EP3695920B1 - Robust ingot for the production of components made of metallic solid glasses - Google Patents

Robust ingot for the production of components made of metallic solid glasses Download PDF

Info

Publication number
EP3695920B1
EP3695920B1 EP19156906.0A EP19156906A EP3695920B1 EP 3695920 B1 EP3695920 B1 EP 3695920B1 EP 19156906 A EP19156906 A EP 19156906A EP 3695920 B1 EP3695920 B1 EP 3695920B1
Authority
EP
European Patent Office
Prior art keywords
ingot
melt
casting
glass
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19156906.0A
Other languages
German (de)
French (fr)
Other versions
EP3695920A1 (en
Inventor
Tim GLÄSER
Hamed SHAKUR SHAHABI
Eugen Milke
Hans-Jürgen Wachter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Deutschland GmbH and Co KG
Original Assignee
Heraeus Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Deutschland GmbH and Co KG filed Critical Heraeus Deutschland GmbH and Co KG
Priority to EP19156906.0A priority Critical patent/EP3695920B1/en
Priority to PCT/EP2020/052232 priority patent/WO2020164916A1/en
Priority to CN202080011844.XA priority patent/CN113382815B/en
Priority to US17/427,597 priority patent/US20220118511A1/en
Priority to TW109103520A priority patent/TWI791947B/en
Publication of EP3695920A1 publication Critical patent/EP3695920A1/en
Application granted granted Critical
Publication of EP3695920B1 publication Critical patent/EP3695920B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/06Special casting characterised by the nature of the product by its physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent

Definitions

  • the invention relates to a method for producing mechanically and thermally stable ingots (also called preforms) from alloys that can form a metallic solid glass. Furthermore, the invention relates to an ingot of a solid glass-forming alloy that is produced using the method according to the invention and the use of this ingot in a casting method.
  • BMG bulk metallic glasses
  • a metallic solid glass is to be understood as meaning a material with a critical casting thickness of at least one millimeter.
  • the existing systems include, among other things, precious metal-based alloys such as gold, platinum and palladium-based metallic bulk glasses, early transition metal-based alloys such as titanium or zirconium-based metallic bulk glasses, late transition metal-based systems, e.g. based on Copper, nickel or iron, but also systems based on rare earth metals, e.g. neodymium or terbium.
  • Components made of metallic solid glass can be produced using casting processes, since the necessary cooling rates for amorphous solidification can be achieved with these processes.
  • amorphous components In order to obtain amorphous components from a metallic bulk glass, it is usually necessary to quickly transfer the melt of a bulk glass-forming alloy into a mold. This filling of the mold with the melt preferably takes place by injection (injection molding) or sucking in (suction molding). In this way, the high cooling rates can be achieved and three-dimensional components made of metallic solid glass can be manufactured. Small manufacturing tolerances can be achieved by using casting processes such as injection molding.
  • Ingots of the alloy to be processed are necessary for casting processes, which serve as a supply of material to be processed and can be melted homogeneously. To do this, the ingots must have a sufficient volume so that enough material is available for the entire cast component and the additional spaces in the mold (the sprue ) can also be filled. Therefore, ingots that are as large as possible are desirable.
  • a homogeneous bulk glass-forming alloy is first produced. To do this, the individual components are mixed together and heated above the melting point, resulting in a homogeneous alloy. The individual components can be melted, for example, in an arc or by means of inductive heating. the The homogeneous alloy is then poured into molds and cooled to form an ingot. Generally, these ingots are in the form of cylindrical rods. In order for the ingots to contain enough material to completely fill the mold for a casting process for a three-dimensional component, the ingots must be sufficiently dimensioned. Typical diameters of cylindrical ingots made of bulk glass-forming alloys are in the range of about 20 mm. The length of an ingot is preferably at least 3 cm.
  • An object of the present invention was to provide an ingot made from a solid glass-forming alloy with a high critical casting thickness, which does not shatter during the production process and can be heated up more quickly during further thermal processing, such as injection molding.
  • the object of the invention was to provide a method for producing an ingot from a solid glass-forming alloy with a high critical casting thickness that does not shatter during the production process.
  • Another object of the invention was to provide ingots made of bulk glass-forming alloys that can be heated faster than conventional ingots.
  • the composition of the solid glass-forming alloy is not further restricted.
  • a solid glass-forming alloy is preferably to be understood as meaning an alloy with a critical casting thickness of at least one millimeter. This means that such an alloy can solidify amorphously up to a thickness of one millimeter at a suitable cooling rate.
  • alloys that can form metallic bulk glasses are selected from the group consisting of Ni-Nb-Sn, Co-Fe-Ta-B, Ca-Mg-Ag-Cu, C-oFe-B-Si -Nb, Fe-Ga-(Cr,Mo)(P,C,B), Ti-Ni-Cu-Sn, Fe-Co-Ln-B, Co-(Al,Ga)-(P,B,Si ), Fe-B-Si-Nb and Ni-(Nb,Ta)-Zr-Ti.
  • the metallic bulk glass can be a Zr-Cu-Al-Nb alloy.
  • this Zr-Cu-Al-Nb alloy preferably also has 23.5-24.5% by weight copper, 3.5-4.0% by weight aluminum and 1.5-2.0% by weight On niobium, the proportions by weight adding up to 100% by weight.
  • the latter alloy is commercially available under the name AMZ4® from Heraeus Kunststoff GmbH.
  • the alloy forming solid glass can contain or consist of the elements zirconium, titanium, copper, nickel and aluminum.
  • Particularly stable ingots can be produced from alloys of this composition that form solid glass.
  • a particularly well suited alloy for the production of stable inogts has the composition Zr 52.5 Ti 5 Cu 17.9 Ni 14.6 Al 10 , the indices indicating mol % of the respective elements in the alloy.
  • the alloy that forms solid glass preferably has a critical casting thickness of at least 5 mm, in particular at least 7 mm and entirely particularly preferably of at least 10 mm.
  • the maximum casting thickness is a measure of how easy or difficult it is for a metallic alloy to bring it into the glass state.
  • the alloy to be measured is processed in an electric arc to form a homogeneous melt and then poured into a water-cooled copper mold (also called permanent mold).
  • the mass of the copper mold is preferably at least a factor of 7 greater than the mass of the melt of the alloy to be determined.
  • the temperature of the homogeneous melt before casting is preferably at least 200° C., in particular 300° C. and very particularly preferably at least 400° C. above the melting temperature.
  • the temperature of the copper mold is 20°C.
  • cylindrical molded parts are cast with increasing diameters at a distance of 1 mm (e.g. 2mm, 3mm, 4mm, 5mm, 6mm, etc.).
  • the cylindrical molded parts produced are examined for their crystalline content using differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the cylinder diameter that is one millimeter smaller than the cylinder diameter at which the formation of a crystalline phase is first measured by DSC is given as the critical casting thickness.
  • DSC method 2) as described herein was used to determine the presence of a crystalline phase.
  • a homogeneous melt of a bulk glass-forming alloy is provided.
  • the homogeneous melt is preferably prepared by melting the individual elements of the alloy together.
  • the individual elements are preferably melted in an arc or by means of inductive heating.
  • the temperature of the homogeneous melt is preferably at least 200° C., in particular at least 300° C., and very particularly preferably at least 400° C., above the melting temperature of the respective solid glass-forming alloy.
  • the temperature of the melt, measured in degrees Celsius is at least 20%, in particular at least 50%, above the melting temperature of the alloy, since particularly stable ingots can be produced as a result.
  • the homogeneous melt is poured into a casting mold.
  • the shape of the mold is not further restricted.
  • the mold is preferably cylindrical.
  • the volume of the casting mold to be filled preferably has dimensions which are greater in all three spatial directions than the critical casting thickness of the alloy forming solid glass.
  • the material of the mold can preferably be selected from steel, titanium, copper, ceramic or graphite.
  • the mold preferably has a device with which the mold can be actively heated and/or cooled. In one embodiment of the invention, the mold can be actively heated, eg by electrical heating.
  • the ratio between the weight of the mold and the weight of the melt is preferably in the range of 7:1 or more, more preferably in the range of 10:1 or more.
  • the casting mold can be coated in the area that comes into contact with the melt.
  • the material of this coating of the mold is preferably selected from the group consisting of boron nitride, aluminum oxide (eg Al 2 O 3 ) and yttrium oxide (eg Y 2 O 3 ).
  • the coating preferably has or consists of a powder.
  • the thickness of the coating, in particular the powder coating can be in the range of 10-50 ⁇ m in one embodiment.
  • a layer of powder can have an advantageous effect on the mechanical properties of the ingot to be produced.
  • the coating can serve, among other things, to make it easier to remove the ingot from the mold.
  • the casting mold does not cool below the glass formation temperature of the solid glass-forming alloy at the contact surface with the melt for at least 5 seconds, in particular for at least 10 seconds and very particularly preferably for at least 30 seconds.
  • a melt is also referred to after the liquid melt has been transferred to the casting mold, even if the solidification process has already started and the solid glass-forming alloy is partially or completely solid, as long as the glass transition temperature has not yet been fallen below.
  • the casting mold does not cool below the glass formation temperature of the solid glass-forming alloy at any point on the contact surface with the melt for the specified period.
  • the determination of the glass formation temperature of the alloy is described under "Methods".
  • the temperature of the mold at the contact surface with the melt for the aforementioned period is at least 10° C., in particular at least 20° C. and particularly preferably at least 40° C. or at least 80° C. above the glass formation temperature of the solid glass-forming Alloy.
  • a temperature measuring probe can be embedded in the mold in such a way that it reaches the contact surface of the mold with the melt and measures there.
  • the temperature is preferably measured at half the length of the longest dimension of the ingot.
  • the temperature of the mold before filling with the melt is preferably adjusted so that the temperature of the mold after casting at the contact surface with the melt for at least 5 seconds, in particular for at least 10 seconds and most preferably for at least 30 seconds after contact with the mold does not fall below the glass formation temperature of the alloy.
  • the mold is preferably heated prior to contact with the melt.
  • the preferably set temperature of the mold directly before pouring the melt is at least 250°C, in particular at least 400°C and particularly preferably at least 500°C.
  • the casting mold can be heated in an oven, for example.
  • the mold can be actively heated, e.g. by electrical heating.
  • no additional pressure substantially above standard atmospheric pressure is applied to the melt after the melt has been poured.
  • “significantly above standard atmospheric pressure” can be understood to mean an overpressure of 1 bar or more.
  • an ingot can be produced from a bulk glass-forming alloy which does not shatter during the production process. Furthermore, the method can produce an ingot that does not shatter when heated to the melting temperature of the alloy within 50 seconds or less. In particular, an ingot which does not shatter when dropped three times from a height of 30 cm onto a flat, horizontal steel surface can be produced. In particular, the method can be used to produce an ingot that does not have an amorphous layer on the surface. The absence of an amorphous layer can be determined with a light microscope.
  • the invention relates to an ingot of a solid glass-forming alloy, the alloy having a critical casting thickness of at least 5 mm, and the ingot having an extent in all three spatial directions which is greater than the critical casting thickness, characterized in that that the ingot has a crystalline proportion of at least 90% by weight, in particular at least 95% by weight and particularly preferably at least 98% by weight, measured by DSC.
  • the critical casting thickness of the alloy is preferably at least 7 mm and in particular at least 10 mm.
  • the ingot according to the invention can be produced using the method described herein will.
  • the ingot according to the invention has no amorphous layer on the surface.
  • the term "no amorphous layer" can be understood as a layer which is no thicker than 200 ⁇ m, in particular no thicker than 100 ⁇ m and very particularly preferably no thicker than 50 ⁇ m.
  • the absence of an amorphous layer can preferably lead to the reduction of internal stresses in the ingot.
  • the absence of an amorphous layer on the surface of the ingot can be determined by optical microscopy (reflected light microscope).
  • a cross-section of the ingot is created using a diamond saw.
  • the cross-section is also called a metallurgical micrograph or cross-section.
  • the absence of amorphous portions can be determined by the absence of a phase transition visible to the naked eye under the light microscope. Phase transitions can be identified in the light microscope as transitions of different colors or different contrasts.
  • illustration 1 shows a micrograph of a cross section through an ingot that has amorphous areas. These amorphous areas can be seen as a bright area towards the edge (arrow 1). The inner area of the examined ingot shows no bright areas (arrow 2).
  • Figure 2 a micrograph of a cross-section through an ingot that does not have any amorphous areas. This can be recognized by the uniform material appearance without light spots.
  • Figure 3 shows a metallurgical micrograph of the sample Figure 2 at higher magnification. The polycrystalline structures and their grain boundaries can be clearly seen there. Furthermore, it can be seen that the crystalline structure of the ingot according to the invention extends to the edge, which confirms the absence of an amorphous phase (eg in the circled area). If an amorphous phase were to occur, it would preferably form at the edge first, as this is where the cooling rates can potentially be highest.
  • an amorphous phase eg in the circled area
  • the total volume of the amorphous layer on the ingot can be 5% or less, in particular 3% or less.
  • the crystallinity of the ingot can be measured using Differential Scanning Calorimetry (DSC).
  • the ingot is preferably solid and has no cavities, such as air inclusions.
  • the shape of the ingot is not limited.
  • the ingot may have a cylindrical shape.
  • the cylinder diameter preferably has a value of at least 5 mm, in particular at least 15 mm and very particularly preferably at least 25 mm, in each case with the condition that the diameter is greater than the critical casting thickness of the solid glass-forming alloy.
  • the length of the cylinder is preferably at least 3 cm.
  • the invention relates to a method for producing three-dimensional components from metallic solid glasses by means of casting methods, in particular injection molding, using the ingot according to the invention of a solid glass-forming alloy.
  • the ingot according to the invention is melted to form a homogeneous melt (30).
  • the complete melting of the ingot (20) preferably takes no longer than 60 seconds, in particular no longer than 40 seconds and very particularly preferably no longer than 20 seconds, it being possible for the ingot to be heated without cracking.
  • the heating-up time for already known ingots of the same dimensions is typically in the range of 80 seconds.
  • the homogeneous melt (30) is poured, in particular injected, into the mold for a three-dimensional component (40).
  • the casting mold for producing the three-dimensional component by means of the casting process is preferably dimensioned in such a way that it does not exceed the critical casting thickness of the alloy used at any point, since completely amorphous, three-dimensional components can be produced in this way.
  • the ingot can be used to produce three-dimensional components that can be produced with a high throughput in an injection molding machine.
  • the XRD measurements are carried out in accordance with DIN EN 13925-1:2003-07 and DIN EN 13925-2:2003-07.
  • a cross section of the material to be examined is prepared with a diamond saw.
  • the flat surface of the cross section is in the range of approx. 1 cm 2 .
  • the general measurement details used are summarized as follows: Diffraction: Bragg-Brentano; Detector: Scintillation Counter; Radiation: Cu K ⁇ 1.5406 ⁇ ; Source: 40kV, 25mA; Measurement method: reflection.
  • the empty sample holder is measured first to determine the background signal. This background measurement is subtracted from all subsequent measurements of the samples to be examined.
  • Discrete diffraction signals in the diffractogram can be evaluated according to the Debye-Scherrer method using the Bragg equation. When visible from discrete, crystalline peaks above the statistical noise, a crystalline proportion of at least 5% by weight is assumed. If no sharp diffraction signals can be determined in the diffractogram, the crystalline proportion is below 5%.
  • the DSC measurements within the scope of the invention are carried out in accordance with DIN EN ISO 11357-1:2017-02 and DIN EN ISO 11357-3:2018-07.
  • the sample to be measured in the form of a thin disc or foil (approx. 80 - 100 mg) is placed in the measuring device (NETZSCH DSC 404F1, NETZSCH GmbH, Germany).
  • the heating rate is 20.0 K/min.
  • Al 2 O 3 is used as the crucible material.
  • the heat flow is measured against an empty reference crucible, so that only the thermal behavior of the sample is measured.
  • Samples expected to be predominantly crystalline with little amorphous phase are measured according to the measurement method given above.
  • the complete crystallinity of the sample after undergoing the measurement procedure can be additionally confirmed by XRD, by the absence of broad, unspecific signals in the diffraction pattern that would indicate an amorphous phase.
  • the amorphous content of samples with more than 5% by weight can be determined by comparing the crystallization enthalpy of the unknown sample with the value for the completely amorphous sample from DSC method 2) (see below).
  • a sample of each of the cast cylinders is measured using DSC. As long as the diameter of the cylinder is below the critical casting thickness, the sample is completely amorphous before the start of the measurement and crystallizes during the DSC measurement in step a) of the measurement method.
  • the crystallization enthalpy of the alloy is determined from the measurement of the completely amorphous material. The crystallization enthalpy is determined for all samples with increasing cylinder diameter. The crystallization enthalpy determined for samples whose cylinder diameter is below the critical casting thickness is constant within the measurement inaccuracy.
  • the critical casting thickness is determined as the cylinder diameter up to which the crystallization enthalpy is constant with increasing diameter.
  • step a) the crystallization of the amorphous sample takes place.
  • step c) the thermal behavior of the already fully crystallized sample is recorded.
  • the measurement from step c) is subtracted from the measurement from step a).
  • the resulting curve includes an endothermic transition at lower temperature and an exothermic peak at higher temperature.
  • the signal at higher temperature corresponds to the crystallization process.
  • the endothermic signal corresponds to the glass transition.
  • a line tangent to the baseline is determined (by linear fitting) in front of the glass transition region.
  • a second tangent is determined at the inflection point (corresponding to the peak time value of the first derivative) of the glass transition region.
  • the temperature value at the intersection of the two tangents indicates the glass transition temperature (T f according to AST; 1356-03).
  • the individual components were melted under protective gas by means of inductive melting into a homogeneous alloy with the composition Zr 52.5 Ti 5 Cu 17.9 Ni 14.6 Al 10 .
  • This alloy has a glass transition temperature of 403 °C.
  • 80 g of the homogeneous alloy were brought to a temperature above the melting point of the alloy (805° C.) by means of inductive heating in a crucible.
  • Table 1 shows the temperatures of the respective melt for the respective test.
  • the mold was preheated in an oven to a temperature defined in Table 1.
  • the respective homogeneous melt according to Table 1 was then poured into a casting mold.
  • the mold had a cylindrical shape with an inner diameter of 19 mm. The temperature of the melt was continuously measured after filling the cylindrical mold.
  • the measured values for the temperature of the melt after 10 seconds in the mold can be read in Table 1.
  • Table 1 Table 1 ⁇ /b> example 1 2 3 4 5 T melt [°C] 1050 1100 1200 1250 1350 T mold [°C] 50 50 250 400 600 mold copper stolen stolen stolen stolen weight ratio 1:17 1:15 1:9 1:15 1:15 coating d.
  • Examples 1 and 2 in Table 1 are comparative examples, Examples 3-5 are examples according to the invention.
  • the quality of the cast ingots was assessed according to the following criteria: Poor-quality cast parts already shatter while cooling in the mold. Good quality cast ingots will remain intact if heated to melting temperature within 50 seconds or less at a power of 5 kW. Very good quality ingots also withstand a drop test from a height of 30 cm onto a flat steel plate three times in a row without shattering. It is clear from Examples 1-5 that ingots in which the temperature of the melt was above the glass transition temperature after 10 seconds were significantly more robust than ingots in which the temperature of the melt was below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von mechanisch und thermisch stabilen Ingots (auch Vorform genannt) aus Legierungen, die ein metallisches Massivglas bilden können. Weiterhin betrifft die Erfindung einen Ingot einer Massivglas-bildenden Legierung, der mit dem erfindungsgemäßen Verfahren hergestellt wird und die Verwendung dieses Ingots in einem Gussverfahren.The invention relates to a method for producing mechanically and thermally stable ingots (also called preforms) from alloys that can form a metallic solid glass. Furthermore, the invention relates to an ingot of a solid glass-forming alloy that is produced using the method according to the invention and the use of this ingot in a casting method.

Seit ihrer Entdeckung vor etwa 50 Jahren am California Institute of Technology sind metallische Gläser Gegenstand umfangreicher Forschung. Im Laufe der Jahre gelang es, die Prozessierbarkeit und Eigenschaften dieser Materialklasse kontinuierlich zu verbessern. Waren die ersten metallischen Gläser noch einfache, binäre (aus zwei Komponenten aufgebaute) Legierungen, deren Herstellung Abkühlraten im Bereich von 106 Kelvin pro Sekunde (K/s) erforderten, lassen sich neuere, komplexere Legierungen bereits bei deutlich geringeren Abkühlraten im Bereich einiger K/s in den Glaszustand überführen. Dies hat erheblichen Einfluss auf die Prozessführung sowie die realisierbaren Bauteile. Die Abkühlgeschwindigkeit, ab der eine Kristallisation der Schmelze ausbleibt und die Schmelze als Glas erstarrt, wird als kritische Abkühlrate bezeichnet. Sie ist eine systemspezifische, stark von der Zusammensetzung der Schmelze abhängige Größe, welche zudem die maximal erreichbaren Bauteildicken festlegt. Bedenkt man, dass die in der Schmelze gespeicherte Wärmeenergie ausreichend schnell durch das System abtransportiert werden muss, wird klar, dass sich aus Systemen mit hohen kritischen Abkühlraten lediglich Bauteile mit geringer Dicke fertigen lassen. Anfänglich wurden metallische Gläser daher meist nach dem Schmelzspinnverfahren (Englisch: melt spinning) hergestellt. Die Schmelze wird hierbei auf ein rotierendes Kupferrad abgestreift und erstarrt glasartig in Form von dünnen Bändern bzw. Folien mit Dicken im Bereich einiger hundertstel bis zehntel Millimeter. Durch die Entwicklung neuer, komplexer Legierungen mit deutlich geringeren kritischen Abkühlraten, können zunehmend andere Herstellungsverfahren genutzt werden. Heutige glasbildende metallische Legierungen lassen sich bereits durch Gießen einer Schmelze in gekühlte Kupferkokillen in den Glaszustand überführen. Die realisierbaren Bauteildicken liegen dabei legierungsspezifisch im Bereich einiger Millimeter bis Zentimeter. Derartige Legierungen werden als metallische Massivgläser (Englisch: Bulk Metallic Glasses, BMG) bezeichnet. Im Rahmen der vorliegenden Erfindung ist unter einem metallischen Massivglas ein Material mit einer kritischen Gussdicke von mindestens einem Millimeter zu verstehen.Since their discovery around 50 years ago at the California Institute of Technology, metallic glasses have been the subject of extensive research. Over the years, it has been possible to continuously improve the processability and properties of this material class. While the first metallic glasses were still simple, binary alloys (made up of two components), the production of which required cooling rates in the range of 10 6 Kelvin per second (K/s), newer, more complex alloys can be produced at significantly lower cooling rates in the range of a few K /s transition to the glass state. This has a significant impact on the process control and the components that can be produced. The cooling rate from which there is no crystallization of the melt and the melt solidifies as glass is referred to as the critical cooling rate. It is a system-specific variable that is heavily dependent on the composition of the melt and also determines the maximum component thicknesses that can be achieved. If you consider that the thermal energy stored in the melt has to be transported away quickly enough through the system, it becomes clear that systems with high critical cooling rates can only be used to produce components with a low thickness. Initially, metallic glasses were therefore mostly produced using the melt spinning process. The melt is scraped onto a rotating copper wheel and solidifies like glass in the form of thin ribbons or foils with thicknesses in the range of a few hundredths to tenths of a millimeter. Due to the development of new, complex alloys with significantly lower critical cooling rates, other manufacturing processes can increasingly be used. Today's glass-forming metallic alloys can already be converted into the glass state by pouring a melt into cooled copper moulds. The achievable component thicknesses are in the range of a few millimeters to centimeters, depending on the alloy. Such alloys are referred to as bulk metallic glasses (BMG). In the context of the present invention, a metallic solid glass is to be understood as meaning a material with a critical casting thickness of at least one millimeter.

Heutzutage ist eine Vielzahl solcher Legierungssysteme bekannt. Ihre Unterteilung erfolgt gewöhnlich anhand der Zusammensetzung, wobei man das Legierungselement mit dem höchsten Gewichtsanteil als Basiselement bezeichnet. Die bestehenden Systeme umfassen unter anderem Edelmetall-basierte Legierungen wie bspw. Gold-, Platin, und Palladium-basierte metallische Massivgläser, frühe Übergangsmetall basierte Legierungen wie z.B. Titan- oder Zirkonium-basierte metallische Massivgläser, späte Übergangsmetall-basierte Systeme, z.B. auf Basis von Kupfer-, Nickel- oder Eisen, aber auch Systeme auf Basis von Seltenerdmetallen, z.B. Neodym oder Terbium.A large number of such alloy systems are known today. They are usually classified according to their composition, with the alloying element with the highest weight percentage being referred to as the base element. The existing systems include, among other things, precious metal-based alloys such as gold, platinum and palladium-based metallic bulk glasses, early transition metal-based alloys such as titanium or zirconium-based metallic bulk glasses, late transition metal-based systems, e.g. based on Copper, nickel or iron, but also systems based on rare earth metals, e.g. neodymium or terbium.

Metallische Massivgläser weisen im Vergleich zu klassischen, kristallinen Metallen typischer Weise mindestens eine der folgenden Eigenschaften auf:

  • eine höhere spezifische Festigkeit, was zum Beispiel dünnere Wandstärken ermöglicht,
  • eine höhere Härte, wodurch die Oberflächen besonders kratzfest sein können,
  • eine viel höhere elastische Dehnbarkeiten und Resilienzen,
  • eine thermoplastische Formbarkeit und
  • eine höhere Korrosionsbeständigkeit.
Metallic solid glasses typically have at least one of the following properties compared to classic, crystalline metals:
  • a higher specific strength, which, for example, allows thinner walls,
  • a higher degree of hardness, which means that the surfaces can be particularly scratch-resistant,
  • a much higher elastic extensibility and resilience,
  • thermoplastic formability and
  • higher corrosion resistance.

Bauteile aus metallischen Massivgläser können mittels Gussverfahren hergestellt werden, da bei diesen Verfahren die notwendigen Abkühlraten für ein amorphes Erstarren erreicht werden können. Um amorphe Bauteile aus einem metallischen Massivglas zu erhalten, ist es meist erforderlich die Schmelze einer Massivglas-bildendenden Legierung zügig in eine Gussform zu überführen. Bevorzugt geschieht dieses Füllen der Gussform mit der Schmelze durch Einspritzen (Spritzguss) oder Einsaugen (Saugguss). Auf diese Weise können die hohen Abkühlraten erreicht werden und dreidimensionale Bauteile aus metallischen Massivgläsern hergestellt werden. Durch die Verwendung von Gussverfahren, wie z.B. Spritzguss, können geringe Fertigungstoleranzen erreicht werden.Components made of metallic solid glass can be produced using casting processes, since the necessary cooling rates for amorphous solidification can be achieved with these processes. In order to obtain amorphous components from a metallic bulk glass, it is usually necessary to quickly transfer the melt of a bulk glass-forming alloy into a mold. This filling of the mold with the melt preferably takes place by injection (injection molding) or sucking in (suction molding). In this way, the high cooling rates can be achieved and three-dimensional components made of metallic solid glass can be manufactured. Small manufacturing tolerances can be achieved by using casting processes such as injection molding.

Für Gussverfahren sind Ingots der zu verarbeitenden Legierung notwendig, die als Vorrat an zu verarbeitendem Material dienen und homogen aufgeschmolzen werden können. Dazu müssen die Ingots ein ausreichendes Volumen aufweisen, damit genügend Material für das gesamte gegossene Bauteil verfügbar ist und auch die zusätzlichen Räume der Gussform (den Anguss; engl. sprue) ausgefüllt werden können. Daher sind möglichst große Ingots wünschenswert.Ingots of the alloy to be processed are necessary for casting processes, which serve as a supply of material to be processed and can be melted homogeneously. To do this, the ingots must have a sufficient volume so that enough material is available for the entire cast component and the additional spaces in the mold (the sprue ) can also be filled. Therefore, ingots that are as large as possible are desirable.

Zur Herstellung von Ingots aus Massivglas-bildenden Legierungen wird zuerst eine homogene, Massivglas-bildende Legierung hergestellt. Hierzu werden die Einzelkomponenten zusammengemischt und über den Schmelzpunkt erhitzt, sodass eine homogene Legierung entsteht. Das Aufschmelzen der Einzelkomponenten kann zum Beispiel im Lichtbogen oder mittels induktivem Heizen erfolgen. Die homogene Legierung wird anschließend in Gussformen gefüllt und abgekühlt, wodurch ein Ingot entsteht. Im Allgemeinen haben diese Ingots die Form von zylindrischen Stäben. Damit die Ingots genügend Material enthalten, um die Gussform für ein Gussverfahren für ein dreidimensionales Bauteil vollständig auszufüllen, müssen die Ingots ausreichend dimensioniert sein. Typische Durchmesser von zylindrischen Ingots aus Massivglas-bildenden Legierungen liegen im Bereich von etwa 20 mm. Die Länge eines Ingots beträgt bevorzugt mindestens 3 cm.To produce ingots from bulk glass-forming alloys, a homogeneous bulk glass-forming alloy is first produced. To do this, the individual components are mixed together and heated above the melting point, resulting in a homogeneous alloy. The individual components can be melted, for example, in an arc or by means of inductive heating. the The homogeneous alloy is then poured into molds and cooled to form an ingot. Generally, these ingots are in the form of cylindrical rods. In order for the ingots to contain enough material to completely fill the mold for a casting process for a three-dimensional component, the ingots must be sufficiently dimensioned. Typical diameters of cylindrical ingots made of bulk glass-forming alloys are in the range of about 20 mm. The length of an ingot is preferably at least 3 cm.

Aus US5279349 sind bereits Verfahren bekannt, bei denen amorphe Formteile durch Verwendung von vorgeheizten Gussformen erhalten werden können. Hierbei wird die Schmelze während des Abkühlens unter Druck gesetzt. Mit solchen Verfahren lassen sich sehr kleine, amorphe Ingots herstellen, da das Formteil in keiner Dimension die kritische Gussdicke überschreiten darf. Aufgrund ihrer beschränkten Größe, können solche vollständig amorphen Ingots nur eine sehr begrenzte Menge an Material für ein Gussverfahren bereitstellen. Amorphe Ingots haben bei Verwendung in Gussverfahren weiterhin den Nachteil, dass sie wegen Ihrer vergleichsweise schlechten Wärmeleitfähigkeit nur langsam aufgeschmolzen werden können.Out of US5279349 methods are already known in which amorphous molded parts can be obtained by using preheated molds. In this case, the melt is pressurized as it cools. Very small, amorphous ingots can be produced with such processes, since the molded part must not exceed the critical casting thickness in any dimension. Because of their limited size, such fully amorphous ingots can only provide a very limited amount of material for a casting process. When used in casting processes, amorphous ingots also have the disadvantage that they can only be melted slowly because of their comparatively poor thermal conductivity.

Die Herstellung von qualitativ hochwertigen Ingots aus Materialien mit einer hohen kritischen Gussdicke und mit Abmessungen größer als die kritische Gussdicke, ist schwierig. Zum einen gibt es bei der Herstellung erheblichen Ausschuss, da bekannte Ingots häufig bereits im Herstellungsverfahren zerspringen. Zum anderen zerspringen die herkömmlich hergestellten Ingots teilweise beim Transport oder beim Aufheizen während des eigentlichen Herstellungsschritts eines dreidimensionalen Bauteils mittels Gussverfahren. Wenn die Ingots während der Herstellung eines dreidimensionalen Bauteils zerspringen, ist dies nachteilig, weil die Wärmeleitung durch die Risse unterbrochen wird. Dadurch erhöht sich die Prozessdauer für die Herstellung von dreidimensionalen Bauteilen. Um das Zerspringen von herkömmlichen Ingots, die den Herstellungsprozess unbeschadet überstanden haben, zu vermeiden, muss der Ingot sehr langsam auf die Schmelztemperatur aufgeheizt werden. Typischer Weise dauert das Schmelzen der Ingots mindestens 80 Sekunden.Manufacturing high quality ingots from materials with a high critical casting thickness and with dimensions larger than the critical casting thickness is difficult. On the one hand, there is a considerable amount of waste during production, since known ingots often shatter during the production process. On the other hand, some of the conventionally produced ingots shatter during transport or when they are heated up during the actual production step of a three-dimensional component using the casting process. If the ingots shatter during the manufacture of a three-dimensional component, this is disadvantageous because the heat conduction is interrupted by the cracks. This increases the process time for the production of three-dimensional components. In order to avoid cracking of conventional ingots that have survived the manufacturing process undamaged, the ingot must be heated very slowly to the melting point. Typically, ingot melting takes at least 80 seconds.

Aufgabetask

Eine Aufgabe der vorliegenden Erfindung bestand in der Bereitstellung eines Ingots aus einer Massivglas-bildenden Legierung mit hoher kritischer Gussdicke, der während des Herstellungsverfahrens nicht zerspringt und bei der thermischen Weiterverarbeitung, wie z.B. dem Spritzguss, schneller aufgeheizt werden kann.An object of the present invention was to provide an ingot made from a solid glass-forming alloy with a high critical casting thickness, which does not shatter during the production process and can be heated up more quickly during further thermal processing, such as injection molding.

Weiterhin bestand die Aufgabe der Erfindung in der Bereitstellung eines Verfahrens zur Herstellung eines Ingots aus einer Massivglas-bildenden Legierung mit hoher kritischer Gussdicke, der während des Herstellungsverfahrens nicht zerspringt.Furthermore, the object of the invention was to provide a method for producing an ingot from a solid glass-forming alloy with a high critical casting thickness that does not shatter during the production process.

Eine weitere Aufgabe der Erfindung war die Bereitstellung von Ingots aus Massivglas-bildenden Legierungen, die schneller aufgeheizt werden können als herkömmliche Ingots.Another object of the invention was to provide ingots made of bulk glass-forming alloys that can be heated faster than conventional ingots.

Ein Beitrag zur Lösung mindestens einer der genannten Aufgaben wird geleistet durch die Gegenstände der unabhängigen Ansprüche.A contribution to solving at least one of the tasks mentioned is made by the subject matter of the independent claims.

Ein erster Aspekt der Erfindung betrifft ein Verfahren zur Herstellung eines Ingots (20) einer Massivglas-bildenden Legierung, aufweisend die Schritte:

  1. a. Bereitstellen einer homogenen Schmelze (10) einer Massivglas-bildenden Legierung,
  2. b. Gießen der homogenen Schmelze in eine Gussform, wobei die Gussform an der Kontaktfläche mit der Schmelze mindestens 5 Sekunden nicht unter die Glasbildungstemperatur der Legierung abkühlt, und
  3. c. Abkühlen der Schmelze unter die Glasübergangstemperatur der Massivglas-bildenden Legierung unter Erhalt des Ingots (20).
A first aspect of the invention relates to a method for producing an ingot (20) of a bulk glass-forming alloy, comprising the steps:
  1. a. Providing a homogeneous melt (10) of a solid glass-forming alloy,
  2. b. pouring the homogeneous melt into a mold, the mold not cooling below the glass formation temperature of the alloy at the contact surface with the melt for at least 5 seconds, and
  3. c. cooling the melt below the glass transition temperature of the bulk glass-forming alloy to obtain the ingot (20).

Die Massivglas-bildenden Legierung ist in ihrer Zusammensetzung erfindungsgemäß nicht weiter beschränkt. Bevorzugt ist unter einer Massivglas-bildenden Legierung eine Legierung mit einer kritischen Gussdicke von mindestens einem Millimeter zu verstehen. Das bedeutet, dass eine solche Legierung bei geeignet Abkühlrate bis zu einer Dicke von einem Millimeter amorph erstarren kann.According to the invention, the composition of the solid glass-forming alloy is not further restricted. A solid glass-forming alloy is preferably to be understood as meaning an alloy with a critical casting thickness of at least one millimeter. This means that such an alloy can solidify amorphously up to a thickness of one millimeter at a suitable cooling rate.

Unter Massivglas-bildenden Legierungen sind solche zu verstehen, die unter bestimmten thermischen Bedingungen im festen Zustand metallischen Bindungscharakter und gleichzeitig eine amorphe, also nicht-kristalline, Phase aufweisen können. Die Legierung kann auf unterschiedlichen Elementen basieren. "Basiert" meint in diesem Zusammenhang, dass das jeweils genannte Element, auf das Gewicht der Legierung bezogen, den größten Anteil darstellt. Bestandteile, die bevorzugt auch die Basis der Legierung stellen, können beispielsweise ausgewählt sein aus:

  1. A. Metallen aus Gruppe IA und IIA des Periodensystems, z.B. Magnesium, Calcium,
  2. B. Metallen aus Gruppe IIIA und IVA, z.B. Aluminium oder Gallium,
  3. C. frühen Übergangsmetallen aus den Gruppen IVB bis VIIIB, wie z.B. Titan, Zirkon, Hafnium, Niob, Tantal, Chrom, Molybdän, Mangan,
  4. D. späten Übergangsmetallen aus den Gruppen VIIIB, IB, IIB, wie z.B. Eisen, Kobalt, Nickel, Kupfer, Palladium, Platin, Gold, Silber, Zink,
  5. E. Seltenerdmetallen, wie z.B. Scandium, Yttrium, Terbium, Lanthan, Cer, Neodym. Gadolinium und
  6. F. Nichtmetallen, wie z.B. Bor, Kohlenstoff, Phosphor, Silizium, Germanium, Schwefel Bevorzugte Kombinationen von Elementen in metallischen Massivgläser sind ausgewählt aus:
    • späten Übergangsmetallen und Nichtmetallen, wobei das späte Übergangsmetall die Basis darstellt, beispielsweise Ni-P, Pd-Si, Au-Si-Ge, Pd-Ni-Cu-P, Fe-Cr-Mo-P-C-B,
    • frühen und späten Übergangsmetallen, wobei beide Metalle die Basis darstellen können, wie z.B. Zr-Cu, Zr-Ni, Ti-Ni, Zr-Cu-Ni- Al, Zr-Ti-Cu-Ni-Be,
    • Metalle aus Gruppe B mit Seltenerdmetallen, wobei das Metall B die Basis darstellt, wie z.B. Al-La, AI-Ce, Al-La-Ni-Co, La-(Al/Ga)-Cu-Ni, und
    • Metalle aus Gruppe A mit späten Übergangsmetallen, wobei das Metall A die Basis darstellt, wie z.B. Mg-Cu, Ca-Mg-Zn, Ca-Mg-Cu
Alloys forming solid glass are to be understood as meaning those which, under certain thermal conditions, can have a metallic bonding character in the solid state and at the same time have an amorphous, ie non-crystalline, phase. The alloy can be based on different elements. "Based" in this context means that the element named in each case represents the largest proportion in relation to the weight of the alloy. Constituents, which preferably also form the basis of the alloy, can be selected, for example, from:
  1. A. Metals from groups IA and IIA of the periodic table, e.g. magnesium, calcium,
  2. B. Group IIIA and IVA metals, e.g. aluminum or gallium,
  3. C. early transition metals from groups IVB to VIIIB, such as titanium, zirconium, hafnium, niobium, tantalum, chromium, molybdenum, manganese,
  4. D. late transition metals from groups VIIIB, IB, IIB, such as iron, cobalt, nickel, copper, palladium, platinum, gold, silver, zinc,
  5. E. Rare earth metals such as scandium, yttrium, terbium, lanthanum, cerium, neodymium. gadolinium and
  6. F. Non-metals such as boron, carbon, phosphorus, silicon, germanium, sulfur Preferred combinations of elements in metallic bulk glasses are selected from:
    • late transition metals and non-metals where the late transition metal is the base, for example Ni-P, Pd-Si, Au-Si-Ge, Pd-Ni-Cu-P, Fe-Cr-Mo-PCB,
    • early and late transition metals, both metals can be the basis, such as Zr-Cu, Zr-Ni, Ti-Ni, Zr-Cu-Ni-Al, Zr-Ti-Cu-Ni-Be,
    • Group B metals with rare earth metals where the metal B is the base such as Al-La, Al-Ce, Al-La-Ni-Co, La-(Al/Ga)-Cu-Ni, and
    • Group A metals with late transition metals, where the metal A is the base, such as Mg-Cu, Ca-Mg-Zn, Ca-Mg-Cu

Weitere, besonders bevorzugte Beispiele für Legierungen, die metallische Massivgläser bilden können, sind ausgewählt aus der Gruppe bestehend aus Ni-Nb-Sn, Co-Fe-Ta-B, Ca-Mg-Ag-Cu, C-oFe-B-Si-Nb, Fe-Ga-(Cr,Mo)(P,C,B), Ti-Ni-Cu-Sn, Fe-Co-Ln-B, Co-(Al,Ga)-(P,B,Si), Fe-B-Si-Nb und Ni-(Nb,Ta)-Zr-Ti. Insbesondere kann das metallische Massivglas eine Zr-Cu-Al-Nb-Legierung sein. Bevorzugt weist diese Zr-Cu-Al-Nb-Legierung außer Zirkon zusätzlich 23,5 - 24,5% Gew. % Kupfer, 3,5 - 4,0 Gew. % Aluminium sowie 1,5 - 2,0 Gew. % Niob auf, wobei sich die Gewichtsanteile zu 100 Gew. % ergänzen. Kommerziell erhältlich ist die letztgenannte Legierung unter dem Namen AMZ4® von der Heraeus Deutschland GmbH. In einer weiteren, besonders bevorzugten Ausführungsform kann die Massivglas-bildenden Legierung die Elemente Zirkon, Tititan, Kupfer, Nickel und Aluminium enthalten oder daraus bestehen. Aus Massivglas-bildenden Legierungen dieser Zusammensetzung lassen sich besonders stabile Ingots herstellen. Eine besonders gut geeignete Legierung für die Herstellung stabiler Inogts weist die Zusammensetzung Zr52,5Ti5Cu17,9Ni14,6Al10 auf, wobei die Indizes mol-% der jeweiligen Elemente in der Legierung angeben.Further, particularly preferred examples of alloys that can form metallic bulk glasses are selected from the group consisting of Ni-Nb-Sn, Co-Fe-Ta-B, Ca-Mg-Ag-Cu, C-oFe-B-Si -Nb, Fe-Ga-(Cr,Mo)(P,C,B), Ti-Ni-Cu-Sn, Fe-Co-Ln-B, Co-(Al,Ga)-(P,B,Si ), Fe-B-Si-Nb and Ni-(Nb,Ta)-Zr-Ti. In particular, the metallic bulk glass can be a Zr-Cu-Al-Nb alloy. In addition to zirconium, this Zr-Cu-Al-Nb alloy preferably also has 23.5-24.5% by weight copper, 3.5-4.0% by weight aluminum and 1.5-2.0% by weight On niobium, the proportions by weight adding up to 100% by weight. The latter alloy is commercially available under the name AMZ4® from Heraeus Deutschland GmbH. In a further, particularly preferred embodiment, the alloy forming solid glass can contain or consist of the elements zirconium, titanium, copper, nickel and aluminum. Particularly stable ingots can be produced from alloys of this composition that form solid glass. A particularly well suited alloy for the production of stable inogts has the composition Zr 52.5 Ti 5 Cu 17.9 Ni 14.6 Al 10 , the indices indicating mol % of the respective elements in the alloy.

Aufgrund der intrinsischen Wärmeleitung des Materials ergibt sich selbst bei maximal erzielbarer Kühlrate eine maximale Gussdicke, welche das Gussstück in mindestens einer Dimension unterschreiten muss, um noch eine homogene amorphe Phase ausbilden zu können. Bevorzugt weist die Massivglas-bildende Legierung eine kritische Gussdicke von mindestens 5 mm, insbesondere von mindestens 7 mm und ganz besonders bevorzugt von mindestens 10 mm auf. Im Rahmen der vorliegenden Erfindung ist die kritische Gussdicke (engl.: maximum casting thickness) ein Maß dafür, wie leicht oder schwer eine metallische Legierung in den Glaszustand gebracht werden kann.Due to the intrinsic heat conduction of the material, even with the maximum achievable cooling rate, there is a maximum casting thickness, which the casting must be below in at least one dimension in order to still be able to form a homogeneous amorphous phase. The alloy that forms solid glass preferably has a critical casting thickness of at least 5 mm, in particular at least 7 mm and entirely particularly preferably of at least 10 mm. In the context of the present invention, the maximum casting thickness is a measure of how easy or difficult it is for a metallic alloy to bring it into the glass state.

Um die kritische Gussdicke im Rahmen der Erfindung zu bestimmen, wird die zu vermessende Legierung im Lichtbogen zu einer homogenen Schmelze verarbeitet und anschließend in eine wassergekühlte Kupfergussform (auch Kokille genannt) abgegossen. Die Masse der Kupfergussform ist bevorzugt mindestens um den Faktor 7 größer als die Masse der eingefüllten Schmelze der zu bestimmenden Legierung. Die Temperatur der homogenen Schmelze vor dem Gießen liegt bevorzugt mindestens 200°C, insbesondere 300°C und ganz besonders bevorzugt mindestens 400°C über der Schmelztemperatur. Die Temperatur der Kupfergussform beträgt 20°C. Zur Bestimmung der kritischen Gussdicke werden zylindrische Formteile mit aufsteigenden Durchmessern im Abstand von 1 mm gegossen (z.B. 2mm, 3mm, 4 mm, 5 mm, 6 mm, usw.). Die erzeugten zylindrischen Formteile werden mittels dynamischer Differenzkalorimetrie (differential scanning calorimetry, DSC) auf ihren kristallinen Anteil untersucht. Als kritische Gussdicke wird der Zylinderdurchmesser angegeben, der einen Millimeter kleiner ist als der Zylinderdurchmesser, bei dem zuerst die Bildung einer kristallinen Phase mittels DSC gemessen wird. Zur Bestimmung der Anwesenheit einer kristallinen Phase wurde das DSC-Verfahren 2) angewendet, so wie es hierin beschrieben ist.In order to determine the critical cast thickness within the scope of the invention, the alloy to be measured is processed in an electric arc to form a homogeneous melt and then poured into a water-cooled copper mold (also called permanent mold). The mass of the copper mold is preferably at least a factor of 7 greater than the mass of the melt of the alloy to be determined. The temperature of the homogeneous melt before casting is preferably at least 200° C., in particular 300° C. and very particularly preferably at least 400° C. above the melting temperature. The temperature of the copper mold is 20°C. To determine the critical casting thickness, cylindrical molded parts are cast with increasing diameters at a distance of 1 mm (e.g. 2mm, 3mm, 4mm, 5mm, 6mm, etc.). The cylindrical molded parts produced are examined for their crystalline content using differential scanning calorimetry (DSC). The cylinder diameter that is one millimeter smaller than the cylinder diameter at which the formation of a crystalline phase is first measured by DSC is given as the critical casting thickness. DSC method 2) as described herein was used to determine the presence of a crystalline phase.

In Schritt a) der vorliegenden Erfindung wird eine homogene Schmelze einer Massivglas-bildenden Legierung bereitgestellt. Das Bereitstellen der homogenen Schmelze erfolgt bevorzugt durch Zusammenschmelzen der einzelnen Elemente der Legierung. Das Schmelzen der einzelnen Elemente erfolgt bevorzugt im Lichtbogen oder mittels induktiven Heizens. Die Temperatur der homogenen Schmelze liegt bevorzugt mindestens 200°C, insbesondere mindestens 300°C, und ganz besonders bevorzugt mindestens 400°C über der Schmelztemperatur der jeweiligen Massivglas-bildenden Legierung. In einer bevorzugten Ausführung liegt die Temperatur der Schmelze, gemessen in Grad Celsius, mindestens 20%, insbesondere mindestens 50% über der Schmelztemperatur der Legierung, da dadurch besonders stabile Ingots erzeugt werden können.In step a) of the present invention, a homogeneous melt of a bulk glass-forming alloy is provided. The homogeneous melt is preferably prepared by melting the individual elements of the alloy together. The individual elements are preferably melted in an arc or by means of inductive heating. The temperature of the homogeneous melt is preferably at least 200° C., in particular at least 300° C., and very particularly preferably at least 400° C., above the melting temperature of the respective solid glass-forming alloy. In a preferred embodiment, the temperature of the melt, measured in degrees Celsius, is at least 20%, in particular at least 50%, above the melting temperature of the alloy, since particularly stable ingots can be produced as a result.

In Schritt b) erfolgt das Gießen der homogenen Schmelze in eine Gussform. Die Gussform ist erfindungsgemäß in ihrer Form nicht weiter beschränkt. Bevorzugt ist die Gussform zylindrisch. Bevorzugt weist das zu füllende Volumen der Gussform Abmessungen auf, die in allen drei Raumrichtungen größer sind als die kritische Gussdicke der Massivglas-bildenden Legierung. Das Material der Gussform kann bevorzugt ausgewählt sein aus Stahl, Titan, Kupfer, Keramik oder Graphit. Bevorzugt weist die Gussform eine Vorrichtung auf, mit der die Gussform aktiv erhitzt und/oder abgekühlt werden kann. In einer Ausführungsform der Erfindung kann die Gussform aktiv geheizt werden, z.B. durch elektrisches Heizen.In step b), the homogeneous melt is poured into a casting mold. According to the invention, the shape of the mold is not further restricted. The mold is preferably cylindrical. The volume of the casting mold to be filled preferably has dimensions which are greater in all three spatial directions than the critical casting thickness of the alloy forming solid glass. The material of the mold can preferably be selected from steel, titanium, copper, ceramic or graphite. The mold preferably has a device with which the mold can be actively heated and/or cooled. In one embodiment of the invention, the mold can be actively heated, eg by electrical heating.

Das Verhältnis zwischen dem Gewicht der Gussform und dem Gewicht der Schmelze liegt bevorzugt im Bereich von 7:1 oder mehr, besonders bevorzugt im Bereich von 10:1 oder mehr. In einer bevorzugten Ausgestaltung der Erfindung kann die Gussform in dem Bereich, der mit der Schmelze in Kontakt kommt, beschichtet sein. Das Material dieser Beschichtung der Gussform ist vorzugsweise ausgewählt, aus der Gruppe bestehend aus Bornitrid, Aluminiumoxid (z.B. Al2O3) und Yttriumoxid (z.B. Y2O3). Bevorzugt weist die Beschichtung ein Pulver auf oder besteht daraus. Die Dicke der Beschichtung, insbesondere der Pulverbeschichtung, kann in einer Ausführung im Bereich von 10 - 50 µm liegen. Eine Pulverschicht kann sich vorteilhaft auf die mechanischen Eigenschaften des herzustellenden Ingots auswirken. Die Beschichtung kann unter anderem dazu dienen, den Ingot leichter aus der Gussform zu entfernen.The ratio between the weight of the mold and the weight of the melt is preferably in the range of 7:1 or more, more preferably in the range of 10:1 or more. In a preferred embodiment of the invention, the casting mold can be coated in the area that comes into contact with the melt. The material of this coating of the mold is preferably selected from the group consisting of boron nitride, aluminum oxide (eg Al 2 O 3 ) and yttrium oxide (eg Y 2 O 3 ). The coating preferably has or consists of a powder. The thickness of the coating, in particular the powder coating, can be in the range of 10-50 μm in one embodiment. A layer of powder can have an advantageous effect on the mechanical properties of the ingot to be produced. The coating can serve, among other things, to make it easier to remove the ingot from the mold.

Erfindungsgemäß kühlt die Gussform an der Kontaktfläche mit der Schmelze für mindestens 5 Sekunden, insbesondere für mindestens 10 Sekunden und ganz besonders bevorzugt für mindestens 30 Sekunden nicht unter die Glasbildungstemperatur der Massivglas-bildenden Legierung ab. Im Rahmen der Erfindung wird auch noch von einer Schmelze gesprochen, nachdem die flüssige Schmelze in die Gussform überführt wurde, selbst wenn der Erstarrungsprozess bereits eingesetzt hat und die Massivglas-bildende Legierung teilweise oder vollständig fest ist, solange die Glasübergangstemperatur noch nicht unterschritten ist.According to the invention, the casting mold does not cool below the glass formation temperature of the solid glass-forming alloy at the contact surface with the melt for at least 5 seconds, in particular for at least 10 seconds and very particularly preferably for at least 30 seconds. Within the scope of the invention, a melt is also referred to after the liquid melt has been transferred to the casting mold, even if the solidification process has already started and the solid glass-forming alloy is partially or completely solid, as long as the glass transition temperature has not yet been fallen below.

In bevorzugter Ausbildung der Erfindung kühlt die Gussform für die angegebene Dauer an keiner Stelle der Kontaktfläche mit der Schmelze unter die Glasbildungstemperatur der Massivglas-bildenden Legierung ab. Die Bestimmung der Glasbildungstemperatur der Legierung wird unter "Methoden" beschrieben. In einer bevorzugten Ausführungsform der Erfindung liegt Temperatur der Gussform an der Kontaktfläche mit der Schmelze für die zuvor genannten Dauer mindestens 10°C, insbesondere mindestens 20°C und besonders bevorzugt mindestens 40°C oder mindestens 80°C über der Glasbildungstemperatur der Massivglas-bildenden Legierung.In a preferred embodiment of the invention, the casting mold does not cool below the glass formation temperature of the solid glass-forming alloy at any point on the contact surface with the melt for the specified period. The determination of the glass formation temperature of the alloy is described under "Methods". In a preferred embodiment of the invention, the temperature of the mold at the contact surface with the melt for the aforementioned period is at least 10° C., in particular at least 20° C. and particularly preferably at least 40° C. or at least 80° C. above the glass formation temperature of the solid glass-forming Alloy.

Zur Messung der Temperatur der Gussform an der Kontaktfläche kann eine Temperaturmesssonde in die Gussform so eingelassen sein, dass sie bis an die Kontaktfläche der Gussform mit der Schmelze reicht und dort misst. Die Temperaturmessung erfolgt bevorzugt am Punkt der halben Länge der längsten Ausdehnung des Ingots. Die Temperatur der Gussform vor dem Befüllen mit der Schmelze wird bevorzugt so eingestellt, dass die Temperatur der Gussform nach dem Gießen an der Kontaktfläche mit der Schmelze für mindestens 5 Sekunden, insbesondere für mindestens 10 Sekunden und ganz besonders bevorzugt für mindestens 30 Sekunden nach dem Kontakt mit der Gussform nicht unter die Glasbildungstemperatur der Legierung absinkt.To measure the temperature of the mold at the contact surface, a temperature measuring probe can be embedded in the mold in such a way that it reaches the contact surface of the mold with the melt and measures there. The temperature is preferably measured at half the length of the longest dimension of the ingot. The temperature of the mold before filling with the melt is preferably adjusted so that the temperature of the mold after casting at the contact surface with the melt for at least 5 seconds, in particular for at least 10 seconds and most preferably for at least 30 seconds after contact with the mold does not fall below the glass formation temperature of the alloy.

Bevorzugt wird die Gussform vor dem Kontakt mit der Schmelze aufgeheizt. Die bevorzugt eingestellte Temperatur der Gussform direkt vor dem Gießen der Schmelze beträgt mindestens 250°C, insbesondere mindestens 400°C und besonders bevorzugt mindestens 500°C. Das Aufheizen der Gussform kann beispielsweise in einem Ofen erfolgen. Alternativ kann die Gussform aktiv beheizt werden, z.B. durch elektrisches Heizen.The mold is preferably heated prior to contact with the melt. The preferably set temperature of the mold directly before pouring the melt is at least 250°C, in particular at least 400°C and particularly preferably at least 500°C. The casting mold can be heated in an oven, for example. Alternatively, the mold can be actively heated, e.g. by electrical heating.

Bevorzugt wird nach dem Gießen der Schmelze kein zusätzlicher Druck auf die Schmelze ausgeübt, der wesentlich über dem Standardatmosphärendruck liegt. Unter "wesentlich über dem Standardatmosphärendruck" kann im Rahmen der Erfindung ein Überdruck von 1 bar oder mehr verstanden werden.Preferably, no additional pressure substantially above standard atmospheric pressure is applied to the melt after the melt has been poured. In the context of the invention, “significantly above standard atmospheric pressure” can be understood to mean an overpressure of 1 bar or more.

In Schritt c) erfolgt ein Abkühlen der Schmelze unter die Glasübergangstemperatur der Massivglas-bildenden Legierung unter Erhalt des Ingots (20). Bevorzugt wird die Schmelze bis auf Raumtemperatur abgekühlt. Die Abkühlgeschwindigkeit in Schritt c) ist erfindungsgemäß nicht weiter beschränkt. In einer möglichen Ausführungsform lässt man die Schmelze ohne zusätzliche Einwirkung (Heizen bzw. Kühlen) auf Raumtemperatur abkühlen. Alternativ kann die Schmelze aktiv unter die Glasübergangstemperatur abgekühlt werden, um den Prozess zu beschleunigen.In step c), the melt is cooled below the glass transition temperature of the alloy forming solid glass, with the ingot (20) being obtained. The melt is preferably cooled down to room temperature. The cooling rate in step c) is not further restricted according to the invention. In one possible embodiment, the melt is allowed to cool to room temperature without any additional action (heating or cooling). Alternatively, the melt can be actively cooled below the glass transition temperature to speed up the process.

Durch das erfindungsgemäße Verfahren kann ein Ingot aus einer Massivglas-bildenden Legierung hergestellt werden, der nicht während des Herstellungsverfahrens zerspringt. Weiterhin kann durch das Verfahren ein Ingot hergestellt werden, der nicht zerspringt, wenn er innerhalb von maximal 50 Sekunden auf die Schmelztemperatur der Legierung erhitzt wird. Insbesondere kann ein Ingot hergestellt werden, der nicht zerspringt, wenn er drei Mal aus einer Höhe von 30 cm auf eine ebene, horizontale Stahloberfläche fällt. Insbesondere kann durch das Verfahren ein Ingot erzeugt werden, der an der Oberfläche keine amorphe Schicht aufweist. Die Abwesenheit einer amorphen Schicht kann im Lichtmikroskop bestimmt werden.By the method according to the invention, an ingot can be produced from a bulk glass-forming alloy which does not shatter during the production process. Furthermore, the method can produce an ingot that does not shatter when heated to the melting temperature of the alloy within 50 seconds or less. In particular, an ingot which does not shatter when dropped three times from a height of 30 cm onto a flat, horizontal steel surface can be produced. In particular, the method can be used to produce an ingot that does not have an amorphous layer on the surface. The absence of an amorphous layer can be determined with a light microscope.

Ingotingot

In einem weiteren Aspekt betrifft die Erfindung einen Ingot einer Massivglas-bildenden Legierung, wobei die Legierung eine kritischen Gussdicke von mindestens 5 mm aufweist, und wobei der Ingot in alle drei Raumrichtungen eine Ausdehnung aufweist, die größer ist als die kritische Gussdicke, dadurch gekennzeichnet, dass der Ingot, einen kristallinen Anteil von mindestens 90 Gew.-%, insbesondere mindestens 95 Gew.-% und besonders bevorzugt mindestens 98 Gew.-% aufweist, gemessen mittels DSC.In a further aspect, the invention relates to an ingot of a solid glass-forming alloy, the alloy having a critical casting thickness of at least 5 mm, and the ingot having an extent in all three spatial directions which is greater than the critical casting thickness, characterized in that that the ingot has a crystalline proportion of at least 90% by weight, in particular at least 95% by weight and particularly preferably at least 98% by weight, measured by DSC.

Bevorzugt beträgt die kritische Gussdicke der Legierung mindestens 7 mm und insbesondere mindestens 10 mm. Der erfindungsgemäße Ingot kann mithilfe des hierin beschriebenen Verfahrens hergestellt werden. In einer bevorzugten Ausführung weist der erfindungsgemäße Ingot keine amorphe Schicht auf der Oberfläche auf. Im Rahmen der vorliegenden Erfindung kann der Begriff "keine amorphe Schicht" verstanden werden als eine Schicht, die nicht dicker als 200 µm, insbesondere nicht dicker als 100 µm und ganz besonders bevorzugt nicht dicker als 50 µm ist. Die Abwesenheit einer amorphen Schicht kann bevorzugt zur Verringerung von Eigenspannungen im Ingot führen. Die Abwesenheit einer amorphen Schicht auf der Oberfläche des Ingots kann mittels optischer Mikroskopie (Auflicht-Mikroskop) bestimmt werden. Dazu wird mittels Diamantsäge ein Querschnitt des Ingots erzeugt. Der Querschnitt wird auch metallurgisches Schliffbild oder Querschliff genannt. Die Abwesenheit von amorphen Anteilen kann durch die Abwesenheit eines mit dem Auge sichtbaren Phasenübergangs im Lichtmikroskop bestimmt werden. Phasenübergänge können im Lichtmikroskop als Übergänge unterschiedlicher Farbe, bzw. unterschiedlichen Kontrasts identifiziert werden. In diesem Zusammenhang wird auf die Abbildungen 1 bis 3 verwiesen. Abbildung 1 zeigt eine Mikroskopieaufnahme eines Querschnitts durch einen Ingot, der amorphe Bereiche aufweist. Diese amorphen Bereiche sind als helle Bereich zum Rand hin zu erkennen (Pfeil 1). Der innere Bereich des untersuchten Ingots weist, keine hellen Bereiche auf (Pfeil 2). Dagegen zeigt Abbildung 2 eine Mikroskopieaufnahme eines Querschnitts durch einen Ingot, der keine amorphen Bereiche aufweist. Dies ist durch die einheitliche Materialerscheinung ohne helle Flecken zu erkennen. Abbildung 3 zeigt ein metallurgisches Schliffbild der Probe aus Abbildung 2 in höherer Vergrößerung. Darin sind deutlich die polykristallinen Strukturen, bzw. deren Korngrenzen, erkennbar. Weiterhin ist zu erkennen, dass die kristalline Struktur des erfindungsgemäßen Ingots bis an den Rand reicht, was Abwesenheit einer amorphen Phase bestätigt (z.B. im eingekreisten Bereich). Würde eine amorphe Phase auftreten, würde sich diese bevorzugt zuerst am Rand ausbilden, da hier potentiell die Abkühlraten am höchsten sein können.The critical casting thickness of the alloy is preferably at least 7 mm and in particular at least 10 mm. The ingot according to the invention can be produced using the method described herein will. In a preferred embodiment, the ingot according to the invention has no amorphous layer on the surface. In the context of the present invention, the term "no amorphous layer" can be understood as a layer which is no thicker than 200 μm, in particular no thicker than 100 μm and very particularly preferably no thicker than 50 μm. The absence of an amorphous layer can preferably lead to the reduction of internal stresses in the ingot. The absence of an amorphous layer on the surface of the ingot can be determined by optical microscopy (reflected light microscope). For this purpose, a cross-section of the ingot is created using a diamond saw. The cross-section is also called a metallurgical micrograph or cross-section. The absence of amorphous portions can be determined by the absence of a phase transition visible to the naked eye under the light microscope. Phase transitions can be identified in the light microscope as transitions of different colors or different contrasts. In this context, reference is made to Figures 1 to 3. illustration 1 shows a micrograph of a cross section through an ingot that has amorphous areas. These amorphous areas can be seen as a bright area towards the edge (arrow 1). The inner area of the examined ingot shows no bright areas (arrow 2). Contrast shows Figure 2 a micrograph of a cross-section through an ingot that does not have any amorphous areas. This can be recognized by the uniform material appearance without light spots. Figure 3 shows a metallurgical micrograph of the sample Figure 2 at higher magnification. The polycrystalline structures and their grain boundaries can be clearly seen there. Furthermore, it can be seen that the crystalline structure of the ingot according to the invention extends to the edge, which confirms the absence of an amorphous phase (eg in the circled area). If an amorphous phase were to occur, it would preferably form at the edge first, as this is where the cooling rates can potentially be highest.

In einer Ausführungsform kann das gesamte Volumen der amorphen Schicht auf dem Ingot 5% oder weniger, insbesondere 3% oder weniger betragen. Die Kristallinität des Ingots kann mittels Differential Scanning Calorimetry (DSC) gemessen werden. Bevorzugt ist der Ingot massiv und weist keine Hohlräume, wie z.B. Lufteinschlüsse, auf. Erfindungsgemäß ist die Form des Ingots nicht beschränkt. In eine Ausführung kann der Ingot eine zylindrische Form aufweisen. Bevorzugt weist der Zylinderdurchmesser einen Wert von mindestens 5 mm, insbesondere mindestens 15 mm und ganz besonders bevorzugt mindestens 25 mm auf, jeweils unter der Bedingung, dass der Durchmesser größer ist als die kritische Gussdicke der Massivglas-bildenden Legierung. Die Länge des Zylinders beträgt bevorzugt mindestens 3 cm.In one embodiment, the total volume of the amorphous layer on the ingot can be 5% or less, in particular 3% or less. The crystallinity of the ingot can be measured using Differential Scanning Calorimetry (DSC). The ingot is preferably solid and has no cavities, such as air inclusions. According to the invention, the shape of the ingot is not limited. In one embodiment, the ingot may have a cylindrical shape. The cylinder diameter preferably has a value of at least 5 mm, in particular at least 15 mm and very particularly preferably at least 25 mm, in each case with the condition that the diameter is greater than the critical casting thickness of the solid glass-forming alloy. The length of the cylinder is preferably at least 3 cm.

In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Herstellung von dreidimensionalen Bauteilen aus metallischen Massivgläsern mittels Gussverfahren, insbesondere Spritzguss, unter Verwendung des erfindungsgemäßen Ingots einer Massivglas-bildenden Legierung.In a further aspect, the invention relates to a method for producing three-dimensional components from metallic solid glasses by means of casting methods, in particular injection molding, using the ingot according to the invention of a solid glass-forming alloy.

Während der Herstellung des dreidimensionalen Bauteils mittels Gussverfahren, wie z.B. Spritzguss, wird der erfindungsgemäße Ingot zu einer homogenen Schmelze (30) geschmolzen. Bevorzugt dauert das vollständige Schmelzen des Ingots (20) nicht länger als 60 Sekunden, insbesondere nicht länger als 40 Sekunden und ganz besonders bevorzugt nicht länger als 20 Sekunden, wobei der Ingot erhitzt werden kann ohne zu zerspringen.During the production of the three-dimensional component by means of a casting process, such as injection molding, the ingot according to the invention is melted to form a homogeneous melt (30). The complete melting of the ingot (20) preferably takes no longer than 60 seconds, in particular no longer than 40 seconds and very particularly preferably no longer than 20 seconds, it being possible for the ingot to be heated without cracking.

Herkömmliche Ingots können typischer Weise nur deutlich langsamer geschmolzen werden, da sie sonst zerspringen. Dies bringt die oben beschriebenen Nachteile mit sich. Die Aufheizdauer bei bereits bekannten Ingots gleicher Abmessung liegt typischer Weise im Bereich von 80 Sekunden. Nach dem Schmelzen des Ingots (20) wird die homogene Schmelze (30) in die Gussform für ein dreidimensionales Bauteil (40) gegossen, insbesondere gespritzt. Bevorzugt ist die Gussform zur Herstellung des dreidimensionalen Bauteils mittels Gussverfahren so dimensioniert, dass sie an keiner Stelle die kritische Gussdicke der verwendeten Legierung überschreitet, da so vollständig amorphe, dreidimensionale Bauteile erzeugt werden können. Insbesondere kann der Ingot zur Herstellung von dreidimensionalen Bauteilen verwendet werden, die mit einem hohen Durchsatz in einer Spritzgussmaschine hergestellt werden können.Conventional ingots can typically only be melted much more slowly, otherwise they would shatter. This entails the disadvantages described above. The heating-up time for already known ingots of the same dimensions is typically in the range of 80 seconds. After the ingot (20) has been melted, the homogeneous melt (30) is poured, in particular injected, into the mold for a three-dimensional component (40). The casting mold for producing the three-dimensional component by means of the casting process is preferably dimensioned in such a way that it does not exceed the critical casting thickness of the alloy used at any point, since completely amorphous, three-dimensional components can be produced in this way. In particular, the ingot can be used to produce three-dimensional components that can be produced with a high throughput in an injection molding machine.

Messmethodenmeasurement methods Röntgendiffraktometrie (XRD)X-ray diffraction (XRD)

Die Durchführung der XRD - Messungen wird gemäß DIN EN 13925-1:2003-07 und DIN EN 13925-2:2003-07 durchgeführt. Mit einer Diamantsäge wird ein Querschliff des zu untersuchenden Materials angefertigt. Die plane Oberfläche des Querschliffs liegt im Bereich von ca. 1 cm2. Die allgemeine verwendeten Messdetails sind wie folgt zusammengefasst: Beugung: Bragg- Brentano; Detektor: Scintillation Counter; Strahlung: Cu 1.5406 Å; Quelle: 40 kV, 25 mA; Messmethode: Reflektion.The XRD measurements are carried out in accordance with DIN EN 13925-1:2003-07 and DIN EN 13925-2:2003-07. A cross section of the material to be examined is prepared with a diamond saw. The flat surface of the cross section is in the range of approx. 1 cm 2 . The general measurement details used are summarized as follows: Diffraction: Bragg-Brentano; Detector: Scintillation Counter; Radiation: Cu 1.5406 Å; Source: 40kV, 25mA; Measurement method: reflection.

Als interne Referenz wird zuerst der leere Probenhalter gemessen, um das Hintergrundsignal zu ermitteln. Diese Hintergrundmessung wird von allen folgenden Messungen der zu untersuchenden Proben abgezogen.As an internal reference, the empty sample holder is measured first to determine the background signal. This background measurement is subtracted from all subsequent measurements of the samples to be examined.

Diskrete Beugungssignale im Diffraktogramm, sofern vorhanden, können gemäß dem Debye-Scherrer Verfahren unter Verwendung der Bragg-Gleichung ausgewertet werden. Bei sichtbar werden von diskreten, kristallinen Peaks oberhalb des statistischen Rauschens geht man von einem kristallinen Anteil von mindestens 5 Gew.-% aus. Sind im Diffraktogramm keine scharfen Beugungssignale zu bestimmen, liegt der kristalline Anteil unter 5%.Discrete diffraction signals in the diffractogram, if any, can be evaluated according to the Debye-Scherrer method using the Bragg equation. When visible from discrete, crystalline peaks above the statistical noise, a crystalline proportion of at least 5% by weight is assumed. If no sharp diffraction signals can be determined in the diffractogram, the crystalline proportion is below 5%.

DSC: MessungDSC: measurement

Die DSC-Messungen im Rahmen der Erfindung werden gemäß DIN EN ISO 11357-1:2017-02 und DIN EN ISO 11357-3:2018-07 durchgeführt. Die zu vermessende Probe in Form einer dünnen Scheibe oder Folie, (ca. 80 - 100 mg) wird in die Messvorrichtung (NETZSCH DSC 404F1, NETZSCH GmbH, Deutschland) gegeben. Die Aufheizrate beträgt 20,0 K/min. Als Tiegelmaterial wird Al2O3 verwendet. Die Messung des Wärmeflusses erfolgt gegenüber einem leeren Referenztiegel, sodass ausschließlich das thermische Verhalten der Probe gemessen wird.The DSC measurements within the scope of the invention are carried out in accordance with DIN EN ISO 11357-1:2017-02 and DIN EN ISO 11357-3:2018-07. The sample to be measured in the form of a thin disc or foil (approx. 80 - 100 mg) is placed in the measuring device (NETZSCH DSC 404F1, NETZSCH GmbH, Germany). The heating rate is 20.0 K/min. Al 2 O 3 is used as the crucible material. The heat flow is measured against an empty reference crucible, so that only the thermal behavior of the sample is measured.

Das Messverfahren erfolgt gemäß den folgenden Schritten:

  1. a) Die zu vermessende Probe wird mit der oben genannten Aufheizrate auf eine Temperatur T kurz unterhalb der Schmelztemperatur aufgeheizt (T=0,75Tm) und der Wärmefluss gemessen. Die Messung ist abgeschlossen, wenn kein Wärmefluss im Zusammenhang mit Phasenübergängen mehr gemessen werden kann. Insbesondere wird die Messung beendet, wenn ein exothermes Signal in Zusammenhang mit dem Kristallisationsvorgang vollständig erfasst ist. In den hierin enthaltenen Beispielen wird z.B. von Raumtemperatur bis etwa 600°C gemessen.
  2. b) Die Probe lässt man auf Raumtemperatur abkühlen.
  3. c) Die Probe wird erneut mit derselben Aufheizrate auf dieselbe Temperatur aufgeheizt wie in Schritt a) und der Wärmefluss wird gemessen.
  4. d) Die Messung aus Schritt c) wird von der Messung aus Schritt a) abgezogen, unter Erhalt der Messdifferenz. Aus der Differenzmessung wird die Kristallisationsenthalpie, falls vorhanden, durch Integralbildung bestimmt.
The measurement procedure is carried out according to the following steps:
  1. a) The sample to be measured is heated to a temperature T just below the melting temperature (T=0.75 Tm) at the heating rate mentioned above and the heat flow is measured. The measurement is complete when no more heat flow associated with phase transitions can be measured. In particular, the measurement is terminated when an exothermic signal associated with the crystallization process is fully detected. For example, in the examples contained herein, measurements are taken from room temperature to about 600°C.
  2. b) The sample is allowed to cool to room temperature.
  3. c) The sample is again heated to the same temperature at the same heating rate as in step a) and the heat flow is measured.
  4. d) The measurement from step c) is subtracted from the measurement from step a) to obtain the measurement difference. From the differential measurement, the crystallization enthalpy, if any, is determined by integral formation.

1) Vermessung von Proben mit kleinem amorphen Anteil (z.B. erfindungsgemäßer Ingot)1) Measurement of samples with a small amorphous content (e.g. ingot according to the invention)

Proben, von denen erwartet wird, dass sie überwiegend kristallin sind und nur einen geringen Anteil an amorpher Phase aufweisen, werden gemäß der oben angegebenen Messmethode vermessen. Die Probe, z.B. aus einem erfindungsgemäßen Ingot, wird in Schritt a) bis auf eine Temperatur T = 0,75Tm (75% der Schmelztemperatur (Tm) in °C) erhitzt. Wenn nach Abzug der Referenzmessung aus Schritt c) kein Wärmefluss im Bereich der Kristallisationstemperatur bestimmt werden kann, wird davon ausgegangen, dass die Probe vollständig kristallin ist (Messungenauigkeit 5%). Die vollständige Kristallinität der Probe nach dem Durchlaufen des Messverfahrens kann zusätzlich mittels XRD bestätigt werden, durch die Abwesenheit von breiten, unspezifischen Signalen im Beugungsdiagramm, die auf eine amorphe Phase hinweisen würden. Der amorphe Anteil von Proben mit mehr als 5 Gew.-% lässt sich durch Vergleich der Kristallisationsenthalpie der unbekannten Probe mit dem Wert für die vollständig amorphe Probe aus DSC-Verfahren 2) (s.u.) bestimmen.Samples expected to be predominantly crystalline with little amorphous phase are measured according to the measurement method given above. The sample, for example from an ingot according to the invention, is heated in step a) to a temperature T=0.75 * Tm (75% of the melting point (Tm) in °C). If, after subtracting the reference measurement from step c), no heat flow can be determined in the range of the crystallization temperature, it is assumed that the sample is completely crystalline (measurement inaccuracy 5%). The complete crystallinity of the sample after undergoing the measurement procedure can be additionally confirmed by XRD, by the absence of broad, unspecific signals in the diffraction pattern that would indicate an amorphous phase. The amorphous content of samples with more than 5% by weight can be determined by comparing the crystallization enthalpy of the unknown sample with the value for the completely amorphous sample from DSC method 2) (see below).

2) Bestimmung der kritischen Gussdicke2) Determination of the critical casting thickness

Für die Bestimmung der kritischen Gussdicke wird von jedem der gegossenen Zylinder eine Probe mittels DSC vermessen. Solang der Durchmesser der Zylinder unterhalb der kritischen Gussdicke liegt ist die Probe vor Beginn der Messung vollständig amorph und kristallisiert während der DSC-Messung in Schritt a) des Messverfahrens. Aus der Messung des vollständig amorphen Materials wird die Kristallisationsenthalpie der Legierung bestimmt. Die Kristallisationsenthalpie wird für alle Proben mit zunehmendem Zylinderdurchmesser bestimmt. Die bestimmte Kristallisationsenthalpie für Proben, deren Zylinderdurchmesser unterhalb der kritischen Gussdicke liegt, ist im Rahmen der Messungenauigkeit konstant. Sobald der Zylinderdurchmesser die kritische Gussdicke überschreitet, wird in der DSC-Messung der Probe für die Kristallisationsenthalpie ein kleinerer Wert gemessen als bei den kleineren Durchmessern, da bereits ein Teil des Materials kristallisiert ist und dies nichtmehr innerhalb der DSC-Messung geschieht. Die kritische Gussdicke wird als der Zylinderdurchmesser bestimmt, bis zu dem die Kristallisationsenthalpie bei aufsteigendem Durchmesser konstant ist.To determine the critical casting thickness, a sample of each of the cast cylinders is measured using DSC. As long as the diameter of the cylinder is below the critical casting thickness, the sample is completely amorphous before the start of the measurement and crystallizes during the DSC measurement in step a) of the measurement method. The crystallization enthalpy of the alloy is determined from the measurement of the completely amorphous material. The crystallization enthalpy is determined for all samples with increasing cylinder diameter. The crystallization enthalpy determined for samples whose cylinder diameter is below the critical casting thickness is constant within the measurement inaccuracy. As soon as the cylinder diameter exceeds the critical casting thickness, a smaller value is measured for the crystallization enthalpy in the DSC measurement of the sample than with the smaller diameters, since part of the material has already crystallized and this no longer happens within the DSC measurement. The critical casting thickness is determined as the cylinder diameter up to which the crystallization enthalpy is constant with increasing diameter.

3) Glasübergangstemperatur3) glass transition temperature

Im Rahmen der vorliegenden Erfindung wird die Glasübergangstemperatur gemäß ASTM E1365-03 wie folgt gemessen. Die zu untersuchende Probe wird in einem DSC-Gerät (NETZSCH DSC 404F1, NETZSCH GmbH, Deutschland) in einen Tiegel gegeben. Das System wird nach dem folgenden Schema geheizt und gekühlt und der jeweilige Wärmefluss in den Schritten a) und c) gemessen.

  1. a) Erwärmen auf eine Temperatur von 0,75Tm mit einer Heizrate von 20K/min.
  2. b) Abkühlen auf Raumtemperatur
  3. c) Erwärmen auf die gleiche Temperatur wie in Schritt a) mit der gleichen Heizrate, und
  4. d) Abkühlen auf Raumtemperatur.
In the present invention, glass transition temperature is measured according to ASTM E1365-03 as follows. The sample to be examined is placed in a crucible in a DSC device (NETZSCH DSC 404F1, NETZSCH GmbH, Germany). The system is heated and cooled according to the following scheme and the respective heat flow is measured in steps a) and c).
  1. a) Heating to a temperature of 0.75 Tm at a heating rate of 20K/min.
  2. b) cooling to room temperature
  3. c) heating to the same temperature as in step a) at the same heating rate, and
  4. d) cooling to room temperature.

Als Resultat des Experiments wird die Enthalpie in Abhängigkeit von der Temperatur für die Probe erhalten. In Schritt a) findet die Kristallisation der amorphen Probe statt. In Schritt c) wird das thermische Verhalten der bereits vollständig kristallisierten Probe aufgezeichnet.As a result of the experiment, the enthalpy versus temperature for the sample is obtained. In step a) the crystallization of the amorphous sample takes place. In step c), the thermal behavior of the already fully crystallized sample is recorded.

Um die Glasübergangstemperatur zu bestimmen, wird die Messung aus Schritt c) von der Messung aus Schritt a) subtrahiert. Die resultierende Kurve beinhaltet einen endothermen Übergang bei niedrigere Temperatur und ein exothermes Signal bei höherer Temperatur. Das Signal bei höherer Temperatur korrespondiert mit dem Kristallisationsvorgang. Das endotherme Signal korrespondiert mit dem Glasübergang. Um die Glasübergangstemperatur zu bestimmen, wird vor dem Glasübergangsbereich eine Tangentenlinie zur Basislinie bestimmt (durch lineare Anpassung). Eine zweite Tangente wird im Wendepunkt (entsprechend dem zeitlichen Spitzenwert der ersten Ableitung) des Glasübergangsbereichs bestimmt. Der Temperaturwert am Schnittpunkt der beiden Tangenten gibt die Glasübergangstemperatur an (Tf gemäß AST; 1356-03).To determine the glass transition temperature, the measurement from step c) is subtracted from the measurement from step a). The resulting curve includes an endothermic transition at lower temperature and an exothermic peak at higher temperature. The signal at higher temperature corresponds to the crystallization process. The endothermic signal corresponds to the glass transition. To determine the glass transition temperature, a line tangent to the baseline is determined (by linear fitting) in front of the glass transition region. A second tangent is determined at the inflection point (corresponding to the peak time value of the first derivative) of the glass transition region. The temperature value at the intersection of the two tangents indicates the glass transition temperature (T f according to AST; 1356-03).

Beispieleexamples

Die einzelnen Komponenten wurde unter Schutzgas mittels induktivem Schmelzen zu einer homogenen Legierung der Zusammensetzung Zr52,5Ti5Cu17,9Ni14,6Al10 geschmolzen. Diese Legierung weist eine Glasübergangstemperatur von 403 °C auf. 80 g der homogenen Legierung wurden mittels induktivem Heizen in einem Schmelztiegel auf eine Temperatur oberhalb der Schmelztemperatur der Legierung (805°C) gebracht. Die Temperaturen der jeweiligen Schmelze für den jeweiligen Versuch sind Tabelle 1 zu entnehmen. Die Gussform wurde jeweils in einem Ofen auf eine in Tabelle 1 definierte Temperatur vorgeheizt. Anschließend wurde die jeweilige homogene Schmelze gemäß Tabelle 1 in eine Gussform gefüllt. Die Gussform hatte eine zylindrische Form mit einem Innendurchmesser von 19 mm. Die Temperatur der Schmelze wurde nach dem Füllen der zylindrischen Gussform kontinuierlich gemessen. Die Messwerte für die Temperatur der Schmelze nach 10 Sekunden in der Gussform sind jeweils in Tabelle 1 abzulesen. Tabelle 1 Beispiel 1 2 3 4 5 Tschmelze[°C] 1050 1100 1200 1250 1350 TGussform[°C] 50 50 250 400 600 Gussform Kupfer Stahl Stahl Stahl Stahl Gewichtsverhältnis 1:17 1:15 1:9 1:15 1:15 Beschichtung d. Gussform keine BN Y2O3 BN Al2O3 T Gussform nach 10s [°C] 150 150 410 420 ca. 550 Qualität des Ingots schlecht schlecht gut gut sehr gut The individual components were melted under protective gas by means of inductive melting into a homogeneous alloy with the composition Zr 52.5 Ti 5 Cu 17.9 Ni 14.6 Al 10 . This alloy has a glass transition temperature of 403 °C. 80 g of the homogeneous alloy were brought to a temperature above the melting point of the alloy (805° C.) by means of inductive heating in a crucible. Table 1 shows the temperatures of the respective melt for the respective test. In each case, the mold was preheated in an oven to a temperature defined in Table 1. The respective homogeneous melt according to Table 1 was then poured into a casting mold. The mold had a cylindrical shape with an inner diameter of 19 mm. The temperature of the melt was continuously measured after filling the cylindrical mold. The measured values for the temperature of the melt after 10 seconds in the mold can be read in Table 1. <b>Table 1</b> example 1 2 3 4 5 T melt [°C] 1050 1100 1200 1250 1350 T mold [°C] 50 50 250 400 600 mold copper stole stole stole stole weight ratio 1:17 1:15 1:9 1:15 1:15 coating d. mold none B.N Y2O3 _ B.N Al2O3 _ T mold after 10s [°C] 150 150 410 420 about 550 quality of the ingot bad bad Good Good very good

Beispiele 1 und 2 in Tabelle 1 sind Vergleichsbeispiele, Beispiele 3-5 sind erfindungsgemäße Beispiele. Die Beurteilung der Qualität der gegossenen Ingots erfolgte nach den folgenden Kriterien: Gegossene Teile mit schlechter Qualität zerspringen bereits während des Erkaltens in der Gussform. Gegossene Ingots mit guter Qualität bleiben intakt, wenn sie innerhalb von höchstens 50 Sekunden mit einer Leistung von 5 kW auf die Schmelztemperatur erhitzt wurden. Ingots mit sehr guter Qualität überstehen zusätzlich einen Fall-Test aus 30 cm Höhe auf eine ebene Stahlplatte dreimal hintereinander, ohne zu zerspringen. Aus den Beispielen 1-5 wird deutlich, dass Ingots, bei denen die Temperatur der Schmelze nach 10 Sekunden über der Glasübergangstemperatur lag, deutlich robuster waren als Ingots bei denen die Temperatur der Schmelze darunter lag.Examples 1 and 2 in Table 1 are comparative examples, Examples 3-5 are examples according to the invention. The quality of the cast ingots was assessed according to the following criteria: Poor-quality cast parts already shatter while cooling in the mold. Good quality cast ingots will remain intact if heated to melting temperature within 50 seconds or less at a power of 5 kW. Very good quality ingots also withstand a drop test from a height of 30 cm onto a flat steel plate three times in a row without shattering. It is clear from Examples 1-5 that ingots in which the temperature of the melt was above the glass transition temperature after 10 seconds were significantly more robust than ingots in which the temperature of the melt was below.

Beschreibung der Abbildungen:

  • Abbildung 1 zeigt eine Aufnahme mit dem Lichtmikroskop, die den Querschnitt eines Ingots zeigt, der gemäß Beispiel 1 als Vergleichsversuch gefertigt wurde. Die hellen Bereiche im Querschnitt, die beispielhaft mit Pfeilen gekennzeichnet sind, zeigen amorphe Bereiche (Pfeil 1), die von dunkleren, kristallinen Bereichen umgeben sind (Pfeil 2). Weiterhin ist in Abbildung 1 zu erkennen, dass der Ingot gesprungen ist.
  • Abbildung 2 zeigt eine Aufnahme mit dem Lichtmikroskop, die den Querschnitts eines Ingots zeigt, der gemäß Beispiel 4 gefertigt wurde. Der Querschnitt eines Ingots gemäß Beispiel 4 zeigt eine homogene Materialverteilung ohne helle Bereiche, die auf amorphe Phasen hindeuten würden.
  • Abbildung 3 zeigt eine Vergrößerung der erfindungsgemäßen Probe aus Abbildung 2. Das Bild zeigt die multikristalline Struktur des Ingots bis in den Randbereich des Querschnitts.
  • Abbildung 4 zeigt eine schematische Darstellung des Verfahrensverlaufs von den Einzelkomponenten der Massivglas-bildendenden Legierung (5) bis zum Bauteil aus metallischem Massivglas (40). Dabei werden die folgenden Stufen durchlaufen: Einzelkomponenten der Massivglas-bildendenden Legierung (5), homogene Schmelze (10), Ingot aus Massivglas-bildender Legierung (20), homogene Schmelze der Massivglas-bildenden Legierung (30) und Bauteil aus metallischem Massivglas (40).
Description of the pictures:
  • illustration 1 FIG. 12 is an optical micrograph showing the cross section of an ingot fabricated according to example 1 as a comparative test. The bright areas in the cross section, which are marked with arrows as an example, show amorphous areas (arrow 1) surrounded by darker, crystalline areas (arrow 2). Furthermore, in illustration 1 to recognize that the ingot has cracked.
  • Figure 2 FIG. 12 is an optical micrograph showing the cross-section of an ingot fabricated according to Example 4. FIG. The cross section of an ingot according to Example 4 shows a homogeneous material distribution without bright areas that would indicate amorphous phases.
  • Figure 3 shows an enlargement of the sample according to the invention Figure 2 . The picture shows the multicrystalline structure of the ingot up to the edge area of the cross section.
  • Figure 4 shows a schematic representation of the course of the process from the individual components of the solid glass-forming alloy (5) to the component made of metallic solid glass (40). The following stages are run through: individual components of the bulk glass-forming alloy (5), homogeneous melt (10), ingot of bulk glass-forming alloy (20), homogeneous melt of the bulk glass-forming alloy (30) and component made of metallic bulk glass (40 ).

Claims (12)

  1. Method for producing an ingot of a solid-glass-forming alloy, having the steps of:
    a. providing a homogeneous melt of a solid-glass-forming alloy;
    b. casting the homogeneous melt into a casting mold, wherein the casting mold at the contact surface with the melt does not cool to below the glass formation temperature of the alloy for at least 5 seconds; and
    c. cooling the melt to below the glass transition temperature of the solid-glass-forming alloy, obtaining the ingot,
    wherein, after the melt has been cast, no additional pressure which is substantially above the standard atmospheric pressure is exerted on the melt.
  2. Method according to claim 1, wherein the casting mold at the contact surface with the melt does not cool to below the glass formation temperature of the alloy for at least 10 seconds.
  3. Method according to one of claims 1 or 2, wherein the solid-glass-forming alloy has a critical casting thickness of 5 mm or more, wherein
    the critical casting thickness, by means of DSC, is determined as described in the application text by processing the to-be-measured alloy in the light arc to form a homogeneous melt and subsequently casting it into a water-cooled, cylindrical, copper casting mold, wherein the mass of the copper casting mold is greater by at least a factor of 7 than the mass of the added melt of the alloy to be determined, wherein the temperature of the homogeneous melt prior to casting is at least 200 °C above the melting temperature, and wherein the temperature of the copper casting mold is 20 °C.
  4. Method according to one of claims 1 through 3, wherein the dimension of the ingot in the three spatial directions is greater than the critical casting thickness as determined according to claim 3.
  5. Method according to one of claims 1 through 4, wherein the ingot, relative to the weight, has a crystalline fraction of at least 90%, measured by means of DSC.
  6. Method according to one of claims 1 through 5, wherein the ingot, relative to the weight, has a crystalline fraction of at least 95%, measured by means of DSC.
  7. Method according to one of claims 1 through 6, wherein the casting mold is coated with a material selected from the group consisting of boron nitride, Y2O3, and aluminum oxide.
  8. Method according to one of claims 1 through 7, wherein the ratio between the weight of the melt and the weight of the casting mold is 1:7 or less.
  9. Method according to one of claims 1 through 8, wherein the temperature of the melt in step a) is at least 20% above the melting temperature, measured in degrees Celsius.
  10. Ingot of a solid-glass-forming alloy, having a critical casting thickness of at least 5 mm, wherein the ingot has an extension in at least three spatial directions that is greater than the critical casting thickness, characterized in that the ingot has a crystalline fraction of at least 90 wt%, measured by means of DSC, wherein the critical casting thickness according to claim 3 is determined, and wherein the ingot does not have an amorphous layer on the surface.
  11. Method for producing a three-dimensional component from a metallic solid glass by means of casting methods, characterized in that, for the casting method, an ingot (20) according to claim 10 is melted.
  12. Method according to claim 11, wherein melting the ingot takes no longer than 60 seconds - in particular, no longer than 40 seconds.
EP19156906.0A 2019-02-13 2019-02-13 Robust ingot for the production of components made of metallic solid glasses Active EP3695920B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19156906.0A EP3695920B1 (en) 2019-02-13 2019-02-13 Robust ingot for the production of components made of metallic solid glasses
PCT/EP2020/052232 WO2020164916A1 (en) 2019-02-13 2020-01-30 Robust ingot for the production of components made of metallic solid glasses
CN202080011844.XA CN113382815B (en) 2019-02-13 2020-01-30 Stable ingots for producing components made of bulk metallic glass
US17/427,597 US20220118511A1 (en) 2019-02-13 2020-01-30 Robust ingot for the production of components made of metallic solid glasses
TW109103520A TWI791947B (en) 2019-02-13 2020-02-05 Robust ingot for production of components made of bulk metallic glasses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19156906.0A EP3695920B1 (en) 2019-02-13 2019-02-13 Robust ingot for the production of components made of metallic solid glasses

Publications (2)

Publication Number Publication Date
EP3695920A1 EP3695920A1 (en) 2020-08-19
EP3695920B1 true EP3695920B1 (en) 2022-04-06

Family

ID=65433574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19156906.0A Active EP3695920B1 (en) 2019-02-13 2019-02-13 Robust ingot for the production of components made of metallic solid glasses

Country Status (5)

Country Link
US (1) US20220118511A1 (en)
EP (1) EP3695920B1 (en)
CN (1) CN113382815B (en)
TW (1) TWI791947B (en)
WO (1) WO2020164916A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102569110B1 (en) * 2020-09-28 2023-08-23 서울대학교산학협력단 Resettable gears

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279349A (en) 1989-12-29 1994-01-18 Honda Giken Kogyo Kabushiki Kaisha Process for casting amorphous alloy member
JP2001300694A (en) * 2000-04-24 2001-10-30 Hitachi Metals Ltd METHOD FOR PRODUCING INGOT FOR MANUFACTURING Fe-Ni BASE ALLOY THIN PLATE
WO2005005675A2 (en) * 2003-02-11 2005-01-20 Liquidmetal Technologies, Inc. Method of making in-situ composites comprising amorphous alloys
CN1438083A (en) * 2003-03-07 2003-08-27 江苏大学 Method for making block metal glass using quick-cooling technology
DE10326769B3 (en) * 2003-06-13 2004-11-11 Esk Ceramics Gmbh & Co. Kg Slip for producing long-lasting mold release layer, useful on mold for casting nonferrous metal under pressure, comprises boron nitride suspension in silanized silica in organic solvent or aqueous colloidal zirconia, alumina or boehmite
CN100398687C (en) * 2005-08-31 2008-07-02 中国科学院物理研究所 Samarium based amorphous alloy and preparation method thereof
CN101215679A (en) * 2008-01-08 2008-07-09 厦门大学 Nonmagnetic iron-base block amorphous alloy and preparation method thereof
EP2113759A1 (en) * 2008-04-29 2009-11-04 The Swatch Group Research and Development Ltd. Pressure sensor having a membrane comprising an amorphous material
US8887532B2 (en) * 2010-08-24 2014-11-18 Corning Incorporated Glass-forming tools and methods
US8701742B2 (en) * 2012-09-27 2014-04-22 Apple Inc. Counter-gravity casting of hollow shapes
US9802247B1 (en) * 2013-02-15 2017-10-31 Materion Corporation Systems and methods for counter gravity casting for bulk amorphous alloys
US9790580B1 (en) * 2013-11-18 2017-10-17 Materion Corporation Methods for making bulk metallic glasses containing metalloids
CN104213054B (en) * 2014-09-03 2017-02-15 中国科学院金属研究所 Liquid-phase separation biphasic bulk metallic glass material and preparation method thereof
US20160067766A1 (en) * 2014-09-08 2016-03-10 Apple Inc. 3d printed investment molds for casting of amorphous alloys and method of using same
JP6334626B2 (en) * 2016-09-01 2018-05-30 アップル インコーポレイテッド Continuous production of amorphous alloy ingot without mold

Also Published As

Publication number Publication date
CN113382815B (en) 2023-05-12
EP3695920A1 (en) 2020-08-19
US20220118511A1 (en) 2022-04-21
TW202035718A (en) 2020-10-01
WO2020164916A1 (en) 2020-08-20
CN113382815A (en) 2021-09-10
TWI791947B (en) 2023-02-11

Similar Documents

Publication Publication Date Title
DE3587572T2 (en) Process for increasing the ductility of reinforced objects, made from a rapidly solidified alloy.
DE69028009T2 (en) High-strength alloys based on magnesium
DE68916687T2 (en) High-strength, heat-resistant aluminum alloys.
DE69025295T2 (en) Amorphous alloys with increased machinability
DE102009050603B3 (en) Process for producing a β-γ-TiAl base alloy
DE19706768A1 (en) Quinary metal glass alloys
DE2462117A1 (en) IMPROVED KNEDE ALUMINUM ALLOY PRODUCT
DE3043503A1 (en) CRYSTALINE METAL ALLOY
EP1978120A1 (en) Aluminium-silicon alloy and method for production of same
WO2015173211A1 (en) Method for producing a component from an amorphous-phase metal alloy
EP3444370B1 (en) Copper based alloy for the production of metallic solid glasses
WO2008125091A2 (en) Metal foil
WO2016008674A1 (en) Method for producing a component from a metal alloy with an amorphous phase
WO2019179680A1 (en) Production of a bulk metallic glass composite material using a powder-based additive manufacture
DE69115394T2 (en) High-strength aluminum-based alloys
EP1950183A1 (en) Sintering of quartz glass into pieces containing crystalline SiO2
DE4003568C2 (en)
DE2556102C3 (en) Process for the production of highly wear-resistant cemented carbides based on titanium nitride
DE112023000030T5 (en) Magnesium matrix composite material reinforced with titanium particles and its manufacturing process
DE69030622T2 (en) SHEET FROM AN INTERMETALLIC TITANIUM-ALUMINUM BONDING AND METHOD FOR THEIR PRODUCTION
EP3695920B1 (en) Robust ingot for the production of components made of metallic solid glasses
DE69301365T2 (en) Compressed and solidified material made of a high-strength, heat-resistant aluminum-based alloy and process for its production
DE4112693C2 (en)
DE4327227A1 (en) Grain refining agent, its manufacture and use
DE2008461B2 (en) EUTECTIC SOLID CARBIDE HARD ALLOY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS DEUTSCHLAND GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1480833

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003917

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220808

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003917

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 6

Ref country code: CH

Payment date: 20240301

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240228

Year of fee payment: 6

Ref country code: FR

Payment date: 20240222

Year of fee payment: 6