas. This coefficient depends on the nature of the gas, the temperature of the gas and its pressure. This compressibility coefficient Z can be tabulated for each gas as a function of the temperature and pressure of the gas. We can extract this compressibility coefficient Z based for example on the data provided by the NIST (National Institute of Standards and Technology) website (https://webbook.nist.gov/chemistry/). Knowing the compressibility coefficient of the gas considered, we calculate thus the pressure corrected for different values of pressure and temperature of the gas.
  • the device can calculate the corrected pressure Pc from the previous formula.
  • the electronic unit 8 receives a signal representative of the non-use of gas on the network after the inversion unit (no withdrawal, no supply of gas to the user 3) and the corrected pressure calculated Pc by the previous formula decreases with time (for example Pc(t)-Pc(t+delta t) greater than a threshold), this implies that a leak is present in the circuit.
  • An alert signal can be generated (visual and/or audible) and any other action (stopping, closing of valves, etc.) can be triggered.
  • the signal representative of the non-use of gas on the network can be obtained for example by a closed valve signal at the final use of the gas or by a zero flow signal at the flow meter very close to the use final gas.
  • This threshold in bar can be equal to at least twice the precision of the pressure sensor used (for example threshold of 5 bar for a sensor at 250 bar max with 1% accuracy).
  • the delta t value is preferably of the order of several hours, particularly three hours as discussed above.
  • a signal can be displayed at the pressure sensor and/or a message can be sent remotely using for example an Internet of Things network. or a GSM network or any other telecommunications network (Bluetooth, etc.) to alert of the presence of a gas leak

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Volume Flow (AREA)

Claims (9)

  1. Vorrichtung zur Gasversorgung, die eine Umschaltstation (2) beinhaltet, wobei die Umschaltstation (2) zwei Eingänge, die dazu bestimmt sind, jeweils mit zwei unterschiedlichen Druckgasquellen (4, 5) verbunden zu sein, und einen Ausgang, der dazu bestimmt ist, mit einer Verbrauchereinheit (3) verbunden zu sein, beinhaltet, wobei die Umschaltstation (2) einen Mechanismus zur automatischen und/oder manuellen Umschaltung beinhaltet, der es gestattet, die Gaszufuhr für die Verbrauchereinheit (3) auf eine Quelle (4) oder die andere (5) Quelle umzustellen, um während der Verwendung der Vorrichtung eine unterbrechungsfreie Zufuhr zu gewährleisten, wobei die Vorrichtung einen Drucksensor (6), der den Gasdruck im Bereich des Ausgangs und/oder mindestens eines Eingangs der Umschaltstation (2) misst, einen Detektionssensor (9) für den Verbrauch an Gas, das durch die Gasversorgungsvorrichtung (1) geliefert wird, und eine elektronische Datenspeicher- und -verarbeitungseinheit (8), die das Signal dieses Gasverbrauchsdetektionssensors (9) empfängt, beinhaltet, dadurch gekennzeichnet, dass die Vorrichtung einen Umgebungstemperatursensor (7) beinhaltet, wobei die elektronische Datenspeicher- und -verarbeitungseinheit (8) die Messung des Umgebungstemperatursensors (7) und die Messung des Drucksensors (6) empfängt und dazu konfiguriert ist, anhand dieser Druck- und Umgebungstemperaturmessungen die korrigierte Gasdruckänderung zu berechnen, die nicht auf die Änderung der Umgebungstemperatur zurückzuführen ist, und dass die elektronische Datenspeicher- und -verarbeitungseinheit (8) dazu konfiguriert ist, ein Leck zu detektieren und als Reaktion darauf ein Warnsignal zu generieren, wenn die korrigierte berechnete Gasdruckänderung die reale Druckänderung, die dem Signal des Detektionssensors (9) für den Verbrauch an geliefertem Gas entspricht, überschreitet.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die elektronische Datenspeicher- und -verarbeitungseinheit (8) dazu konfiguriert ist, ein Leck zu detektieren und als Reaktion darauf ein Warnsignal zu generieren, wenn der Verbrauchsdetektionssensor (9) keinen Verbrauch an Gas, das durch die Vorrichtung geliefert wird, detektiert, während die berechnete korrigierte Gasdruckänderung einem Druckabfall entspricht.
  3. Vorrichtung nach einem beliebigen der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass sie einen Druckminderer (10) beinhaltet, der im Bereich des Ausgangs der Umschaltstation (2) angeordnet ist und dazu konfiguriert ist, den an eine Verbrauchereinheit (3) gelieferten Druck auf einen bestimmten Wert abzusenken.
  4. Anlage zur Gasversorgung einer Verbrauchereinheit (3), die eine Vorrichtung zur Gasversorgung nach einem beliebigen der Ansprüche 1 bis 3 und zwei Druckgasquellen (4, 5), die jeweils mit den zwei Eingängen der Umschaltstation (2) verbunden sind, beinhaltet.
  5. Verfahren zur Gasversorgung einer Verbrauchereinheit (3) mit Hilfe eines Kreislaufs, der eine Umschaltstation (2) umfasst, die mit zwei unterschiedlichen Druckgasquellen (4, 5) verbunden ist, wobei die Umschaltstation (2) einen Mechanismus zur automatischen und/oder manuellen Umschaltung beinhaltet, der es gestattet, die Gaszufuhr für die Verbrauchereinheit (3) auf eine Quelle (4) oder die andere (5) Quelle umzustellen, um während der Verwendung der Vorrichtung eine unterbrechungsfreie Zufuhr zu gewährleisten, wobei das Verfahren einen Schritt des Messens des Gasdrucks in dem Kreislauf, insbesondere zwischen der Umschaltstation (2) und der Verbrauchereinheit (3), beinhaltet, dadurch gekennzeichnet, dass das Verfahren einen Schritt des Messens der Umgebungstemperatur, einen Schritt des Berechnens des korrigierten Gasdrucks in dem Kreislauf anhand der Werte des gemessenen Drucks und der Umgebungstemperatur beinhaltet, um die Druckänderungen zu bestimmen, die ausschließlich auf einen Gastransfer von einer Quelle an die Verbrauchereinheit (3) zurückzuführen sind, wobei das Verfahren einen Schritt des Detektierens einer Gasversorgung einer Verbrauchereinheit (3) via den Kreislauf, und, wenn der berechnete korrigierte Druck abnimmt und keine Gasversorgung einer Verbrauchereinheit (3) detektiert wird, einen Schritt des Generierens eines Warnsignals umfasst.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Temperatur des Gases in dem Kreislauf und insbesondere in den Quellen (4, 5) durch den gleitenden Mittelwert der gemessenen Umgebungstemperatur (7) über einen Zeitraum, der dem dreifachen der charakteristischen Gesamtzeit für den Wärmeaustausch zwischen der Umgebung und dem Gas in der Quelle (4, 5) entspricht, annäherungsweise bestimmt wird.
  7. Verfahren nach einem beliebigen der Ansprüche 5 bis 6, dadurch gekennzeichnet, dass die korrigierte Gasdruckänderung berechnet wird, indem der Druck P (in Pa) anhand der Gleichung [Math 1] der realen Gase PV=n.R.Z.T berechnet wird, wobei V das Gasvolumen (in m3) ist, n die Molzahl des Gases ist, R die Konstante der idealen Gase (Einheiten in J.K-1.mol-1) ist, Z der Kompressibilitätsfaktor für das betrachtete Gas ist (dimensionslos in Abhängigkeit von der Art des Gases, der Temperatur und dem Druck des Gases), T die Temperatur des Gases (in K) ist, und dass die Temperatur T des Gases als ein gleitender Mittelwert der gemessenen Umgebungstemperatur über einen bestimmten Zeitraum zwischen einer Stunde und fünf Stunden und insbesondere drei Stunden annäherungsweise bestimmt wird.
  8. Verfahren nach einem beliebigen der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der korrigierte Gasdruck (Pc) in dem Kreislauf in Form einer Polynomfunktion der Temperatur T des Gases (in Grad K) berechnet wird, deren Koeffizienten Polynome des gemessenen Drucks (P in bara) sind.
  9. Verfahren nach einem beliebigen der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der korrigierte Gasdruck (Pc) in dem Kreislauf in Form einer Polynomfunktion 2. Grades der Temperatur T des Gases (in Grad K) berechnet wird, deren Koeffizienten Polynome 3. Grades des gemessenen Drucks (P in bara) sind Pc = A . P 3 + B . P 2 + C . P + D . T 2 + E . P 3 + F . P 2 + G . P + H . T + I . P 3 + J . P 2 + K . P + L ,
    Figure imgb0010
    wobei die Koeffizienten A, B, C, D, E, F, G, H, I, J, K und L reale Koeffizienten sind, die durch eine Polynomglättung der Funktion erhalten werden, die den Gaskompressibilitätskoeffizienten mit einfließen lässt.
EP20152779.3A 2019-02-19 2020-01-21 Vorrichtung, anlage und verfahren zur gasversorgung Active EP3699478B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1901644A FR3092896B1 (fr) 2019-02-19 2019-02-19 Dispositif, installation et procédé de fourniture de gaz

Publications (2)

Publication Number Publication Date
EP3699478A1 EP3699478A1 (de) 2020-08-26
EP3699478B1 true EP3699478B1 (de) 2024-03-06

Family

ID=67185318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20152779.3A Active EP3699478B1 (de) 2019-02-19 2020-01-21 Vorrichtung, anlage und verfahren zur gasversorgung

Country Status (4)

Country Link
US (1) US20200263834A1 (de)
EP (1) EP3699478B1 (de)
DK (1) DK3699478T3 (de)
FR (1) FR3092896B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413169B (zh) * 2021-12-25 2023-12-22 安徽明天氢能科技股份有限公司 一种加氢站用氮气控制管路系统
EP4293274A1 (de) * 2022-06-17 2023-12-20 Gasokay ApS Optimiertes gaszufuhrsystem

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259424A (en) * 1991-06-27 1993-11-09 Dvco, Inc. Method and apparatus for dispensing natural gas
US5531242A (en) * 1993-12-28 1996-07-02 American Air Liquide Cylinder solvent pumping system
US6536456B2 (en) * 1997-03-03 2003-03-25 William H. Dickerson, Jr. Automatically switching valve with remote signaling
US6581623B1 (en) * 1999-07-16 2003-06-24 Advanced Technology Materials, Inc. Auto-switching gas delivery system utilizing sub-atmospheric pressure gas supply vessels
JP6001315B2 (ja) * 2012-04-26 2016-10-05 トヨタ自動車株式会社 ガス充填システム及び車両

Also Published As

Publication number Publication date
DK3699478T3 (da) 2024-04-22
US20200263834A1 (en) 2020-08-20
FR3092896A1 (fr) 2020-08-21
EP3699478A1 (de) 2020-08-26
FR3092896B1 (fr) 2021-04-16

Similar Documents

Publication Publication Date Title
EP3699478B1 (de) Vorrichtung, anlage und verfahren zur gasversorgung
US7358860B2 (en) Method and apparatus to monitor and detect cryogenic liquefied gas leaks
JP6815816B2 (ja) 放射性物質密封容器のガス漏洩検知方法及び装置並びにプログラム
EP3097341B1 (de) Ventil für unter druck stehende fluidzylinder und entsprechender zylinder
CA2528900C (fr) Procede de suivi des performances d&#39;un equipement industriel
CA2464198C (en) Method and apparatus for the detection of the response of a sensing device
JP2003532106A (ja) 加圧パイピングの漏れを圧力測定システムで検出するための改良された方法
EP3097342B1 (de) Ventil für einen unter druck stehenden fluidzylinder und entsprechendes zylinder
EP3512056A1 (de) Verfahren zum erkennen einer elektrischen störung, vorrichtung zur umsetzung dieses verfahrens und elektrisches gehäuse, das mit einer solchen vorrichtung ausgestattet ist
EP3087361A1 (de) Vorrichtung zum lesen und senden von gemessenen temperaturwerten
EP3097340A1 (de) Ventil für einen unter druck stehenden fluidzylinder und entsprechendes zylinder
EP3097344B1 (de) Ventil für einen unter druck stehenden fluidzylinder und entsprechender zylinder
EP3097343B1 (de) Druckflüssigkeitszylinder mit einer elektronischen datenanzeigevorrichtung
FR2549576A1 (fr) Procede et dispositif de controle de fuite sur un reseau de distribution de fluide
FR2900099A1 (fr) Methode de confirmation d&#39;une alerte de pression dans un systeme de surveillance de pession
JP2760242B2 (ja) ガス圧力異常監視装置
JP2004036937A (ja) ガス保安装置
JP4813650B2 (ja) ガス遮断装置
JP4813649B2 (ja) ガス遮断装置
JP2004138627A (ja) 配管漏洩監視装置
FR3136548A1 (fr) Dispositif mesurant la quantité de réfrigérant contenue dans les circuits frigorifiques pour en déterminer l’étanchéité
US20240077174A1 (en) System and method for monitoring and control of steam lost from steam traps
JP2004093171A (ja) 積算流量計
FR3038052A1 (fr) Procede et dispositif d&#39;estimation de la masse de gaz contenue dans un reservoir de gaz sous pression
US20180217120A1 (en) Apparatus and method for monitoring fuel oil delivery

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210226

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230913

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020026645

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20240418

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP