EP3665134A1 - High noise reduction coefficient, low density acoustical tiles - Google Patents
High noise reduction coefficient, low density acoustical tilesInfo
- Publication number
- EP3665134A1 EP3665134A1 EP18759810.7A EP18759810A EP3665134A1 EP 3665134 A1 EP3665134 A1 EP 3665134A1 EP 18759810 A EP18759810 A EP 18759810A EP 3665134 A1 EP3665134 A1 EP 3665134A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- base mat
- inch
- coating
- dried base
- pcf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000009467 reduction Effects 0.000 title claims description 10
- 238000000576 coating method Methods 0.000 claims abstract description 98
- 239000011248 coating agent Substances 0.000 claims abstract description 92
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000011490 mineral wool Substances 0.000 claims abstract description 48
- 239000010451 perlite Substances 0.000 claims abstract description 41
- 235000019362 perlite Nutrition 0.000 claims abstract description 41
- 239000004816 latex Substances 0.000 claims abstract description 37
- 229920000126 latex Polymers 0.000 claims abstract description 37
- 229920002472 Starch Polymers 0.000 claims abstract description 36
- 239000008107 starch Substances 0.000 claims abstract description 36
- 235000019698 starch Nutrition 0.000 claims abstract description 36
- 239000003365 glass fiber Substances 0.000 claims abstract description 28
- 229910052602 gypsum Inorganic materials 0.000 claims abstract description 25
- 239000010440 gypsum Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims description 69
- 230000008569 process Effects 0.000 claims description 65
- 239000002002 slurry Substances 0.000 claims description 61
- 239000000835 fiber Substances 0.000 claims description 21
- 239000012065 filter cake Substances 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 238000009950 felting Methods 0.000 claims description 13
- 238000003825 pressing Methods 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 9
- 239000004615 ingredient Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 6
- 229920005594 polymer fiber Polymers 0.000 claims description 6
- 239000000203 mixture Substances 0.000 description 26
- 239000000047 product Substances 0.000 description 18
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 16
- 239000004927 clay Substances 0.000 description 13
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 10
- 229920002554 vinyl polymer Polymers 0.000 description 10
- 210000002268 wool Anatomy 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 8
- 229910000019 calcium carbonate Inorganic materials 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000010030 laminating Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 235000010755 mineral Nutrition 0.000 description 6
- 239000011324 bead Substances 0.000 description 4
- 238000010411 cooking Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002557 mineral fiber Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000010455 vermiculite Substances 0.000 description 2
- 229910052902 vermiculite Inorganic materials 0.000 description 2
- 235000019354 vermiculite Nutrition 0.000 description 2
- 238000009951 wet felting Methods 0.000 description 2
- 229940043810 zinc pyrithione Drugs 0.000 description 2
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229920002748 Basalt fiber Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 241000482268 Zea mays subsp. mays Species 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 238000013142 basic testing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical class [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical group O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005332 obsidian Substances 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 238000013031 physical testing Methods 0.000 description 1
- 229910052655 plagioclase feldspar Inorganic materials 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910052611 pyroxene Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000005335 volcanic glass Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B1/86—Sound-absorbing elements slab-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
- B28B11/243—Setting, e.g. drying, dehydrating or firing ceramic articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/14—Minerals of vulcanic origin
- C04B14/18—Perlite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
- C04B14/46—Rock wool ; Ceramic or silicate fibres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B26/06—Acrylates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/10—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B26/14—Polyepoxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/4572—Partial coating or impregnation of the surface of the substrate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5037—Clay, Kaolin
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/60—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
- C04B41/61—Coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/60—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
- C04B41/61—Coating or impregnation
- C04B41/65—Coating or impregnation with inorganic materials
- C04B41/68—Silicic acid; Silicates
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B9/00—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
- E04B9/001—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by provisions for heat or sound insulation
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B9/00—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
- E04B9/04—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/266—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00603—Ceiling materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/10—Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
- C04B2111/12—Absence of mineral fibres, e.g. asbestos
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/52—Sound-insulating materials
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B1/8404—Sound-absorbing elements block-shaped
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B9/00—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
- E04B9/04—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
- E04B9/045—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like being laminated
Definitions
- the present disclosure relates to high noise reduction coefficient (NRC), low density acoustical tiles and panels ⁇ e.g., ceiling tiles) as well as a method of manufacture on a traditional wet felt line. More particularly, a wet felt manufacturing process using mineral wool is employed to produce smooth surface dried base mats that do not require perforating, coating, and/or laminating to achieve an NRC of about 0.70 or greater. Further, a ceiling attenuation class (CAC) rating of about 30 to about 35 can be achieved when a back coating is applied to the dried base mat.
- NRC noise reduction coefficient
- CAC ceiling attenuation class
- the water felting of dilute aqueous dispersions of mineral wool and lightweight aggregate is a well-known commercial process for manufacturing acoustical tile or panels.
- aqueous slurry of mineral wool, lightweight aggregate, cellulose fiber, binder, and other desired ingredients is flowed onto a moving foraminous support wire, such as that of a Fourdinier or Oliver mat forming machine, for dewatering.
- the slurry may be first dewatered by gravity and then dewatered by vacuum suction means to form a base mat.
- the wet base mat is then pressed (with or without the application of additional vacuum) to the desired thickness between rolls and a support wire to remove additional water.
- the wet base mat is dried in heated convection drying ovens and the dried material is cut to the desired dimensions, fissured and/or perforated to impart acoustical absorbency and optionally face coated, such as with paint, to produce acoustical tiles and panels.
- Mineral wool acoustical tiles are necessarily very porous to provide good sound absorption.
- mineral wool fibers have also been incorporated into the composition to improve sound absorption properties and to provide lightweight acoustical tiles or panels.
- U.S. Pat. No. 5,964,934 incorporated herein by reference in its entirety, teaches the use of an expanded perlite, treated with a silicone compound to reduce its water retention, in a furnish of mineral wool, expanded perlite, cellulose fiber, and optionally a secondary binder in a water felting process to produce an acoustical tile product.
- Acoustical tile composition must contain a binder, which has typically employed starch.
- US Patent Application Publication Number 2004/209071 A1 discloses a composition for slurry for manufacture of acoustical panels includes one or more fillers, one or more binders, and water and zinc pyrithione.
- US Patent Application Publication Number 2005/191465 A1 discloses an abuse-resistant, cast acoustical tile having improved impact resistance and excellent sound absorption values.
- the acoustical tiles have aggregate particles applied to the surface of a wet pulp in the casting process and the particles are embedded in the pulp by compression with a roll and/or smoothing plates.
- Noise reduction coefficient is a scale representation of the amount of sound energy absorbed upon striking a particular surface, with a NRC value of 0 indicating perfect reflection and a NRC of 1 representing perfect absorption of sound energy.
- the NRC value is an average of four sound absorption coefficients of the particular surface at frequencies of 250 HZ, 500 HZ, 1000 HZ, and 2000 HZ, which cover the range of typical human speech.
- NRC's greater than 1 may be obtained, but this is an artifact of the test method due to diffraction/edge to area effects.
- the Ceiling Attenuation Class (CAC) rating quantifies how much sound is lost when it is transmitted through the ceiling of one room into an adjacent room through a common plenum. A higher CAC rating indicates that the ceiling system allows less sound transmission.
- the CAC is measured using the test standard ASTM E 1414- 16, in which the sound levels are measured in the source room and an adjacent room.
- U.S. Pat. No. 7,862,687 to Englert discloses an acoustical tile composition with a high NRC of 0.80 to 0.95 achieved only by modifying the production method to eliminate the pressing of the wet base mat and utilize only vacuum for dewatering.
- the invention provides a dried base mat for producing acoustical tiles (i.e., prior to having perforations, lamination, or coatings) comprising mineral wool, perlite, latex, optionally starch, and optionally gypsum is provided having an NRC of about 0.70 or greater (preferably greater than 0.80), a density of about 10 pounds per square foot (pcf) to about 12 pcf, and a thickness of about 1/2 inch to about 1 inch.
- NRC NRC of about 0.70 or greater (preferably greater than 0.80)
- pcf pounds per square foot
- face coating face
- an acoustical tile comprising a dried base mat comprising: about 70 wt% to about 90 wt% mineral wool; about 5 wt% to about 15 wt% periite;
- the dried base mat has an absence of glass fibers; and wherein the dried base mat without a laminate layer or coating and without perforations has a NRC of about 0.70 or greater, a density of about 10 PCF to about 12 pcf, and a thickness of about 1/2 inch to about 1 inch.
- the acoustical tile has an absence of one or more of the following surface treatments: laminating, face coating, back coating, and perforating.
- a process for manufacturing such an acoustical tile in a water felting process comprises: mixing an aqueous slurry comprising water and ingredients comprising on a water free-basis: about 70 wt% to about 90 wt% mineral wool, about 5 wt% to about 15 wt% periite,
- the aqueous slurry having an absence of glass fibers; continuously flowing the aqueous slurry onto a moving foraminous support wire to form a filter cake; dewatering the filter cake to form a base mat which includes pressing the filter cake to the thickness of about 1/2 inch to about 1 inch; and drying the base mat to produce the dried base mat that without the laminate layer or coating and without the perforations has the NRC of about 0.70 or greater, the density of about 10 pcf to about 12 pcf, and the thickness of about 1/2 inch to about 1 inch, wherein the aqueous slurry and the dried base mat have an absence of glass fiber.
- the acoustical tile has an absence of one or more of the following surface treatments: laminating, face coating, back coating, and perforating, [0017]
- Another aspect of the invention provides for an acoustical tile comprising a dried base mat comprising: about 60 wt% to about 90 wt% mineral wool; about 5 wt% to about 15 wt% perlite;
- the acoustical tile has an absence of one or more of the following surface treatments: laminating, face coating, back coating, and perforating.
- a process for manufacturing such an acoustical tile in a water felting process comprises: mixing an aqueous slurry comprising water and ingredients comprising on a water free-basis: about 60 wt% to about 90 wt% mineral wool, about 5 wt% to about 15 wt% perlite, 0 wt% to about 10 wt% starch, about 3 wt% to about 10 wt% latex,
- wt% to about 5 wt% gypsum, and about 0.1 wt% to about 10 wt% glass fibers continuously flowing the aqueous slurry onto a moving foraminous support wire to form a filter cake; dewatering the filter cake to form a base mat which includes pressing the filter cake to the thickness of about 1/2 inch to about 1 inch; and drying the base mat to produce the dried base mat that without the laminate layer or coating and without the perforations has the NRC of about 0.75 or greater, and the thickness of about 1/2 inch to about 1 inch.
- FIG. 1 shows an acoustical ceiling tile of the present invention.
- FIG. 2 schematically shows a water felting line to make the acoustical tile of the present invention.
- FIG. 1 shows an acoustical ceiling tile 10 of the present invention having a back 20, a face 30 (sometimes referred to as a top), which is the surface positioned toward the inside of a room in which the ceiling tile 10 is installed, and a thickness 40.
- FIG. 2 schematically shows a water felting line 50 to make the dried base mat 160 and acoustical tile of the present invention.
- the aqueous slurry 60 of the composition is flowed from an agitated holding tank 70 (also referred to in the art as a headbox) onto a moving foraminous support wire 80 where it forms a filter cake 90 that is dewatered, first by gravity in gravity dewatering unit 100 and then by vacuum in vacuum dewatering unit 1 10.
- the speed of the moving foraminous support wire 80 and amount of aqueous slurry 60 flowed from an agitated holding tank 70 should be adjusted to achieve a final density of about 10 pcf to about 12 pcf.
- the foregoing parameters may vary by machine as would be apparent to one skilled in the art.
- the dewatered cake 120 is then pressed in a pressing unit 130 (e.g., a pressing roll) to reduce the thickness of the dewatered cake 120 about 10% to about 50%, or preferably 10% to 25%, to a thickness of about 1 /2 inch to about 1 inch to form the base mat 140.
- the pressing step further dewaters the base mat 140.
- the base mat 140 is then passed into a drying kiln 150 in which the moisture in the base mat is reduced to less than 5 wt%, preferably less than 2 wt%, and more preferably less than 1 wt%, which produces a dried base mat 160.
- the base mat 140 may be further dewatered with a vacuum dewatering unit (not shown) before introduction to the dryer 150.
- the dried base mat 160 is then cut by a blade 170 to form cut sheets 180 for acoustical tiles.
- a benefit of the invention is the dried base mat 160 achieves NRC greater than 0.70 before any optional further processing such as adding a face coating, a back coating, or laminate. Further, with a back coating and not necessarily a face coating, face laminate, or face perforation, a CAC rating of about 30 to about 35 can be achieved. Thus, the acoustical tile of the present invention may have an absence of a face coating, a face laminate, and a face perforation.
- the process for producing the acoustical tile can include a step to apply a back coating, typically at about 1 .5 mils to about 2.0 mils, to the dried base mat 160 to improve the CAC rating. Before back coating, the dried base mat 160 can be ground or otherwise sanded to produce a relatively smooth surface.
- exemplary coatings for the back coating include latex-based coatings and resin-based coatings (e.g., a formaldehyde based resin such as a melamine- formaldehyde resin, a phenol-formaldehyde resin, or a urea-formaldehyde resin).
- Exemplary coatings include (1 ) a coating comprising calcium carbonate, clay and vinyl latex; (2) a coating comprising calcium carbonate, clay, vinyl latex, and glass beads; (3) a coating comprising a clay slurry; or (4) a coating comprising a clay and vinyl latex slurry; and the like.
- the coatings can be applied in an amount to achieve a surface weight (based on a dried weight of the coating) of about 5 grams per square foot (gsf) to about 40 gsf, preferably about 15 gsf to about 37 gsf, and more preferably about 25 gsf to about 37 gsf.
- the process for producing the acoustical tile may include a step to apply a face coating or face laminate to the dried base mat 160 to further improve the NRC.
- the dried base mat 160 described herein can be face coated with a paint-like coating, typically at about 1 .5 mils to about 2.0 mils, to improve the resultant acoustical tile's light reflectance and appearance as a finished panel or tile as is customary in the industry.
- a laminate (solid layer) like a non-woven fiberglass scrim may also be applied to the face of the dried base mat.
- the dried base mat 160 Before face coating and/or laminating, the dried base mat 160 can be ground or otherwise sanded to produce a relatively smooth surface.
- a further benefit of the invention is the dried base mat 160 achieves NRC greater than 0.70 without perforations and fissures.
- the acoustical tile of the present invention may have an absence of perforations and fissures.
- the face of the acoustical tile can optionally be perforated and fissured to further improve its sound absorption performance.
- the process for producing the acoustical tile may yield a dried base mat 160 sufficiently smooth that the process may be absent a grinding or sanding step.
- the process for producing the acoustical tile may be absent two or more of: a grinding or sanding step, a face coating step, a laminating step, and a perforating or fissuring step.
- TABLE 1 lists compositions and the properties of the dried base mat of the invention and the compositions on a water free basis of the corresponding slurry where glass fibers are not in the slurry and dried base mat formulations. If a laminate, such as a fiberglass scrim or other laminate is added to the dried base mat, glass fibers may be present in the resultant acoustical tile.
- TABLE 2 lists compositions and the properties of the dried base mat of the invention and the compositions on a water free basis of the corresponding slurry where glass fibers are in the slurry and dried base mat formulations.
- each "Preferred” range or “More Preferred” range is individually a preferred range or more preferred range for the invention.
- any "Preferred” range can be independently substituted for a corresponding "Useable range”.
- any “More Preferred range” can be independently substituted for a corresponding "Useable” range or a corresponding "Preferred” range.
- the disclosed compositions contain mineral wool of the type conventionally used in acoustical tiles.
- Mineral wool in an acoustical tile increases the sound absorption (NRC) of the tile.
- NRC sound absorption
- Mineral wool also advantageously gives bulking to the slurry during formation of the core.
- Mineral wool also known as mineral fiber, mineral cotton, mineral fiber, man-made mineral fiber (MMMF), and man-made vitreous fiber (MMVF)
- MMMF man-made mineral fiber
- MMVF man-made vitreous fiber
- the mineral wool may be any of the conventional mineral fibers prepared by attenuating a molten stream of basalt, granite, or other vitreous mineral constituent.
- the molten mineral is either drawn linearly through orifices, commonly referred to as textile fiber, or it is recovered tangentially off the face of a spinning cup or rotor, commonly referred to as wool fiber.
- the mineral wool is slag wool or basalt wool.
- Slag wool is a mineral wool made usually from molten blast-furnace slag by the action of jets of steam under high pressure.
- Basalt fiber is a material made from extremely fine fibers of basalt, which is composed of the minerals plagioclase, pyroxene, and olivine.
- the mineral wool constituent is present in an amount ranging from about 70 wt% to about 90 wt%, more preferably about 75 wt% to about 85 wt%, most preferably about 78 wt% to about 80 wt% in the products and processes of the present invention.
- Glass fibers are not mineral wool.
- basalt wool fibers typically have a diameter of about 5 microns to about 10 microns. Further, commercially available basalt wool fibers include as much as 40% (e.g. , about 20% to about 40%) unfiberized material, which is referred to in the art as shot. Typically, slag wool fibers have a diameter of about 2 microns to about 5 microns. Further, commercially available slag wool fibers can include above about 50% (e.g. , about 30% to about 60%) shot.
- the mineral wool used in the inventive compositions and methods described herein may include shot at high concentrations that are typically commercially available or may have a reduced shot concentration achieved, for example, by passing the mineral wool through an air classifier.
- the binder comprises latex and optionally starch and mixtures thereof.
- Starch may or may not be cooked prior to use.
- a starch gel may be prepared by dispersing starch particles in water and heating the slurry until the starch is fully or partially cooked and the slurry thickens to a viscous gel.
- conventional hydropulped fibers are used as a supplemental source of fiber, they may be incorporated into the starch slurry prior to cooking.
- the cooking temperature of the starch slurry should be closely monitored to assure the desired degree of swelling of the starch granules.
- the cooking temperature for cornstarch can range from about 160 °F (71 °C) to about 195 °F (90 °C).
- Starch may also be used as a binder without pre-cooking the starch, because it forms a gel during the process of drying the base mat. Cornstarch is the preferred binder.
- Increased binder content in the form of starch, can be used to increase strength (MOR-modulus of rupture (psi)) and hardness and enhance the cutability of the finished tiles/panels.
- the starch is present from 0 wt% to about 10 wt%, preferably from about 1 wt% to about 5 wt%, more preferably from about 2 wt% to about 4 wt% in the products and processes of the present invention.
- the latex may include acrylic binder, a polyester binder, an acrylo-polyester binder, and mixtures thereof. [0046] On a dry basis, the latex is present from about 3 wt% to about 10 wt%, preferably about 5 wt% to about 9 wt%, more preferably about 6 wt% to about 8 wt% in the products and processes of the present invention.
- the total binder i.e., latex plus starch, if included
- the total binder is present, on a dry basis, from about 7 wt% to about 13 wt%, preferably about 8 wt% to about 12 wt%, more preferably about 9 wt% to about 10 wt% in the products and processes of the present invention.
- starch is excluded from the binder
- the latex is present at about 7 wt% to about 10 wt% in the products and processes of the present invention.
- An ingredient of the disclosed compositions is a perlite. Expanded perlite is preferred for its low cost and performance. The expanded perlite provides porosity and "loft" in the final product, which enhances acoustical properties.
- Perlite is a form of glassy rock, similar to obsidian with the capacity to expand greatly on heating.
- Perlite generally contains 65 wt% to 75 wt% S1O2, 10 wt% to 20 wt% AI2O3, 2 wt% to 5 wt% H2O, and smaller amounts of sodium, potassium, iron and calcium oxides.
- Expanded perlite denotes any glass rock and more particularly a volcanic glass that has been expanded suddenly or "popped" while being heated rapidly. This "popping" generally occurs when the grains of crushed perlite are heated to the temperatures of incipient fusion. The water contained in the particles is converted into steam and the crushed particles expand to form light, fluffy, cellular particles. Volume increases of the particles of at least ten fold are common.
- Expanded perlite is generally characterized by a system of concentric, spheroidal cracks, which are called perlite structure. Different types of perlite are characterized by variations in the composition of the glass affecting properties such as softening point, type and degree of expansion, size of the bubbles and wall thickness between them, and porosity of the product. [0051] In the conventional process of preparing expanded perlite, the perlite ore is first ground to a fine size. The perlite is expanded by introducing the finely ground perlite ore into the heated air of a perlite expander. Typically the expander heats the air to about 1750°F (955°C).
- the finely ground perlite is carried by the heated air which heats the perlite and causes it to pop like popcorn to form the expanded perlite having a density of about 3 to 10 pounds per cubic foot.
- expanded perlite When expanded perlite is placed in contact with water, the water penetrates the cracks and fissures and enters into the air filled cavities of the perlite, thereby causing the perlite to retain large amounts of water within the expanded perlite particles.
- Using the relatively high density perlite i.e., a perlite which has been expanded to a density of over 7 or 8 pcf (versus the normal range of 3 to 5 pcf), lowers the water needed to form a suitable slurry. See, U.S. Pat. No. 5,91 1 ,818 to Baig.
- the aqueous slurry with less water requires less dewatering, and produces a base mat having less water retained by the perlite.
- the resulting product has improved compressive resistance and maintained fire ratings, as defined by ASTM E1 19-16a.
- the base mat having a lower water content can be dried faster which allows the entire water felting line to be run at higher speed.
- High density perlite is also beneficial when manufacturing fire rated acoustical tiles that must meet a minimum density.
- the density of the expanded perlite exceeds about 20 pdf, the perlite does not produce as much "loft" or bulk in the final product. As a result, the density of the final product may be too high to maintain the low thermal conductivity required to pass the ASTM E1 19 fire
- the perlite On a dry basis, the perlite, of either the high or low density type, is present from about 5 wt% to about 15 wt%, preferably about 7 wt% to about 12 wt%, more preferably about 8 wt% to about 10 wt% in the products and processes of the present invention.
- Gypsum is a commonly used low cost inorganic material in acoustical tiles and related base mat and slurry compositions.
- the gypsum is calcium sulfate dihydrate, CaS04 2H2O.
- Gypsum has limited solubility in water and acts as a flocculent. By functioning as a flocculent in the slurry, the gypsum helps to retain and uniformly distribute the fine particles (inorganic clay, organic starch, short cellulosic fibers, etc.) in the mat during the processing (dewatering, vacuum and wet pressing).
- Gypsum may optionally be included in the products and processes of the present in.
- gypsum is present, on a dry basis, from 0 wt% to about 5 wt%, preferably about 0.5 wt% to about 3 wt%, more preferably about 0.5 wt% to about 2 wt% in the products and processes of the present invention.
- acoustical tiles of the invention, as well as the dried base mat and the slurry in the process for making the acoustical tile of the invention can an absence of gypsum, if desired.
- Glass fiber may optionally be included in the products and processes of the present invention to further increase the NRC of the dried base mat and acoustical tile of the invention.
- glass fiber is present, on a dry basis, from about 0.1 wt% to about 10 wt%, preferably about 0.1 wt% to about 5 wt%, more preferably about 0.5 wt% to about 3 wt% in the products and processes of the present invention.
- acoustical tiles of the invention, as well as the dried base mat and the slurry in the process for making the acoustical tile of the invention have an absence of glass fiber.
- the acoustical tile of the invention as well as the dried base mat and the slurry in the process for making the acoustical tile of the invention, preferably has an absence of polymer fibers unless included in a coating or laminate.
- the acoustical tile of the invention, as well as the dried base mat and the slurry in the process for making the acoustical tile of the invention preferably has an absence of organic fibers (e.g., cellulosic fibers, paper fibers, and newsprint) unless included in a coating or laminate.
- the acoustical tile of the invention, as well as the dried base mat and the slurry in the process for making the acoustical tile of the invention preferably has an absence of glass beads unless included in a coating or laminate.
- the acoustical tile of the invention, as well as the dried base mat and the slurry in the process for making the acoustical tile of the invention preferably has an absence of clay unless included in a coating or laminate.
- the acoustical tile of the invention as well as the dried base mat and the slurry in the process for making the acoustical tile of the invention, preferably has an absence of vermiculite unless included in a coating or laminate.
- the acoustical tile of the invention as well as the dried base mat and the slurry in the process for making the acoustical tile of the invention, preferably has an absence of calcium carbonate unless included in a coating or laminate.
- the acoustical tile of the invention, as well as the dried base mat and the slurry in the process for making the acoustical tile of the invention preferably has an absence of magnesium carbonate unless included in a coating or laminate.
- the acoustical tile of the invention as well as the dried base mat and the slurry in the process for making the acoustical tile of the invention, preferably has an absence of zinc pyrithione unless included in a coating or laminate.
- the acoustical tile of the invention has an absence of all the following ingredients: glass beads, polymer fibers, organic fibers, clay, vermiculite, calcium carbonate, and magnesium carbonate unless included in a coating or laminate.
- the acoustical tile of the invention, as well as the dried base mat and the slurry in the process for making the acoustical tile of the invention if further absent gypsum, glass fibers, or both gypsum and glass fibers unless included in a coating or laminate.
- the acoustical tile of the invention as well as the dried base mat and the slurry of the process for making the acoustical tile of the invention, on a water free basis, has an absence of inorganic material other than perlite, gypsum, and mineral wool and optionally glass fibers unless included in a coating or laminate.
- the acoustical tile of the invention as well as the base mat and the acoustical tile and the slurry of the process for making the acoustical tile of the invention, on a water free basis, has an absence of inorganic material other than perlite and mineral wool unless included in a coating or laminate. These exclusions are on a water free basis so it does not exclude water. ⁇ 0070 ⁇ Properties
- the acoustical tile of the invention has an NRC of about 0.70 or greater (e.g., about 0.70 to about 0.90), preferably about 0.75 or greater (e.g., about 0.75 to about 0.90), more preferably about 0.80 or greater (e.g., about 0.80 to about 0.90) for versions without glass fibers in the slurry or base mat.
- Versions with the glass fibers in the slurry or base mat have a useable NRC of about 0.75 to about 0.95, preferably 0.80 to about 0.95, and most preferably about 0.85 to about 0.95.
- the acoustical tile of the invention has a CAC of about 30 to about 35, preferably about 31 to about 34, more preferably about 31 to about 32.
- the acoustical tile of the invention has a thickness of about 1/2 in (12.7 mm) to about 1 in (25.4 mm), preferably about 5/8 in (15.9 mm) to about 7/8 in (22.2 mm), more preferably about 1 1/16 in (17.5 mm) to about 13/16 in (20.6 mm).
- the acoustical tile of the invention has a density of about 10 pcf (pounds per cubic foot) pcf (160 kg/m 3 ) to about 12 pcf (192 kg/m 3 ), more preferably about 1 1 pcf (176 kg/m 3 ) to about 12 pcf (192 kg/m 3 ).
- pcf pounds per cubic foot
- pcf 160 kg/m 3
- 12 pcf 192 kg/m 3
- 1 1 pcf 176 kg/m 3
- 12 pcf 192 kg/m 3
- EXAMPLES ⁇ 0076] EXAMPLE 1 Dried base mats were prepared by the wet felting process described in FIG. 2 and according to the formulations and specifications in TABLE 3 where the mineral wool is slag wool. A back coating of 10 gsf clay slurry and 14 gsf clay and vinyl latex slurry was applied to the dried base mats.
- the inventive base mats were cut into 2 ft by 2 ft acoustical tiles.
- the acoustic properties were tested for (1 ) tiles having only the back coating), (2) tiles having the back coating and 30 gsf face coating comprising calcium carbonate, clay, and vinyl latex (described in U.S. Pat. No. 9,040,153), and (3) tiles having the back coating and the face coating of (2) with a glass scrim (an oriented fiber fabric) applied.
- the glass scrim does not affect the CAC.
- TABLE 4 provides the acoustic testing results of several trials of the inventive acoustical tiles.
- the control acoustical tiles have an NRC of about 50 to about 55.
- the physical properties of the A-7 acoustical tiles were measured according to ASTM C367-16.
- the boards were tested for the Physical Test Results of Modulus of Rupture (MOR)(psi), Modulus of Elasticity (MOE) (psi), and 2 inch Ball Hardness (Ib-f) according to ASTM C367-16.
- MOR Modulus of Rupture
- MOE Modulus of Elasticity
- Ib-f 2 inch Ball Hardness
- Loss on Ignition (LOI)(%) was measured after heating the sample to 1000°F (538°C) for about 30 minutes.
- MOE refers to "Modulus of Elasticity" and is a measure of the relative stiffness of the test sample. A sample with a higher MOE value will deflect less under a given load.
- TABLE 5 provides the physical testing results of the A-7 acoustical tiles.
- EXAMPLE 3 2 foot by 2 foot (61 cm x 61 cm) acoustical tiles B-1 and B-2 of the Inventive Base Mat B composition (see TABLE 8) with 3/4 in (1 .9 cm) thickness were coated with (A) a back coating of 10 gsf clay slurry and 14 gsf clay and vinyl latex slurry and (B) a face coating comprising calcium carbonate, clay, and vinyl latex described in COMPARATIVE EXAMPLE 1 at a surface weight (based on a dried weight of the coating) of either 30 gsf (grams per square foot) (323 grams per square meter) or 45 gsf (484 grams per square meter).
- TABLE 9 provides the acoustical and physical properties of the two acoustical tiles B-1 and B-2. The results illustrate that increasing the face coating weight decreased the NRC of the acoustic ceiling tile where B-2 with a 45 gsf face coating falls outside the present invention.
- An acoustical tile comprising a dried base mat comprising:
- the dried base mat has an absence of glass fibers
- the dried base mat without a laminate layer, without a coating, and without perforations has a noise reduction coefficient (NRC) of about 0.70 or greater, a density of about 10 pounds per square foot (pcf) to about 12 pcf, and a thickness of about 1/2 inch to about 1 inch.
- NRC noise reduction coefficient
- Clause 2 The acoustical tile of clause 1 , further comprising a back coating and having a ceiling attenuation class (CAC) rating of about 30 to about 35.
- CAC ceiling attenuation class
- Clause 4 The acoustical tile of any one of clauses 1 -3, wherein a face of the acoustical tile has perforations.
- Clause 5 The acoustical tile of any one of clauses 1 -4, wherein the dried base mat, without the laminate layer or coating and without the perforations, has the NRC of about 0.80 or greater, the density of about 1 1 pcf to about 12 pcf, and the thickness of about 1 1 /16 inch to about 13/16 inch.
- Clause 6 A process for manufacturing the acoustical tile of any one of clauses 1 -5 in a water felting process comprising:
- an aqueous slurry comprising water and ingredients comprising on a water free-basis: about 70 wt% to about 90 wt% mineral wool, about 5 wt% to about 15 wt% perlite, 0 wt% to about 10 wt% starch, about 3 wt% to about 10 wt% latex, and 0 wt% to about 5 wt% gypsum;
- dewatering the filter cake to form a base mat which includes pressing the filter cake to the thickness of about 1/2 inch to about 1 inch;
- drying the base mat to produce the dried base mat that without the laminate layer, without the coating and without the perforations has the NRC of about 0.70 or greater, the density of about 10 pcf to about 12 pcf, and the thickness of about 1 /2 inch to about 1 inch,
- aqueous slurry and the dried base mat have an absence of glass fibers.
- Clause 7 The process of clause 8, further comprising applying a back of the acoustical tile with a coating a coating at a surface weight of about 5 grams per square foot (gsf) to about 40 gsf to the dried base mat, wherein the acoustical tile has the CAC rating of about 30 to about 35.
- gsf grams per square foot
- Clause 8 The process of clause 6 or 7, further comprising applying a face of the acoustical tile with a coating at a surface weight of about 5 gsf to about 40 gsf to the dried base mat.
- Clause 9 The process of any one of clauses 8-8, further comprising perforating a face of the acoustical tile.
- Clause 10 The process of any one of clauses 8-9, wherein the dried base mat, without the laminate layer or coating and without the perforations, has the NRC of about 0.80 or greater, the density of about 1 1 pcf to about 12 pcf, and the thickness of about 1 1 16 inch to about 13/16 inch.
- Clause 1 1 The process of any one of clauses 6-10, wherein the aqueous slurry and has an absence of one or more of: polymer fibers and organic fibers.
- Clause 12. The process of any one of clauses 8-1 1 , wherein the dried base mat consists the mineral wool, the periite, the latex, and less than about 5 wt% water.
- Clause 13 The process of any one of clauses 8-1 1 , wherein the dried base mat consists of the mineral wool, the periite, the starch, the latex, and less than about 5 wt% wafer.
- An acoustical tile comprising a dried base mat comprising:
- the dried base mat without a laminate layer, without a coating and without perforations has a noise reduction coefficient (NRC) of about 0.75 or greater, a density of about 10 pounds per square foot (pcf) to about 12 pcf, and a thickness of about 1/2 inch to about 1 inch.
- NRC noise reduction coefficient
- Clause 15 A process for manufacturing the acoustical tile of clause 14 in a water felting process comprising:
- an aqueous slurry comprising water and ingredients comprising on a water free-basis: about 60 wt% to about 90 wt% mineral wool, about 5 wt% to about 15 wt% periite, 0 wt% to about 10 wt% starch, about 3 wt% to about 10 wt% latex, 0 wt% to about 5 wt% gypsum, and about 0,5% to about 10% glass fibers;
- dewatering the filter cake to form a base mat which includes pressing the filter cake to the thickness of about 1/2 inch to about 1 inch;
- drying the base mat to produce the dried base mat that without the laminate layer, without the coating and without the perforations has the NRC of about 0.70 or greater, the density of about 10 pcf to about 12 pcf, and the thickness of about 1/2 inch to about 1 inch.
- Clause 16 The process of clause 15, further comprising applying a back of the acoustical tile with a coating a coating at a surface weight of about 5 grams per square foot (gsf) to about 40 gsf to the dried base mat, wherein the acoustical tile has the CAC rating of about 30 to about 35.
- gsf grams per square foot
- Clause 17 The process of clause 15 or 18, wherein the dried base mat, without the laminate layer or coating and without the perforations, has the NRC of about 0.80 or greater, the density of about 1 1 pcf to about 12 pcf, and the thickness of about 1 1/18 inch to about 13/16 inch.
- Clause 18 The process of any one of clauses 15-17, wherein the aqueous slurry and has an absence of one or more of: polymer fibers and organic fibers.
- Clause 19 The process of any one of clauses 15-18, wherein the dried base mat consists of the mineral wool, the perlite, the latex, and less than 5 wt% water.
- Clause 20 The process of any one of clauses 15-18, wherein the dried base mat consists of the mineral wool, the perlite, the starch, the latex, and less than 5 wt% water.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Architecture (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Building Environments (AREA)
- Laminated Bodies (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Producing Shaped Articles From Materials (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/674,707 US10696594B2 (en) | 2017-08-11 | 2017-08-11 | High noise reduction coefficient, low density acoustical tiles |
PCT/US2018/045919 WO2019032774A1 (en) | 2017-08-11 | 2018-08-09 | High noise reduction coefficient, low density acoustical tiles |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3665134A1 true EP3665134A1 (en) | 2020-06-17 |
Family
ID=63371797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18759810.7A Withdrawn EP3665134A1 (en) | 2017-08-11 | 2018-08-09 | High noise reduction coefficient, low density acoustical tiles |
Country Status (10)
Country | Link |
---|---|
US (1) | US10696594B2 (en) |
EP (1) | EP3665134A1 (en) |
JP (1) | JP7297218B2 (en) |
KR (1) | KR20200040778A (en) |
CN (1) | CN111094209A (en) |
AU (1) | AU2018316196A1 (en) |
CA (1) | CA3072218A1 (en) |
MX (1) | MX2020001435A (en) |
WO (1) | WO2019032774A1 (en) |
ZA (1) | ZA202001290B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230035178A1 (en) * | 2021-07-23 | 2023-02-02 | Usg Interiors, Llc | High Acoustic and Low Density Basemat |
EP4201913A1 (en) * | 2021-12-23 | 2023-06-28 | Saint-Gobain Placo | A cementitious product |
CN115849770A (en) * | 2022-11-22 | 2023-03-28 | 安徽盛天新型建材有限公司 | Production and processing technique of mineral wool board with formaldehyde purification effect |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3498404A (en) | 1968-02-29 | 1970-03-03 | United States Gypsum Co | Fire resistant porous acoustic board with perforations through metal facing sheet |
US4507197A (en) | 1982-08-09 | 1985-03-26 | Jim Walter Corporation | Apparatus and method for producing shot-free mineral wool |
US5250153A (en) | 1987-01-12 | 1993-10-05 | Usg Interiors, Inc. | Method for manufacturing a mineral wool panel |
US5071511A (en) | 1988-06-23 | 1991-12-10 | The Celotex Corporation | Acoustical mineral fiberboard |
US5047120A (en) | 1988-07-11 | 1991-09-10 | Usg Interiors, Inc. | Method for manufacture of lightweight frothed mineral wool panel |
US5277762A (en) | 1991-04-26 | 1994-01-11 | Armstrong World Industries, Inc. | Composite fiberboard and process of manufacture |
US5558710A (en) | 1994-08-08 | 1996-09-24 | Usg Interiors, Inc. | Gypsum/cellulosic fiber acoustical tile composition |
US5911818A (en) | 1997-08-20 | 1999-06-15 | Usg Interiors, Inc. | Acoustical tile composition |
US5964934A (en) | 1997-12-18 | 1999-10-12 | Usg Interiors, Inc. | Acoustical tile containing treated perlite |
US20020096278A1 (en) * | 2000-05-24 | 2002-07-25 | Armstrong World Industries, Inc. | Durable acoustical panel and method of making the same |
US6855753B1 (en) | 2000-11-22 | 2005-02-15 | Usg Interiors, Inc. | Acoustical tile containing wet-strength resin |
US7056582B2 (en) | 2003-04-17 | 2006-06-06 | Usg Interiors, Inc. | Mold resistant acoustical panel |
US6919132B2 (en) | 2003-08-07 | 2005-07-19 | Awi Licensing Company | Fiberboard panel having improved acoustics and durability |
US8337976B2 (en) | 2004-02-26 | 2012-12-25 | Usg Interiors, Inc. | Abuse-resistant cast acoustical ceiling tile having an excellent sound absorption value |
US7732043B2 (en) | 2005-09-15 | 2010-06-08 | Usg Interiors, Inc. | Ceiling tile with non uniform binder composition |
US8309231B2 (en) * | 2006-05-31 | 2012-11-13 | Usg Interiors, Llc | Acoustical tile |
US7503430B2 (en) * | 2006-09-07 | 2009-03-17 | Usg Interiors, Inc. | Reduced dust acoustic panel |
US20080176053A1 (en) | 2007-01-24 | 2008-07-24 | United States Cypsum Company | Gypsum Wallboard Containing Acoustical Tile |
US7862687B2 (en) * | 2007-11-20 | 2011-01-04 | United States Gypsum Company | Process for producing a low density acoustical panel with improved sound absorption |
CN101497513B (en) * | 2008-01-31 | 2012-02-22 | 北新集团建材股份有限公司 | Light mineral wool slab |
US8563449B2 (en) | 2008-04-03 | 2013-10-22 | Usg Interiors, Llc | Non-woven material and method of making such material |
MX2010011031A (en) * | 2008-04-18 | 2010-11-05 | United States Gypsum Co | Panels including renewable components and methods for manufacturing. |
US20090273113A1 (en) | 2008-04-30 | 2009-11-05 | Baig Mirza A | Wallboard and Ceiling Tile and Method of Manufacturing Same |
US8062565B2 (en) | 2009-06-18 | 2011-11-22 | Usg Interiors, Inc. | Low density non-woven material useful with acoustic ceiling tile products |
US8945295B2 (en) | 2012-05-04 | 2015-02-03 | Usg Interiors, Llc | Building materials and methods of manufacture |
US9040153B2 (en) | 2012-06-07 | 2015-05-26 | Usg Interiors, Inc. | Method of reducing ceiling tile sag and product thereof |
US8734613B1 (en) * | 2013-07-05 | 2014-05-27 | Usg Interiors, Llc | Glass fiber enhanced mineral wool based acoustical tile |
US9492961B2 (en) | 2014-08-01 | 2016-11-15 | Usg Interiors, Llc | Acoustic ceiling tiles with anti-sagging properties and methods of making same |
US9896807B2 (en) * | 2015-09-25 | 2018-02-20 | Usg Interiors, Llc | Acoustical ceiling tile |
US9909310B2 (en) * | 2016-01-14 | 2018-03-06 | Usg Interiors, Llc | Mineral fiber based ceiling tile |
-
2017
- 2017-08-11 US US15/674,707 patent/US10696594B2/en active Active
-
2018
- 2018-08-09 CA CA3072218A patent/CA3072218A1/en active Pending
- 2018-08-09 AU AU2018316196A patent/AU2018316196A1/en not_active Abandoned
- 2018-08-09 MX MX2020001435A patent/MX2020001435A/en unknown
- 2018-08-09 KR KR1020207005604A patent/KR20200040778A/en not_active Application Discontinuation
- 2018-08-09 WO PCT/US2018/045919 patent/WO2019032774A1/en unknown
- 2018-08-09 CN CN201880060859.8A patent/CN111094209A/en active Pending
- 2018-08-09 JP JP2020507581A patent/JP7297218B2/en active Active
- 2018-08-09 EP EP18759810.7A patent/EP3665134A1/en not_active Withdrawn
-
2020
- 2020-02-28 ZA ZA2020/01290A patent/ZA202001290B/en unknown
Also Published As
Publication number | Publication date |
---|---|
US20190047914A1 (en) | 2019-02-14 |
CA3072218A1 (en) | 2019-02-14 |
WO2019032774A1 (en) | 2019-02-14 |
AU2018316196A1 (en) | 2020-03-12 |
MX2020001435A (en) | 2020-03-20 |
JP2020530588A (en) | 2020-10-22 |
US10696594B2 (en) | 2020-06-30 |
CN111094209A (en) | 2020-05-01 |
JP7297218B2 (en) | 2023-06-26 |
KR20200040778A (en) | 2020-04-20 |
ZA202001290B (en) | 2021-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5441040B2 (en) | Method for manufacturing sound-absorbing ceiling panel | |
EP3353132B1 (en) | Acoustical ceiling tile | |
US7935223B2 (en) | Panels including renewable components and methods for manufacturing | |
EP2414600B1 (en) | Panels including renewable components and methods for manufacturing same | |
TWI460339B (en) | Panels including renewable components and methods for manufacturing | |
EP1345864A2 (en) | A dual layer acoustical ceiling tile having an improved sound absorption value | |
JP7297218B2 (en) | High noise reduction factor, low density acoustic tiles | |
CN110621631A (en) | Cotton surface treated with hydrophobic agent and acoustical panel made therefrom | |
AU606132B2 (en) | Low density frothed mineral wool panel and method | |
EP4373792A1 (en) | High acoustic and low density basemat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200306 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20210302 |