EP3655575A1 - Asymmetrically silica-impregnated nonwoven fabrics and methods for producing said nonwovens and use thereof - Google Patents

Asymmetrically silica-impregnated nonwoven fabrics and methods for producing said nonwovens and use thereof

Info

Publication number
EP3655575A1
EP3655575A1 EP19778972.0A EP19778972A EP3655575A1 EP 3655575 A1 EP3655575 A1 EP 3655575A1 EP 19778972 A EP19778972 A EP 19778972A EP 3655575 A1 EP3655575 A1 EP 3655575A1
Authority
EP
European Patent Office
Prior art keywords
fleece
nonwoven fabric
weight fraction
paper
main surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19778972.0A
Other languages
German (de)
French (fr)
Other versions
EP3655575B1 (en
Inventor
Maximilian Nau
Markus BIESALSKI
Nicole Herzog
Annette ANDRIEU-BRUNSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Darmstadt
Original Assignee
Technische Universitaet Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Darmstadt filed Critical Technische Universitaet Darmstadt
Publication of EP3655575A1 publication Critical patent/EP3655575A1/en
Application granted granted Critical
Publication of EP3655575B1 publication Critical patent/EP3655575B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/13Silicon-containing compounds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/04Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres
    • D04H1/26Wood pulp
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/16Processes for the non-uniform application of treating agents, e.g. one-sided treatment; Differential treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/40Coatings with pigments characterised by the pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/46Non-macromolecular organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • D21H25/06Physical treatment, e.g. heating, irradiating of impregnated or coated paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties

Definitions

  • the present invention relates to nonwovens with asymmetrical silica impregnation and processes for their production and uses of the nonwovens, in particular in the field of packaging materials.
  • composite materials are provided in which there is a modifying layer on the surface of the paper fleece.
  • composite materials made of paper and polyethylene are known. These composite materials are obtained by laminating the paper surface with polyethylene films. Layer composites are formed which have hydrophobic surface properties on one side or on both sides. An anisotropic distribution of the chemical impregnation within the paper fleece cannot be achieved with these techniques. In addition, such composite materials are difficult or impossible to recycle (keyword: microplastics). The relatively large amounts of material used for e.g. a coating is required.
  • Papers can also be hydrophobized with so-called sizing agents (for example alkylated ketene dimers (AKD)).
  • sizing agents for example alkylated ketene dimers (AKD)
  • An anisotropic distribution of the chemical impregnation which can also be referred to as asymmetrical distribution, would, however, be associated with many advantages. Functional loading Stratification could be applied in much lower order weights with the same effect. In addition, the targeted adjustment of the material concentration would enable the creation of more complex structures (eg sandwich-like channels in paper) in one process step with minimal use of materials.
  • the anisotropic chemical structure results in advantageous property profiles in the nonwovens, for example barrier effects. For example, a fleece could be obtained which cannot be wetted from the outside with fluids (for example water), but which could absorb (and deliver, pass on, and so on ...) the same fluid inside, as well as below described.
  • nonwoven fabrics for example paper nonwovens
  • the nonwovens are said to be able to be produced by a process which allows the fibers, in particular paper fibers, to be given localized hydrophobic or hydrophilic properties.
  • the process should be simple and also allow easy upscaling.
  • biocompatible materials are to be obtained.
  • the distribution of Si0 2 in the form of a gradient enables one side of the nonwoven, in particular the paper, to absorb water and the other side to repel water, or that both surfaces repel water and water can only be absorbed inside the material. analogous to a chemical sandwich structure.
  • the water absorption behavior can be adjusted by adjusting the Si0 2 amount.
  • the objects are solved by the subject matter of the claims.
  • the objects are achieved in particular by a nonwoven fabric with asymmetrical silica impregnation, the nonwoven having two main surfaces, the weight fraction of SiO 2 decreasing from at least one of the two main surfaces towards the inside of the nonwoven.
  • the tasks are also solved by a method for producing a nonwoven fabric with asymmetrical silica impregnation, in particular a nonwoven fabric of the present invention, comprising the following steps: a) providing a nonwoven fabric, b) providing an impregnation solution, the Impregnation solution contains a silane component, c) impregnating the fleece with the impregnation solution, d) drying the fleece at temperatures in a range from 70 ° C. to 190 ° C., a period of at most 60 seconds between the completion of the impregnation according to step c) and the start of drying according to step d).
  • the method developed by the inventors preferably uses only a silane component (in particular tetraethylorthosilicate (TEOS), preferably prepolymerized) and a nonwoven fabric, in particular a paper nonwoven, to build up the anisotropic (asymmetrical) impregnation.
  • TEOS tetraethylorthosilicate
  • the silane component can be inserted into the paper in a simple immersion step. Other impregnation processes are also possible.
  • the nonwoven is preferably impregnated with the impregnation solution according to step c) of the method using an impregnation method which is selected from the group consisting of dip coating, spray coating (optionally also on both sides), size press, roller coating, blade coating and curtain coating . Dip coating and spray coating are particularly preferred. Dip coating is very particularly preferred.
  • the impregnation solution is preferably distributed uniformly over the surface and the interior of the fleece.
  • the silane component produces a silica impregnation in the form of polymeric SiO 2 , which can also be referred to as a silicate component.
  • a silicate component This is based not only on drying, but on a chemical reaction taking place at the same time.
  • the distribution of the amount of polymeric silicate component is preferably controlled by the drying process, which particularly preferably includes the control of the condensation reaction of the silane component (in particular TEOS) taking place parallel to the drying.
  • the location of the impregnation is preferably controlled by the self-diffusion and reactivity of the silane component, which in turn can be easily adjusted via the drying conditions (air humidity, temperature, pressure). It is therefore not necessary to produce a laminate in multiple steps with many additives.
  • the process enables the saving of process steps and the amount of material introduced and thus energy and materials based on fossil raw materials.
  • the new materials obtainable with the process can be replaced in a variety of ways, for example for hydrophobization in the packaging and food sector.
  • the present invention relates to a nonwoven fabric with asymmetrical silica impregnation, where the nonwoven has two main surfaces, the weight fraction of Si0 2 decreasing from at least one of the two main surfaces towards the inside of the nonwoven.
  • the nonwoven of the present invention is a nonwoven.
  • the nonwoven is preferably selected from the group consisting of paper nonwovens, textile nonwovens and plastic nonwovens.
  • the nonwoven is particularly preferably a paper nonwoven.
  • the impregnated nonwoven preferably comprises S1O2 in a proportion of 0.1 to 10% by weight, more preferably 0.2 to 7.5% by weight, further preferably 0.5 to 5% by weight.
  • the impregnated nonwoven preferably consists of the fiber component (in particular paper) and the impregnation component (SiC> 2).
  • the impregnated nonwoven preferably comprises the fiber component in a proportion of 90 to 99.9% by weight, more preferably 92.5 to 99.8% by weight, more preferably 95% to 99.5% % By weight.
  • the impregnated nonwoven fabric of the invention preferably consists of the fiber component (in particular special paper) and the impregnation component (S1O2).
  • the fleece can contain further components, but preferably in a proportion of at most up to 50% by weight, for example 0 to 30% by weight, more preferably up to 25% by weight, further preferably up to 10 % By weight, more preferably up to 5% by weight, more preferably up to 2% by weight, more preferably up to 1% by weight, more preferably less than 0.5% by weight.
  • These further components can in particular be inorganic and / or organic fillers.
  • the proportion of the fiber component and impregnation component in the nonwoven of the present invention is preferably at least 50% by weight, more preferably at least 75% by weight, more preferably at least 90% by weight, further preferably at least 95% by weight, further preferably at least 98% by weight, more preferably at least 99% by weight.
  • the impregnated nonwoven fabric of the invention preferably consists of the fiber component and the impregnation component.
  • the nonwoven of the present invention has an asymmetrical (anisotropic) silica impregnation.
  • asymmetrical and “anisotropic” are used synonymously in the present description.
  • the silica impregnation is in the form of polymeric Si0 2 , which can also be referred to as a silicate component.
  • the silica impregnation is asymmetrical, ie anisotropic. This means that the proportion of Si0 2 is not distributed homogeneously over the fleece, as explained in more detail below.
  • the nonwoven of the invention has two major surfaces.
  • the length and width of the nonwoven, or in the case of nonwovens with a round base, the diameter of the nonwoven are many times greater than the thickness of the nonwoven.
  • the ratio of length and width or diameter of the fleece to the thickness of the fleece is preferably at least 5, more preferably at least 10, more preferably at least 20.
  • the shape of the fleece can therefore also be as leaf-like, foil-like, plate-like or disc-like.
  • the two main surfaces can also be referred to as the top and bottom or as the front and back of the fleece.
  • the weight fraction of SiO 2 decreases from at least one of the two main surfaces towards the interior of the fleece.
  • the proportion by weight of Si0 2 is therefore higher on at least one of the two main surfaces than the proportion by weight of Si0 2 below the corresponding main surface.
  • the formation of such a Si0 2 gradient brings diverse advantages with it compared to materials with SiO 2 present essentially uniformly distributed over the thickness of the fleece. For example, inner channels and / or different wetting properties of the surfaces can be obtained. In addition, a low use of materials is made possible.
  • the weight fraction of SiO 2 on at least one of the two main surfaces is preferably at least 1.1 times as high, more preferably at least twice as high, more preferably at least three times as high, more preferably at least four times as high, more preferably at least five times as high, more preferably at least six times as high, more preferably at least seven times as high, more preferably at least eight times as high, more preferably at least nine times as high, further preferably at least ten times as high as the weight fraction of SiO 2 in the middle of the fleece.
  • the center of the fleece designates the positions in the interior of the fleece which are equally far away from the two main surfaces in the shortest possible connection, and which are therefore in the middle of the fleece in relation to the thickness of the fleece.
  • the SiO 2 is not only in a gradient distribution in relation to one main surface, but also in relation to the other main surface.
  • the gradient does not have to be designed in the same way from both main surfaces to the interior of the fleece.
  • the weight fraction of Si0 2 decreases from one of the two main surfaces towards the interior of the fleece, while the weight fraction of Si0 2 increases from the other of the two main surfaces towards the interior of the fleece.
  • Such fleeces preferably differ in terms of their properties on the two main surfaces.
  • one main surface is significantly more hydrophobic than the other main surface.
  • a fleece with a hydrophobic main surface and a hydrophilic main surface is particularly preferred.
  • the weight fraction of SiO 2 on one of the two main surfaces is preferably at least 1.1 times as high, more preferably at least two.
  • the proportion by weight of S1O2 on the other of the two main surfaces is preferably at most 0.9 times, more preferably at most half, more preferably at most one third, more preferably at most one quarter, more preferably at most one fifth, more preferably at most one Sixth, more preferably at most one seventh, more preferably at most one eighth, more preferably at most one ninth, further preferably at most one tenth of the weight fraction of S1O2 in the middle of the fleece.
  • the weight fraction of S1O2 on one of the two main surfaces is preferably at least 1.2 times, more preferably at least 4 times, more preferably at least 10 times, more preferably at least 20 times, further preferably at least 50 times , more preferably at least 100 times the weight fraction of SiO 2 on the other of the two main surfaces.
  • the weight fraction of SiO 2 decreases from both main surfaces towards the inside of the fleece.
  • Such fleeces preferably do not differ, or do not differ significantly, with regard to their properties on the two main surfaces.
  • both main surfaces are hydrophobic.
  • a fleece with two hydrophobic main surfaces is particularly preferred. Less material is required compared to a uniform impregnation across the entire thickness of the fleece.
  • the proportion by weight of SiO 2 on both main surfaces is preferably at least 1.1 times as high, more preferably at least 1.2 times as high, more preferably at least 1.5 times as high as the proportion by weight of SiO 2 in the middle of the fleece.
  • the ratio of the proportion by weight of S1O2 on one main surface to the proportion by weight of S1O2 on the other main surface is in a range from 0.95: 1 to 1.05: 1, more preferably from 0.98: 1 to 1.02 : 1, further preferred from 0.99: 1 to 1, 01: 1.
  • the relative Si0 2 distribution in the nonwovens is preferably analyzed with the help of confocal laser scanning microscopy (CLSM, English: "confocal laser scanning microscopy”) on cross sections of embedded samples.
  • CLSM confocal laser scanning microscopy
  • absolute Si0 2 quantities per fleece which are preferably determined with the help of thermogravimetric analysis (TGA)
  • TGA thermogravimetric analysis
  • the nonwovens of the invention preferably have a high degree of flexibility.
  • the present invention also relates to a method for producing a nonwoven fabric with asymmetrical silica impregnation, in particular a nonwoven fabric of the present invention as described above.
  • the invention also relates to a nonwoven fabric with asymmetrical silica impregnation that can be obtained or obtained with the method.
  • the method comprises the following steps: a) providing a nonwoven fabric, b) providing an impregnating solution, the impregnating solution containing a silane component, c) impregnating the nonwoven fabric with the impregnating solution, d) drying the nonwoven fabric at temperatures in a range from 70 ° C to 190 ° C, with a period of at most 60 seconds between the completion of the impregnation according to step c) and the start of drying according to step d).
  • a nonwoven fabric is provided.
  • the nonwoven is preferably selected from the group consisting of paper nonwovens, textile nonwovens and plastic nonwovens.
  • the nonwoven is particularly preferably a paper nonwoven.
  • the paper fleece provided preferably has a grammage of 65 to 120 g / m 2 , more preferably 70 to 100 g / m 2 , more preferably 75 to 90 g / m 2 .
  • the nonwoven can be a commercially available nonwoven.
  • the paper fleece can be a commercially available paper fleece.
  • the step of providing the nonwoven, in particular the nonwoven can also include the step of producing the nonwoven, in particular the nonwoven.
  • a paper fleece is preferably produced using the Rapid-Köthen process, particularly preferably in a Rapid-Köthen sheet-forming system, very particularly preferably in accordance with DIN 54358 and / or ISO 5269/2 (ISO5269-2: 2004 (E), " Pulps - Preparation of Laboratory Sheets for Physical Testing - Part 2: Rapid Köthen Method, 2004 ").
  • No further additives or fillers are preferably used in the production of the nonwoven fabric, in particular the paper nonwoven.
  • an impregnation solution which contains a silane component.
  • the terms “impregnation solution” and “impregnation solution” are used synonymously.
  • the impregnation solution can be one component, that is, it can consist of a single component. In such a case, the impregnation solution can in particular also be referred to as “impregnation fluid” or “impregnation fluid”.
  • the impregnation solution consists of the silane component.
  • the proportion of the silane component in the impregnation solution is 100% by weight.
  • the impregnation solution can therefore be pure silane.
  • the impregnation solution contains, in addition to the silane component, at least one further component, for example a solvent component and / or an acid component.
  • the proportion of the silane component in the impregnation solution is preferably in a range from 5% by weight to 100% by weight, more preferably 10% by weight to 99% by weight, further preferably 20% by weight to 98 % By weight, more preferably 40% by weight to 97% by weight, more preferably 60% by weight to 96% by weight, more preferably 80% by weight to 95% by weight.
  • the extent of the water-repellent surface properties of the nonwovens can be specifically adjusted via the proportion of the silane component. Higher proportions of the silane component are associated with more hydrophobic surface properties.
  • the silane component is preferably selected from the group consisting of tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate, polydimethoxysiloxane, 1,2-bis (triethoxysilyt) ethane, tetramethyl orthosilicate (TMOS), silicon tetraacetate and mixtures of two or more thereof.
  • TEOS tetraethyl orthosilicate
  • TMOS tetramethyl orthosilicate
  • silicon tetraacetate silicon tetraacetate and mixtures of two or more thereof.
  • the silane component TEOS is particularly preferred.
  • TEOS is a common basic chemical that is cheap and readily available.
  • the silane component is preferably prepolymerized.
  • prepolymerized means that only oligomers have already been formed and the material has not yet been polymerized.
  • the impregnation solution preferably contains solvents in a proportion which is in a range from 0 to 98% by weight, more preferably from 0.1 to 50% by weight, more preferably from 0.2 to 20% by weight, more preferably from 0.5 to 10% by weight, even more preferably from 1 to 5% by weight.
  • the solvent is preferably selected from the group consisting of water, ethanol and mixtures of two or more thereof.
  • the solvent is particularly preferably water.
  • the impregnation solution preferably contains water in a proportion which is in a range from 0 to 20% by weight, more preferably from 0.5 to 10% by weight, more preferably from 1 to 5% by weight.
  • the impregnation solution preferably contains HCl in a proportion of 0.001 to 0.2% by weight, more preferably 0.005 to 0.1% by weight, more preferably 0.01 to 0.05% by weight.
  • the impregnation solution according to the invention preferably consists of at least 95% by weight, more preferably at least 98% by weight, more preferably at least 99% by weight, further preferably at least 99.9% by weight, further preferably at least 99.99 % By weight of ethanol, water, silane component and HCl. It is a particular advantage of the method according to the invention that no further components are required in the impregnation solution.
  • the impregnation solution is particularly preferably composed of at least 95% by weight, more preferably at least 98% by weight, more preferably at least 99% by weight, more preferably at least 99.9% by weight, more preferably at least 99% 99% by weight of water, silane component and HCl.
  • the impregnation solution is preferably stirred for a period of 6 to 48 hours, more preferably from 12 to 36 hours, more preferably from 18 to 30 hours, before the impregnation of the nonwoven fabric, in particular the paper nonwoven, with the impregnation solution according to step c) of the method according to the invention it follows.
  • the impregnation solution consists of a silane component (in particular TEOS)
  • TEOS preferably no such stirring takes place.
  • Step c) of impregnating the nonwoven fabric, in particular the paper nonwoven, with the impregnation solution is preferably carried out at a relative atmospheric humidity in a range from 10% to 95%, more preferably from 30% to 70%, further preferably 40% to 60% , more preferably 45% to 55% and / or at a temperature in a range from 15 ° C to 30 ° C, more preferably 20 ° C to 25 ° C.
  • the nonwoven fabric is preferably impregnated with the impregnating solution by exposing the nonwoven to the impregnating solution, in other words by bringing the nonwoven into contact with the impregnating solution.
  • the nonwoven fabric is preferably impregnated with the impregnation solution according to step c) of the process using an impregnation process which is selected from the group consisting of dip coating, spray coating (optionally also on both sides), size press, roller coating, blade coating and curtain coating. Dip coating and spray coating are particularly preferred. Dip coating is very particularly preferred.
  • the impregnation solution is preferably distributed uniformly over the surface and the interior of the fleece.
  • the impregnation in step c) of the invention is carried out by immersing the fleece in the impregnation solution.
  • the nonwoven fabric in particular the paper nonwoven, is preferably completely immersed in the impregnation solution.
  • the immersion is preferably carried out in such a way that the nonwoven, in particular the nonwoven, is oriented essentially vertically.
  • a vertical orientation means that the two main surfaces of the fleece are arranged in such a way that surface vectors perpendicular to the main surfaces are oriented essentially horizontally.
  • the surface vectors of the two main surfaces preferably each form an angle of at least 70 ° and at most 110 °, more preferably of at least 80 ° and at most 100 °, more preferably of at least 85 ° and at most 95 °, with the vector of the immersion direction.
  • the fleece is preferably removed from the impregnation solution at a point in time which is one to ten seconds, more preferably two to five seconds after the immersion of the fleece in the impregnation solution has ended.
  • the fleece is preferably removed from the impregnation solution in such a way that the fleece is oriented essentially vertically.
  • a vertical orientation means that the two main surfaces of the fleece are arranged in such a way that surface vectors perpendicular to the main surfaces are oriented essentially horizontally.
  • the surface vectors of the two main surfaces preferably form an angle of at least 70 ° and at most 110 °, more preferably of at least 80 ° and at most 100 °, more preferably of at least 85 ° and at most 95 °, with the vector of the distance direction.
  • the fleece dries at temperatures in a range from 70 ° C. to 190 ° C.
  • the fleece dries at temperatures in a range from 80 ° C. to 180 ° C., more preferably from 90 ° C. to 170 ° C., more preferably from 100 ° C. to 160 ° C., more preferably from 110 ° C. C to 150 ° C, more preferably from 120 ° C to 140 ° C, more preferably from 125 ° C to 135 ° C.
  • the fleece is preferably dried in accordance with step d) until the residual moisture of the fleece is in a range from 3% by weight to 7% by weight.
  • the residual moisture is preferably determined by means of gravimetric analysis, in particular according to DIN EN 20287.
  • step d) of the method according to the invention preferably takes place immediately, in other words immediately, after impregnation of the fleece with the impregnation solution according to step c) of the method.
  • the impregnation according to step c) is preferably completed when the nonwoven is no longer exposed to the impregnation solution, or in other words when the nonwoven is no longer brought into contact with the impregnation solution.
  • the impregnation according to step c) is preferably completed, for example, when the nonwoven fabric has been completely removed from the impregnation solution again, for example pulled out.
  • the impregnation according to step c) is preferably completed, for example, when the fleece is no longer sprayed with the impregnation solution.
  • the drying according to step d) preferably begins when the fleece comes into an environment which is intended to remove moisture and / or condensation products, for example in an oven.
  • the short period between completion of the impregnation and the beginning of the drying probably means that the silane component of the impregnation solution has not yet been converted to a substantial extent into the silicate component of the silica impregnation if the drying at the increased Drying temperatures occur.
  • This enables the targeted adjustment of the asymmetrical silica impregnation. This is because the silane component migrates through the fleece at the elevated drying temperatures depending on the drying conditions, in particular the ambient pressures, as long as it has not yet been converted into an overly polymerized silica impregnation.
  • the migration of the silane component through the fleece at the elevated drying temperatures can be influenced, in particular, by adjusting the ambient pressures during drying.
  • the migration of the silane component can in particular also be influenced by the evaporation of the silane component and / or the solvent at the elevated drying temperatures, since the silane component passes through with the solvent the fleece wanders.
  • the method of the present invention provides that between the completion of the impregnation according to step c) and the start of drying according to step d) there is a period of at most 60 seconds. Extensive polymerization has therefore not yet taken place at the start of drying, so that the silane component present in the impregnation solution migrates through the fleece and the distribution of the silica impregnation can therefore be influenced in a targeted manner via the migration.
  • nonwovens with asymmetrical silica impregnation can be obtained be formed such that the SiC weight fraction on one main surface is higher than in the middle of the fleece, while the SiO 2 weight fraction on the other main surface is lower than in the middle of the fleece.
  • non-woven fabrics can be obtained with an asymmetrical silica impregnation which is designed such that the Si0 2 weight fraction on both main surfaces is approximately the same, namely higher than in the middle of the fleece, since the silane component migrates from the center towards the main surfaces and then there is an increased formation of the polymeric silica Impregnation is coming.
  • Drying is preferably carried out with the aid of a dryer.
  • the dryer is preferably selected from the group consisting of hot air dryers, ovens, drum dryers and IR dryers.
  • drying can be carried out in an oven, preferably in a vacuum oven or in a muffle oven.
  • the oven is preferably preheated, in particular to the drying temperature, so that after the impregnation in step c), drying in step d) can be started particularly quickly.
  • the dryer is particularly preferably a hot air dryer. Hot air drying is particularly preferred.
  • the properties of the nonwovens obtained can be influenced not only by the process steps described above, but in particular also by the ambient pressure prevailing during drying.
  • Nonwovens with comparatively high Si0 2 contents on both main surfaces can be obtained in particular at low pressures.
  • the pressure during the drying according to step d) is preferably in a range from 0.1 kPa to 500 kPa, more preferably from 0.2 kPa to 200 kPa. In certain preferred embodiments, the pressure during the drying according to step d) is in a range from 0.1 kPa to 30 kPa, more preferably from 0.2 kPa to 20 kPa, more preferably from 0.5 kPa to 10 kPa, more preferably from 1 kPa to 5 kPa.
  • Such embodiments are particularly suitable for the production of such nonwovens in which the SiC> 2 content on both main surfaces is comparatively high, but is comparatively low in the middle of the nonwoven (so-called sandwich structure).
  • the pressure during the drying according to step d) is in a range from> 30 kPa to 500 kPa, more preferably from 50 kPa to 200 kPa, more preferably from 60 kPa to 150 kPa, more preferably from 70 kPa to 130 kPa, more preferably from 80 kPa to 120 kPa, more preferably from 90 kPa to 110 kPa.
  • Such embodiments are particularly suitable for the production of those nonwovens in which the SiO 2 content on one of the two main surfaces is significantly higher than on the other of the two main surfaces, while the content of S1O2 in the middle of the nonwoven is less than one of the two main surfaces, but higher than the other of the two main surfaces.
  • the nonwovens are preferably arranged essentially horizontally or oriented horizontally.
  • a horizontal orientation means that the two main surfaces of the fleece are arranged in such a way that surface vectors perpendicular to the main surfaces are oriented essentially vertically.
  • the nonwovens are preferably cooled to a temperature of from 15 ° C. to 30 ° C., more preferably from 20 ° C. to 25 ° C.
  • the method preferably consists of the specified steps. It is a particular advantage of the method according to the invention that the method requires very few steps.
  • the present invention also relates to the use of a nonwoven of the present invention, in particular as packaging material.
  • Preferred uses as packaging material include the use as frozen paper, the use for products that come into contact with food, such as (paper) cups and / or (paper) straws, and the use as packaging for mate- rialien that are protected from liquid, but should still exchange moisture.
  • the nonwovens of the present invention can be used for plastic-free straws and / or paper cups. Against the background of possible regulations for the reduction of plastic waste, it can be assumed that there will be an increased demand for plastic-free products. Nonwovens for the uses mentioned, in particular for use in drinking straws and cups, are often also referred to as special papers.
  • Embodiments in which the SiCV content on one of the two main surfaces is significantly higher than on the other of the two main surfaces are particularly suitable for use as paper cups.
  • the main surface with the higher Si0 2 content is suitable because of its hydrophobicity as the inside of the cup, because the hydrophobic properties of the surface prevent excessive entry of the liquid in the cup into the interior of the fleece.
  • the more hydrophilic surface works well as the outer surface of the cup because it promotes printability.
  • Embodiments are particularly suitable for use as a straw in which the SiO 2 content on both main surfaces is comparatively high, but is comparatively low in the middle of the fleece (so-called sandwich structure).
  • the high Si0 2 content on the two main surfaces prevents excessive liquid from entering the interior of the fleece.
  • the fact that the Si0 2 content in the middle of the fleece is comparatively low enables material to be saved.
  • the present invention also relates to the use of a nonwoven of the present invention as a membrane, in particular as a membrane for water / oil separation.
  • a membrane can be used in particular for the spatial separation of mixtures consisting of a liquid, hydrophobic component (in particular oil) and water.
  • the present invention also relates to the use of a nonwoven of the present invention as special paper for use at elevated temperatures, in particular the use of a nonwoven of the present invention as baking paper. Description of the figures
  • FIG. 1 shows schematically the evaporation from the nonwovens (1) when drying under normal pressure (FIG. 1A) or in a vacuum (FIG. 1B).
  • Under normal pressure there was a high evaporation rate (2) on the top (illustrated by the longer arrows) and a low evaporation rate (3) on the underside of the fleece (1) (illustrated by the shorter arrows).
  • In the vacuum there is an average evaporation rate on the top and bottom (4).
  • FIG. 2 shows schematically the fluorescence intensity (y-axis) of rhodamine B over the thickness of the fleeces (x-axis).
  • the distribution is schematically sketched for non-woven fabrics dried under normal pressure in FIG. 2A and for non-woven fabrics dried in a vacuum in FIG. 2B.
  • the location of the two main surfaces ("main sides") is given for orientation.
  • the sketch shows an exemplary fluorescence distribution in nonwoven fabrics with an asymmetrical silica impregnation, which is designed in such a way that the Si0 2 weight fraction on one main surface is higher than in the middle of the nonwoven, while the Si0 2 -
  • the proportion by weight of the other main surface is less than that in the middle of the fleece (FIG. 2A) and in the case of non-woven fabrics with an asymmetrical silica impregnation which is designed such that the SiO 2 proportion by weight on both main surfaces is approximately the same , namely higher than in the middle of the fleece ( Figure 2B).
  • Eucalyptus sulfate fiber (“curl”: 16.2%; degree of fiberization: 1.3%; fine fraction: 15.2%) was used to produce a paper fleece.
  • the fibrous material was ground in a Voith LR 40 laboratory refiner. It was milled with an effective specific energy of 16 kWh / t (750,000 revolutions).
  • Paper fleeces with a grammage of 80 ⁇ 0.9 g / m 2 were made from the eucalyptus sulfate fibrous material using a Rapid-Köthen sheet formation system in accordance with DIN 54358 and ISO 5269/2 (ISO5269-2: 2004 (E), "Pulps - Preparation of Laboratory Sheets for Physical Testing - Part 2: Rapid Köthen Method, 2004"). No additives or fillers were used. 2. Production of the Si0 2 paper hybrid materials
  • the solutions contained TEOS, ethanol (EtOH), water (H2O) and HCl in the following molar ratios:
  • Thermogravimetric analysis was carried out with a TGA 1 (Mettler-Toledo). The samples were heated from 25 ° C to 600 ° C at a rate of 10 ° C / min under a constant air flow of 30 ml / min. With these measurements it is possible to determine the content of S1O2, since S1O2 is stable up to temperatures of 1700 ° C.
  • the proportion of Si0 2 in the Si0 2 paper hybrid materials is therefore about 0.6% by weight for the nonwovens obtained by treatment with the low-concentration TEOS solution and about 4% by weight for the Nonwovens obtained by treatment with the highly concentrated TEOS solution.
  • Nonwovens were made as described in Examples 1 and 2. However, before treatment with the TEOS solution for producing the hybrid materials according to Example 2, the dye Calcofluor White (CFW) was introduced into the nonwovens in the following manner:
  • Paper webs from Example 1 were immersed in a CFW solution containing 10 mM CFW in ethanol (absolute) and then dried at 40 ° C. in a vacuum oven for one hour. This staining will later serve as a reference, since CFW is homogeneously distributed over the paper nonwovens due to the high binding affinity for cellulose and does not migrate during drying.
  • the nonwovens labeled in this way were treated with TEOS solutions and dried as described in Example 2, the immersion solutions additionally containing 20 mM Rhodamine B. hb) production of the cross sections
  • Each sample was embedded in a mixture of 49.9875% by weight Desmodur 3200, 49.9875% by weight Albodur 956 VP and 0.025% by weight TIB-KAT 318.
  • the mixture is a commercial polyurethane system.
  • the freshly embedded samples were subjected to several vacuum cycles at room temperature in order to remove remaining air bubbles.
  • the resin was then cured at 80 ° C for 18 hours.
  • samples with a thickness of 120 ⁇ m were cut.
  • the section plane was chosen so that it is oriented orthogonally to both main surfaces.
  • the samples were placed between two 25 mm round microscope coverslips using Leica Type F immersion liquid.
  • the images were taken on a Leica TCS SP8.
  • a lens of the type "HC PL APO CS2 20x / 0.75 IMM" in water immersion was used, CFW was excited with a 405 nm laser and detected at 415-557 nm.
  • Rhodamine B was excited with a 552 nm laser and detected at 562-753 nm.
  • CFW serves as a reference value.
  • CFW has a high affinity for cellulose and is therefore evenly distributed over the entire thickness of the fleece. If the CFW fluorescence value fluctuates significantly across the paper cross-section, this can indicate problems in the beam path (such as air pockets), since CFW is physically homogeneously distributed on the paper.
  • SiO 2 layer thicknesses it can happen that amino groups of CFW react with the polyurethane resin, whereby the fluorescence of CFW is deactivated.
  • S1O2 there is no reaction with the resin, so that the fluorescence is retained.
  • Rhodamine B serves as a ratiometric marker for the proportion of Si0 2 .
  • RhoB fluorescence the higher the RhoB fluorescence, the higher the proportion of Si0 2 .

Abstract

The invention relates to asymmetrically silica-impregnated nonwoven fabrics, to methods for producing said nonwovens and to uses of said nonwovens, especially in the field of packaging materials.

Description

Faservliese mit asymmetrischer Silica-Imprägnierung und Verfahren zur Herstellung der Vliese sowie deren Verwendungen  Nonwoven fabrics with asymmetrical silica impregnation and process for producing the nonwovens and their uses
Die vorliegende Erfindung betrifft Faservliese mit asymmetrischer Silica-Imprägnierung und Ver fahren zu deren Herstellung sowie Verwendungen der Vliese, insbesondere im Bereich Verpa- ckungsmaterialien. The present invention relates to nonwovens with asymmetrical silica impregnation and processes for their production and uses of the nonwovens, in particular in the field of packaging materials.
Modifizierung von Papiervliesen zur Änderung der Oberflächeneigenschaften sind in vielfältiger Weise beschrieben worden. In der Regel sind Verbundmaterialien vorgesehen, bei denen sich eine modifizierende Schicht auf der Oberfläche des Papiervlieses befindet. Beispielsweise sind Verbundmaterialien aus Papier und Polyethylen bekannt. Diese Verbundmaterialien werden durch Laminierung der Papieroberfläche mit Polyethylenfolien erhalten. Es entstehen Schicht- verbünde, die auf einer Seite oder auf beiden Seiten hydrophobe Oberflächeneigenschaften ha- ben. Eine anisotrope Verteilung der chemischen Imprägnierung innerhalb des Papiervlieses ist mit diesen Techniken nicht zu erreichen. Außerdem lassen sich solche Verbundmaterialien nur schlecht oder gar nicht recyceln (Stichwort: Mikroplastik). Besonders nachteilig sind auch die relativ großen Materialmengen, die für z.B. eine Beschichtung benötigt werden. Modification of paper nonwovens to change the surface properties have been described in many ways. As a rule, composite materials are provided in which there is a modifying layer on the surface of the paper fleece. For example, composite materials made of paper and polyethylene are known. These composite materials are obtained by laminating the paper surface with polyethylene films. Layer composites are formed which have hydrophobic surface properties on one side or on both sides. An anisotropic distribution of the chemical impregnation within the paper fleece cannot be achieved with these techniques. In addition, such composite materials are difficult or impossible to recycle (keyword: microplastics). The relatively large amounts of material used for e.g. a coating is required.
Papiere können auch mit sogenannten Leimungsmitteln (beispielsweise alkylierte Ketendimere (AKD)) hydrophobisiert werden. Auch diesbezüglich wurde jedoch bislang die Einstellung eines chemischen, anisotropen Gradienten nicht beschrieben, vermutlich da die Moleküle statistisch nur mit den Funktionen auf den Fasern reagieren, nicht aber miteinander. Papers can also be hydrophobized with so-called sizing agents (for example alkylated ketene dimers (AKD)). In this regard, too, the setting of a chemical, anisotropic gradient has not yet been described, presumably because the molecules react statistically only with the functions on the fibers, but not with one another.
Eine weitere Möglichkeit der Änderung der Oberflächeneigenschaften eines Papiervlieses ist in Dubois et al. ( Langmuir , 2017, 33 (1), S. 332-339) beschrieben. Es wird ein Hybridmaterial aus Papier und Si02 offenbart, das im Vergleich zu nicht-modifiziertem Papier deutlich hydropho- bere Oberflächeneigenschaften aufweist. Ein Si02-Gradient ist jedoch nicht beschrieben. Die offenbarten Materialien weisen also weder Oberflächen mit unterschiedlichen Wasseraufnah meeigenschaften noch einen vergleichsweise hydrophilen Kern auf. Dies ist vermutlich darauf zurückzuführen, dass die Vliese nach dem Aufbringen der Imprägnierungslösung zunächst für einen verhältnismäßig langen Zeitraum bei geringen Temperaturen gehalten werden, so dass sich eine gleichmäßig über die Oberfläche und das Innere des Vlieses verteilte polymere Im- prägnierung ausbilden kann, bevor das Lösungsmittel in substantiellem Ausmaß abdampft. Another possibility for changing the surface properties of a paper fleece is in Dubois et al. (Langmuir, 2017, 33 (1), pp. 332-339). A hybrid material made of paper and SiO 2 is disclosed which has significantly more hydrophobic surface properties in comparison to unmodified paper. However, a Si0 2 gradient is not described. The materials disclosed therefore have neither surfaces with different water absorption properties nor a comparatively hydrophilic core. This is probably due to the fact that after the impregnation solution has been applied, the nonwovens are initially kept at low temperatures for a relatively long period of time, so that a polymeric impregnation which is uniformly distributed over the surface and the interior of the fleece can form before the solvent evaporates to a substantial extent.
Eine anisotrope Verteilung der chemischen Imprägnierung, die auch als asymmetrische Vertei- lung bezeichnet werden kann, wäre jedoch mit vielfältigen Vorteilen verbunden. Funktionale Be- Schichtungen könnten so in sehr viel niedrigeren Auftragsgewichten mit gleicher Wirkung appli ziert werden. Zudem würde die gezielte Einstellung der Materialkonzentration die Erzeugung komplexerer Strukturen (z.B. Sandwich-artig gebaute Kanäle im Papier) in einem Prozessschritt mit minimaler Materialverwendung ermöglichen. Durch die anisotrope chemische Struktur ergä- ben sich vorteilhafte Eigenschaftsprofile in den Vliesen, beispielsweise Barrierewirkungen. Bei- spielsweise könnte ein Vlies erhalten werden, das von außen nicht mit Fluiden (beispielsweise Wasser) benetzt werden, wohl aber im Inneren dasselbe Fluid aufnehmen (und abgeben, wei- terleiten, und so weiter...) könnte, wie auch weiter unten beschrieben. An anisotropic distribution of the chemical impregnation, which can also be referred to as asymmetrical distribution, would, however, be associated with many advantages. Functional loading Stratification could be applied in much lower order weights with the same effect. In addition, the targeted adjustment of the material concentration would enable the creation of more complex structures (eg sandwich-like channels in paper) in one process step with minimal use of materials. The anisotropic chemical structure results in advantageous property profiles in the nonwovens, for example barrier effects. For example, a fleece could be obtained which cannot be wetted from the outside with fluids (for example water), but which could absorb (and deliver, pass on, and so on ...) the same fluid inside, as well as below described.
Es ist eine Aufgabe der vorliegenden Erfindung, die Nachteile aus dem Stand der Technik zu überwinden. Insbesondere sollen Faservliese, beispielsweise Papiervliese, bereitgestellt wer- den, die so funktionalisiert sind, dass sie im Querschnitt über chemisch anisotrope Eigenschaf ten verfügen. Die Vliese sollen über ein Verfahren herstellbar sein, welches es erlaubt, den Fa- sern, insbesondere Papierfasern, lokalisiert hydrophobe oder hydrophile Eigenschaften zu ver leihen. Das Verfahren soll einfach sein und auch ein unkompliziertes Upscaling erlauben. Au- ßerdem sollen biokompatible Materialien im Gegensatz zu den aus dem Stand der Technik be- kannten Polymerschichtungen erhalten werden. Die Verteilung von Si02 in Form eines Gradien- ten ermöglicht es, dass eine Seite des Vlieses, insbesondere des Papiers, Wasser aufnimmt und die andere Seite Wasser abweist, oder dass beide Oberflächen Wasser abweisen und nur im Inneren des Materials Wasser aufgenommen werden kann, analog einer chemischen Sand- wichstruktur. Zudem kann durch Einstellung der Si02 Menge das Wasseraufnahmeverhalten eingestellt werden. It is an object of the present invention to overcome the disadvantages of the prior art. In particular, nonwoven fabrics, for example paper nonwovens, are to be provided which are functionalized in such a way that they have chemically anisotropic properties in cross section. The nonwovens are said to be able to be produced by a process which allows the fibers, in particular paper fibers, to be given localized hydrophobic or hydrophilic properties. The process should be simple and also allow easy upscaling. In addition, in contrast to the polymer coatings known from the prior art, biocompatible materials are to be obtained. The distribution of Si0 2 in the form of a gradient enables one side of the nonwoven, in particular the paper, to absorb water and the other side to repel water, or that both surfaces repel water and water can only be absorbed inside the material. analogous to a chemical sandwich structure. In addition, the water absorption behavior can be adjusted by adjusting the Si0 2 amount.
Die Aufgaben werden durch die Gegenstände der Patentansprüche gelöst. Die Aufgaben wer- den insbesondere gelöst durch ein Faservlies mit asymmetrischer Silica-Imprägnierung, wobei das Vlies zwei Hauptoberflächen aufweist, wobei der Gewichtsanteil an Si02 ausgehend von zumindest einer der beiden Hauptoberflächen zum Inneren des Vlieses hin abnimmt. Die Aufga- ben werden auch gelöst durch ein Verfahren zur Herstellung eines Faservlieses mit asymmetri- scher Silica-Imprägnierung, insbesondere eines Faservlieses der vorliegenden Erfindung, um- fassend die folgenden Schritte: a) Bereitstellen eines Faservlieses, b) Bereitstellen einer Imprägnierungslösung, wobei die Imprägnierungslösung eine Silan- Komponente enthält, c) Imprägnieren des Vlieses mit der Imprägnierungslösung, d) T rocknen des Vlieses bei Temperaturen in einem Bereich von 70°C bis 190°C, wobei zwischen dem Abschluss des Imprägnierens gemäß Schritt c) und dem Beginn des Trocknens gemäß Schritt d) ein Zeitraum von höchstens 60 Sekunden liegt. The objects are solved by the subject matter of the claims. The objects are achieved in particular by a nonwoven fabric with asymmetrical silica impregnation, the nonwoven having two main surfaces, the weight fraction of SiO 2 decreasing from at least one of the two main surfaces towards the inside of the nonwoven. The tasks are also solved by a method for producing a nonwoven fabric with asymmetrical silica impregnation, in particular a nonwoven fabric of the present invention, comprising the following steps: a) providing a nonwoven fabric, b) providing an impregnation solution, the Impregnation solution contains a silane component, c) impregnating the fleece with the impregnation solution, d) drying the fleece at temperatures in a range from 70 ° C. to 190 ° C., a period of at most 60 seconds between the completion of the impregnation according to step c) and the start of drying according to step d).
Das von den Erfindern entwickelte Verfahren verwendet zum Aufbau der anisotropen (asym- metrischen) Imprägnierung bevorzugt lediglich eine Silan-Komponente (insbesondere Tetra- ethylorthosilicat (TEOS), bevorzugt vorpolymerisiert) sowie ein Faservlies, insbesondere ein Pa- piervlies. Die Silan-Komponente kann in einem einfachen Tauchschritt in das Papier einge bracht werden. Andere Imprägnierungsverfahren sind ebenfalls möglich. Bevorzugt erfolgt das Imprägnieren des Vlieses mit der Imprägnierungslösung gemäß Schritt c) des Verfahrens mit einem Imprägnierungsverfahren, das ausgewählt ist aus der Gruppe bestehend aus Tauch be- schichten, Sprühbeschichten (optional auch beidseitig), Leimpresse, Roller-Coating, Blade Coating und Curtain Coating. Tauch beschichten und Sprühbeschichten sind besonders bevor- zugt. Ganz besonders bevorzugt ist Tauch beschichten. Bevorzugt wird die Imprägnierungslö- sung gleichmäßig über die Oberfläche und das Innere des Vlieses verteilt. The method developed by the inventors preferably uses only a silane component (in particular tetraethylorthosilicate (TEOS), preferably prepolymerized) and a nonwoven fabric, in particular a paper nonwoven, to build up the anisotropic (asymmetrical) impregnation. The silane component can be inserted into the paper in a simple immersion step. Other impregnation processes are also possible. The nonwoven is preferably impregnated with the impregnation solution according to step c) of the method using an impregnation method which is selected from the group consisting of dip coating, spray coating (optionally also on both sides), size press, roller coating, blade coating and curtain coating . Dip coating and spray coating are particularly preferred. Dip coating is very particularly preferred. The impregnation solution is preferably distributed uniformly over the surface and the interior of the fleece.
Während des nachfolgenden T rocknungsschrittes entsteht aus der Silan-Komponente eine Si- lica-lmprägnierung in Form von polymerem Si02, welches auch als Silicat-Komponente be- zeichnet werden kann. Dies beruht nicht nur auf der Trocknung, sondern einer gleichzeitig statt- findenden chemischen Reaktion. Die Verteilung der Menge an polymerer Silicat-Komponente wird bevorzugt durch den T rocknungsvorgang gesteuert, was besonders bevorzugt die Kon- trolle der parallel zur Trocknung stattfindenden Kondensationsreaktion der Silan-Komponente (insbesondere TEOS) einschließt. Anders als bei aus dem Stand der Technik bekannten Papie- ren steuert man die Lokalisation der Imprägnierung bevorzugt durch die Eigendiffusion und Re- aktivität der Silan-Komponente, die wiederum einfach über die T rocknungsbedingungen (Luft- feuchte, Temperatur, Druck) einstellbar sind. Es muss also kein Laminat in multiplen Schritten mit vielen Additiven erzeugt werden. During the subsequent drying step, the silane component produces a silica impregnation in the form of polymeric SiO 2 , which can also be referred to as a silicate component. This is based not only on drying, but on a chemical reaction taking place at the same time. The distribution of the amount of polymeric silicate component is preferably controlled by the drying process, which particularly preferably includes the control of the condensation reaction of the silane component (in particular TEOS) taking place parallel to the drying. In contrast to papers known from the prior art, the location of the impregnation is preferably controlled by the self-diffusion and reactivity of the silane component, which in turn can be easily adjusted via the drying conditions (air humidity, temperature, pressure). It is therefore not necessary to produce a laminate in multiple steps with many additives.
Das Verfahren ermöglicht die Einsparung von Prozessschritten sowie eingebrachter Material- menge und damit von Energie sowie Materialien auf Basis fossiler Rohstoffe. Darüber hinaus sind die mit dem Verfahren erhältlichen neuen Materialien in vielfältiger Art und Weise ersetz bar, beispielsweise zur Hydrophobisierung im Verpackungs- und Lebensmittelbereich. The process enables the saving of process steps and the amount of material introduced and thus energy and materials based on fossil raw materials. In addition, the new materials obtainable with the process can be replaced in a variety of ways, for example for hydrophobization in the packaging and food sector.
Die vorliegende Erfindung betrifft ein Faservlies mit asymmetrischer Silica-Imprägnierung, wo bei das Vlies zwei Hauptoberflächen aufweist, wobei der Gewichtsanteil an Si02 ausgehend von zumindest einer der beiden Hauptoberflächen zum Inneren des Vlieses hin abnimmt. Das Vlies der vorliegenden Erfindung ist ein Faservlies. Bevorzugt ist das Faservlies ausge- wählt aus der Gruppe bestehend aus Papiervliesen, Textilvliesen und Kunststoffvliesen. Beson- ders bevorzugt ist das Faservlies ein Papiervlies. The present invention relates to a nonwoven fabric with asymmetrical silica impregnation, where the nonwoven has two main surfaces, the weight fraction of Si0 2 decreasing from at least one of the two main surfaces towards the inside of the nonwoven. The nonwoven of the present invention is a nonwoven. The nonwoven is preferably selected from the group consisting of paper nonwovens, textile nonwovens and plastic nonwovens. The nonwoven is particularly preferably a paper nonwoven.
Bevorzugt umfasst das imprägnierte Faservlies S1O2 in einem Anteil von 0,1 bis 10 Gew.-%, weiter bevorzugt von 0,2 bis 7,5 Gew.-%, weiter bevorzugt von 0,5 bis 5 Gew.-%. Bevorzugt be- steht das imprägnierte Faservlies aus der Faserkomponente (insbesondere Papier) und der Im- prägnierungskomponente (SiC>2). Bevorzugt umfasst das imprägnierte Faservlies die Faserkom- ponente in einem Anteil von 90 bis 99,9 Gew.-%, weiter bevorzugt von 92,5 bis 99,8 Gew.-%, weiter bevorzugt von 95 Gew.-% bis 99,5 Gew.-%. The impregnated nonwoven preferably comprises S1O2 in a proportion of 0.1 to 10% by weight, more preferably 0.2 to 7.5% by weight, further preferably 0.5 to 5% by weight. The impregnated nonwoven preferably consists of the fiber component (in particular paper) and the impregnation component (SiC> 2). The impregnated nonwoven preferably comprises the fiber component in a proportion of 90 to 99.9% by weight, more preferably 92.5 to 99.8% by weight, more preferably 95% to 99.5% % By weight.
Bevorzugt besteht das imprägnierte Faservlies der Erfindung aus der Faserkomponente (insbe sondere Papier) und der Imprägnierungskomponente (S1O2). Das Vlies kann weitere Kompo- nenten enthalten, bevorzugt jedoch in einem Anteil von höchstens bis zu 50 Gew.-%, beispiels- weise 0 bis 30 Gew.-%, weiter bevorzugt bis zu 25 Gew.-%, weiter bevorzugt bis zu 10 Gew.-%, weiter bevorzugt bis zu 5 Gew.-%, weiter bevorzugt bis zu 2 Gew.-%, weiter bevorzugt bis zu 1 Gew.-%, weiter bevorzugt weniger als 0,5 Gew.-%. Diese weiteren Komponenten können ins- besondere anorganische und/oder organische Füllstoffe sein. The impregnated nonwoven fabric of the invention preferably consists of the fiber component (in particular special paper) and the impregnation component (S1O2). The fleece can contain further components, but preferably in a proportion of at most up to 50% by weight, for example 0 to 30% by weight, more preferably up to 25% by weight, further preferably up to 10 % By weight, more preferably up to 5% by weight, more preferably up to 2% by weight, more preferably up to 1% by weight, more preferably less than 0.5% by weight. These further components can in particular be inorganic and / or organic fillers.
Bevorzugt beträgt der Anteil des von Faserkomponente und Imprägnierungskomponente am Vlies der vorliegenden Erfindung mindestens 50 Gew.-%, weiter bevorzugt mindestens 75 Gew.-%, weiter bevorzugt mindestens 90 Gew.-%, weiter bevorzugt mindestens 95 Gew.-%, weiter bevorzugt mindestens 98 Gew.-%, weiter bevorzugt mindestens 99 Gew.-%. Bevorzugt besteht das imprägnierte Faservlies der Erfindung aus der Faserkomponente und der Impräg- nierungskomponente. The proportion of the fiber component and impregnation component in the nonwoven of the present invention is preferably at least 50% by weight, more preferably at least 75% by weight, more preferably at least 90% by weight, further preferably at least 95% by weight, further preferably at least 98% by weight, more preferably at least 99% by weight. The impregnated nonwoven fabric of the invention preferably consists of the fiber component and the impregnation component.
Das Vlies der vorliegenden Erfindung weist eine asymmetrische (anisotrope) Silica-Imprägnie- rung auf. Die Begriffe„asymmetrisch“ und„anisotrop“ werden in der vorliegenden Beschreibung synonym verwendet. Die Silica-Imprägnierung liegt in Form von polymerem Si02 vor, welches auch als Silicat-Komponente bezeichnet werden kann. Die Silica-Imprägnierung ist asymmet- risch, also anisotrop. Das bedeutet, dass der Anteil an Si02 nicht homogen über das Vlies ver- teilt ist, wie im Folgenden näher erläutert. The nonwoven of the present invention has an asymmetrical (anisotropic) silica impregnation. The terms "asymmetrical" and "anisotropic" are used synonymously in the present description. The silica impregnation is in the form of polymeric Si0 2 , which can also be referred to as a silicate component. The silica impregnation is asymmetrical, ie anisotropic. This means that the proportion of Si0 2 is not distributed homogeneously over the fleece, as explained in more detail below.
Das Vlies der Erfindung weist zwei Hauptoberflächen auf. In anderen Worten sind Länge und Breite des Vlieses, oder bei Vliesen mit runder Grundfläche der Durchmesser des Vlieses, um ein Vielfaches größer als die Dicke des Vlieses. Bevorzugt beträgt das Verhältnis von Länge und Breite oder Durchmesser des Vlieses zur Dicke des Vlieses mindestens 5, weiter bevorzugt mindestens 10, weiter bevorzugt mindestens 20. Die Form des Vlieses kann daher auch als blattartig, folienartig, plattenartig oder scheibenartig beschrieben werden. Je nach Orientierung des Vlieses können die beiden Hauptoberflächen auch als Ober- und Unterseite oder auch als Vorder- und Rückseite des Vlieses bezeichnet werden. The nonwoven of the invention has two major surfaces. In other words, the length and width of the nonwoven, or in the case of nonwovens with a round base, the diameter of the nonwoven, are many times greater than the thickness of the nonwoven. The ratio of length and width or diameter of the fleece to the thickness of the fleece is preferably at least 5, more preferably at least 10, more preferably at least 20. The shape of the fleece can therefore also be as leaf-like, foil-like, plate-like or disc-like. Depending on the orientation of the fleece, the two main surfaces can also be referred to as the top and bottom or as the front and back of the fleece.
Der Gewichtsanteil an Si02 nimmt in besonders bevorzugten Ausführungsformen ausgehend von zumindest einer der beiden Hauptoberflächen zum Inneren des Vlieses hin ab. Der Ge- wichtsanteil an Si02 ist also an zumindest einer der beiden Hauptoberflächen höher als der Ge- wichtsanteil an Si02 unterhalb der entsprechenden Hauptoberfläche. In anderen Worten liegt ein Si02-Gradient vor. Die Ausbildung eines solchen Si02-Gradienten bringt vielfältige Vorteile mit sich im Vergleich zu Materialien mit über die Dicke des Vlieses im Wesentlichen gleichmä- ßig verteilt vorliegendem Si02. Beispielsweise können innere Kanäle und/oder unterschiedliche Benetzungseigenschaften der Oberflächen erhalten werden. Außerdem wird ein niedriger Mate- rialeinsatz ermöglicht. Bevorzugt ist der Gewichtsanteil an Si02 an zumindest einer der beiden Hauptoberflächen mindestens 1 ,1 -mal so hoch, weiter bevorzugt mindestens zweimal so hoch, weiter bevorzugt mindestens dreimal so hoch, weiter bevorzugt mindestens viermal so hoch, weiter bevorzugt mindestens fünfmal so hoch, weiter bevorzugt mindestens sechsmal so hoch, weiter bevorzugt mindestens siebenmal so hoch, weiter bevorzugt mindestens achtmal so hoch, weiter bevorzugt mindestens neunmal so hoch, weiter bevorzugt mindestens zehnmal so hoch, wie der Gewichtsanteil an Si02 in der Mitte des Vlieses. Die Mitte des Vlieses bezeichnet die Positionen im Inneren des Vlieses, die in kürzester Verbindung von beiden Hauptoberflächen jeweils gleich weit entfernt sind, die sich also bezogen auf die Dicke des Vlieses in der Mitte des Vlieses befinden. In particularly preferred embodiments, the weight fraction of SiO 2 decreases from at least one of the two main surfaces towards the interior of the fleece. The proportion by weight of Si0 2 is therefore higher on at least one of the two main surfaces than the proportion by weight of Si0 2 below the corresponding main surface. In other words, there is an Si0 2 gradient. The formation of such a Si0 2 gradient brings diverse advantages with it compared to materials with SiO 2 present essentially uniformly distributed over the thickness of the fleece. For example, inner channels and / or different wetting properties of the surfaces can be obtained. In addition, a low use of materials is made possible. The weight fraction of SiO 2 on at least one of the two main surfaces is preferably at least 1.1 times as high, more preferably at least twice as high, more preferably at least three times as high, more preferably at least four times as high, more preferably at least five times as high, more preferably at least six times as high, more preferably at least seven times as high, more preferably at least eight times as high, more preferably at least nine times as high, further preferably at least ten times as high as the weight fraction of SiO 2 in the middle of the fleece. The center of the fleece designates the positions in the interior of the fleece which are equally far away from the two main surfaces in the shortest possible connection, and which are therefore in the middle of the fleece in relation to the thickness of the fleece.
Besonders bevorzugt liegt das Si02 nicht nur in Bezug auf die eine Hauptoberfläche, sondern auch in Bezug auf die andere Hauptoberfläche in einer Gradientenverteilung vor. Der Gradient muss jedoch nicht von beiden Hauptoberflächen zur Inneren des Vlieses hin in gleicher Art und Weise ausgebildet sein. Particularly preferably, the SiO 2 is not only in a gradient distribution in relation to one main surface, but also in relation to the other main surface. However, the gradient does not have to be designed in the same way from both main surfaces to the interior of the fleece.
In bestimmten bevorzugten Ausführungsformen nimmt der Gewichtsanteil an Si02 ausgehend von einer der beiden Hauptoberflächen zum Inneren des Vlieses hin ab, während der Gewichts anteil an Si02 ausgehend von der anderen der beiden Hauptoberflächen zum Inneren des Vlie ses hin zunimmt. Solche Vliese unterscheiden sich bevorzugt hinsichtlich ihrer Eigenschaften an den beiden Hauptoberflächen. Insbesondere ist es für bestimmte Anwendungen vorteilhaft, wenn eine Hauptoberfläche deutlich hydrophober ist als die andere Hauptoberfläche. Beson- ders bevorzugt ist in solchen Ausführungsformen ein Vlies mit einer hydrophoben Hauptoberflä che und einer hydrophilen Hauptoberfläche. Bevorzugt ist der Gewichtsanteil an Si02 an einer der beiden Hauptoberflächen mindestens 1 ,1 -mal so hoch, weiter bevorzugt mindestens zwei- mal so hoch, weiter bevorzugt mindestens dreimal so hoch, weiter bevorzugt mindestens vier- mal so hoch, weiter bevorzugt mindestens fünfmal so hoch, weiter bevorzugt mindestens sechsmal so hoch, weiter bevorzugt mindestens siebenmal so hoch, weiter bevorzugt mindes- tens achtmal so hoch, weiter bevorzugt mindestens neunmal so hoch, weiter bevorzugt mindes tens zehnmal so hoch wie der Gewichtsanteil an S1O2 in der Mitte des Vlieses. Bevorzugt be- trägt der Gewichtsanteil an S1O2 an der anderen der beiden Hauptoberflächen höchstens das 0,9-Fache, weiter bevorzugt höchstens die Hälfte, weiter bevorzugt höchstens ein Drittel, weiter bevorzugt höchstens ein Viertel, weiter bevorzugt höchstens ein Fünftel, weiter bevorzugt höchstens ein Sechstel, weiter bevorzugt höchstens ein Siebtel, weiter bevorzugt höchstens ein Achtel, weiter bevorzugt höchstens ein Neuntel, weiter bevorzugt höchstens ein Zehntel des Gewichtsanteils an S1O2 in der Mitte des Vlieses. Bevorzugt beträgt der Gewichtsanteil an S1O2 an einer der beiden Hauptoberflächen mindestens das 1 ,2-Fache, weiter bevorzugt mindestens das 4-Fache, weiter bevorzugt mindestens das 10-Fache, weiter bevorzugt mindestens das 20- Fache, weiter bevorzugt mindestens das 50-Fache, weiter bevorzugt mindestens das 100-Fa- che des Gewichtsanteils an Si02 an der anderen der beiden Hauptoberflächen. In certain preferred embodiments, the weight fraction of Si0 2 decreases from one of the two main surfaces towards the interior of the fleece, while the weight fraction of Si0 2 increases from the other of the two main surfaces towards the interior of the fleece. Such fleeces preferably differ in terms of their properties on the two main surfaces. In particular, it is advantageous for certain applications if one main surface is significantly more hydrophobic than the other main surface. In such embodiments, a fleece with a hydrophobic main surface and a hydrophilic main surface is particularly preferred. The weight fraction of SiO 2 on one of the two main surfaces is preferably at least 1.1 times as high, more preferably at least two. times as high, more preferably at least three times as high, more preferably at least four times as high, more preferably at least five times as high, more preferably at least six times as high, more preferably at least seven times as high, more preferably at least eight times as high, more preferably at least nine times as high, more preferably at least ten times as high as the weight fraction of S1O2 in the middle of the fleece. The proportion by weight of S1O2 on the other of the two main surfaces is preferably at most 0.9 times, more preferably at most half, more preferably at most one third, more preferably at most one quarter, more preferably at most one fifth, more preferably at most one Sixth, more preferably at most one seventh, more preferably at most one eighth, more preferably at most one ninth, further preferably at most one tenth of the weight fraction of S1O2 in the middle of the fleece. The weight fraction of S1O2 on one of the two main surfaces is preferably at least 1.2 times, more preferably at least 4 times, more preferably at least 10 times, more preferably at least 20 times, further preferably at least 50 times , more preferably at least 100 times the weight fraction of SiO 2 on the other of the two main surfaces.
In anderen bevorzugten Ausführungsformen nimmt der Gewichtsanteil an Si02 ausgehend von beiden Hauptoberflächen zum Inneren des Vlieses hin ab. Solche Vliese unterscheiden sich be vorzugt nicht oder nicht wesentlich hinsichtlich ihrer Eigenschaften an den beiden Hauptoberflä- chen. Insbesondere ist es für bestimmte Anwendungen vorteilhaft, wenn beide Hauptoberflä- chen hydrophob sind. Besonders bevorzugt ist in solchen Ausführungsformen ein Vlies mit zwei hydrophoben Hauptoberflächen. Es wird weniger Material benötigt im Vergleich zu einer gleich- mäßigen Imprägnierung über die gesamte Dicke des Vlieses hinweg. Bevorzugt ist der Ge- wichtsanteil an Si02 an beiden Hauptoberflächen mindestens 1 ,1 -mal so hoch, weiter bevorzugt mindestens 1 ,2-mal so hoch, weiter bevorzugt mindestens 1 ,5-mal so hoch wie der Gewichts- anteil an Si02 in der Mitte des Vlieses. Bevorzugt liegt das Verhältnis des Gewichtsanteils an S1O2 an der einen Hauptoberfläche zum Gewichtsanteil an S1O2 an der anderen Hauptoberflä- che in einem Bereich von 0,95:1 bis 1 ,05:1 , weiter bevorzugt von 0,98:1 bis 1 ,02:1 , weiter be- vorzugt von 0,99:1 bis 1 ,01 :1. In other preferred embodiments, the weight fraction of SiO 2 decreases from both main surfaces towards the inside of the fleece. Such fleeces preferably do not differ, or do not differ significantly, with regard to their properties on the two main surfaces. In particular, it is advantageous for certain applications if both main surfaces are hydrophobic. In such embodiments, a fleece with two hydrophobic main surfaces is particularly preferred. Less material is required compared to a uniform impregnation across the entire thickness of the fleece. The proportion by weight of SiO 2 on both main surfaces is preferably at least 1.1 times as high, more preferably at least 1.2 times as high, more preferably at least 1.5 times as high as the proportion by weight of SiO 2 in the middle of the fleece. The ratio of the proportion by weight of S1O2 on one main surface to the proportion by weight of S1O2 on the other main surface is in a range from 0.95: 1 to 1.05: 1, more preferably from 0.98: 1 to 1.02 : 1, further preferred from 0.99: 1 to 1, 01: 1.
Die relative Si02-Verteilung in den Vliesen wird bevorzugt mit Hilfe konfokaler Laser-Scanning- Mikroskopie (CLSM, englisch:„confocal laser scanning microscopy“) an Querschnitten einge- betteter Proben analysiert. In Kombination mit absoluten Si02-Mengen pro Vlies, die bevorzugt mit Hilfe von thermogravimetrischer Analyse (TGA) ermittelt werden, ermöglicht dies eine quan- titative Aussage über die Materialmengen pro Volumeninkrement. The relative Si0 2 distribution in the nonwovens is preferably analyzed with the help of confocal laser scanning microscopy (CLSM, English: "confocal laser scanning microscopy") on cross sections of embedded samples. In combination with absolute Si0 2 quantities per fleece, which are preferably determined with the help of thermogravimetric analysis (TGA), this enables a quantitative statement about the material quantities per volume increment.
Bevorzugt weisen die Vliese der Erfindung eine hohe Flexibilität auf. Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines Faservlieses mit asymmetrischer Silica-Imprägnierung, insbesondere eines Vlieses der vorliegenden Erfindung wie oben beschrieben. Die Erfindung betrifft auch ein mit dem Verfahren erhältliches oder erhal- tenes Faservlies mit asymmetrischer Silica-Imprägnierung. Das Verfahren umfasst die folgen- den Schritte: a) Bereitstellen eines Faservlieses, b) Bereitstellen einer Imprägnierungslösung, wobei die Imprägnierungslösung eine Silan- Komponente enthält, c) Imprägnieren des Faservlieses mit der Imprägnierungslösung, d) T rocknen des Vlieses bei Temperaturen in einem Bereich von 70°C bis 190°C, wobei zwischen dem Abschluss des Imprägnierens gemäß Schritt c) und dem Beginn des Trocknens gemäß Schritt d) ein Zeitraum von höchstens 60 Sekunden liegt. The nonwovens of the invention preferably have a high degree of flexibility. The present invention also relates to a method for producing a nonwoven fabric with asymmetrical silica impregnation, in particular a nonwoven fabric of the present invention as described above. The invention also relates to a nonwoven fabric with asymmetrical silica impregnation that can be obtained or obtained with the method. The method comprises the following steps: a) providing a nonwoven fabric, b) providing an impregnating solution, the impregnating solution containing a silane component, c) impregnating the nonwoven fabric with the impregnating solution, d) drying the nonwoven fabric at temperatures in a range from 70 ° C to 190 ° C, with a period of at most 60 seconds between the completion of the impregnation according to step c) and the start of drying according to step d).
Gemäß Schritt a) des erfindungsgemäßen Verfahrens wird ein Faservlies bereitgestellt. Bevor- zugt ist das Faservlies ausgewählt aus der Gruppe bestehend aus Papiervliesen, Textilvliesen und Kunststoffvliesen. Besonders bevorzugt ist das Faservlies ein Papiervlies. Bevorzugt hat das bereitgestellte Papiervlies eine Grammatur von 65 bis 120 g/m2, weiter bevorzugt von 70 bis 100 g/m2, weiter bevorzugt von 75 bis 90 g/m2. According to step a) of the method according to the invention, a nonwoven fabric is provided. The nonwoven is preferably selected from the group consisting of paper nonwovens, textile nonwovens and plastic nonwovens. The nonwoven is particularly preferably a paper nonwoven. The paper fleece provided preferably has a grammage of 65 to 120 g / m 2 , more preferably 70 to 100 g / m 2 , more preferably 75 to 90 g / m 2 .
Das Faservlies kann ein handelsübliches Faservlies sein. Insbesondere kann das Papiervlies ein handelsübliches Papiervlies sein. Alternativ kann der Schritt des Bereitstellens des Faserv- lieses, insbesondere des Papiervlieses, auch den Schritt der Herstellung des Faservlieses, ins- besondere des Papiervlieses, beinhalten. Die Herstellung eines Papiervlieses erfolgt bevorzugt mit dem Rapid-Köthen-Verfahren, besonders bevorzugt in einer Rapid-Köthen-Blattbildungsan- lage, ganz besonders bevorzugt gemäß DIN 54358 und/oder ISO 5269/2 (ISO5269-2:2004(E), „Pulps - P re paration of Laboratory Sheets for Physical Testing - Part 2: Rapid Köthen Method, 2004“). The nonwoven can be a commercially available nonwoven. In particular, the paper fleece can be a commercially available paper fleece. Alternatively, the step of providing the nonwoven, in particular the nonwoven, can also include the step of producing the nonwoven, in particular the nonwoven. A paper fleece is preferably produced using the Rapid-Köthen process, particularly preferably in a Rapid-Köthen sheet-forming system, very particularly preferably in accordance with DIN 54358 and / or ISO 5269/2 (ISO5269-2: 2004 (E), " Pulps - Preparation of Laboratory Sheets for Physical Testing - Part 2: Rapid Köthen Method, 2004 ").
Bevorzugt werden bei der Herstellung des Faservlieses, insbesondere des Papiervlieses, keine weiteren Zusätze oder Füllstoffe verwendet. No further additives or fillers are preferably used in the production of the nonwoven fabric, in particular the paper nonwoven.
Gemäß Schritt b) des erfindungsgemäßen Verfahrens wird eine Imprägnierungslösung bereit- gestellt, die eine Silan-Komponente enthält. In der vorliegenden Beschreibung werden die Be- griffe„Imprägnierungslösung“ und„Imprägnierlösung“ synonym verwendet. Die Imprägnierungs- lösung kann einkomponentig sein, also aus einer einzigen Komponente bestehen. In einem sol- chen Fall kann die Imprägnierungslösung insbesondere auch als„ Imprägnierungsfluid“ oder „Imprägnierfluid" bezeichnet werden. According to step b) of the method according to the invention, an impregnation solution is provided which contains a silane component. In the present description, the terms “impregnation solution” and “impregnation solution” are used synonymously. The impregnation solution can be one component, that is, it can consist of a single component. In such a case, the impregnation solution can in particular also be referred to as “impregnation fluid” or “impregnation fluid”.
In bestimmten bevorzugten Ausführungsformen besteht die Imprägnierlösung aus der Silan- Komponente. In anderen Worten beträgt der Anteil der Silan-Komponente an der Imprägnie- rungslösung 100 Gew.-%. Insbesondere kann die Imprägnierungslösung also reines Silan sein. In anderen bevorzugten Ausführungsformen enthält die Imprägnierungslösung zusätzlich zur Silan-Komponente noch mindestens eine weitere Komponente, beispielsweise eine Lösungs- mittelkomponente und/oder eine Säurekomponente. In certain preferred embodiments, the impregnation solution consists of the silane component. In other words, the proportion of the silane component in the impregnation solution is 100% by weight. In particular, the impregnation solution can therefore be pure silane. In other preferred embodiments, the impregnation solution contains, in addition to the silane component, at least one further component, for example a solvent component and / or an acid component.
Bevorzugt liegt der Anteil der Silan-Komponente in der Imprägnierungslösung in einem Bereich von 5 Gew.-% bis 100 Gew.-%, weiter bevorzugt 10 Gew.-% bis 99 Gew.-%, weiter bevorzugt 20 Gew.-% bis 98 Gew.-%, weiter bevorzugt 40 Gew.-% bis 97 Gew.-%, weiter bevorzugt 60 Gew.-% bis 96 Gew.-%, weiter bevorzugt 80 Gew.-% bis 95 Gew.-%. Über den Anteil der Silan- Komponente lässt sich das Ausmaß der wasserabweisenden Oberflächeneigenschaften der Vliese gezielt einstellen. Höhere Anteile an Silan-Komponente sind mit hydrophoberen Oberflä- cheneigenschaften verbunden. The proportion of the silane component in the impregnation solution is preferably in a range from 5% by weight to 100% by weight, more preferably 10% by weight to 99% by weight, further preferably 20% by weight to 98 % By weight, more preferably 40% by weight to 97% by weight, more preferably 60% by weight to 96% by weight, more preferably 80% by weight to 95% by weight. The extent of the water-repellent surface properties of the nonwovens can be specifically adjusted via the proportion of the silane component. Higher proportions of the silane component are associated with more hydrophobic surface properties.
Bevorzugt ist die Silan-Komponente ausgewählt aus der Gruppe bestehend aus Tetraethyl- orthosilicat (TEOS), Tetramethylorthosilicat, Polydimethoxysiloxan, 1 ,2-Bis(triethoxysilyt)ethan, Tetramethylorthosilicat (TMOS), Siliciumtetraacetat und Mischungen aus zwei oder mehr davon. Besonders bevorzugt ist die Silan-Komponente TEOS. TEOS ist eine gängige Grundchemikalie, die günstig und gut verfügbar ist. Bevorzugt ist die Silan-Komponente vorpolymerisiert. Der Be- griff„ vorpolymerisiert' bedeutet, dass lediglich bereits Oligomere gebildet werden und das Ma- terial jedoch noch nicht durch polymerisiert ist. The silane component is preferably selected from the group consisting of tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate, polydimethoxysiloxane, 1,2-bis (triethoxysilyt) ethane, tetramethyl orthosilicate (TMOS), silicon tetraacetate and mixtures of two or more thereof. The silane component TEOS is particularly preferred. TEOS is a common basic chemical that is cheap and readily available. The silane component is preferably prepolymerized. The term "prepolymerized" means that only oligomers have already been formed and the material has not yet been polymerized.
Bevorzugt enthält die Imprägnierungslösung Lösungsmittel in einem Anteil, der in einem Be- reich von 0 bis 98 Gew.-%, weiter bevorzugt von 0,1 bis 50 Gew.-%, weiter bevorzugt von 0,2 bis 20 Gew.-%, weiter bevorzugt von 0,5 bis 10 Gew.-%, noch weiter bevorzugt von 1 bis 5 Gew.-% liegt. Bevorzugt ist das Lösungsmittel ausgewählt aus der Gruppe bestehend aus Was- ser, Ethanol und Mischungen aus zwei oder mehr davon. Besonders bevorzugt ist das Lö- sungsmittel Wasser. The impregnation solution preferably contains solvents in a proportion which is in a range from 0 to 98% by weight, more preferably from 0.1 to 50% by weight, more preferably from 0.2 to 20% by weight, more preferably from 0.5 to 10% by weight, even more preferably from 1 to 5% by weight. The solvent is preferably selected from the group consisting of water, ethanol and mixtures of two or more thereof. The solvent is particularly preferably water.
Bevorzugt enthält die Imprägnierungslösung Wasser in einem Anteil, der in einem Bereich von 0 bis 20 Gew.-%, weiter bevorzugt von 0,5 bis 10 Gew.-%, weiter bevorzugt von 1 bis 5 Gew.-% liegt. Bevorzugt enthält die Imprägnierungslösung HCl in einem Anteil von 0,001 bis 0,2 Gew.-%, wei- ter bevorzugt von 0,005 bis 0,1 Gew.-%, weiter bevorzugt von 0,01 bis 0,05 Gew.-%. The impregnation solution preferably contains water in a proportion which is in a range from 0 to 20% by weight, more preferably from 0.5 to 10% by weight, more preferably from 1 to 5% by weight. The impregnation solution preferably contains HCl in a proportion of 0.001 to 0.2% by weight, more preferably 0.005 to 0.1% by weight, more preferably 0.01 to 0.05% by weight.
Die erfindungsgemäße Imprägnierungslösung besteht bevorzugt zu mindestens 95 Gew.-%, weiter bevorzugt mindestens 98 Gew.-%, weiter bevorzugt mindestens 99 Gew.-%, weiter be- vorzugt mindestens 99,9 Gew.-%, weiter bevorzugt mindestens 99,99 Gew.-% aus Ethanol, Wasser, Silan-Komponente und HCl. Es ist ein besonderer Vorteil des erfindungsgemäßen Ver- fahrens, dass keine weiteren Komponenten in der Imprägnierungslösung benötigt werden. Be- sonders bevorzugt besteht die Imprägnierungslösung sogar zu mindestens 95 Gew.-%, weiter bevorzugt mindestens 98 Gew.-%, weiter bevorzugt mindestens 99 Gew.-%, weiter bevorzugt mindestens 99,9 Gew.-%, weiter bevorzugt mindestens 99,99 Gew.-% aus Wasser, Silan-Kom- ponente und HCl. The impregnation solution according to the invention preferably consists of at least 95% by weight, more preferably at least 98% by weight, more preferably at least 99% by weight, further preferably at least 99.9% by weight, further preferably at least 99.99 % By weight of ethanol, water, silane component and HCl. It is a particular advantage of the method according to the invention that no further components are required in the impregnation solution. The impregnation solution is particularly preferably composed of at least 95% by weight, more preferably at least 98% by weight, more preferably at least 99% by weight, more preferably at least 99.9% by weight, more preferably at least 99% 99% by weight of water, silane component and HCl.
Nach Zugabe der einzelnen Komponenten wird die Imprägnierungslösung bevorzugt für einen Zeitraum von 6 bis 48 Stunden, weiter bevorzugt von 12 bis 36 Stunden, weiter bevorzugt von 18 bis 30 Stunden gerührt, bevor das Imprägnieren des Faservlieses, insbesondere des Papier- vlieses, mit der Imprägnierungslösung gemäß Schritt c) des erfindungsgemäßen Verfahrens er folgt. In Ausführungsformen der Erfindung, in denen die Imprägnierungslösung aus Silan-Kom- ponente (insbesondere TEOS) besteht, findet bevorzugt kein solches Rühren statt. After the addition of the individual components, the impregnation solution is preferably stirred for a period of 6 to 48 hours, more preferably from 12 to 36 hours, more preferably from 18 to 30 hours, before the impregnation of the nonwoven fabric, in particular the paper nonwoven, with the impregnation solution according to step c) of the method according to the invention it follows. In embodiments of the invention in which the impregnation solution consists of a silane component (in particular TEOS), preferably no such stirring takes place.
Der Schritt c) des Imprägnierens des Faservlieses, insbesondere des Papiervlieses, mit der Im- prägnierungslösung erfolgt bevorzugt bei einer relativen Luftfeuchte in einem Bereich von 10% bis 95%, weiter bevorzugt von 30% bis 70%, weiter bevorzugt 40% bis 60%, weiter bevorzugt 45% bis 55% und/oder bei einer Temperatur in einem Bereich von 15°C bis 30°C, weiter bevor- zugt 20°C bis 25°C. Step c) of impregnating the nonwoven fabric, in particular the paper nonwoven, with the impregnation solution is preferably carried out at a relative atmospheric humidity in a range from 10% to 95%, more preferably from 30% to 70%, further preferably 40% to 60% , more preferably 45% to 55% and / or at a temperature in a range from 15 ° C to 30 ° C, more preferably 20 ° C to 25 ° C.
Bevorzugt erfolgt das Imprägnieren des Faservlieses mit der Imprägnierlösung dadurch, dass das Vlies der Imprägnierlösung ausgesetzt wird, also in anderen Worten dadurch, dass das Vlies mit der Imprägnierlösung in Kontakt gebracht wird. Für die Ausgestaltung dieses In-Kon- takt-Bringens des Vlieses mit der Imprägnierlösung gibt es vielfältige Möglichkeiten. Bevorzugt erfolgt das Imprägnieren des Faservlieses mit der Imprägnierungslösung gemäß Schritt c) des Verfahrens mit einem Imprägnierungsverfahren, das ausgewählt ist aus der Gruppe bestehend aus Tauchbeschichten, Sprühbeschichten (optional auch beidseitig), Leimpresse, Roller- Coating, Blade Coating und Curtain Coating. Tauch beschichten und Sprühbeschichten sind be- sonders bevorzugt. Ganz besonders bevorzugt ist Tauchbeschichten. Bevorzugt wird die Im- prägnierungslösung gleichmäßig über die Oberfläche und das Innere des Vlieses verteilt. Gemäß Ausführungsformen der Erfindung erfolgt das Imprägnieren in Schritt c) der Erfindung durch Eintauchen des Vlieses in die Imprägnierlösung. Das Faservlies, insbesondere das Pa- piervlies, wird in solchen Ausführungsformen bevorzugt vollständig in die Imprägnierlösung ein- getaucht. Bevorzugt erfolgt das Eintauchen derart, dass das Faservlies, insbesondere das Pa- piervlies, im Wesentlichen senkrecht orientiert ist. Eine senkrechte Orientierung bedeutet in an deren Worten, dass die beiden Hauptoberflächen des Vlieses derart angeordnet sind, dass senkrecht auf den Hauptoberflächen stehende Flächenvektoren im Wesentlichen horizontal ori entiert sind. Bevorzugt bilden die Flächenvektoren der beiden Hauptoberflächen mit dem Vektor der Eintauch richtung jeweils einen Winkel von mindestens 70° und höchstens 110°, weiter be- vorzugt von mindestens 80° und höchstens 100°, weiter bevorzugt von mindestens 85° und höchstens 95°. The nonwoven fabric is preferably impregnated with the impregnating solution by exposing the nonwoven to the impregnating solution, in other words by bringing the nonwoven into contact with the impregnating solution. There are various possibilities for designing this contacting of the fleece with the impregnation solution. The nonwoven fabric is preferably impregnated with the impregnation solution according to step c) of the process using an impregnation process which is selected from the group consisting of dip coating, spray coating (optionally also on both sides), size press, roller coating, blade coating and curtain coating. Dip coating and spray coating are particularly preferred. Dip coating is very particularly preferred. The impregnation solution is preferably distributed uniformly over the surface and the interior of the fleece. According to embodiments of the invention, the impregnation in step c) of the invention is carried out by immersing the fleece in the impregnation solution. In such embodiments, the nonwoven fabric, in particular the paper nonwoven, is preferably completely immersed in the impregnation solution. The immersion is preferably carried out in such a way that the nonwoven, in particular the nonwoven, is oriented essentially vertically. In their words, a vertical orientation means that the two main surfaces of the fleece are arranged in such a way that surface vectors perpendicular to the main surfaces are oriented essentially horizontally. The surface vectors of the two main surfaces preferably each form an angle of at least 70 ° and at most 110 °, more preferably of at least 80 ° and at most 100 °, more preferably of at least 85 ° and at most 95 °, with the vector of the immersion direction.
Bevorzugt erfolgt das Entfernen des Vlieses aus der Imprägnierlösung zu einem Zeitpunkt, der ein bis zehn Sekunden, weiter bevorzugt zwei bis fünf Sekunden nach dem Abschluss des Ein- tauchens des Vlieses in die Imprägnierlösung liegt. The fleece is preferably removed from the impregnation solution at a point in time which is one to ten seconds, more preferably two to five seconds after the immersion of the fleece in the impregnation solution has ended.
Bevorzugt erfolgt das Entfernen des Vlieses aus der Imprägnierlösung derart, dass das Vlies im Wesentlichen senkrecht orientiert ist. Eine senkrechte Orientierung bedeutet in anderen Wor- ten, dass die beiden Hauptoberflächen des Vlieses derart angeordnet sind, dass senkrecht auf den Hauptoberflächen stehende Flächenvektoren im Wesentlichen horizontal orientiert sind. Bevorzugt bilden die Flächenvektoren der beiden Hauptoberflächen mit dem Vektor der Entfer- nungsrichtung jeweils einen Winkel von mindestens 70° und höchstens 1 10°, weiter bevorzugt von mindestens 80° und höchstens 100°, weiter bevorzugt von mindestens 85° und höchstens 95°. The fleece is preferably removed from the impregnation solution in such a way that the fleece is oriented essentially vertically. In other words, a vertical orientation means that the two main surfaces of the fleece are arranged in such a way that surface vectors perpendicular to the main surfaces are oriented essentially horizontally. The surface vectors of the two main surfaces preferably form an angle of at least 70 ° and at most 110 °, more preferably of at least 80 ° and at most 100 °, more preferably of at least 85 ° and at most 95 °, with the vector of the distance direction.
Gemäß Schritt d) des erfindungsgemäßen Verfahrens erfolgt das T rocknen des Vlieses bei Temperaturen in einem Bereich von 70°C bis 190°C. Bevorzugt erfolgt das T rocknen des Vlie ses bei Temperaturen in einem Bereich von 80°C bis 180°C, weiter bevorzugt von 90°C bis 170°C, weiter bevorzugt von 100°C bis 160°C, weiter bevorzugt von 1 10°C bis 150°C, weiter bevorzugt von 120°C bis 140°C, weiter bevorzugt von 125°C bis 135°C. Bevorzugt erfolgt das Trocknen des Vlieses gemäß Schritt d), bis die Restfeuchte des Vlieses in einem Bereich von 3 Gew.-% bis 7 Gew.-% liegt. Die Restfeuchte wird bevorzugt mittels gravimetrischer Analyse, insbesondere nach DIN EN 20287 bestimmt. According to step d) of the method according to the invention, the fleece dries at temperatures in a range from 70 ° C. to 190 ° C. The fleece dries at temperatures in a range from 80 ° C. to 180 ° C., more preferably from 90 ° C. to 170 ° C., more preferably from 100 ° C. to 160 ° C., more preferably from 110 ° C. C to 150 ° C, more preferably from 120 ° C to 140 ° C, more preferably from 125 ° C to 135 ° C. The fleece is preferably dried in accordance with step d) until the residual moisture of the fleece is in a range from 3% by weight to 7% by weight. The residual moisture is preferably determined by means of gravimetric analysis, in particular according to DIN EN 20287.
Zwischen dem Abschluss des Imprägnierens gemäß Schritt c) und dem Beginn des Trocknens gemäß Schritt d) liegt ein Zeitraum von höchstens 60 Sekunden, bevorzugt höchstens 45 Se- kunden, weiter bevorzugt höchstens 30 Sekunden, weiter bevorzugt höchstens 20 Sekunden, weiter bevorzugt höchstens 10 Sekunden, weiter bevorzugt höchstens 5 Sekunden, weiter be- vorzugt höchstens 2 Sekunden, weiter bevorzugt höchstens 1 Sekunde. Bevorzugt erfolgt das T rocknen gemäß Schritt d) des erfindungsgemäßen Verfahrens sofort, in anderen Worten un- mittelbar, nach dem Imprägnieren des Vlieses mit der Imprägnierungslösung gemäß Schritt c) des Verfahrens. There is a period of at most 60 seconds, preferably at most 45 seconds, more preferably at most 30 seconds, more preferably at most 20 seconds, between the completion of the impregnation according to step c) and the beginning of the drying according to step d). more preferably at most 10 seconds, more preferably at most 5 seconds, more preferably at most 2 seconds, more preferably at most 1 second. Drying in step d) of the method according to the invention preferably takes place immediately, in other words immediately, after impregnation of the fleece with the impregnation solution according to step c) of the method.
Das Imprägnieren gemäß Schritt c) ist bevorzugt abgeschlossen, wenn das Faservlies nicht mehr der Imprägnierungslösung ausgesetzt wird, oder in anderen Worten, wenn das Faservlies nicht mehr mit der Imprägnierungslösung in Kontakt gebracht wird. Beim Tauch beschichten ist das Imprägnieren gemäß Schritt c) beispielsweise bevorzugt dann abgeschlossen, wenn das Faservlies wieder vollständig aus der Imprägnierungslösung entfernt, beispielsweise herausge- zogen wurde. Beim Sprühbeschichten ist das Imprägnieren gemäß Schritt c) beispielsweise be- vorzugt dann abgeschlossen, wenn das Vlies nicht mehr mit der Imprägnierungslösung be sprüht wird. The impregnation according to step c) is preferably completed when the nonwoven is no longer exposed to the impregnation solution, or in other words when the nonwoven is no longer brought into contact with the impregnation solution. In the case of dip coating, the impregnation according to step c) is preferably completed, for example, when the nonwoven fabric has been completely removed from the impregnation solution again, for example pulled out. In spray coating, the impregnation according to step c) is preferably completed, for example, when the fleece is no longer sprayed with the impregnation solution.
Das Trocknen gemäß Schritt d) beginnt bevorzugt, wenn das Vlies in eine Umgebung kommt, welche dazu bestimmt ist Feuchtigkeit und/oder Kondensationsprodukte zu entfernen, beispiels weise in einen Ofen. The drying according to step d) preferably begins when the fleece comes into an environment which is intended to remove moisture and / or condensation products, for example in an oven.
Durch den kurzen Zeitraum zwischen Abschluss des Imprägnierens und dem Beginn des T rock- nens wird vermutlich erreicht, dass die Silan-Komponente der Imprägnierlösung noch nicht in substantiellem Ausmaß in die Silicat-Komponente der Silica-Imprägnierung umgewandelt wurde, wenn die Trocknung bei den erhöhten T rocknungstemperaturen erfolgt. Dies ermöglicht das gezielte Einstellen der asymmetrischen Silica-Imprägnierung. Denn die Silan-Komponente wandert bei den erhöhten T rocknungstemperaturen in Abhängigkeit von den Trocknungsbedin- gungen, insbesondere den Umgebungsdrücken, durch das Vlies, solange sie sich noch nicht in eine zu sehr polymerisierte Silica-Imprägnierung umgewandelt hat. The short period between completion of the impregnation and the beginning of the drying probably means that the silane component of the impregnation solution has not yet been converted to a substantial extent into the silicate component of the silica impregnation if the drying at the increased Drying temperatures occur. This enables the targeted adjustment of the asymmetrical silica impregnation. This is because the silane component migrates through the fleece at the elevated drying temperatures depending on the drying conditions, in particular the ambient pressures, as long as it has not yet been converted into an overly polymerized silica impregnation.
In Ausführungsformen, in denen die Imprägnierlösung kein Lösungsmittel enthält, kann die Wanderung der Silan-Komponente durch das Vlies bei den erhöhten T rocknungstemperaturen insbesondere durch eine Einstellung der Umgebungsdrücke während des Trocknens beein- flusst werden. In Ausführungsformen, in denen die Imprägnierlösung Lösungsmittel enthält, kann die Wanderung der Silan-Komponente insbesondere auch durch das Abdampfen der Silan-Komponente und/oder des Lösungsmittels bei den erhöhten T rocknungstemperaturen be- einflusst werden, da die Silan-Komponente mit dem Lösungsmittel durch das Vlies wandert. In embodiments in which the impregnation solution contains no solvent, the migration of the silane component through the fleece at the elevated drying temperatures can be influenced, in particular, by adjusting the ambient pressures during drying. In embodiments in which the impregnation solution contains solvents, the migration of the silane component can in particular also be influenced by the evaporation of the silane component and / or the solvent at the elevated drying temperatures, since the silane component passes through with the solvent the fleece wanders.
Je weiter die Polymerisation fortschreitet, desto geringer ist die Beweglichkeit im Vlies. Wenn also nach dem Imprägnieren des Vlieses mit der Imprägnierlösung für einen längeren Zeitraum gewartet wird, bis mit dem T rocknen bei den erhöhten Temperaturen begonnen wird, wenn also der Zeitraum zwischen den Schritten c) und d) des Verfahrens verhältnismäßig groß ist, kommt es zu einer substantiellen Polymerisation, bevor es zu einer relevanten Wanderung der Silan- Komponente durch das Vlies kommt. Dies hat zur Folge, dass Vliese mit einer homogenen Ver- teilung der Silica-Imprägnierung erhalten werden, da die Verteilung der bereits polymerisierten Beschichtung nicht mehr durch die T rocknungsbedingungen bei den erhöhten Trocknungstem peraturen beeinflusst werden kann. The further the polymerization progresses, the lower the mobility in the fleece. So if after impregnating the fleece with the impregnation solution for a longer period if one waits until drying begins at the elevated temperatures, i.e. if the period between steps c) and d) of the process is relatively large, substantial polymerization takes place before there is a relevant migration of the silane component comes through the fleece. The consequence of this is that nonwovens with a homogeneous distribution of the silica impregnation are obtained, since the distribution of the already polymerized coating can no longer be influenced by the drying conditions at the increased drying temperatures.
Im Gegensatz dazu sieht das Verfahren der vorliegenden Erfindung vor, dass zwischen dem Abschluss des Imprägnierens gemäß Schritt c) und dem Beginn des Trocknens gemäß Schritt d) ein Zeitraum von höchstens 60 Sekunden liegt. Eine weitgehende Polymerisation hat daher beim Beginn der Trocknung noch nicht stattgefunden, so dass die in der Imprägnierungslösung vorhandene Silan-Komponente durch das Vlies wandert und daher über die Wanderung die Verteilung der Silica-Imprägnierung gezielt beeinflusst werden kann. Werden beispielsweise T rocknungsbedingungen gewählt, die eine verstärkte Wanderung der Silan-Komponente zu ei- ner der beiden Hauptoberflächen, beispielsweise durch verringerten Umgebungsdruck an einer der beiden Hauptoberflächen im Vergleich zur anderen Hauptoberfläche, zur Folgen haben, können Faservliese mit einer asymmetrischen Silica-Imprägnierung erhalten werden, die derart ausgebildet ist, dass der SiC -Gewichtsanteil an der einen Hauptoberfläche höher ist als in der Mitte des Vlieses, während der Si02-Gewichtsanteil an der anderen Hauptoberfläche geringer ist als in der Mitte des Vlieses. Werden dagegen T rocknungsbedingungen gewählt, die ein ver- gleichbares Ausmaß an Wanderung zu beiden Hauptoberflächen, beispielsweise durch Unter- druck an beiden Hauptoberfläche, zur Folge haben, können Faservliese mit einer asymmetri- schen Silica-Imprägnierung erhalten werden, die derart ausgebildet ist, dass der Si02-Gewichts- anteil an beiden Hauptoberflächen in etwa gleich hoch ist, und zwar höher als in der Mitte des Vlieses, da die Silan-Komponente aus der Mitte in Richtung der Hauptoberflächen wandert und es dann dort zu einer verstärkten Ausbildung der polymeren Silica-Imprägnierung kommt. In contrast to this, the method of the present invention provides that between the completion of the impregnation according to step c) and the start of drying according to step d) there is a period of at most 60 seconds. Extensive polymerization has therefore not yet taken place at the start of drying, so that the silane component present in the impregnation solution migrates through the fleece and the distribution of the silica impregnation can therefore be influenced in a targeted manner via the migration. If, for example, drying conditions are selected which result in increased migration of the silane component to one of the two main surfaces, for example as a result of reduced ambient pressure on one of the two main surfaces compared to the other main surface, nonwovens with asymmetrical silica impregnation can be obtained be formed such that the SiC weight fraction on one main surface is higher than in the middle of the fleece, while the SiO 2 weight fraction on the other main surface is lower than in the middle of the fleece. If, on the other hand, drying conditions are selected which result in a comparable amount of migration to both main surfaces, for example due to negative pressure on both main surfaces, non-woven fabrics can be obtained with an asymmetrical silica impregnation which is designed such that the Si0 2 weight fraction on both main surfaces is approximately the same, namely higher than in the middle of the fleece, since the silane component migrates from the center towards the main surfaces and then there is an increased formation of the polymeric silica Impregnation is coming.
Bevorzugt erfolgt das Trocknen mit Hilfe eines Trockners. Bevorzugt ist der Trockner ausge- wählt aus der Gruppe bestehend aus Heißlufttrocknern, Öfen, Trommeltrocknern und IR-Trock- nern. Beispielsweise kann in einem Ofen, bevorzugt in einem Vakuumofen oder in einem Muf felofen getrocknet werden. Der Ofen ist bevorzugt vorgeheizt, insbesondere auf die T rock- nungstemperatur, so dass nach dem Imprägnieren gemäß Schritt c) besonders schnell mit dem T rocknen gemäß Schritt d) begonnen werden kann. Besonders bevorzugt ist der Trockner je- doch ein Heißlufttrockner. Heißlufttrocknung ist besonders bevorzugt. Erfindungsgemäß können die Eigenschaften der erhaltenen Vliese nicht nur über die oben be- schriebenen Verfahrensschritte beeinflusst werden, sondern insbesondere auch über den wäh rend des Trocknens vorherrschenden Umgebungsdruck. Es hat sich überraschenderweise her- ausgestellt, dass sich die Verteilung des Si02-Gehaltes in den Vliesen gezielt über die Druckbe- dingungen während des Trocknens steuern lässt. Vliese mit vergleichsweise hohen Si02-Gehal- ten an beiden Hauptoberflächen lassen sich insbesondere bei niedrigen Drücken erhalten. Hö- here Drücke fördern hingegen Unterschiede zwischen den Si02-Gehalten der beiden Haupt- oberflächen, so dass Vliese erhalten werden, bei denen eine der Hauptoberflächen im Vergleich zur anderen Hauptoberfläche deutlich hydrophober ist. Drying is preferably carried out with the aid of a dryer. The dryer is preferably selected from the group consisting of hot air dryers, ovens, drum dryers and IR dryers. For example, drying can be carried out in an oven, preferably in a vacuum oven or in a muffle oven. The oven is preferably preheated, in particular to the drying temperature, so that after the impregnation in step c), drying in step d) can be started particularly quickly. However, the dryer is particularly preferably a hot air dryer. Hot air drying is particularly preferred. According to the invention, the properties of the nonwovens obtained can be influenced not only by the process steps described above, but in particular also by the ambient pressure prevailing during drying. It has surprisingly turned out that the distribution of the SiO 2 content in the nonwovens can be controlled in a targeted manner via the pressure conditions during drying. Nonwovens with comparatively high Si0 2 contents on both main surfaces can be obtained in particular at low pressures. Higher pressures, on the other hand, promote differences between the SiO 2 contents of the two main surfaces, so that nonwovens are obtained in which one of the main surfaces is significantly more hydrophobic than the other main surface.
Bevorzugt liegt der Druck während des Trocknens gemäß Schritt d) in einem Bereich von 0,1 kPa bis 500 kPa, weiter bevorzugt von 0,2 kPa bis 200 kPa. In bestimmten bevorzugten Aus- führungsformen liegt der Druck während des Trocknens gemäß Schritt d) in einem Bereich von 0,1 kPa bis 30 kPa, weiter bevorzugt von 0,2 kPa bis 20 kPa, weiter bevorzugt von 0,5 kPa bis 10 kPa, weiter bevorzugt von 1 kPa bis 5 kPa. Solche Ausführungsformen sind insbesondere zur Herstellung solcher Vliese geeignet, bei denen der SiC>2-Gehalt an beiden Hauptoberflächen vergleichsweise hoch, in der Mitte des Vlieses jedoch vergleichsweise gering ist (sogenannte Sandwichstruktur). In anderen bevorzugten Ausführungsformen liegt der Druck während des Trocknens gemäß Schritt d) hingegen in einem Bereich von >30 kPa bis 500 kPa, weiter bevor- zugt von 50 kPa bis 200 kPa, weiter bevorzugt von 60 kPa bis 150 kPa, weiter bevorzugt von 70 kPa bis 130 kPa, weiter bevorzugt von 80 kPa bis 120 kPa, weiter bevorzugt von 90 kPa bis 110 kPa. Solche Ausführungsformen sind insbesondere zur Herstellung solcher Vliese geeig net, bei denen der Si02-Gehalt an einer der beiden Hauptoberflächen deutlich höher ist als an der anderen der beiden Hauptoberflächen, während der Gehalt an S1O2 in der Mitte des Vlieses geringer ist als der einen der beiden Hauptoberflächen, jedoch höher als an der anderen der beiden Hauptoberflächen. Dies gilt insbesondere dann, wenn Imprägnierungslösungen mit ge- ringen oder mittleren Anteilen an Silan-Komponente verwendet werden, insbesondere mit ei- nem Anteil an Silan-Komponente in einem Bereich von 0,1 Mol-% bis 3,5 Mol-%, weiter bevor- zugt von 0,2 Mol-% bis 3 Mol-%, weiter bevorzugt von 0,5 Mol-% bis 2,5 Mol, weiter bevorzugt von 0,9 Mol-% bis 2,2 Mol-%. The pressure during the drying according to step d) is preferably in a range from 0.1 kPa to 500 kPa, more preferably from 0.2 kPa to 200 kPa. In certain preferred embodiments, the pressure during the drying according to step d) is in a range from 0.1 kPa to 30 kPa, more preferably from 0.2 kPa to 20 kPa, more preferably from 0.5 kPa to 10 kPa, more preferably from 1 kPa to 5 kPa. Such embodiments are particularly suitable for the production of such nonwovens in which the SiC> 2 content on both main surfaces is comparatively high, but is comparatively low in the middle of the nonwoven (so-called sandwich structure). In other preferred embodiments, however, the pressure during the drying according to step d) is in a range from> 30 kPa to 500 kPa, more preferably from 50 kPa to 200 kPa, more preferably from 60 kPa to 150 kPa, more preferably from 70 kPa to 130 kPa, more preferably from 80 kPa to 120 kPa, more preferably from 90 kPa to 110 kPa. Such embodiments are particularly suitable for the production of those nonwovens in which the SiO 2 content on one of the two main surfaces is significantly higher than on the other of the two main surfaces, while the content of S1O2 in the middle of the nonwoven is less than one of the two main surfaces, but higher than the other of the two main surfaces. This applies in particular when impregnation solutions with low or medium proportions of silane component are used, in particular with a proportion of silane component in a range from 0.1 mol% to 3.5 mol% preferably from 0.2 mol% to 3 mol%, more preferably from 0.5 mol% to 2.5 mol, more preferably from 0.9 mol% to 2.2 mol%.
Bevorzugt sind die Vliese während des Trocknens im Wesentlichen horizontal angeordnet be- ziehungsweise horizontal orientiert. Eine horizontale Orientierung bedeutet in anderen Worten, dass die beiden Hauptoberflächen des Vlieses derart angeordnet sind, dass senkrecht auf den Hauptoberflächen stehende Flächenvektoren im Wesentlichen vertikal orientiert sind. During the drying process, the nonwovens are preferably arranged essentially horizontally or oriented horizontally. In other words, a horizontal orientation means that the two main surfaces of the fleece are arranged in such a way that surface vectors perpendicular to the main surfaces are oriented essentially vertically.
Bevorzugt werden die Vliese nach dem Trocknen auf eine Temperatur von 15°C bis 30°C, wei- ter bevorzugt von 20°C bis 25°C abgekühlt. Bevorzugt besteht das Verfahren aus den angegebenen Schritten. Es ist ein besonderer Vorteil des erfindungsgemäßen Verfahrens, dass das Verfahren mit sehr wenigen Schritten auskommt. After drying, the nonwovens are preferably cooled to a temperature of from 15 ° C. to 30 ° C., more preferably from 20 ° C. to 25 ° C. The method preferably consists of the specified steps. It is a particular advantage of the method according to the invention that the method requires very few steps.
Die vorliegende Erfindung betrifft auch die Verwendung eines Vlieses der vorliegenden Erfin dung, insbesondere als Verpackungsmaterial. The present invention also relates to the use of a nonwoven of the present invention, in particular as packaging material.
Bevorzugte Verwendungen als Verpackungsmaterial umfassen die Verwendung als Gefrier-Pa- pier, die Verwendung für Produkte, die mit Lebensmitteln in Kontakt kommen, wie insbesondere (Papier)-becher und/oder (Papier)-strohhalme, sowie die Verwendung als Verpackung für Mate- rialien, die vor Flüssigkeit geschützt werden, aber dennoch Feuchtigkeit austauschen sollen. Insbesondere können die Vliese der vorliegenden Erfindung für plastikfreie Strohhalme und/o- der Pappbecher verwendet werden. Vor dem Hintergrund möglicher Regelungen zur Reduktion von Plastikabfällen ist davon auszugehen, dass ein erhöhter Bedarf an kunststofffreien Produk- ten entsteht. Vliese für die genannten Verwendungen, insbesondere für die Verwendung in Trinkhalmen und Bechern werden häufig auch als Spezialpapiere bezeichnet. Preferred uses as packaging material include the use as frozen paper, the use for products that come into contact with food, such as (paper) cups and / or (paper) straws, and the use as packaging for mate- rialien that are protected from liquid, but should still exchange moisture. In particular, the nonwovens of the present invention can be used for plastic-free straws and / or paper cups. Against the background of possible regulations for the reduction of plastic waste, it can be assumed that there will be an increased demand for plastic-free products. Nonwovens for the uses mentioned, in particular for use in drinking straws and cups, are often also referred to as special papers.
Für die Verwendung als Pappbecher sind besonders solche Ausführungsformen geeignet, bei denen der SiCVGehalt an einer der beiden Hauptoberflächen deutlich höher ist als an der ande- ren der beiden Hauptoberflächen. Die Hauptoberfläche mit dem höheren Si02-Gehalt eignet sich aufgrund ihrer Hydrophobizität als Innenseite des Bechers, da aufgrund der hydrophoben Eigenschaften der Oberfläche ein übermäßiges Eintreten der im Becher befindlichen Flüssigkeit in das Innere des Vlieses verhindert wird. Die hydrophilere Oberfläche eignet sich gut als äu ßere Oberfläche des Bechers, da sie die Bedruckbarkeit fördert. Embodiments in which the SiCV content on one of the two main surfaces is significantly higher than on the other of the two main surfaces are particularly suitable for use as paper cups. The main surface with the higher Si0 2 content is suitable because of its hydrophobicity as the inside of the cup, because the hydrophobic properties of the surface prevent excessive entry of the liquid in the cup into the interior of the fleece. The more hydrophilic surface works well as the outer surface of the cup because it promotes printability.
Für die Verwendung als Strohhalm sind besonders solche Ausführungsformen geeignet, bei de- nen der Si02-Gehalt an beiden Hauptoberflächen vergleichsweise hoch, in der Mitte des Vlieses jedoch vergleichsweise gering ist (sogenannte Sandwichstruktur). Der hohe Si02-Gehalt an den beiden Hauptoberflächen verhindert ein übermäßiges Eintreten von Flüssigkeit in das Innere des Vlieses. Dass der Si02-Gehalt in der Mitte des Vlieses vergleichsweise gering ist, ermög- licht eine Materialersparnis. Embodiments are particularly suitable for use as a straw in which the SiO 2 content on both main surfaces is comparatively high, but is comparatively low in the middle of the fleece (so-called sandwich structure). The high Si0 2 content on the two main surfaces prevents excessive liquid from entering the interior of the fleece. The fact that the Si0 2 content in the middle of the fleece is comparatively low enables material to be saved.
Die vorliegende Erfindung betrifft auch die Verwendung eines Vlieses der vorliegenden Erfin dung als Membran, insbesondere als Membran zur Wasser/Öl Separation. Eine solche Memb- ran kann insbesondere zur räumlichen Separation von Gemischen bestehend aus einer flüssi- gen, hydrophoben Komponente (insbesondere Öl) und Wasser verwendet werden. The present invention also relates to the use of a nonwoven of the present invention as a membrane, in particular as a membrane for water / oil separation. Such a membrane can be used in particular for the spatial separation of mixtures consisting of a liquid, hydrophobic component (in particular oil) and water.
Die vorliegende Erfindung betrifft auch die Verwendung eines Vlieses der vorliegenden Erfin dung als Spezialpapier zur Verwendung bei erhöhten Temperaturen, insbesondere die Verwen- dung eines Vlieses der vorliegenden Erfindung als Backpapier. Beschreibung der Figuren The present invention also relates to the use of a nonwoven of the present invention as special paper for use at elevated temperatures, in particular the use of a nonwoven of the present invention as baking paper. Description of the figures
Figur 1 zeigt schematisch das Abdampfen aus den Vliesen (1) beim Trocknen unter Normal- druck (Figur 1A) oder im Vakuum (Figur 1 B). Unter Normaldruck ergab sich eine hohe Ver- dampfungsrate (2) an der Oberseite (verdeutlicht durch die längeren Pfeile) und eine geringe Verdampfungsrate (3) an der Unterseite des Vlieses (1) (verdeutlicht durch die kürzeren Pfeile). Im Vakuum ergibt sich an Ober- und Unterseite gleichermaßen eine mittlere Verdampfungsrate (4). FIG. 1 shows schematically the evaporation from the nonwovens (1) when drying under normal pressure (FIG. 1A) or in a vacuum (FIG. 1B). Under normal pressure there was a high evaporation rate (2) on the top (illustrated by the longer arrows) and a low evaporation rate (3) on the underside of the fleece (1) (illustrated by the shorter arrows). In the vacuum there is an average evaporation rate on the top and bottom (4).
Figur 2 zeigt schematisch die Fluoreszenzintensität (y-Achse) von Rhodamin B über die Dicke der Vliese (x-Achse). Die Verteilung ist für unter Normaldruck getrocknete Vliese in Figur 2A und für im Vakuum getrocknete Vliese in Figur 2B schematisch skizziert. Die Lage der beiden Hauptoberflächen („hlauptseiten“) ist zur Orientierung angegeben. Die Skizze zeigt eine bei- spielhafte Fluoreszenzverteilung bei Faservliesen mit einer asymmetrischen Silica-Imprägnie- rung, die derart ausgebildet ist, dass der Si02-Gewichtsanteil an der einen Hauptoberfläche hö- her ist als in der Mitte des Vlieses, während der Si02-Gewichtsanteil an der anderen Hauptober- fläche geringer ist als in der Mitte des Vlieses (Figur 2A) und bei Faservliesen mit einer asym- metrischen Silica-Imprägnierung, die derart ausgebildet ist, dass der Si02-Gewichtsanteil an beiden Hauptoberflächen in etwa gleich hoch ist, und zwar höher als in der Mitte des Vlieses (Figur 2B). FIG. 2 shows schematically the fluorescence intensity (y-axis) of rhodamine B over the thickness of the fleeces (x-axis). The distribution is schematically sketched for non-woven fabrics dried under normal pressure in FIG. 2A and for non-woven fabrics dried in a vacuum in FIG. 2B. The location of the two main surfaces ("main sides") is given for orientation. The sketch shows an exemplary fluorescence distribution in nonwoven fabrics with an asymmetrical silica impregnation, which is designed in such a way that the Si0 2 weight fraction on one main surface is higher than in the middle of the nonwoven, while the Si0 2 - The proportion by weight of the other main surface is less than that in the middle of the fleece (FIG. 2A) and in the case of non-woven fabrics with an asymmetrical silica impregnation which is designed such that the SiO 2 proportion by weight on both main surfaces is approximately the same , namely higher than in the middle of the fleece (Figure 2B).
Beispiele Examples
1. Papierherstellung 1. Paper making
Für die Herstellung eines Papiervlieses wurde Eukalyptus-Sulfat-Faserstoff („Curl“: 16,2%; Fib rillierungsgrad: 1 ,3%; Feinanteil: 15,2%) verwendet. Der Faserstoff wurde in einem Voith LR 40 Laborrefiner gemahlen. Es wurde mit einer effektiven spezifischen Energie von 16 kWh/t (750.000 Umdrehungen) gemahlen. Aus dem Eukalyptus-Sulfat-Faserstoff wurden Papiervliese mit einer Grammatur von 80 ± 0,9 g/m2 unter Verwendung einer Rapid-Köthen-Blattbildungsan- lage gemäß DIN 54358 und ISO 5269/2 (ISO5269-2:2004(E),„Pulps - Preparation of Labora- tory Sheets for Physical Testing - Part 2: Rapid Köthen Method, 2004“) hergestellt. Es wurden keine Zusätze oder Füllstoffe verwendet. 2. Herstellung der Si02-Papier-Hybridmaterialien Eucalyptus sulfate fiber ("curl": 16.2%; degree of fiberization: 1.3%; fine fraction: 15.2%) was used to produce a paper fleece. The fibrous material was ground in a Voith LR 40 laboratory refiner. It was milled with an effective specific energy of 16 kWh / t (750,000 revolutions). Paper fleeces with a grammage of 80 ± 0.9 g / m 2 were made from the eucalyptus sulfate fibrous material using a Rapid-Köthen sheet formation system in accordance with DIN 54358 and ISO 5269/2 (ISO5269-2: 2004 (E), "Pulps - Preparation of Laboratory Sheets for Physical Testing - Part 2: Rapid Köthen Method, 2004"). No additives or fillers were used. 2. Production of the Si0 2 paper hybrid materials
Es wurden drei verschiedene Tauchlösungen bereitgestellt, die sich insbesondere in Bezug auf den Gehalt an TEOS in der Tauchlösung unterschieden und die im Folgenden als gering-kon- zentrierte, mittel-konzentrierte beziehungsweise hoch-konzentrierte Lösung bezeichnet werden. Die Lösungen enthielten TEOS, Ethanol (EtOH), Wasser (H2O) und HCl in folgenden molaren Verhältnissen: Three different immersion solutions were provided, which differed in particular with regard to the TEOS content in the immersion solution and which are referred to below as a low-concentration, medium-concentration or highly-concentration solution. The solutions contained TEOS, ethanol (EtOH), water (H2O) and HCl in the following molar ratios:
• 1 TEOS : 80 EtOH : 20 H2O : 0,04 HCl (gering-konzentrierte Lösung) • 1 TEOS: 80 EtOH: 20 H2O: 0.04 HCl (low-concentrated solution)
• 1 TEOS : 40 EtOH : 10 H20 : 0,02 HCl (mittel-konzentrierte Lösung) 1 TEOS: 40 EtOH: 10 H 2 0: 0.02 HCl (medium-concentrated solution)
• 1 TEOS : 20 EtOH : 5 H20 : 0,01 HCl (hoch-konzentrierte Lösung) 1 TEOS: 20 EtOH: 5 H 2 0: 0.01 HCl (highly concentrated solution)
Diese Lösungen wurden für 24 Stunden gerührt und dann für die Herstellung der Si02-Papier- Hybridmaterialien verwendet. Eukalyptus-Sulfat-Papiervliese gemäß Beispiel 1 mit einer Länge von 8 cm und einer Breite von 1 cm wurden bei 50% relativer Luftfeuchte und einer Temperatur von 23°C in die Tauchlösung eingetaucht und mit einer Geschwindigkeit von 2 mm/s aus der Tauchlösung entfernt. Die Vliese wurden dann in horizontaler Orientierung bei einer Temperatur von 130°C für 2 Stunden entweder in einem Vakuumofen oder in einem Muffelofen getrocknet. Anschließend wurden die Vliese auf Raumtemperatur abgekühlt. These solutions were stirred for 24 hours and then used for the production of the Si0 2 paper hybrid materials. Eucalyptus sulfate paper webs according to Example 1 with a length of 8 cm and a width of 1 cm were immersed in the immersion solution at 50% relative atmospheric humidity and a temperature of 23 ° C. and removed from the immersion solution at a speed of 2 mm / s . The webs were then dried in a horizontal orientation at a temperature of 130 ° C for 2 hours either in a vacuum oven or in a muffle oven. The nonwovens were then cooled to room temperature.
3. Untersuchung der Vliese aus Si02-Papier-Hybridmaterial 3. Examination of the nonwovens made of Si0 2 paper hybrid material
Mit den nach Beispiel 2 erhaltenen Vliesen wurden verschiedene Experimente durchgeführt, um die Eigenschaften der Vliese zu testen. a) Kontaktwinkel Various experiments were carried out with the nonwovens obtained according to Example 2 in order to test the properties of the nonwovens. a) Contact angle
Kontaktwinkelmessungen wurden mit dem Modell TBU90E der DataPhysics Instruments GmbH und der SCA-Software durchgeführt. Alle Proben wurden an fünf Positionen gemessen und der Durchschnittswert und die Standardabweichung wurden berechnet. Für statische Kontaktwin- kelmessungen wurde ein Tropfenvolumen von 2 pl verwendet (Auftragsrate: 1 mI/s). Die Ergeb- nisse der Kontaktwinkelmessungen mit Wasser sind in der folgenden Tabelle 1 dargestellt. Tabelle 1 geringe Silica- mittlere Silica- hohe Silica-Contact angle measurements were carried out with the TBU90E model from DataPhysics Instruments GmbH and the SCA software. All samples were measured at five positions and the average and standard deviation were calculated. A drop volume of 2 pl was used for static contact angle measurements (application rate: 1 mI / s). The results of the contact angle measurements with water are shown in Table 1 below. Table 1 low silica- medium silica- high silica-
Konzentration Konzentration Konzentration Speak concentration concentration speak
Bei den im Vakuumofen getrockneten Vliesen wurden unabhängig von der eingesetzten TEOS- Lösung keine Unterschiede zwischen den Oberflächeneigenschaften der Ober- und Unterseite festgestellt. Die Vliese, die unter Umgebungsdruck in einem Muffelofen getrocknet wurden, zeigten ebenfalls keine Unterschiede zwischen Ober- und Unterseite, wenn die Vliese durch Behandlung mit der gering-konzentrierten TEOS-Lösung oder der hoch-konzentrierten TEOS- Lösung erhalten wurden. Die gering-konzentrierte TEOS-Lösung führte zu Vliesen mit einem hydrophilen Benetzungsverhalten an Ober- und Unterseite, während die hoch-konzentrierte TEOS-Lösung zu hydrophobem Benetzungsverhalten an Ober- und Unterseite führte. Überra- schenderweise zeigte sich jedoch bei Vliesen, die durch Behandlung mit der mittel-konzentrier- ten TEOS-Lösung erhalten wurden, nach Trocknung unter Normaldruck ein unterschiedliches Benetzungsverhalten an Ober- und Unterseite. Die Oberseite zeigte ein hydrophobes Benet- zungsverhalten und die Unterseite zeigte ein hydrophiles Benetzungsverhalten. Das Vlies zeigte also eine Art amphiphiles Verhalten oder„Janus' -Verhalten. b) Thermoqravimetrische Analyse (TGA) Regardless of the TEOS solution used, no differences were found between the surface properties of the top and bottom of the nonwovens dried in the vacuum oven. The nonwovens that were dried under ambient pressure in a muffle furnace also showed no differences between the top and bottom when the nonwovens were obtained by treatment with the low-concentration TEOS solution or the high-concentration TEOS solution. The low-concentration TEOS solution resulted in nonwovens with a hydrophilic wetting behavior on the top and bottom, while the high-concentration TEOS solution led to hydrophobic wetting behavior on the top and bottom. Surprisingly, however, nonwovens obtained by treatment with the medium-concentrated TEOS solution showed a different wetting behavior on the top and bottom after drying under normal pressure. The top showed a hydrophobic wetting behavior and the bottom showed a hydrophilic wetting behavior. The fleece showed a kind of amphiphilic behavior or "Janus" behavior. b) Thermoqravimetric analysis (TGA)
Thermogravimetrische Analyse wurde mit einem TGA 1 (Mettler-Toledo) durchgeführt. Die Pro- ben wurden von 25°C auf 600°C mit einer Rate von 10°C/min unter einem konstanten Luftstrom von 30 ml/min erhitzt. Mit diesen Messungen ist es möglich, den Gehalt an S1O2 zu bestimmen, da S1O2 bis zu Temperaturen von 1700°C stabil ist. Thermogravimetric analysis was carried out with a TGA 1 (Mettler-Toledo). The samples were heated from 25 ° C to 600 ° C at a rate of 10 ° C / min under a constant air flow of 30 ml / min. With these measurements it is possible to determine the content of S1O2, since S1O2 is stable up to temperatures of 1700 ° C.
Die Ergebnisse der thermogravimetrischen Analyse sind in der folgenden Tabelle 2 zusammen gefasst. Tabelle 1 The results of the thermogravimetric analysis are summarized in Table 2 below. Table 1
Der Anteil an Si02 in den Si02-Papier-Hybridmaterialien beträgt also etwa 0,6 Gew.-% für die Vliese, die durch Behandlung mit der gering-konzentrierten TEOS-Lösung erhalten wurden, und etwa 4 Gew.-% für die Vliese, die durch Behandlung mit der hoch-konzentrierten TEOS-Lösung erhalten wurden. c) Analyse der Si02-Verteilung The proportion of Si0 2 in the Si0 2 paper hybrid materials is therefore about 0.6% by weight for the nonwovens obtained by treatment with the low-concentration TEOS solution and about 4% by weight for the Nonwovens obtained by treatment with the highly concentrated TEOS solution. c) Analysis of the Si0 2 distribution
Die relative Si02-Verteilung in den Vliesen wurde mit Hilfe konfokaler Laser-Scanning-Mikrosko- pie (CLSM, englisch:„confocal laser scanning microscopy“) an Querschnitten eingebetteter Pro- ben analysiert. In Kombination mit den, in b) erhaltenen, absoluten Si02-Verteilungen ergibt sich eine quantitative Aussage über die Materialmengen pro Volumeninkrement. aa) Herstellung der Vliese The relative Si0 2 distribution in the nonwovens was analyzed with the help of confocal laser scanning microscopy (CLSM, English: “confocal laser scanning microscopy”) on cross sections of embedded samples. In combination with the absolute Si0 2 distributions obtained in b), a quantitative statement about the amounts of material per volume increment is obtained. aa) Production of the nonwovens
Vliese wurden hergestellt wie in den Beispielen 1 und 2 beschrieben. Allerdings wurde vor der Behandlung mit der TEOS-Lösung zur Herstellung der Hybridmaterialien gemäß Beispiel 2 der Farbstoff Calcofluor White (CFW) auf folgende Art und Weise in die Vliese eingebracht: Nonwovens were made as described in Examples 1 and 2. However, before treatment with the TEOS solution for producing the hybrid materials according to Example 2, the dye Calcofluor White (CFW) was introduced into the nonwovens in the following manner:
Papiervliese aus Beispiel 1 wurden in eine CFW-Lösung mit 10 mM CFW in Ethanol (absolutiert) getaucht und anschließend bei 40°C in einem Vakuumofen für eine Stunde getrocknet. Diese Anfärbung dient später als Referenz, da CFW aufgrund der hohen Bindungsaffinität zu Cellu- lose homogen über die Papiervliese verteilt vorliegt und bei der Trocknung nicht migriert. Die so gelabelten Vliese wurden wie in Beispiel 2 beschrieben mit TEOS-Lösungen behandelt und ge- trocknet, wobei die Tauchlösungen zusätzlich 20 mM Rhodamin B enthielten. hb) Herstellung der Querschnitte Paper webs from Example 1 were immersed in a CFW solution containing 10 mM CFW in ethanol (absolute) and then dried at 40 ° C. in a vacuum oven for one hour. This staining will later serve as a reference, since CFW is homogeneously distributed over the paper nonwovens due to the high binding affinity for cellulose and does not migrate during drying. The nonwovens labeled in this way were treated with TEOS solutions and dried as described in Example 2, the immersion solutions additionally containing 20 mM Rhodamine B. hb) production of the cross sections
Jede Probe wurde in eine Mischung aus 49,9875 Gew.-% Desmodur 3200, 49,9875 Gew.-% Albodur 956 VP und 0,025 Gew.-% TIB-KAT 318 eingebettet. Bei der Mischung handelt es sich um ein kommerzielles Polyurethan-System. Die frisch eingebetteten Proben wurden mehreren Vakuumzyklen bei Raumtemperatur unterzogen um verbleidende Luftblasen zu entfernen. An schließend wurde das Harz bei 80°C für 18 Stunden gehärtet. Dann wurden Proben mit einer Dicke von 120 pm geschnitten. Die Schnittebene wurde so gewählt, dass diese orthogonal zu beiden Hauptoberflächen orientiert ist. cc) Konfokale Laser-Scanning-Mikroskopie Each sample was embedded in a mixture of 49.9875% by weight Desmodur 3200, 49.9875% by weight Albodur 956 VP and 0.025% by weight TIB-KAT 318. The mixture is a commercial polyurethane system. The freshly embedded samples were subjected to several vacuum cycles at room temperature in order to remove remaining air bubbles. The resin was then cured at 80 ° C for 18 hours. Then samples with a thickness of 120 μm were cut. The section plane was chosen so that it is oriented orthogonally to both main surfaces. cc) Confocal laser scanning microscopy
Die Proben wurden unter Verwendung von Typ F Immersionsflüssigkeit von Leica zwischen zwei 25 mm runden Mikroskopdeckgläsern platziert. Die Aufnahme wurden an einem Leica TCS SP8 durchgeführt. The samples were placed between two 25 mm round microscope coverslips using Leica Type F immersion liquid. The images were taken on a Leica TCS SP8.
Es wurde ein Objektiv vom Typ„HC PL APO CS2 20x/0.75 IMM“ in Wasserimmersion verwen- det, CFW wurde mit einem 405 nm Laser angeregt und bei 415-557 nm detektiert. Rhodamin B wurde mit einem 552 nm Laser angeregt und bei 562-753 nm detektiert. A lens of the type "HC PL APO CS2 20x / 0.75 IMM" in water immersion was used, CFW was excited with a 405 nm laser and detected at 415-557 nm. Rhodamine B was excited with a 552 nm laser and detected at 562-753 nm.
Für jedes der untersuchten Vliese wurden die Bilddaten der verschiedenen konfokalen Ebenen kombiniert und eine Grauwertanalyse für jede Reihe von Bildpunkten durchgeführt, das heißt, dass die Grau werte jeder Reihe für jede einzelne Spalte addiert wurden. Daraus wurde die Ver- teilung durch das Vlies von einer der Hauptseiten zur anderen Hauptseite ermittelt. dd) Ergebnisse For each of the nonwovens examined, the image data of the different confocal planes were combined and a gray value analysis was carried out for each row of pixels, which means that the gray values of each row were added for each individual column. From this, the distribution through the fleece from one of the main pages to the other main page was determined. dd) results
In dem vorliegenden experimentellen Setup dient CFW als Referenzwert. CFW hat eine hohe Affinität zu Cellulose und ist daher gleichmäßig über die gesamte Dicke des Vlieses verteilt. So- fern der CFW-Fluoreszenzwert über den Papierquerschnitt hinweg deutlich schwankt kann dies auf Probleme im Strahlengang hindeuten (wie z.B. Lufteinschlüsse), da CFW physikalisch auf dem Papier homogen verteilt ist. Es kann allerdings bei sehr niedrigen Si02-Schichtdicken vor- kommen, dass Aminogruppen von CFW mit dem Polyurethanharz reagieren, wodurch die Fluo- reszenz von CFW deaktiviert wird. Ist CFW jedoch durch S1O2 geschützt, kommt es nicht zur Reaktion mit dem Harz, so dass die Fluoreszenz erhalten bleibt. Daher ist das Ausmaß der CFW-Fluoreszenz zusätzlich zur Referenz ein Maß für den Gehalt an S1O2 an einer bestimmten Tiefenposition innerhalb des Vlieses. Rhodamin B (RhoB) dient als ratiometrischer Marker für den Anteil an Si02. Je höher die RhoB Fluoreszenz, desto höher der Anteil an Si02. In this experimental setup, CFW serves as a reference value. CFW has a high affinity for cellulose and is therefore evenly distributed over the entire thickness of the fleece. If the CFW fluorescence value fluctuates significantly across the paper cross-section, this can indicate problems in the beam path (such as air pockets), since CFW is physically homogeneously distributed on the paper. However, with very low SiO 2 layer thicknesses, it can happen that amino groups of CFW react with the polyurethane resin, whereby the fluorescence of CFW is deactivated. However, if CFW is protected by S1O2, there is no reaction with the resin, so that the fluorescence is retained. Therefore, the extent of CFW fluorescence in addition to the reference is a measure of the content of S1O2 at a certain depth position within the fleece. Rhodamine B (RhoB) serves as a ratiometric marker for the proportion of Si0 2 . The higher the RhoB fluorescence, the higher the proportion of Si0 2 .
Es ergab sich bei den Vliesen, die bei Normaldruck getrocknet wurden, eine Abnahme der RhoB-Fluoreszenz von der Oberseite des Vlieses zur Unterseite des Vlieses hin. Der Si02-An- teil nimmt also innerhalb des Vlieses von der Oberseite zur Unterseite hin ab. Dieser Effekt wurde unabhängig vom Anteil an TEOS in der Tauchlösung beobachtet. Bei der niedrigsten TEOS-Konzentration war zudem ein Abwärtstrend in der CFW-Fluoreszenz vorhanden, was zeigt, dass Teile der Cellulosefasern nicht mehr maskiert waren. In the case of the nonwovens which were dried at normal pressure, there was a decrease in the RhoB fluorescence from the upper side of the nonwoven to the underside of the nonwoven. The Si0 2 portion thus decreases within the fleece from the top to the bottom. This effect was observed regardless of the proportion of TEOS in the immersion solution. At the lowest TEOS concentration there was also a downward trend in CFW fluorescence, which shows that parts of the cellulose fibers were no longer masked.
In den im Vakuumofen getrockneten Vliesen ist eine solche Verteilung des Si02-Anteils weder bei den mit gering-konzentrierter TEOS-Lösung behandelten Vliesen noch bei Vliesen zu be- obachten, die mit mittel-konzentrierter TEOS-Lösung oder hoch-konzentrierter TEOS-Lösung behandelt wurden. Stattdessen ergibt sich eine Sandwich-artige Intensitätsverteilung mit hoher Fluoreszenz an Ober- und Unterseite und geringer RhoB Fluoreszenz im Inneren des Vlieses. Zudem liegt eine konstante CFW-Fluoreszenz vor, was darauf hin deutet, dass bei Trocknung im Vakuum die gesamte Oberfläche des Vlieses zumindest derart mit Si02 versehen ist, dass keine Reaktion zwischen CFW und Harz stattfindet. Die beschriebene Sandwich-artige Vertei- lung von Si02 ergab sich unabhängig vom Anteil an TEOS in der Tauchlösung. Allerdings war die relative Ungleichverteilung zwischen der Vliesoberfläche und dem Inneren des Vlieses umso größer, je geringer der Anteil an TEOS in der Tauchlösung war. In the nonwovens dried in the vacuum oven, such a distribution of the SiO 2 content is not observed either in the nonwovens treated with low-concentration TEOS solution or in nonwovens with medium-concentrated TEOS solution or highly-concentrated TEOS solution were treated. Instead, there is a sandwich-like intensity distribution with high fluorescence on the top and bottom and low RhoB fluorescence inside the fleece. In addition, there is a constant CFW fluorescence, which indicates that when drying in a vacuum, the entire surface of the fleece is at least provided with SiO 2 in such a way that no reaction takes place between the CFW and the resin. The described sandwich-like distribution of Si0 2 was independent of the proportion of TEOS in the immersion solution. However, the lower the proportion of TEOS in the immersion solution, the greater the relative unequal distribution between the fleece surface and the interior of the fleece.
Die Ergebnisse zeigen, dass die hydrophoben Eigenschaften mit dem Anteil an Si02 korrelie ren. The results show that the hydrophobic properties correlate with the amount of Si0 2 .

Claims

Ansprüche Expectations
1. Faservlies mit asymmetrischer Silica-Imprägnierung, wobei das Vlies zwei Hauptoberflä- chen aufweist, wobei der Gewichtsanteil an S1O2 ausgehend von zumindest einer der bei- den Hauptoberflächen zum Inneren des Vlieses hin abnimmt. 1. Nonwoven fabric with asymmetrical silica impregnation, the nonwoven having two main surfaces, the weight fraction of S1O2 decreasing from at least one of the two main surfaces towards the inside of the nonwoven.
2. Faservlies nach Anspruch 1 , wobei das Faservlies ein Papiervlies ist. 2. Nonwoven fabric according to claim 1, wherein the nonwoven fabric is a paper nonwoven.
3. Faservlies nach mindestens einem der Ansprüche 1 oder 2, wobei der Gewichtsanteil an S1O2 an zumindest einer der beiden Hauptoberflächen mindestens 1 , 1 -mal so hoch ist wie der Gewichtsanteil an S1O2 in der Mitte des Vlieses. 3. Nonwoven fabric according to at least one of claims 1 or 2, wherein the weight fraction of S1O2 on at least one of the two main surfaces is at least 1.1 times as high as the weight fraction of S1O2 in the middle of the fleece.
4. Faservlies nach mindestens einem der vorhergehenden Ansprüche, wobei der Gewichtsan- teil an S1O2 an beiden Hauptoberflächen mindestens 1 ,1 -mal so hoch ist wie der Gewichts- anteil an S1O2 in der Mitte des Vlieses. 4. Nonwoven fabric according to at least one of the preceding claims, wherein the weight fraction of S1O2 on both main surfaces is at least 1.1 times as high as the weight fraction of S1O2 in the middle of the fleece.
5. Faservlies nach mindestens einem der vorhergehenden Ansprüche, wobei das Verhältnis des Gewichtsanteils an Si02 an der einen Hauptoberfläche zum Gewichtsanteil an Si02 an der anderen Hauptoberfläche in einem Bereich von 0,95:1 bis 1 ,05:1 liegt. 5. Nonwoven fabric according to at least one of the preceding claims, wherein the ratio of the weight fraction of Si0 2 on one main surface to the weight fraction of Si0 2 on the other main surface is in a range from 0.95: 1 to 1.05: 1.
6. Faservlies nach mindestens einem der Ansprüche 1 bis 3, wobei der Gewichtsanteil an Si02 an einer der beiden Hauptoberflächen mindestens 1 , 1 -mal so hoch ist wie der Ge- wichtsanteil an Si02 in der Mitte des Vlieses, und wobei der Gewichtsanteil an Si02 an der anderen der beiden Hauptoberflächen höchstens das 0,9-Fache des Gewichtsanteils an Si02 in der Mitte des Vlieses beträgt. 6. Nonwoven fabric according to at least one of claims 1 to 3, wherein the weight fraction of Si0 2 on one of the two main surfaces is at least 1.1 times as high as the weight fraction of Si0 2 in the middle of the fleece, and wherein the weight fraction of Si0 2 on the other of the two main surfaces is at most 0.9 times the weight fraction of Si0 2 in the middle of the fleece.
7. Faservlies nach mindestens einem der Ansprüche 1 bis 3 und 6, wobei der Gewichtsanteil an Si02 an einer der beiden Hauptoberflächen mindestens das 1 ,2-Fache des Gewichtsan- teils an S1O2 an der anderen der beiden Hauptoberflächen beträgt. 7. Nonwoven fabric according to at least one of claims 1 to 3 and 6, wherein the weight fraction of Si0 2 on one of the two main surfaces is at least 1.2 times the weight fraction of S1O2 on the other of the two main surfaces.
8. Verfahren zur Herstellung eines Faservlieses nach mindestens einem der vorhergehenden Ansprüche, umfassend die folgenden Schritte: a) Bereitstellen eines Faservlieses, b) Bereitstellen einer Imprägnierungslösung, wobei die Imprägnierungslösung eine Silan- Komponente enthält, c) Imprägnieren des Faservlieses mit der Imprägnierungslösung, d) T rocknen des Vlieses bei Temperaturen in einem Bereich von 70°C bis 190°C, wobei zwischen dem Abschluss des Imprägnierens gemäß Schritt c) und dem Beginn des Trocknens gemäß Schritt d) ein Zeitraum von höchstens 60 Sekunden liegt. 8. A method for producing a nonwoven fabric according to at least one of the preceding claims, comprising the following steps: a) providing a nonwoven fabric, b) providing an impregnation solution, the impregnation solution containing a silane component, c) impregnating the nonwoven fabric with the impregnation solution, d ) Drying the fleece at temperatures in a range from 70 ° C to 190 ° C, a period of at most 60 seconds between the completion of the impregnation according to step c) and the start of drying according to step d).
9. Verfahren nach Anspruch 8, wobei die Imprägnierungslösung aus der Silan-Komponente besteht, so dass der Anteil der Silan-Komponente an der Imprägnierungslösung 100 Gew.- % beträgt. 9. The method according to claim 8, wherein the impregnation solution consists of the silane component, so that the proportion of the silane component in the impregnation solution is 100% by weight.
10. Verfahren nach mindestens einem der Ansprüche 8 und 9, wobei die Silan-Komponente ausgewählt ist aus der Gruppe bestehend aus Tetraethylorthosilicat (TEOS), Tetramethyl- orthosilicat, Polydimethoxysiloxan, 1 ,2-Bis(triethoxysilyt)ethan, Tetramethylorthosilicat (TMOS), Siliciumtetraacetat und Mischungen aus zwei oder mehr davon. 10. The method according to at least one of claims 8 and 9, wherein the silane component is selected from the group consisting of tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate, polydimethoxysiloxane, 1, 2-bis (triethoxysilyt) ethane, tetramethyl orthosilicate (TMOS), Silicon tetraacetate and mixtures of two or more thereof.
1 1. Verfahren nach mindestens einem der Ansprüche 8 bis 10, wobei der Druck während des Trocknens gemäß Schritt d) in einem Bereich von 0,1 kPa bis 30 kPa liegt. 1 1. The method according to at least one of claims 8 to 10, wherein the pressure during the drying according to step d) is in a range from 0.1 kPa to 30 kPa.
12. Verfahren nach mindestens einem der Ansprüche 8 bis 10, wobei der Druck während des Trocknens gemäß Schritt d) in einem Bereich von >30 kPa bis 500 kPa liegt. 12. The method according to at least one of claims 8 to 10, wherein the pressure during the drying according to step d) is in a range from> 30 kPa to 500 kPa.
13. Verwendung eines Faservlieses nach mindestens einem der Ansprüche 1 bis 7 als Verpa- ckungsmaterial, als Membran und/oder als Spezialpapier zur Verwendung bei erhöhten Temperaturen. 13. Use of a nonwoven fabric according to at least one of claims 1 to 7 as packaging material, as a membrane and / or as special paper for use at elevated temperatures.
14. Verwendung nach Anspruch 13, wobei die Verwendung als Verpackungsmaterial die Ver wendung als Gefrier-Papier, die Verwendung für Produkte, die mit Lebensmitteln in Kontakt kommen, wie insbesondere (Papier)-becher und/oder (Papier)-strohhalme, sowie die Ver- wendung als Verpackung für Materialien, die vor Flüssigkeit geschützt werden, aber den- noch Feuchtigkeit austauschen sollen, umfasst. 14. Use according to claim 13, wherein the use as packaging material, the use as frozen paper, the use for products which come into contact with food, such as in particular (paper) cups and / or (paper) straws, and the Use as packaging for materials that are protected from liquid, but still should exchange moisture.
15. Verwendung nach Anspruch 13 oder 14, wobei das Faservlies für plastikfreie Strohhalme und/oder Pappbecher verwendet wird. 15. Use according to claim 13 or 14, wherein the nonwoven fabric is used for plastic-free straws and / or paper cups.
16. Verwendung nach Anspruch 13, wobei die Membran eine Membran zur Wasser/Öl Separa- tion ist. 16. Use according to claim 13, wherein the membrane is a membrane for water / oil separation.
17. Verwendung nach Anspruch 13, wobei das Spezialpapier zur Verwendung bei erhöhten Temperaturen Backpapier ist. 17. Use according to claim 13, wherein the special paper for use at elevated temperatures is baking paper.
EP19778972.0A 2018-10-01 2019-09-25 Asymmetrically silica-impregnated papers and methods for producing said papers and use thereof Active EP3655575B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018124255.7A DE102018124255A1 (en) 2018-10-01 2018-10-01 Nonwoven fabrics with asymmetrical silica impregnation and process for producing the nonwovens and their uses
PCT/EP2019/075927 WO2020069943A1 (en) 2018-10-01 2019-09-25 Asymmetrically silica-impregnated nonwoven fabrics and methods for producing said nonwovens and use thereof

Publications (2)

Publication Number Publication Date
EP3655575A1 true EP3655575A1 (en) 2020-05-27
EP3655575B1 EP3655575B1 (en) 2021-08-25

Family

ID=68072413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19778972.0A Active EP3655575B1 (en) 2018-10-01 2019-09-25 Asymmetrically silica-impregnated papers and methods for producing said papers and use thereof

Country Status (5)

Country Link
US (1) US20220034041A1 (en)
EP (1) EP3655575B1 (en)
CN (1) CN112840073B (en)
DE (1) DE102018124255A1 (en)
WO (1) WO2020069943A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4311875A1 (en) * 2022-07-27 2024-01-31 Technische Universität Darmstadt Non-woven fabric coated with silica, method for manufacturing it and its use
EP4311872A1 (en) * 2022-07-27 2024-01-31 Technische Universität Darmstadt Wet strength improved fibrous non-woven fabrics, in particular paper, uses of these wet strength fabrics as well as production methods of the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3551272A (en) * 1967-05-09 1970-12-29 Monsanto Co Paper overlays and laminated materials
US3944702A (en) * 1974-06-24 1976-03-16 Dow Corning Corporation Fibrous structures bonded with a silsesquioxane-containing composition
CA1144013A (en) * 1979-04-09 1983-04-05 Beloit Corporation Method for waterproofing paper
US4469746A (en) * 1982-06-01 1984-09-04 The Procter & Gamble Company Silica coated absorbent fibers
JPH0717085B2 (en) * 1987-11-20 1995-03-01 キヤノン株式会社 Recording paper and ink jet recording method using the same
US4789564A (en) * 1987-03-31 1988-12-06 Union Carbide Corporation Hydridoaminosilane treatment for rendering surfaces water-repellent
ATE282729T1 (en) * 2000-09-06 2004-12-15 Toray Industries HEAT RESISTANT FABRIC AND ITS PRODUCTION PROCESS
US20040084164A1 (en) * 2002-11-06 2004-05-06 Shannon Thomas Gerard Soft tissue products containing polysiloxane having a high z-directional gradient
EP1944351A1 (en) * 2007-01-12 2008-07-16 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Compositions useful as fire-retardant
SE534210C2 (en) * 2009-10-09 2011-05-31 Stora Enso Oyj Process for manufacturing a substrate containing silica pigment formed on the surface of the substrate
JP2011162756A (en) * 2010-02-15 2011-08-25 Eiju Sangyo:Kk Method for producing porous silica-fiber composite, porous silica-fiber composite, and vacuum heat insulation material using the same
CN103628351A (en) * 2013-11-11 2014-03-12 华南理工大学 Method of preparing super-hydrophobic paper by applying chlorosilane
KR20160101330A (en) * 2015-02-16 2016-08-25 알이엠텍 주식회사 micro-powder impregnated non-woven fabric and the method for preparing the same
CN106187069A (en) * 2016-07-06 2016-12-07 天津大学 A kind of preparation method of super-hydrophobic high-strength light heat-barrier material
CN106283204A (en) * 2016-08-17 2017-01-04 张静 A kind of preparation method of antibacterial glue-free cotton
US10762888B2 (en) * 2017-02-13 2020-09-01 Hyundai Motor Company Sound absorbing fabric with improved thermal insulation and method of manufacturing the same
CN108411707A (en) * 2018-01-23 2018-08-17 天津大学 A kind of super oleophylic and super-hydrophobicity oil-water separation filter paper and preparation method thereof

Also Published As

Publication number Publication date
WO2020069943A1 (en) 2020-04-09
CN112840073B (en) 2023-04-11
EP3655575B1 (en) 2021-08-25
CN112840073A (en) 2021-05-25
DE102018124255A1 (en) 2020-04-02
US20220034041A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
DE1285455C2 (en) POROESE FILTER MATERIAL WITH ULTRA FINE PORE AND METHOD OF MANUFACTURING
DE60013018T2 (en) Tissue and composite having improved resistance to core compression for fiber reinforced composites
DE60034819T2 (en) HYDROXY-PHENOXYETHERPOLYMERS IN PAPER MANUFACTURE
DE69630778T2 (en) METHOD AND DEVICE FOR CONTROLLING POLYMER COMPOSITIONS ON A MATERIAL TRACK
DE60005077T2 (en) Laminate and its manufacture
DE10106494B4 (en) Self-cleaning and anti-adhesive papers and paper-like materials, process for their preparation and their use
DE60225803T2 (en) POROUS FILM, FIBER COMPOSITE FILM AND METHOD FOR THE PRODUCTION THEREOF
CH695946A5 (en) Finishing of textile fibers, tissues and fabrics.
DE2008605A1 (en) Method of making paper
DE2516097B2 (en)
DE4010526C2 (en) Filter material in the form of flexible sheets or webs and process for its manufacture
EP3655575B1 (en) Asymmetrically silica-impregnated papers and methods for producing said papers and use thereof
EP0811091B1 (en) Aqueous alkyl diketene dispersions and the use thereof as sizing agents for paper
DE602005006158T2 (en) COMPOSITION FOR PREPARING A BARRIER LAYER ON LAMINATED PACKAGING MATERIAL
DE2900771C2 (en) Decorative laminate
DE202013010599U1 (en) Sandwich structure with an airgel-containing core material
DE60318562T2 (en) FIBER CLADS AND ITS MANUFACTURE
DE60117780T2 (en) GRAIN WITH PIGMENT BINDER STRUCTURE AND METHOD FOR ITS MANUFACTURE
DE1916116A1 (en) Chromatographic medium and process for its preparation
EP2357278B1 (en) Valuable document with silicon resin coating and method for its production
AT397387B (en) METHOD FOR IMPREGNATING A SURFACE, FIBROUS SUPPORT MATERIAL WITH SYNTHETIC RESIN, DEVICES FOR IMPLEMENTING THIS METHOD, PRODUCTS PRODUCED BY THIS METHOD AND THE USE THEREOF
EP3301221A1 (en) Packaging paper and method for its production
DE2458892C2 (en) Aqueous latex material and process for its manufacture
DE2835935C3 (en) Process for the production of nonwovens containing glass fibers
DE10129858A1 (en) Surface coating of acoustically effective foam materials

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200715

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210504

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ANDRIEU-BRUNSEN, ANNETTE

Inventor name: HERZOG, NICOLE

Inventor name: BIESALSKI, MARKUS

Inventor name: NAU, MAXIMILIAN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1423903

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019002141

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019002141

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210925

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210925

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

26N No opposition filed

Effective date: 20220527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190925

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230919

Year of fee payment: 5

Ref country code: DE

Payment date: 20230919

Year of fee payment: 5