EP3671797B1 - Dispositif de commutation de sécurité - Google Patents

Dispositif de commutation de sécurité Download PDF

Info

Publication number
EP3671797B1
EP3671797B1 EP18213553.3A EP18213553A EP3671797B1 EP 3671797 B1 EP3671797 B1 EP 3671797B1 EP 18213553 A EP18213553 A EP 18213553A EP 3671797 B1 EP3671797 B1 EP 3671797B1
Authority
EP
European Patent Office
Prior art keywords
antenna
switching
safety
switching element
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18213553.3A
Other languages
German (de)
English (en)
Other versions
EP3671797A1 (fr
Inventor
Guillaume Geoffroy
Frank Kloeser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Priority to EP18213553.3A priority Critical patent/EP3671797B1/fr
Publication of EP3671797A1 publication Critical patent/EP3671797A1/fr
Application granted granted Critical
Publication of EP3671797B1 publication Critical patent/EP3671797B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/167Circuits for remote indication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/168Indicators for switching condition, e.g. "on" or "off" making use of an electromagnetic wave communication

Definitions

  • the present invention relates to a safety switching device for switching an electrical consumer that can be connected to the switching device, in particular an electrical machine.
  • Safety switching devices are used, for example, in industrial systems in order to switch off electrical machines reliably, at least in certain areas.
  • safety switching devices protect machines that can potentially pose a risk to operating personnel or devices, such as, for example, production robots, presses, cutting machines and the like.
  • the shutdown process must take place particularly reliably; in particular, it must also be possible to check whether the shutdown process has actually taken place.
  • relays with forcibly guided contacts are used, for example, so that the forced guidance of the contacts when the machine is switched off ensures that the electrical consumer has actually been de-energized.
  • a disadvantage of such positively driven relays is that they are more expensive and larger than conventional relays. In the case of conventional relays, in turn, it cannot be ruled out that the switching contacts of the relay will weld together due to the formation of sparks when the switching element is opened Switching element can no longer interrupt a power supply to the electrical machine. In the case of semiconductor switching elements too, alloying of the semiconductor can mean that a current flow by means of the semiconductor can no longer be interrupted.
  • the invention is therefore based on the knowledge that the actual switching state of the switching element can be determined by radio transmission of the test signal if the actual switching state has an influence on the test signal. In this way, the actual switching state can be reliably determined by means of an arrangement of two antennas that is easy to produce.
  • the safety switching device according to the invention can therefore be produced inexpensively and thus economically, while a reliable detection of the actual switching state is still possible. In this way, for example, welding of contacts of the switching element can be reliably detected.
  • the test signal can be a radio signal which is transmitted by the first antenna and received by the second antenna.
  • the radio signal can comprise or consist of an HF signal or an LF signal (high-frequency signal, for example in the short-wave range or low-frequency signal, for example in the long-wave range).
  • the test signal can be influenced in particular in that in a switching state, for example when the power supply path is closed, no adaptation to the test signal is carried out on the side of the second antenna (“detuning”). On the other hand, when the switching state in which the power supply path has been interrupted is present, the second antenna can be adapted to the test signal (“tuning”).
  • the "tuning" or “detuning” can, as will be explained in detail later, for example by changing the electrical Interconnection takes place on the side of the second antenna.
  • mechanical changes are also conceivable, for example by mechanically introducing a barrier that interferes with the radio contact between the first and second antenna, it being possible for the barrier, for example, to be mechanically coupled to a movable contact of the switching element.
  • a movement of the contact of the switching element can also deform or move the second antenna, for example.
  • the influence on the test signal is measured or detected in order to determine the actual switching state. If the actual switching state deviates from the expected or desired switching state, an error signal can be output.
  • the electrical switching element can be, for example, a mechanical switch, in particular an electromechanically operated relay.
  • the electrical switching element can also comprise a semiconductor switch, in particular a transistor or an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • the safety switching device can comprise a control unit for controlling the switching element.
  • the control unit can, for example, evaluate an external safety sensor, e.g. an emergency stop switch, in particular multi-channel, and in the event of the safety sensor being triggered (e.g. actuation of the emergency stop switch), the switching element can be transferred from the closed switching state to the open switching state.
  • the safety sensor can, for example, also be a door contact, a light grid or a laser scanner.
  • the safety switching devices can, for example, meet the safety requirements according to SIL3 (Safety Integrity Level) or another standard.
  • the control unit can also receive information about the actual switching state of the switching element from the monitoring unit. In the event of a discrepancy between the switching state set by the control unit and the actual switching state, the above-mentioned error signal can be output by the control unit.
  • Control unit and monitoring unit can also be designed as a common unit.
  • the first antenna and / or the second antenna are designed as microstrip and / or patch antennas.
  • the antennas can be manufactured in a very space-saving manner and also very economically using modern methods for manufacturing printed circuit boards, in particular in the same process as the rest of the electronics of the safety switching device.
  • the antennas preferably extend at least essentially only parallel to the surface of the circuit board (or within the circuit board) and thus do not form a significant elevation. In this way, the safety switching device can be made particularly small and compact.
  • the first and the second antenna and in particular all further antennas mentioned later can be arranged on the same printed circuit board.
  • the first antenna and the second antenna are arranged on different layers of the same printed circuit board.
  • the first and the second antenna are isolated from one another and / or galvanically separated.
  • the first antenna on a front side of the circuit board and the second antenna can be arranged on a rear side of the same printed circuit board.
  • the use of different layers or layers of the printed circuit board ie a PCB - Printed Circuit Board) enables the two antennas to be reliably isolated from one another, and in particular a galvanic separation between the first and second antenna can be made possible with low manufacturing costs.
  • the first and second antennas are arranged in a stationary manner with respect to one another.
  • the first and second antennas are preferably spaced apart from one another and have no direct electrical connection.
  • Galvanic isolation is preferably achieved through the use of the two antennas, in particular between the monitoring unit and the switching element.
  • Attaching the first and second antenna to the same circuit board also has the advantage that a transmission path for the test signal can be made very short and thus insensitive to external influences.
  • a transmission path for the test signal can be made very short and thus insensitive to external influences.
  • an influence on the test signal by the switching state of the electrical switching element can be detected more easily, since external influences on the test signal are very small and can therefore essentially be neglected.
  • an initial measurement of the test signal can first take place for various known switching states, with the actual switching states then being able to be determined in productive use based on the initial measurement.
  • the space required by an individual printed circuit board is very small, so that both antennas also only have a small space requirement, as a result of which the safety switching device can in turn be made very compact.
  • the second antenna is part of an oscillating circuit, the resonance frequency of which depends on the actual switching state of the switching element.
  • the resonant circuit can for example comprise a capacitor and a coil, wherein the coil can be formed by the second antenna.
  • the resonant circuit preferably also comprises one or more capacitive or inductive additional components which are (only) electrically coupled into the resonant circuit when the switching element is closed in order to change the resonance frequency of the resonant circuit.
  • the additional components can therefore be electrically connected to the switching element in such a way that when the switching element is in the closed switching state, the additional components become part of the resonant circuit.
  • the resonance frequency of the resonant circuit can be reduced.
  • the resonant circuit can thus have two different resonance frequencies. The first resonance frequency is when the switching element is actually open and the second resonance frequency is when the switching element is actually closed.
  • the resonant circuit can have a first resonance frequency when the switching element is closed and a second, different, resonance frequency when the switching element is open.
  • the switching element can preferably be electrically coupled to the resonant circuit or, as mentioned above, be part of the resonant circuit.
  • the resonant circuit can comprise the second antenna, which can have two electrical contacts, and a first capacitor, the first capacitor being connected between the two electrical contacts of the second antenna. This results in a parallel connection of the first capacitor with the second antenna.
  • the switching element can also have two electrical contacts, each of the electrical contacts of the switching element preferably being electrically connected to an electrical contact of the second antenna via an additional capacitor (i.e. for example a second and third capacitor).
  • the second and third capacitors can accordingly be the additional components mentioned above.
  • the test signal comprises at least two different transmission frequencies, which preferably correspond to the first and / or second resonance frequency.
  • the transmission frequencies can also be referred to as carrier frequencies.
  • the first and the second transmission frequency are transmitted by the first antenna in particular one after the other in time.
  • the resonant circuit of the second antenna can be particularly strongly excited with the appropriate switching state, which can be detected in a simple manner, which in turn makes the actual switching state of the switching element can be determined.
  • the test signal and thus also the transmission frequencies are preferably generated by means of a signal generator and coupled into the first antenna by the signal generator.
  • a frequency ramp, a continuous frequency change or a wobbling of the transmission frequency can also be implemented by the signal generator.
  • the signal generator can be an LF generator or an HF generator.
  • the transmission frequency and thus the test signal can also be modulated, for example by means of amplitude or phase modulation. Modulation using on-off keying is also possible.
  • the test signal can for example comprise a modulation according to the pattern on-off-on-on-off-on.
  • the monitoring unit is designed to measure the power transmitted from the first to the second antenna by means of the test signal, the actual switching state being determined on the basis of the transmitted power.
  • the first and the second antenna are tuned to one another.
  • the energy transfer from the first to the second antenna can be maximized by coordinating them with one another.
  • “detuning” would occur if the transmission frequency does not correspond to the currently prevailing resonance frequency.
  • the energy transfer from the first to the second antenna is then lower, which can be measured by the monitoring unit.
  • the energy transfer can be measured, for example, by measuring a voltage across a resistor in a feed line to the first antenna or in a feed line to the signal generator. It is also possible to measure a change in the amplitude of the transmission frequency, for example by means of an operational amplifier.
  • NFC tag Near Field Communication Tag
  • the safety switching device comprises one or more additional electrical switching elements.
  • the actual switching state of the additional switching element or elements also influences the test signal.
  • At least one of the additional electrical switching elements is preferably coupled to an additional resonant circuit, the resonance frequency of which depends on the actual switching state of the additional electrical switching element, the resonance frequency or the resonance frequencies of the additional resonance circuit preferably differing from the resonance frequency or the resonance frequencies of the resonance circuit.
  • the additional resonant circuit or circuits preferably each include a separate second antenna. However, several resonant circuits can also be connected to a second antenna.
  • the additional electrical switching elements can be connected in series with the (first) electrical switching element in order to enable redundant disconnection of the electrical consumer. It is also possible to use the additional electrical switching elements to implement a multi-channel safety switching device which can switch various electrical loads independently of one another.
  • the safety switching device can have, for example, two or three channels, in each of which two electrical switching elements are connected in series. This results in a total of four or six electrical switching elements.
  • Each of the switching elements can be part of a separate resonant circuit.
  • the additional resonant circuits can also be switched back and forth between two resonance frequencies in that the respective switching element changes its switching state between closed and open (or vice versa). All resonance frequencies used within the same safety switching device are preferably different, so that the actual switching state of each switching element can be clearly detected using just one first antenna, and it is also clear from which switching element the respective resonance frequency "originates".
  • the test signal can also include the resonance frequencies of the additional oscillating circuits, so that each switching element can be tested separately for its actual switching state.
  • the additional resonance frequencies in the test signal can be contained in the test signal one after the other.
  • test signal it is also possible to use the test signal to detect only one switching state of the switching element or switching elements, in particular the "open" switching state.
  • the test signal can be used as transmission frequencies, in particular only that include resonance frequencies that occur when the switching elements contained in the safety switching device are in the "open” switching state. If, for example, only one switching element is to be monitored, the test signal comprises or contains only exactly one transmission frequency.
  • first antenna for detecting the switching states of several different switching elements.
  • first antennas can also be provided, which interact with only one or also several second antennas.
  • second antennas or the resonant circuits, which interact with a respective first antenna only different resonance frequencies are preferably used.
  • the first antenna spans a surface area within which the second antenna or the second antennas is / are arranged.
  • the arrangement of the second antenna within the first antenna ensures reliable and good transmission of the test signal.
  • the first antenna shields the second antenna from external interference.
  • the second antenna lies in the same plane or in parallel planes, e.g. in a layer below or above the first antenna, within the first antenna. Accordingly, inside also refers to a vertical projection of the first antenna downwards or upwards.
  • the first and / or the second antenna are preferably designed in a planar manner.
  • the first and second antenna as well as the monitoring unit and the switching element are in the same unit, preferably arranged within the same housing.
  • the first and second antenna and the switching element are preferably arranged on the same printed circuit board. This in turn can promote a compact design of the safety switching device.
  • the first antenna is designed to receive data by means of near field communication (NFC) and / or radio frequency identification (RFID).
  • the monitoring unit preferably has an interface connected to the first antenna for communication by means of NFC and / or RFID.
  • the first antenna can thus be used twice, on the one hand to determine the actual switching state of the electrical switching element or of several electrical switching elements and on the other hand for data communication by means of NFC and / or RFID.
  • the data received or sent by the first antenna can be transmitted to / from the monitoring unit by means of the interface. In this way, the monitoring unit can output diagnostic / status data or receive configuration data, for example.
  • the safety switching device can be configured, for example, by means of a smartphone. Data can then also be read out using the smartphone, whereby the switching states or any errors can be determined.
  • the first antenna can be designed to transmit test signals with a transmission frequency in the range from 100 to 500 kHz, preferably from 100 to 200 kHz.
  • the first antenna can be designed for RFID communication in the long wave range at 125 kHz, 134 kHz, 250 kHz, 375 kHz, 500 kHz, 625 kHz, 750 kHz and / or 875 kHz.
  • the first antenna can also be designed for RFID communication and / or for NFC communication at a frequency of 13.56 MHz. Also the actual switching states can be determined in the range of 13.56 MHz, ie the resonance frequencies can be in this range.
  • the resonance frequencies can also be in the range between 100 and 500 kHz, preferably in the range between 100 and 200 kHz.
  • the two resonance frequencies of the same resonant circuit (for closed and open switching state) differ by at least 20%, preferably by at least 10%. In this way, a reliable differentiation between the two switching states is guaranteed.
  • the switching state can preferably be determined, in particular only, in the open switching state.
  • the switched frequencies are irrelevant, so that the frequencies switched by means of the safety switching device can be in the same range as the frequencies of the test signal or the resonance frequencies.
  • the monitoring unit then checks whether the switching element has really changed to the open switching state. If the actual switching status deviates from the desired or expected switching state, an error signal can be output. The error signal can then alert operating personnel or cause a higher-level control to switch off the entire system in which the consumer is installed. The safety switching device itself can also use the error signal to switch off.
  • the invention also relates to a method according to claim 13.
  • diagnostic, status and / or configuration data of the safety switching device are received and / or sent by means of the first antenna, in particular via NFC and / or RFID.
  • the received data preferably influence the operation of the safety switching device.
  • the data sent include, in particular, information about the state of the safety switching device.
  • Fig. 1 shows a system 10 which comprises a safety switching device 12 and a consumer in the form of a robot 14 that is electrically coupled to the safety switching device 12.
  • the electrical energy for operating the robot 14 comes from a power driver 16.
  • a switching element in the form of a relay 18 is arranged in the safety switching device 12, the relay 18 closing a power supply path 20 in the closed switching state, as a result of which the robot 14 is supplied with electrical energy.
  • the power driver 16 is part of the power supply path 20. If the relay 18 is in the open switching state, the power supply path 20 is interrupted so that there is no closed circuit, whereby the robot 14 is switched off.
  • a monitoring unit 22 which is electrically connected to a first antenna 24, is provided in the safety switching device 12.
  • the first antenna 24 is designed to transmit a test signal 26 to a second antenna 28.
  • the second antenna 28 is in turn electrically connected to the relay 18, the switching state of the relay 18 influencing the test signal 26, as will be explained in more detail below.
  • the relay 18 is actuated by a control unit 30.
  • the monitoring unit 22 determines the actual switching state of the relay 18 and transmits the actual switching state to the control unit 30 by means of a data line 32.
  • the first antenna 24 is also designed for communication by means of near field communication (NFC) 34.
  • NFC near field communication
  • the monitoring unit 22 and / or the control unit 30 can exchange data, for example, with a smartphone 36 located in the vicinity.
  • Fig. 2 shows a first embodiment in which two relays 18a and 18b are connected in series.
  • Each of the relays 18a, 18b is integrated in an oscillating circuit 38 or connected to an oscillating circuit 38 in the same way, so that the following explanations apply equally to all relays 18.
  • a respective resonant circuit 38 comprises a second antenna 28 which is connected in parallel to a first capacitor 40.
  • the electrical connections of the second antenna 28 are each connected to the electrical connections of the respective relay 18a, 18b via a second and third capacitor 42, 44. If the respective relay 18a is open, the resonant circuit 38 comprises only the second antenna 28 and the first capacitor 40. If the relay 18 is closed, the resonant circuit also includes the second and third Capacitor 42, 44, whereby the resonance frequency of the respective resonant circuit 38 changes.
  • the two second antennas 28 are surrounded by a single first antenna 24.
  • the test signal 26 is generated by means of the first antenna 24 by means of two transistors 46 and a voltage source 48.
  • the transistors 46 and the voltage source 48 can be viewed together as a signal generator.
  • the amplitude of the test signal 26 is measured by means of an operational amplifier 50.
  • the energy transmitted from the first to the second antenna 24, 28 can be measured on the basis of the amplitude, it being possible to determine which of the oscillating circuits 38 is currently at which resonance frequency.
  • a test signal 26 is generated which comprises at least four different transmission frequencies, the four transmission frequencies corresponding to the four possible resonance frequencies of the two oscillating circuits 38. In this way it can be determined separately for each relay 18a, 18b which switching state it is in.
  • Fig. 3 shows a second embodiment in which the safety switching device 12 comprises two parallel channels 52a, 52b. In each channel 52, two relays 18a, 18b and 18c, 18d are connected in series. Each relay 18a, 18b, 18c, 18d is assigned to a separate resonant circuit 38.
  • the embodiment of Fig. 3 differs from the embodiment of Fig. 2 in that two first antennas 24 are provided, each with its own signal generator. The first antennas 24 are arranged in such a way that in each case a second antenna 28 of each channel 52 lies within the first antenna 24 and can thus be evaluated by means of the respective first antenna 24.
  • a test signal is output to determine the actual switching status of all four relays 18a, 18b, 18c, 18d.
  • Fig. 4 shows a circuit board 54 in which the first antenna 24 is arranged on an upper layer 56 and a second antenna 28 is arranged on the upper layer 56 and also on a lower layer 58.
  • the second antenna 28 on the upper layer 56 is surrounded by the first antenna 28.
  • the first and second antennas 24, 28 are thus arranged in a stationary manner with respect to one another, whereby influences due to variable antenna positions are prevented.
  • the use of antennas 24, 28 achieves galvanic isolation between the monitoring unit 22 and the resonant circuits 38.
  • the inventive determination of the actual switching state based on antennas allows a simple, contactless but reliable determination of the actual switching state.
  • additional functions such as communication via NFC, can be implemented with the existing antennas without much additional effort.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transmitters (AREA)

Claims (14)

  1. Dispositif de commutation de sécurité (12) pour commuter un consommateur électrique (14) pouvant être raccordé au dispositif de commutation (12), en particulier une machine électrique, avec
    - un élément de commutation électrique (18) qui peut présenter les états de commutation fermé et ouvert pour provoquer au choix une fermeture ou une interruption d'un chemin d'alimentation en énergie (20) du consommateur électrique (14),
    - une unité de surveillance (22) qui détermine un état de commutation réel de l'élément de commutation électrique (18), l'unité de surveillance (22) comprenant une première antenne (24) au moyen de laquelle un signal de test est émis,
    - une deuxième antenne qui reçoit le signal de test (26), la deuxième antenne (28) étant couplée à l'élément de commutation électrique (18) de telle sorte que l'état de commutation réel de l'élément de commutation électrique (18) influence le signal de test (26), l'unité de surveillance (22) étant conçue pour déterminer l'état de commutation réel à partir du signal de test influencé (26),
    caractérisé en ce que
    la première antenne (24) et la deuxième antenne (28) sont disposées sur des couches différentes (56, 58) de la même carte de circuit imprimé (54).
  2. Dispositif de commutation de sécurité (12) selon la revendication 1,
    caractérisé en ce que
    la première antenne (24) et/ou la deuxième antenne (28) sont conçues comme des antennes microruban ou planaires.
  3. Dispositif de commutation de sécurité (12) selon la revendication 1 ou 2,
    caractérisé en ce que
    les première et deuxième antennes (28) sont isolées l'une de l'autre et/ou séparées galvaniquement.
  4. Dispositif de commutation de sécurité (12) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    la deuxième antenne (28) fait partie d'un circuit oscillant (38) dont la fréquence de résonance dépend de l'état de commutation réel de l'élément de commutation (18),
    le circuit oscillant (38) comprenant de préférence un ou plusieurs composants additionnels capacitifs ou inductifs (42, 44) qui sont couplés électriquement dans le circuit oscillant (38) lorsque l'élément de commutation (18) est fermé, afin de modifier la fréquence de résonance du circuit oscillant (38).
  5. Dispositif de commutation de sécurité (12) selon la revendication 4,
    caractérisé en ce que
    le circuit oscillant (38) présente une première fréquence de résonance lorsque l'élément de commutation (18) est fermé et une deuxième fréquence de résonance, différente, lorsque l'élément de commutation (18) est ouvert.
  6. Dispositif de commutation de sécurité (12) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    le signal de test (26) comprend au moins deux fréquences d'émission différentes qui correspondent de préférence à la première et/ou à la deuxième fréquence de résonance.
  7. Dispositif de commutation de sécurité (12) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    l'unité de surveillance (22) est conçue pour mesurer la puissance transmise de la première à la deuxième antenne (24, 28) au moyen du signal de test (26), l'état de commutation réel étant déterminé sur la base de la puissance transmise.
  8. Dispositif de commutation de sécurité (12) selon au moins l'une des revendications précédentes,
    caractérisé par
    un ou plusieurs éléments de commutation électrique supplémentaires (18), l'état de commutation réel du ou des éléments de commutation supplémentaires (18) influençant le signal de test (26), de préférence au moins un des éléments de commutation électrique supplémentaires (18) étant couplé à un circuit oscillant supplémentaire respectif (38), dont la fréquence de résonance dépend de l'état de commutation réel de l'élément de commutation électrique supplémentaire (18), la ou les fréquences de résonance du circuit oscillant supplémentaire (38) différant de préférence de la ou des fréquences de résonance du circuit oscillant (38).
  9. Dispositif de commutation de sécurité (12) selon au moins l'une des revendications précédentes,
    caractérisé en ce que la première antenne (24) couvre une zone de surface à l'intérieur de laquelle est disposée la deuxième antenne (28).
  10. Dispositif de commutation de sécurité (12) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    les première et deuxième antennes (28), l'unité de surveillance (22) et l'élément de commutation (18) sont disposés dans la même unité, de préférence à l'intérieur du même boîtier, les première et deuxième antennes (28) et l'élément de commutation (18) étant de préférence disposés sur la même carte de circuit imprimé.
  11. Dispositif de commutation de sécurité (12) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    la première antenne (24) est conçue pour recevoir des données au moyen d'une communication en champ proche, NFC (Near Field Communication), et/ou d'une identification par radiofréquence, RFID (Radio-Frequency Identification), l'unité de surveillance (22) présentant une interface pour la communication par NFC et/ou RFID.
  12. Système (10) comprenant :
    - au moins un dispositif de commutation de sécurité (12) selon au moins l'une des revendications précédentes,
    - un consommateur (14) qui est relié électriquement au dispositif de commutation de sécurité (12) et qui n'est alimenté en énergie électrique que lorsque l'élément de commutation (18) du dispositif de commutation de sécurité (12) présente l'état de commutation fermé et
    - un capteur de sécurité, en particulier un interrupteur d'arrêt d'urgence, qui est relié électriquement au dispositif de commutation de sécurité (12) et qui est évalué par le dispositif de commutation de sécurité (12), le dispositif de commutation de sécurité (12) mettant l'élément de commutation (18) dans l'état de commutation ouvert lorsque le capteur de sécurité est déclenché, afin de mettre hors circuit le consommateur (14).
  13. Procédé pour détecter un état de commutation défectueux d'un dispositif de commutation de sécurité (12) selon au moins l'une des revendications précédentes 1 à 11, dans lequel
    - un signal de test (26) est émis au moyen de la première antenne (24) et est reçu par la deuxième antenne (28), la deuxième antenne (28) étant couplée à l'élément de commutation électrique (18) du dispositif de commutation de sécurité (12) de telle sorte que l'état de commutation réel de l'élément de commutation électrique (18) influence le signal de test (26), et
    - un état de commutation défectueux de l'élément de commutation (18) est détecté sur la base du signal de test (26).
  14. Procédé selon la revendication 13,
    caractérisé en ce que
    des données de diagnostic, d'état et/ou de configuration du dispositif de commutation de sécurité (12) sont reçues et/ou émises au moyen de la première antenne, en particulier par NFC et/ou RFID, les données reçues influençant de préférence le fonctionnement du dispositif de commutation de sécurité (12) et les données émises comprenant en particulier des informations sur l'état du dispositif de commutation de sécurité (12).
EP18213553.3A 2018-12-18 2018-12-18 Dispositif de commutation de sécurité Active EP3671797B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18213553.3A EP3671797B1 (fr) 2018-12-18 2018-12-18 Dispositif de commutation de sécurité

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18213553.3A EP3671797B1 (fr) 2018-12-18 2018-12-18 Dispositif de commutation de sécurité

Publications (2)

Publication Number Publication Date
EP3671797A1 EP3671797A1 (fr) 2020-06-24
EP3671797B1 true EP3671797B1 (fr) 2021-05-26

Family

ID=64744695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18213553.3A Active EP3671797B1 (fr) 2018-12-18 2018-12-18 Dispositif de commutation de sécurité

Country Status (1)

Country Link
EP (1) EP3671797B1 (fr)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2806294A1 (de) 1977-02-18 1978-08-24 Crouzet Sa Einrichtung zur kontrolle des elektrischen leitungszustandes eines elektromechanischen schaltkontakts
US20020021226A1 (en) 2000-08-08 2002-02-21 Philippe Clement Electrical apparatus comprising a monitoring device, support and monitoring device for such an apparatus, and electrical installation incorporating them
WO2007135011A2 (fr) 2006-05-19 2007-11-29 Schneider Electric Industries Sas Dispositif de surveillance de position d'une partie mobile d'un appareil electrique interrupteur
EP2159809A2 (fr) 2008-08-28 2010-03-03 Hirschmann Automotive GmbH Commutateur RFID protégé contre la manipulation pour l'application dans des véhicules
EP2190016A1 (fr) 2008-11-19 2010-05-26 SEMIKRON Elektronik GmbH & Co. KG Module semi-conducteur de puissance doté d'une fonctionnalité de commande et d'un transformateur intégré
DE102010002430A1 (de) 2009-02-26 2010-09-23 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Minimierung elektromagnetischer Interferenz in Spulentransducern
DE102010029470A1 (de) 2009-06-02 2010-12-09 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Galvanischer Isolator
US20110075449A1 (en) 2008-03-31 2011-03-31 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Compact Power Transformer Components, Devices, Systems and Methods
DE102012003365A1 (de) 2012-02-22 2013-08-22 Phoenix Contact Gmbh & Co. Kg Planarer Übertrager mit Schichtaufbau
EP1788598B1 (fr) 2005-11-22 2013-12-11 Schneider Electric Industries SAS Dispositif et procédé de surveillance de position d'au moins une partie mobile d'une pluralité d'appaeils électriques et tableau incorporant un tel dispositif
WO2014031261A1 (fr) 2012-08-24 2014-02-27 Schneider Electric USA, Inc. Système de signalisation de disjoncteur pour une commande d'un système de détection de défaut d'arc
DE102013208989A1 (de) 2012-08-29 2014-03-06 Siemens Aktiengesellschaft Elektromechanisches Schaltgerät und Anordnung zur Zustandserfassung eines elektromechanischen Schaltgerätes
WO2014099154A1 (fr) 2012-12-19 2014-06-26 Eaton Corporation Système et procédé servant à transmettre et/ou obtenir des informations vers/à partir d'un composant d'un système de distribution d'électricité
WO2017200539A1 (fr) 2016-05-18 2017-11-23 Siemens Aktiengesellschaft Système et procédé permettant d'assurer une surveillance de sécurité fonctionnelle de contacts de relais
EP3264121A1 (fr) 2016-06-30 2018-01-03 General Electric Company Surveillance sans fil passive de boîtes de condensateur individuelles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146753C1 (de) * 2001-09-22 2003-04-24 Pilz Gmbh & Co Sicherheitsschaltvorrichtung zum sicheren Abschalten eines elektrischen Verbrauchers

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2806294A1 (de) 1977-02-18 1978-08-24 Crouzet Sa Einrichtung zur kontrolle des elektrischen leitungszustandes eines elektromechanischen schaltkontakts
US20020021226A1 (en) 2000-08-08 2002-02-21 Philippe Clement Electrical apparatus comprising a monitoring device, support and monitoring device for such an apparatus, and electrical installation incorporating them
EP1788598B1 (fr) 2005-11-22 2013-12-11 Schneider Electric Industries SAS Dispositif et procédé de surveillance de position d'au moins une partie mobile d'une pluralité d'appaeils électriques et tableau incorporant un tel dispositif
WO2007135011A2 (fr) 2006-05-19 2007-11-29 Schneider Electric Industries Sas Dispositif de surveillance de position d'une partie mobile d'un appareil electrique interrupteur
US20110075449A1 (en) 2008-03-31 2011-03-31 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Compact Power Transformer Components, Devices, Systems and Methods
EP2159809A2 (fr) 2008-08-28 2010-03-03 Hirschmann Automotive GmbH Commutateur RFID protégé contre la manipulation pour l'application dans des véhicules
EP2190016A1 (fr) 2008-11-19 2010-05-26 SEMIKRON Elektronik GmbH & Co. KG Module semi-conducteur de puissance doté d'une fonctionnalité de commande et d'un transformateur intégré
DE102010002430A1 (de) 2009-02-26 2010-09-23 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Minimierung elektromagnetischer Interferenz in Spulentransducern
DE102010029470A1 (de) 2009-06-02 2010-12-09 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Galvanischer Isolator
DE102012003365A1 (de) 2012-02-22 2013-08-22 Phoenix Contact Gmbh & Co. Kg Planarer Übertrager mit Schichtaufbau
WO2014031261A1 (fr) 2012-08-24 2014-02-27 Schneider Electric USA, Inc. Système de signalisation de disjoncteur pour une commande d'un système de détection de défaut d'arc
DE102013208989A1 (de) 2012-08-29 2014-03-06 Siemens Aktiengesellschaft Elektromechanisches Schaltgerät und Anordnung zur Zustandserfassung eines elektromechanischen Schaltgerätes
WO2014099154A1 (fr) 2012-12-19 2014-06-26 Eaton Corporation Système et procédé servant à transmettre et/ou obtenir des informations vers/à partir d'un composant d'un système de distribution d'électricité
WO2017200539A1 (fr) 2016-05-18 2017-11-23 Siemens Aktiengesellschaft Système et procédé permettant d'assurer une surveillance de sécurité fonctionnelle de contacts de relais
EP3264121A1 (fr) 2016-06-30 2018-01-03 General Electric Company Surveillance sans fil passive de boîtes de condensateur individuelles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LINDNER HELMUT, ET AL: "Taschenbuch der Elektrotechnik und Elektronik", 1 January 1985, pages: 298 - 298, XP055900311
TIETZE ULRICH; SCHENK CHRISTOPH: "Halbleiter-Schaltungstechnik", 1 January 1999, BERLIN [U.A.] : SPRINGER , DE , ISBN: 978-3-540-64192-6, article TIETZE U, SCHENK, CH.: "Halbleiterschaltungstechnik. Passagen", pages: 1 - 19, XP055900309
WIKIPEDIA: "Streifenleitung", WIKIPEDIA, 16 November 2017 (2017-11-16), pages 1 - 6, XP055900306, [retrieved on 20220311]

Also Published As

Publication number Publication date
EP3671797A1 (fr) 2020-06-24

Similar Documents

Publication Publication Date Title
EP2604563B1 (fr) Dispositif de sécurisation, dispositif d'entraînement et dispositif d'ascenseur
EP1673866B1 (fr) Commutateur de protection, notamment commutateur d'arret d'urgence, pour deconnecter un dispositif dangereux
EP3053176B1 (fr) Procédé et dispositif de surveillance d'au moins un contact de commande pour un véhicule
EP2956366B1 (fr) Surveillance de circuit de sécurité avec tension alternative
DE10146753C1 (de) Sicherheitsschaltvorrichtung zum sicheren Abschalten eines elektrischen Verbrauchers
EP3131779B1 (fr) Dispositif et procédé de détection d'un élément perturbateur dans un système de transmission d'énergie par induction ainsi que système de transmission d'énergie par induction
WO2008055701A1 (fr) Dispositif à commutateur de sécurité
WO2008003469A1 (fr) Procédé et dispositif permettant de surveiller une distance en toute sécurité
EP1647094B1 (fr) Procede et dispositif de controle sur d'une position de fermeture de deux pieces pouvant se deplacer relativement l'une par rapport a l'autre
EP3289525A1 (fr) Système de commande pour véhicule à moteur
DE10248640A1 (de) Schaltgerät sowie System und Verfahren zur Signalübertragung zwischen diesem und einer Signalverarbeitungseinheit
EP3475142B1 (fr) Dispositif de détection et procédé de détection d'une variation de champ magnétique
DE3915188C1 (en) Wireless interrogation and current supply method for switches - using capacitative and inductive elements corresp. to sec. winding of transformer
EP2868548B1 (fr) Procédé de surveillance d'un état de commutation d'un commutateur d'un système de sécurisation de train et système de sécurisation de train
EP3671797B1 (fr) Dispositif de commutation de sécurité
EP3015755B1 (fr) Élément RFID, système d'émetteur/récepteur RFID ainsi que commutateur de sécurité
DE19933686A1 (de) Schalter mit drahtloser Fernablesung
DE10334061B4 (de) Schaltungsanordnung und Verfahren zur Diagnose einer Antennenschaltung
EP2015964B1 (fr) Marche pourvue d'un tapis de contact pour un vehicule ferroviaire
EP1726972A1 (fr) Système de radar automobile et procédé destiné au fonctionnement d'un système de radar automobile
BE1029400B1 (de) Kontaktüberwachungsvorrichtung für einen dreipoligen Wechselkontakt
EP1170849B1 (fr) Procédé de commande et circuit correspondant
DE19638956A1 (de) Anschaltbaugruppe
DE102004059694B3 (de) Verfahren und Anordnungen zum Prüfen einer Antennenanordnung, insbesondere eines Kraftfahrzeuges
EP4125215A1 (fr) Circuit électrique, en particulier pour un interrupteur de proximité à commande inductive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200729

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20210127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1397056

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005418

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502018005418

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: PHOENIX CONTACT GMBH & CO. KG

Effective date: 20220225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211218

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181218

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221218

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 6

Ref country code: FR

Payment date: 20231222

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 6