EP3652515B1 - Système de gestion de consommation d'eau - Google Patents
Système de gestion de consommation d'eau Download PDFInfo
- Publication number
- EP3652515B1 EP3652515B1 EP18755894.5A EP18755894A EP3652515B1 EP 3652515 B1 EP3652515 B1 EP 3652515B1 EP 18755894 A EP18755894 A EP 18755894A EP 3652515 B1 EP3652515 B1 EP 3652515B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- sensors
- end point
- rotating piston
- water consumption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 90
- 230000033228 biological regulation Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 230000001960 triggered effect Effects 0.000 claims 1
- 238000007726 management method Methods 0.000 description 7
- 238000010801 machine learning Methods 0.000 description 6
- 230000006399 behavior Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000002516 radical scavenger Substances 0.000 description 3
- 244000298643 Cassia fistula Species 0.000 description 2
- QVFWZNCVPCJQOP-UHFFFAOYSA-N chloralodol Chemical compound CC(O)(C)CC(C)OC(O)C(Cl)(Cl)Cl QVFWZNCVPCJQOP-UHFFFAOYSA-N 0.000 description 2
- 238000012517 data analytics Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910005813 NiMH Inorganic materials 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 238000012358 sourcing Methods 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004457 water analysis Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F7/00—Volume-flow measuring devices with two or more measuring ranges; Compound meters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
- G01M3/28—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
- G01M3/2807—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D2204/00—Indexing scheme relating to details of tariff-metering apparatus
- G01D2204/10—Analysing; Displaying
- G01D2204/12—Determination or prediction of behaviour, e.g. likely power consumption or unusual usage patterns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D2204/00—Indexing scheme relating to details of tariff-metering apparatus
- G01D2204/10—Analysing; Displaying
- G01D2204/14—Displaying of utility usage with respect to time, e.g. for monitoring evolution of usage or with respect to weather conditions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D4/00—Tariff metering apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/053—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential and axial admission
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/001—Means for regulating or setting the meter for a predetermined quantity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F3/00—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
- G01F3/02—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
- G01F3/04—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls
- G01F3/06—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls comprising members rotating in a fluid-tight or substantially fluid-tight manner in a housing
- G01F3/08—Rotary-piston or ring-piston meters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/30—Smart metering, e.g. specially adapted for remote reading
Definitions
- This invention relates to the management of water consumption within a specific area, such as an apartment, a building or more generally an area that includes several end points where water is distributed.
- Water consumption measurement is well known. Generally, there is one single point of metering located at the entry point of the building. This arrangement generates rough data, does not enable consumers to get real-time feedback locally or at any point of use, actively monitors their consumption globally and then adapt the behavior of the house inhabitants accordingly. With one single measure, water providers cannot i) invoice precisely the water consumption per apartment, ii) infer the demand/consumption trends with precision of an area of buildings under management for planning / forecasting purposes, reducing headroom advantageously.
- the present invention improves the water consumption management by departing from the conventional approach of measuring water demand at a single point (i.e. the water entry) in an area comprising several end points and at sporadic intervals. Instead, according to the invention, water demand may be continuously metered and monitored at each end point where water, hot or cold, is distributed.
- the invention concerns a water consumption management system for a specific area, such as an apartment, a building or more generally an area that includes several end points where water is distributed; said system comprising an interconnected network of sensors that are adapted to measure water consumption at each end point; said network being connected to a data processing unit and to at least one display element that provides an information on the water consumption at each end point of said specific area wherein at least some sensors comprise each a turbine arranged to measure first flow rates and a rotating piston arranged to measure second flow rates, wherein the second flow rates are higher than first flow rates, and wherein said turbine is located in the center of the rotating piston.
- the system according to the invention is based on a network of sensors (e.g. IoT devices) measuring the water consumption, for instance the water output of each tap, the water input of dishwashers, washing machines, head showers or flushes, i.e. on any water endpoint of the building. More generally, the sensors used in the present invention can measure any water end point of interest, detect leaks by either detecting abnormal activity such as a leaking faucet or simply comparing their nonactivity with the single-entry meter's activity.
- sensors e.g. IoT devices
- This setup advantageously allows data analytics on water consumption to help the house inhabitants to adapt their behavior to reduce their water needs and prevent flaws and damages.
- the system can be used either in a standalone mode where the users obtain an immediate feedback locally on each device with the volume and the temperature of the water they consume or in a remote mode where the users obtain a consolidated view of the consumption used through the devices installed on the outputs, both at any point of time.
- the system illustrated on figure 1 comprises a set of IoT sensors (101 to 107).
- the user can precisely monitor the volume flowing through each water end point and see the data displayed at each point of use such a kitchen tap. Knowing the temperature of the water, the algorithm can compute the energy required (kWh) to bring cold water to the desired temperature with very high precision over the time, provided cold-water temperature has been calibrated at set-up. This information can be very useful to pilot the heating processing of the boiler as the system can transmit to it when hot water will be required or not.
- a sensor according to the present invention can be used in different manners, e.g.:
- the system measures and displays the use at each end point with indication of the temperature.
- the system (100) includes:
- data recorded from the adapters (101 to 107) may be sent to an electronic computing device (108), such as a mobile phone, tablet, laptop computer, desktop computer, smart TV, smart TV adapter, Voice assistant like Google Home or Amazon Alexa, music player and/or any other computing device with network connectivity.
- an electronic computing device such as a mobile phone, tablet, laptop computer, desktop computer, smart TV, smart TV adapter, Voice assistant like Google Home or Amazon Alexa, music player and/or any other computing device with network connectivity.
- a user may access various statistics in the installed app from one or more water usage (e.g. shower session taken by the user) or at a dwelling of the user. These statistics may include, for example, the length of a shower (time), a volume of water used during the shower, and/or an average temperature and energy equivalent (KWh) of the water used during the shower.
- data may be collected and plotted on a temperature scale between 32° degrees Fahrenheit (0 degree Celsius) and 212-degree Fahrenheit (100 degrees Celsius), and within a reasonable range of 50 degrees Fahrenheit (10 degrees Celsius) and 150 degrees Fahrenheit (65.5 degrees Celsius).
- data may be plotted and displayed on a mobile device showing flow between 0 gal/min (0 liter/hr) and 22712 liter/hr (100 gal/min), within a reasonable range of 454 liter/hr (0.2 gal/min) to 4542 liter/hr (20 gal/min) .
- data may be communicated to the device regarding the total volume of water that has been used (e.g. 104,56 liters (23 gallons)) and the total duration of the shower (e.g. 8 minutes).
- the total volume of water that has been used e.g. 104,56 liters (23 gallons)
- the total duration of the shower e.g. 8 minutes
- the amount of money spent on a water and/or heating bill may also computed and displayed to the user.
- the amount may be extrapolated to yield an approximation of daily, weekly, monthly and/or yearly utility bills.
- real time data from a user's utility bill may be inputted manually by the user or automatically populated from a utility bill paying account associated with the user or the physical address at which the devices are used.
- the application may incorporate a database including local utility providers as well as standard utility costs associated with a given geographic region.
- the application and/or the device may communicate directly with the municipality or utility company in addition to our machine learning cloud-based server (109).
- the utility company may be able to offer real-time incentives and savings to consumers for reducing their utility costs.
- the utility companies may receive incentives, grants, and/or other funding from local or federal government for reducing water consumption thereby reducing greenhouse emissions and a resulting ecological footprint.
- the machine learning cloud-based server (109) is implemented to compute time series predictions (LTSM), but not only, to collect, analyze and automatically derive a water usage model which can be a statistical model of probability of a water draw vs. time or a suitable supervised machine learning algorithm or any other advantageous algorithm. Then, it can derive approximately an electrical consumption model (kWh) required to heat a specific volume of water at a given temperature) from previously acquired water usage data.
- the system is capable of actively monitoring and recording the building's water usage patterns to allow the consumer (i.e. homeowner or business or any entity exploiting a building or a facility) to adapt his behavior regarding his consumption profile, assuming that the consumer has installed the sensors at least one or at each point of water use like dishwasher, shower, laundry machines, flushes or any other point of interest.
- Other information can also combined with the consumption data. This includes local weather, building occupant's calendar or any other information useful to mine the usage figures. For example, weather information can affect water usage since individuals will need more water during summer or hot water during winter or cold seasons. If the profile of the home's occupants is updated by the user in the App (108) (e.g. a new occupant, a new laundry machine, etc.), the algorithm can adapt the clustering of the consumer (i.e. from couple to family) or recommend consumption objectives adequately to the usage profile based on the peer benchmark.
- Another interaction between the sensors and the app (108) enables enriching additional information provided by the smartphone, such as positioning data given by its GPS chip in order to determine the area of the building, its context in terms of water sourcing (e.g. hard or sweet water area) and any other enriching data.
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Fluid Mechanics (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Measuring Volume Flow (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Sanitary Device For Flush Toilet (AREA)
- Separation By Low-Temperature Treatments (AREA)
Claims (10)
- Système (100) de gestion de consommation d'eau pour une zone spécifique, telle qu'un appartement, un immeuble ou plus généralement une zone qui comprend plusieurs points d'extrémité où l'eau est distribuée; ledit système (100) comprenant un réseau interconnecté de capteurs qui sont adaptés pour mesurer la consommation d'eau à chaque point d'extrémité ; ledit réseau étant connecté à une unité de traitement de données et à au moins un élément d'affichage qui fournit une information sur la consommation d'eau à chaque point d'extrémité de ladite zone spécifique caractérisé en ce que
au moins certains capteurs comprennent chacun une turbine agencée pour mesurer des premiers débits et un piston rotatif agencé pour mesurer des seconds débits, dans lequel les seconds débits sont supérieurs aux premiers débits, et dans lequel ladite turbine est située au centre du piston rotatif. - Système (100) selon la revendication 1, dans lequel lesdits au moins certains capteurs comprennent chacun une vanne, dans lequel une fois que le piston rotatif atteint une détente de saturation, une pression se produisant entre une entrée et une sortie du piston rotatif ouvre ladite vanne de sorte que la turbine commence à fonctionner.
- Système (100) selon l'une des revendications 1 ou 2, dans lequel lesdits au moins certains capteurs comprennent chacun un aimant disposé de manière à attirer le piston rotatif contre les limites des capteurs.
- Système (100) selon l'une des revendications 1 à 3, dans lequel chaque point d'extrémité comprend un affichage qui est adapté pour indiquer la consommation d'eau audit point d'extrémité.
- Système (100) selon l'une des revendications 1 à 4, dans lequel les capteurs sont agencés pour envoyer un signal sans fil à une vanne ou à une pompe, de manière à envoyer des commandes et à adapter le comportement de la vanne ou de la pompe en fonction d'un seuil spécifique de volume ou de température.
- Système (100) selon l'une quelconque des revendications précédentes, comprenant un élément de mesure de la température de l'eau à chaque point d'extrémité.
- Système (100) selon la revendication 6, comprenant un affichage de la température de l'eau à chaque point d'extrémité.
- Système (100) selon la revendication 6 ou 7, comprenant une unité de régulation de puissance.
- Système (100) selon l'une quelconque des revendications précédentes, qui est adapté pour détecter une fuite.
- Système (100) selon l'une quelconque des revendications précédentes, comprenant une alarme, qui est déclenchée par exemple lorsqu'une certaine quantité d'eau a été utilisée ou lorsqu'une fuite est détectée.
par exemple lorsqu'une certaine quantité d'eau a été utilisée ou lorsqu'une fuite est détectée.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IB2017054136 | 2017-07-10 | ||
PCT/IB2018/055070 WO2019012418A1 (fr) | 2017-07-10 | 2018-07-10 | Système de gestion de consommation d'eau |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3652515A1 EP3652515A1 (fr) | 2020-05-20 |
EP3652515B1 true EP3652515B1 (fr) | 2022-04-06 |
Family
ID=63244639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18755894.5A Active EP3652515B1 (fr) | 2017-07-10 | 2018-07-10 | Système de gestion de consommation d'eau |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3652515B1 (fr) |
ES (1) | ES2916811T3 (fr) |
WO (1) | WO2019012418A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110598336B (zh) * | 2019-09-17 | 2021-08-31 | 美的集团股份有限公司 | 热水器用水量预测方法及装置、热水器及电子设备 |
US11488267B2 (en) * | 2020-02-07 | 2022-11-01 | International Business Machines Coproration | Managing transboundary water use using a distributed ledger and machine learning |
CH718073A1 (fr) | 2020-11-17 | 2022-05-31 | Droople Sa | Débitmètre et méthode de mesure de consommation d'eau. |
AU2023210685B2 (en) * | 2022-01-25 | 2024-05-02 | Commet Industries Pty Ltd | A metering method and device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9061307B2 (en) * | 2007-10-24 | 2015-06-23 | Michael Klicpera | Apparatus for displaying, monitoring and controlling shower or bath water parameters |
US9749792B2 (en) * | 2009-08-11 | 2017-08-29 | Michael Edward Klicpera | Water use monitoring apparatus |
US9019120B2 (en) * | 2010-11-09 | 2015-04-28 | General Electric Company | Energy manager—water leak detection |
US20160129464A1 (en) * | 2014-11-11 | 2016-05-12 | Jeffrey Mitchell Frommer | Network-Enabled Smart Shower Head Adapter |
-
2018
- 2018-07-10 ES ES18755894T patent/ES2916811T3/es active Active
- 2018-07-10 WO PCT/IB2018/055070 patent/WO2019012418A1/fr unknown
- 2018-07-10 EP EP18755894.5A patent/EP3652515B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
EP3652515A1 (fr) | 2020-05-20 |
ES2916811T3 (es) | 2022-07-06 |
WO2019012418A1 (fr) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3652515B1 (fr) | Système de gestion de consommation d'eau | |
US11549837B2 (en) | Water meter and leak detection system | |
US10410501B2 (en) | Water meter and leak detection system | |
US12000625B2 (en) | Water heaters with real-time hot water supply determination | |
US20110035063A1 (en) | Water Management System | |
US20110050395A1 (en) | Utility monitoring system | |
Thakare et al. | Implementation of an energy monitoring and control device based on IoT | |
US20100163634A1 (en) | Systems and methods for monitoring, controlling and limiting usage of utilities | |
US20190086233A1 (en) | A self-powering smart water meter system and method | |
Campbell et al. | Energy-harvesting thermoelectric sensing for unobtrusive water and appliance metering | |
JP2013101569A (ja) | 省エネ活動管理装置、省エネ活動管理方法、プログラム | |
Shie et al. | Intelligent energy monitoring system based on ZigBee-equipped smart sockets | |
US20200341497A1 (en) | Instrumented thermostatic control device and mixer tap comprising such a thermostatic control device | |
Sushma et al. | A unified metering system deployed for water and energy monitoring in smart city | |
Shields et al. | Revenue recovery through meter replacement | |
JP2016184433A (ja) | 省エネ活動管理装置、省エネ活動管理方法、プログラム | |
US20190353691A1 (en) | Electricity submeter | |
KR20200064383A (ko) | 밴드형 수압센서를 이용한 수량측정장치 및 이를 이용한 물사용정보 제공시스템 | |
TWM579792U (zh) | 智慧型電量計價系統 | |
Bassirr et al. | Smart Water Management System for an Apartment | |
Gokilapriya et al. | Design and development of SoC based residential water meter monitoring system | |
EP3451274B1 (fr) | Procédé de détection séparée de la consommation d'électricité et d'eau pour des dispositifs respectifs | |
Davis et al. | IEA HPT Annex 52-Long-term performance monitoring of GSHP systems for commercial, institutional, and multi-family buildings | |
RU2620041C1 (ru) | Аналитическая система оценки потребления воды абонентами | |
US20180302697A1 (en) | Self-powering smart water meter system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200128 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DROOPLE SA |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211118 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1481768 Country of ref document: AT Kind code of ref document: T Effective date: 20220415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018033423 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2916811 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220706 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: DROOPLE SA |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220406 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1481768 Country of ref document: AT Kind code of ref document: T Effective date: 20220406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220808 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220707 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220806 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018033423 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
26N | No opposition filed |
Effective date: 20230110 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240725 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240805 Year of fee payment: 7 Ref country code: ES Payment date: 20240829 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240725 Year of fee payment: 7 |