EP3652264A1 - Cryogenic cooling composition and method - Google Patents

Cryogenic cooling composition and method

Info

Publication number
EP3652264A1
EP3652264A1 EP18762568.6A EP18762568A EP3652264A1 EP 3652264 A1 EP3652264 A1 EP 3652264A1 EP 18762568 A EP18762568 A EP 18762568A EP 3652264 A1 EP3652264 A1 EP 3652264A1
Authority
EP
European Patent Office
Prior art keywords
liquid nitrogen
composition
cooling
solid particles
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18762568.6A
Other languages
German (de)
French (fr)
Inventor
Dominique Belot
Raphael GRANDEAU
Carina Zundel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3652264A1 publication Critical patent/EP3652264A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • F28C3/18Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material being contained in rotating drums
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/066Cooling mixtures; De-icing compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/005Other direct-contact heat-exchange apparatus one heat-exchange medium being a solid

Definitions

  • the present invention relates to a cooling composition, and a cooling method using said cooling composition.
  • cryogenic fluids are widely used because they allow the rapid generation of large refrigeration capacities with simple design equipment.
  • the main media used are liquid nitrogen, liquid argon, carbon dioxide in liquid or solid form.
  • a layer of gas occurs immediately in contact with the material to be cooled between the surface of the material to be cooled and the fluid or solid (calming layer). This layer is of the order of 0.1 to 1 millimeter for liquid nitrogen.
  • the conductive heat exchange is limited by the thermal conductivity of the gas which is lower than that of the liquid and which greatly reduces the exchange coefficient.
  • the thermal conductivity of N 2 gas is about 17 times less than that of liquid nitrogen, which reflects the fact that the calefaction layer acts as a heat shield inhibiting heat transfer.
  • Figure 1 shows the thermal flux expressed in W.nr 2 as a function of the temperature difference at the liquid / solid interface (surface temperature - the temperature of the liquid) for a 4cm diameter brass bar , and of height 10cm and immersed in liquid nitrogen.
  • the initial temperature of the brass is 15 ° C.
  • a solution of the present invention is a cooling composition comprising a mixture of solid particles of CO 2 and liquid nitrogen in which:
  • the content of solid particles of CO 2 is between 70 and 85% by weight and
  • the solid particles of CO2 have a diameter less than or equal to 50 ⁇ .
  • the cooling composition according to the invention is preferably manufactured by means of a process comprising:
  • These particles can be either dispersed in liquid nitrogen with slight agitation or liquid nitrogen is poured onto the particles contained in a container. Note that the order of implementation does not affect the size of the CO2 particles obtained.
  • the liquid nitrogen must completely wet the mass of the particles.
  • the amount of liquid nitrogen relative to the amount of solid CO2 should be as close as possible to the amount necessary for:
  • the solid CO 2 particles cooled at the temperature of the liquid nitrogen are the main vector of the heat exchange participating in the heat exchange by the direct solid / solid contacts and minimize the heating effect.
  • This cooling composition shows a heat exchange capacity greatly increased compared to liquid nitrogen under the same conditions.
  • the cooling composition according to the invention makes it possible to obtain a heat exchange coefficient equal to or> 230 WM-2.K-1 in the cauld zone. approximately twice that of liquid nitrogen under the same conditions and up to 210 WM-2.K-1 depending on the conditions in the nucleate boiling zone or 10 times that of liquid nitrogen under the same conditions .
  • This cooling composition is sufficiently fluid and manipulable to constitute immersion baths for deep cooling of metals, plastics, food products, plant and human tissues. This implies a very low temperature cooling in English we speak of "deep freezing".
  • the composition is transferable and "pumpable” by the usual means for the transfer of cryogenic fluids.
  • the present invention also relates to a method of cooling an element to be cooled, implementing a cooling composition as defined in claim 1 comprising the following successive steps:
  • step b) the stirring of step b) is maintained
  • the proportion of liquid nitrogen in the composition is measured and is kept constant at plus or minus 5% by the addition of liquid nitrogen.
  • step c) is carried out at a pressure between 1 bar absolute and 10 bar absolute.
  • the cooling time depends on the size of the element to be cooled, its shape, the type of material and also its temperature. It can be said that under the same conditions and for the same object, the cooling time gain to achieve a target temperature obtained by implementing the method according to the invention is at least 30%.
  • the bar For example, for a bar of diameter 40mm and height 100mm, brass (70% Cu / 30% Zn), the bar must be immersed for about 3 minutes and 30 seconds for that its surface temperature (measured by thermal probe Pt100 at 3mm from the edge of the bar) goes down from 13 ° C to -196 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Cooling composition comprising a mixture of solid particles of CO2 and liquid nitrogen, in which: - the content of solid particles of CO2 is between 70 and 85% by weight and - the solid particles of CO2 have a diameter of less than or equal to 50 μm.

Description

COMPOSITION ET PROCEDE DE REFROIDISSEMENT A TEMPERATURE CRYOGENIQUE  COMPOSITION AND METHOD FOR COOLING AT CRYOGENIC TEMPERATURE
La présente invention est relative à une composition de refroidissement, et un procédé de refroidissement mettant en uvre ladite composition de refroidissement. The present invention relates to a cooling composition, and a cooling method using said cooling composition.
Le besoin de produire des puissances de refroidissement importantes se trouve dans toutes les branches de l'industrie, dans des parties des domaines médicaux, pour refroidir rapidement et profondément des milieux réactionnels, matériaux métalliques, plastiques, organiques, alimentaires, tissus humains, végétaux...  The need to produce significant cooling powers is found in all branches of industry, in parts of the medical field, to rapidly and deeply cool reaction media, metallic materials, plastics, organic, food, human tissue, and plant material. ..
A côté des machines frigorifiques de toute nature, les fluides cryogéniques sont largement utilisés car ils permettent de générer rapidement des puissances frigorifiques importantes avec des équipements de conception simple.  In addition to refrigeration machines of all types, cryogenic fluids are widely used because they allow the rapid generation of large refrigeration capacities with simple design equipment.
Deux principales technologies sont utilisées :  Two main technologies are used:
- immersion du produit à refroidir dans un liquide  - immersion of the product to be cooled in a liquid
- jet divisé projeté sur la surface du produit  - split jet projected on the surface of the product
Dans la quasi-totalité des cas industriels, les procédés sont mis en uvre à la pression ambiante.In almost all industrial cases, the processes are carried out at ambient pressure.
Les principaux média mis en œuvre sont l'azote liquide, l'argon liquide, le gaz carbonique sous forme liquide ou solide. The main media used are liquid nitrogen, liquid argon, carbon dioxide in liquid or solid form.
Du fait d'être à l'équilibre liquide-vapeur ou solide-vapeur lors de la mise en œuvre, il se produit, immédiatement au contact du matériau à refroidir, une couche de gaz entre la surface du matériau à refroidir et le fluide ou solide (couche de caléfaction). Cette couche est de l'ordre de 0,1 à 1 millimètre pour l'azote liquide.  Due to being at the liquid-vapor or solid-vapor equilibrium during the implementation, a layer of gas occurs immediately in contact with the material to be cooled between the surface of the material to be cooled and the fluid or solid (calming layer). This layer is of the order of 0.1 to 1 millimeter for liquid nitrogen.
Au sein de cette couche de caléfaction, les échanges thermiques conductifs sont limités par la conductivité thermique du gaz qui est plus faible que celle du liquide et qui réduit très fortement le coefficient d'échange.  Within this layer of heating, the conductive heat exchange is limited by the thermal conductivity of the gas which is lower than that of the liquid and which greatly reduces the exchange coefficient.
La conductivité thermique de N2 gazeux est environ 17 fois moins importante que celle de l'azote liquide, ce qui traduit le fait que la couche de caléfaction agit comme un écran thermique inhibant les transferts de chaleur. The thermal conductivity of N 2 gas is about 17 times less than that of liquid nitrogen, which reflects the fact that the calefaction layer acts as a heat shield inhibiting heat transfer.
Ceci limite :  This limits:
les capacités de refroidissement par simple contact et donc l'usage des média cités pour le refroidissement rapide de matériaux solides, congélation et conservation des produits alimentaires, végétaux, tissus végétaux ou humains. Ce phénomène de caléfaction perdure tant que la température de surface est supérieure à la température de Leidenfrost (température de caléfaction) variable selon le type et nature de surface. Cooling capabilities by simple touch and therefore the use of the media cited for rapid cooling of solid materials, freezing and preservation of food products, plants, plant or human tissues. This phenomenon of calefaction continues as long as the surface temperature is higher than the temperature of Leidenfrost (temperature of heating) variable according to the type and nature of surface.
En dessous de cette température, l'échange se fait par un mode d'ébullition normal (ébullition nucléée et de transition) et le flux thermique augmente considérablement bien que l'écart de température devienne faible. Un exemple est présenté figure 1.  Below this temperature, the exchange is by a normal boiling mode (nucleate boiling and transition) and the heat flow increases considerably although the temperature difference becomes small. An example is shown in Figure 1.
En effet, la figure 1 représente le flux thermique exprimé en W.nr2 en fonction de l'écart de température à l'interface liquide/solide (température de la surface - la température du liquide) pour un barreau de laiton de diamètre 4cm, et de hauteur 10cm et immergé dans de l'azote liquide. La température initiale du laiton est de 15°C. On peut distinguer trois zones :Indeed, Figure 1 shows the thermal flux expressed in W.nr 2 as a function of the temperature difference at the liquid / solid interface (surface temperature - the temperature of the liquid) for a 4cm diameter brass bar , and of height 10cm and immersed in liquid nitrogen. The initial temperature of the brass is 15 ° C. There are three areas:
- une zone A pendant laquelle l'ébullition est nucléée ; a zone A during which boiling is nucleated;
- une zone B pendant laquelle on observe une ébullition de transition ; et  a zone B during which a transition boiling is observed; and
- une zone C pendant laquelle on observe une ébullition en film (phénomène de caléfaction).a zone C during which a film boiling is observed (heating phenomenon).
Pour tenter de contourner cette limitation, plusieurs artifices peuvent être mis en uvre :To try to circumvent this limitation, several devices can be implemented:
- Provoquer une forte turbulence autour du matériau à refroidir. Ceci augmente sensiblement le flux thermique mais introduit une dépense d'énergie supplémentaire et une consommation supplémentaire de vecteur de froid. - Cause strong turbulence around the material to be cooled. This substantially increases the heat flow but introduces an additional energy expenditure and additional consumption of cold vector.
- Sous-refroidir par exemple l'azote liquide en menant le procédé sous vide partiel (par pompage rapide de la phase gazeuse). Cette technique permet d'augmenter significativement le flux thermique mais au détriment d'une surconsommation majeure du vecteur de froid. - For example, subcooling the liquid nitrogen by conducting the process under partial vacuum (by rapid pumping of the gaseous phase). This technique makes it possible to significantly increase the heat flux but to the detriment of a major overconsumption of the cold vector.
- Disperser des matériaux divisés comme la silice dans le fluide pour favoriser l'échange thermique par contact solide-solide.  - Disperse divided materials such as silica in the fluid to promote heat exchange by solid-solid contact.
Ceci augmente significativement le flux thermique mais oblige à éliminer les matériaux divisés du produit à refroidir ou prendre les matériaux compatibles avec le matériau à refroidir. This significantly increases the heat flow but requires removing the divided materials of the product to be cooled or taking the materials compatible with the material to be cooled.
- Projeter des jets liquides à haute vitesse sur la surface du produit à refroidir afin de réduire, voire casser, la couche de caléfaction. Ceci permet d'augmenter fortement le fluxthermique mais au détriment d'une dépense d'énergie importante et d'une surconsommation du fluide. Partant de là, un problème qui se pose est de fournir une solution améliorée pour refroidir un élément. - Project liquid jets at high speed on the surface of the product to be cooled in order to reduce, or even break, the heating layer. This makes it possible to greatly increase the thermal flux but at the expense of a significant energy expenditure and overconsumption of the fluid. From there, a problem is to provide an improved solution for cooling an element.
Une solution de la présente invention est une composition de refroidissement comprenant un mélange de particules solides de C02 et d'azote liquide dans laquelle :  A solution of the present invention is a cooling composition comprising a mixture of solid particles of CO 2 and liquid nitrogen in which:
- la teneur en particules solides de C02 est comprise entre 70 et 85% en masse et the content of solid particles of CO 2 is between 70 and 85% by weight and
- les particules solides de C02 ont un diamètre inférieur ou égal à 50 μιη.  the solid particles of CO2 have a diameter less than or equal to 50 μιη.
La composition de refroidissement selon l'invention est de préférence fabriquée au moyen d'un procédé comprenant :  The cooling composition according to the invention is preferably manufactured by means of a process comprising:
a) une étape de formation des particules de C02 comprenant la détente de C02 gazeux, de préférence dans un cône de détente; et a) a step of forming the CO 2 particles comprising the expansion of CO 2 gas, preferably in a flash cone; and
b) une étape de mélange des particules de C02 et d'azote liquide. b) a step of mixing the CO 2 particles and liquid nitrogen.
Ces particules peuvent être soit dispersées dans l'azote liquide avec une légère agitation soit l'azote liquide est versé sur les particules contenues dans un récipient. Notons que l'ordre de mise en uvre n'influe pas sur la taille des particules de C02 obtenues.  These particles can be either dispersed in liquid nitrogen with slight agitation or liquid nitrogen is poured onto the particles contained in a container. Note that the order of implementation does not affect the size of the CO2 particles obtained.
Dans la composition de refroidissement l'azote liquide doit mouiller totalement la masse des particules.  In the cooling composition, the liquid nitrogen must completely wet the mass of the particles.
La quantité d'azote liquide par rapport à la quantité de C02 solide doit être la plus proche possible de la quantité nécessaire pour que :  The amount of liquid nitrogen relative to the amount of solid CO2 should be as close as possible to the amount necessary for:
- l'azote liquide mouille toutes les particules de C02 solide et  - the liquid nitrogen wets all the solid C02 particles and
- qu'il y ait un excédent d'azote liquide suffisant pour éviter le séchage très rapide de la masse de C02 solide (pâte) qui intervient lors des premières secondes de la trempe de l'objet à refroidir et qui est difficilement compensable par injection compensatoire d'azote liquide en surface. - There is a surplus of liquid nitrogen sufficient to prevent very rapid drying of the mass of solid CO 2 (paste) which occurs during the first seconds of quenching of the object to be cooled and which is difficult to compensate by injection compensatory liquid nitrogen on the surface.
Dans cette configuration, les particules de C02 solide refroidies à la température de l'azote liquide sont le principal vecteur de l'échange thermique participant à l'échange thermique par les contacts solide/solide directs et minimisent l'effet de caléfaction. Cette composition de refroidissement montre une capacité d'échange thermique fortement augmentée par rapport à l'azote liquide dans les mêmes conditions. In this configuration, the solid CO 2 particles cooled at the temperature of the liquid nitrogen are the main vector of the heat exchange participating in the heat exchange by the direct solid / solid contacts and minimize the heating effect. This cooling composition shows a heat exchange capacity greatly increased compared to liquid nitrogen under the same conditions.
La composition de refroidissement selon l'invention permet d'obtenir un coefficient d'échange thermique égal ou > à 230 W.M-2.K-1 dans la zone de caléfaction soit environ deux fois celui de l'azote liquide dans les mêmes conditions et pouvant aller jusqu'à 210 W.M-2.K-1 selon les conditions dans la zone d'ébullition nucléée soit 10 fois celui de l'azote liquide dans les mêmes conditions. The cooling composition according to the invention makes it possible to obtain a heat exchange coefficient equal to or> 230 WM-2.K-1 in the cauld zone. approximately twice that of liquid nitrogen under the same conditions and up to 210 WM-2.K-1 depending on the conditions in the nucleate boiling zone or 10 times that of liquid nitrogen under the same conditions .
Cette composition de refroidissement est suffisamment fluide et manipulable pour constituer des bains d'immersion pour le refroidissement en profondeur de métaux, plastiques, produits alimentaires, tissus végétaux et humains. Cela implique un refroidissement très basse température en anglais on parle de « deep freezing ». La composition est transférable et « pompable » par les moyens usuels pour le transfert des fluides cryogéniques.  This cooling composition is sufficiently fluid and manipulable to constitute immersion baths for deep cooling of metals, plastics, food products, plant and human tissues. This implies a very low temperature cooling in English we speak of "deep freezing". The composition is transferable and "pumpable" by the usual means for the transfer of cryogenic fluids.
La présente invention a également pour objet un procédé de refroidissement d'un élément à refroidir, mettant en uvre une composition de refroidissement telle que définie dans la revendication 1 comprenant les étapes successives suivantes :  The present invention also relates to a method of cooling an element to be cooled, implementing a cooling composition as defined in claim 1 comprising the following successive steps:
a) brassage de la composition à une vitesse inférieure à 1 tour par seconde, a) stirring the composition at a speed less than 1 revolution per second,
c) immersion et maintien de l'élément à refroidir dans la composition, c) immersing and maintaining the element to be cooled in the composition,
avec pendant toute la durée de l'étape c) : with during the entire duration of step c):
- le brassage de l'étape b) est maintenu, et the stirring of step b) is maintained, and
- la proportion d'azote liquide dans la composition est mesurée et est maintenue constante à plus ou moins 5% par l'ajout d'azote liquide.  the proportion of liquid nitrogen in the composition is measured and is kept constant at plus or minus 5% by the addition of liquid nitrogen.
Grâce au procédé de refroidissement selon l'invention un refroidissement à température cryogénique de l'élément à refroidir est rendu possible  Thanks to the cooling method according to the invention a cryogenic temperature cooling of the element to be cooled is made possible
De préférence, l'étape c) est réalisée à une pression comprise entre 1 bar absolu et 10 bar absolu.  Preferably, step c) is carried out at a pressure between 1 bar absolute and 10 bar absolute.
Notons que la durée de refroidissement dépend de la taille de l'élément à refroidir, de sa forme, du type de matériau et aussi de sa température. On peut dire que dans les mêmes conditions et pour un même objet, le gain de temps de refroidissement pour atteindre une température cible obtenu en mettant en œuvre le procédé selon l'invention est au moins de 30 %.  Note that the cooling time depends on the size of the element to be cooled, its shape, the type of material and also its temperature. It can be said that under the same conditions and for the same object, the cooling time gain to achieve a target temperature obtained by implementing the method according to the invention is at least 30%.
A titre d'exemple pour un barreau de diamètre 40mm et de hauteur 100mm, en laiton (70%Cu/30%Zn), le barreau doit être immergé pendant environ 3 minutes et 30 secondes pour que sa température de surface (mesurée par sonde thermique PtlOO à 3mm du bord du barreau) descende de 13°C à -196°C. For example, for a bar of diameter 40mm and height 100mm, brass (70% Cu / 30% Zn), the bar must be immersed for about 3 minutes and 30 seconds for that its surface temperature (measured by thermal probe Pt100 at 3mm from the edge of the bar) goes down from 13 ° C to -196 ° C.
Notons que le brassage de la composition permet le maintien des particules en suspension homogène.  Note that the stirring of the composition allows the maintenance of particles in homogeneous suspension.

Claims

Revendications claims
1. Composition de refroidissement comprenant un mélange de particules solides de C02 et d'azote liquide dans laquelle : A cooling composition comprising a mixture of solid particles of CO 2 and liquid nitrogen in which:
- la teneur en particules solides de C02 est comprise entre 70 et 85% en masse et the content of solid particles of CO 2 is between 70 and 85% by weight and
- les particules solides de C02 ont un diamètre inférieur ou égal à 50 μιη.  the solid particles of CO2 have a diameter less than or equal to 50 μιη.
2. Procédé de fabrication d'une composition de refroidissement telle que définie dans la revendication 1, comprenant : A method of manufacturing a cooling composition as defined in claim 1, comprising:
a) une étape de formation des particules solides de C02 comprenant la détente de C02 gazeux, de préférence dans un cône de détente ; et a) a step of forming the solid particles of CO 2 comprising the expansion of CO 2 gas, preferably in an expansion cone; and
b) une étape de mélange des particules de C02 et d'azote liquide. b) a step of mixing the CO 2 particles and liquid nitrogen.
3. Procédé de refroidissement d'un élément à refroidir, mettant en uvre une composition de refroidissement telle que définie dans la revendication 1 comprenant les étapes successives suivantes : 3. A method of cooling an element to be cooled, using a cooling composition as defined in claim 1 comprising the following successive steps:
a) brassage de la composition à une vitesse inférieure à 1 tour par seconde, a) stirring the composition at a speed less than 1 revolution per second,
c) immersion et maintien de l'élément à refroidir dans la composition, c) immersing and maintaining the element to be cooled in the composition,
avec pendant toute la durée de l'étape c) : with during the entire duration of step c):
- le brassage de l'étape b) est maintenu, et the stirring of step b) is maintained, and
- la proportion d'azote liquide dans la composition est mesurée et est maintenue constante à plus ou moins 5% par l'ajout d'azote liquide.  the proportion of liquid nitrogen in the composition is measured and is kept constant at plus or minus 5% by the addition of liquid nitrogen.
4. Procédé selon la revendication 3, caractérisé en ce que l'étape c) est réalisée à une pression comprise entre 1 bar absolu et 10 bar absolu. 4. Method according to claim 3, characterized in that step c) is carried out at a pressure between 1 bar absolute and 10 bar absolute.
EP18762568.6A 2017-07-10 2018-07-05 Cryogenic cooling composition and method Withdrawn EP3652264A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1756516A FR3068707B1 (en) 2017-07-10 2017-07-10 COMPOSITION, DEVICE AND PROCESS FOR COOLING AT CRYOGENIC TEMPERATURE
PCT/FR2018/051692 WO2019012210A1 (en) 2017-07-10 2018-07-05 Cryogenic cooling composition and method

Publications (1)

Publication Number Publication Date
EP3652264A1 true EP3652264A1 (en) 2020-05-20

Family

ID=61873359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18762568.6A Withdrawn EP3652264A1 (en) 2017-07-10 2018-07-05 Cryogenic cooling composition and method

Country Status (7)

Country Link
US (1) US20210088284A1 (en)
EP (1) EP3652264A1 (en)
JP (1) JP2020526624A (en)
CN (1) CN110997859A (en)
FR (1) FR3068707B1 (en)
SG (1) SG11202000084WA (en)
WO (1) WO2019012210A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690378B (en) * 2020-05-28 2022-06-28 明日加加科技有限公司 Ultralow-temperature micro-nano fluid and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393152A (en) * 1965-08-03 1968-07-16 Air Reduction Composition of matter and methods of making same
DE19932521A1 (en) * 1999-07-12 2001-01-18 Abb Research Ltd Cooling medium for high temperature superconductors
DE602006007960D1 (en) * 2006-05-18 2009-09-03 Air Liquide Use of a mixture of liquid nitrogen and carbon dioxide foam for freezing
FR2966371B1 (en) * 2010-10-22 2013-08-16 Air Liquide PROCESS AND INSTALLATION FOR MACHINING WITH CRYOGENIC COOLING

Also Published As

Publication number Publication date
FR3068707A1 (en) 2019-01-11
JP2020526624A (en) 2020-08-31
CN110997859A (en) 2020-04-10
SG11202000084WA (en) 2020-02-27
FR3068707B1 (en) 2020-07-31
WO2019012210A1 (en) 2019-01-17
US20210088284A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP6243092B2 (en) Ice making device, moving body, flake ice production device, flake ice production method
EP1856989B1 (en) Use of a mix of carbon dioxide snow and liquid nitrogen in deep-freeze applications
Kumar et al. Aqueous ionic liquid solutions for boiling heat transfer enhancement in the absence of buoyancy induced bubble departure
EP0988495B1 (en) Method and installation for cooling the contents of a chamber
WO2019012210A1 (en) Cryogenic cooling composition and method
FR2882810A1 (en) ICE GENERATOR OF LIQUID OR PASTY PRODUCTS
WO2016005319A1 (en) Facility for thawing or tempering frozen food products
WO2013007755A1 (en) Device and method for sterilizing an emulsion at an ultrahigh temperature, particularly a cosmetic emulsion for the skin, which is unstable at the sterilization temperature
Zabirov et al. Factors affecting quenching in cryogenic liquids
FR3068769A1 (en) "DEVICE AND METHOD FOR COOLING AT CRYOGENIC TEMPERATURE"
Asaoka et al. Vacuum freezing type ice slurry production using ethanol solution 2nd report: Investigation on evaporation characteristics of ice slurry in ice production
FR2577029A1 (en) SIDE WALL FOR METALLURGICAL FUSION OVEN AND THE OVENS OBTAINED
CN106796072B (en) Method and apparatus for solidifying polar substances
FR2552213A1 (en) PROCESS AND APPARATUS FOR THE PRODUCTION OF CARBON SNOW AND FROZEN LIQUID PELLETS
CA1332111C (en) Enclosure and process for thermal treatment comprising a cooling phase
EP1711244B1 (en) Continuous method for partially crystallising a solution and a device for carrying out said method
WO2020141273A1 (en) Method and installation for coating food products
EP0247108A1 (en) Method for continuously producing sulphur in the form of substantially spherical, individual and/or agglomerated solid particles
FR2460169A1 (en) METHOD FOR COOLING A METAL WIRE FROM A LIQUID JET
Premnath et al. Comparison of freezing characteristics of phasechange material in metallic and low density polyethylene spherical capsules
FR2795810A1 (en) PROCESS FOR THERMAL EXCHANGE BY A SOLID LIQUID DIPHASIC REFRIGERANT FLUID
WO2003071203A1 (en) Installation for delivering a frozen product and method for using same
JP2021162195A (en) Ebullient cooling working fluid, ebullient cooling device using the same, and ebullient cooling method
Wang et al. INFLUENCE OF SUBSTRATE TEMPERATURE ON MARANGONI CONVECTION INSTABILITY IN AN EVAPORATING SESSILE DROPLET AT CONSTANT CONTACT LINE MODE
FR2604973A1 (en) Installation and method for pasteurising and packaging a food product in containers

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210317

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20210602