EP3678541A1 - Systeme d'evaluation de la maturation d'un bebe premature - Google Patents

Systeme d'evaluation de la maturation d'un bebe premature

Info

Publication number
EP3678541A1
EP3678541A1 EP18773812.5A EP18773812A EP3678541A1 EP 3678541 A1 EP3678541 A1 EP 3678541A1 EP 18773812 A EP18773812 A EP 18773812A EP 3678541 A1 EP3678541 A1 EP 3678541A1
Authority
EP
European Patent Office
Prior art keywords
maturation
module
baby
index
indices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18773812.5A
Other languages
German (de)
English (en)
Inventor
Guy Carrault
Nadine KHODOR
Patrick PLADYS
Mathieu KUCHENBUCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Rennes 1
Institut National de la Sante et de la Recherche Medicale INSERM
Centre Hospitalier Universitaire de Rennes
Original Assignee
Universite de Rennes 1
Institut National de la Sante et de la Recherche Medicale INSERM
Centre Hospitalier Universitaire de Rennes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Rennes 1, Institut National de la Sante et de la Recherche Medicale INSERM, Centre Hospitalier Universitaire de Rennes filed Critical Universite de Rennes 1
Publication of EP3678541A1 publication Critical patent/EP3678541A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/02Foetus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/04Babies, e.g. for SIDS detection
    • A61B2503/045Newborns, e.g. premature baby monitoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02411Detecting, measuring or recording pulse rate or heart rate of foetuses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/366Detecting abnormal QRS complex, e.g. widening

Definitions

  • the present invention relates to a system for evaluating a level of maturation of a premature baby from statistical elements.
  • Heart rate variability also known as HRV
  • HRV Heart rate variability
  • HRV is a practical, non-invasive and reproducible measure of autonomic nervous system function.
  • HRV is the variation over time of consecutive heartbeats. It is supposed to correspond to the balance between sympathetic and parasympathetic influences on the intrinsic rhythm of the sinoatrial node. The HRV measurement is of great interest in medical practice for predicting and evaluating cardio-metabolic risks.
  • heart rate analysis is useful for detecting an abnormality that can occur either during pregnancy or during childbirth.
  • Fetal heart rate analysis is generally based on four criteria: the baseline rhythm, the variability of this basic rate, the accelerations and the possible presence of a slowdown.
  • obstetric ultrasound and Doppler ultrasound help to establish biophysical scores for assessing fetal status.
  • the invention makes it possible to improve at least some of the disadvantages of the prior art by proposing a system for determining an index for objectively evaluating the maturation of babies.
  • the invention relates to a system for determining the maturation of a baby comprising a module for sampling a baby's cardiac signal (acquisition of the baby's electrocardiographic signal and its conversion into a new series) to produce a series of temporal samples respectively defining time intervals that separate two successive heart beats, the system comprising in particular:
  • an analysis module suitable for comparing this at least one determined index with one or more statistical indices representing the maturation of a plurality of babies
  • FIG. 1 is a diagram representing steps of the method according to a particular and non-limiting embodiment of the invention.
  • FIG. 2 shows a system adapted to the implementation of the method illustrated in Figure 1, according to a particular and non-limiting embodiment of the invention.
  • FIG 3 illustrates the principle of visibility graphs cleverly used in the method of assessing the maturity of a baby according to the invention.
  • FIG. 1 is a representation diagram of steps of a method implemented by a system according to the invention.
  • Step S0 is a step of initializing the method after which a system implementing the method is configured to operate from data representative of a baby's heart signal consisting of a series of samples. temporal RRi respectively defining time intervals that separate two successive heart beats.
  • Step S0 constitutes, in addition to the initialization and configuration of the various elements of the system, recording and preprocessing of signals analogs taken during an electrocardiogram performed on the baby subject to an analysis to determine its degree of maturation.
  • the RRi intervals are extracted by implementing an algorithm similar to that of Pan and Tompkins, which detects QRS complexes based on numerical analyzes of the slope, amplitude and width of the ECG signal. By implementing filter coefficients specifically adapted to newborns.
  • a sliding window of five minutes with an overlap of 50% is used. Cardiac variability parameters are calculated on five-minute time segments (time intervals) selected as the most stationary segments every thirty minutes.
  • Kaplan filters are used to eliminate certain artifacts from the digitized RRi series.
  • a sequence of data RRi is recorded in a memory of the system implementing the method.
  • Step S1 constitutes a conversion of the plurality of temporal samples RRi thus made available in memory in data representative of a visibility graph GV.
  • Each of the points of the time series RRi is transformed into a node of the visibility graph then instantiated in the system memory. Connectivities between the different nodes are determined by a visibility criterion such as:
  • the link number of (f /, v) is represented by the degree k (i).
  • a visibility graph representing a time series RRi is characterized by its sequence of degrees (the number of links connected to a node), the average of the MD_V sequence and the distribution of the degree.
  • Luque et al. [B. Luque et al, "Horizontal visibility graphs: exact results for random time series," ArXivI 0024526 Cond-Mat Physicsphysics, Feb. 2010] introduced horizontal visibility VH, which is a subset of the visibility graph GV, and in which (f /,) and (tj, y) are connected if:
  • a new visibility graph VD can then be obtained by making the difference between the links of the visibility graph GV and the links of the horizontal visibility VH.
  • the average of the sequence of VD is equal to:
  • MD_D MD_V - MD_H
  • the visibility graph GV is extracted from the coefficients (indices) characterizing it. That is to say that according to the connections between the nodes of the network resulting from the visibility graph GV one or more indices are calculated which characterize this network of nodes. It may be ASSOR assortativity or TRANS transitivity, as non-limiting examples. This method is valid when the observation times are the same for the definition of pre-recorded parameters representing a cohort of babies and the index or indices characterizing the maturity of a baby considered in isolation.
  • Step S2 is a step of determining one or more indices that characterize a network defined by the set of nodes obtained. For example, ASSOR and TRANS transitivity indices are determined. Assorativity ASSOR is a global measure equivalent to the Pearson correlation between the degrees of each pair of nodes, it provides information on the dynamic behavior of the network and the TRANS transitivity quantifies how well the neighbors of a node are connected and therefore reflects the density of the network.
  • Step S3 constitutes a comparison of at least the index determined in step S2 with one or more statistical indices (ATi, Pmi, Epi) representative of the maturation of a plurality of babies.
  • the ATi indices are statistical indices that represent a cohort of full-term infants
  • the Pmi indices are statistical indices that represent a cohort of babies born prematurely
  • the Epi indices are statistical indices. which represent a cohort of babies born extremely prematurely.
  • Step S4 constitutes a visual representation of a distance D or of a magnitude representative of this distance D between at least one determined index and several indices predefined by statistical analysis, recorded in the system memory.
  • the representation may be graphical, of the star graph type, or superimposed point of areas of a space which are respectively representative of degrees of maturity, or of the "bargraph” type indicating a degree of maturity between "futures” extremes and “Very premature", as examples. This list of examples is obviously non-exhaustive.
  • the visual representation method is based on one or more graphs showing a superimposed point of one or more representative zones of a state, such as, for example , a degree of pre-maturation or ripening and making possible a classification or a trend among or towards predetermined degrees of ripening.
  • the representation uses graphs called "boxes with mustache” commonly used in the representation of statistical quantities.
  • step S3 constitutes a comparison of the indices determined in step S2 and which are obtained by operations implementing a visibility graph (and the network of matching nodes) and predetermined indicators and previously stored in system memory, describing heart rate variability (temporal, frequency and non-linear indices). These indices are calculated from cohorts of premature infants and babies, some of whom are born term, representative of the population in terms of maturation, before the analysis described according to the method of the invention applied to a newborn subject considered isolation.
  • Step S4 constitutes a visual representation of a distance D or of a magnitude representative of this distance D between the index (s) determined by the method according to the invention and a determined set of similar predefined and pre-recorded indices.
  • the visual representation method is based on a statistical procedure that uses an orthogonal linear transformation to convert all the indices coming from full-term infants into a new space where the information is summarized keeping the greatest variance, showing one or more representative areas of a state, such as, for example, a degree of pre-ripening or maturation. Premature babies are then projected onto this space as additional individuals by making possible classification among predetermined degrees of maturation.
  • the representation uses graphs called "boxes with mustache" commonly used in the representation of statistical quantities.
  • modules shown are functional units, which may or may not correspond to physically distinguishable units.
  • these modules or some of them are grouped into a single component, or consist of the functionality of the same software.
  • some modules are composed of separate physical entities.
  • FIG. 2 shows a system SYS for determining the maturation of a baby from a sampling of a baby's cardiac signal subject to analysis.
  • the SYS system comprises a control unit suitable for carrying out conventional analog and digital signal and data acquisition and processing operations, numerical and statistical analysis calculation operations as well as any other operation conventionally done by a computer.
  • the control and analysis unit CTRL includes one or more internal microcontrollers as well as a connection interface to a BUS1 fast, bidirectional and multiplexed shared bus.
  • the SYS system also comprises an ADC module for converting analog signals into digital data, a CONVERTER module for numerical analysis and calculation configured for implementing operations on data instantiating one or more visibility graphs, a COMPAR module.
  • the ADC module is able to convert analog signals from a plurality of probes P1, P2,... Pn used for the production of electrocardiograms, and in particular adapted to the practice of electrocardiograms on a newborn.
  • the ADC module also includes one or more filters configured for the removal of spurious noise during signal recording sequences constituting an electrocardiogram.
  • the SYS system also comprises all the usual elements of a microcontroller system, such as, by way of non-limiting examples, supply circuits, power interfaces, one or more circuits of clocks, one or more reset circuits, input-output ports, interrupt inputs, bus-sharing management modules and memory modules.
  • a microcontroller system such as, by way of non-limiting examples, supply circuits, power interfaces, one or more circuits of clocks, one or more reset circuits, input-output ports, interrupt inputs, bus-sharing management modules and memory modules.
  • the SYS system finally comprises a DISP display module comprising a high-resolution screen adapted to the representation of graphical and textual objects, in color, and provided with an audio output interface comprising a sound generator device.
  • analog signals representative of the heart beats of a premature baby are recorded during an electrocardiogram and transmitted to the ADC module via the P1 probes. , P2, ... Pn. These signals are then processed by the ADC module and converted into a series of temporal samples RRi respectively defining time intervals that separate two successive heart beats of a premature baby, subject to analysis to determine its degree of maturation.
  • the temporal samples RRi are stored in an area of the random access memory MEM reserved for this purpose.
  • the conversion module CONVERTER then translates the plurality of temporal samples RRi into data representative of the visibility graph GV previously described and determines at least one indicator from these data.
  • the COMPAR module makes comparisons between at least the predetermined indicator and one or more statistical indices representative of the maturation of a plurality of babies, some of whom are born at term, these statistical indices being prerecorded in a dedicated area of the NVMEM memory. -volatile.
  • Each of the CONVERTER, COMPAR and DISP modules includes its own control and processing unit, similar to that already described and implemented in the CTRL module.
  • the CTRL module supervises all the operations of the system by executing in particular the corresponding algorithms from executable routines whose code is stored in non-volatile memory NVMEM.
  • the visual representation module DISP proceeds to display a quantity representative of a distance D determined by the COMPAR module between at least the index determined by the CONVERTER module working on the visibility graph and the several prerecorded statistical indices.
  • the DISP module displays one or more graphs making it possible to position a point defining the maturation of the preterm baby subject to analysis with respect to a set of points representative of predetermined and pre-recorded maturation levels in the system.
  • the DISP module under control of the CTRL module, displays the level of maturation determined by the method and associated with the baby subject of the analysis highlighted on a scale of predefined maturation values.
  • Figure 3 includes two schematic representations of the visibility graphs as used by the described method. The left side of Figure 3, referenced a) illustrates a graph of vertical visibility. Two arbitrary points (f /, yv) and ⁇ tj, yj) of the time series will become two connected nodes of the associated graph (node network) if an arbitrary point (f / c, y3 ⁇ 4) placed between them fulfills the following criterion: y k ⁇ y. + (. - yj) yr
  • FIG. 3 The right side of FIG. 3, referenced b), illustrates a horizontal visibility graph for which two arbitrary points (f /, yy) and (f ,, yy) of the time series will become two connected nodes of the graph (network of nodes). associated if they are bigger than all the points that are between them.
  • Vc e [a, b] is> y c and y b> incl
  • Other parameters can be calculated with the method of visibility graphs, which are the degrees of distribution.
  • a degree of distribution DD is the probability that any point has a visibility index x. To calculate it we count the number of points with x for the degree of visibility and divide it by the total number of points.
  • these degrees have been calculated for analysis time windows of thirty seconds.
  • visibility indices such as, for example, ASSOR assortativity, TRANS transitivity or the average degree of the sequence.
  • these indices constitute a valuable estimate of the dynamic properties of the complex network formed by the cardiac variability of the subject subjected to analysis by the implementation of the method according to the invention.
  • TRANS transitivity can be expressed by:
  • Tri (G) being the set of all the triangles in the graph GV and Tri (N) being the set of all possible triangles considering all the nodes of the graph GV.
  • a degree is the number of links to each node. For each link (/ ' ) there are two nodes connected to it and ji is the degree of the first node and ki is the degree of the other node.
  • the sampling of a cardiac signal of a subject consisting of a series of temporal samples (RRi) and respectively defining time intervals that separate two successive heartbeats, is replaced by a sampling of signals representative of waves of cerebral origin (also called electroencephalographic signals).
  • This representative sampling of brain waves is performed by means of sensors adapted to the measurement of EEG (electroencephalogram) type by silver electrodes placed on the scalp, for example.
  • EEG electroencephalogram
  • the raw signals obtained by the EEG sensors are then digitally filtered by a 50 Hz band-stop filter and then by a band-pass filter (0.53 Hz to 30 Hz).
  • the sequence of temporal samples (RRi) derived from the ECG signal is replaced by an EEG signal thus filtered.
  • a sample analysis (RRi) is performed over a period of approximately 2 minutes and it is determined, by the implementation of the visibility graph method on these samples (RRi), a number of peaks visible at from the central node of a window, for successive windows of a predetermined duration of 250 ms.
  • the window is shifted by one sample.
  • a mean visibility index is then obtained, over the duration of the EEG sampling, by calculating an average value of the visibility indices respectively attributed to the different windows, which average visibility index is representative of the maturity of a baby.
  • the more the child on which is realized the EEG sampling is mature the more the value of the average index of calculated visibility decreases.
  • the number of points considered per window is equal to 64.
  • points considered in a window can be obtained by interpolation from measured samples.
  • the duration of a window may be between 50 ms and 1 second.
  • the ECG cardiac signal is scanned in order to define periods suitable for analysis of the electroencephalographic origin signal.
  • an analysis of the ECG cardiac signal makes it possible to define moments for which the subject (baby) is calm, which makes it possible to increase the efficiency of an analysis according to the variant of embodiment for which the RRi samples are samples of the signal of encephalic origin.
  • At least two indices respectively derived from a first analysis from the ECG signal and a second analysis from the EEG signal are combined so as to optimize the performance of the method of evaluation of the maturation of a baby according to the invention.
  • the invention is not limited to the embodiments described above but also relates to any method for determining the maturation of a baby comprising a conversion of temporal samples into data representative of a visibility graph (GV), a determination at least one index from data representative of this graph of visibility, a comparison of the at least one index thus determined with one or more statistical indices representative of the maturation of a plurality of babies and a visual representation of a distance between the at least one determined index and the several statistical indices, as well as any system implementing such a method.
  • GV visibility graph
  • the representation of the determined distance may be sound.

Abstract

L'invention concerne un système non-invasif de détermination de la maturation d'un bébé comprenant un module d'échantillonnage d'un signal cardiaque ou électro-encéphalographique d'un bébé et opérant avantageusement une conversion d'une pluralité d'échantillons temporels dérivée du signal cardiaque ou du signal électro-encéphalique en un graphe de visibilité, puis une détermination d'au moins un indice à partir de ce graphe de visibilité, une comparaison d'au moins un indice déterminé avec un ou plusieurs indices statistiques représentatifs de la maturation d'une pluralité de bébés et une représentation visuelle d'une distance entre au moins un indice déterminé et les indices statistiques.

Description

SYSTEME D'EVALUATION DE LA MATURATION D'UN BEBE
PREMATURE
1. Domaine de l'invention.
La présente invention concerne un système d'évaluation d'un niveau de maturation d'un bébé prématuré à partir d'éléments statistiques. 2. Etat de l'art.
Il est connu que le système nerveux autonome agit sur beaucoup d'organes, dont le cœur et que la variabilité cardiaque reflète l'influence du système autonome sur le cœur. La variabilité de la fréquence cardiaque, encore appelée VFC, est une mesure pratique, non-invasive et reproductible de la fonction du système nerveux autonome. Bien que le cœur soit relativement stable, les temps entre deux battements cardiaques peuvent être très différents. La VFC est la variation dans le temps de battements cardiaques consécutifs. Elle est censée correspondre à l'équilibre entre les influences sympathique et parasympathique sur le rythme intrinsèque du nœud sino- auriculaire. La mesure de la VFC est d'un grand intérêt dans la pratique médicale pour prédire et évaluer des risques cardio-métaboliques.
Chez le fœtus, l'analyse du rythme cardiaque est utile pour détecter une anomalie pouvant survenir soit lors de la grossesse, soit lors de l'accouchement. L'analyse du rythme cardiaque fœtal se base généralement sur quatre critères : le rythme de base, la variabilité de ce rythme de base, les accélérations et la présence éventuelle de ralentissement.
D'autres outils sont connus et participent à l'appréciation de la maturation du fœtus. Ainsi l'échographie obstétricale, l'échographie doppler aident à l'établissement de scores biophysiques d'évaluation d'un état fœtal.
D'autres moyens existent mais qui ont l'inconvénient d'être invasifs, tels que, par exemple, l'amniocentèse ou la ponction de sang fœtal. Si la maturation d'un fœtus peut-être évaluée par les moyens décrits ci-avant, il est également important et appréciable de pouvoir évaluer la maturation d'un bébé après la naissance. L'appréciation de la maturation d'un nouveau-né prématuré se révèle précieuse et peut être améliorée.
3. Résumé de l'invention.
L'invention permet d'améliorer au moins certains des inconvénients de l'art antérieur en proposant un système de détermination d'un indice permettant d'évaluer objectivement la maturation des bébés.
Ainsi, l'invention concerne un système de détermination de la maturation d'un bébé comprenant un module d'échantillonnage d'un signal cardiaque du bébé (acquisition du signal électrocardiographique du bébé et sa conversion en une nouvelle série)pour produire une suite d'échantillons temporels définissant respectivement des intervalles de temps qui séparent deux battements cardiaques successifs, le système comprenant notamment :
- un module de conversion d'une pluralité d'échantillons temporels du signal cardiaque du bébé en données représentatives d'un graphe de visibilité instancié dans le système,
- un module de détermination d'au moins un indice (ou valeur) à partir des données représentatives du graphe de visibilité instancié,
- un module d'analyse adapté à la comparaison de cet au moins un indice déterminé avec un ou plusieurs indices statistiques représentatifs de la maturation d'une pluralité de bébés, et,
- un module de représentation visuelle d'une grandeur représentative d'une distance entre l'au moins un indice déterminé et les plusieurs indices statistiques prédéfinis représentatifs de la maturation d'une pluralité de bébés. 4. Liste des figures. L'invention sera mieux comprise, et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels :
- la figure 1 est un diagramme de représentation d'étapes de la méthode selon un mode de réalisation particulier et non limitatif de l'invention.
- la figure 2 représente un système adapté à la mise en œuvre de la méthode illustrée par la figure 1 , selon un mode particulier et non limitatif de l'invention. - la figure 3 illustre le principe des graphes de visibilité astucieusement utilisé dans la méthode d'évaluation de la maturité d'un bébé selon l'invention.
5. Description détaillée de modes de réalisation de l'invention.
La figure 1 est un diagramme de représentation d'étapes d'une méthode mis en œuvre par un système conforme à l'invention.
L'étape S0 est une étape d'initialisation de la méthode au terme de laquelle un système mettant en œuvre la méthode est configuré pour opérer à partir des données représentatives d'un signal cardiaque d'un bébé constitué d'une suite d'échantillons temporels RRi définissant respectivement des intervalles de temps qui séparent deux battements cardiaques successifs. L'étape S0 constitue, outre l'initialisation et la configuration des différents éléments du système, un enregistrement et un prétraitement de signaux analogiques prélevés au cours d'un électrocardiogramme réalisé sur le bébé sujet à une analyse visant à déterminer son degré de maturation. Les intervalles RRi sont extraits par la mise en œuvre d'un algorithme similaire à celui de Pan et Tompkins, qui détecte les complexes QRS en fonction des analyses numériques de la pente, de l'amplitude et de la largeur du signal ECG. En mettant en œuvre des coefficients de filtrage spécifiquement adaptés aux nouveaux nés. Selon un mode de réalisation particulier et non limitatif de l'invention, une fenêtre glissante de cinq minutes avec chevauchement de 50% est utilisée. Les paramètres de la variabilité cardiaque sont calculés sur des segments temporels (intervalles de temps) de cinq minutes sélectionnés comme les segments les plus stationnaires chaque trente minutes. Selon un mode de réalisation de l'invention, des filtres de Kaplan sont utilisés pour éliminer certains artefacts de la série RRi numérisée.
Au terme de la configuration que constitue l'étape S0, une suite de données RRi est enregistrée dans une mémoire du système mettant en œuvre la méthode.
L'étape S1 constitue une conversion de la pluralité d'échantillons temporels RRi ainsi rendus disponibles en mémoire en données représentatives d'un graphe de visibilité GV. Chacun des points de la série temporelle RRi est transformé en un nœud du graphe de visibilité alors instancié dans la mémoire du système. Des connectivités entre les différents nœuds sont déterminés par un critère de visibilité tel que :
Deux nœuds quelconques (f/, y) et (tj, y) deviennent connectés si un autre nœud (tk, yk) tel que ti<tk<tj remplit le critère suivant :
Le nombre de lien de (f/, v) est représenté par le degré k(i).
Un graphe de visibilité représentant une série temporelle RRi se caractérise par sa séquence de degrés (soit le nombre de liens connectés à un nœud), la moyenne de la séquence MD_V et la répartition du degré. Luque et al. [B. Luque et al, « Horizontal visibility graphs: exact results for random time séries », ArXivI 0024526 Cond-Mat Physicsphysics, févr. 2010] ont introduit la visibilité horizontale VH, qui est un sous ensemble du graphe de visibilité GV, et dans laquelle (f/, ) et (tj, y) sont connectés si :
VtK G t tj: yi > yk et y} > yk [2]
Un nouveau graphe de visibilité VD peut alors être obtenu en effectuant la différence entre les liens du graphe de visibilité GV et les liens de la visibilité horizontale VH. Ainsi, la moyenne de la séquence de VD est égale à :
MD_D = MD_V - MD_H
Selon un mode de réalisation de l'invention, du graphe de visibilité GV sont extraits des coefficients (indices) le caractérisant. Cela revient à dire qu'en fonction des connexions entre les nœuds du réseau découlant du graphe de visibilité GV on calcule un ou plusieurs indices qui caractérisent ce réseau de nœuds. Il peut s'agir de l'assortativité ASSOR ou encore de la transitivité TRANS, à titre d'exemples non-limitatifs. Cette méthode est valable dès lors que les durées d'observation sont les mêmes pour la définition des paramètres préenregistrés représentant une cohorte de bébés et le ou les indices caractérisant la maturité d'un bébé considéré isolément.
L'étape S2 est une étape de détermination d'un ou plusieurs indices qui caractérisent un réseau défini par l'ensemble des nœuds obtenus. Par exemple, des indices d'assortativité ASSOR et de transitivité TRANS sont déterminés. L'assortativité ASSOR constitue une mesure globale équivalente à la corrélation de Pearson entre les degrés de chacun des couples de nœuds, il fournit des informations sur le comportement dynamique du réseau et la transitivité TRANS quantifie à quel point les voisins d'un nœud sont connectés et reflète donc la densité du réseau.
L'étape S3 constitue une comparaison d'au moins l'indice déterminé à l'étape S2 avec un ou plusieurs indices statistiques (ATi, Pmi, Epi) représentatifs de la maturation d'une pluralité de bébés. Selon un mode de réalisation de l'invention, les indices ATi sont des indices statistiques qui représentent une cohorte de bébés nés à terme, les indices Pmi sont des indices statistiques qui représentent une cohorte de bébés nés prématurés et les indices Epi sont des indices statistiques qui représentent une cohorte de bébés nés extrêmement prématurés. Ces indices sont appris sur une cohorte représentative d'une population de bébés, précédemment à une analyse mettant en œuvre la méthode mais ciblée sur un sujet bébé considéré isolément (visant à déterminer son degré de maturité), et en procédant selon la méthode pour chacun des sujets de la cohorte considérée. L'étape S4 constitue une représentation visuelle d'une distance D ou d'une grandeur représentative de cette distance D entre au moins un indice déterminé et plusieurs indices prédéfinis par analyse statistique, enregistrés dans la mémoire du système. La représentation peut être graphique, de type graphe en étoile, ou point en superposition de zones d'un espace qui sont respectivement représentatives de degrés de maturité, ou de type « bargraph » indiquant un degré de maturité entre des extrêmes « à terme » et « très prématuré », à titres d'exemples. Cette liste d'exemples étant bien évidemment non- exhaustive.
Selon un mode de réalisation particulier et non limitatif de l'invention, la méthode de représentation visuelle s'appuie sur un ou plusieurs graphes faisant apparaître un point en superposition d'une ou plusieurs zones représentatives d'un état, tel que, par exemple, un degré de pré maturation ou de maturation et rendant possible une classification ou une tendance parmi ou vers des degrés prédéterminés de maturation.
Avantageusement, la représentation utilise des graphes dits « boites à moustache » communément utilisées dans la représentation de grandeurs statistiques.
En d'autres termes, l'étape S3 constitue une comparaison des indices déterminés à l'étape S2 et qui sont obtenus par des opérations mettant en œuvre un graphe de visibilité (et le réseau de nœuds en correspondance) et des indicateurs prédéterminés et précédemment enregistrés dans la mémoire du système, décrivant la variabilité de la fréquence cardiaque (indices temporels, fréquentiels et non linéaires). Ces indices sont calculés à partir de cohortes de bébés prématurés et de bébés dont certains sont nés à terme, représentatifs de la population en termes de maturation, avant l'analyse décrite selon la méthode de l'invention appliquée à un sujet nouveau-né considéré isolément.
L'étape S4 constitue une représentation visuelle d'une distance D ou d'une grandeur représentative de cette distance D entre le ou les indices déterminés par la méthode selon l'invention et un ensemble déterminé d'indices similaires prédéfinis et préenregistrés.
Selon un mode de réalisation particulier et non limitatif de l'invention, la méthode de représentation visuelle s'appuie sur une procédure statistique qui utilise une transformation linéaire orthogonale pour convertir l'ensemble des indices venant des bébés nés à terme en un nouvel espace où les informations sont résumées en gardant la plus grande variance, faisant apparaître une ou plusieurs zones représentatives d'un état, tel que, par exemple, un degré de pré-maturation ou de maturation. Les bébés prématurés sont ensuite projetés sur cet espace comme des individus supplémentaires en rendant possible une classification parmi des degrés prédéterminés de maturation. Avantageusement, la représentation utilise des graphes dits « boites à moustache » communément utilisées dans la représentation de grandeurs statistiques.
Sur la figure 2, les modules représentés sont des unités fonctionnelles, qui correspondent ou non à des unités physiquement distinguables. Par exemple, ces modules ou certains d'entre eux sont regroupés dans un unique composant, ou constitués des fonctionnalités d'un même logiciel. A contrario, selon d'autres modes de réalisation, certains modules sont composés d'entités physiques séparées.
La figure 2 représente un système SYS de détermination de la maturation d'un bébé à partir d'un échantillonnage d'un signal cardiaque du bébé sujet à l'analyse. Le système SYS comprend une unité de contrôle adaptée à la réalisation d'opérations classiques d'acquisition et de traitements de signaux et de données analogiques et numériques, d'opérations de calcul d'analyse numérique et statistique ainsi qu'à toute autre opération classiquement effectuée par un ordinateur. L'unité de contrôle et d'analyse CTRL comprend un ou plusieurs microcontrôleurs internes ainsi qu'une interface de connexion à un bus partagé rapide, bidirectionnel et multiplexé BUS1 . Le système SYS comprend également un module ADC de conversion de signaux analogiques en données numériques, un module CONVERTER d'analyse numérique et de calcul configuré pour la mise en œuvre d'opérations sur des données instanciant un ou plusieurs graphes de visibilités, un module COMPAR configuré pour la comparaison d'indices ou indicateurs déterminés avec des indices ou indicateurs statistiques préalablement enregistrés dans le système SYS, un module mémoire de travail MEM adapté au stockage temporaire de données utiles à des opérations statistiques ainsi qu'un module de mémoire non-volatile adapté au stockage de codes logiciels correspondant à des programmes et algorithmes ainsi qu'à des données statistiques prédéfinies, préenregistrées et issues d'opérations statistiques antérieures à la mise en œuvre de la méthode selon l'invention. Le module ADC est en capacité de convertir des signaux analogiques en provenance d'une pluralité de sondes P1 , P2, ... Pn utilisées pour la réalisation d'électrocardiogrammes, et en particulier adaptés à la pratique d'électrocardiogrammes sur un nouveau né. Le module ADC comprend également un ou plusieurs filtres configurés pour l'élimination de bruits parasites lors de séquences d'enregistrement de signaux constituant un électrocardiogramme. Bien évidemment, le système SYS comprend également l'ensemble des éléments habituels d'un système à microcontrôleur, tels que, à titre d'exemples non-limitatifs, des circuits d'alimentations, des interfaces de puissance, un ou plusieurs circuits d'horloges, un ou plusieurs circuits de remise à zéro, des ports d'entrées- sorties, des entrées d'interruptions, des modules de gestion de partages de bus et de modules mémoires.
Le système SYS comprend enfin un module d'affichage DISP comprenant un écran haute-résolution adapté à la représentation d'objets graphiques et textuels, en couleur, et pourvu d'une interface de sortie audio comprenant un dispositif générateur de sons.
L'ensemble des éléments constituant l'architecture du cœur numérique du système SYS n'est pas décrit ici plus en détails, car bien connu de l'homme du métier des dispositifs numériques de traitement du signal et du calcul, et dans le mesure où ces éléments ne sont pas utiles à la compréhension de l'invention présentée.
Lorsque le système SYS est utilisé pour la mise en œuvre de la méthode selon l'invention, des signaux analogiques représentatifs des battements cardiaques d'un bébé prématuré sont relevés lors d'un électrocardiogramme et transmis au module ADC par l'intermédiaire des sondes P1 , P2, ... Pn. Ces signaux sont alors traités par le modules ADC et convertis en une suite d'échantillons temporels RRi définissant respectivement des intervalles de temps qui séparent deux battements cardiaques successifs d'un bébé prématuré, sujet à une analyse en vue de déterminer son degré de maturation. Les échantillons temporels RRi sont stockés dans une zone de la mémoire vive MEM réservée à cet effet.
Le module de conversion CONVERTER traduit ensuite la pluralité d'échantillons temporels RRi en données représentatives du graphe de visibilité GV précédemment décrit et détermine au moins un indicateur à partir de ces données. Le module COMPAR opère des comparaisons entre au moins l'indicateur prédéterminé et un ou plusieurs indices statistiques représentatifs de la maturation d'une pluralité de bébés dont certains sont nés à terme, ces indices statistiques étant préenregistrés dans une zone dédiée de la mémoire NVMEM non-volatile. Chacun des modules CONVERTER, COMPAR et DISP comprend sa propre unité de contrôle et de traitement, similaire à celle déjà décrite et implémentée dans le module CTRL. Le module CTRL opère cependant une supervision de l'ensemble des opérations du système en exécutant notamment les algorithmes correspondants à partir de routines exécutables dont le code est stocké en mémoire non-volatile NVMEM.
Une fois que les opérations précédemment décrites ont étés successivement réalisées sous contrôle logiciel et par la mise en œuvre du module de contrôle CTRL, le module de représentation visuelle DISP procède à l'affichage d'une grandeur représentative d'une distance D déterminée par le module COMPAR entre au moins l'indice déterminé par le module CONVERTER travaillant sur le graphe de visibilité et les plusieurs indices statistiques préenregistrés.
Avantageusement, le module DISP affiche un ou plusieurs graphes permettant de positionner un point définissant la maturation du bébé prématuré sujet à l'analyse par rapport à un ensemble de points représentatifs de niveaux de maturation prédéterminés et préenregistrés dans le système.
Selon une variante, le module DISP, sous contrôle du module CTRL, affiche le niveau de maturation déterminé par la méthode et associé au bébé sujet de l'analyse en surbrillance sur une échelle de valeurs de maturation prédéfinie. La figure 3 comprend deux représentations schématiques des graphes de visibilité tels qu'utilisés par la méthode décrite. Le côté gauche de la figure 3, référencé a) illustre un graphe de visibilité verticale. Deux points arbitraires (f/,yv) et {tj,yj) de la série temporelle deviendront deux nœuds connectés du graphe (réseau de nœuds) associé si un point arbitraire (f/c,y¾) placé entre eux remplit le critère suivant: yk < y. + ( . - yj) y r
Le côté droit de la figure 3, référencé b) illustre un graphe de visibilité horizontale pour lequel deux points arbitraires (f/,yy) et (f,,yy) de la série temporelle deviendront deux nœuds connectés du graphe (réseau de nœuds) associé s'ils sont plus grands que tous les points qui sont entre eux.
La condition de visibilité est donc la suivante:
Vc e [a, b] ya > yc et yb > yc D'autres paramètres peuvent être calculés avec la méthode des graphes de visibilité, qui sont les degrés de distribution. De façon théorique, un degré de distribution DD est la probabilité qu'un point quelconque ait un indice de visibilité x. Pour le calculer on compte le nombre de points ayant x pour degré de visibilité et on le divise par le nombre total de points.
Selon un mode de réalisation préféré de l'invention ces degrés ont été calculés pour des fenêtres temporelles d'analyse de trente secondes.
Il est alors possible d'obtenir un tableau de DD pour chaque fenêtre d'analyse, soit par exemple cent vingt tableaux pour une heure d'enregistrement. Ces tableaux renvoient le décompte des indices et non une probabilité. Les données disponibles sont alors multipliées par un coefficient afin de normaliser les résultats sur la base d'un enregistrement d'une heure. Ainsi, à partir de ces graphes de visibilité et des réseaux de nœuds correspondants sont calculés des indices de visibilité tels que, à titre d'exemple, l'assortativité ASSOR, la transitivité TRANS ou le degré moyen de la séquence. Avantageusement ces indices constituent une estimation précieuse des propriétés dynamiques du réseau complexe formé par la variabilité cardiaque du sujet soumis à une analyse par la mise en œuvre de la méthode selon l'invention.
L'assortativité ASSOR et la transitivité TRANS sont définies tel que :
La transitivité TRANS peut être exprimée par :
\Tri(G) \
r(G) =
\Tri(N) \
Tri(G) étant l'ensemble de tous les triangles dans le graphe GV et Tri(N) étant l'ensemble de tous les triangles possibles en considérant tous les noeuds du graphe GV.
L'assortativité ASSOR peut être exprimée par :
M-i∑;§0f ∑i| 'i+fei)]
ji et ki étant les degrés des nœuds à la fin du ième lien, avec /' = 1 ,
., M lien.
Un degré est le nombre de liens à chaque nœud. Pour chaque lien (/' ) il y a deux nœuds qui y sont connectés et ji est le degré du premier nœud et ki est le degré de l'autre nœud.
Les modes de calculs des indices ainsi appliqués ne sont pas décrits plus en détails car bien connu de l'homme du métier des opérations statistiques et de la théorie des graphes et n'étant pas en eux-mêmes utiles à la compréhension de l'invention.
Selon une variante du mode de réalisation de l'invention, l'échantillonnage d'un signal cardiaque d'un sujet (bébé), constitué d'une suite d'échantillons temporels (RRi) et définissant respectivement des intervalles de temps qui séparent deux battements cardiaques successifs, est remplacé par un échantillonnage de signaux représentatifs d'ondes d'origine cérébrale (encore appelés signaux électro-encéphalographiques). Cet échantillonnage représentatif d'ondes d'origine cérébrale est réalisé au moyen de capteurs adaptés à la mesure de type EEG (électro-encéphalogramme) par électrodes en argent placées sur le cuir chevelu, à titre d'exemple. Les signaux bruts obtenus par les capteurs EEG sont alors filtrés numériquement par un filtre coupe-bande à 50 Hz, puis par filtre passe-bande (0,53 Hz à 30 Hz). En d'autres termes, la séquence d'échantillons temporels (RRi) dérivés du signal ECG est remplacée par un signal EEG ainsi filtré. Selon cette variante, une analyse des échantillons (RRi) est opérée sur une période d'environ 2 minutes et il est déterminé, par la mise en œuvre de méthode du graphe de visibilité sur ces échantillons (RRi), un nombre de pics visibles à partir du nœud central d'une fenêtre, pour des fenêtres successives de durée prédéterminée de 250 ms.
Pour chacun des calculs successifs de visibilité ainsi réalisé, la fenêtre est décalée d'un échantillon. Il est ensuite obtenu un indice moyen de visibilité, sur la durée de l'échantillonnage EEG, en calculant une valeur moyenne des indices de visibilité respectivement attribués aux différentes fenêtres, lequel indice moyen de visibilité est représentatif de la maturité d'un bébé. Avantageusement, il est constaté que plus l'enfant sur lequel est réalisé l'échantillonnage EEG est mature, plus la valeur de l'indice moyen de visibilité calculé diminue.
Avantageusement, il est ainsi possible, par exemple, d'estimer la date de conception d'un fœtus. Selon un mode de réalisation de l'invention, le nombre de points considéré par fenêtre est égal à 64.
Selon un mode de réalisation de l'invention, des points considérés dans une fenêtre peuvent être obtenus par interpolation à partir d'échantillons mesurés. Selon des variantes, la durée d'une fenêtre peut être comprise entre 50 ms et 1 seconde.
Avantageusement, le signal cardiaque ECG est scruté aux fins de définir des périodes propices à une analyse du signal d'origine électro- encéphalographique. En effet, une analyse du signal cardiaque ECG permet de définir des moments pour lesquels le sujet (bébé) est calme, ce qui permet d'accroître l'efficacité d'une analyse selon la variante de mode de réalisation pour laquelle les échantillons RRi sont des échantillons du signal d'origine encéphalique.
Selon un mode de réalisation de l'invention, au moins deux indices respectivement issus d'une première analyse à partir du signal ECG et d'une seconde analyse à partir du signal EEG sont combinés de sorte à optimiser la performance de la méthode d'évaluation de la maturation d'un bébé selon l'invention.
L'invention ne se limite pas aux seuls modes de réalisation décrits précédemment mais concerne également toute méthode de détermination de la maturation d'un bébé comprenant une conversion d'échantillons temporels en données représentatives d'un graphe de visibilité (GV), une détermination d'au moins un indice à partir de données représentatives de ce graphe de visibilité, une comparaison de l'au moins un indice ainsi déterminé avec un ou plusieurs indices statistiques représentatifs de la maturation d'une pluralité de bébés et une représentation visuelle d'une distance entre le au moins un indice déterminé et les plusieurs indices statistiques, ainsi que tout système mettant en œuvre une telle méthode.
Selon une variante, la représentation de la distance déterminée peut être sonore.

Claims

REVENDICATIONS
1 . Système de détermination de la maturation d'un bébé comprenant un module d'échantillonnage d'un signal cardiaque et/ou électro- encéphalographique dudit bébé délivrant une pluralité d'échantillons temporels, ladite pluralité d'échantillons définit des intervalles de temps qui séparent deux battements cardiaques successifs dans le cas d'un signal cardiaque, ledit système étant caractérisé en ce qu'il comprend en outre :
- un module de conversion de ladite pluralité d'échantillons temporels en données représentatives d'un graphe de visibilité,
- un module de détermination d'au moins un indice à partir desdites données représentatives dudit graphe de visibilité,
- un module d'analyse adapté à la comparaison dudit au moins un indice déterminé avec un ou plusieurs indices statistiques représentatifs de la maturation d'une pluralité de bébés,
- un module de représentation visuelle d'une grandeur représentative d'une distance entre ledit au moins un indice déterminé et lesdits plusieurs indices statistiques.
2. Système de détermination de la maturation d'un bébé selon la revendication 1 , caractérisé en ce que ledit au moins un indice déterminé est un indice d'assortativité ou de transitivité (ASSOR, TRANS).
EP18773812.5A 2017-09-05 2018-09-05 Systeme d'evaluation de la maturation d'un bebe premature Pending EP3678541A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1700895A FR3070590B1 (fr) 2017-09-05 2017-09-05 Methode d'evaluation de maturation d'un bebe premature et systeme associe
PCT/FR2018/052165 WO2019048775A1 (fr) 2017-09-05 2018-09-05 Systeme d'evaluation de la maturation d'un bebe premature

Publications (1)

Publication Number Publication Date
EP3678541A1 true EP3678541A1 (fr) 2020-07-15

Family

ID=61132451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18773812.5A Pending EP3678541A1 (fr) 2017-09-05 2018-09-05 Systeme d'evaluation de la maturation d'un bebe premature

Country Status (4)

Country Link
US (1) US11464458B2 (fr)
EP (1) EP3678541A1 (fr)
FR (1) FR3070590B1 (fr)
WO (1) WO2019048775A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113392731B (zh) * 2021-05-31 2023-06-23 浙江工业大学 一种基于图神经网络的调制信号分类方法和系统
CN113436728B (zh) * 2021-07-05 2022-10-28 复旦大学附属儿科医院 新生儿临床视频脑电图自动分析的方法及设备
CN114515156B (zh) * 2022-02-10 2023-09-15 南京邮电大学 基于交叉可视图的睡眠心脑信号关联性分析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL164030A0 (en) * 2003-09-12 2005-12-18 Revital Pery Shechter Photoacoustic analyzer of a region of interest in a human body
WO2015142046A1 (fr) * 2014-03-19 2015-09-24 주식회사 메디코아 Dispositif pour évaluer la capacité d'équilibrage et de commande de nerf du système autonome, et son procédé de commande
CA3022848C (fr) * 2016-05-02 2023-03-07 University Of Virginia Patent Foundation Indices predictifs d'oxymetrie pulsee de developpement neurologique defavorable chez les prematures

Also Published As

Publication number Publication date
US11464458B2 (en) 2022-10-11
US20200281487A1 (en) 2020-09-10
WO2019048775A1 (fr) 2019-03-14
FR3070590A1 (fr) 2019-03-08
FR3070590B1 (fr) 2019-09-06

Similar Documents

Publication Publication Date Title
JP6523288B2 (ja) 母体腹部のecg記録からの胎児心拍数の抽出
EP3110321B1 (fr) Procédé, dispositif, système et programme informatique de filtrage d&#39;une série rr obtenue a partir d&#39;un signal cardiaque avec contrôle automatique de la qualité de la série rr
EP3672474A1 (fr) Procédé de détection d&#39;anomalies dans des signaux ecg
EP3678541A1 (fr) Systeme d&#39;evaluation de la maturation d&#39;un bebe premature
US10368755B2 (en) Apparatus and method for feature extraction and classification of fetal heart rate
CA2580758C (fr) Procede de traitement d&#39;une serie rr et son application a l&#39;analyse de la variabilite du rythme cardiaque, et en particulier a l&#39;evaluation de la douleur ou du stress chez un etre vivant
Vullings et al. Non-invasive fetal electrocardiography for intrapartum cardiotocography
FR3053238A1 (fr) Procede de detection d&#39;au moins un trouble du rythme cardiaque
FR3053237A1 (fr) Dispositif de detection d&#39;au moins un trouble du rythme cardiaque
EP1513444B1 (fr) Traitement frequentiel d&#39;une serie rr dans un signal cardiaque analogique
WO2019180393A1 (fr) Méthode de génération d&#39;un indicateur d&#39;état d&#39;une personne dans le coma
EP3160336B1 (fr) Dispositif de traitement de données de rythme cardiaque foetal, méthode et programme d&#39;ordinateur correspondant
EP3110322B1 (fr) Procédé et dispositif de contrôle automatique de la qualité d&#39;une serie rr obtenue à partir d&#39;un signal cardiaque
FR2821460A1 (fr) Procede et dispositif de filtrage d&#39;une serie rr issue d&#39;un signal cardiaque, et plus particulierement d&#39;un signal ecg
CN115804581B (zh) 心率特征的测量方法、症状检测方法及相关设备
Vollmer et al. Efficiency of Different Heartbeat Detection Methods by Using Alternative Noise Reduction Algorithms
FR3113369A1 (fr) Procede et systeme de detection de la somnolence d’un individu
EP3030138B1 (fr) Solution intégrée de suivi et de surveillance en temps réel de l&#39;état pathologique d&#39;un patient cérébro-lésé
FR3113370A1 (fr) Procede et systeme de detection de la somnolence d’un individu
FR3113368A1 (fr) Procede et systeme de detection de la somnolence d’un individu
FR2983055A1 (fr) Detection et estimation du complexe qrs pour le suivi d&#39;une activite cardiaque et pulmonaire
WO2022037914A1 (fr) Procede et systeme de detection de la somnolence d&#39;un individu
CA3235837A1 (fr) Detection precoce d&#39;une attaque cardiaque sur la base d&#39;electrocardiographie et de symptomes cliniques
FR3063628A1 (fr) Dispositif et procede de mesure d’un parametre physiologique et apprentissage statistique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUCHENBUCH, MATHIEU

Inventor name: PLADYS, PATRICK

Inventor name: KHODOR, NADINE

Inventor name: CARRAULT, GUY

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)

Owner name: UNIVERSITE DE RENNES I

Owner name: CHU DE RENNES

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CARRAULT, GUY

Inventor name: PLADYS, PATRICK

Inventor name: KHODOR, NADINE

Inventor name: KUCHENBUCH, MATHIEU

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221114

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)

Owner name: CHU DE RENNES

Owner name: UNIVERSITE DE RENNES