EP3673615A1 - Secure communication of iot devices for vehicles - Google Patents

Secure communication of iot devices for vehicles

Info

Publication number
EP3673615A1
EP3673615A1 EP18848520.5A EP18848520A EP3673615A1 EP 3673615 A1 EP3673615 A1 EP 3673615A1 EP 18848520 A EP18848520 A EP 18848520A EP 3673615 A1 EP3673615 A1 EP 3673615A1
Authority
EP
European Patent Office
Prior art keywords
group
lot
devices
vehicle
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18848520.5A
Other languages
German (de)
French (fr)
Inventor
David W. Kravitz
Donald Houston GRAHAM
Josselyn L. Boudett
Russell S. Dietz
Kent William Stacy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T-Central Inc
T Central Inc
Original Assignee
T-Central Inc
T Central Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/686,076 external-priority patent/US10153908B2/en
Application filed by T-Central Inc, T Central Inc filed Critical T-Central Inc
Publication of EP3673615A1 publication Critical patent/EP3673615A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0823Network architectures or network communication protocols for network security for authentication of entities using certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/006Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols involving public key infrastructure [PKI] trust models
    • H04L9/007Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols involving public key infrastructure [PKI] trust models involving hierarchical structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0866Generation of secret information including derivation or calculation of cryptographic keys or passwords involving user or device identifiers, e.g. serial number, physical or biometrical information, DNA, hand-signature or measurable physical characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3263Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/069Authentication using certificates or pre-shared keys
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless
    • H04L2209/805Lightweight hardware, e.g. radio-frequency identification [RFID] or sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/84Vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the present invention relates generally to Internet of Things (loT) Security and Management and more specifically to system and method for vehicle loT security and management.
  • LoT Internet of Things
  • loT devices are increasingly performing important roles in many areas of a modern economy, including facilities for manufacturing, utilities, distribution, recreation, military, residential, commercial, healthcare and others.
  • loT devices are incorporated into manufactured products that may or may not be associated with the above facilities such as, automobiles, aircraft, medical devices, etc.
  • protecting, controlling and managing the loT devices can be challenging, fraught with danger, risk or potential liability.
  • loT devices It is desirable for both manufactured products (together with their incorporated loT devices) as well as for enterprises deploying loT devices in their operating facilities (e.g., a factory, utility grid, etc.) to ensure control over the data that is produced, exert access control so that unauthorized, random parties cannot get access to the device, have the ability to instruct a device(s) to listen only to authorized parties, have the ability for a device(s) to ignore unauthorized parties, and/or to provide strong identity management for typical loT device(s) and devices that may be within such operating loT devices to external, authorized systems or entities.
  • typical devices It is also desirable for typical devices to be configurable and easily updatable only with authorized, verified firmware. loT devices may also contain or have access to sensitive personal or business information that entities owning, controlling or otherwise having a direct interest in those devices may wish to control external access to or to otherwise protect.
  • the disclosed invention is a method for establishing secure communication between a plurality of loT devices in one or more vehicles, each loT device including a hardware processor and associated memory.
  • the method includes: provisioning the plurality of loT devices by providing a unique identification, a digital identity token and a cryptographic key to each of the plurality of loT devices; establishing a secure communication line between the plurality of loT devices by authenticating respective communication lines between respective loT devices and issuing a digital certificate to the respective communication lines;
  • the disclosed invention is a method for establishing secure communication between a plurality of loT devices in one or more vehicles, each loT device including a hardware processor, associated memory, a unique identification, a digital identity token and a cryptographic key.
  • the method includes: inviting a second loT device by a first loT device to establish a communication line with the first loT device by receiving a digital identity token from the second loT device; establishing a secure communication line between the first loT device and the second loT device by authenticating a communication line between the first loT device and the second loT device and issuing a digital certificate to the
  • each of the secure communication lines may include a digital agreement establishing terms of use of said each secure
  • a group may be issued an attribute certificate which includes associated rules for group membership in the attribute certificate.
  • the different groups include sub-groups and each different vehicle may have a different group and each sub-group of a respective group includes components of that vehicle.
  • FIG. 1 shows a security system for performing an exemplary provisioning process for a loT device, according to some embodiments of the disclosed invention.
  • FIG. 2 depicts a security system for inviting an loT device to mutually establish a secure communication line, according to some embodiments of the disclosed invention.
  • FIG. 3 illustrates a security system for establishing secure communication lines between multiple pairs of loT devices in a vehicle, according to some
  • FIG. 3A shows exemplary types of loT devices in a vehicle, according to some embodiments of the disclosed invention.
  • FIG. 4 shows a security system for authenticating a new product including loT devices, according to some embodiments of the disclosed invention.
  • FIG. 5 shows a security system for maintenance of a product including loT devices and their possible replacement, according to some embodiments of the disclosed invention.
  • FIG. 6 depicts some elements of a secure and authenticated
  • FIG. 7 illustrates some elements of a security ecosystem, according to some embodiments of the disclosed invention.
  • FIG. 8 shows an exemplary use of two application programming interfaces (APIs), according to some embodiments of the disclosed invention.
  • FIG. 9 is an exemplary process flow for establishing a secure
  • FIG. 10 shows an exemplary method of using digital signatures in bandwidth-restricted environments, according to some embodiments of the present invention.
  • FIG. 1 1 shows an exemplary method of transmitting a digital signature while minimizing the bandwidth required for such transmission, according to some embodiments of the present invention.
  • the disclosed invention is a method for establishing a secure communication between a plurality of loT devices related to one or more vehicles, such as automobiles, boats, motorcycles and aircrafts.
  • the security ecosystem of the disclosed invention provides many of the above mentioned capabilities through the use of a central server configured with one or more of an attribute authority (AA) acting as a trusted third party mediating service provider by using one or more of a public key
  • AA attribute authority
  • PKI virtual network infrastructure
  • HSM hardware security module
  • VA validation authority
  • PMI privilege management infrastructure
  • VPN virtual network protocol
  • the security ecosystem of the disclosed invention may also provide specifications to third-party loT device manufacturers (whose loT products may later be managed by the security ecosystem) combined possibly with other solutions.
  • Current typical industry practice is to issue only a certificate to each endpoint from a central certification authority (CA).
  • CA central certification authority
  • the security ecosystem of the disclosed invention not only issues certificates to endpoints, but it also issues certificates to each authenticated communication line 705 that pairs of endpoints may establish (have established) and use.
  • this security ecosystem may result in real time management of credentials, identity profiles, communication lines, and/or keys. It is capable of distributing tunable rights to authorized users/devices.
  • inviters may vouch for the identity of the invitees who may successfully complete the protocol establishing secure communication lines, for example, with identity support information supplied by the security ecosystem.
  • Users/devices may establish and respond to authorization requests and other real-time verifications pertaining to accessing a typical communication line (not an endpoint), which may share encrypted communications.
  • a communication line may be accompanied by a digital agreement establishing terms (e.g., rules and/or business logic) of the use of the communication line between the endpoints.
  • digital agreement establishing terms (e.g., rules and/or business logic) of the use of the communication line between the endpoints.
  • a cryptographically-secured group may include all or one or more subset group of the devices incorporated within a single manufactured product, for example, in different embodiments, a group may encompass endpoint loT devices within an automobile, aircraft, medical device, household appliance and the like.
  • individually manufactured loT devices as well as manufactured products include one of more of the following capabilities. They ensure control over data that is produced, which may include protection of data (e.g., using encryption) and possibly movement of the data; exert access control so that unauthorized, random parties cannot get access to the devices; have the ability to instruct the device to listen only to authorized parties so that man-in-the-middle attacks can be prevented or mitigated. These devices may also provide strong identity
  • Many devices may be configurable and easily updatable only with authorized, signed firmware code that is signed using a private key that corresponds to a subject public key within typically a code signing certificate issued by a certification authority recognized by a host computer or device.
  • a manufactured product that may benefit from the solution described herein is an automobile.
  • CAN controller area network
  • the hacker was able to use the automobile's controller area network (CAN) bus to access and take at least partial control over multiple electronic control units (ECUs): such as engine, brake, speed, steering, and/or others.
  • the disclosed invention may be applicable to a variety of ECUs such as human machine interface, engine control unit, transmission control unit, steering control unit, telematics control unit, speed control unit, battery management system, seat and door control units, and the like.
  • the disclosed invention leverages the unique properties of a secure component or a physically unclonable function (PUF), and provides one or more of: a foundation for reliably establishing the identity of an loT device, solves gaps of traditional firewall security, authenticates remote identities, exchanges authenticated public keys, prevents random device access, protects and controls data, and/or updates devices with signed firmware.
  • PAF physically unclonable function
  • the devices incorporating the disclosed invention are capable to control and use protected cryptographic keys.
  • multiple loT devices may be used together in a coordinated manner or in an assembled product in order deliver a complex or integrated solution that may otherwise require specialized skill sets, by integrating loT devices (which incorporate cryptographic and security capabilities according to the disclosed invention) into an assembled product.
  • loT devices are endpoints and are generally composed of two broad types as follows.
  • Control loT or “CloT” devices are the type of client loT devices that may also be used to control or manage one or more similar loT devices or loT devices of a more limited nature.
  • CloT devices may include an ECU in an automobile.
  • a "Limited loT” or “LloT” device typically does not include the processing or memory capacity or other capabilities of a typical CloT devices (with greater memory, processing power, etc.).
  • LloT devices may include sensors, switches, actuators, controllers, and the like.
  • all or portions of the ecosystem system's complete inviter-invitee provisioning protocol may be installed into the device in a partially pre-completed state during its manufacturing process.
  • pre-assigned on such a LloT device may be a unique protocol address or identifier assigned to the device and keys for one or more trusted CloT devices or other trusted devices within the security ecosystem.
  • public keys may be provided to designate to LloT devices when those public keys are associated with devices or endpoints that the LloT device is to trust.
  • LloT device or “loT endpoint” may be used to refer to either a CloT or LloT device.
  • device or “endpoint” may refer to an "loT device", “loT endpoint”, user/endpoint, CloT, LloT device, “container” or user-controlled device such a mobile device, computing device, etc.
  • LloT limited lot
  • CloT control loT
  • an AA may create a digital certificate for each LloT device with the collected, verified information.
  • a digital certificate may include a device's unique identifying information, its device type and capabilities. It may also include the LloT device's relationship to a CloT device(s), address, installed location, inviter-invitee
  • the security ecosystem of the disclosed invention allows for multiple methods of provisioning the device to achieve an endpoint unique identity for the device.
  • an loT device manufacturer's specification may be created by which manufactures of loT devices or products incorporate loT devices (such as: televisions; refrigerators; security systems; thermostats; and the like) to incorporate the technology into their devices at the time of manufacture.
  • this technology may be in the form of fully custom digital logic, IP logic blocks incorporated into the device's existing digital logic, programmable logic implemented using FPGA technology built into the device, fully custom firmware included with the device's own custom firmware, or an open-source or proprietary firmware stack added to the device's firmware.
  • this technology may also be embodied in the device after the time of manufacture.
  • Some embodiments of conformance with the specification would be for the firmware of the loT device to support a device's adherence to any rules included in the digital agreement that is typically recorded in a digital certificate attesting to a communication line between that endpoint device and another endpoint and establishing terms (e.g., rules and/or business logic) of the use of the communication line established between the endpoints.
  • Such specification may also require that loT devices only communicate to previously authenticated endpoints and no others.
  • An loT device endpoint may have communication lines typically established between it and one or more other endpoints, typically a device with which it needs to communicate in order to meet operational or other needs.
  • the rules, procedures, policies described herein may be incorporated in a written specification to be provided to a manufacturer of an loT device, as well as possibly the various supply chain suppliers to that manufacturer (e.g., chip, field programmable gate arrays (FPGA) or others) in order for them to design, produce, manufacture, assemble or otherwise contribute to the creation of loT devices that integrate with the security ecosystem. Included in such a specification may be methods for the security ecosystem to manage secure firmware updates of all managed loT devices.
  • FPGA field programmable gate arrays
  • Specification-conforming device firmware of such an loT device endpoint would reject or ignore communication from any unknown endpoint that has not previously been authenticated through the establishment of a secure communication line, and would talk only to previously authenticated endpoints with established communication lines and supported by digital certificates.
  • Device firmware may initially conform with the specification or may be brought into conformance with the specification by way of a firmware update at a later time.
  • An loT device can be made in conformance with the specification or as a more basic device onto which the device's owner (e.g., owner, manufacturer, or others who desire to increase the security and manageability of the loT devices that they may own or control) may install an appropriate application that would cause such device to perform as an loT device in general conformance with the specification and described functionality of the security ecosystem.
  • an owner may enhance the security of such acquired or controlled loT devices, as well as enhance the owner's management and control over such owned or controlled loT devices, as well as possibly obtain other of the capabilities, features and/or benefits described in this application.
  • all or portions of the provisioning steps may be done by an loT device manufacturer, and/or all or portions may be done by (or on behalf of) a device customer.
  • an loT device manufacturer may be provided with comprehensive installation support procedures as well as configuration options to utilize and to optimize both their manufacturing process and operational
  • an loT device can be assigned a unique address, for example an internet protocol (IP) address or other identifier, as a step in its manufacturing process or, if desired, when the device is put into service.
  • IP internet protocol
  • the address can be securely stored on the loT device in a re-writable memory facility or in a permanent fashion in a secure component.
  • the security ecosystem device manufacturing specification may require the device address to be visible on the device itself via alpha/numeric or QR code, or both.
  • the specification allows a device to optionally be programmed such that when the device powers up, it broadcasts a confirmation message, such as a "Hello" message with its address, together with other identifying information such as its model number, serial number, public keys, current white list, current firmware version, etc.
  • a confirmation message such as a "Hello” message with its address
  • other identifying information such as its model number, serial number, public keys, current white list, current firmware version, etc.
  • a technician may power and test devices, thereby capturing a device's unique "hello” message that comprehensively identifies that device.
  • This feature may be useful to catalogue and assign a specific device designation associated with an installation location in an automobile (These messages may later be disabled).
  • an unalterable manufacturer certification prior to loT device delivery may be included in the specification for loT device
  • Such non-refutable certification can be in one of multiple acceptable forms such as a PKI certificate or other digital token stored in a secure component, or a physical data record on the device that is locally or remotely readable.
  • the manufacturer may be asked to certify one or more of the following: (a) all communication leaving or being received by the device may be controlled by a specified application running on the loT device (e.g., that the device firmware recognizes and supports the secure communication lines technology of the security ecosystem), (b) all or designated communications leaving or being received by the device may only be sent to IP addresses on an updatable white list and/or addresses associated with entities authenticated through an inviter- invitee protocol and/or otherwise provided to the device by an authorized endpoint, (c) additional conditions as may be deemed appropriate, and (d) that no
  • a unique identifier or cryptographic key may be pre-installed during the manufacturing process of the device, or in some cases, injected after the manufacturing of the device.
  • a trusted platform module (TPM) or physically unclonable function (PUF) may be used to provide a unique identity or cryptographic key on the device.
  • PUF physically unclonable function
  • security keys and unique identifiers can be extracted from the innate characteristics of a semiconductor within a device. These unique keys are typically only generated when required and typically do not remain stored on the system, hence providing a high level of protection.
  • the unique key generated with PUF technology allows for the bootstrapping of a cryptographic system (such as what is needed within the loT/endpoint client of the security ecosystem) to establish a root key.
  • a cryptographic system such as what is needed within the loT/endpoint client of the security ecosystem
  • the cryptographic algorithms and/or keys are protected or separated from the application software/firmware in some security subsystem inside the device.
  • the security ecosystem loT device client the security ecosystem loT device client
  • an application may be installed onto a Field Programmable Gate Array (FPGA) or in other types of integrated circuits (ICs).
  • FPGA Field Programmable Gate Array
  • ICs integrated circuits
  • an FPGA, a controller, or a microprocessor may be provisioned with an loT device client which may include one or more of a local key store module (LKSM), a security ecosystem assigned globally unique identifier (GUID) assigned to the device, public keys that are associated with devices, and endpoints that the loT device is to trust (e.g., a firmware-signing authority, loT management device; loT support group; etc.).
  • LKSM local key store module
  • GUID globally unique identifier
  • the LKSM typically includes the encryption management system (e.g., it may provide symmetric, asymmetric, elliptic curve, and/or cryptographic functionality) in the device that manages, for example: (a) a key pair for signature generation and signature verification, (b) key pair(s) for encryption and decryption, (c) a symmetric key for verifying integrity of data, and (d) cryptographic wrapping/unwrapping of digital asset-specific keys (that were initially generated potentially by a device client or cryptography microprocessor or potentially by a security ecosystem server or other), some of which may be installed in a secure component.
  • the encryption management system e.g., it may provide symmetric, asymmetric, elliptic curve, and/or cryptographic functionality
  • the encryption management system e.g., it may provide symmetric, asymmetric, elliptic curve, and/or cryptographic functionality in the device that manages, for example: (a) a key pair for signature generation and signature verification, (b) key pair(s) for encryption
  • FIG. 1 shows an exemplary provisioning process for an loT device, according to some embodiments of the disclosed invention.
  • an installer with a computing device 1 14 would oversee this process or by an loT device with internal intelligence or a computing device controlled by a program, such as an artificial intelligence program, may control the process.
  • the security ecosystem's client app is downloaded (101 ) from the installer's computing device (1 14) or from a security ecosystem platform 108.
  • the security ecosystem platform 108 includes one or more of a PKI, PMI and AA and more.
  • a unique GUID may be associated with the client instance during client installation that is being registered with the security ecosystem in 102 (e.g., transferred via the installer's computing device 1 14).
  • a unique PUF-generated ID may be created on the device, in 103.
  • the crypto capability on a processor within the device may create one or more public/private key pairs with at least one public key being transferred to the security ecosystem 108 directly or via the installer's computing device 1 14; also transferred may be device identifying information such as its model number, serial number, type name, current white list, current firmware version, etc. in 104.
  • a certificate is provided by the AA to the device attesting to the device's identity with one or more of the following: device client GUID, device ID, device public key, device public identity (e.g., type name, serial number, etc.), in 105.
  • the device may create and sign a digital identity token (DIT as further described in the following section) asserting the device's identity, including one or more of: the device's specifications; identity; role or function; its public key; and possibly other information, in 106.
  • DIT digital identity token
  • This DIT can be presented to the installer computing device or possibly to the security ecosystem (or in other embodiments to an loT device with internal intelligence or to a computing device controlled by an artificial intelligence computer program), which reviews and confirms the device's assertions and, in turn possibly certifies its confirmation to the device's assertions thereafter digitally signing the device's digitally signed assertions and sending that to the security ecosystem, in 107.
  • the security ecosystem may review these assertions and may create an attribute certificate or DIT affirming them, in 108.
  • the security ecosystem may provide public key certificates of other devices and/or groups that the loT device is to trust (e.g., firmware signing authority; automotive maintenance group as described in more detail later in this application) and to digitally sign them, certifying that they are to be trusted, and then provide the public key certificates to the loT device, in 109 (possibly transferred via the installer's computing device 1 14).
  • a CloT device (as described herein) may be substituted for an installer's computing device in one or more of the above steps.
  • loT devices are provided with a DIT.
  • DIT tokens may be created from within an existing loT device client thereby taking advantage of the digital signing capability of that loT device client.
  • the token typically includes the digital signature of that issuing device.
  • the token may be created with a configurable variety of identifying fields. In the case of an loT device, these may include: device manufacturer, serial number, device type, device model, GUID, date of issuance, etc.
  • secure boot and software attestation functions are provided to detect tampering with boot loaders and/or critical operating system files by checking their digital signatures and product keys. Invalid files are blocked from running before they might attack or infect the system or device, giving an loT device a trust foundation when operating.
  • a trusted execution technology using cryptographic (or other) techniques to create a unique identifier for a subject component, enabling an accurate comparison of the elements of a startup (or operating) environment against a known good source and arresting the launch of code that does not match (or sending an alert to an appropriate device or endpoint or the security ecosystem).
  • detection may be a digital fingerprint of the device firmware installation, such as a PUF. Such a fingerprint (or cryptographic hash or other derivative thereof) may be incorporated into a DIT or digitally signed and used as a separate verification.
  • processors may be integrated in one or more separate processors. (See for example, FIG. 1 , steps 105 and 109).
  • the provisioning process would also include the addition to the LKSM or secure component or other acceptable storage of public keys associated with trusted users, devices, entities, etc. For example, one of the most important added public keys to be trusted would be from the security
  • Trusted verification can be accomplished in a number of ways.
  • the security ecosystem issues a unique ID or pubic key certificate to be trusted, in the form of a digital certificate to the newly installed loT device firmware client of the brake control unit to which only that loT device client would have access (e.g., by using the public key of the loT device client of the brake control unit).
  • the loT device client of the brake control unit may singularly decrypt that unique ID.
  • the loT device then creates a digital signed token composed of that unique ID possibly encrypted using its private key and return it to the security ecosystem.
  • the security ecosystem verifies that the loT device client of the brake control unit provided an acceptable digital token confirming it uniquely has received the unique ID and /r public key certificate of devices to be trusted.
  • the security ecosystem then creates a message confirming the correct key validation, digitally signs it using the private key associated with the public to be trusted, and returns it to the loT device client of the Brake Control Unit.
  • trusted entities whose trusted public keys may be added include: code signing authorities; a maintenance group; specified devices; etc.
  • provisioned loT devices may be added through the use of an inviter-invitee Protocol for loT devices.
  • the determination for specific relationships between designated loT devices may be made by a number of authorized entities such as: users; the security ecosystem; a master loT device management entity (e.g., a CloT device); an loT device with internal intelligence; an Artificial Intelligence (Al) system with access to the security ecosystem (e.g., the PKI/PMI and/or to the Attribute Authority) and directing the actions of the security ecosystem; etc.
  • a master loT device management entity e.g., a CloT device
  • an loT device with internal intelligence e.g., an Artificial Intelligence (Al) system with access to the security ecosystem (e.g., the PKI/PMI and/or to the Attribute Authority) and directing the actions of the security ecosystem; etc.
  • Al Artificial Intelligence
  • One or more of these may utilize the security ecosystem to instruct a designated loT device to establish a secure communication line with one or more other designated loT devices, including the establishment of rules and/or business logic (or possibly limited to the modification of existing rules and/or business logic).
  • a proper instruction typically will include appropriate identification of both inviter and invitee devices, together with digitally signed authorization for such requests.
  • the AA of the security ecosystem may provide to either or both of the inviter-invitee a question and/or the answer to that question to be used during the inviter-invitee protocol.
  • devices may be capable of executing such instructions with or without the need direct human intervention or action and establish secure communication lines between them with the support of a trusted third party AA.
  • devices may be capable of executing such instructions with or without the need direct human intervention or action and establish secure communication lines between them with the support of a trusted third party AA.
  • the inviter-invitee process is controlled or managed by a human installer or by an automated process.
  • Successful execution of the inviter-invitee protocol for loT devices results in the establishment of the desired communication line and an attribute certificate with a digital agreement (as described herein) being created and recorded by the security ecosystem's AA, which is X.509 compliant in some embodiments.
  • FIG. 2 depicts a security system for inviting an loT device to mutually establish a secure communication line, according to some embodiments of the disclosed invention.
  • This figure illustrates an automotive use case example of a security ecosystem user/endpoint (e.g., a system or device installer 214) wishing to invite a human machine interface unit 212 to join security ecosystem 204 and the systems installer wishes to be able to know, with certainty, that the loT device client subsequently identified as belonging to the identified human machine interface unit was installed and is controlled for this specific human machine interface unit and has not been co-opted by a fraudster.
  • the security ecosystem platform 204 includes one or more of a PKI, PMI and AA and others.
  • the installer 214 may want to know that this human machine interface unit loT device client is the only one on the security ecosystem network. Through a process of chain of custody of digital records to and from that loT device, client may be certified by the security
  • a new user/device in this exemplary case the human machine interface unit 212
  • the loT device client loads the digital identity token shown by 202.
  • the installer 214 may provide its certification to the DIT and transmit it to the security ecosystem, in 203.
  • the security ecosystem network may then examine the token for authenticity, shown by 204.
  • Each token is unique and may only be installed for a single security ecosystem user. In some embodiments, an additional out-of-band confirmation of successful installation is included for that loT device client.
  • out-of-band confirmation may be included in the verification process whereby the security ecosystem 204 issues a unique ID (which may be encrypted using the public key of the human machine interface unit) to the newly installed loT device client of the human machine interface unit to which only it would have access, shown by 205. loT device client of the human machine interface unit 212 would then provide that unique ID (possibly digitally signed using its private key) to the confirming systems installer, in 206.
  • a unique ID which may be encrypted using the public key of the human machine interface unit
  • loT device client of the human machine interface unit 212 would then provide that unique ID (possibly digitally signed using its private key) to the confirming systems installer, in 206.
  • the system's installer certifies to the security ecosystem 204 that he has personally confirmed with human machine interface unit 212 the completion of installation, and optionally includes such a unique ID with his certification to the security ecosystem, for example, through use of his own client application, in 207.
  • Such a confirmation (particularly with the use of a one-time-only unique ID issued by the security ecosystem) would confirm the completion of a secure installation link and thereafter is able to support the future chain of custody of digital records sent between that loT device client and other verified security ecosystem loT device clients, as shown by 209.
  • the described inviter-invitee process generates audit trails based, in part, on digital signatures.
  • other actions and activities of the security ecosystem 204 may generate audit trails based, in part, on digital signatures.
  • the successful completion of the invitee processing may be understood to imply acceptance of any digital agreement(s) proffered by the inviter. This may involve use of a signature generation private key by the invitee's host
  • X.509 protocol Attribute Certificates underlie inviter and invitee processing.
  • the security ecosystem 204 pairs, under mutual agreement, an enterprise-level managed identity with a unique communication line to each authenticated and authorized
  • Secure communication lines and device group management may be applied to provide more than one layer of security and/or privacy for devices and/or data. Such features may be achieved by applying one or more of the following: (a) rules/business logic that may be associated with secure communication line; (b) rules/business logic that may be associated with groups; and/or (c) permitting of communication only between designated groups and/or subgroups and/or external endpoints (whether any endpoints are loT devices or other computing devices).
  • groups may be controlled both directly (by authorized endpoints) as well as through the use of an API (by authorized users).
  • control may include the creation of groups and subgroups, the ability to add and delete devices or other endpoints as members, the ability name a group, the ability to create and modify rules for group members to follow, and other actions or data.
  • There may be gradients of authority on the part of authorized endpoints or API users to create or modify such group parameters.
  • An Artificial Intelligence (Al) software may be made an authorized user.
  • FIG. 3 illustrates a security system for establishing secure communication lines between multiple pairs of loT devices in a vehicle, according to some
  • users/devices and/or the loT devices within a manufactured or assembled product are able to establish unique presence, authenticate and link respective identities with devices, and establish authenticated, verified and secure communication lines between each other. This may be done by devices or devices supervised by an installer 301 operating an end user device 302, multiple human-operated end user devices, or end user device(s), via a human machine interface control unit 305.
  • a cryptographically-secured group may include all of the devices together with their communication lines that may be incorporated within a single manufactured product, such as a vehicle 304, aircraft, medical device, etc. to establish secured, protected and auditable communication to and from that group 307.
  • One or more subgroups of devices may be formed within a group 308 or possibly in a combination of devices with a group and devices outside of the group.
  • the record of the group members, their information, communication lines between the members, group membership and/or other pertinent information may be established, recorded and/or revoked in a security ecosystem.
  • Device group membership as well as rules associated with membership in that group may be included on a certificate that is added (directly or indirectly by an AA) to one or more communication lines of devices within that group.
  • CAN Controller Area Network
  • Device group management provides more than one layer of security by permitting communication only between designated groups and/or subgroups, thus providing stratifications of security.
  • the use of rules associated with communication lines and/or groups may further direct the handling of information for data privacy, for example, by including a requirement(s) for encryption of data; or directing what devices/endpoints may or may not receive specified data.
  • This technology may address the granularity of communication and data security requirements in such use cases.
  • V2V Vehicle-to-vehicle
  • V2I Vehicle-to-infrastructure
  • V2G Vehicle-to- Grid
  • V2X Vehicle-to-X with refers to an intelligent transport system where all vehicles and infrastructure systems are interconnected with each other, thus providing more precise knowledge of the traffic situation across the entire road network
  • OBD On-board diagnostics
  • V2V communications is expected to form a wireless ad hoc network on the roads.
  • V2V communications work by using the input of loT devices, such as sensors, which monitor automobile operation and conditions, such as speed, brake action, traveled distance, and location.
  • the collected data may be protected by encryption and may be automatically uploaded to a server using a wireless network after the occurrence of an event.
  • the system's group, secure communication line and rules/business logic is useful for controlling specific external access to devices and/or data.
  • the external sensors required for V2V activities may be grouped in an "External Sensor Group".
  • the External Sensor Group may have controlled or limited identifying information (e.g., only generic make and model of the vehicle). Personal information regarding the driver or vehicle registration may remain private from the devices in that External Sensor Group through the use of (for example) rules associated with membership in that group.
  • Devices of other vehicles (or possibly stationary or other types of computing devices) that are allowed to communicate with the V2V sensors would typically not have credentials to gain access to devices or information in the vehicle beyond those sensors in an External Sensor Group and as such, may be limited by rules/business logic.
  • Such sensors may typically have carefully defined, limited and authenticated access to specific devices and information within the vehicle.
  • an External Sensor Group may have variable configurations for its own identity that it may transmit externally.
  • the configuration of the system provides for endpoints to be able to maintain multiple identities that may dynamically change based on certain mode and/or time of the operation of the vehicle or its sensors (loT devices). That is, a vehicle or vehicle device groups may have multiple identities.
  • One identity may be as minimal as the generic make and model of a car, for example an identity used by "External Sensor Group".
  • a vehicle may additionally have one or more identities that are more detailed, such as: license plate; registration information; insurance information; etc.
  • Such variable identity configurations may be modified automatically or manually.
  • a selection of vehicle identities may be provisioned to defined classes of vehicles, for example emergency vehicles.
  • a fire truck that is not operating in an emergency situation may broadcast an identity of a large vehicle or of a non-emergency fire truck. However, if the fire truck changes its operation into a mode of responding to an emergency call, then the identity of that fire truck may be broadcast as a responding emergency vehicle.
  • the message broadcast by the fire truck may also include instructions such as: slow and pull to the side of the road, pull forward to the next intersection and leave this road entirely, pull forward so that I can make a left turn, or any message that might be desired.
  • FIG. 3A shows exemplary types of loT devices in a vehicle, according to some embodiments of the disclosed invention.
  • reference numerals 31 signify loT devices in (for example) an "Internal loT Device Group.” In some embodiments, these loT devices do not typically connect externally. Examples may include Electronic Control Units (ECUs) and other devices that are used in the operation of the vehicle.
  • Reference numerals 32 signify loT devices in, for example, an "External Sensor Device Group," which may include sensors that monitor the vehicle's external area, and devices that communicate to other devices that are external to the vehicle, sharing information with them. In some embodiments, some or all of the reference numerals 31 and 32 devices may be combined in a "Vehicle Device Group" that comprises all the devices in the same vehicle.
  • the broadcast message of the fire truck may be digitally signed in such a manner that a receiving node, for example, a vehicle or a non-vehicle node, such as such as an infrastructure component like a traffic light, may trust that the broadcasted message is legitimate and to be trusted.
  • a receiving node for example, a vehicle or a non-vehicle node, such as such as an infrastructure component like a traffic light
  • the system's Public Key Infrastructure (PKI), digital certificates, authenticated communication lines, digital signing, and the like support features such as message authentication, secure grouping, privacy and security.
  • PKI Public Key Infrastructure
  • a system of tiered information or a tiered set of identities that may be provided by a vehicle may be released on an automated or manual basis upon request received from a member of one or more approved authorities.
  • a police vehicle may request vehicle license plate or registration identity or information based on the authority associated with that officer.
  • a request for more sensitive information (for example, insurance information) may require a higher authorization than what an ordinary police officer may possess.
  • Such a request for sensitive information may have to come from a higher authority, or the authority may be provided to a police officer once that officer files a report or files a request for such information to be released by a vehicle.
  • Requests and responses of controlled information may be made on an automated or manual basis and be accompanied by appropriate digital certificates, digital signatures or other system supported method. Defined levels of limited access may be provided to any external device. However, granularly higher levels of access might be provided to granularly defined external groups based on
  • Examples of such access may include: (a) a vehicle maintenance group; (b) a governmentally- approved group to access an on board diagnosis (OBD) port for appropriate government monitoring needs.
  • OBD on board diagnosis
  • FIG. 4 shows a security system for authenticating a new product including loT devices, according to some embodiments of the disclosed invention.
  • Manufactured products incorporating loT devices are typically sold or otherwise provided to buyers, lessees, or other end users.
  • a product may be a car with a buyer 41 1 buying a car 412.
  • a buyer's purchase is made more secure through the incorporation of a digital certificate 401 encompassing pertinent and authenticated information about the car, the loT devices associated with the car and other information.
  • a digital certificate 401 may be delivered from a security ecosystem 402 to a buyer's mobile device 403, tablet device 404, computer 405 or other devices.
  • the security ecosystem platform 402 includes one or more of a PKI, PMI and AA.
  • the buyer 41 1 may execute his/her purchase contract, for example, with a digital signature using a security ecosystem supported mobile device 406 that has been authenticated through the security ecosystem. These digital records 407 may then be transferred to a lender or other interested parties and a lease or a loan agreement might also be digitally signed (408).
  • a recording may be on a BlockchainTM or similar media 418, as shown by 410.
  • the buyer 41 1 and car's relationship may also be authenticated with each other, with a buyer's client application on a buyer device 413, and with both the car (through one of its loT devices 414) and the car's passive key and entry system (key fob device) 415.
  • the buyer's mobile device, the car and the passive key entry system will then all become members of an authenticated group, for example an "loT Devices Group" 416.
  • FIG. 5 shows a security system for maintenance of a product including loT devices, according to some embodiments of the disclosed invention.
  • a product for example, a car 501 to an automobile dealership 502 for maintenance
  • access to the internal loT devices of the car can be protected by the security capabilities that were previously installed in the car 501 .
  • a mechanic 503 seeking access 510 would have to have appropriate credentials 504 to access the car's human-interface control unit 505 through an application on terminal device 506 that had previously been registered within a security ecosystem 507.
  • the mechanic, the application or other acceptable identity would have to demonstrate proper authentication for this purpose.
  • one of them may be an authenticated member of a dealer maintenance group with privileges to access loT devices within the car with definable rights to conduct specified types of maintenance work on the car.
  • the mechanic may determine that the engine control unit is defective and remove it (508) and then install a replacement (509). The mechanic would typically delete the defective engine control unit from the car's records within the security ecosystem 507 and replace it with a new engine control unit record.
  • the replacement process would include appropriate inviter-invitee process between loT devices 51 1 (and possibly provisioning process, as described previously), and updating 510 of records for the car 501 , to reflect the loT device replacement and its updated loT device group within the security ecosystem 507.
  • the security ecosystem platform 507 includes one or more of a PKI, PMI and AA.
  • FIG. 6 depicts some elements of a secure and authenticated communication line, according to some embodiments of the disclosed invention.
  • an loT endpoint 601 should typically have a secure root key provisioned as a method or establishing a unique identifier or cryptographic key on the device. One method of doing this is through the use of a PUF 602. Cryptographic algorithms, secure key storage and client application are provided on the device.
  • a unique DIT is created on by the device 601 or may be provided by the security ecosystem 604.
  • the security ecosystem 604 includes one or more of a PKI, PMI and AA. Through the application of an inviter-invitee process between two endpoints 601 /601 and with facilitated support from an AA within the security ecosystem 604, those endpoints can establish a secure, authenticated communication line 605 between them.
  • a communication line is accompanied by a digital agreement that may be recorded in a digital certificate attesting to the communication line and establishing terms (e.g., rules and/or business logic) of the use of the communication line established between the endpoints 606.
  • terms e.g., rules and/or business logic
  • FIG. 7 illustrates some elements of a security ecosystem 701 , according to some embodiments of the disclosed invention.
  • One of the unique elements of the security ecosystem 701 is that the primary enabling security is based upon communication lines 702 between endpoints 703, not just the endpoints themselves.
  • the security ecosystem 701 of the disclosed invention not only issues certificates 704 to endpoints 703, but it also issues certificates to each authenticated communication line 705 that pairs of endpoints may establish (have established) and use.
  • the endpoint communication lines thus established effectively may be considered to have become white-listed.
  • the white-listing of device communication lines would typically be considered to enhance security.
  • communication lines are typically established at the endpoint level between pairs of endpoints.
  • FIG. 8 shows an exemplary use of two application programming interfaces (APIs), according to some embodiments of the disclosed invention.
  • an API is a set of clearly defined methods of communication between various software components.
  • the security ecosystem may support two separate APIs.
  • an API 802 may be used by a client application on an loT endpoint 803 to access, control, utilize, etc., the capabilities of the security
  • an loT endpoint and the security ecosystem may communicate using other methods without an API.
  • a second API 804 may be utilized by an external user, such as a user from an IT department, for multiple uses. One such use is to view the statuses of all or some of the devices (including loT devices as well as non-loT devices) secure communication lines, certificates, groups, relationships, etc. created, maintained and/or supported by the security ecosystem.
  • Such an API may provide comprehensive, granular visibility to such information. Such information optionally may be used by an external system or user for a variety of analytics purposes.
  • the API may provide capabilities to direct all or a portion of the activities that the security ecosystem may conduct.
  • an external system operating under the direction of an artificial intelligence computer program can utilize this API.
  • the disclosed invention may provide
  • firmware software/firmware updates uniquely for devices.
  • an image of the firmware (or a certificate associated with the firmware) is digitally signed by an established firmware signing authority recognized by a trusted public key being held, for example, by the LKSM of a secure component of the subject device to be updated.
  • the firmware may be digitally signed using the private key of the code signing authority.
  • the signed code is transmitted to the subject device.
  • the subject device Upon receipt, the subject device first uses the trusted public key in its possession to verify that the code signing authority did, in fact, sign the code. Upon such verification, the subject device may complete a firmware update.
  • a device digital record of the unique image of the device's firmware installation may be provided and the record may then be digitally signed by the device or an authority. If needed, at a later point in time, a new image can be created and compared to the previously created image to determine if the two images match. If they do not match, an attack or other problem with the device may be investigated or other action may be taken.
  • audit trails are generated from actions such as inviter/invitee processing, provisioning, the establishment of groups together with other actions taken within the security ecosystem, based in part on digital signatures. Some embodiments provide an audit trail of the composite of the inviter and invitee processing.
  • FIG. 9 is an exemplary process flow for establishing a secure
  • a first and a second loT devices may be provisioned by providing a unique identification, a digital identity token and a cryptographic key to and authenticating each of the first and second loT devices.
  • the provisioning may be performed at the time of manufacturing a product that includes some loT devices, at the time of installing the loT device within the product, at the time of programming the product or the loT devices, or at any time before establishing the communication between the loT devices at issue.
  • the loT devices at issue would have a unique identification and a cryptographic key and are authenticated before they establish a secure communication line.
  • a first digital certificate is issued to the devices, for example, by a trusted third party, such as an attribute authority (AA), in block 904.
  • a first loT device invites a second loT device to establish a (unsecure) communication line with the first loT device by receiving a digital token from the second loT device.
  • the second loT device is authenticated to the first loT device using the unique identification, the digital identity token and cryptographic key of the second loT device, as described in detail throughout the present disclosure.
  • a secure communication line between the first loT device and the second loT device is established by authenticating the unsecured communication line using a second digital certificate provide to the communication line between the first loT device and the second loT device.
  • the security ecosystem of the disclosed invention not only issues (first) certificates to loT devices (endpoints), but it also issues (second) certificates to each authenticated communication line that pairs of loT devices (endpoints) have established and use.
  • a group defines function and/or role, such an external-facing sensors group, groups or subgroups of devices on a CAN bus, all devices within a vehicle, endpoints, and external entities that are responsible for maintaining designated vehicles.
  • An active group may include as few as one active member.
  • a group administrator is considered a member of the group.
  • An attribute certificate for the group indicates group characterization (e.g., external-facing sensors group ,vehicle(s), department(s) and/or role(s)), and references a public key certificate that includes a signature verification public key. The corresponding signature generation private key is held by the group administrator.
  • this may be a master loT device management entity (e.g., a CloT device) which may be controlled by a human or an artificial intelligence capability.
  • a master loT device management entity e.g., a CloT device
  • this may be a designated endpoint computing device which may be controlled by a human or an artificial intelligence capability.
  • This key is used to assign the group public key that is used for encryption or key establishment. This mechanism enables the group administrator to (re-) assign values to the group public key as long as the attribute certificate (or its replacement) is currently valid and the signature verification public key has not been revoked.
  • Attribute certificates are typically generated (by the security ecosystem Attribute Authority (AA) as a result of successfully executed actions by inviter- intended invitees (including all device/endpoint authentication methods for the purpose of establishing secure communication lines as described in this application) enable securely authenticated persistent and private point-to-point communication lines, as well as upon the creation of groups.
  • AA Attribute Authority
  • Each AA-issued attribute certificate points to one or more digital certificates that contain a subject public key.
  • public key certificates may be issued by the security ecosystem's certification authority or by a cross-certified external certification authority.
  • the attribute certificates explicitly reference public key certificates (or other encapsulations of public keys (e.g., "certificate-less" Identity-Based Encryption (IBE)) where cryptographic binding to specific PKCs/public keys (for example, of answers by Invitees to security questions posed by Inviters) within attribute certificate generation request- / Invitee processing- messages
  • public key certificates or other encapsulations of public keys (e.g., "certificate-less" Identity-Based Encryption (IBE)) where cryptographic binding to specific PKCs/public keys (for example, of answers by Invitees to security questions posed by Inviters) within attribute certificate generation request- / Invitee processing- messages
  • establishing secure communication lines as described in this application provides protection against false attribution attempted to be perpetrated via, e.g., server insider attack where the AA has not been compromised.
  • the AA can determine whether or not the answer(s) provided by the purported Invitee are correct based on data supplied by the Inviter, where such data makes judicious use of randomness to prevent exposure outside of the AA.
  • the Invitee communications and processing is designed to be phishing resistant with regard to leakage of information to impostors.
  • RFC 5755 speaks of authentication of an access request
  • the evidence of use of the private key may be implicit, e.g., as anticipated by making use of the corresponding public key to securely convey a digital asset key that remains inaccessible in the absence of knowledge of the private key.
  • Inviter-posed security questions may be considered optional, if they are invoked the methodology briefly outlined above thwarts attempts to hijack the formulation of the communication line between an Inviter and the intended Invitee.
  • mapping of attribute certificates to public key certificates is flexible. For example attribute certificates may be issued to
  • an access control decision function may need to ensure that the appropriate AC holder is the entity that has requested access.
  • One way in which the linkage between the request or identity and the AC can be achieved is the inclusion of a reference to a PKC within the AC and the use of the private key corresponding to the PKC for authentication within the access request." Note that such proof of possession of the private key can be used preemptively within the Invitee protocol as a condition of including a reference to the corresponding PKC in a resultant AC.
  • RFC 5755 speaks of authentication of an access request
  • the evidence of use of the private key may be implicit, e.g., as anticipated by making use of the corresponding public key to securely convey a digital asset key that remains inaccessible in the absence of knowledge of the private key.
  • Inviter-posed security questions may be considered optional, if they are invoked the methodology briefly outlined above thwarts attempts to hijack the formulation of the communication line between an Inviter and the intended Invitee, may correspond to private keys owned and held by, for example, at a master loT device management entity or an entity's IT Department servers - where multiple attribute certificates may thus reference a Public Key Certificate in common.
  • outbound digital assets/digital assets digital asset key generation, digital asset encryption, and targeted encryption of digital asset keys may take place at an entity's IT Department servers.
  • inbound digital assets recovery of digital asset keys using decryption and/or key establishment private keys, and ciphertext digital asset decryption may take place, for example, at an entity's IT Department servers.
  • a hybrid approach may be used such that for certain sensitive operations and/or certain key devices/endpoints/employees, live digital asset encryption or decryption takes place at an end node/endpoint/device. In such case, in addition to the outbound digital asset prepared at the end node and transmitted for the intended recipient(s), a copy of each outbound digital asset generated at the end
  • node/endpoint that is accessible at the entity under certain conditions may be retained or archived.
  • the generation of this copy may entail the use of an encryption or key establishment public key for which the corresponding private key has been escrowed on behalf of the entity.
  • the end node's decryption key or key establishment private key may be available from escrow under certain circumstances.
  • related attribute certificates may be issued in order to reference related public key certificates.
  • two related attribute certificates may be issued where one references a public key certificate containing a subject public key for use in encryption or key establishment while the other references a public key certificate containing a subject public key for use in digital signature verification.
  • the serial number field of the AC does not have any specific requirements for assignment, other than uniqueness, i.e., there is no requirement that the serial numbers used by any AC issuer follow any particular ordering. In particular, they need not be monotonically increasing with time.
  • Each AC issuer must ensure that each AC that it issues contains a unique serial number. Consequently, as a way of dealing with the limitation of associating at most a single PKC with each AC, formally related serial numbers within ACs (e.g., same except for an addendum sub- serial number) may be used to reference related PKCs. This method can be used for indirect but explicit proof of possession of a private key by inheriting the explicit proof of possession of private keys that preceded generation by the AA of the related ACs that reference PKCs.
  • presentation of an appropriate digitally signed message may be used to justify later receiving encrypted communications/digital assets/files where the digital asset keys are encrypted based on use of an encryption public key or key establishment public key that is in a PKC that is referenced by an AC that is related to the AC that references the signature verification public key corresponding to the signature generation private key that was used to generate the digitally signed message.
  • privilege management can be addressed via attribute certificates that include authorization(s) (and/or other attribute(s) that may, in particular, include name(s) and/or identifier(s)), and that can be configured to (preferably
  • a public key certificate may be referenced within an attribute certificate by a hash of the public key certificate or by a hash of the subject public key or by a hash of other field(s) of the public key certificate.
  • Such hash may be a one-way hash.
  • the actual hash values that are used may be sparse amongst the set of all possible hash values.
  • attribute certificates can be used as a basis of mediating digital asset and communications distribution as described in the following in which, for example, references for a "pointer value" may be when a pointer value may be comprised of a hash of an attribute certificate or a hash of one or more fields of an attribute certificate. Such hash may be a one-way hash. The actual hash values that are used may be sparse amongst the set of all possible hash values.
  • pointer values may alternatively or additionally be based on data associated with but external to attribute certificates. Such data may include indices within a database.).
  • attribute certificates are not necessarily considered public information within this model. Rather, knowledge of (or direct or indirect access to) a "pointer value" that (preferably unambiguously) references an attribute certificate associated with an intended recipient or group is used as an indicator to the mediating security ecosystem that the a communications originator of a digital asset (for example endpoint/device, entity or individual or group) may have been deemed eligible to correspond with the entity or endpoint/device/individual or group represented by that particular attribute certificate.
  • a communications originator of a digital asset for example endpoint/device, entity or individual or group
  • the security ecosystem or a recipient device or other endpoint may reject queries/requests concerning particular attribute certificates if the requester does not appear as currently eligible based on database(s) available to the security ecosystem.
  • the endpoint/device, entity or individual or group represented by a particular attribute certificate is designated henceforth as the "owner" of the attribute certificate. This is analogous to
  • a given endpoint, device, entity, individual or group may be represented by multiple distinct attribute certificates. Across such multiple distinct attribute certificates, there may be attribute(s) that are held in common across two or more such attribute certificates and/or references to public key certificate(s) that are common across two or more such attribute certificates.
  • Pointer values do not necessarily need to be known by a potential digital asset / communications uploader or directly accessible to a potential digital asset / communications uploader or to a potential digital asset /
  • Such pointer values may be part of the data associated with the potential digital asset / communications uploader's, endpoint's, device's.
  • the potential digital asset / communications uploader as a security ecosystem
  • device/endpoint/subscriber may have earlier pegged a "nickname" for an attribute certificate owner to a pointer value that is held in that security ecosystem
  • Such conditions may be set by the system and/or by individual security ecosystem device/endpoint/subscribers and/or by groups or other aggregations of security ecosystem device/endpoint/subscribers. Such conditions may be associated, for example, with an invite process/inviter process.
  • a successfully accepted invite can enable the invitee to potentially successfully communicate with colleagues and/or other associates of the inviter or devices or endpoints associated with the inviter (such as groups) by virtue of the invitee having direct or indirect access to pointer values to attribute certificates of such colleagues/associates, devices/endpoints/groups.
  • An invitee protocol (a.k.a. an invite-acceptance process) itself may involve use of one or more of the inviter's and/or inviter's colleagues' or endpoint's or device's attribute certificates.
  • an invitee protocol run the host computer or device used by the invitee may be exposed to data that has purportedly been digitally signed using a private key of the inviter. It may be important for an invitee to independently verify the source of such data prior to entrusting the process with his/her own data that is requested for fulfillment of invitee requirements.
  • An attribute certificate that references the public key to be used to verify the digital signature(s) may contain information about the inviter that can be considered by the invitee, perhaps as part of the decision whether to proceed.
  • An invitee protocol may be designed so that an inviter's host computer or device or other endpoint can be used to determine from such attribute certificate(s) whether or not the specifically intended invitee had actually participated in executing the invitee protocol.
  • a preferred embodiment may be designed to provide an audit trail of the composite of the inviter and invitee processing.
  • an inviter may be able to opt whether or not (preferably unambiguous) references
  • attribute certificates are permitted to be included within attribute
  • This "chaining" of attribute certificates can be used to supply a chain of endorsements. Such endorsements may be a component of a reputation scoring method enabled through inviter and invitee processing. Even if a reference to a particular other attribute certificate is contained within an attribute certificate, knowledge of such other attribute certificate is not necessarily released by the security ecosystem each time that knowledge of the containing attribute certificate is released by the security ecosystem. The owner of a contained attribute certificate and/or the owner(s) of containing attribute certificate(s) may potentially stipulate one or more conditions of such release. If one- way hashing is used as means of referencing attribute certificates, then without such release it may be difficult to reconstruct the attribute certificate.
  • attribute certificate pointer values that reference attribute certificates, and attribute certificates that reference public key certificates these relationships can be independently verified at end entities, endpoints, devices using suitable software and/or hardware if the system is so configured.
  • a certificate issuer may be trusted directly or a public key certificate for that issuer may occur within a chain of certificates such that an entity higher in the hierarchical chain is directly trusted.
  • An attribute authority (AA) may be assigned responsibility for issuing the attribute certificates, where such responsibility may be represented by a public key certificate for that entity or direct trusted knowledge of the AA's public key.
  • the legitimacy of attribute certificates may be determined, at least in part, through testing the digital signatures that are part of properly formed attribute certificates.
  • These digital signatures may be verified using a public key of the AA (as determined, for example, from a public key certificate for the AA or from direct knowledge of a public key associated with the AA) and therefore resulting in an end-to-end verifiability.
  • a public key of the AA as determined, for example, from a public key certificate for the AA or from direct knowledge of a public key associated with the AA
  • system of the disclosed invention may be configured in various ways such that there may be choices as to what is exposed to the user interface as opposed to what is processed at a user's /
  • nicknames may be used to refer to certain items, such as attribute certificate pointer values or attribute certificates, where such nicknames may be locally retained or remembered or accessible from a source perhaps other than the security ecosystem.
  • the security ecosystem may be able to receive nicknames and return the intended items (perhaps because of previous assignment of nicknames to items), where the receiver may independently verify the returned items.
  • Nicknames may be used in this "pulling" manner for items to be retrieved by the nickname-submitter and perhaps verified.
  • Nicknames may also or alternatively be used in a "pushing" manner for items to be made available through the security ecosystem to an identified (individual or device/endpoint or entity)
  • Verification may in some embodiments be done on a random basis rather than on a regular or periodic basis. It is known to use random checking to discover (maliciously imposed and/or naturally occurring) system anomalies as a means of reducing cost(s) and/or inconvenience.
  • An inter-entity preemptive invite process is capable of establishing matrices of exchanged pointer values corresponding to existing attribute certificates.
  • the process enables a mediating security ecosystem as a bridge for entity-to-entity bulk exchange of attribute certificates through the security ecosystem.
  • device/endpoint/entity-members/users/subscribers of the security ecosystem can set updatable whitelists that "preemptively" invite other selected device/endpoint/entity-members by pushing an attribute certificate pointer value and perhaps related information (and/or full attribute certificates) into the security ecosystem- held account data of the invitee entity(s) designated by name or other identifier from the list of device/endpoint/entity-members made available by the security ecosystem to its device/endpoint/entity-members (for those that do not opt out).
  • Follow-up to this preemptive invite process/inviter process may be limited to the invitee using the encryption public key associated with the received pushed attribute certificate to submit (preferably digitally signed) digital asset(s) comprised of lists of (appropriate subsets of) the uploading entity's attribute certificate pointer values and perhaps related information (and/or full attribute certificates), to be matched against corresponding attribute certificate data of the inviter (possibly in a matrix format) when the inviter entity responds with a (preferably digitally signed) digital asset encrypted using the invitee's encryption public key associated with the attribute certificate that was presented with the invitee's digital asset for this purpose.
  • the mediating security ecosystem may be responsible for providing the public key certificate for the encryption public key as subject key.
  • the mediating security ecosystem may be responsible for presenting attribute certificates that reference public keys or public key certificates (where the inviter and/or invitee may have indicated to the security ecosystem the pointer values for attribute certificates, or have indicated "nickname(s)" that map to such pointer values).
  • "encryption public key” may refer to a key used for key establishment, whereby a resulting shared secret value is used to derive a symmetric key used for encryption and for decryption. Such key establishment may be based on Diffie-Hellman.
  • encryption public key may also refer to a key used for encryption, whereby a corresponding decryption private key is used for decryption.
  • a device/endpoint of an entity/company or other computer user may already be employing public-key/asymmetric cryptography using a client (possibly installed on a host computer or on a peripheral device such as a smart card, or across multiple platforms).
  • the security ecosystem- mediated system may allow import of such pre-existing public keys.
  • Such public keys may already bear certificates that can be used within the security ecosystem- mediated system (e.g., under certification by the security ecosystem's CA of the CA that originally issued such public key certificates or of a CA that that issuing CA is subordinate to).
  • all or some such public keys of a given user may become subject public keys of certificates issued by the security ecosystem's CA.
  • protective measures may be taken to avoid bypassing an entity's or other original key usage policy on decryption through routing of data to be decrypted on behalf of the security ecosystem- mediated digital asset / communications management application.
  • security ecosystem servers may not be able to routinely access the private keys (and thus cannot necessarily determine legitimacy of submitted putative encrypted digital asset keys or other encrypted data)
  • all security ecosystem clients/devices/endpoints may be designed to format the data packet such that (with high probability) it is distinguishable from arbitrary data.
  • Imported public key- based use of decryption private keys can then be configured to reject putative security ecosystem- based data that does not reveal the expected pattern/formatting when the decryption private key is applied. If the expected pattern/formatting is present, then release of the digital asset keys or other data into the security ecosystem- mediated digital asset / communications management system client may be permitted.
  • a digital asset key may or may not be protected via encryption during local transit to its use for ciphertext digital asset decryption if such transit is outside of a protected environment. If the digital asset key is protected in transit, then the ciphertext digital asset decryption module would need to first decrypt the encrypted-for-transit digital asset key by applying its knowledge of the appropriate transit key.
  • the non-repudiation aspect can be proactively disambiguated if the security ecosystem usage always includes in the arguments that are signed a "security ecosystem marker field" that serves to prevent the successful false attribution of security ecosystem system- sourced signed messages to non- service-provider- mediated business.
  • This is consistent, in particular, with an operational paradigm in which the signature generation private key corresponds to a signature verification public key that bears a certificate issued by an entity's CA, the signature generation private key never leaves the confines of the entity-provided execution environment on the device/endpoint computer (or peripheral), and hashes of messages to be signed on behalf of the security ecosystem client are input to the entity-provided execution environment.
  • the security ecosystem marker field can be post-appended, prepended, or exclusive-ored to the input message hash, prior to signing. Other ways of applying the security ecosystem marker field might be implemented. Such application may involve an additional hash operation, such as, for example, hashing after the security ecosystem marker field has been appended to the input message hash.
  • an additional hash operation such as, for example, hashing after the security ecosystem marker field has been appended to the input message hash.
  • the entity-provided execution environment and the service-provider client software that generates the message hashes may share an authentication key, for example, a Message
  • MAC Authentication Code
  • FIG. 10 shows an exemplary method of using digital signatures in bandwidth-restricted environments, according to some embodiments of the present invention. This method reduces bandwidth required for transmission of data.
  • a value "n" is selected such that a digital signature is transmitted once every "nth" payload. This allows a tradeoff between security and bandwidth by adjusting the value of n, depending on various applications. This way, a potential intruder/hacker is detected after at most n-1 payload packets.
  • an encrypted or unencrypted sequence number 1001 can be added to each packet 1002.
  • the sequence numbers may be, for example, successive words of a hash value generated when the initial digital signature 1003 was produced for the transmission of n payload packets. Since the hash value is known only to the sender and the receiver of the digital signature, any packets injected by an attacker would be detected immediately.
  • each sequence number 1001 as well as the content of the payload packet 1002 is presented as a mathematical function of the sequence number produced as described in the preceding paragraph. This process would protect not only against packet injection, but also packet alteration of existing, otherwise valid, packets.
  • FIG. 1 1 shows an exemplary method of transmitting a digital signature while minimizing the bandwidth required for such transmission, according to some embodiments of the present invention. In some embodiments, this is accomplished by using a sliced digital signature. For example, the digital signature 1 103 is cut into n slices 1 101 with each slice 1 101 being included as a portion of each individual payload 1 102 to be transmitted. The receiving entity of the transmission then captures each slice of the digital signature from each payload.
  • the n digital signature slices are reassembled into a complete digital signature, which are then verified through the application of known digital signature technology.
  • an implementer can trade off the overhead burden of the digital signature with the latency of signature verification, for example, a larger n results in a lower the overhead burden, but the overall message latency may be increased with the increased size of n.

Abstract

Method for establishing secure communication between a plurality of IoT devices in one or more vehicles include: provisioning the plurality of IoT devices by providing a unique identification, a digital identity token and a cryptographic key to each of the plurality of IoT devices; establishing a secure communication line between the plurality of IoT devices by authenticating respective communication lines between respective IoT devices and issuing a digital certificate to the respective communication lines; grouping the plurality of IoT devices into different groups based on a predetermined criteria; and including a group membership for a group of the different groups in an attribute certificate indicating group characterization.

Description

Secure Communication of loT Devices For Vehicles
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This international application claims priority to and the benefit of U.S.
continuation-in-part of U.S. Patent Application No. 15/686,076 filed on August 24, 2017, which is a continuation-in-part of U.S. Patent Application No. 15/621 ,982 filed on June 13, 2017 and claims the benefit of U.S. Provisional Patent Application No. 62/536,884 filed on July 25, 2017.
[0002] Said U.S. Patent Application No. 15/621 ,982 is a continuation of U.S. Patent Application No. 15/469,244 filed March 24, 2017 (now issued as U.S. Pat. No. 9,716,595), which claims the benefit of U.S. Provisional Patent Application Nos. 62/313,124 filed March 25, 2016; 62/326,812 filed April 24, 2016; 62/330,839 filed May 2, 2016; 62/347,822 filed June 9, 2016; 62/369,722 filed August 1 , 2016;
62/373,769 filed August 1 1 , 2016; and 62/401 ,150 filed September 28, 2016; and is a continuation-in-part of U.S. Patent Application No. 15/269,832 filed September 19, 2016; and said U.S. Patent Application No. 15/269,832 is a continuation of U.S. Patent Application No. 15/002,225 filed January 20, 2016 (now issued as U.S. Pat. No. 9,455,978) and said U.S. Patent Application No. 15/002,225 is a continuation of U.S. Patent Application No. 14/218,897 (now issued as U.S. Pat. No. 9,270,663) and said U.S. Patent Application No. 14/218,897 claims the benefit of U.S. Provisional Patent Application No. 61 /792,927 filed March 15, 2013. U.S. Patent Application No. 15/002,225 is also a continuation-in-part of U.S. Patent Application No. 13/481 ,553 filed May 25, 2012, which claims the benefit of U.S. Provisional Patent Application Nos. 61/650,866 filed May 23, 2012 and 61/490,952 filed May 27, 201 1 .
[0003] Said U.S. Patent Application No. 15/002,225 is also a continuation-in-part of U.S. Patent Application No. 13/096,764 filed April 28, 201 1 , which claims the benefit of U.S. Provisional Patent Application Nos. 61/416,629 filed November 23, 2010; 61 /367,576 filed July 26, 2010; 61 /367,574 filed July 26, 2010; and 61 /330,226 filed April 30, 2010.
[0004] Said U.S. Patent Application No. 15/469,244 is a continuation-in-part of U.S. Patent Application No. 15/409,427 filed January 18, 2017, which is a
continuation of U.S. Patent Application No. 15/154,861 filed May 13, 2016 (now issued as U.S. Pat. No. 9,578,035), and said U.S. Patent Application No. 15/154,861 is a continuation of U.S. Patent Application No. 14/715,588 filed May 18, 2015 (now issued as U.S. Pat. No. 9,356,916), which claims the benefit of U.S. Provisional
Patent Application Nos. 62/133,371 filed March 15, 2015; 61/994,885 filed May 17,
2014; and 61 /367,576 filed July 26, 2010. Said U.S. Patent Application No.
14/715,588 is also a continuation-in-part of 14/218,897 filed March 18, 2014 (now issued as U.S. Pat. No. 9,270,663), which claims the benefit of 61 /792,927 filed
March 15, 2013. Said U.S. Patent Application No. 15/154,861 filed May 13, 2016 is a continuation-in-part of U.S. Patent Application No. 13/481 ,553 filed May 25, 2012, which claims the benefit of U.S. Provisional Patent Application Nos. 61 /650,866 filed May 23, 2012 and 61 /490,952 filed May 27, 201 1 .
[0005] Said U.S. Patent Application No. 15/154,861 filed May 13, 2016 is a continuation-in-part of U.S. Patent Application No. 13/096,764 filed April 28, 201 1 , which claims the benefit of U.S. Provisional Patent Application Nos. 61 /416,629 filed Nov. 23, 2010; 61 /367,574 filed July 26, 2010; and 61 /330,226 filed April 30, 2010.
[0006] The entire contents of all of the above-identified applications are herein expressly incorporated by reference.
FIELD OF THE INVENTION
[0007] The present invention relates generally to Internet of Things (loT) Security and Management and more specifically to system and method for vehicle loT security and management.
BACKGROUND
[0008] Many businesses, organizations, governments and others that are responsible for the security, operations, support and maintenance of Internet of Things (loT) devices are increasing confronting challenges. loT devices are increasingly performing important roles in many areas of a modern economy, including facilities for manufacturing, utilities, distribution, recreation, military, residential, commercial, healthcare and others. In addition, loT devices are incorporated into manufactured products that may or may not be associated with the above facilities such as, automobiles, aircraft, medical devices, etc. For such product manufactures, protecting, controlling and managing the loT devices (which are typically manufactured by third-parties) can be challenging, fraught with danger, risk or potential liability.
[0009] It is desirable for both manufactured products (together with their incorporated loT devices) as well as for enterprises deploying loT devices in their operating facilities (e.g., a factory, utility grid, etc.) to ensure control over the data that is produced, exert access control so that unauthorized, random parties cannot get access to the device, have the ability to instruct a device(s) to listen only to authorized parties, have the ability for a device(s) to ignore unauthorized parties, and/or to provide strong identity management for typical loT device(s) and devices that may be within such operating loT devices to external, authorized systems or entities. [0010] It is also desirable for typical devices to be configurable and easily updatable only with authorized, verified firmware. loT devices may also contain or have access to sensitive personal or business information that entities owning, controlling or otherwise having a direct interest in those devices may wish to control external access to or to otherwise protect.
SUMMARY
[0011] In some embodiments, the disclosed invention is a method for establishing secure communication between a plurality of loT devices in one or more vehicles, each loT device including a hardware processor and associated memory. The method includes: provisioning the plurality of loT devices by providing a unique identification, a digital identity token and a cryptographic key to each of the plurality of loT devices; establishing a secure communication line between the plurality of loT devices by authenticating respective communication lines between respective loT devices and issuing a digital certificate to the respective communication lines;
grouping the plurality of loT devices into different groups based on predetermined criteria; and including a group membership for a group of the different groups in an attribute certificate indicating group characterization.
[0012] In some embodiments, the disclosed invention is a method for establishing secure communication between a plurality of loT devices in one or more vehicles, each loT device including a hardware processor, associated memory, a unique identification, a digital identity token and a cryptographic key. The method includes: inviting a second loT device by a first loT device to establish a communication line with the first loT device by receiving a digital identity token from the second loT device; establishing a secure communication line between the first loT device and the second loT device by authenticating a communication line between the first loT device and the second loT device and issuing a digital certificate to the
communication line; grouping the plurality of loT devices into different groups based on a predetermined criteria; and including group memberships for the different groups in respective attribute certificates of the respective devices.
[0013] In some embodiments, each of the secure communication lines may include a digital agreement establishing terms of use of said each secure
communication line between respective loT devices. In some embodiments, a group may be issued an attribute certificate which includes associated rules for group membership in the attribute certificate. In some embodiments,the different groups include sub-groups and each different vehicle may have a different group and each sub-group of a respective group includes components of that vehicle. BRIEF DESCRIPTION OF THE DRAWINGS
[0014] These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings.
[0015] FIG. 1 shows a security system for performing an exemplary provisioning process for a loT device, according to some embodiments of the disclosed invention.
[0016] FIG. 2 depicts a security system for inviting an loT device to mutually establish a secure communication line, according to some embodiments of the disclosed invention.
[0017] FIG. 3 illustrates a security system for establishing secure communication lines between multiple pairs of loT devices in a vehicle, according to some
embodiments of the disclosed invention.
[0018] FIG. 3A shows exemplary types of loT devices in a vehicle, according to some embodiments of the disclosed invention.
[0019] FIG. 4 shows a security system for authenticating a new product including loT devices, according to some embodiments of the disclosed invention.
[0020] FIG. 5 shows a security system for maintenance of a product including loT devices and their possible replacement, according to some embodiments of the disclosed invention.
[0021] FIG. 6 depicts some elements of a secure and authenticated
communication line, according to some embodiments of the disclosed invention.
[0022] FIG. 7 illustrates some elements of a security ecosystem, according to some embodiments of the disclosed invention.
[0023] FIG. 8 shows an exemplary use of two application programming interfaces (APIs), according to some embodiments of the disclosed invention.
[0024] FIG. 9 is an exemplary process flow for establishing a secure
communication between a plurality of loT devices, according to some embodiments of the disclosed invention.
[0025] FIG. 10 shows an exemplary method of using digital signatures in bandwidth-restricted environments, according to some embodiments of the present invention.
[0026] FIG. 1 1 shows an exemplary method of transmitting a digital signature while minimizing the bandwidth required for such transmission, according to some embodiments of the present invention. DETAILED DESCRIPTION
[0027] In some embodiments, the disclosed invention is a method for establishing a secure communication between a plurality of loT devices related to one or more vehicles, such as automobiles, boats, motorcycles and aircrafts.
[0028] In some embodiments, the security ecosystem of the disclosed invention provides many of the above mentioned capabilities through the use of a central server configured with one or more of an attribute authority (AA) acting as a trusted third party mediating service provider by using one or more of a public key
infrastructure (PKI), including one or more of a certification authority, registration authority, hardware security module (HSM), validation authority (VA, possibly by online certificate status protocol, OCSP, or certificate revocation list, CRL), a privilege management infrastructure (PMI), virtual network protocol (VPN)
technology, device-side client applications, cloud hosting, authentication and light active directory access protocol (LADP). In some embodiments, the security ecosystem of the disclosed invention may also provide specifications to third-party loT device manufacturers (whose loT products may later be managed by the security ecosystem) combined possibly with other solutions. Current typical industry practice is to issue only a certificate to each endpoint from a central certification authority (CA). However, the security ecosystem of the disclosed invention not only issues certificates to endpoints, but it also issues certificates to each authenticated communication line 705 that pairs of endpoints may establish (have established) and use.
[0029] In some embodiments, this security ecosystem may result in real time management of credentials, identity profiles, communication lines, and/or keys. It is capable of distributing tunable rights to authorized users/devices. Using a security ecosystem's user-managed, device-managed, operator-managed, or artificial intelligence-managed inviter-invitee protocol suite, inviters may vouch for the identity of the invitees who may successfully complete the protocol establishing secure communication lines, for example, with identity support information supplied by the security ecosystem. Users/devices may establish and respond to authorization requests and other real-time verifications pertaining to accessing a typical communication line (not an endpoint), which may share encrypted communications.
[0030] Typically, a communication line may be accompanied by a digital agreement establishing terms (e.g., rules and/or business logic) of the use of the communication line between the endpoints. These agreement are generally auditable, brokered, trusted-relationships where such relationships/digital
agreements may each stand-alone (generally for privacy) or may leverage the buildup of identity confidence levels across relationships. These relationships may be organized into defined "groups". In some embodiments, a cryptographically-secured group may include all or one or more subset group of the devices incorporated within a single manufactured product, for example, in different embodiments, a group may encompass endpoint loT devices within an automobile, aircraft, medical device, household appliance and the like.
[0031] According to some embodiments of the disclosed invention, individually manufactured loT devices as well as manufactured products (which incorporate loT devices) include one of more of the following capabilities. They ensure control over data that is produced, which may include protection of data (e.g., using encryption) and possibly movement of the data; exert access control so that unauthorized, random parties cannot get access to the devices; have the ability to instruct the device to listen only to authorized parties so that man-in-the-middle attacks can be prevented or mitigated. These devices may also provide strong identity
management, not only for multiple loT devices that may be within the product, but also from the product to external, authorized systems or devices.
[0032] Many devices may be configurable and easily updatable only with authorized, signed firmware code that is signed using a private key that corresponds to a subject public key within typically a code signing certificate issued by a certification authority recognized by a host computer or device. One example of a manufactured product that may benefit from the solution described herein is an automobile. There have been a number of reports of automobiles having been remotely hacked. Once having access to the system, the hacker was able to use the automobile's controller area network (CAN) bus to access and take at least partial control over multiple electronic control units (ECUs): such as engine, brake, speed, steering, and/or others. The disclosed invention may be applicable to a variety of ECUs such as human machine interface, engine control unit, transmission control unit, steering control unit, telematics control unit, speed control unit, battery management system, seat and door control units, and the like.
[0033] In some embodiments, the disclosed invention leverages the unique properties of a secure component or a physically unclonable function (PUF), and provides one or more of: a foundation for reliably establishing the identity of an loT device, solves gaps of traditional firewall security, authenticates remote identities, exchanges authenticated public keys, prevents random device access, protects and controls data, and/or updates devices with signed firmware.
[0034] In some embodiments, the devices incorporating the disclosed invention are capable to control and use protected cryptographic keys. In some embodiments, multiple loT devices may be used together in a coordinated manner or in an assembled product in order deliver a complex or integrated solution that may otherwise require specialized skill sets, by integrating loT devices (which incorporate cryptographic and security capabilities according to the disclosed invention) into an assembled product.
[0035] For the purposes of the system of the disclosed invention, loT devices are endpoints and are generally composed of two broad types as follows.
[0036] "Control loT" or "CloT" devices are the type of client loT devices that may also be used to control or manage one or more similar loT devices or loT devices of a more limited nature. For example, CloT devices may include an ECU in an automobile.
[0037] A "Limited loT" or "LloT" device typically does not include the processing or memory capacity or other capabilities of a typical CloT devices (with greater memory, processing power, etc.). LloT devices may include sensors, switches, actuators, controllers, and the like.
[0038] Considering the limited processing and other capabilities of a LloT device, all or portions of the ecosystem system's complete inviter-invitee provisioning protocol may be installed into the device in a partially pre-completed state during its manufacturing process. Also, pre-assigned on such a LloT device may be a unique protocol address or identifier assigned to the device and keys for one or more trusted CloT devices or other trusted devices within the security ecosystem. For example, public keys may be provided to designate to LloT devices when those public keys are associated with devices or endpoints that the LloT device is to trust. These would be devices that might offer trusted services to the LloT device, such as a firmware-signing authority, administer/user-controlled device, trusted management device (e.g. a CloT), Trusted Group devices or others. Throughout this disclosure, the terms "loT device" or "loT endpoint" may be used to refer to either a CloT or LloT device. The terms "device" or "endpoint" may refer to an "loT device", "loT endpoint", user/endpoint, CloT, LloT device, "container" or user-controlled device such a mobile device, computing device, etc.
[0039] Typically, assignments of limited lot (LloT) devices may be reported to, managed or controlled by a control loT (CloT) device. Based on the information described above being collected and certified by a CloT device, an AA may create a digital certificate for each LloT device with the collected, verified information. For example, such a digital certificate may include a device's unique identifying information, its device type and capabilities. It may also include the LloT device's relationship to a CloT device(s), address, installed location, inviter-invitee
provisioning process relationships, group membership, manufacture's certification and other information as appropriate. Such certificates may be automatically and continuously updated and maintained throughout the life cycle of the product. [0040] The security ecosystem of the disclosed invention allows for multiple methods of provisioning the device to achieve an endpoint unique identity for the device. In some embodiments, an loT device manufacturer's specification may be created by which manufactures of loT devices or products incorporate loT devices (such as: televisions; refrigerators; security systems; thermostats; and the like) to incorporate the technology into their devices at the time of manufacture. In some embodiments, this technology may be in the form of fully custom digital logic, IP logic blocks incorporated into the device's existing digital logic, programmable logic implemented using FPGA technology built into the device, fully custom firmware included with the device's own custom firmware, or an open-source or proprietary firmware stack added to the device's firmware. For devices with updateable programmable logic resources and/or firmware, this technology may also be embodied in the device after the time of manufacture. Some embodiments of conformance with the specification would be for the firmware of the loT device to support a device's adherence to any rules included in the digital agreement that is typically recorded in a digital certificate attesting to a communication line between that endpoint device and another endpoint and establishing terms (e.g., rules and/or business logic) of the use of the communication line established between the endpoints. Such specification may also require that loT devices only communicate to previously authenticated endpoints and no others. An loT device endpoint may have communication lines typically established between it and one or more other endpoints, typically a device with which it needs to communicate in order to meet operational or other needs.
[0041] The rules, procedures, policies described herein may be incorporated in a written specification to be provided to a manufacturer of an loT device, as well as possibly the various supply chain suppliers to that manufacturer (e.g., chip, field programmable gate arrays (FPGA) or others) in order for them to design, produce, manufacture, assemble or otherwise contribute to the creation of loT devices that integrate with the security ecosystem. Included in such a specification may be methods for the security ecosystem to manage secure firmware updates of all managed loT devices.
[0042] Specification-conforming device firmware of such an loT device endpoint would reject or ignore communication from any unknown endpoint that has not previously been authenticated through the establishment of a secure communication line, and would talk only to previously authenticated endpoints with established communication lines and supported by digital certificates. Device firmware may initially conform with the specification or may be brought into conformance with the specification by way of a firmware update at a later time. An loT device can be made in conformance with the specification or as a more basic device onto which the device's owner (e.g., owner, manufacturer, or others who desire to increase the security and manageability of the loT devices that they may own or control) may install an appropriate application that would cause such device to perform as an loT device in general conformance with the specification and described functionality of the security ecosystem.
[0043] By applying principles and procedures similar to those described for a manufacturer of products (that incorporate loT devices) and making use of the capabilities of the security ecosystem, an owner may enhance the security of such acquired or controlled loT devices, as well as enhance the owner's management and control over such owned or controlled loT devices, as well as possibly obtain other of the capabilities, features and/or benefits described in this application. Moreover, all or portions of the provisioning steps may be done by an loT device manufacturer, and/or all or portions may be done by (or on behalf of) a device customer.
[0044] In some embodiments, an loT device manufacturer may be provided with comprehensive installation support procedures as well as configuration options to utilize and to optimize both their manufacturing process and operational
performance. Within the security ecosystem environment, an loT device can be assigned a unique address, for example an internet protocol (IP) address or other identifier, as a step in its manufacturing process or, if desired, when the device is put into service. The address can be securely stored on the loT device in a re-writable memory facility or in a permanent fashion in a secure component. The security ecosystem device manufacturing specification may require the device address to be visible on the device itself via alpha/numeric or QR code, or both.
[0045] The specification allows a device to optionally be programmed such that when the device powers up, it broadcasts a confirmation message, such as a "Hello" message with its address, together with other identifying information such as its model number, serial number, public keys, current white list, current firmware version, etc. One example of the use of this feature is during the period when components are being installed in automobiles at a manufacturing facility. At any time during testing, assembly, installation, quality inspections, etc., a technician may power and test devices, thereby capturing a device's unique "hello" message that comprehensively identifies that device. This feature may be useful to catalogue and assign a specific device designation associated with an installation location in an automobile (These messages may later be disabled).
[0046] In some embodiments, an unalterable manufacturer certification prior to loT device delivery may be included in the specification for loT device
manufacturers. Such non-refutable certification can be in one of multiple acceptable forms such as a PKI certificate or other digital token stored in a secure component, or a physical data record on the device that is locally or remotely readable. At the time of manufacture of loT devices intended for incorporation into the security ecosystem of the disclosed invention, the manufacturer may be asked to certify one or more of the following: (a) all communication leaving or being received by the device may be controlled by a specified application running on the loT device (e.g., that the device firmware recognizes and supports the secure communication lines technology of the security ecosystem), (b) all or designated communications leaving or being received by the device may only be sent to IP addresses on an updatable white list and/or addresses associated with entities authenticated through an inviter- invitee protocol and/or otherwise provided to the device by an authorized endpoint, (c) additional conditions as may be deemed appropriate, and (d) that no
manufacturer certification is made.
[0047] In some embodiments, in the case of some loT devices, a unique identifier or cryptographic key may be pre-installed during the manufacturing process of the device, or in some cases, injected after the manufacturing of the device. In some embodiments, a trusted platform module (TPM) or physically unclonable function (PUF) may be used to provide a unique identity or cryptographic key on the device. With PUF technology, security keys and unique identifiers can be extracted from the innate characteristics of a semiconductor within a device. These unique keys are typically only generated when required and typically do not remain stored on the system, hence providing a high level of protection. The unique key generated with PUF technology allows for the bootstrapping of a cryptographic system (such as what is needed within the loT/endpoint client of the security ecosystem) to establish a root key. In some embodiments, the cryptographic algorithms and/or keys are protected or separated from the application software/firmware in some security subsystem inside the device.
[0048] In some embodiments, the security ecosystem loT device client
application may be installed onto a Field Programmable Gate Array (FPGA) or in other types of integrated circuits (ICs). For example, an FPGA, a controller, or a microprocessor may be provisioned with an loT device client which may include one or more of a local key store module (LKSM), a security ecosystem assigned globally unique identifier (GUID) assigned to the device, public keys that are associated with devices, and endpoints that the loT device is to trust (e.g., a firmware-signing authority, loT management device; loT support group; etc.). The LKSM typically includes the encryption management system (e.g., it may provide symmetric, asymmetric, elliptic curve, and/or cryptographic functionality) in the device that manages, for example: (a) a key pair for signature generation and signature verification, (b) key pair(s) for encryption and decryption, (c) a symmetric key for verifying integrity of data, and (d) cryptographic wrapping/unwrapping of digital asset-specific keys (that were initially generated potentially by a device client or cryptography microprocessor or potentially by a security ecosystem server or other), some of which may be installed in a secure component.
[0049] FIG. 1 shows an exemplary provisioning process for an loT device, according to some embodiments of the disclosed invention. Typically, an installer with a computing device 1 14 would oversee this process or by an loT device with internal intelligence or a computing device controlled by a program, such as an artificial intelligence program, may control the process. If the security ecosystem's client app has not been previously installed on the loT device, it is downloaded (101 ) from the installer's computing device (1 14) or from a security ecosystem platform 108. The security ecosystem platform 108 includes one or more of a PKI, PMI and AA and more. A unique GUID may be associated with the client instance during client installation that is being registered with the security ecosystem in 102 (e.g., transferred via the installer's computing device 1 14). If not previously generated, a unique PUF-generated ID may be created on the device, in 103. The crypto capability on a processor within the device may create one or more public/private key pairs with at least one public key being transferred to the security ecosystem 108 directly or via the installer's computing device 1 14; also transferred may be device identifying information such as its model number, serial number, type name, current white list, current firmware version, etc. in 104.
[0050] A certificate is provided by the AA to the device attesting to the device's identity with one or more of the following: device client GUID, device ID, device public key, device public identity (e.g., type name, serial number, etc.), in 105. The device may create and sign a digital identity token (DIT as further described in the following section) asserting the device's identity, including one or more of: the device's specifications; identity; role or function; its public key; and possibly other information, in 106. This DIT can be presented to the installer computing device or possibly to the security ecosystem (or in other embodiments to an loT device with internal intelligence or to a computing device controlled by an artificial intelligence computer program), which reviews and confirms the device's assertions and, in turn possibly certifies its confirmation to the device's assertions thereafter digitally signing the device's digitally signed assertions and sending that to the security ecosystem, in 107. Optionally, the security ecosystem may review these assertions and may create an attribute certificate or DIT affirming them, in 108. The security ecosystem may provide public key certificates of other devices and/or groups that the loT device is to trust (e.g., firmware signing authority; automotive maintenance group as described in more detail later in this application) and to digitally sign them, certifying that they are to be trusted, and then provide the public key certificates to the loT device, in 109 (possibly transferred via the installer's computing device 1 14). In some embodiments, a CloT device (as described herein) may be substituted for an installer's computing device in one or more of the above steps.
[0051] In some embodiments, loT devices are provided with a DIT. Typically, DIT tokens may be created from within an existing loT device client thereby taking advantage of the digital signing capability of that loT device client. The token typically includes the digital signature of that issuing device. In step 107, the token may be created with a configurable variety of identifying fields. In the case of an loT device, these may include: device manufacturer, serial number, device type, device model, GUID, date of issuance, etc.
[0052] In some embodiments, secure boot and software attestation functions are provided to detect tampering with boot loaders and/or critical operating system files by checking their digital signatures and product keys. Invalid files are blocked from running before they might attack or infect the system or device, giving an loT device a trust foundation when operating. Additionally, a trusted execution technology using cryptographic (or other) techniques to create a unique identifier for a subject component, enabling an accurate comparison of the elements of a startup (or operating) environment against a known good source and arresting the launch of code that does not match (or sending an alert to an appropriate device or endpoint or the security ecosystem). In some embodiments, detection may be a digital fingerprint of the device firmware installation, such as a PUF. Such a fingerprint (or cryptographic hash or other derivative thereof) may be incorporated into a DIT or digitally signed and used as a separate verification. One or more of these
components may be integrated in one or more separate processors. (See for example, FIG. 1 , steps 105 and 109).
[0053] In some embodiments, the provisioning process would also include the addition to the LKSM or secure component or other acceptable storage of public keys associated with trusted users, devices, entities, etc. For example, one of the most important added public keys to be trusted would be from the security
ecosystem and the signer of the Public Key Certificates of all future trusted public keys to be used.
[0054] Trusted verification can be accomplished in a number of ways. In some embodiments for the assembly of an automobile, the security ecosystem issues a unique ID or pubic key certificate to be trusted, in the form of a digital certificate to the newly installed loT device firmware client of the brake control unit to which only that loT device client would have access (e.g., by using the public key of the loT device client of the brake control unit). The loT device client of the brake control unit may singularly decrypt that unique ID. The loT device then creates a digital signed token composed of that unique ID possibly encrypted using its private key and return it to the security ecosystem.
[0055] The security ecosystem verifies that the loT device client of the brake control unit provided an acceptable digital token confirming it uniquely has received the unique ID and /r public key certificate of devices to be trusted. The security ecosystem then creates a message confirming the correct key validation, digitally signs it using the private key associated with the public to be trusted, and returns it to the loT device client of the Brake Control Unit. The veracity of the signed
confirmation is verified using the public key to be trusted and the confirmation is complete. Thereafter, additional trusted keys may be added and other verified messages from the security ecosystem may verified through this or a similar digital signing capability. Examples of trusted entities whose trusted public keys may be added include: code signing authorities; a maintenance group; specified devices; etc.
[0056] In some embodiments, provisioned loT devices may be added through the use of an inviter-invitee Protocol for loT devices. The determination for specific relationships between designated loT devices may be made by a number of authorized entities such as: users; the security ecosystem; a master loT device management entity (e.g., a CloT device); an loT device with internal intelligence; an Artificial Intelligence (Al) system with access to the security ecosystem (e.g., the PKI/PMI and/or to the Attribute Authority) and directing the actions of the security ecosystem; etc. One or more of these may utilize the security ecosystem to instruct a designated loT device to establish a secure communication line with one or more other designated loT devices, including the establishment of rules and/or business logic (or possibly limited to the modification of existing rules and/or business logic). A proper instruction typically will include appropriate identification of both inviter and invitee devices, together with digitally signed authorization for such requests.
[0057] To facilitate authentication in the inviter-invitee process, the AA of the security ecosystem may provide to either or both of the inviter-invitee a question and/or the answer to that question to be used during the inviter-invitee protocol.
Through such a security ecosystem directed or approved process, devices (possibly through the added use of an artificial intelligence capability or by an loT device with internal intelligence) may be capable of executing such instructions with or without the need direct human intervention or action and establish secure communication lines between them with the support of a trusted third party AA. In some
embodiments, the inviter-invitee process is controlled or managed by a human installer or by an automated process. Successful execution of the inviter-invitee protocol for loT devices results in the establishment of the desired communication line and an attribute certificate with a digital agreement (as described herein) being created and recorded by the security ecosystem's AA, which is X.509 compliant in some embodiments.
[0058] FIG. 2 depicts a security system for inviting an loT device to mutually establish a secure communication line, according to some embodiments of the disclosed invention. This figure illustrates an automotive use case example of a security ecosystem user/endpoint (e.g., a system or device installer 214) wishing to invite a human machine interface unit 212 to join security ecosystem 204 and the systems installer wishes to be able to know, with certainty, that the loT device client subsequently identified as belonging to the identified human machine interface unit was installed and is controlled for this specific human machine interface unit and has not been co-opted by a fraudster. The security ecosystem platform 204 includes one or more of a PKI, PMI and AA and others. Also the installer 214 may want to know that this human machine interface unit loT device client is the only one on the security ecosystem network. Through a process of chain of custody of digital records to and from that loT device, client may be certified by the security
ecosystem.
[0059] When a new user/device (in this exemplary case the human machine interface unit 212) is invited (201 ) and goes through the loT device client installation process, it may be asked whether it has a digital identity token. If so, the loT device client loads the digital identity token shown by 202. The installer 214 may provide its certification to the DIT and transmit it to the security ecosystem, in 203. The security ecosystem network may then examine the token for authenticity, shown by 204. Each token is unique and may only be installed for a single security ecosystem user. In some embodiments, an additional out-of-band confirmation of successful installation is included for that loT device client. An example of out-of-band confirmation may be included in the verification process whereby the security ecosystem 204 issues a unique ID (which may be encrypted using the public key of the human machine interface unit) to the newly installed loT device client of the human machine interface unit to which only it would have access, shown by 205. loT device client of the human machine interface unit 212 would then provide that unique ID (possibly digitally signed using its private key) to the confirming systems installer, in 206.
[0060] In some embodiments, the system's installer certifies to the security ecosystem 204 that he has personally confirmed with human machine interface unit 212 the completion of installation, and optionally includes such a unique ID with his certification to the security ecosystem, for example, through use of his own client application, in 207. Such a confirmation (particularly with the use of a one-time-only unique ID issued by the security ecosystem) would confirm the completion of a secure installation link and thereafter is able to support the future chain of custody of digital records sent between that loT device client and other verified security ecosystem loT device clients, as shown by 209. In some embodiments, the described inviter-invitee process generates audit trails based, in part, on digital signatures. Moreover, other actions and activities of the security ecosystem 204 may generate audit trails based, in part, on digital signatures.
[0061] The successful completion of the invitee processing may be understood to imply acceptance of any digital agreement(s) proffered by the inviter. This may involve use of a signature generation private key by the invitee's host
computer/client/device that corresponds to a subject public key within a certificate that is referenced by a newly generated attribute certificate owned by the invitee. In some embodiments, X.509 protocol Attribute Certificates (ACs) underlie inviter and invitee processing. As a result of the inviter-invitee processing, the security ecosystem 204 pairs, under mutual agreement, an enterprise-level managed identity with a unique communication line to each authenticated and authorized
user/endpoints.
[0062] Secure communication lines and device group management may be applied to provide more than one layer of security and/or privacy for devices and/or data. Such features may be achieved by applying one or more of the following: (a) rules/business logic that may be associated with secure communication line; (b) rules/business logic that may be associated with groups; and/or (c) permitting of communication only between designated groups and/or subgroups and/or external endpoints (whether any endpoints are loT devices or other computing devices).
These capabilities, whether individually or collectively, may provide stratifications of security.
[0063] In some embodiments, groups may be controlled both directly (by authorized endpoints) as well as through the use of an API (by authorized users). Such control may include the creation of groups and subgroups, the ability to add and delete devices or other endpoints as members, the ability name a group, the ability to create and modify rules for group members to follow, and other actions or data. There may be gradients of authority on the part of authorized endpoints or API users to create or modify such group parameters. An Artificial Intelligence (Al) software may be made an authorized user.
[0064] FIG. 3 illustrates a security system for establishing secure communication lines between multiple pairs of loT devices in a vehicle, according to some
embodiments of the disclosed invention. Through the use of one or more methods of device provisioning and an inviter-invitee process, users/devices and/or the loT devices within a manufactured or assembled product are able to establish unique presence, authenticate and link respective identities with devices, and establish authenticated, verified and secure communication lines between each other. This may be done by devices or devices supervised by an installer 301 operating an end user device 302, multiple human-operated end user devices, or end user device(s), via a human machine interface control unit 305.
[0065] These may optionally be used in the formation of relationships between devices 303 (e.g., a human-machine interface control unit 305 and a telematics control unit 306) that with the addition of other similarly paired devices may be organized into defined groups. For example, a cryptographically-secured group may include all of the devices together with their communication lines that may be incorporated within a single manufactured product, such as a vehicle 304, aircraft, medical device, etc. to establish secured, protected and auditable communication to and from that group 307. One or more subgroups of devices may be formed within a group 308 or possibly in a combination of devices with a group and devices outside of the group. Further, the record of the group members, their information, communication lines between the members, group membership and/or other pertinent information may be established, recorded and/or revoked in a security ecosystem. Device group membership as well as rules associated with membership in that group may be included on a certificate that is added (directly or indirectly by an AA) to one or more communication lines of devices within that group.
[0066] One example of a possible application of where this technology may improve security is the Controller Area Network (CAN) bus in vehicles. Device group management provides more than one layer of security by permitting communication only between designated groups and/or subgroups, thus providing stratifications of security. Also, the use of rules associated with communication lines and/or groups may further direct the handling of information for data privacy, for example, by including a requirement(s) for encryption of data; or directing what devices/endpoints may or may not receive specified data. This technology may address the granularity of communication and data security requirements in such use cases.
[0067] Additional examples of the application of such technology include applications where data from manufactured products that incorporate loT devices (e.g. vehicles, aircraft, medical devices and others) may be transferred to external endpoints. For example, in the automotive field, various such applications are expected to become wide-spread, such as: (A) Vehicle-to-vehicle (V2V) automobile technology that is designed to allow automobiles to communicate with each other; (b) Vehicle-to-infrastructure (V2I) which includes wireless exchange of critical safety and operational data between vehicles and roadway infrastructure; (c) Vehicle-to- Grid (V2G), a system in which, certain electric or hybrid vehicles communicate with the power grid to sell demand response services by returning electricity to the grid or by throttling their charging rate; (d) Vehicle-to-X (V2X) with refers to an intelligent transport system where all vehicles and infrastructure systems are interconnected with each other, thus providing more precise knowledge of the traffic situation across the entire road network; (e) On-board diagnostics (OBD) used in automobiles in which a vehicle's self-diagnostic and reporting capability may provide the vehicle owner or repair technician access to the status of the various vehicle subsystems; and (f) other external sources that may wish access to or information from such typed of manufactured products (which may include governmental access).
[0068] For instance, V2V communications is expected to form a wireless ad hoc network on the roads. V2V communications work by using the input of loT devices, such as sensors, which monitor automobile operation and conditions, such as speed, brake action, traveled distance, and location. The collected data may be protected by encryption and may be automatically uploaded to a server using a wireless network after the occurrence of an event.
[0069] The system's group, secure communication line and rules/business logic is useful for controlling specific external access to devices and/or data. For example, the external sensors required for V2V activities may be grouped in an "External Sensor Group". For privacy concerns, the External Sensor Group may have controlled or limited identifying information (e.g., only generic make and model of the vehicle). Personal information regarding the driver or vehicle registration may remain private from the devices in that External Sensor Group through the use of (for example) rules associated with membership in that group. Devices of other vehicles (or possibly stationary or other types of computing devices) that are allowed to communicate with the V2V sensors would typically not have credentials to gain access to devices or information in the vehicle beyond those sensors in an External Sensor Group and as such, may be limited by rules/business logic. Such sensors may typically have carefully defined, limited and authenticated access to specific devices and information within the vehicle.
[0070] In some embodiments, an External Sensor Group may have variable configurations for its own identity that it may transmit externally. The configuration of the system provides for endpoints to be able to maintain multiple identities that may dynamically change based on certain mode and/or time of the operation of the vehicle or its sensors (loT devices). That is, a vehicle or vehicle device groups may have multiple identities. One identity may be as minimal as the generic make and model of a car, for example an identity used by "External Sensor Group". A vehicle may additionally have one or more identities that are more detailed, such as: license plate; registration information; insurance information; etc. Such variable identity configurations may be modified automatically or manually. In some embodiments, a selection of vehicle identities may be provisioned to defined classes of vehicles, for example emergency vehicles. In some embodiments, a fire truck that is not operating in an emergency situation may broadcast an identity of a large vehicle or of a non-emergency fire truck. However, if the fire truck changes its operation into a mode of responding to an emergency call, then the identity of that fire truck may be broadcast as a responding emergency vehicle.
[0071] Vehicles receiving such different signals would typically respond differently. For example, little to no change of operation if the fire truck is
broadcasting an identity of "a non-emergency fire truck", while if that same fire truck changes it identity to that of "responding emergency vehicle" the driver of another vehicle would typically pull to the side of the road (in the case of an autonomous vehicle, pulling to the side of the road may be automatic). The message broadcast by the fire truck may also include instructions such as: slow and pull to the side of the road, pull forward to the next intersection and leave this road entirely, pull forward so that I can make a left turn, or any message that might be desired.
[0072] FIG. 3A shows exemplary types of loT devices in a vehicle, according to some embodiments of the disclosed invention. As shown, reference numerals 31 signify loT devices in (for example) an "Internal loT Device Group." In some embodiments, these loT devices do not typically connect externally. Examples may include Electronic Control Units (ECUs) and other devices that are used in the operation of the vehicle. Reference numerals 32 signify loT devices in, for example, an "External Sensor Device Group," which may include sensors that monitor the vehicle's external area, and devices that communicate to other devices that are external to the vehicle, sharing information with them. In some embodiments, some or all of the reference numerals 31 and 32 devices may be combined in a "Vehicle Device Group" that comprises all the devices in the same vehicle.
[0073] Due to the fact that the system supports digital certificates, digital identity tokens, trusted public keys, group keys, etc., the broadcast message of the fire truck may be digitally signed in such a manner that a receiving node, for example, a vehicle or a non-vehicle node, such as such as an infrastructure component like a traffic light, may trust that the broadcasted message is legitimate and to be trusted. In some embodiments, the system's Public Key Infrastructure (PKI), digital certificates, authenticated communication lines, digital signing, and the like, support features such as message authentication, secure grouping, privacy and security. [0074] There may be a variety of emergency and other governmental vehicle group types beyond fire trucks as well as infrastructure group types that may put such capabilities to use, examples include: ambulances, police vehicles, tow trucks, hazardous materials (HAZMAT) vehicles, military vehicles, traffic lights, street lights, fire control infrastructure, etc. Sender identification, messages sent, granularity of digital authentication, etc., may vary for different use cases. In some embodiments, the messages or information shared and broadcast by a vehicle, infrastructure, or other supported devices may vary depending on request types and/or a requesting party's specific requests.
[0075] A system of tiered information or a tiered set of identities that may be provided by a vehicle (or other endpoint device or manufactured product) may be released on an automated or manual basis upon request received from a member of one or more approved authorities. For example, a police vehicle may request vehicle license plate or registration identity or information based on the authority associated with that officer. A request for more sensitive information (for example, insurance information) may require a higher authorization than what an ordinary police officer may possess. Such a request for sensitive information may have to come from a higher authority, or the authority may be provided to a police officer once that officer files a report or files a request for such information to be released by a vehicle.
[0076] Requests and responses of controlled information may be made on an automated or manual basis and be accompanied by appropriate digital certificates, digital signatures or other system supported method. Defined levels of limited access may be provided to any external device. However, granularly higher levels of access might be provided to granularly defined external groups based on
authenticated relationships or group membership, as described above. Examples of such access may include: (a) a vehicle maintenance group; (b) a governmentally- approved group to access an on board diagnosis (OBD) port for appropriate government monitoring needs.
[0077] FIG. 4 shows a security system for authenticating a new product including loT devices, according to some embodiments of the disclosed invention.
Manufactured products incorporating loT devices are typically sold or otherwise provided to buyers, lessees, or other end users. In some embodiments, such a product may be a car with a buyer 41 1 buying a car 412. In such a case a buyer's purchase is made more secure through the incorporation of a digital certificate 401 encompassing pertinent and authenticated information about the car, the loT devices associated with the car and other information. Such a digital certificate 401 may be delivered from a security ecosystem 402 to a buyer's mobile device 403, tablet device 404, computer 405 or other devices. The security ecosystem platform 402 includes one or more of a PKI, PMI and AA. The buyer 41 1 may execute his/her purchase contract, for example, with a digital signature using a security ecosystem supported mobile device 406 that has been authenticated through the security ecosystem. These digital records 407 may then be transferred to a lender or other interested parties and a lease or a loan agreement might also be digitally signed (408).
[0078] A record of the purchase combined with a digital record of the car (and possibly a lease or loan document (409)) is then recorded (by a lender, security ecosystem or other) in an immutable manner (410). One example of such a recording may be on a Blockchain™ or similar media 418, as shown by 410. The buyer 41 1 and car's relationship may also be authenticated with each other, with a buyer's client application on a buyer device 413, and with both the car (through one of its loT devices 414) and the car's passive key and entry system (key fob device) 415. The buyer's mobile device, the car and the passive key entry system will then all become members of an authenticated group, for example an "loT Devices Group" 416.
[0079] FIG. 5 shows a security system for maintenance of a product including loT devices, according to some embodiments of the disclosed invention. When bringing a product, for example, a car 501 to an automobile dealership 502 for maintenance, access to the internal loT devices of the car can be protected by the security capabilities that were previously installed in the car 501 . For example, a mechanic 503 seeking access 510 would have to have appropriate credentials 504 to access the car's human-interface control unit 505 through an application on terminal device 506 that had previously been registered within a security ecosystem 507. The mechanic, the application or other acceptable identity would have to demonstrate proper authentication for this purpose. For example, one of them may be an authenticated member of a dealer maintenance group with privileges to access loT devices within the car with definable rights to conduct specified types of maintenance work on the car. For example the mechanic may determine that the engine control unit is defective and remove it (508) and then install a replacement (509). The mechanic would typically delete the defective engine control unit from the car's records within the security ecosystem 507 and replace it with a new engine control unit record. The replacement process would include appropriate inviter-invitee process between loT devices 51 1 (and possibly provisioning process, as described previously), and updating 510 of records for the car 501 , to reflect the loT device replacement and its updated loT device group within the security ecosystem 507. The security ecosystem platform 507 includes one or more of a PKI, PMI and AA. [0080] FIG. 6 depicts some elements of a secure and authenticated communication line, according to some embodiments of the disclosed invention. As shown, an loT endpoint 601 should typically have a secure root key provisioned as a method or establishing a unique identifier or cryptographic key on the device. One method of doing this is through the use of a PUF 602. Cryptographic algorithms, secure key storage and client application are provided on the device. A unique DIT is created on by the device 601 or may be provided by the security ecosystem 604. The security ecosystem 604 includes one or more of a PKI, PMI and AA. Through the application of an inviter-invitee process between two endpoints 601 /601 and with facilitated support from an AA within the security ecosystem 604, those endpoints can establish a secure, authenticated communication line 605 between them.
Typically, a communication line is accompanied by a digital agreement that may be recorded in a digital certificate attesting to the communication line and establishing terms (e.g., rules and/or business logic) of the use of the communication line established between the endpoints 606.
[0081] FIG. 7 illustrates some elements of a security ecosystem 701 , according to some embodiments of the disclosed invention. One of the unique elements of the security ecosystem 701 is that the primary enabling security is based upon communication lines 702 between endpoints 703, not just the endpoints themselves. However, the security ecosystem 701 of the disclosed invention not only issues certificates 704 to endpoints 703, but it also issues certificates to each authenticated communication line 705 that pairs of endpoints may establish (have established) and use. By building relationships only upon individual communication lines with certificates, the endpoint communication lines thus established effectively may be considered to have become white-listed. The white-listing of device communication lines would typically be considered to enhance security. Rather than be centrally managed, communication lines are typically established at the endpoint level between pairs of endpoints. This allows authenticated endpoints to establish secure communication lines with authenticated other devices with which they need to communicate with in order to meet operational needs. Communications from an unknown endpoint 706 without secure communication lines 707 that have previously been authenticated and have an issued certificate 708 are prevented or ignored 709 (invitations from unknown endpoints to establish a secure communication are not ignored, however such invitations are managed by an AA which supports the authentication of both devices). This is an anti-spoofing result properly provisioned endpoints with secure communication lines talk only to previously authenticated endpoints and no others. [0082] FIG. 8 shows an exemplary use of two application programming interfaces (APIs), according to some embodiments of the disclosed invention. In general terms, an API is a set of clearly defined methods of communication between various software components. The security ecosystem may support two separate APIs. In some embodiments, an API 802 may be used by a client application on an loT endpoint 803 to access, control, utilize, etc., the capabilities of the security
ecosystem 801 . In some embodiments, an loT endpoint and the security ecosystem may communicate using other methods without an API. A second API 804 may be utilized by an external user, such as a user from an IT department, for multiple uses. One such use is to view the statuses of all or some of the devices (including loT devices as well as non-loT devices) secure communication lines, certificates, groups, relationships, etc. created, maintained and/or supported by the security ecosystem. Such an API may provide comprehensive, granular visibility to such information. Such information optionally may be used by an external system or user for a variety of analytics purposes. Optionally, the API may provide capabilities to direct all or a portion of the activities that the security ecosystem may conduct. In some embodiments, an external system operating under the direction of an artificial intelligence computer program can utilize this API.
[0083] In some embodiments, the disclosed invention may provide
software/firmware updates uniquely for devices. For example, an image of the firmware (or a certificate associated with the firmware) is digitally signed by an established firmware signing authority recognized by a trusted public key being held, for example, by the LKSM of a secure component of the subject device to be updated. Using industry standard code signing technology, the firmware may be digitally signed using the private key of the code signing authority. The signed code is transmitted to the subject device. Upon receipt, the subject device first uses the trusted public key in its possession to verify that the code signing authority did, in fact, sign the code. Upon such verification, the subject device may complete a firmware update.
[0084] In some embodiments, a device digital record of the unique image of the device's firmware installation may be provided and the record may then be digitally signed by the device or an authority. If needed, at a later point in time, a new image can be created and compared to the previously created image to determine if the two images match. If they do not match, an attack or other problem with the device may be investigated or other action may be taken.
[0085] In some embodiments, audit trails are generated from actions such as inviter/invitee processing, provisioning, the establishment of groups together with other actions taken within the security ecosystem, based in part on digital signatures. Some embodiments provide an audit trail of the composite of the inviter and invitee processing.
[0086] FIG. 9 is an exemplary process flow for establishing a secure
communication between a plurality of loT devices, according to some embodiments of the disclosed invention. As shown in optional block 902, a first and a second loT devices may be provisioned by providing a unique identification, a digital identity token and a cryptographic key to and authenticating each of the first and second loT devices. As described above, the provisioning may be performed at the time of manufacturing a product that includes some loT devices, at the time of installing the loT device within the product, at the time of programming the product or the loT devices, or at any time before establishing the communication between the loT devices at issue. In either case, the loT devices at issue would have a unique identification and a cryptographic key and are authenticated before they establish a secure communication line.
[0087] A first digital certificate is issued to the devices, for example, by a trusted third party, such as an attribute authority (AA), in block 904. In block 906, a first loT device invites a second loT device to establish a (unsecure) communication line with the first loT device by receiving a digital token from the second loT device. In block 908, the second loT device is authenticated to the first loT device using the unique identification, the digital identity token and cryptographic key of the second loT device, as described in detail throughout the present disclosure. In block 910, a secure communication line between the first loT device and the second loT device is established by authenticating the unsecured communication line using a second digital certificate provide to the communication line between the first loT device and the second loT device. This way, the security ecosystem of the disclosed invention not only issues (first) certificates to loT devices (endpoints), but it also issues (second) certificates to each authenticated communication line that pairs of loT devices (endpoints) have established and use.
[0088] In block 912, another (a third) loT device for which a secure
communication line to the first or second loT device has not been established is prevented from communicating with the first or second loT device.
[0089] Utilizing the method and system of the disclosed invention, it would be possible for various authorized parties to establish and/or monitor and/or modify the various group and subgroup memberships and/or rules/business logic that may exist within the manufactured product. These may include a: manufacturer,
manufactured product owner, court with jurisdiction, and others.
[0090] In some embodiments, a group defines function and/or role, such an external-facing sensors group, groups or subgroups of devices on a CAN bus, all devices within a vehicle, endpoints, and external entities that are responsible for maintaining designated vehicles. An active group may include as few as one active member. A group administrator is considered a member of the group. An attribute certificate for the group indicates group characterization (e.g., external-facing sensors group ,vehicle(s), department(s) and/or role(s)), and references a public key certificate that includes a signature verification public key. The corresponding signature generation private key is held by the group administrator. For example, in the case of a vehicle this may be a master loT device management entity (e.g., a CloT device) which may be controlled by a human or an artificial intelligence capability. For example, in the case of a vehicle maintenance group this may be a designated endpoint computing device which may be controlled by a human or an artificial intelligence capability. This key is used to assign the group public key that is used for encryption or key establishment. This mechanism enables the group administrator to (re-) assign values to the group public key as long as the attribute certificate (or its replacement) is currently valid and the signature verification public key has not been revoked.
[0091] In some embodiments, there are at least two ways for the group
administrator to securely provide the group private key to other current members of the group: (a) use can be made of (certificate-bearing or otherwise authenticated) encryption public keys or key establishment public keys of prospective group members; (b) use can be made of ephemeral key establishment public keys that have been digitally signed using digital signature generation private keys of prospective group members that correspond to certificate-bearing or otherwise authenticated signature verification public keys. If a (non- group administrator) group member's access is to be deleted, the group administrator can assign a new value to the group public key and distribute the corresponding group private key to surviving group members (as well as to new group members if/when such are added).
[0092] Attribute certificates are typically generated (by the security ecosystem Attribute Authority (AA) as a result of successfully executed actions by inviter- intended invitees (including all device/endpoint authentication methods for the purpose of establishing secure communication lines as described in this application) enable securely authenticated persistent and private point-to-point communication lines, as well as upon the creation of groups. Each AA-issued attribute certificate points to one or more digital certificates that contain a subject public key. Such public key certificates may be issued by the security ecosystem's certification authority or by a cross-certified external certification authority.
[0093] In some embodiments, the attribute certificates explicitly reference public key certificates (or other encapsulations of public keys (e.g., "certificate-less" Identity-Based Encryption (IBE)) where cryptographic binding to specific PKCs/public keys (for example, of answers by Invitees to security questions posed by Inviters) within attribute certificate generation request- / Invitee processing- messages
(including all device/endpoint authentication methods for the purposed of
establishing secure communication lines as described in this application) provides protection against false attribution attempted to be perpetrated via, e.g., server insider attack where the AA has not been compromised. The AA can determine whether or not the answer(s) provided by the purported Invitee are correct based on data supplied by the Inviter, where such data makes judicious use of randomness to prevent exposure outside of the AA. Furthermore, the Invitee communications and processing is designed to be phishing resistant with regard to leakage of information to impostors.
[0094] Per RFC 5755 http://datatracker.ietf.org/doc/rfc5755/ that defines a profile for the use of X.509 attribute certificates in Internet Protocols, "When making an access control decision based on an AC, an access control decision function may need to ensure that the appropriate AC holder is the entity that has requested access. One way in which the linkage between the request or identity and the AC can be achieved is the inclusion of a reference to a PKC within the AC and the use of the private key corresponding to the PKC for authentication within the access request." Note that such proof of possession of the private key can be used preemptively within the Invitee protocol as a condition of including a reference to the corresponding PKC in a resultant AC. Note that while RFC 5755 speaks of authentication of an access request, the evidence of use of the private key may be implicit, e.g., as anticipated by making use of the corresponding public key to securely convey a digital asset key that remains inaccessible in the absence of knowledge of the private key. While the use of Inviter-posed security questions may be considered optional, if they are invoked the methodology briefly outlined above thwarts attempts to hijack the formulation of the communication line between an Inviter and the intended Invitee.
[0095] In some embodiments, the mapping of attribute certificates to public key certificates is flexible. For example attribute certificates may be issued to
devices/endpoints/holders/owners at an individual device/endpoint/- or group- or department- level (i.e., at the device/endpoint-/end-node- level), while referenced Per RFC 5755, an access control decision function may need to ensure that the appropriate AC holder is the entity that has requested access. One way in which the linkage between the request or identity and the AC can be achieved is the inclusion of a reference to a PKC within the AC and the use of the private key corresponding to the PKC for authentication within the access request." Note that such proof of possession of the private key can be used preemptively within the Invitee protocol as a condition of including a reference to the corresponding PKC in a resultant AC. Note that while RFC 5755 speaks of authentication of an access request, the evidence of use of the private key may be implicit, e.g., as anticipated by making use of the corresponding public key to securely convey a digital asset key that remains inaccessible in the absence of knowledge of the private key. While the use of Inviter-posed security questions may be considered optional, if they are invoked the methodology briefly outlined above thwarts attempts to hijack the formulation of the communication line between an Inviter and the intended Invitee, may correspond to private keys owned and held by, for example, at a master loT device management entity or an entity's IT Department servers - where multiple attribute certificates may thus reference a Public Key Certificate in common. In the case of digital signature generation private keys (as opposed to decryption and/or key establishment private keys), an exception may be made for digital signing of (plaintext) digital assets, messages or other digital asset that takes place at the device/endpoint/end-node level (while any digital signing of communications/requests to the security ecosystem takes place at a master loT device management entity or an entity's IT Department servers).
[0096] For outbound digital assets/digital assets: digital asset key generation, digital asset encryption, and targeted encryption of digital asset keys may take place at an entity's IT Department servers. For inbound digital assets: recovery of digital asset keys using decryption and/or key establishment private keys, and ciphertext digital asset decryption may take place, for example, at an entity's IT Department servers. A hybrid approach may be used such that for certain sensitive operations and/or certain key devices/endpoints/employees, live digital asset encryption or decryption takes place at an end node/endpoint/device. In such case, in addition to the outbound digital asset prepared at the end node and transmitted for the intended recipient(s), a copy of each outbound digital asset generated at the end
node/endpoint that is accessible at the entity under certain conditions may be retained or archived. The generation of this copy may entail the use of an encryption or key establishment public key for which the corresponding private key has been escrowed on behalf of the entity. Similarly, for inbound digital assets, the end node's decryption key or key establishment private key may be available from escrow under certain circumstances.
[0097] In some embodiments, related attribute certificates may be issued in order to reference related public key certificates. For example, two related attribute certificates may be issued where one references a public key certificate containing a subject public key for use in encryption or key establishment while the other references a public key certificate containing a subject public key for use in digital signature verification. While some prior methods indicate only a single PKC can be referenced by an AC within the base CertificatelD option of the AC Holder field (as "the issuer and serial number of the holder's Public Key Certificate"), the serial number field of the AC does not have any specific requirements for assignment, other than uniqueness, i.e., there is no requirement that the serial numbers used by any AC issuer follow any particular ordering. In particular, they need not be monotonically increasing with time. Each AC issuer must ensure that each AC that it issues contains a unique serial number. Consequently, as a way of dealing with the limitation of associating at most a single PKC with each AC, formally related serial numbers within ACs (e.g., same except for an addendum sub- serial number) may be used to reference related PKCs. This method can be used for indirect but explicit proof of possession of a private key by inheriting the explicit proof of possession of private keys that preceded generation by the AA of the related ACs that reference PKCs.
[0098] For example, presentation of an appropriate digitally signed message (proving possession of a signature generation private key) may be used to justify later receiving encrypted communications/digital assets/files where the digital asset keys are encrypted based on use of an encryption public key or key establishment public key that is in a PKC that is referenced by an AC that is related to the AC that references the signature verification public key corresponding to the signature generation private key that was used to generate the digitally signed message. Note that this "U-shaped" association of say PKC1 to PKC2 (by proving possession of the subject private key corresponding to PKC1 that is referenced by AC1 that is related by serial numbers to AC1 that references PKC2) does not rely on PKC1 and PKC2 being in any way directly linkable (such as through related choices of subject name or subject alternative names that may include such data as email addresses or IP addresses). Note that PKC1 and PKC2 can be generated by distinct CAs.
[0099] In some embodiments, it is desirable to be able to provide a service whereby a security ecosystem mediates the targeted distribution and/or
encryption/decryption of digital assets, messages or files and/or other
communications across domains such that there is end-to-end trust in the routing. It is known that privilege management can be addressed via attribute certificates that include authorization(s) (and/or other attribute(s) that may, in particular, include name(s) and/or identifier(s)), and that can be configured to (preferably
unambiguously) reference one or more identity certificates (also known as public key certificates or public-key certificates) that each include a subject public key and subject name. For example, a public key certificate may be referenced within an attribute certificate by a hash of the public key certificate or by a hash of the subject public key or by a hash of other field(s) of the public key certificate. Such hash may be a one-way hash. The actual hash values that are used may be sparse amongst the set of all possible hash values.
[00100] In some embodiments, attribute certificates can be used as a basis of mediating digital asset and communications distribution as described in the following in which, for example, references for a "pointer value" may be when a pointer value may be comprised of a hash of an attribute certificate or a hash of one or more fields of an attribute certificate. Such hash may be a one-way hash. The actual hash values that are used may be sparse amongst the set of all possible hash values. In some embodiments, pointer values may alternatively or additionally be based on data associated with but external to attribute certificates. Such data may include indices within a database.).
[00101] In some embodiments, attribute certificates are not necessarily considered public information within this model. Rather, knowledge of (or direct or indirect access to) a "pointer value" that (preferably unambiguously) references an attribute certificate associated with an intended recipient or group is used as an indicator to the mediating security ecosystem that the a communications originator of a digital asset (for example endpoint/device, entity or individual or group) may have been deemed eligible to correspond with the entity or endpoint/device/individual or group represented by that particular attribute certificate. However, in order to deal with the possibility of unauthorized dissemination/forwarding of attribute certificates and/or pointer values, the security ecosystem or a recipient device or other endpoint may reject queries/requests concerning particular attribute certificates if the requester does not appear as currently eligible based on database(s) available to the security ecosystem.
[00102] For convenience, in some embodiments, the endpoint/device, entity or individual or group represented by a particular attribute certificate is designated henceforth as the "owner" of the attribute certificate. This is analogous to
considering the owner of an identity certificate to be the owner of the private key corresponding to the subject public key within the identity certificate. A given endpoint, device, entity, individual or group may be represented by multiple distinct attribute certificates. Across such multiple distinct attribute certificates, there may be attribute(s) that are held in common across two or more such attribute certificates and/or references to public key certificate(s) that are common across two or more such attribute certificates.
[00103] Access to knowledge of one or more pointer value(s) that each reference an attribute certificate of a particular attribute certificate owner does not necessarily imply access to other attribute certificate(s) (or their pointer value(s)), if any, of that attribute certificate owner. Pointer values do not necessarily need to be known by a potential digital asset / communications uploader or directly accessible to a potential digital asset / communications uploader or to a potential digital asset /
communications uploader's (including a endpoint, device ), host computer or other computing device in order to provide eligibility to upload or transmission to a recipient. For example, such pointer values may be part of the data associated with the potential digital asset / communications uploader's, endpoint's, device's. The potential digital asset / communications uploader, as a security ecosystem
device/endpoint/subscriber, may have earlier pegged a "nickname" for an attribute certificate owner to a pointer value that is held in that security ecosystem
device/endpoint/device/subscriber's account data or record information.
[00104] Knowledge of or (direct or indirect) access to a pointer value potentially enables successful communication to the owner of the corresponding attribute certificate, it may be advantageous to provide offers of an inviter's, device's, endpoint's own pointer values. One may be able to make a request to the mediating security ecosystem regarding which pointer values and/or attribute certificates to make available to particular security ecosystem device/endpoint/subscribers, where these pointer values may be in the requesting device/endpoint/subscriber's account data or record information whether or not the requesting device/endpoint/subscriber owns one or more of these attribute certificates. There may be conditions
associated with the forwarding of pointer values for temporary and/or sustained use. Such conditions may be set by the system and/or by individual security ecosystem device/endpoint/subscribers and/or by groups or other aggregations of security ecosystem device/endpoint/subscribers. Such conditions may be associated, for example, with an invite process/inviter process.
[00105] One reason for attempting to forward pointer values in addition to an inviter's own is that a successfully accepted invite can enable the invitee to potentially successfully communicate with colleagues and/or other associates of the inviter or devices or endpoints associated with the inviter (such as groups) by virtue of the invitee having direct or indirect access to pointer values to attribute certificates of such colleagues/associates, devices/endpoints/groups. An invitee protocol (a.k.a. an invite-acceptance process) itself may involve use of one or more of the inviter's and/or inviter's colleagues' or endpoint's or device's attribute certificates. In particular, during an invitee protocol run the host computer or device used by the invitee may be exposed to data that has purportedly been digitally signed using a private key of the inviter. It may be important for an invitee to independently verify the source of such data prior to entrusting the process with his/her own data that is requested for fulfillment of invitee requirements. An attribute certificate that references the public key to be used to verify the digital signature(s) may contain information about the inviter that can be considered by the invitee, perhaps as part of the decision whether to proceed. An invitee protocol run (including all
device/endpoint authentication methods for the purposed of establishing secure communication lines as described in this application), if successfully executed, may result in issuance of one or more attribute certificates owned by the invitee. An invitee protocol may be designed so that an inviter's host computer or device or other endpoint can be used to determine from such attribute certificate(s) whether or not the specifically intended invitee had actually participated in executing the invitee protocol. A preferred embodiment may be designed to provide an audit trail of the composite of the inviter and invitee processing.
[00106] In some embodiments, as part of an invite protocol/inviter protocol
(including all device/endpoint authentication methods for the purposed of
establishing secure communication lines as described in this application), an inviter may be able to opt whether or not (preferably unambiguous) references
(accomplished, for example, via hashing which may be one-way hashing) to one or more of its attribute certificates are permitted to be included within attribute
certificate(s) for the invitee that result from successful execution of the invitee protocol. The invitee may be able to choose whether or not to include such references in the resultant attribute certificate(s). This "chaining" of attribute certificates can be used to supply a chain of endorsements. Such endorsements may be a component of a reputation scoring method enabled through inviter and invitee processing. Even if a reference to a particular other attribute certificate is contained within an attribute certificate, knowledge of such other attribute certificate is not necessarily released by the security ecosystem each time that knowledge of the containing attribute certificate is released by the security ecosystem. The owner of a contained attribute certificate and/or the owner(s) of containing attribute certificate(s) may potentially stipulate one or more conditions of such release. If one- way hashing is used as means of referencing attribute certificates, then without such release it may be difficult to reconstruct the attribute certificate.
[00107] Since the disclosed invention allows for attribute certificate pointer values that reference attribute certificates, and attribute certificates that reference public key certificates, these relationships can be independently verified at end entities, endpoints, devices using suitable software and/or hardware if the system is so configured. A certificate issuer may be trusted directly or a public key certificate for that issuer may occur within a chain of certificates such that an entity higher in the hierarchical chain is directly trusted. An attribute authority (AA) may be assigned responsibility for issuing the attribute certificates, where such responsibility may be represented by a public key certificate for that entity or direct trusted knowledge of the AA's public key. The legitimacy of attribute certificates may be determined, at least in part, through testing the digital signatures that are part of properly formed attribute certificates. These digital signatures may be verified using a public key of the AA (as determined, for example, from a public key certificate for the AA or from direct knowledge of a public key associated with the AA) and therefore resulting in an end-to-end verifiability.
[00108] In some embodiments, the system of the disclosed invention may be configured in various ways such that there may be choices as to what is exposed to the user interface as opposed to what is processed at a user's /
device/endpoint/subscriber's client, browser, host computer and/or peripheral devices without necessarily being thus exposed. Full or partial verifiability may occur repeatedly over the same data. That is because such data is not necessarily retained. For example, "nicknames" may be used to refer to certain items, such as attribute certificate pointer values or attribute certificates, where such nicknames may be locally retained or remembered or accessible from a source perhaps other than the security ecosystem. The security ecosystem may be able to receive nicknames and return the intended items (perhaps because of previous assignment of nicknames to items), where the receiver may independently verify the returned items. Nicknames may be used in this "pulling" manner for items to be retrieved by the nickname-submitter and perhaps verified. Nicknames may also or alternatively be used in a "pushing" manner for items to be made available through the security ecosystem to an identified (individual or device/endpoint or entity)
device/endpoint/subscriber and perhaps verified. Verification may in some embodiments be done on a random basis rather than on a regular or periodic basis. It is known to use random checking to discover (maliciously imposed and/or naturally occurring) system anomalies as a means of reducing cost(s) and/or inconvenience.
[00109] An inter-entity preemptive invite process according to some embodiments of the disclosed invention is capable of establishing matrices of exchanged pointer values corresponding to existing attribute certificates. The process enables a mediating security ecosystem as a bridge for entity-to-entity bulk exchange of attribute certificates through the security ecosystem. This may be in lieu of invites targeted to single individuals, device/endpoint/entity-members/users/subscribers of the security ecosystem can set updatable whitelists that "preemptively" invite other selected device/endpoint/entity-members by pushing an attribute certificate pointer value and perhaps related information (and/or full attribute certificates) into the security ecosystem- held account data of the invitee entity(s) designated by name or other identifier from the list of device/endpoint/entity-members made available by the security ecosystem to its device/endpoint/entity-members (for those that do not opt out). Follow-up to this preemptive invite process/inviter process may be limited to the invitee using the encryption public key associated with the received pushed attribute certificate to submit (preferably digitally signed) digital asset(s) comprised of lists of (appropriate subsets of) the uploading entity's attribute certificate pointer values and perhaps related information (and/or full attribute certificates), to be matched against corresponding attribute certificate data of the inviter (possibly in a matrix format) when the inviter entity responds with a (preferably digitally signed) digital asset encrypted using the invitee's encryption public key associated with the attribute certificate that was presented with the invitee's digital asset for this purpose.
[00110] The mediating security ecosystem may be responsible for providing the public key certificate for the encryption public key as subject key. The mediating security ecosystem may be responsible for presenting attribute certificates that reference public keys or public key certificates (where the inviter and/or invitee may have indicated to the security ecosystem the pointer values for attribute certificates, or have indicated "nickname(s)" that map to such pointer values). In this description, "encryption public key" may refer to a key used for key establishment, whereby a resulting shared secret value is used to derive a symmetric key used for encryption and for decryption. Such key establishment may be based on Diffie-Hellman. In some embodiments, encryption public key may also refer to a key used for encryption, whereby a corresponding decryption private key is used for decryption.
[00111] A device/endpoint of an entity/company or other computer user may already be employing public-key/asymmetric cryptography using a client (possibly installed on a host computer or on a peripheral device such as a smart card, or across multiple platforms). In some embodiments, the security ecosystem- mediated system may allow import of such pre-existing public keys. Such public keys may already bear certificates that can be used within the security ecosystem- mediated system (e.g., under certification by the security ecosystem's CA of the CA that originally issued such public key certificates or of a CA that that issuing CA is subordinate to). Alternatively (or in combination), all or some such public keys of a given user may become subject public keys of certificates issued by the security ecosystem's CA. Although, the following description regards signature verification, signature generation keys and encryption & decryption keys, as one skilled in the art would recognize, such description may easily be broadened to include keys used for key establishment. In all the cases, the private key is used by the owner of the certificate that includes the corresponding public key, while that public key is used by the other/relying party. [00112] In some embodiments, protective measures may be taken to avoid bypassing an entity's or other original key usage policy on decryption through routing of data to be decrypted on behalf of the security ecosystem- mediated digital asset / communications management application. Since security ecosystem servers may not be able to routinely access the private keys (and thus cannot necessarily determine legitimacy of submitted putative encrypted digital asset keys or other encrypted data), all security ecosystem clients/devices/endpoints (or at a minimum, those that interact with security ecosystem clients/devices/endpoints associated with imported public keys), may be designed to format the data packet such that (with high probability) it is distinguishable from arbitrary data. Imported public key- based use of decryption private keys can then be configured to reject putative security ecosystem- based data that does not reveal the expected pattern/formatting when the decryption private key is applied. If the expected pattern/formatting is present, then release of the digital asset keys or other data into the security ecosystem- mediated digital asset / communications management system client may be permitted.
[00113] Possibly dependent (for security consistency) on the security afforded the plaintext digital asset, a digital asset key may or may not be protected via encryption during local transit to its use for ciphertext digital asset decryption if such transit is outside of a protected environment. If the digital asset key is protected in transit, then the ciphertext digital asset decryption module would need to first decrypt the encrypted-for-transit digital asset key by applying its knowledge of the appropriate transit key. With regard to the use on a host computer/devices/endpoints (or a peripheral device) of a signature generation private key for both non- service- provider- mediated business and as a security ecosystem
device/endpoint/subscriber, the non-repudiation aspect can be proactively disambiguated if the security ecosystem usage always includes in the arguments that are signed a "security ecosystem marker field" that serves to prevent the successful false attribution of security ecosystem system- sourced signed messages to non- service-provider- mediated business. This is consistent, in particular, with an operational paradigm in which the signature generation private key corresponds to a signature verification public key that bears a certificate issued by an entity's CA, the signature generation private key never leaves the confines of the entity-provided execution environment on the device/endpoint computer (or peripheral), and hashes of messages to be signed on behalf of the security ecosystem client are input to the entity-provided execution environment. The security ecosystem marker field can be post-appended, prepended, or exclusive-ored to the input message hash, prior to signing. Other ways of applying the security ecosystem marker field might be implemented. Such application may involve an additional hash operation, such as, for example, hashing after the security ecosystem marker field has been appended to the input message hash. In order to be assured that message hash inputs are legitimately sourced from the security ecosystem client software, the entity-provided execution environment and the service-provider client software that generates the message hashes may share an authentication key, for example, a Message
Authentication Code (MAC) key, if the message hashes are generated outside of the entity-provided execution environment.
[00114] As the inclusion of digital signatures in message transmission typically increases overall message latency, the following describe methods of some reduction of the overhead of using digital signing for message authentication. For many lightweight messaging protocols, for example Message Queue Telemetry Transport (MQTT) that is used on top of the TCP/IP protocol, bandwidth is limited. This is particularly true for the case when message transmission completion latency is important. Message packet sizes are made small to desirably keep latency low. Limited bandwidth availability can make it challenging to use technologies such as the digital signing of transmitted data due to the overhead of attaching comparatively large digital signatures to each packet.
[00115] FIG. 10 shows an exemplary method of using digital signatures in bandwidth-restricted environments, according to some embodiments of the present invention. This method reduces bandwidth required for transmission of data. In some embodiments, rather than transmitting a digital signature attached to each data payload, a value "n" is selected such that a digital signature is transmitted once every "nth" payload. This allows a tradeoff between security and bandwidth by adjusting the value of n, depending on various applications. This way, a potential intruder/hacker is detected after at most n-1 payload packets.
[00116] In some embodiments, an encrypted or unencrypted sequence number 1001 can be added to each packet 1002. Instead of the successive integers ordinarily expected, the sequence numbers may be, for example, successive words of a hash value generated when the initial digital signature 1003 was produced for the transmission of n payload packets. Since the hash value is known only to the sender and the receiver of the digital signature, any packets injected by an attacker would be detected immediately.
[00117] In some embodiments, each sequence number 1001 as well as the content of the payload packet 1002 is presented as a mathematical function of the sequence number produced as described in the preceding paragraph. This process would protect not only against packet injection, but also packet alteration of existing, otherwise valid, packets. [00118] FIG. 1 1 shows an exemplary method of transmitting a digital signature while minimizing the bandwidth required for such transmission, according to some embodiments of the present invention. In some embodiments, this is accomplished by using a sliced digital signature. For example, the digital signature 1 103 is cut into n slices 1 101 with each slice 1 101 being included as a portion of each individual payload 1 102 to be transmitted. The receiving entity of the transmission then captures each slice of the digital signature from each payload. Upon receiving n payload packets, the n digital signature slices are reassembled into a complete digital signature, which are then verified through the application of known digital signature technology. By adjusting the value of n, an implementer can trade off the overhead burden of the digital signature with the latency of signature verification, for example, a larger n results in a lower the overhead burden, but the overall message latency may be increased with the increased size of n.
[00119] It will be recognized by those skilled in the art that various modifications may be made to the illustrated and other embodiments of the invention described above, without departing from the broad inventive scope thereof. It will be understood therefore that the invention is not limited to the particular embodiments or arrangements disclosed, but is rather intended to cover any changes, adaptations or modifications which are within the scope of the invention as defined by the appended claims and drawings.

Claims

1 . A method for establishing secure communication between a plurality of Internet of Things (loT) devices in one or more vehicles, each loT device including a hardware processor and associated memory, the method comprising:
provisioning the plurality of loT devices by providing a unique identification, a digital identity token and a cryptographic key to each of the plurality of loT devices; establishing a secure communication line between the plurality of loT devices by authenticating respective communication lines between respective loT devices and issuing a digital certificate to the respective communication lines;
grouping the plurality of loT devices into different groups based on a predetermined criteria; and
including a group membership for a group of the different groups in an attribute certificate indicating group characterization.
2. The method of claim 1 , wherein each of the secure communication lines includes a digital agreement establishing terms of use of said each secure communication line between respective loT devices.
3. The method of any claims 1 -2, wherein a group is issued an attribute certificate which includes associated rules for group membership in the attribute certificate.
4. The method of any claims 1 -3, wherein the different groups include subgroups.
5. The method of any claims 1 -4, wherein each different vehicle has a different group and each sub-group of a respective group includes components of that vehicle.
6. The method of any claims 1 -5, wherein one or more loT devices are coupled to a controller area network (CAN) bus of a vehicle and may establish a secure communication line with another loT device that is coupled to the CAN bus or not coupled to the CAN bus.
7. The method of any claims 1 -6, wherein one or more loT devices are coupled to a controller area network (CAN) bus of a vehicle and are made a member of a group of loT devices that are characterized with the CAN bus as recorded on an attribute certificate, and wherein an attribute certificate associated with a group is utilized by an eligible originator for communicating between one or more of the group.
8. The method of any claims 1 -7, wherein the secure communication lines are utilized for communicating between one or more of the group consisting of Vehicle- to-vehicle (V2V), Vehicle-to-infrastructure (V2I), Vehicle-to-Grid (V2G), Vehicle-to-X (V2X), and on-board diagnostics (OBD) of a vehicle.
9. The method of any claims 1 -8, wherein a group for a particular vehicle includes variable identities for the particular vehicle for transmission to external devices.
10. The method of claim 8, wherein the variable identities dynamically change based on one or more of certain mode or time of operation of the particular vehicle or its loT devices.
1 1 . The method of any claims 1 -10, wherein the different groups include an external device group including devices in a particular vehicle that monitor external area of the particular vehicle communicating with other devices outside of the particular vehicle, and an internal device group including devices that monitor internal area of the particular vehicle.
12. The method of claim 1 1 , wherein the external device group or the internal device group includes associated rules that prevents the group from transmitting certain information to other devices.
13. The method of any claims 1 -12, further comprising preventing a device for which a secure communication line to the plurality of loT devices has not been established, or which is not a member of a group with an approved attribute certificate, from communicating with the plurality of loT devices.
14. The method of any claims 1 -13, further comprising authenticating each of the plurality of loT devices using the unique identification and the digital identity token of said each of the plurality of loT devices.
15. The method of any claims 1 -14, wherein authenticating an loT device comprises using an inviter-invitee protocol.
16. The method of any claims 1 -15, wherein said one or more vehicles include one or more of an ambulance, a police vehicles, a tow trucks, a hazardous materials vehicle, a military vehicle or other defined vehicle type.
17. The method of any claims 1 -16, further comprising:
establishing a second group of external devices;
issuing a second group private to each member of the second group; and establishing a attribute certificate the second group to a member of one or more of said different groups.
18. A method for establishing secure communication between a plurality of Internet of Things (loT) devices in one or more vehicles, each loT device including a hardware processor, associated memory, a unique identification, a digital identity token and a cryptographic key, the method comprising:
inviting a second loT device by a first loT device to establish a communication line with the first loT device by receiving a digital identity token from the second loT device;
establishing a secure communication line between the first loT device and the second loT device by authenticating a communication line between the first loT device and the second loT device and issuing a digital certificate to the
communication line;
grouping the plurality of loT devices into different groups based on a predetermined criteria; and
including group memberships for the different groups in respective attribute certificates of the respective devices.
19. The method of claim 18, wherein the secure communication line includes a digital agreement establishing terms of use of said each secure communication line between first loT device and the second loT device.
20. The method of any claims 18-19, wherein a group is issued an attribute certificate which includes associated rules for group membership in the attribute certificate.
21 . The method of any claims 18-20, wherein the different groups include subgroups, and wherein each different vehicle has a different group and each sub-group of a respective group includes components of that vehicle.
22. The method of any claims 18-21 , wherein a group for a particular vehicle includes variable identities for the particular vehicle for transmission to external devices, and wherein the variable identities dynamically change based on one or more of certain mode or time of operation of the particular vehicle or its loT devices.
23. The method of any claims 18-22, further comprising:
establishing a second group of external devices;
issuing a second group private key to each member of the second group; and establishing an attribute certificate for the second group to a member of one or more of said different groups.
EP18848520.5A 2017-08-24 2018-08-22 Secure communication of iot devices for vehicles Withdrawn EP3673615A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/686,076 US10153908B2 (en) 2010-04-30 2017-08-24 Secure communication of IOT devices for vehicles
PCT/US2018/047578 WO2019040651A1 (en) 2017-08-24 2018-08-22 Secure communication of iot devices for vehicles

Publications (1)

Publication Number Publication Date
EP3673615A1 true EP3673615A1 (en) 2020-07-01

Family

ID=65439252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18848520.5A Withdrawn EP3673615A1 (en) 2017-08-24 2018-08-22 Secure communication of iot devices for vehicles

Country Status (3)

Country Link
EP (1) EP3673615A1 (en)
JP (1) JP2020532215A (en)
WO (1) WO2019040651A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10931660B2 (en) * 2018-02-06 2021-02-23 CTIA—The Wireless Association Cyber security-based certification of IoT devices
US10250383B1 (en) * 2018-03-20 2019-04-02 Mocana Corporation Dynamic domain key exchange for authenticated device to device communications
US11233650B2 (en) 2019-03-25 2022-01-25 Micron Technology, Inc. Verifying identity of a vehicle entering a trust zone
US11361660B2 (en) * 2019-03-25 2022-06-14 Micron Technology, Inc. Verifying identity of an emergency vehicle during operation
US11456880B2 (en) * 2019-03-25 2022-09-27 Micron Technology, Inc. Cryptographically secure mechanism for remotely controlling an autonomous vehicle
US11270530B2 (en) 2019-06-12 2022-03-08 Caterpillar Inc. Vehicle pose sharing diagnostic system
KR102356137B1 (en) * 2019-07-02 2022-01-28 한국전자통신연구원 Physical unclonable function based authentication method
CN111131144B (en) * 2019-11-05 2021-11-16 远景智能国际私人投资有限公司 IoT (Internet of things) equipment management method, device, server and storage medium
US11405366B2 (en) 2020-01-19 2022-08-02 Mobileye Vision Technologies Ltd. Anonymous collection of data from a group of entitled members
US11783302B2 (en) * 2020-05-07 2023-10-10 Blackberry Limited Authorization of vehicle repairs
CN112929845B (en) * 2021-01-26 2022-07-05 兰州理工大学 Vehicle networking node trust evaluation method and system based on block chain
US20230018433A1 (en) * 2021-07-13 2023-01-19 Vmware, Inc. Accessing corporate resources through an enrolled user device
US11962705B2 (en) 2021-10-07 2024-04-16 Capital One Services, Llc Secure serverless computing framework
CN114024757B (en) * 2021-11-09 2024-02-02 国网山东省电力公司电力科学研究院 Electric power internet of things edge terminal access method and system based on identification password algorithm
US20230412619A1 (en) * 2022-06-16 2023-12-21 Sternum Ltd. Systems and methods for the instrumentation, real-time compromise detection, and management of internet connected devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9716595B1 (en) * 2010-04-30 2017-07-25 T-Central, Inc. System and method for internet of things (IOT) security and management
US10015720B2 (en) * 2014-03-14 2018-07-03 GoTenna, Inc. System and method for digital communication between computing devices
US9699153B2 (en) * 2015-01-19 2017-07-04 Intel IP Corporation Systems, methods and devices for direct communication

Also Published As

Publication number Publication date
WO2019040651A1 (en) 2019-02-28
JP2020532215A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
US10644891B2 (en) Secure communication of IoT devices for vehicles
EP3673615A1 (en) Secure communication of iot devices for vehicles
US9832026B2 (en) System and method from Internet of Things (IoT) security and management
US9716595B1 (en) System and method for internet of things (IOT) security and management
JP7280396B2 (en) Secure provisioning and management of equipment
JP7267294B2 (en) Systems and methods for recording device lifecycle transactions as versioned blocks in a blockchain network using transaction connectors and broker services
JP7267295B2 (en) Systems and methods for securing data transfer between non-IP endpoint devices connected to a gateway device and connected services
US11005885B2 (en) Cloaking authority system
CN113691560B (en) Data transmission method, method for controlling data use, and cryptographic device
EP3433791B1 (en) System and method for internet of things (iot) security and management
Terzi et al. Securing emission data of smart vehicles with blockchain and self-sovereign identities
CN115486107A (en) Method and system for establishing trust for network security posture of V2X entity
Kravitz Transaction immutability and reputation traceability: Blockchain as a platform for access controlled iot and human interactivity
Giannetsos et al. Securing V2X communications for the future: Can PKI systems offer the answer?
CN113228560A (en) Issuing apparatus and method for issuing, and requesting apparatus and method for requesting digital certificate
CN116828451A (en) Block chain-based network connection motorcade identity authentication method, device and medium
Kleberger et al. Protecting vehicles against unauthorised diagnostics sessions using trusted third parties
Das et al. Design of a Trust-Based Authentication Scheme for Blockchain-Enabled IoV System

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210302