EP3684834A1 - Polyaspartic acid ester compositions which contain polyaspartic acid esters with primary amino groups and small amounts of fumaric acid dialkyl esters - Google Patents
Polyaspartic acid ester compositions which contain polyaspartic acid esters with primary amino groups and small amounts of fumaric acid dialkyl estersInfo
- Publication number
- EP3684834A1 EP3684834A1 EP18768894.0A EP18768894A EP3684834A1 EP 3684834 A1 EP3684834 A1 EP 3684834A1 EP 18768894 A EP18768894 A EP 18768894A EP 3684834 A1 EP3684834 A1 EP 3684834A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- general formula
- primary amino
- polyaspartic
- radicals
- amino groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000002148 esters Chemical class 0.000 title claims abstract description 119
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 title claims abstract description 90
- 239000000203 mixture Substances 0.000 title claims abstract description 80
- 229920000805 Polyaspartic acid Polymers 0.000 title claims abstract description 51
- 108010064470 polyaspartate Proteins 0.000 title claims abstract description 51
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 title abstract description 29
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 title abstract description 26
- 239000001530 fumaric acid Substances 0.000 title abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 33
- 229920002635 polyurethane Polymers 0.000 claims abstract description 6
- 239000004814 polyurethane Substances 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims description 91
- 229920000608 Polyaspartic Polymers 0.000 claims description 58
- 229920000768 polyamine Polymers 0.000 claims description 49
- 230000008569 process Effects 0.000 claims description 27
- 125000004432 carbon atom Chemical group C* 0.000 claims description 23
- 238000002360 preparation method Methods 0.000 claims description 20
- 125000005842 heteroatom Chemical group 0.000 claims description 14
- 125000000524 functional group Chemical group 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 2
- 229920001228 polyisocyanate Polymers 0.000 abstract description 6
- 239000005056 polyisocyanate Substances 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 28
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 23
- IEPRKVQEAMIZSS-AATRIKPKSA-N diethyl fumarate Chemical compound CCOC(=O)\C=C\C(=O)OCC IEPRKVQEAMIZSS-AATRIKPKSA-N 0.000 description 23
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 20
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 20
- DLYLVPHSKJVGLG-UHFFFAOYSA-N 4-(cyclohexylmethyl)cyclohexane-1,1-diamine Chemical compound C1CC(N)(N)CCC1CC1CCCCC1 DLYLVPHSKJVGLG-UHFFFAOYSA-N 0.000 description 19
- -1 maleic acid ester Chemical class 0.000 description 18
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 17
- 238000000576 coating method Methods 0.000 description 16
- 150000001412 amines Chemical class 0.000 description 12
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- JWTVQZQPKHXGFM-UHFFFAOYSA-N 2,5-dimethylhexane-2,5-diamine Chemical compound CC(C)(N)CCC(C)(C)N JWTVQZQPKHXGFM-UHFFFAOYSA-N 0.000 description 10
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000004721 Polyphenylene oxide Substances 0.000 description 10
- 239000005700 Putrescine Substances 0.000 description 10
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 10
- 229920000570 polyether Polymers 0.000 description 10
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 10
- 238000003860 storage Methods 0.000 description 10
- 238000004821 distillation Methods 0.000 description 9
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 description 7
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 description 7
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 7
- 241001550224 Apha Species 0.000 description 6
- KEIQPMUPONZJJH-UHFFFAOYSA-N dicyclohexylmethanediamine Chemical compound C1CCCCC1C(N)(N)C1CCCCC1 KEIQPMUPONZJJH-UHFFFAOYSA-N 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 5
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 239000008199 coating composition Substances 0.000 description 5
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N activated carbon Substances [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- RSOILICUEWXSLA-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)N(C)C(C)(C)C1 RSOILICUEWXSLA-UHFFFAOYSA-N 0.000 description 3
- 150000001728 carbonyl compounds Chemical class 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 3
- 239000004611 light stabiliser Substances 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 239000004848 polyfunctional curative Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- YXRKNIZYMIXSAD-UHFFFAOYSA-N 1,6-diisocyanatohexane Chemical compound O=C=NCCCCCCN=C=O.O=C=NCCCCCCN=C=O.O=C=NCCCCCCN=C=O YXRKNIZYMIXSAD-UHFFFAOYSA-N 0.000 description 2
- VSPTYJFXRZZHOA-UHFFFAOYSA-N 2-propan-2-ylcyclohexane-1,3-diamine Chemical compound CC(C)C1C(N)CCCC1N VSPTYJFXRZZHOA-UHFFFAOYSA-N 0.000 description 2
- HMJBXEZHJUYJQY-UHFFFAOYSA-N 4-(aminomethyl)octane-1,8-diamine Chemical compound NCCCCC(CN)CCCN HMJBXEZHJUYJQY-UHFFFAOYSA-N 0.000 description 2
- ZDDFFVJKABGMAJ-UHFFFAOYSA-N 4-propan-2-ylcyclohexane-1,3-diamine Chemical compound CC(C)C1CCC(N)CC1N ZDDFFVJKABGMAJ-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- QLBRROYTTDFLDX-UHFFFAOYSA-N [3-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCCC(CN)C1 QLBRROYTTDFLDX-UHFFFAOYSA-N 0.000 description 2
- CLBRCZAHAHECKY-UHFFFAOYSA-N [Co].[Pt] Chemical compound [Co].[Pt] CLBRCZAHAHECKY-UHFFFAOYSA-N 0.000 description 2
- 150000001510 aspartic acids Chemical class 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000011527 polyurethane coating Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- HAHASQAKYSVXBE-WAYWQWQTSA-N (z)-2,3-diethylbut-2-enedioic acid Chemical compound CC\C(C(O)=O)=C(/CC)C(O)=O HAHASQAKYSVXBE-WAYWQWQTSA-N 0.000 description 1
- YEGNEAXHHVDNKQ-UHFFFAOYSA-N 10-oxo-10-piperidin-4-yloxydecanoic acid Chemical compound OC(=O)CCCCCCCCC(=O)OC1CCNCC1 YEGNEAXHHVDNKQ-UHFFFAOYSA-N 0.000 description 1
- 239000004808 2-ethylhexylester Substances 0.000 description 1
- JCEZOHLWDIONSP-UHFFFAOYSA-N 3-[2-[2-(3-aminopropoxy)ethoxy]ethoxy]propan-1-amine Chemical compound NCCCOCCOCCOCCCN JCEZOHLWDIONSP-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000003514 Retro-Michael reaction Methods 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- RPYFJVIASOJLJS-UHFFFAOYSA-N [3-(aminomethyl)-2-bicyclo[2.2.1]heptanyl]methanamine Chemical compound C1CC2C(CN)C(CN)C1C2 RPYFJVIASOJLJS-UHFFFAOYSA-N 0.000 description 1
- ABPUBUORTRHHDZ-UHFFFAOYSA-N [4-(aminomethyl)-3-bicyclo[2.2.1]heptanyl]methanamine Chemical class C1CC2(CN)C(CN)CC1C2 ABPUBUORTRHHDZ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 208000012839 conversion disease Diseases 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- OQGSHLFKXYVLRR-UHFFFAOYSA-N dodecane-1,2-diamine Chemical compound CCCCCCCCCCC(N)CN OQGSHLFKXYVLRR-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000006221 furniture coating Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000006115 industrial coating Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 230000010198 maturation time Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- BMBPXYSSIVAHDP-UHFFFAOYSA-N n'-(1-methylcyclohexyl)methanediamine Chemical compound NCNC1(C)CCCCC1 BMBPXYSSIVAHDP-UHFFFAOYSA-N 0.000 description 1
- XQAABEDPVQWFPN-UHFFFAOYSA-N octyl 3-[3-(benzotriazol-2-yl)-5-tert-butyl-4-hydroxyphenyl]propanoate Chemical compound CC(C)(C)C1=CC(CCC(=O)OCCCCCCCC)=CC(N2N=C3C=CC=CC3=N2)=C1O XQAABEDPVQWFPN-UHFFFAOYSA-N 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- GPCKFIWBUTWTDH-UHFFFAOYSA-N pentane-3,3-diamine Chemical compound CCC(N)(N)CC GPCKFIWBUTWTDH-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- XJIAZXYLMDIWLU-UHFFFAOYSA-N undecane-1,1-diamine Chemical compound CCCCCCCCCCC(N)N XJIAZXYLMDIWLU-UHFFFAOYSA-N 0.000 description 1
- KLNPWTHGTVSSEU-UHFFFAOYSA-N undecane-1,11-diamine Chemical compound NCCCCCCCCCCCN KLNPWTHGTVSSEU-UHFFFAOYSA-N 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/38—Low-molecular-weight compounds having heteroatoms other than oxygen
- C08G18/3819—Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
- C08G18/3821—Carboxylic acids; Esters thereof with monohydroxyl compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C227/00—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C227/04—Formation of amino groups in compounds containing carboxyl groups
- C07C227/06—Formation of amino groups in compounds containing carboxyl groups by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C227/00—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C227/38—Separation; Purification; Stabilisation; Use of additives
- C07C227/40—Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/24—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/26—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one amino group bound to the carbon skeleton, e.g. lysine
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/02—Polyureas
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
Definitions
- Polyaspartic acid ester compositions comprising polyaspartic acid esters with primary amino groups and small amounts of dialkyl fumarate
- the present invention relates to polyaspraginate ester compositions comprising polyaspartic acid esters having primary amino groups and small amounts of dialkyl fumarates, a process for their preparation and their use as reactive components for polyisocyanates in two-component polyurethane systems.
- Two-component (2K) coating compositions containing as binder a polyisocyanate component in combination with a reactive isocyanate-reactive component, in particular a polyhydroxyl component, have long been known. They are suitable for the production of high-quality coatings that can be adjusted to be hard, elastic, resistant to abrasion and solvents and, above all, to be weather-resistant.
- ester-containing secondary polyamines which, in combination with lacquer polyisocyanates, are particularly suitable as binders in low-solids or high-solids coatings and enable rapid curing of the coatings at low temperatures .
- These secondary polyamines are the so-called polyaspartic esters, as described by way of example in EP0403921.
- Their use alone or in admixture with further components which are reactive toward isocyanate groups in 2K polyurethane coating compositions is described, for example, in EP0403921, EP0639628, EP0667362, EP0689881, US5214086, EP0699696, EP0596360, EP0893458, DE19701835 and US5243012.
- polyaspartic acid esters The synthesis of the polyaspartic acid esters is known per se and takes place via an addition of primary polyamines to an activated carbon double bond vinylogous carbonyl compounds, as for example in Malein- or fumaric acid esters, which is adequately described in the literature (Weyl, Weber, Meth Chem., Vol. 11/1, 272 (1957), Usp. Khim., 1969, 38, 1933).
- a polyaspartic acid ester having primary amino groups may be by-produced if only one amino group of the polyamine has reacted with the double bond of the vinylogous carbonyl compounds.
- maleic acid ester is used as the vinylogous carbonyl compound.
- a retro-Michael addition may be another undesirable Side reaction occur in which is formed by elimination of the polyamine as a minor component Fumarklaredialkylester.
- a typical production process of a polyaspartic acid ester therefore requires a storage time of 4-6 weeks after the majority of the starting materials have reacted with one another. During this time, the so-called maturation of the product, which manifests itself by stabilizing the viscosity occurs. Due to the fact that the turnover continues to increase within this time, the content of dialkyl fumarate also decreases. This storage over several weeks leads to significant logistics costs within the production.
- EP0816326 discloses a process for accelerating the addition of the polyamine to dialkyl maleate or reducing the fumaric acid dialkyl ester by the addition of a specific catalyst. Since, despite the use of a catalyst, the need for storage can not be prevented, this approach does not lead to the final satisfactory result.
- EP 1197507 describes the addition of thiol compounds as scavengers for dialkyl fumarates. Due to the fact that the thiol compounds are known to cause considerable odor nuisance, this solution can not be converted into practice. A theoretical possibility of distillative work-up is mentioned, for example, in EP0403921. It is a distillative removal of dialkyl fumarate within a process in which an excess of dialkyl maleate is used.
- DE102006002153 likewise describes a product which is prepared using an excess of dialkyl maleate and subsequent removal by distillation of dialkyl fumarate. It is a diaspartic ester which is free of primary amino groups.
- WO15130501 and WO15130502 disclose polyaspartic acid ester compositions which have between 15 and 30% aspartic acid ester with primary amino groups (measured as area% in the gas chromatogram). In both documents, however, no advantage due to an increased content of aspartic acid esters with primary amino groups is recognized and polyaspartic acid ester compositions with acceptable pot life could only be achieved by further reaction with preferably cycloaliphatic polyisocyanates. It is to be understood that the coating compositions thus prepared do not have a reduced content of diethyl fumarate due to the conventional production process.
- polyaspartic ester compositions may be produced which have a content of 1% to 20% of polyaspartic acid ester with primary amino groups (measured as area% in the gas chromatogram) and a reduced content of 0.01% by weight to 3% by weight. Having percent of Fumarcic aciddialkylester while overcoming the known in the prior art disadvantages of Polyasparaginsäureester compositions. These compositions of the invention could be prepared by a process with and without a storage process. It has been found that thin film distillation of a non-ripened polyaspartic ester composition (ie, immediately after production) results in a product having levels of fumaric acid dialkyl ester below 1%.
- the product contains a significantly increased proportion of polyaspartic acid ester with primary amino groups compared to the conventional polyaspartic acid ester composition.
- the high proportion of polyaspartic esters with primary amino groups could lead to a shorter pot life.
- Polyaspartic ester compositions do not differ from the pot life of a conventionally prepared polyaspartic ester composition.
- the polyaspartic ester compositions of the present invention have accelerated drying and improved condensed water resistance as further technical advantages.
- the process of thin film distillation can also be applied to ripened polyaspartic ester compositions. In this case, the advantage is not the lack of maturation, but the reduced amount of dialkyl fumarate and faster drying due to the increased proportion of polyaspartic acid ester with primary amino group.
- the present invention relates to a composition
- a composition comprising one or more polyaspartic esters of the general formula (I)
- X is an m-valent organic radical optionally containing one or more heteroatoms, as obtained by removal of the primary amino groups from a corresponding, (cyclo) aliphatically or araliphatically bonded primary amino groups containing polyamine in the molecular weight range 60 to 6000 g / mol can contain, and the other, opposite isocyanate-reactive and / or inert at temperatures up to 100 ° C functional groups,
- R 1 and R 2 represent identical or different organic radicals, each having 1 to 18
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, characterized in that the proportion of the compound of the general formula (II) from 1% to 20% of the GC surface (measured as area% in the gas chromatogram), corresponds to Sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and a proportion of Fumarkladialkylester of 0.01 to 3 wt. Percent is present.
- R 1 and R 2 are identical or different alkyl radicals each having 1 to 18 carbon atoms, preferably identical or different alkyl radicals having 1 to 8 carbon atoms and very particularly preferably each alkyl radicals such as methyl, ethyl, propyl -, iso-propyl, butyl or iso-butyl radicals. Most preferred is ethyl.
- Polyaspartic acid ester compositions according to the invention are those in which X represents organic radicals obtained by removal of the primary amino groups from a corresponding (cyclo) aliphatically or araliphatically bonded primary amino-containing polyamine selected from the following group: all known polyamines primary amino groups corresponding to the general formula (III).
- Examples include the following compounds: ethylenediamine, 1,2-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 2,5-diamino-2,5-dimethylhexane, l, 5-diamino-2-methylpentane (Dytek ®A, Fa DuPont), 1,6-diaminohexane, 2,2,4- and / or 2,4,4-trimethyl-l, 6-diaminohexane, 1,11-diaminoundecane, 1,12-diaminododecane or triaminononane, Etheramine, such as 4,9-dioxadodecane-l, 12-diamine, 4,7,10-trioxatridecane- 1, 13 -diamine, or higher molecular weight polyether polyamines having aliphatically bonded, primary amino groups, as described for example under the name Jeffamine®
- aliphatic polycyclic polyamines such as tricyclodecanebismethylamine (TCD-diamine) or bis (aminomethyl) norbornane, amino-functional siloxanes, for example diaminopropylsiloxane G10 DAS (from Momentive), fatty-alkyl-based amines, for example Fentamine from Solvay, dimer fatty acid diamines such as Priamine Fa. Croda.
- TCD-diamine tricyclodecanebismethylamine
- amino-functional siloxanes for example diaminopropylsiloxane G10 DAS (from Momentive)
- fatty-alkyl-based amines for example Fentamine from Solvay
- dimer fatty acid diamines such as Priamine Fa. Croda.
- polyaspartic ester compositions of the invention in which X represents organic radicals obtained by removal of the primary amino groups from one of the polyamines of the general formula (III) selected from the group consisting of polyether polyamines having aliphatically bonded primary amino groups, 1,2 Diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1, 5-diamino-2-methylpentane, 2.5 diamino-2,5-dimethylhexane, 2,2,4- and / or 2,4,4- Trimethyl-l, 6-diaminohexane, 1,11-diaminounodecane, 1,12-diaminododecane, 1-amino-3,3,5-trimethyl-5-aminomethylcyclohexane, 2,4- and / or 2,6-hexahydrotoluenediamine, 1 , 5-diaminopentane, 2,4'
- Particularly preferred polyaspartic acid ester compositions according to the invention are those in which X represents organic radicals obtained by removing the primary amino groups from one of the polyamines of general formula (III) selected from the group consisting of polyether polyamines having aliphatically bonded primary amino groups, 1,2 Diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,5-diamino-2-methylpentane, 2,5-diamino-2,5-dimethylhexane, 2,2,4- and / or 2,4,4-trimethyl-l, 6-diaminohexane, 1,11-diaminounodecane, 1,12-diaminododecane, 1-amino-3,3,5-trimethyl-5-aminomethylcyclohexane, 2,4- and / or 2 , 6-hexahydrotoluenediamine
- X represents organic radicals which are obtained by removal of the primary amino groups from one of the polyamines of the general formula (III) from the group: 3,3'-dimethyl-4,4-iaminodicyclohexylmefhan, 2,4'- and / or 4,4'-diaminodicyclohexylmethane, 1, 5-diamino-2-methylpentane.
- m is an integer> 1 and preferably 2.
- the polyaspartic ester compositions according to the invention preferably contain from 1% to 20%, preferably from 4% to 20%, more preferably from 4% to 15%, of the GC surface area (measured as area% in the gas chromatogram) of the compound of the general formula (cf. II), wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100%.
- inventive polyaspartic ester compositions containing from 0.01 to 3% by weight, preferably from 0.01 to 1% by weight, particularly preferably from 0.01 to 0.1% by weight, of dialkyl fumarate.
- inventive polyaspartic ester compositions containing from 0.01 to 0.99 percent by weight of dialkyl fumarate.
- a particularly preferred subject of the present invention is a composition comprising one or more polyaspartic esters of the general formula (I),
- X is an m-valent organic radical optionally containing one or more heteroatoms, as obtained by removal of primary amino groups from polyetherpolyamines having aliphatically bonded primary amino groups, 1,2-diaminopropane, 1,4-diaminobutane, 1,5-
- R 1 and R 2 represent identical or different alkyl radicals each having 1 to 8 carbon atoms
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, characterized in that the proportion of the compound of the general formula (II) of 4% to 20% of the GC surface area (measured as area% in the gas chromatogram), corresponds to Sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and a proportion of Fumarkladialkylester of 0.01 to 1 wt. Percent is present.
- a very particularly preferred subject matter of the present invention is a composition comprising one or more polyaspartic esters of the general formula (I),
- X is an m-valent organic radical, as obtained by removal of primary amino groups from 3,3'-dimethyne
- Diaminodicyclohexylmethane, l, 5-diamino-2-methylpentane can be obtained
- R 1 and R 2 represent identical or different alkyl radicals selected from the group
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, characterized in that the proportion of the compound of the general formula (II) of 4% to 15% of the GC surface area (measured as area% in the gas chromatogram), corresponds to Sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and a proportion of Fumarkladialkylester 0.01 to 0.1 wt. Percent is present.
- composition comprising one or more polyaspartic esters of the general formula (I), in which
- X is an m-valent organic radical, as can be obtained by removal of primary amino groups from 3,3'-dimethyl-4,4'diaminodicyclohexylmethane, 2,4'- and / or 4,4'-diaminodicyclohexylmethane .
- R 1 and R 2 are ethyl radicals
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, characterized in that the proportion of the compound of the general formula (II) of 4% to 15% of the GC surface (measured as area% in the gas chromatogram), the proportion of the two Compounds of the general formula (I) and (II) corresponds, wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and a proportion of Fumarkladialkylester 0.01 to 0.1 percent by weight.
- a further particularly preferred subject matter of the present invention is a composition comprising one or more polyaspartic esters of the general formula (I)
- X is an m-valent organic radical optionally containing one or more heteroatoms, as obtained by removal of the primary amino groups from a corresponding, (cyclo) aliphatically or araliphatically bonded primary amino groups containing polyamine in the molecular weight range 60 to 6000 g / mol can contain, and the other, opposite isocyanate-reactive and / or inert at temperatures up to 100 ° C functional groups, R 1 and R 2 represent identical or different organic radicals, each having 1 to 18
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, characterized in that the proportion of the compound of the general formula (II) of 4% to 15% of the GC surface area (measured as area% in the gas chromatogram), corresponds to
- a further particularly preferred subject matter of the present invention is a composition comprising one or more polyaspartic esters of the general formula (I)
- X is an m-valent, optionally containing one or more heteroatoms organic radical, such as by removal of the primary amino groups from a corresponding, (cyclo) aliphatic or araliphatic bound primary amino groups containing polyamine the molecular weight range 60 to 6000 g / mol can be obtained, and the other, reactive to isocyanate groups and / or may contain at temperatures up to 100 ° C inert functional groups,
- R 1 and R 2 represent identical or different organic radicals, each having 1 to 18
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, characterized in that the proportion of the compound of the general formula (II) of 4% to 15% of the GC surface (measured as area% in the gas chromatogram), the proportion of the two Compounds of the general formula (I) and (II) corresponds, wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and a proportion of Fumarkladialkylester of 0.01 to 0.99 percent by weight.
- polyaspartic acid ester compositions according to the invention which have a platinum cobalt color number ⁇ 100, particularly preferably ⁇ 50.
- the measurement of the platinum-cobalt color number is carried out in accordance with DIN EN ISO 6271: 2016-05.
- the invention further provides a process for the preparation of the composition comprising one or more polyaspartic esters of the general formula (I)
- X is an m-valent organic radical optionally containing one or more heteroatoms, as obtained by removal of the primary amino groups from a corresponding, (cyclo) aliphatically or araliphatically bonded primary amino groups containing polyamine in the molecular weight range 60 to 6000 g / mol can contain, and the other, opposite isocyanate-reactive and / or inert at temperatures up to 100 ° C functional groups,
- R 1 and R 2 represent identical or different organic radicals, preferably identical or different alkyl radicals each having 1 to 18 carbon atoms, and very particularly preferably identical or different alkyl radicals each having 1 to 8 carbon atoms, m is an integer> 1,
- n stands for m-1
- radicals R 1 and R 2 have the abovementioned meanings, prepared by reacting polyamines of the general formula (III),
- the resulting polyaspartic ester composition comprises a proportion of the compound of the general formula (II) of from 1% to 20% of the GC surface (measured as area% in the gas chromatogram) equal to the proportion of both compounds of the general formula (I ) and (II), wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and contains a proportion of fumaric acid dialkyl ester of 0.01 to 3 wt. Percent.
- Another preferred subject of the present invention is the process disclosed above for the preparation of the composition comprising one or more polyaspartic esters of the general formula (I) in which
- X is an m-valent organic radical optionally containing one or more heteroatoms, as obtained by removal of primary amino groups from polyether polyamines having aliphatically bonded primary amino groups, 1,2-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1 , 6-diaminohexane, 1, 5-diamino-2-methylpentane, 2.5 diamino-2,5-dimethylhexane, 2,2,4- and / or 2,4,4-trimethyl-1,6-diaminohexane, 1 , 11-diaminounodecane, 1,12-diaminododecane, 1-amino-3,3,5-trimethyl-5-aminomethylcyclohexane, 2,4- and / or 2,6-hexahydrotoluylenediamine, 2,4'- and / or 4, 4'-diamino-dicyclo
- R 1 and R 2 represent identical or different alkyl radicals each having 1 to 8 carbon atoms, m stands for an integer> 1,
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, prepared by reacting polyamines of the general formula (III), wherein X and m have the abovementioned meaning, with compounds of the general formula (IV), wherein the radicals Rl and R2 have the abovementioned meaning, and a distillative removal of the unreacted portion of the compound of the general formula (IV), characterized in that the resulting polyaspartic ester composition has a proportion of the compound of the general formula (II) of 4% to 20% of GC surface area (measured as area% in the gas chromatogram), which corresponds to the proportion of the two compounds of the general formula (I) and (II), wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) 100 % and contains a proportion of dialkyl fumarate of 0.01 to 1 wt. Percent.
- Another preferred subject of the present invention is the process disclosed above for the preparation of the composition comprising one or more polyaspartic esters of the general formula (I) in which
- X is an m-valent organic radical, as obtained by removal of primary amino groups from 3,3'-dimethyl-4,4'-diamino-dicyclohexylmethane, 2,4'- and / or 4,4'-diamino-dicyclohexylmethane, l, 5-diamino-2-methylpentane can be obtained, Rl and R2 are the same or different alkyl radicals selected from the group
- n stands for m-1
- X, radicals R 1 and R 2 have the abovementioned meanings, prepared by reacting polyamines of general formula (III), wherein X and m have the abovementioned meaning, with compounds of general formula (IV), wherein the radicals Rl and R2 have the abovementioned meaning, and a distillative removal of the unreacted A proportion of the compound of the general formula (IV), characterized in that the resulting polyaspartic ester composition has a proportion of the compound of the general formula (II) of 4% to 15% of the GC surface (measured as area% in the gas chromatogram) which corresponds to the proportion of the two compounds of the general formula (I) and (II), wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and a proportion of fumaric acid dialkyl 0.01 to 0.1 wt . Percent contains.
- Another preferred subject matter of the invention is a process for the preparation of the composition comprising one or more polyaspartic esters of the general formula (I)
- X is an m-valent organic radical optionally containing one or more heteroatoms, as obtained by removal of the primary amino groups from a corresponding, (cyclo) aliphatically or araliphatically bonded primary amino groups containing polyamine in the molecular weight range 60 to 6000 g / mol can contain, and the other, opposite isocyanate-reactive and / or inert at temperatures up to 100 ° C functional groups,
- R1 and R2 represent identical or different organic radicals, preferably identical or different alkyl radicals each having 1 to 18 carbon atoms, and very particularly preferably identical or different alkyl radicals each having 1 to 8
- n stands for m-1
- radicals R 1 and R 2 have the abovementioned meanings, prepared by reaction of polyamines of the general formula (III),
- the radicals R 1 and R 2 have the abovementioned meaning, and a distillative removal of the unreacted fraction of the compound of the general formula (IV), characterized in that the resulting polyaspartic ester composition comprises a proportion of the compound of the general formula (II) from 4% to 15% of the GC surface area (measured as area% in the gas chromatogram), which corresponds to the proportion of both compounds of the general formula (I) and (II), the sum of the GC surfaces of the two compounds of the general formula ( I) and (II) is 100% and contains a proportion of dialkyl fumarate of 0.01 to 1 wt. Percent.
- Another preferred subject matter of the invention is a process for the preparation of the composition comprising one or more polyaspartic esters of the general formula (I)
- X is an m-valent organic radical optionally containing one or more heteroatoms, as obtained by removal of the primary amino groups from a corresponding, (cyclo) aliphatically or araliphatically bonded primary amino groups containing polyamine in the molecular weight range 60 to 6000 g / mol can contain, and the further, isocyanate-reactive and / or inert at temperatures up to 100 ° C functional groups,
- R 1 and R 2 represent identical or different organic radicals, preferably identical or different alkyl radicals each having 1 to 18 carbon atoms, and very particularly preferably identical or different alkyl radicals each having 1 to 8 carbon atoms, m is an integer> 1,
- n stands for m-1
- radicals R 1 and R 2 have the abovementioned meanings, prepared by reacting polyamines of the general formula (III),
- the radicals Rl and R2 have the abovementioned meaning, and a distillative removal of the unreacted portion of the compound of the general formula (IV), characterized in that the resulting polyaspartic ester composition comprises a proportion of the compound of the general formula (II) of 4% to 15% of the GC surface area (measured as area% in the gas chromatogram), the sum of the GC surfaces of the two compounds of the general formula (I) and (II) being 100% and a fraction of fumaric acid dialkyl ester of 0.01 to 0.99 weight percent.
- Another preferred subject of the present invention is the process disclosed above for the preparation of the composition comprising one or more polyaspartic esters of the general formula (I) in which
- X is an m-valent organic radical, such as can be obtained by removal of primary amino groups from 2,4 and / or 4,4'-
- Rl and R2 are ethyl radicals
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, prepared by reacting polyamines of the general formula (III), wherein X and m have the abovementioned meaning, with compounds of the general formula (IV), wherein the radicals Rl and R2 have the abovementioned meaning, and a distillative removal of the unreacted portion of the compound of general formula (IV), characterized in that the resulting polyaspartic ester composition has a proportion of the compound of general formula (II) of 4% to 15% of GC surface area (measured as area% in the gas chromatogram), where the sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and contains 0.01 to 0.1% by weight of a dialkyl fumarate ester ,
- a further subject of the present invention is a composition comprising one or more polyaspartic esters of the general formula (I)
- X is an m-valent organic radical optionally containing one or more heteroatoms, as obtained by removal of the primary amino groups from a corresponding, (cyclo) aliphatically or araliphatically bonded primary amino groups containing polyamine in the molecular weight range 60 to 6000 g / mol can contain, and the other, opposite isocyanate-reactive and / or inert at temperatures up to 100 ° C functional groups,
- R 1 and R 2 represent identical or different organic radicals, each having 1 to 18
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, characterized in that the proportion of the compound of general formula (II) of 1% to 20% of the GC surface (measured as area% in the gas chromatogram), the proportion of the two Compounds of the general formula (I) and (II) corresponds, wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and a proportion of Fumarkladialkylester of 0.01 to 3 wt. Percent is present.
- polyaspartic ester compositions according to the invention containing from 1% to 20%, preferably from 4% to 20%, more preferably from 4% to 15% of the GC surface area (measured as area% in the gas chromatogram) of the two compounds of the general formula Formula (I) and (II), wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100%.
- a particularly preferred and further subject matter of the present invention is a composition comprising one or more polyaspartic esters of the general formula
- X is an m-valent organic radical optionally containing one or more heteroatoms, as obtained by removal of primary amino groups from polyether polyamines having aliphatically bonded primary amino groups, 1,2-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1 , 6-diaminohexane, 1, 5-diamino-2-methylpentane, 2.5 diamino-2,5-dimethylhexane, 2,2,4- and / or 2,4,4-trimethyl-1,6-diaminohexane, 1 , 11-diaminounodecane, 1,12-diaminododecane, 1-amino-3,3,5-trimethyl-5-aminomethylcyclohexane, 2,4- and / or 2,6-hexahydrotoluylenediamine, 2,4'- and / or 4, 4'-diamino-dicyclo
- R 1 and R 2 represent identical or different alkyl radicals each having 1 to 8 carbon atoms
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, characterized in that the proportion of the compound of the general formula (II) of 4% to 20% of the GC surface (measured as area% in the gas chromatogram), the proportion of the two Compounds of the general formula (I) and (II) corresponds, wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and a proportion of Fumarkladialkylester of 0.01 to 1 percent by weight.
- a very particularly preferred and further subject of the present invention is a composition comprising one or more polyaspartic esters of the general formula (I),
- X is an m-valent organic radical as obtained by removal of primary amino groups from 3,3'-dimethyl 4,4'diaminodicyclohexylmethane, 2,4'- and / or 4,4'-
- Diaminodicyclohexylmethane, l, 5-diamino-2-methylpentane can be obtained
- R 1 and R 2 represent identical or different alkyl radicals selected from the group
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, characterized in that the proportion of the compound of the general formula (II) of 4% to 15% of the GC surface (measured as area% in the gas chromatogram), the proportion of the two
- X is an m-valent organic radical, as can be obtained by removal of primary amino groups from 3,3'-dimethyl-4,4'diaminodicyclohexylmethane, 2,4'- and / or 4,4'-diaminodicyclohexylmethane .
- R 1 and R 2 are ethyl radicals
- n stands for m-1
- X, radicals R 1 and R 2 have the abovementioned meanings, characterized in that the proportion of the compound of the general formula (II) from 4% to 15% of the GC surface area (measured as area% in the gas chromatogram), the proportion of the two compounds of the general formula (I) and (II) , Wherein the sum of the GC surfaces of the two compounds of general formula (I) and (II) is 100% and a proportion of Fumarkladialkylester 0.01 to 0.1 wt. Percent is present.
- the invention further provides a process for the preparation of the composition comprising one or more polyaspartic esters of the general formula (I)
- X is an m-valent organic radical optionally containing one or more heteroatoms, as obtained by removal of the primary amino groups from a corresponding, (cyclo) aliphatically or araliphatically bonded primary amino groups containing polyamine in the molecular weight range 60 to 6000 g / mol can contain, and the other, opposite isocyanate-reactive and / or inert at temperatures up to 100 ° C functional groups,
- R 1 and R 2 represent identical or different organic radicals, preferably identical or different alkyl radicals each having 1 to 18 carbon atoms, and very particularly preferably identical or different alkyl radicals each having 1 to 8 carbon atoms, m is an integer> 1,
- n stands for m-1
- radicals R 1 and R 2 have the abovementioned meanings, prepared by reaction of polyamines of the general formula (III),
- the resulting polyaspartic ester composition has a proportion of the compound of the general formula (II) of from 1% to 20% of the GC surface (measured as area% in the gas chromatogram ), which corresponds to the proportion of two compounds of general formula (I) and (II), wherein the sum of the GC surfaces of the two compounds of general formula (I) and (II) is 100% and a proportion of Fumarkladialkylester from 0.01 to 3 Contains weight percent.
- Another preferred subject of the present invention is the process disclosed above for the preparation of the composition comprising one or more polyaspartic esters of the general formula (I) in which
- X is an m-valent organic radical optionally containing one or more heteroatoms, as obtained by removal of primary amino groups from polyether polyamines having aliphatically bonded primary amino groups, 1,2-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1 , 6-diaminohexane, 1, 5-diamino-2-methylpentane, 2.5 Diamino-2,5-dimethylhexane, 2,2,4- and / or 2,4,4-trimethyl-1,6-diaminohexane, 1,11-diaminounodecane, 1,12-diaminododecane, 1-amino-3,3 , 5-trimethyl-5-aminomethylcyclohexane, 2,4- and / or 2,6-hexahydrotoluylenediamine, 2,4'- and / or 4,4'-diamino-dicyclohex
- R 1 and R 2 represent identical or different alkyl radicals each having 1 to 8 carbon atoms
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, prepared by reacting polyamines of the general formula (III), wherein X and m have the abovementioned meaning, with compounds of the general formula (IV), wherein the radicals Rl and R2 have the abovementioned meaning, characterized in that the resulting polyaspartic ester composition comprises a proportion of the compound of the general formula (II) of 4% to 20% of the GC surface (measured as area% in the gas chromatogram), the proportion of the two compounds corresponds to the general formula (I) and (II), wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and contains a proportion of Fumarkladialkylester from 0.01 to 1 wt. Percent.
- Another preferred subject of the present invention is the process disclosed above for the preparation of the composition comprising one or more polyaspartic esters of the general formula (I) in which
- X is an m-valent organic radical, as obtained by removal of primary amino groups from 3,3'-dimethyl-4,4'-diamino-dicyclohexylmethane, 2,4'- and / or 4,4'-diamino-dicyclohexylmethane, l, 5-diamino-2-methylpentane can be obtained, Rl and R2 are the same or different alkyl radicals selected from the group
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, prepared by reacting polyamines of the general formula (III), wherein X and m have the abovementioned meaning, with compounds of the general formula (IV), wherein the radicals Rl and R2 have the abovementioned meaning, characterized in that the resulting polyaspartic ester composition, a proportion of the compound of general formula (II) of 4% to 15% of the GC surface area (measured as area% in the gas chromatogram), the proportion of the two Compounds of the general formula (I) and (II) corresponds, wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) is 100% and a proportion of Fumarkladialkylester 0.01 to 0.1 wt. Percent contains.
- Another preferred subject of the present invention is the process disclosed above for the preparation of the composition comprising one or more polyaspartic esters of the general formula (I) in which
- X is an m-valent organic radical, such as can be obtained by removal of primary amino groups from 2,4 and / or 4,4'-
- R 1 and R 2 are ethyl radicals
- n stands for m-1
- X, radicals Rl and R2 have the abovementioned meanings, prepared by reacting polyamines of the general formula (III), wherein X and m have the abovementioned meaning, with compounds of the general formula (IV), wherein the radicals Rl and R2 have the abovementioned meaning, characterized in that the resulting polyaspartic acid ester composition has a proportion of the compound of the general formula (II) of 4% to 15% of the GC surface (measured as area% in the gas chromatogram), which corresponds to the proportion of the two compounds of the general formula (I) and (II), wherein the sum of the GC surfaces of the two compounds of the general formula (I) and (II) 100% and a proportion of Fumarkladialkylester 0.01 to 0.1 wt. Percent contains.
- the process according to the invention preferably takes place for preparing the composition comprising polyaspartic esters of the general formula (I) and one or more polyaspartic esters having primary amino groups of the general formula (II) in two steps.
- Suitable conditions during the distillation are a pressure range between 0.01 and 2 mbar and a temperature of the bottom effluent upon exit from the distillation apparatus ⁇ 170 ° C and> the temperature, which results from the following formula (V):
- T (sump drain) 27 x ln (p) + 150 (V) where T (sump drain) for the temperature of the sump drain in ° C and
- exemplary preferably usable diamines are l-amino-3,3,5-trimethyl-5-aminomethylcyclohexane (IPDA), 2,4- and / or 2,6-hexahydrotoluylenediamine (H6-TDA), isopropyl-2,4- diaminocyclohexane, and / or isopropyl-2,6-diaminocyclohexane, 1,3-bis (aminomethyl) cyclohexane, 2,4'- and / or 4,4'-diaminodicyclohexylmethane, 3,3'-dimethyl-4,4 'diamino-dicyclohexylmethane (Laromin® C 260, BASF AG), the
- Aminomethyl-l-methylcyclohexylamine AMCA
- araliphatic diamines such as 1,3-bis (aminomethyl) benzene or m-xylylenediamine.
- polyamines of the general formula (III) used selected from the group: polyether polyamines having aliphatically bonded primary amino groups, 1,2-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, l , 5-diamino-2-methylpentane, 2,5-diamino-2,5-dimethylhexane, 2,2,4- and / or 2,4,4-trimethyl-1,6-diaminohexane, 1,11-diaminounodecane, 1 , 12-diaminododecane, 1-amino-3,3,5-trimethyl-5-
- Particularly preferred polyaspartic acid ester compositions according to the invention are those in which X represents organic radicals obtained by removing the primary amino groups from one of the polyamines of general formula (III) selected from the group consisting of polyether polyamines having aliphatically bonded primary amino groups, 1,2 Diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,5-diamino-2-methylpentane, 2,5-diamino-2,5-dimethylhexane, 2,2,4- and / or 2,4,4-trimethyl-l, 6-diaminohexane, 1,11-diaminounodecane, 1,12-diaminododecane, 1-amino-3,3,5-trimethyl-5-aminomethylcyclohexane, 2,4- and / or 2 , 6-hexahydrotoluenediamine
- X represents organic radicals which are obtained by removal of the primary amino groups from one of the polyamines of the general formula (III) selected from the group: 3,3'-dimethyl-4, 4'diaminodicyclohexylmethane, 2,4'- and / or 4,4'-diaminodicyclohexylmethane, 1, 5-diamino-2-methylpentane.
- Preferred compounds of the general formula (IV) which are used in the process according to the invention are maleic or fumaric acid esters of the general formula (IV) in which R 1 and R 2 are identical or different organic radicals each having 1 to 18 carbon atoms. R 1 and R 2 independently of one another preferably represent linear or branched alkyl radicals having 1 to 8 carbon atoms.
- Examples of compounds of the general formula (IV) include the following compounds: dimethyl maleate, diethyl ester, di-n or isopropyl ester, di-n-butyl ester, di-2-ethylhexyl ester or the corresponding fumaric acid esters. Particularly preferred is diethyl maleate.
- the polyaspartic ester compositions according to the invention are valuable reaction partners for polyisocyanates in low-solvent or -free two-component polyurethane systems.
- the invention thus also relates to the use of the polyaspartic ester compositions according to the invention as a reactive component in two-component polyurethane systems or for the preparation of prepolymers.
- the two-component (2K) polyurethane systems containing the polyaspartic ester compositions of the invention can then be used as coating agents for the production of coatings.
- auxiliaries which are customary in coating technology, such as inorganic or organic pigments, other organic light stabilizers, radical scavengers, paint additives, such as dispersants, leveling agents, thickeners, defoaming agents and others, can be used in the coating compositions essential to the invention
- paint additives such as dispersants, leveling agents, thickeners, defoaming agents and others
- Auxiliaries, adhesives, fungicides, bactericides, stabilizers or inhibitors and catalysts can be used with.
- the coating compositions according to the invention are preferably used in the fields of auto-painting, automotive refinish, large-vehicle painting, plastic painting, general industrial coating, floor coating and / or wood / furniture coating
- Another object of the invention are therefore also coated substrates which are obtainable using the Polyasparaginsäureester compositions according to the invention.
- Vestamin PACM a mixture of 2,4- and 4,4'-diaminodicyclohexylmethane, manufactured by Fa. Evonik
- Desmodur N 3600 a low-viscosity HDI trimer with about 23% NCO and ⁇ 0.25% free HDI, manufacturer Covestro
- Desmodur N 3900 a low-viscosity HDI trimer with about 23.5% NCO and ⁇ 0.25% free HDI, manufacturer Covestro
- Byk 331 polyether modified polydimethylsiloxane surface additive
- manufacturer BYK Tinuvin 292 a mixture of bis (l, 2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl l, 2,2,6,6-pentamethyl 4-piperidyl sebacate, a light stabilizer from BASF
- Tinuvin 384-2 Benzenepropanoic acid, 3- (2H-benztriazol-2-yl) -5- (1, 1-dimethylethyl) -4-hydroxy, C7- 9-branched and linear alkyl ester, a light stabilizer from BASF methods:
- Fumaric acid diethylester contents were determined quantitatively by GC method with an internal standard.
- a 6890 gas chromatograph from Agilent was used with a standard GC capillary (100% polysiloxane phase) and a FID detector.
- the temperature of the injector (Sphtausgang) was 180 ° C, as a carrier gas helium was used.
- the limit of quantification of this method was 300 ppm.
- GC-MS measurements were performed on a 6890 Gas Chromatograph and Mass Spectrum detector 5973 from Agilent with standard electronization at 70eV, a standard GC capillary (100% polysiloxane phase) and split injection at 250 ° C Injector temperature performed. The% areas of the gas chromatograms were evaluated.
- the NCO contents were determined titrimetrically in accordance with DIN EN ISO 11909: 2007-05.
- the Hazen color numbers were measured on a LICO 400 colorimeter from Hach Lange GmbH,
- the flow times were determined in accordance with DIN EN ISO 2431: 2012-03, with the exception that a DIN 4 flow cup was used.
- the pot life was defined as the time to double the flow time.
- the starting materials (total amount 10 g) were weighed into a beaker and mixed for 15 seconds at 3000 rpm in a speed mixer. Then a bent paperclip or a disposable pipette was used and with a stopwatch the time was determined until the mixture pulls or sets threads.
- composition according to the invention comprising polyaspartic esters of Examples 5 and 6 despite a higher content Polyaspartic acid ester with primary amino groups show no shortened gel time compared to the commercially available product and are therefore suitable for paints.
- Polyaspartic acid ester compositions according to the invention from Examples 1 and 5 were tested in coating formulations.
- the stock listed above and the hardener were each mixed together and stirred intimately. The mixtures were then each applied with an air gun to Coil Coat sheets precoated with black basecoat, flashed for 10 minutes at room temperature and then dried at room temperature and at 60 ° C. There were brilliant, high-gloss coatings with a layer thickness of 50 ⁇ obtained.
- Tinuvin 292 (50% in BA) 0.16 0.17 0.16
- Tinuvin 384 - 2 (50% in 0.33 0.33 0.33
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Polyurethanes Or Polyureas (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Paints Or Removers (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17191792.5A EP3456755A1 (en) | 2017-09-19 | 2017-09-19 | Polyaspartic acid ester compositions containing polyaspartic acid ester with primary amino groups and small amounts of fumaric acid dialkyl ester |
PCT/EP2018/074884 WO2019057626A1 (en) | 2017-09-19 | 2018-09-14 | Polyaspartic acid ester compositions which contain polyaspartic acid esters with primary amino groups and small amounts of fumaric acid dialkyl esters |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3684834A1 true EP3684834A1 (en) | 2020-07-29 |
Family
ID=59914357
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17191792.5A Ceased EP3456755A1 (en) | 2017-09-19 | 2017-09-19 | Polyaspartic acid ester compositions containing polyaspartic acid ester with primary amino groups and small amounts of fumaric acid dialkyl ester |
EP18768894.0A Pending EP3684834A1 (en) | 2017-09-19 | 2018-09-14 | Polyaspartic acid ester compositions which contain polyaspartic acid esters with primary amino groups and small amounts of fumaric acid dialkyl esters |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17191792.5A Ceased EP3456755A1 (en) | 2017-09-19 | 2017-09-19 | Polyaspartic acid ester compositions containing polyaspartic acid ester with primary amino groups and small amounts of fumaric acid dialkyl ester |
Country Status (6)
Country | Link |
---|---|
US (1) | US11230522B2 (en) |
EP (2) | EP3456755A1 (en) |
JP (1) | JP7451398B2 (en) |
KR (1) | KR20200056387A (en) |
CN (1) | CN111065668B (en) |
WO (1) | WO2019057626A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113412295B (en) * | 2019-02-22 | 2023-08-25 | 科思创知识产权两合公司 | Novel two-component varnish system comprising polyaspartic esters |
EP3699219A1 (en) * | 2019-02-22 | 2020-08-26 | Covestro Deutschland AG | New transparent two-component coating systems with a polyaspartic acid ester |
EP3868805A1 (en) * | 2020-02-18 | 2021-08-25 | Covestro Deutschland AG | Novel two-component clear varnish systems containing polyaspartic acid ester |
ES2954924T3 (en) * | 2019-03-19 | 2023-11-27 | Covestro Intellectual Property Gmbh & Co Kg | Binders containing secondary amino groups based on cyclic esters |
EP4137524A1 (en) | 2021-08-17 | 2023-02-22 | Covestro Deutschland AG | Novel two-component coating systems containing polyaspartic acid ester |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2062188T3 (en) | 1989-06-23 | 1994-12-16 | Bayer Ag | PROCEDURE FOR THE ELABORATION OF COATINGS. |
US5214086A (en) | 1991-09-04 | 1993-05-25 | Basf Corporation | Coating compositions which may be ambient cured |
US5243012A (en) | 1992-06-10 | 1993-09-07 | Miles Inc. | Polyurea coating compositions having improved pot lives |
DE4237468A1 (en) | 1992-11-06 | 1994-05-11 | Bayer Ag | Compounds containing alkoxysilane and amino groups |
DE4327853A1 (en) | 1993-08-19 | 1995-02-23 | Bayer Ag | Process for the production of coatings |
EP0667362A1 (en) | 1994-02-09 | 1995-08-16 | Bayer Corporation | Polyurea coating compositions having improved pot lives |
DE4415778A1 (en) | 1994-05-05 | 1995-11-09 | Bayer Ag | Process for the production of coatings |
US5489704A (en) | 1994-08-29 | 1996-02-06 | Bayer Corporation | Polyisocyanate/polyamine mixtures and their use for the production of polyurea coatings |
EP0816326B1 (en) * | 1996-07-02 | 2000-05-10 | Bayer Ag | Process for preparing mono- and polyspartic acid esters |
DE19701835A1 (en) | 1997-01-21 | 1998-07-23 | Huels Chemische Werke Ag | Cold curing 2=component polyurethane/polyurea material(s) |
DE19731540A1 (en) | 1997-07-23 | 1999-01-28 | Herberts Gmbh | Coating agents and their use in multi-layer coating processes |
JP2000095738A (en) * | 1998-09-28 | 2000-04-04 | Fuji Photo Film Co Ltd | Production of polyaminosuccinic acids |
ATE253550T1 (en) | 1999-07-23 | 2003-11-15 | Bayer Ag | IN-SITU PRODUCTION OF A POLYASPARAGIC ACID ESTER MIXTURE |
US6737500B1 (en) * | 1999-07-23 | 2004-05-18 | Bayer Polymers Llc | In-situ preparation of polyaspartic ester mixture |
ES2208372T3 (en) * | 1999-07-23 | 2004-06-16 | Bayer Corporation | IN SITU PREPARATION OF MIXINGS OF POLYPARTICAL ESTERS. |
US6458293B1 (en) * | 1999-07-29 | 2002-10-01 | Bayer Corporation | Polyurea coatings from dimethyl-substituted polyaspartic ester mixtures |
DE10050137A1 (en) | 2000-10-11 | 2002-04-18 | Bayer Ag | Stabilized mono- and polyaspartic acid esters |
US6774207B2 (en) | 2002-09-26 | 2004-08-10 | Bayer Polymers Llc | Polyaspartate resins with good hardness and flexibility |
CN100537684C (en) | 2005-10-17 | 2009-09-09 | 上海市涂料研究所 | End-amido polyaspartic ester and method of manufacturing the same |
DE102006002153A1 (en) | 2006-01-17 | 2007-07-19 | Bayer Materialscience Ag | Production of aspartic ester-rich composition containing dialkyl fumarate and amide dimer for use in 2-component flexible coating system involves reacting maleic or fumaric ester with diamine and leaving product for 1 week or more |
US7968212B2 (en) * | 2006-12-18 | 2011-06-28 | Ppg Industries Ohio, Inc. | Triamine/aspartate curative and coatings comprising the same |
CN101469246B (en) * | 2007-12-27 | 2011-12-21 | 上海涂料有限公司技术中心 | Preparation of polyaspartate polyurea waterproof coating material |
WO2014151307A1 (en) * | 2013-03-15 | 2014-09-25 | Bayer Materialscience Llc | Polyaspartic coating compositions |
CN106029728B (en) | 2014-02-25 | 2019-08-06 | 涂层国外知识产权有限公司 | The coating composition of two aspartates comprising diisocyanate chain extension |
CN106029729B (en) * | 2014-02-25 | 2019-11-08 | 涂层国外知识产权有限公司 | The coating composition of two aspartates comprising diisocyanate chain extension |
-
2017
- 2017-09-19 EP EP17191792.5A patent/EP3456755A1/en not_active Ceased
-
2018
- 2018-09-14 CN CN201880060583.3A patent/CN111065668B/en active Active
- 2018-09-14 WO PCT/EP2018/074884 patent/WO2019057626A1/en unknown
- 2018-09-14 JP JP2020515951A patent/JP7451398B2/en active Active
- 2018-09-14 EP EP18768894.0A patent/EP3684834A1/en active Pending
- 2018-09-14 KR KR1020207007528A patent/KR20200056387A/en active IP Right Grant
- 2018-09-14 US US16/648,344 patent/US11230522B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7451398B2 (en) | 2024-03-18 |
KR20200056387A (en) | 2020-05-22 |
CN111065668B (en) | 2022-05-03 |
US20200216383A1 (en) | 2020-07-09 |
EP3456755A1 (en) | 2019-03-20 |
US11230522B2 (en) | 2022-01-25 |
JP2020534297A (en) | 2020-11-26 |
CN111065668A (en) | 2020-04-24 |
WO2019057626A1 (en) | 2019-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3684834A1 (en) | Polyaspartic acid ester compositions which contain polyaspartic acid esters with primary amino groups and small amounts of fumaric acid dialkyl esters | |
EP0816326B1 (en) | Process for preparing mono- and polyspartic acid esters | |
DE102006002153A1 (en) | Production of aspartic ester-rich composition containing dialkyl fumarate and amide dimer for use in 2-component flexible coating system involves reacting maleic or fumaric ester with diamine and leaving product for 1 week or more | |
EP1197507B1 (en) | Stabilised Mono- and Polyaspartic acid ester | |
EP1937742A1 (en) | Two-component systems for producing flexible coatings | |
DE1230778B (en) | Process for the preparation of acylated urea polyisocyanates | |
DE2555535B1 (en) | METHOD FOR MANUFACTURING OVERCOATS | |
WO2010089033A1 (en) | Coatings which are based on allophanate group-containing polyisocyanates | |
EP3927757A1 (en) | Novel two-component outer coating containing polyaspartic acid esters | |
EP0406160A2 (en) | Primer | |
EP0118821B1 (en) | Process for the preparation of combinations of organic polyisocyanates and at least partially blocked polyamines, combinations obtained by this process, and their use in the production of lacquers, coating or sealing materials | |
WO2014048701A1 (en) | Low-monomer nco prepolymers and use thereof | |
CN114989028B (en) | Cardanol modified asparagus resin, preparation method thereof and polyurea coating | |
EP3941958B1 (en) | Secondary amino group containing binders based on cyclic ethers | |
EP3849962A1 (en) | Polyaspartic acid ester compositions and method for purification | |
WO2020169700A1 (en) | Novel two-component clear coat systems containing polyaspartic acid ester | |
DE69526633T2 (en) | Aldimines based on 2-methyl-1,5-pentanediamine and their use for the production of polyurea coatings | |
DE102009033637A1 (en) | prepolymers | |
EP3699219A1 (en) | New transparent two-component coating systems with a polyaspartic acid ester | |
EP1047719B1 (en) | Mixtures containing diisocyanates with allophanate groups derived from alicyclic alcohols | |
EP4388025A1 (en) | New two-component coating systems containing polyaspartic acid esters | |
EP3868805A1 (en) | Novel two-component clear varnish systems containing polyaspartic acid ester | |
DE19717427A1 (en) | Process for the preparation of mono- and polyaspartic acid esters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200420 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COVESTRO DEUTSCHLAND AG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COVESTRO INTELLECTUAL PROPERTY GMBH & CO. KG |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220502 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COVESTRO DEUTSCHLAND AG |