EP3688275B1 - Crépine pour un puits de forage - Google Patents
Crépine pour un puits de forage Download PDFInfo
- Publication number
- EP3688275B1 EP3688275B1 EP17926447.8A EP17926447A EP3688275B1 EP 3688275 B1 EP3688275 B1 EP 3688275B1 EP 17926447 A EP17926447 A EP 17926447A EP 3688275 B1 EP3688275 B1 EP 3688275B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liner
- nozzles
- fluid
- plugs
- shut
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 31
- 238000006073 displacement reaction Methods 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 230000004913 activation Effects 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 238000005553 drilling Methods 0.000 description 5
- 239000003129 oil well Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 240000008213 Brosimum alicastrum Species 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 235000005828 ramon Nutrition 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/08—Screens or liners
- E21B43/086—Screens with preformed openings, e.g. slotted liners
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0078—Nozzles used in boreholes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/10—Setting of casings, screens, liners or the like in wells
- E21B43/103—Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
- E21B43/108—Expandable screens or perforated liners
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/08—Down-hole devices using materials which decompose under well-bore conditions
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
Definitions
- the present invention concerns liners for wellbores.
- the present invention is also directed to a well completion method for displacement from non-aqueous fluid to aqueous fluid using temporary plugged nozzles.
- Negative Patent No. 2 253 798 to Nguyen teaches a method of stimulating production flow from a formation.
- the method includes placing an acid fluid into the formation area to be stimulated to partially dissolve a portion of the area of the formation.
- the application discusses the types of acids to be used for this process and specifically states that aqueous based acids are best suited.
- a consolidating fluid is then injected into the formation.
- the consolidating fluid is chosen from a type of binding fluid, such as resin composites, tackifying agents and other fluids which cause agglomeration of fine, solid particles.
- the next step includes washing the area with a fluid to remove the agglomerated materials.
- the wash fluid may be fresh water.
- Further steps involve placing a fracturing fluid into the area of the subterranean formation to create, or at least extend, a fracture therein.
- U.S Patent Application No. 2014/0224807 to Ramon teaches of a plug arrangement wherein the plug is configured to lead, or follow a hardenable material (such as cement) which is being pumped through a tubular body.
- the plug includes one or more portions which are configured to weaken when exposed to an activation fluid.
- the material in this instance is a controlled electrolytic metallic material.
- the plug further includes a plurality of plugs nested within one another, wherein the leading plug is in sealing engagement with the walls of a tubular body.
- the activation fluid used for degrading the electrolytic material can include brine, acid, and aqueous fluid or combinations thereof.
- the nested plug may also include a bore, to allow activation fluid to penetrate and effectively reach the leading plug.
- the weakening of the plug portions specifically includes dissolving one or more of the potions.
- Prenner U.S Patent No. 3,924,677 to Prenner et al.
- the device is a conduit which extends through the sidewall of a well casing.
- the conduit is held in a retracted position in the sidewall from the interior of the casing by a friction sleeve formed of PVC.
- the opposing end of the conduit is shielded, to a degree, from the outer environment by a sacrificial cup body.
- the ends of the conduit are sealed with salt stoppers which are shielded from fluids.
- the outer protective cup formed of cast iron
- the casing is swabbed which will cause the salt plugs to dissolve to open the member from both sides. Passage between the strata and the interior of the well casing will then be possible.
- U.S Patent No. 9,151,143 to Holderman et al. (“Holderman”) teaches of a sacrificial dissolvable plug.
- the plug is used in series with a flow restrictor which is disposed in a fluid pathway between the exterior of a wellbore and the interior of the wellbore.
- the plug is configured to be at least partially dissolvable when contacted by a fluid.
- the fluid comprises a chemical configured to dissolve the plug.
- U.S Patent No.9,068,429 to Mailand et al. teaches of a dissolvable tool which is formed as a body which includes at least one portion thereof which is configured to dissolve in a fluid.
- the body includes a barrier and the body is able to move through a structure, preferably a conduit.
- the body (and barrier) seal the conduit, as the body moves there through.
- Common techniques to remove a sealing plug of this kind include milling or drilling out the plug.
- Further relevant disposable plug and liner combinations are known from WO2015002710A1 , EP2935771B1 and US9151143B2 .
- Prenner discloses a combination of a mechanical and non-intervention technique for removing a plug.
- a solid and a salt plug are housed within a translating hollow member in a protective casing.
- the hollow nature of the member is protected from future cementing operations by being solid on the side closest to the inner diameter of the protective casing and having a salt plug on the opposing side.
- the sliding member is extended from the protective casing to the wellbore by means of pressure and then cemented in place. Following cementation, the solid plug within the hollow member is removed by mechanically means with a downhole assembly including a bit deployed within the casing.
- the salt plug within the hollow member is then exposed to a fluid, which results in the dissolving of the salt plug to take place leaving a hollow conduit connecting the inside of the casing with the wellbore through the cement. This then allows for flow passage from the wellbore, through the extended hollow member into the conduit.
- fluids to dissolve a plug is therefore known.
- Prenner does not disclose the use of temporary plugs deployed within nozzles within the sidewalls of a liner that do not extend to the wellbore.
- Aviles teaches of a dissolvable object placed in the path of a conduit.
- the Aviles disclosure differs from the previously cited application in that the 'plug' itself is not dissolved, but instead the seat in which the 'plug' (ball) is located dissolves.
- the application provides an alternative approach to un-obstructing a flow path through a conduit by dissolving the flow restrictor.
- Mailand teaches of a body which includes a dissolvable portion, and a barrier portion.
- the barrier portion being in sealing engagement with the interior of a conduit.
- a portion of the flow restricting object is dissolvable so as to provide flow passage through a conduit.
- Holderman the disclosure thereof teaches of a screen assembly with a sacrificial plug placed in a sidewall of a conduit and in conjunction with a flow restrictor run in series to the sacrificial plug.
- the sacrificial plug is dissolvable when contacted with a chemical fluid, to provide passage between the interior and exterior of a well bore (through the sidewall, flow restrictor and screen assembly).
- Holderman does not disclose the use of plugs, in combination with nozzles which extend through sidewalls of a liner. Holderman also does not disclose the dissolution of the plug without the use of chemicals. Holderman does not disclose the use of dissolvable plugs without the use of a screen assembly.
- the present application teaches of a process for removing the temporary plugs, fitted to nozzles, in a liner.
- the process is referred to as intervention free, which means that physical intervention (such as blasting or shooting hardened steel bullets) is not used.
- the current application looks to overcome the need for a work string and an inner string to displace the plugged nozzles.
- the present invention provides a liner for a wellbore having a sidewall in which one or more nozzles are formed, wherein the one or more nozzles are plugged by temporary plugs.
- a liner in the sense of this invention is thus a wellbore equipment, especially oil wellbore equipment.
- Such a liner may act as a pipe and forms a conduit.
- a sidewall or jacket of the liner is thus the sidewall of a pipe or conduit and has a proximal end and a distal end such that medium can be transported through the liner from the proximal end to the distal end and/or vice versa.
- the temporary plugs are preferably removable by using a plugging medium that dissolves upon exposure to elevated temperature and/or an activation fluid, preferably an aqueous fluid.
- a plugging medium which dissolves in an activation fluid and especially in an aqueous fluid can for example be a salt.
- the temporary plugs are mechanical plugs that are removable by application of pressure cycles.
- the inventive liner comprises a liner top packer which isolates the liner top such that during operation all fluid flow is through the nozzles.
- the inventive liner comprises a liner shoe and a liner shoe shut off device, wherein the liner shoe shut off device allows circulation during displacement operations and subsequently isolates the liner shoe.
- the liner shoe shut off device can be shut by electronics activated by timer, Radio-frequency identification (RFID), pressure, flow or any combination of these.
- RFID Radio-frequency identification
- it can be shut by mechanical means using either a sleeve mechanically actuated by intervention means, a dart/ball dropped from surface to mechanically isolate the shoe or a combination of both.
- the present invention further provides a method of completing an open hole well that penetrates a subterranean formation in which a liner having a sidewall in which one or more nozzles are formed, wherein the one or more nozzles are plugged by temporary plugs, is deployed in the well such that the nozzles communicate with the formation.
- a liner shoe shut off valve is deployed to allow initial fluid displacement through the liner with plugged nozzles. After positioning of the liner the temporary plugs are removed from the nozzles.
- the application further teaches the use of temporary plugs which can be removed by non-physical means or intervention free methods. This is achieved by using a plug made from a specific material or medium. The medium is ultimately dissolved, which provides for production flow through the nozzle, which is no longer obstructed. The dissolving of the plug is due to the nature of the medium and the exposure of this medium to temperature or activation fluid (typically an aqueous fluid). A mechanical plug may be used, and removed by application of pressure cycles.
- the invention relates to the field of oil well drilling and more particularly to oil well completion and liners for achieving such a completion.
- the process in which the inventive liner can be advantageously used preferably involves providing a pre-punctured liner having plugged nozzles extending through the punctured holes. Once the liner is positioned, the temporary plugs allow for displacement of the wellbore from non-aqueous fluid to aqueous fluid. Thereafter the plugs are removed from the nozzles to provide unobstructed production and injection flow.
- the present invention thus teaches in a preferred embodiment a method of completing an open hole well that penetrates a subterranean formation to control the production of oil from and injecting acidizing fluid to the formation.
- the well is provided with nozzles that extend through the liner and communicate with the formation.
- the nozzles provide negligible pressure drop in a steady state production scenario while in a transient high rate injection scenario sufficient pressure drop is achieved to allow for even distribution of injection fluids.
- Temporary plugs are located in the nozzle throat such that initially the nozzles act as a blank piece of pipe.
- a liner shoe shut off valve is deployed to allow initial fluid displacement through the liner with plugged nozzles.
- the liner with temporary plugs is deployed in the well in a non-aqueous fluid.
- the temporary plugs in conjunction with other components allow for displacement of non-aqueous fluids through the casing/liner during deployment to assist with reaching final placement depth. Once the liner is positioned, the temporary plugs allow for displacement of the wellbore from non-aqueous fluid to aqueous fluid. Thereafter, the temporary plugs are removed from the nozzles to provide unobstructed production and injection flow paths to the formation and unobstructed internals of the casing/liner for future intervention. Temporary plugs may be removed by a variety of intervention free methods such as: temperature dissolved materials, aqueous fluid dissolved materials, pressure actuated valves.
- a shut off valve isolates the shoe and ensures all future production and injection fluids pass through the nozzles once the temporary plugging mechanism is removed.
- a delayed actuated liner top packer is set once the aqueous fluid displacement operation is complete.
- Pre-drilling of the liner is well specific and performed such that it provides negligible pressure drop in a steady state production scenario while in a transient high rate injection scenario sufficient pressure drop is achieved to allow for even distribution of injection fluids.
- the method according to the present invention enables displacement operation to take place through the pre-drilled liner without a subsequent work string deployment run nor the use of an inner string.
- Liner top packer with delayed activation (until after aqueous fluid displaced). Once set, this packer isolates the liner top ensuring all fluid flow is through the nozzles.
- Liner shoe shut off device that allows circulation during displacement operations and subsequently isolates the shoe for the life of the well. Once isolated all fluid flow is through the nozzles.
- Device can be actuated shut by electronics activated by timer, RFID, pressure or flow. Alternatively a device that is shut by mechanical means using pressure, actuation dart/ball or combination of both.
- Temporary plugged nozzles which are removed once the aqueous fluid displacement operations are completed.
- Temporary plugs can be removed by using a plugging medium that is dissolved with time and exposure to temperature and/or an activation fluid (typically an aqueous fluid) or a mechanical plug that is removed by application of pressure cycles.
- Temporary plugs must be designed to withstand differential pressure generated by the displacement operations across the device and provide sufficient time delay before removal to complete same.
- Temporary plugs can be removed by using a plugging medium that is dissolved with time and exposure to temperature and/or an activation fluid (typically an aqueous fluid) or a mechanical plug that is removed by application of pressure cycles. Plugs would be required to withstand suitable differential pressure to allow displacement of the non-aqueous fluid with aqueous fluid at high rate. If temperature or activation fluid dissolution method is utilised, sufficient delay is required to enable deployment of the liner in an extended reach application.
- an activation fluid typically an aqueous fluid
- Plugs would be required to withstand suitable differential pressure to allow displacement of the non-aqueous fluid with aqueous fluid at high rate. If temperature or activation fluid dissolution method is utilised, sufficient delay is required to enable deployment of the liner in an extended reach application.
- the method described provides significant operational time and cost savings over the historical method.
- the method described allows the pre-drilled liner to be washed, floated and/or reamed to total depth in extended reach applications.
- the nature of the temporary plugging of the nozzles in conjunction with the shut off shoe and liner top may also allow for the liner to be utilised as a tested barrier for upper completion operations.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Claims (6)
- Crépine pour un puits de forage, avec une paroi latérale dans laquelle sont formés un ou plusieurs orifices, la crépine comprenant :une garniture de haut de crépine qui isole le haut de la crépine de telle sorte qu'en fonctionnement tout le flux de fluide passe par les orifices ;un sabot de crépine ; etun dispositif d'obturation du sabot de crépine,dans laquelle :
les un ou plusieurs orifices sont bouchés par des bouchons temporaires, et caractérisée en ce que :le dispositif d'obturation du sabot de crépine permet une circulation pendant des opérations de déplacement, et isole ensuite le sabot de crépine, etle dispositif d'obturation du sabot de crépine est configuré pour être fermé par une électronique activée par une temporisation, par un RFID, par la pression ou par le débit. - La crépine selon la revendication 1, dans laquelle les bouchons temporaires comprennent un matériau de bouchage qui est configuré pour se dissoudre sur exposition à des températures élevées et/ou à un fluide d'activation, de préférence un fluide aqueux.
- La crépine selon la revendication 1, dans laquelle les bouchons temporaires sont des bouchons mécaniques et ils sont configurés de telle manière que les bouchons mécaniques soient retirés de la crépine sur application de cycles de pression.
- Un procédé d'achèvement d'un puits en découvert qui pénètre une formation souterraine, dans lequel une crépine selon la revendication 1 est déployée dans le puits de manière que les orifices communiquent avec la formation.
- Le procédé selon la revendication 4, dans lequel la valve d'obturation du sabot de crépine est déployée pour permettre un déplacement initial de fluide au travers de la crépine avec les orifices bouchés.
- Le procédé selon la revendication 4 ou 5, dans lequel les bouchons temporaires sont retirés des buses une fois que la crépine a été positionnée.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2017/055881 WO2019064049A1 (fr) | 2017-09-27 | 2017-09-27 | Crépine pour un puits de forage |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3688275A1 EP3688275A1 (fr) | 2020-08-05 |
EP3688275A4 EP3688275A4 (fr) | 2021-04-14 |
EP3688275B1 true EP3688275B1 (fr) | 2023-12-20 |
Family
ID=65903380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17926447.8A Active EP3688275B1 (fr) | 2017-09-27 | 2017-09-27 | Crépine pour un puits de forage |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200308937A1 (fr) |
EP (1) | EP3688275B1 (fr) |
CN (1) | CN111587312A (fr) |
BR (1) | BR112020006237A2 (fr) |
MX (1) | MX2020003391A (fr) |
WO (1) | WO2019064049A1 (fr) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2935771B1 (fr) * | 2012-12-19 | 2017-11-22 | Maersk Olie & Gas A/S | Procédé et appareil pour traiter une région souterraine |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3333635A (en) * | 1964-04-20 | 1967-08-01 | Continental Oil Co | Method and apparatus for completing wells |
US5228518A (en) * | 1991-09-16 | 1993-07-20 | Conoco Inc. | Downhole activated process and apparatus for centralizing pipe in a wellbore |
US7287592B2 (en) * | 2004-06-11 | 2007-10-30 | Halliburton Energy Services, Inc. | Limited entry multiple fracture and frac-pack placement in liner completions using liner fracturing tool |
US7699101B2 (en) * | 2006-12-07 | 2010-04-20 | Halliburton Energy Services, Inc. | Well system having galvanic time release plug |
CN102493791A (zh) * | 2007-12-14 | 2012-06-13 | 中国石油大学(北京) | 磨料射流喷射装置 |
US7775285B2 (en) * | 2008-11-19 | 2010-08-17 | Halliburton Energy Services, Inc. | Apparatus and method for servicing a wellbore |
US20110155377A1 (en) * | 2009-06-29 | 2011-06-30 | Laun Lyle E | Joint or coupling device incorporating a mechanically-induced weak point and method of use |
US8430174B2 (en) * | 2010-09-10 | 2013-04-30 | Halliburton Energy Services, Inc. | Anhydrous boron-based timed delay plugs |
US9151143B2 (en) * | 2012-07-19 | 2015-10-06 | Halliburton Energy Services, Inc. | Sacrificial plug for use with a well screen assembly |
US20140158357A1 (en) * | 2012-11-02 | 2014-06-12 | Schlumberger Technology Corporation | Nozzle selective perforating jet assembly |
US9133694B2 (en) * | 2012-11-02 | 2015-09-15 | Schlumberger Technology Corporation | Nozzle selective perforating jet assembly |
US9027637B2 (en) * | 2013-04-10 | 2015-05-12 | Halliburton Energy Services, Inc. | Flow control screen assembly having an adjustable inflow control device |
CA2917042C (fr) * | 2013-07-01 | 2020-06-09 | Conocophillips Company | Bouchon en alliage fusible dans un dispositif de regulation de debit |
US20170130536A1 (en) * | 2014-06-25 | 2017-05-11 | Shell Oil Company | Shoe for a tubular element in a wellbore |
RU2611792C1 (ru) * | 2016-01-20 | 2017-03-01 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ изоляции обводнённых интервалов в горизонтальном участке ствола скважины |
-
2017
- 2017-09-27 EP EP17926447.8A patent/EP3688275B1/fr active Active
- 2017-09-27 CN CN201780095266.0A patent/CN111587312A/zh active Pending
- 2017-09-27 WO PCT/IB2017/055881 patent/WO2019064049A1/fr unknown
- 2017-09-27 US US16/651,667 patent/US20200308937A1/en not_active Abandoned
- 2017-09-27 MX MX2020003391A patent/MX2020003391A/es unknown
- 2017-09-27 BR BR112020006237-5A patent/BR112020006237A2/pt not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2935771B1 (fr) * | 2012-12-19 | 2017-11-22 | Maersk Olie & Gas A/S | Procédé et appareil pour traiter une région souterraine |
Also Published As
Publication number | Publication date |
---|---|
CN111587312A (zh) | 2020-08-25 |
WO2019064049A1 (fr) | 2019-04-04 |
MX2020003391A (es) | 2020-10-01 |
BR112020006237A2 (pt) | 2020-10-13 |
EP3688275A1 (fr) | 2020-08-05 |
US20200308937A1 (en) | 2020-10-01 |
EP3688275A4 (fr) | 2021-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3492692B1 (fr) | Système et procédé d'isolation de bouchon de puits de forage | |
US10364649B2 (en) | Multi-zone fracturing with full wellbore access | |
US10036229B2 (en) | Time delay toe sleeve | |
US20150308208A1 (en) | Plug and Gun Apparatus and Method for Cementing and Perforating Casing | |
US10358892B2 (en) | Sliding sleeve valve with degradable component responsive to material released with operation of the sliding sleeve | |
US9428988B2 (en) | Hydrocarbon well and technique for perforating casing toe | |
US20110162846A1 (en) | Multiple Interval Perforating and Fracturing Methods | |
US20200032602A1 (en) | Latch-and-perf system and method | |
US11555378B2 (en) | Self-destructible frac ball enclosed within a destructible ball retainer | |
EP2935771B1 (fr) | Procédé et appareil pour traiter une région souterraine | |
US20180347342A1 (en) | Disappearing plug | |
US20160168942A1 (en) | Deployable baffle | |
US10233717B2 (en) | Lock to ball seat for non-metallic ball | |
AU2004203024B2 (en) | Method and apparatus for treating a well | |
US11105188B2 (en) | Perforation tool and methods of use | |
EP3688275B1 (fr) | Crépine pour un puits de forage | |
US11867019B2 (en) | Apparatus and method for pressure testing in wet shoe applications | |
DK201470817A1 (en) | Wellbore completion method | |
US10480286B2 (en) | Multi-zone fracturing with full wellbore access | |
US20230296009A1 (en) | Sleeve device, method and system | |
WO2024174023A1 (fr) | Appareil pour isoler sélectivement des segments d'un puits de forage | |
CA3036420A1 (fr) | Mecanisme de valve tubulaire decalable et procede d'orientation d'ecoulement de fluide dans un trou de forage | |
US20160312560A1 (en) | Method of Milling With Shifting Tool Capabilities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200326 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20210312 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E21B 34/06 20060101ALI20210308BHEP Ipc: E21B 43/08 20060101ALI20210308BHEP Ipc: E21B 43/10 20060101AFI20210308BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230802 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017077818 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240321 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20231220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240321 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240320 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1642602 Country of ref document: AT Kind code of ref document: T Effective date: 20231220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240320 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240420 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240422 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240923 Year of fee payment: 8 |