EP3650474A1 - High purity allylamine (co)polymer and method for producing same - Google Patents

High purity allylamine (co)polymer and method for producing same Download PDF

Info

Publication number
EP3650474A1
EP3650474A1 EP18827597.8A EP18827597A EP3650474A1 EP 3650474 A1 EP3650474 A1 EP 3650474A1 EP 18827597 A EP18827597 A EP 18827597A EP 3650474 A1 EP3650474 A1 EP 3650474A1
Authority
EP
European Patent Office
Prior art keywords
allylamine
polymer
mass
sulfuric acid
acid groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18827597.8A
Other languages
German (de)
French (fr)
Other versions
EP3650474A4 (en
Inventor
Nobuyuki Yamada
Masaru Bunya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Publication of EP3650474A1 publication Critical patent/EP3650474A1/en
Publication of EP3650474A4 publication Critical patent/EP3650474A4/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/02Homopolymers or copolymers of vinylamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J139/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Adhesives based on derivatives of such polymers
    • C09J139/02Homopolymers or copolymers of vinylamine

Definitions

  • the present invention relates to a method for producing a highly pure allylamine (co)polymer. More specifically, the present invention relates to an allylamine (co)polymer which has high purity and prevents coloring and effectively suppresses increase in coloring and generation of impurities over time, and a method for producing the same.
  • the low molecular weight allylamine polymer obtained by the above-mentioned method exhibits brown color as being synthesized with a large amount of the peroxide-based radical initiator under a severe temperature condition, and has a large amount of ignition residue derived from the initiator.
  • the coloring of the polymer tends to proceed over time.
  • the coloring and the increase in coloring over time in particular, the increase in coloring over time at a high temperature, and the increase of impurities, such as sulfuric acid, over time may still be concerned, and therefore there is a strong need for an allylamine (co)polymer that has an even higher purity and further suppresses the coloring and the increase in coloring over time.
  • the present invention has been made in view of the above-described background art, and can meet required standards, even when used in applications such as electronic materials, display materials, and inks, in which such required standards in terms of coloring prevention, long term stability, low impurity content, and the like, are extremely high.
  • An object of the present invention is to provide an allylamine (co)polymer which overcomes the limitations of the prior art, undergoes little coloring, contains low impurities and exhibits excellent long term stability; and a method for producing the same.
  • the allylamine (co)polymer of the present invention achieves remarkable technical effects beyond the limitations of the prior art, such as reducing the coloring and impurities to an extremely low level and maintaining their favorable properties over a long period of time, and can be suitably used in various applications that require low coloring and low contamination, including electrical and electronic materials, papermaking treatment agents, inks, paints, adhesives, display materials, and light transmitting materials.
  • an allylamine (co)polymer having preferable characteristics represented by the aforementioned allylamine (co)polymer.
  • the present invention relates to an allylamine (co)polymer having constituent units derived from allylamine and contains sulfuric acid groups in the structure thereof, in which the proportion of the sulfuric acid groups with respect to the total mass of the allylamine (co)polymer is 20,000 ppm by mass or less.
  • the allylamine (co)polymer of the present invention only has to have constituent units derived from an allylamine monomer, and may be a copolymer having other constituent units, or may be a so-called homopolymer that does not have other constituent units.
  • the allylamine (co)polymer of the present invention contains a predetermined amount or less of sulfuric acid groups in the structure thereof.
  • the sulfuric acid groups are usually incorporated into the structure by a peroxide-based radical initiator used during polymerization, but may be incorporated into the structure for other reasons, and the total amount of the sulfuric acid groups including such sulfuric acid groups needs to be the predetermined value or less.
  • the constituent unit derived from an allylamine monomer which is an essential constituent unit of the allylamine (co)polymer of the present invention, has a structure represented by the following Formula (I).
  • the constituent unit derived from a monoallylamine monomer only has to be one having the structure represented by the above Formula (I), and it is not necessary that the structure have been obtained by actually polymerizing a monoallylamine.
  • an addition salt of a monoallylamine may be used as a raw material monomer.
  • the monoallylamine addition salt used in this case is usually an inorganic acid salt of a monoallylamine, and examples of those include a hydrochloride, a sulfate, a phosphate, a perchlorate, a nitrate, and the like of a monoallylamine, and hydrochlorides are preferably used from the viewpoint of the availability.
  • organic acid salts such as acetate, can also be used.
  • the allylamine (co)polymer of the present invention is a copolymer
  • constituent units other than the constituent units derived from allylamine there is no particular limitation on constituent units other than the constituent units derived from allylamine, and such constituent units can be derived by carrying out copolymerization using a monomer copolymerizable with allylamine as appropriate.
  • Preferred examples of the copolymerizable monomer include monoallylamines, such as methyl allylamine and dimethyl allylamine, or addition salts thereof; diallylamines, such as diallylamine and diallylmethylamine, or addition salts thereof; diallyldialkylammonium salts, such as diallyldimethylammonium chloride; acrylamides, such as acrylamide, dimethylacrylamide, acryloylmorpholine, N-[3-(dimethylamino) propyl](meth)acrylamide, (3-acrylamidopropyl)trimethylammonium chloride, and (3-methacrylamideamidopropyl)trimethylammonium chloride; allyl alcohols; allyl ethers, such as ethylene glycol monoallyl ether; unsaturated carboxylic acids or addition salts thereof, such as (meth)acrylic acid(sodium); unsaturated dicarboxylic acids, such as maleic acid and fumaric acid
  • the allylamine (co)polymer of the present invention contains sulfuric acid groups in the structure thereof, and the proportion of the sulfuric acid groups with respect to the total mass of the allylamine (co)polymer is 20,000 ppm by mass or less.
  • the sulfuric acid groups are usually derived from a peroxide-based radical initiator, such as sodium persulfuric acid, used during the polymerization, but they may also be incorporated into the structure for other reasons.
  • a peroxide-based radical initiator such as sodium persulfuric acid
  • the allylamine (co)polymer of the present invention is usually polymerized using a peroxide-based radical initiator.
  • the total of the sulfuric acid groups contained in the structure thereof, regardless of the origin(s) thereof, is 20,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
  • allyamine (co)polymer was purified by electrodialysis or acid treatment.
  • the coloring might be increased over time or impurities, including sulfur, might be generated, and solution thereto has been demanded.
  • the present inventors have found that the increase in coloring and the generation of impurities are caused by sulfuric acid groups covalently bonded to the polymer chain, and more specifically, sulfuric acid generated by the hydrolysis of such sulfuric acid groups over time causes the increase in coloring over time and the generation of impurities containing sulfur.
  • sulfuric acid groups are usually incorporated into the structure due to peroxide-based radical initiator, such as sodium persulfuric acid, used during polymerization.
  • peroxide-based radical initiator such as sodium persulfuric acid
  • the sulfuric acid group may be bound not only to polymer terminals of the allylamine (co)polymer but also to the polymer chain.
  • the sulfuric acid groups covalently bonded to the polymer chain cannot be sufficiently removed even by purification processes, such as distillation, electrodialysis, and acid treatment, and this is estimated to be the reason why the problems of the prior art, such as the increase in coloring over time and the generation of impurities including sulfur, could not be sufficiently solved.
  • the present invention limits the proportion of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer to 20,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer, and as a result, achieves significant technical effects, such as suppressing the generation of the sulfuric acid by the decomposition of the sulfuric acid groups to a level that does not cause practical problems and effectively suppressing the generation of the coloring and impurities over a long period of time.
  • the proportion of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer of the present invention is preferably 18,000 ppm by mass or less and more preferably 15,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
  • the proportion of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer can be measured, for example, by the following method.
  • Ion exchanged water is appropriately added to an aqueous solution of the allylamine (co)polymer, and the concentration and the pH thereof are adjusted to fall within a range suitable for measurement, for example, about 10 mass% and pH 11.
  • concentration of sulfur is measured with an ion chromatography equipped with a combustion apparatus. From the concentration of sulfur obtained, the amount of the solution, and the concentration of the allylamine (co)polymer in the solution, and also taking the molecular weight of the sulfuric acid group and the atomic weight of sulfur into account, the proportion (on a mass basis) of the sulfuric acid groups in the polymer is calculated.
  • the proportion of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer can be measured, for example, by the following method.
  • the ion exchanged water is appropriately added to the aqueous solution of the allylamine (co)polymer, and the concentration and the pH thereof are adjusted to fall within a range suitable for measurement, for example, about 10 mass% and pH 11.
  • the concentration of sulfur is measured with an ion chromatography equipped with a combustion apparatus. From the concentration of sulfur obtained, the amount of the solution, and the concentration of the allylamine (co)polymer in the solution, and also taking the molecular weight of the sulfuric acid group and the atomic weight of sulfur into account, the proportion (on a mass basis) of the sulfuric acid groups in the polymer is calculated.
  • Examples of means for appropriately adjusting the proportion of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer include decomposition of the sulfuric acid groups bonded to the structure by heating, or the like, and oxidative decomposition by an oxidizing agent, a catalyst, or the like, hydrolysis by an acid, a base, an electromagnetic wave, an ultrasonic wave, or the like, and so on.
  • the allylamine (co)polymer obtained is preferably heated at a temperature of 70°C or higher for 12 hours or longer in the state of an aqueous solution, but the decomposition conditions by heating are not limited thereto.
  • the sulfur compound generated by the decomposition of the sulfuric acid groups in the aforementioned heating treatment or the like.
  • the method for removing the sulfur compound is not particularly limited, but distillation, electrodialysis, acid treatment, and the like, which are used in purification processes in prior arts can be used.
  • an initial absorbance A 510 at the wavelength of 510 nm, which is measured for an aqueous solution of the allylamine (co)polymer prepared to have the concentration of 10 mass% and the pH of 11, is preferably 0.5 or less.
  • A' 510 /A 510 the ratio between the initial absorbance A 510 at the wavelength of 510 nm, which is measured for an aqueous solution of the allylamine (co)polymer of the present invention to have the concentration of 10 mass% and the pH of 11, and the absorbance A' 510 at the wavelength of 510 nm after the aqueous solution of the allylamine (co)polymer is held at 70°C for 2 days is preferably 3 or less.
  • the allylamine (co)polymer of the present invention preferably satisfies these conditions at the same time.
  • the allylamine (co)polymer of the above preferred embodiment effectively suppresses coloring as having the initial absorbance A 510 of 0.5 or less, and can be preferably used in various applications, such as papermaking treatment agents, inks, paints, display related materials, and permeable materials, where the suppression of coloring is important.
  • the allylamine (co)polymer of the above preferred embodiment by virtue of having 3 or less of the ratio A' 510 /A 510 between an absorbance A 510 at the wavelength of 510 nm, which is measured for an aqueous solution of the allylamine (co)polymer prepared to have the concentration of 10 mass% and the pH of 11, and the absorbance A' 510 at the wavelength of 510 nm after the aqueous solution of the allylamine (co)polymer is held at 70°C for 2 days, coloring over a long period of time is effectively suppressed, which can make it possible to suitably use the allylamine (co)polymer over a long period of time in the aforementioned applications where the suppression of coloring is important and significantly contribute to their longer life and improvement in long-term reliability.
  • the initial absorbance A 510 at the wavelength of 510 nm of the aforementioned preferred embodiment, which is measured for the aqueous solution having the concentration of 10 mass% and the pH of 11, is more preferably 0.3 or less and particularly preferably 0.2 or less.
  • the ratio A' 510 /A 510 of the initial absorbance A 510 of the allylamine (co)polymer of the preferred embodiment at the wavelength of 510 nm and the absorbance A' 510 at the wavelength of 510 nm after the aqueous solution of the allylamine (co)polymer is held at 70°C for 2 days is 2.5 or less, and particularly preferably 2 or less.
  • the absorbance of the allylamine (co)polymer at the wavelength of 510 nm can be measured, for example, using a spectrophotometer by injecting a solution, which is prepared by appropriately adding ion exchanged water to the aqueous solution of the allylamine (co)polymer and adjusting the concentration of the solution to about 10 mass% and the pH of the solution to 11, into a cell having the optical path length of 10 mm.
  • the initial absorbance A 510 at the wavelength of 510 nm, which is measured for an aqueous solution of the allylamine (co)polymer prepared to have the concentration of 10 mass% and the pH of 11, and the ratio A' 510 /A 510 between the initial absorbance A 510 and the absorbance A' 510 after the aqueous solution of the allylamine (co)polymer is held at 70°C for 2 days can both be reduced by reducing the amount of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer.
  • the method for reducing the amount of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer is as described above.
  • the molecular weight of the allylamine (co)polymer of the present invention is not particularly limited, and a (co)polymer having an appropriate molecular weight may be polymerized as appropriate in relation to the required physical properties or applications.
  • the weight average molecular weight (Mw) is preferably from 250 to 2500.
  • the weight average molecular weight (Mw) is more preferably 400 to 2000, and particularly preferably 500 to 1500.
  • the weight average molecular weight (Mw) of the allylamine (co)polymer can be measured by, for example, gel permeation chromatography (GPC method) using a liquid chromatograph.
  • the molecular weight of the allylamine (co)polymer can be adjusted as appropriate by adjusting the presence/absence, type and composition of comonomer(s), the temperature, time and pressure in the polymerization step, the type and amount of radical initiator used in the polymerization step, and the like.
  • the intrinsic viscosity [ ⁇ ] of the allylamine (co)polymer there is no particular limitation on the intrinsic viscosity [ ⁇ ] of the allylamine (co)polymer, and it can be appropriately determined in relation to the required physical properties or applications.
  • the viscosity of the allylamine (co)polymer can also be adjusted as appropriate by adjusting the presence/absence, type and composition of comonomer(s), the temperature, time and pressure in the polymerization step, the type and amount of radical initiator used in the polymerization step, and the like.
  • the proportion of the constituent units derived from allylamine in the allylamine (co)polymer is preferably 10 to 100 mol%, and more preferably 50 to 100 mol%.
  • composition of the allylamine (co)polymer including the proportion of the constituent units derived from the allylamine, can be appropriately adjusted by the polymerization conditions, particularly the composition of the monomer supplied in the polymerization.
  • a method for producing an allylamine (co)polymer according to another aspect of the present invention includes:
  • the method for producing an allylamine (co)polymer is particularly preferably used to produce the allylamine (co)polymer of the present invention.
  • the amount of the sulfuric acid groups in the allylamine (co)polymer is preferably reduced to 20,000 ppm by mass or less, more preferably reduced to 18,000 ppm by mass or less, and particularly preferably 15,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
  • step a) of obtaining an allylamine (co)polymer by polymerizing an allylamine monomer the allylamine and optionally a comonomer, is/are polymerized in water or a polar solvent.
  • the allylamine is intended to encompass both allylamines and addition salts thereof.
  • the allylamine addition salt that is preferably used as a raw material monomer is usually an inorganic acid salt of an allylamine, and examples thereof include, for example, hydrochloride, sulfate, phosphate, perchlorate, nitrate, and the like of an allylamine, but are not limited thereto.
  • organic acid salts such as acetate, can also be used.
  • Water or polar solvent is used as the polymerization medium.
  • the polar solvent include inorganic acids, such as hydrochloric acid, sulfuric acid, phosphoric acid, and polyphosphoric acid, or aqueous solutions thereof, organic acids, such as formic acid, acetic acid, propionic acid, and lactic acid, or aqueous solutions thereof, alcohols, dimethylsulfoxide, dimethylformamide, and furthermore, aqueous solutions of inorganic salts, such as zinc chloride, calcium chloride, and magnesium chloride, and the like, but are not limited thereto.
  • the allylamine addition salt is usually used in the form of isolated crystals, but allylamine and an acid may be added to the water or a polar solvent to generate an addition salt in the system.
  • an acid or an aqueous solution thereof is used as the polymerization medium, a predetermined amount of allylamine can be added to the acid or the aqueous solution and polymerized as it is.
  • the concentration of allylamine in the polymerization medium during the polymerization is not particularly limited and is appropriately determined according to the type of polymerization initiator used.
  • the concentration of the monomer is usually 10 to 80 mass%, and preferably 20 to 70 mass%.
  • concentration of the allylamine is low, a low molecular weight allylamine (co)polymer is likely to be obtained, but a polymerization rate tends to be low.
  • the allylamine concentration is too high, the polymerization rate is high, but a high molecular weight allylamine (co)polymer is likely to be obtained.
  • radical polymerization initiator used for polymerization under the low polymerization degree condition known peroxide-based radical polymerization initiators, radical polymerization initiators that have an azo group and a group having cationic nitrogen, or the like can be used.
  • the peroxide-based radical polymerization initiator include ammonium persulfuric acid, sodium persulfuric acid, potassium persulfuric acid, and the like.
  • the peroxide-based radical polymerization initiators are preferable.
  • the radical polymerization initiator may be used alone or in combination of two or more, and the amount of the radical polymerization initiator used needs to be larger than the amount used for normal polymerization reaction, and is usually 1.5 mass% or more, preferably 5 to 75 mass%, and more preferably 10 to 50 mass% with respect to the addition salt of allylamine. Generally, if the amount of the radical polymerization initiator used is small, the polymerization rate is low and the molecular weight tends to be high, which is not preferable.
  • the allylamine addition salt When the allylamine addition salt is polymerized under the low polymerization degree conditions in water or a polar solvent, it can be carried out by lowering the concentration of the monomer in the polymerization system and raising the polymerization temperature, and furthermore, it is possible to increase the polymerization yield by increasing the concentration of the radical initiator.
  • step b) decomposing sulfuric acid group in the allylamine (co)polymer obtained the sulfuric acid groups bonded to the structure of the allylamine (co)polymer obtained in the step a) are decomposed by heating and the like.
  • the allylamine (co)polymer obtained is preferably heated at a temperature of 70°C or higher for 12 hours or longer preferably in the state of an aqueous solution.
  • the amount of the sulfuric acid groups in the allylamine (co)polymer is preferably reduced to 20,000 ppm by mass or less, more preferably reduced to 18,000 ppm by mass or less, and particularly preferably 15,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
  • the polymerization solution when the allylamine (co)polymer is present in the state of an addition salt, the polymerization solution may be neutralized with an alkali between step a) and step b) or between step b) and step c).
  • This neutralization treatment can be performed such that the addition salt of the allylamine (co)polymer is in an isolated state, that is, the pH of the neutralized polymerization solution is usually in the range of 9 to 13.5 and preferably 10 to 13.
  • the alkali used for the neutralization treatment is not particularly limited, but for example, hydroxides of an alkali metal or the like, such as sodium hydroxide, potassium hydroxide, and lithium hydroxide, are preferably used.
  • the isolated acid reacts with the alkali to form a salt.
  • step b) contains a sulfur compound generated by the decomposition of the sulfuric acid groups together with unreacted allylamine. Therefore, in step c), the sulfur compound is removed together with the unreacted monoallylamine by distillation treatment or the like.
  • the distillation is preferably performed under a reduced pressure, and more preferably performed under the conditions that the temperature is 40 to 100°C and the degree of vacuum is 10 to 300 mmHg, and particularly preferably performed under the conditions that the temperature is 50 to 80°C and the degree of vacuum is 20 to 200 mmHg. Under such conditions, the allylamine (co)polymer remains without being distilled off.
  • the residual liquid after the unreacted monoallylamine is distilled off in this way may be subjected to electrodialysis.
  • the electrodialysis may be performed instead of distillation treatment.
  • the unreacted allylamine is distilled off, since a part of the solvent such as water is also distilled off, the allylamine is diluted with the solvent and then may be subjected to the electrodialysis.
  • This electrodialysis is preferably performed with an ion exchange membrane.
  • the electrodialysis treatment with an ion exchange membrane under the condition that the intended allylamine (co)polymer is hardly removed and the sulfur compound can be removed together with the unreacted monoallylamine.
  • the allylamine (co)polymer of the present invention achieves remarkable technical effects, such as reducing the coloring and impurities to an extremely low level and maintaining their favorable properties over a long period of time, beyond the limitations of the prior art, and thus can be suitably used for each application that require the low coloring and low contamination, including the electrical electronic material, the papermaking treatment agent, the ink, the paint, the adhesive, the display material, and the light transmitting material.
  • the ink composition using the allylamine (co)polymer of the present invention is excellent in water resistance, suppresses discoloration, aggregation, or the like, and is excellent in storage stability.
  • the weight average molecular weight (Mw) of the polymer was measured by gel permeation chromatography (GPC method) using a Chromaster (registered trademark) 5450 high-speed liquid chromatograph manufactured by Hitachi High-Tech Science Corporation.
  • an RI differential refractive index detector was used, and as the column, those in which an aqueous gel filtration type GS-220HQ (exclusion-limit molecular weight 3,000) and GS-620HQ (exclusion-limit molecular weight 2,000,000) of Shodex Asahipak are connected in series was used.
  • the sample was prepared to the concentration of 0.5 g/100 ml with an eluent, and 20 ⁇ L was used.
  • As the eluent 0.4 mol/L of sodium chloride aqueous solution was used.
  • a column temperature was 30°C, and a flow rate was 1.0 ml/min.
  • a calibration curve was obtained using polyethylene glycols having the molecular weight of 106, 194, 440, 600, 1,470, 4,100, 7,100, 10,300, 12,600, 23,000, or the like as the standard substances, and the weight average molecular weight (Mw) of the polymer was obtained based on the calibration curve.
  • the polymerization yield was obtained by a peak area ratio in the chart obtained by the CPC method.
  • Ion exchanged water was appropriately added to an aqueous solution of an allylamine (co)polymer to adjust its concentration to about 10 mass% and pH to about 11.
  • concentration of sulfur was measured by ion chromatography with a combustion apparatus. From the obtained sulfur concentration, the amount of the solution, and the allylamine (co)polymer concentration in the solution, the proportion (on mass basis) of the sulfuric acid groups in the polymer was calculated.
  • Ion exchanged water was appropriately added to an aqueous solution of an allylamine (co)polymer to adjust its concentration to about 10 mass% and pH to about 11. This solution was injected into a cell having the optical path length of 10 mm, and the absorbance at the wavelength of 510 nm was measured with a spectrophotometer (product name: UH5300) manufactured by Hitachi High-Tech Science Corporation to obtain the initial absorbance A 510 .
  • the solution prepared for the measurement of the initial absorbance A 510 was collected in a 20 ml glass sample bottle and stored under an acceleration condition in a constant temperature bath of 70°C for 2 days.
  • the absorbance at the wavelength of 510 nm was measured in the same manner as in the measurement of the initial absorbance A 510 to obtain the absorbance A' 510 after aging.
  • a 1 L four-necked flask equipped with a stirrer, a thermometer, and a condenser was charged with 322.18 g of allylamine hydrochloride aqueous solution having the concentration of 58.08 mass%, and the temperature was raised to 50°C.
  • Polymerization was initiated by adding dropwise an initiator aqueous solution consisting of 35.24 g of sodium persulfuric acid and 65.44g of water at the internal temperature of 48°C. While maintaining the internal temperature at 50 to 55°C, the initiator aqueous solution was added dropwise over 3 hours.
  • the polymerization was further continued for 1 hour, and the polymerization was performed for the total of 4 hours to obtain a pale yellow aqueous solution of an allylamine polymer hydrochloride having the GPC yield of 63.27 and the weight average molecular weight, Mw, of 1,016.
  • the temperature was raised to 70°C, and the sulfuric acid group was thermally decomposed for 96 hours to obtain an orange solution.
  • 368 g of sodium hydroxide having the concentration of 25 mass% was added, mixed and neutralized.
  • 729,69g of the obtained allylamine polymer aqueous solution having the allylamine concentration of 14.49 mass% was distilled at 50°C under the reduced pressure of 30 mmHg to distill off unreacted allylamine until the allylamine polymer aqueous solution was 429.18 g.
  • 880.47 g of allylamine polymer aqueous solution having the concentration of 9.95 mass% was obtained by being diluted with water.
  • This aqueous solution was subjected to electrodialysis using an ion exchange membrane (CH-0 type manufactured by Nippon Rensui Co., Ltd. was used as the dialysis device.
  • ion exchange membrane CH-0 type manufactured by Nippon Rensui Co., Ltd.
  • Eight CMVs manufactured by Asahi Glass Co., Ltd. were used as cation exchange membranes, and five AMVs manufactured by Asahi Glass Co., Ltd. were used as anion exchange membranes.
  • 1 L of 1 mass% sodium chloride aqueous solution was put in a concentrated liquid tank, and 1 L of 1 mass% sodium sulfate aqueous solution was put in a polar liquid tank.)
  • a maximum DC voltage of 5 A or 13.5 V was applied between electrodes, and the treatment was performed for 4 hours under these conditions.
  • the ion exchanged water was added to the treated solution to obtain 689.40 g of yellow aqueous solution having the concentration of 10.22 mass%, pH of 11.64, and the weight average molecular weight, Mw, of 952.
  • concentration of the sulfuric acid groups was 13,665 ppm by mass based on the mass of the allylamine polymer.
  • the initial absorbance A 510 at the wavelength of 510 nm measured for the solution was 0.059. Further, the absorbance A' 510 at the wavelength of 510 nm after the same solution was treated under an acceleration condition of 70°C for 2 days was 0.075. That is, the change in absorbance A' 510 /A 510 at the wavelength of 510 nm when held at the acceleration condition of 70°C for 2 days was 1.271.
  • a 1 L four-necked flask equipped with a stirrer, a thermometer, and a condenser was charged with 318.29 g of allylamine hydrochloride aqueous solution having the concentration of 58.79 mass%, and the temperature was raised to 50°C.
  • Polymerization was initiated by adding dropwise an initiator aqueous solution consisting of 33.68g of ammonium persulfuric acid and 62.55g of water at the internal temperature of 49°C. While maintaining the internal temperature at 50 to 55°C, the initiator aqueous solution was added dropwise over 3 hours.
  • the polymerization was further continued for 1 hour, and the polymerization was performed for the total of 4 hours to obtain a pale yellow aqueous solution of an allylamine polymer hydrochloride having the GPC yield of 53.40% and the Mw of 1,143.
  • the temperature was raised to 70°C, and the sulfuric acid group was thermally decomposed for 48 hours to obtain an orange solution.
  • 416.00g of sodium hydroxide having the concentration of 25 mass% was added, mixed and neutralized.
  • 798.48g of the obtained allylamine polymer aqueous solution having the allylamine concentration of 14.89 mass% was distilled at 50°C under the reduced pressure of 30 mmHg to distill off unreacted allylamine until the allylamine polymer aqueous solution was 397.19g.
  • 841.40g of allylamine polymer aqueous solution having the concentration of 10.01 mass% was obtained by being diluted with water.
  • This aqueous solution was subjected to electrodialysis using an ion exchange membrane (CH-0 type manufactured by Nippon Rensui Co., Ltd. was used as the dialysis device.
  • ion exchange membrane CH-0 type manufactured by Nippon Rensui Co., Ltd.
  • Eight CMVs manufactured by Asahi Glass Co., Ltd. were used as cation exchange membranes, and five AMVs manufactured by Asahi Glass Co., Ltd. were used as anion exchange membranes.
  • 1 L of 1 mass% sodium chloride aqueous solution was put in a concentrated liquid tank, and 1 L of 1 mass% sodium sulfate aqueous solution was put in a polar liquid tank.)
  • a maximum DC voltage of 5 A or 13.5 V was applied between electrodes, and the treatment was performed for 4 hours under these conditions.
  • the ion exchanged water was added to the treated solution to obtain 733.29g of yellow aqueous solution having the concentration of 10.33 mass%, pH of 11.41, and the weight average molecular weight, Mw, of 872.
  • the sulfur concentration in the aqueous solution was measured with an ion chromatography equipped with a combustor and was as high as 1,957 ppm. Therefore, the electrodialysis is performed again, and 728.51 g of yellow aqueous solution having the concentration of 9.68 mass%, pH of 11.34 and the weight average molecular weight, Mw, of 957 was obtained.
  • the sulfur concentration was still as high as 1,611 ppm.
  • the initial absorbance A 510 at the wavelength of 510 nm measured for the solution was 0.037. Further, the absorbance A' 510 at the wavelength of 510 nm after the same solution was treated under the acceleration condition of 70°C for 2 days was 0.049. That is, the change in absorbance A' 510 /A 510 at the wavelength of 510 nm when held under the acceleration condition of 70°C for 2 days was 1.324.
  • a 1 L four-necked flask equipped with a stirrer, a thermometer, and a condenser was charged with 322.40 g of allylamine hydrochloride aqueous solution having the concentration of 58.04 mass%, and the temperature was raised to 50°C.
  • Polymerization was initiated by adding dropwise an initiator aqueous solution consisting of 70.48g of sodium persulfuric acid and 130.89g of water at the internal temperature of 49°C. While maintaining the internal temperature at 50 to 55°C, the initiator aqueous solution was added dropwise over 3 hours.
  • the polymerization was further continued for 1 hour, and the polymerization was performed for the total of 4 hours to obtain a pale yellow aqueous solution of an allylamine polymer hydrochloride having the GPC yield of 74.19% and the weight average molecular weight, Mw, of 892.
  • the temperature was raised to 70°C, and the sulfuric acid group was thermally decomposed for 48 hours to obtain a brown solution.
  • 409.40g of sodium hydroxide having the concentration of 25 mass% was added, mixed and neutralized.
  • 902.73g of the obtained allylamine polymer aqueous solution having the allylamine concentration of 11.58 mass% was distilled at 50°C under the reduced pressure of 30 mmHg to distill off unreacted allylamine until the allylamine polymer aqueous solution was 422.94g.
  • 1,018.75g of allylamine polymer aqueous solution having the concentration of 9.64 mass% was obtained by being diluted with water.
  • This aqueous solution was subjected to electrodialysis using an ion exchange membrane (CH-0 type manufactured by Nippon Rensui Co., Ltd. was used as the dialysis device.
  • ion exchange membrane CH-0 type manufactured by Nippon Rensui Co., Ltd.
  • Eight CMVs manufactured by Asahi Glass Co., Ltd. were used as cation exchange membranes, and five AMVs manufactured by Asahi Glass Co., Ltd. were used as anion exchange membranes.
  • 1 L of 1 mass% sodium chloride aqueous solution was put in a concentrated liquid tank, and 1 L of 1 mass% sulfuric acid sodium aqueous solution was put in a polar liquid tank.)
  • a maximum DC voltage of 5A or 13.5 V was applied between the electrodes. The treatment was performed for 10 hours under these conditions.
  • the ion exchanged water was added to the treated solution to obtain 789.80g of brown aqueous solution having the concentration of 10.20 mass%, the pH of 11.08, and the weight average molecular weight, Mw, of 791.
  • the sulfur concentration in the aqueous solution was measured with an ion chromatography equipped with a combustor and was as high as 3,983 ppm. Therefore, the electrodialysis is performed again, and 773.06g of brown aqueous solution having the concentration of 9.42 mass%, pH of 11.13 and the weight average molecular weight, Mw, of 747 was obtained.
  • the sulfur concentration was still as high as 2,997 ppm.
  • a 1 L four-necked flask equipped with a stirrer, a thermometer, and a condenser was charged with 319.86 g of allylamine hydrochloride aqueous solution having the concentration of 58.5 mass%, and the temperature was raised to 50°C.
  • Polymerization was initiated by adding dropwise an initiator aqueous solution consisting of 35.24 g of sodium persulfuric acid and 65.44g of water at the internal temperature of 48°C. While maintaining the internal temperature at 50 to 55°C, the initiator aqueous solution was added dropwise over 3 hours.
  • the polymerization was further continued for 1 hour, and the polymerization was performed for the total of 4 hours to obtain a pale yellow aqueous solution of an allylamine polymer hydrochloride having the GPC yield of 63.75 and the weight average molecular weight, Mw, of 1,055.
  • allylamine polymer aqueous solution having the allylamine concentration of 12.66 mass% was distilled at 50°C under the reduced pressure of 30 mmHg to distill off unreacted allylamine until the allylamine polymer aqueous solution was 362.89g. Further, 879.25g of allylamine polymer aqueous solution having the concentration of 6.54 mass% was obtained by being diluted with water. This aqueous solution was subjected to electrodialysis using an ion exchange membrane (CH-0 type manufactured by Nippon Rensui Co., Ltd.
  • CH-0 type manufactured by Nippon Rensui Co., Ltd.
  • the ion exchanged water was added to the solution subjected to the concentrated treatment to obtain 482.47g of pale yellow aqueous solution having the concentration of 10.28 mass%, the pH of 11.44, and the weight average molecular weight Mw of 1,013.
  • the concentration of the sulfuric acid groups was 27,466 ppm by mass based on the mass of the allylamine polymer.
  • the initial absorbance A 510 at the wavelength of 510 nm measured for the solution was 0.033. Further, the absorbance A' 510 at the wavelength of 510 nm after the same solution was treated under an acceleration condition of 70°C for 2 days was 0.140. That is, the change in absorbance A' 510 /A 510 at the wavelength of 510 nm when held under the acceleration condition of 70°C for 2 days was 4.242.
  • the initial absorbance A 510 was 0.081.
  • the absorbance A' 510 at the wavelength of 510 nm after the same solution was treated under the acceleration condition at 70°C for 2 days was 0.168. That is, when pH was adjusted to 7, the change in absorbance A' 510 /A 510 at the wavelength of 510 nm when held under the acceleration condition of 70°C for 2 days was 2.074.
  • the initial absorbance A 510 at the wavelength of 510 nm of the allylamine polymer aqueous solution having the concentration of 10.28 mass% and the pH of 11.44 prepared in Comparative Example 1 was 0.055 under the condition that pH was adjusted to 7 with 35% hydrochloric acid. Further, the absorbance A' 510 at the wavelength of 510 nm after the same solution was treated under an acceleration condition of 70°C for 2 days was 0.718. That is, when pH was adjusted to 7, the change in absorbance A' 510 /A 510 at the wavelength of 510 nm when held under the acceleration condition of 70°C for 2 days was 13.055.
  • the allylamine (co)polymer of the present invention realizes remarkable technical effects of high practical value that the coloring and impurities can be reduced to an extremely low level and these preferred characteristics can be maintained over a long period of time beyond the limitations of the prior art, and thus has high applicability in various fields of industries such as chemical industry, paper industry, and electrical and electronics industries.
  • the method of the present invention can efficiently produce the allylamine (co)polymer having preferable characteristics represented by the above allylamine (co)polymer, and thus has high applicability in various industrial fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)

Abstract

Even when used in applications such as electronic materials, display materials, and inks, in which required standards in terms of coloring prevention, long term stability, low impurity content, and the like, are extremely high, the present invention can meet such required standards. The present invention addresses the problem of providing an allylamine (co)polymer which overcomes the limitations of the prior art, undergoes little coloring, contains little impurities and exhibits excellent long term stability; and a method for producing the same. This problem can be solved by an allylamine (co)polymer which has constituent units derived from allylamine and contains sulfuric acid groups in the structure thereof, in which the proportion of the sulfuric acid groups with respect to the total mass of the allylamine (co)polymer is 20,000 ppm by mass or less.

Description

    TECHNICAL FIELD
  • The present invention relates to a method for producing a highly pure allylamine (co)polymer. More specifically, the present invention relates to an allylamine (co)polymer which has high purity and prevents coloring and effectively suppresses increase in coloring and generation of impurities over time, and a method for producing the same.
  • BACKGROUND ART
  • It has been generally known that allylamine is difficult to be polymerized by destructive chain transfer, and effective methods for producing an allylamine polymer has been studied. As the conventionally proposed method, there has been known a method in which an allylamine addition salt is subject to synthesis in a polar solvent using an azo-based radical initiator (see Patent Literature 1 and Patent Literature 2). Further, a method for synthesizing a low molecular weight allylamine polymer using a large amount of peroxide-based radical initiator has been known (see Patent Literature 3).
  • However, the low molecular weight allylamine polymer obtained by the above-mentioned method exhibits brown color as being synthesized with a large amount of the peroxide-based radical initiator under a severe temperature condition, and has a large amount of ignition residue derived from the initiator. In addition, there is a problem that the coloring of the polymer tends to proceed over time.
  • As a method for solving the above problem, there has been known a method of removing unreacted allylamine in the low molecular weight allylamine polymer, which has been obtained by the above-mentioned method, by distillation, and further, removing the resulting salt by purification to reduce the coloring and reduce the amount of ignition residue (see Patent Literature 4).
  • However, even when the low molecular weight allylamine polymer obtained by the above method is used, in the case of using it as an electronic material or the like, the coloring and the increase in coloring over time, in particular, the increase in coloring over time at a high temperature, and the increase of impurities, such as sulfuric acid, over time may still be concerned, and therefore there is a strong need for an allylamine (co)polymer that has an even higher purity and further suppresses the coloring and the increase in coloring over time.
  • CITATION LIST PATENT LITERATURE
    • PATENT LITERATURE 1: JP-A-58-201811
    • PATENT LITERATURE 2: JP-A-62-172007
    • PATENT LITERATURE 3: JP-A-5-195450
    • PATENT LITERATURE 4: International Publication No. 99/19372 A1 Pamphlet
    SUMMARY OF INVENTION TECHNICAL PROBLEM
  • The present invention has been made in view of the above-described background art, and can meet required standards, even when used in applications such as electronic materials, display materials, and inks, in which such required standards in terms of coloring prevention, long term stability, low impurity content, and the like, are extremely high. An object of the present invention is to provide an allylamine (co)polymer which overcomes the limitations of the prior art, undergoes little coloring, contains low impurities and exhibits excellent long term stability; and a method for producing the same.
  • SOLUTION TO PROBLEM
  • As a result of intensive research to achieve the above object, the present inventors have found that an allylamine (co)polymer in which the proportion of sulfuric acid groups contained in the polymer structure is a specific value or less solves the above problems, and the present invention thus has been completed.
  • That is, the present invention and each aspect thereof are as described in [1] to [12], below.
    1. [1] An allylamine (co)polymer which has constituent units derived from allylamine and contains sulfuric acid groups in the structure thereof, in which the proportion of the sulfuric acid groups with respect to the total mass of the allylamine (co)polymer is 20,000 ppm by mass or less.
    2. [2] The allylamine (co)polymer according to [1], wherein the proportion of the sulfuric acid groups with respect to the total mass of the allylamine (co)polymer is 15,000 ppm by mass or less.
    3. [3] The allylamine (co)polymer according to [1] or [2], wherein the weight average molecular weight is 250 to 2500.
    4. [4] The allylamine (co)polymer according to any one of [1] to [3], wherein the initial absorbance A510 at the wavelength of 510 nm, which is measured for an aqueous solution of the allylamine (co)polymer prepared to have the concentration of 10 mass% and the pH of 11, is 0.5 or less, and the ratio A'510/A510 between the absorbance A'510 at the wavelength of 510 nm after the aqueous solution is held at 70°C for 2 days and the initial absorbance A510 is 3 or less.
    5. [5] The allylamine (co)polymer according to any one of [1] to [4], wherein the proportion of the constituent units derived from allylamine in all of the constituent units is 10 mol% or more.
    6. [6] A method for producing an allylamine (co)polymer, comprising:
      1. a) obtaining an allylamine (co)polymer by polymerizing an allylamine monomer;
      2. b) decomposing sulfuric acid groups in the obtained allylamine (co)polymer; and
      3. c) removing a sulfur compound generated by the decomposition of the sulfuric acid groups.
    7. [7] The method for producing an allylamine (co)polymer according to [6], wherein, in the step b), the amount of the sulfuric acid groups in the allylamine (co)polymer is reduced to 20,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
    8. [8] The method for producing an allylamine (co)polymer according to [6], wherein, in the step b), the amount of the sulfuric acid groups in the allylamine (co)polymer is reduced to 15,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
    9. [9] The method for producing allylamine (co)polymer according to any one of [6] to [8], wherein, in the step b), the allylamine (co)polymer obtained in the step a) is heated at a temperature of 70°C or higher for 12 hours or longer.
    10. [10] A papermaking treatment agent, an ink, a paint, or an adhesive comprising the allylamine (co)polymer according to any one of [1] to [5].
    11. [11] An electrical electronic material or a display material comprising the allylamine (co)polymer according to any one of [1] to [5].
    12. [12] A light transmitting material comprising the allylamine (co)polymer according to any one of [1] to [5].
    ADVANTAGEOUS EFFECTS OF INVENTION
  • The allylamine (co)polymer of the present invention achieves remarkable technical effects beyond the limitations of the prior art, such as reducing the coloring and impurities to an extremely low level and maintaining their favorable properties over a long period of time, and can be suitably used in various applications that require low coloring and low contamination, including electrical and electronic materials, papermaking treatment agents, inks, paints, adhesives, display materials, and light transmitting materials.
  • In accordance with the production method according to another embodiment of the present invention, it is possible to efficiently produce an allylamine (co)polymer having preferable characteristics, represented by the aforementioned allylamine (co)polymer.
  • DESCRIPTION OF EMBODIMENTS Allylamine (co)polymer
  • The present invention relates to an allylamine (co)polymer having constituent units derived from allylamine and contains sulfuric acid groups in the structure thereof, in which the proportion of the sulfuric acid groups with respect to the total mass of the allylamine (co)polymer is 20,000 ppm by mass or less.
  • This means that the allylamine (co)polymer of the present invention only has to have constituent units derived from an allylamine monomer, and may be a copolymer having other constituent units, or may be a so-called homopolymer that does not have other constituent units.
  • In addition, the allylamine (co)polymer of the present invention contains a predetermined amount or less of sulfuric acid groups in the structure thereof. The sulfuric acid groups are usually incorporated into the structure by a peroxide-based radical initiator used during polymerization, but may be incorporated into the structure for other reasons, and the total amount of the sulfuric acid groups including such sulfuric acid groups needs to be the predetermined value or less.
  • Constituent unit derived from allylamine
  • The constituent unit derived from an allylamine monomer, which is an essential constituent unit of the allylamine (co)polymer of the present invention, has a structure represented by the following Formula (I).
    Figure imgb0001
  • Here, the constituent unit derived from a monoallylamine monomer only has to be one having the structure represented by the above Formula (I), and it is not necessary that the structure have been obtained by actually polymerizing a monoallylamine. For example, an addition salt of a monoallylamine may be used as a raw material monomer. The monoallylamine addition salt used in this case is usually an inorganic acid salt of a monoallylamine, and examples of those include a hydrochloride, a sulfate, a phosphate, a perchlorate, a nitrate, and the like of a monoallylamine, and hydrochlorides are preferably used from the viewpoint of the availability. In addition, organic acid salts, such as acetate, can also be used.
  • Constituent unit other than constituent unit derived from allylamine
  • When the allylamine (co)polymer of the present invention is a copolymer, there is no particular limitation on constituent units other than the constituent units derived from allylamine, and such constituent units can be derived by carrying out copolymerization using a monomer copolymerizable with allylamine as appropriate.
  • Preferred examples of the copolymerizable monomer include monoallylamines, such as methyl allylamine and dimethyl allylamine, or addition salts thereof; diallylamines, such as diallylamine and diallylmethylamine, or addition salts thereof; diallyldialkylammonium salts, such as diallyldimethylammonium chloride; acrylamides, such as acrylamide, dimethylacrylamide, acryloylmorpholine, N-[3-(dimethylamino) propyl](meth)acrylamide, (3-acrylamidopropyl)trimethylammonium chloride, and (3-methacrylamideamidopropyl)trimethylammonium chloride; allyl alcohols; allyl ethers, such as ethylene glycol monoallyl ether; unsaturated carboxylic acids or addition salts thereof, such as (meth)acrylic acid(sodium); unsaturated dicarboxylic acids, such as maleic acid and fumaric acid, or salts thereof; sulfur dioxide; allyl sulfonic acids or addition salts thereof, such as (meth)allyl sulfonic acid(sodium); vinyl sulfonic acids or addition salts thereof, such as vinyl sulfonic acid(sodium); sodium isoprene sulfonate, and the like, but are not limited thereto.
  • Only one species of the monomer other than the allylamine can be used, and two or more species can also be used in combination.
  • Sulfuric acid group
  • The allylamine (co)polymer of the present invention contains sulfuric acid groups in the structure thereof, and the proportion of the sulfuric acid groups with respect to the total mass of the allylamine (co)polymer is 20,000 ppm by mass or less.
  • The sulfuric acid groups are usually derived from a peroxide-based radical initiator, such as sodium persulfuric acid, used during the polymerization, but they may also be incorporated into the structure for other reasons. In addition, the allylamine (co)polymer of the present invention is usually polymerized using a peroxide-based radical initiator.
  • In the allylamine (co)polymer of the present invention, the total of the sulfuric acid groups contained in the structure thereof, regardless of the origin(s) thereof, is 20,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
  • Conventionally, in order to suppress the coloring of the allylamine (co)polymer and to remove impurities, unreacted allylamine was removed by distillation or , allyamine (co)polymer was purified by electrodialysis or acid treatment. However, even if these treatments were performed, the coloring might be increased over time or impurities, including sulfur, might be generated, and solution thereto has been demanded. The present inventors have found that the increase in coloring and the generation of impurities are caused by sulfuric acid groups covalently bonded to the polymer chain, and more specifically, sulfuric acid generated by the hydrolysis of such sulfuric acid groups over time causes the increase in coloring over time and the generation of impurities containing sulfur.
  • As described above, sulfuric acid groups are usually incorporated into the structure due to peroxide-based radical initiator, such as sodium persulfuric acid, used during polymerization. In particular, since the peroxide-based radical initiator has strong radical activity, the sulfuric acid group may be bound not only to polymer terminals of the allylamine (co)polymer but also to the polymer chain. The sulfuric acid groups covalently bonded to the polymer chain cannot be sufficiently removed even by purification processes, such as distillation, electrodialysis, and acid treatment, and this is estimated to be the reason why the problems of the prior art, such as the increase in coloring over time and the generation of impurities including sulfur, could not be sufficiently solved.
  • The present invention limits the proportion of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer to 20,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer, and as a result, achieves significant technical effects, such as suppressing the generation of the sulfuric acid by the decomposition of the sulfuric acid groups to a level that does not cause practical problems and effectively suppressing the generation of the coloring and impurities over a long period of time.
  • The proportion of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer of the present invention is preferably 18,000 ppm by mass or less and more preferably 15,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
  • The lower the proportion of sulfuric acid groups bonded to the structure of the allylamine (co)polymer of the present invention, the more preferable, and hence there is no particular lower limit. Nevertheless, when a predetermined level or more of sulfuric acid groups are once introduced into the structure due to a radical initiator or the like, the proportion of the sulfuric acid groups is often 10 ppm by mass or more as long as the sulfuric acid group is reduced at normal cost and time.
  • The proportion of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer can be measured, for example, by the following method.
  • Ion exchanged water is appropriately added to an aqueous solution of the allylamine (co)polymer, and the concentration and the pH thereof are adjusted to fall within a range suitable for measurement, for example, about 10 mass% and pH 11. By using this solution, the concentration of sulfur is measured with an ion chromatography equipped with a combustion apparatus. From the concentration of sulfur obtained, the amount of the solution, and the concentration of the allylamine (co)polymer in the solution, and also taking the molecular weight of the sulfuric acid group and the atomic weight of sulfur into account, the proportion (on a mass basis) of the sulfuric acid groups in the polymer is calculated.
  • The proportion of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer can be measured, for example, by the following method.
  • The ion exchanged water is appropriately added to the aqueous solution of the allylamine (co)polymer, and the concentration and the pH thereof are adjusted to fall within a range suitable for measurement, for example, about 10 mass% and pH 11. By using this solution, the concentration of sulfur is measured with an ion chromatography equipped with a combustion apparatus. From the concentration of sulfur obtained, the amount of the solution, and the concentration of the allylamine (co)polymer in the solution, and also taking the molecular weight of the sulfuric acid group and the atomic weight of sulfur into account, the proportion (on a mass basis) of the sulfuric acid groups in the polymer is calculated.
  • Examples of means for appropriately adjusting the proportion of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer include decomposition of the sulfuric acid groups bonded to the structure by heating, or the like, and oxidative decomposition by an oxidizing agent, a catalyst, or the like, hydrolysis by an acid, a base, an electromagnetic wave, an ultrasonic wave, or the like, and so on.
  • When the decomposition by heating is performed, the allylamine (co)polymer obtained is preferably heated at a temperature of 70°C or higher for 12 hours or longer in the state of an aqueous solution, but the decomposition conditions by heating are not limited thereto.
  • In order to suppress initial coloring and impurities, it is preferable to remove the sulfur compound generated by the decomposition of the sulfuric acid groups in the aforementioned heating treatment or the like. The method for removing the sulfur compound is not particularly limited, but distillation, electrodialysis, acid treatment, and the like, which are used in purification processes in prior arts can be used.
  • As described above, in the present invention, by virtue of limiting the proportion of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer to 20,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer, a remarkable technical effect is achieved that coloring can be suppressed over a long period of time.
  • More specifically, an initial absorbance A510 at the wavelength of 510 nm, which is measured for an aqueous solution of the allylamine (co)polymer prepared to have the concentration of 10 mass% and the pH of 11, is preferably 0.5 or less. A'510/A510, the ratio between the initial absorbance A510 at the wavelength of 510 nm, which is measured for an aqueous solution of the allylamine (co)polymer of the present invention to have the concentration of 10 mass% and the pH of 11, and the absorbance A'510 at the wavelength of 510 nm after the aqueous solution of the allylamine (co)polymer is held at 70°C for 2 days is preferably 3 or less. In addition, the allylamine (co)polymer of the present invention preferably satisfies these conditions at the same time.
  • The allylamine (co)polymer of the above preferred embodiment effectively suppresses coloring as having the initial absorbance A510 of 0.5 or less, and can be preferably used in various applications, such as papermaking treatment agents, inks, paints, display related materials, and permeable materials, where the suppression of coloring is important.
  • In addition, in the allylamine (co)polymer of the above preferred embodiment, by virtue of having 3 or less of the ratio A'510/A510 between an absorbance A510 at the wavelength of 510 nm, which is measured for an aqueous solution of the allylamine (co)polymer prepared to have the concentration of 10 mass% and the pH of 11, and the absorbance A'510 at the wavelength of 510 nm after the aqueous solution of the allylamine (co)polymer is held at 70°C for 2 days, coloring over a long period of time is effectively suppressed, which can make it possible to suitably use the allylamine (co)polymer over a long period of time in the aforementioned applications where the suppression of coloring is important and significantly contribute to their longer life and improvement in long-term reliability.
  • The initial absorbance A510 at the wavelength of 510 nm of the aforementioned preferred embodiment, which is measured for the aqueous solution having the concentration of 10 mass% and the pH of 11, is more preferably 0.3 or less and particularly preferably 0.2 or less.
  • The ratio A'510/A510 of the initial absorbance A510 of the allylamine (co)polymer of the preferred embodiment at the wavelength of 510 nm and the absorbance A'510 at the wavelength of 510 nm after the aqueous solution of the allylamine (co)polymer is held at 70°C for 2 days is 2.5 or less, and particularly preferably 2 or less.
  • The absorbance of the allylamine (co)polymer at the wavelength of 510 nm can be measured, for example, using a spectrophotometer by injecting a solution, which is prepared by appropriately adding ion exchanged water to the aqueous solution of the allylamine (co)polymer and adjusting the concentration of the solution to about 10 mass% and the pH of the solution to 11, into a cell having the optical path length of 10 mm.
  • The initial absorbance A510 at the wavelength of 510 nm, which is measured for an aqueous solution of the allylamine (co)polymer prepared to have the concentration of 10 mass% and the pH of 11, and the ratio A'510/A510 between the initial absorbance A510 and the absorbance A'510 after the aqueous solution of the allylamine (co)polymer is held at 70°C for 2 days can both be reduced by reducing the amount of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer. The method for reducing the amount of the sulfuric acid groups bonded to the structure of the allylamine (co)polymer is as described above.
  • The molecular weight of the allylamine (co)polymer of the present invention is not particularly limited, and a (co)polymer having an appropriate molecular weight may be polymerized as appropriate in relation to the required physical properties or applications.
  • From the view point of providing an allylamine (co)polymer having a viscosity suitable for applications, such as electronic materials or paints, and carrying out polymerization at practically acceptable time and cost, the weight average molecular weight (Mw) is preferably from 250 to 2500. The weight average molecular weight (Mw) is more preferably 400 to 2000, and particularly preferably 500 to 1500.
  • The weight average molecular weight (Mw) of the allylamine (co)polymer can be measured by, for example, gel permeation chromatography (GPC method) using a liquid chromatograph.
  • The molecular weight of the allylamine (co)polymer can be adjusted as appropriate by adjusting the presence/absence, type and composition of comonomer(s), the temperature, time and pressure in the polymerization step, the type and amount of radical initiator used in the polymerization step, and the like.
  • There is no particular limitation on the intrinsic viscosity [η] of the allylamine (co)polymer, and it can be appropriately determined in relation to the required physical properties or applications.
  • The viscosity of the allylamine (co)polymer can also be adjusted as appropriate by adjusting the presence/absence, type and composition of comonomer(s), the temperature, time and pressure in the polymerization step, the type and amount of radical initiator used in the polymerization step, and the like.
  • Although is no particular limitation on the proportion of the constituent units derived from allylamine in the allylamine (co)polymer, the proportion is preferably 10 to 100 mol%, and more preferably 50 to 100 mol%.
  • By virtue of having the proportion of the constituent units derived from allylamine within the above range, preferable characteristics, such as reactivity and dispersibility, can be more easily realized.
  • The composition of the allylamine (co)polymer, including the proportion of the constituent units derived from the allylamine, can be appropriately adjusted by the polymerization conditions, particularly the composition of the monomer supplied in the polymerization.
  • Method for producing an allylamine (co)polymer
  • A method for producing an allylamine (co)polymer according to another aspect of the present invention includes:
    1. a) obtaining an allylamine (co)polymer by polymerizing an allylamine monomer;
    2. b) decomposing sulfuric acid groups in the obtained allylamine (co)polymer; and
    3. c) removing a sulfur compound generated by the decomposition of the sulfuric acid groups.
  • The method for producing an allylamine (co)polymer is particularly preferably used to produce the allylamine (co)polymer of the present invention.
  • Further, in step b) of the method for producing an allylamine (co)polymer, the amount of the sulfuric acid groups in the allylamine (co)polymer is preferably reduced to 20,000 ppm by mass or less, more preferably reduced to 18,000 ppm by mass or less, and particularly preferably 15,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
  • a) Obtaining allylamine (co)polymer by polymerizing allylamine monomer
  • In the above production method, in step a) of obtaining an allylamine (co)polymer by polymerizing an allylamine monomer, the allylamine and optionally a comonomer, is/are polymerized in water or a polar solvent. Here, the allylamine is intended to encompass both allylamines and addition salts thereof.
  • The allylamine addition salt that is preferably used as a raw material monomer is usually an inorganic acid salt of an allylamine, and examples thereof include, for example, hydrochloride, sulfate, phosphate, perchlorate, nitrate, and the like of an allylamine, but are not limited thereto. In addition, organic acid salts, such as acetate, can also be used.
  • Water or polar solvent is used as the polymerization medium. Examples of the polar solvent include inorganic acids, such as hydrochloric acid, sulfuric acid, phosphoric acid, and polyphosphoric acid, or aqueous solutions thereof, organic acids, such as formic acid, acetic acid, propionic acid, and lactic acid, or aqueous solutions thereof, alcohols, dimethylsulfoxide, dimethylformamide, and furthermore, aqueous solutions of inorganic salts, such as zinc chloride, calcium chloride, and magnesium chloride, and the like, but are not limited thereto.
  • The allylamine addition salt is usually used in the form of isolated crystals, but allylamine and an acid may be added to the water or a polar solvent to generate an addition salt in the system. When an acid or an aqueous solution thereof is used as the polymerization medium, a predetermined amount of allylamine can be added to the acid or the aqueous solution and polymerized as it is.
  • The concentration of allylamine in the polymerization medium during the polymerization is not particularly limited and is appropriately determined according to the type of polymerization initiator used. For example, in the case of using a peroxide-based radical polymerization initiator, the concentration of the monomer is usually 10 to 80 mass%, and preferably 20 to 70 mass%. When the concentration of the allylamine is low, a low molecular weight allylamine (co)polymer is likely to be obtained, but a polymerization rate tends to be low. Conversely, if the allylamine concentration is too high, the polymerization rate is high, but a high molecular weight allylamine (co)polymer is likely to be obtained.
  • As the radical polymerization initiator used for polymerization under the low polymerization degree condition, known peroxide-based radical polymerization initiators, radical polymerization initiators that have an azo group and a group having cationic nitrogen, or the like can be used. Examples of the peroxide-based radical polymerization initiator include ammonium persulfuric acid, sodium persulfuric acid, potassium persulfuric acid, and the like. In particular, from the viewpoint of lowering the molecular weight of the allylamine polymer and improving the polymerization rate, the peroxide-based radical polymerization initiators are preferable.
  • The radical polymerization initiator may be used alone or in combination of two or more, and the amount of the radical polymerization initiator used needs to be larger than the amount used for normal polymerization reaction, and is usually 1.5 mass% or more, preferably 5 to 75 mass%, and more preferably 10 to 50 mass% with respect to the addition salt of allylamine. Generally, if the amount of the radical polymerization initiator used is small, the polymerization rate is low and the molecular weight tends to be high, which is not preferable.
  • When the allylamine addition salt is polymerized under the low polymerization degree conditions in water or a polar solvent, it can be carried out by lowering the concentration of the monomer in the polymerization system and raising the polymerization temperature, and furthermore, it is possible to increase the polymerization yield by increasing the concentration of the radical initiator.
  • b) Decomposing sulfuric acid groups in allylamine (co)polymer obtained
  • In the above production method, in step b) decomposing sulfuric acid group in the allylamine (co)polymer obtained, the sulfuric acid groups bonded to the structure of the allylamine (co)polymer obtained in the step a) are decomposed by heating and the like.
  • When the decomposition by the heating is performed, the allylamine (co)polymer obtained is preferably heated at a temperature of 70°C or higher for 12 hours or longer preferably in the state of an aqueous solution.
  • In step b), the amount of the sulfuric acid groups in the allylamine (co)polymer is preferably reduced to 20,000 ppm by mass or less, more preferably reduced to 18,000 ppm by mass or less, and particularly preferably 15,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
  • In the polymerization solution after the completion of the polymerization, when the allylamine (co)polymer is present in the state of an addition salt, the polymerization solution may be neutralized with an alkali between step a) and step b) or between step b) and step c). This neutralization treatment can be performed such that the addition salt of the allylamine (co)polymer is in an isolated state, that is, the pH of the neutralized polymerization solution is usually in the range of 9 to 13.5 and preferably 10 to 13. The alkali used for the neutralization treatment is not particularly limited, but for example, hydroxides of an alkali metal or the like, such as sodium hydroxide, potassium hydroxide, and lithium hydroxide, are preferably used. By this neutralization treatment, the isolated acid reacts with the alkali to form a salt.
  • c) Removing sulfur compound generated by decomposition of sulfuric acid group
  • The solution after step b) contains a sulfur compound generated by the decomposition of the sulfuric acid groups together with unreacted allylamine. Therefore, in step c), the sulfur compound is removed together with the unreacted monoallylamine by distillation treatment or the like.
  • In the distillation treatment, the distillation is preferably performed under a reduced pressure, and more preferably performed under the conditions that the temperature is 40 to 100°C and the degree of vacuum is 10 to 300 mmHg, and particularly preferably performed under the conditions that the temperature is 50 to 80°C and the degree of vacuum is 20 to 200 mmHg. Under such conditions, the allylamine (co)polymer remains without being distilled off.
  • In the method of an embodiment of the present invention, the residual liquid after the unreacted monoallylamine is distilled off in this way may be subjected to electrodialysis. (Alternatively, the electrodialysis may be performed instead of distillation treatment.) When the unreacted allylamine is distilled off, since a part of the solvent such as water is also distilled off, the allylamine is diluted with the solvent and then may be subjected to the electrodialysis. This electrodialysis is preferably performed with an ion exchange membrane.
  • In the present embodiment, it is preferable to perform the electrodialysis treatment with an ion exchange membrane under the condition that the intended allylamine (co)polymer is hardly removed and the sulfur compound can be removed together with the unreacted monoallylamine.
  • <Application>
  • The allylamine (co)polymer of the present invention achieves remarkable technical effects, such as reducing the coloring and impurities to an extremely low level and maintaining their favorable properties over a long period of time, beyond the limitations of the prior art, and thus can be suitably used for each application that require the low coloring and low contamination, including the electrical electronic material, the papermaking treatment agent, the ink, the paint, the adhesive, the display material, and the light transmitting material.
  • For example, the ink composition using the allylamine (co)polymer of the present invention is excellent in water resistance, suppresses discoloration, aggregation, or the like, and is excellent in storage stability.
  • [Examples]
  • Hereinafter, the present invention will be described in more detail with reference to Examples/Comparative Examples, but the present invention is not limited thereto in any way.
  • In the following Examples/Comparative examples, physical properties/characteristics were evaluated by the following methods.
  • (Weight average molecular weight of polymer)
  • The weight average molecular weight (Mw) of the polymer was measured by gel permeation chromatography (GPC method) using a Chromaster (registered trademark) 5450 high-speed liquid chromatograph manufactured by Hitachi High-Tech Science Corporation.
  • As the detector, an RI differential refractive index detector was used, and as the column, those in which an aqueous gel filtration type GS-220HQ (exclusion-limit molecular weight 3,000) and GS-620HQ (exclusion-limit molecular weight 2,000,000) of Shodex Asahipak are connected in series was used. The sample was prepared to the concentration of 0.5 g/100 ml with an eluent, and 20 µL was used. As the eluent, 0.4 mol/L of sodium chloride aqueous solution was used. A column temperature was 30°C, and a flow rate was 1.0 ml/min.
  • A calibration curve was obtained using polyethylene glycols having the molecular weight of 106, 194, 440, 600, 1,470, 4,100, 7,100, 10,300, 12,600, 23,000, or the like as the standard substances, and the weight average molecular weight (Mw) of the polymer was obtained based on the calibration curve.
  • (Polymerization yield of polymer)
  • The polymerization yield was obtained by a peak area ratio in the chart obtained by the CPC method.
  • (Proportion of sulfuric acid group in polymer)
  • Ion exchanged water was appropriately added to an aqueous solution of an allylamine (co)polymer to adjust its concentration to about 10 mass% and pH to about 11. By using this solution, the concentration of sulfur was measured by ion chromatography with a combustion apparatus. From the obtained sulfur concentration, the amount of the solution, and the allylamine (co)polymer concentration in the solution, the proportion (on mass basis) of the sulfuric acid groups in the polymer was calculated.
  • (Initial absorbance A510)
  • Ion exchanged water was appropriately added to an aqueous solution of an allylamine (co)polymer to adjust its concentration to about 10 mass% and pH to about 11. This solution was injected into a cell having the optical path length of 10 mm, and the absorbance at the wavelength of 510 nm was measured with a spectrophotometer (product name: UH5300) manufactured by Hitachi High-Tech Science Corporation to obtain the initial absorbance A510.
  • (Absorbance A'510 after aging)
  • The solution prepared for the measurement of the initial absorbance A510 was collected in a 20 ml glass sample bottle and stored under an acceleration condition in a constant temperature bath of 70°C for 2 days. For the solution after the storage, the absorbance at the wavelength of 510 nm was measured in the same manner as in the measurement of the initial absorbance A510 to obtain the absorbance A'510 after aging.
  • (Example 1)
  • A 1 L four-necked flask equipped with a stirrer, a thermometer, and a condenser was charged with 322.18 g of allylamine hydrochloride aqueous solution having the concentration of 58.08 mass%, and the temperature was raised to 50°C. Polymerization was initiated by adding dropwise an initiator aqueous solution consisting of 35.24 g of sodium persulfuric acid and 65.44g of water at the internal temperature of 48°C. While maintaining the internal temperature at 50 to 55°C, the initiator aqueous solution was added dropwise over 3 hours. The polymerization was further continued for 1 hour, and the polymerization was performed for the total of 4 hours to obtain a pale yellow aqueous solution of an allylamine polymer hydrochloride having the GPC yield of 63.27 and the weight average molecular weight, Mw, of 1,016.
  • Furthermore, the temperature was raised to 70°C, and the sulfuric acid group was thermally decomposed for 96 hours to obtain an orange solution. Under cooling at 30°C or less, 368 g of sodium hydroxide having the concentration of 25 mass% was added, mixed and neutralized. 729,69g of the obtained allylamine polymer aqueous solution having the allylamine concentration of 14.49 mass% was distilled at 50°C under the reduced pressure of 30 mmHg to distill off unreacted allylamine until the allylamine polymer aqueous solution was 429.18 g. Further, 880.47 g of allylamine polymer aqueous solution having the concentration of 9.95 mass% was obtained by being diluted with water. This aqueous solution was subjected to electrodialysis using an ion exchange membrane (CH-0 type manufactured by Nippon Rensui Co., Ltd. was used as the dialysis device. Eight CMVs manufactured by Asahi Glass Co., Ltd. were used as cation exchange membranes, and five AMVs manufactured by Asahi Glass Co., Ltd. were used as anion exchange membranes. 1 L of 1 mass% sodium chloride aqueous solution was put in a concentrated liquid tank, and 1 L of 1 mass% sodium sulfate aqueous solution was put in a polar liquid tank.) A maximum DC voltage of 5 A or 13.5 V was applied between electrodes, and the treatment was performed for 4 hours under these conditions.
  • The ion exchanged water was added to the treated solution to obtain 689.40 g of yellow aqueous solution having the concentration of 10.22 mass%, pH of 11.64, and the weight average molecular weight, Mw, of 952. As a result of measuring the concentration of the sulfuric acid groups using this solution, the concentration of the sulfuric acid groups was 13,665 ppm by mass based on the mass of the allylamine polymer.
  • The initial absorbance A510 at the wavelength of 510 nm measured for the solution was 0.059. Further, the absorbance A'510 at the wavelength of 510 nm after the same solution was treated under an acceleration condition of 70°C for 2 days was 0.075. That is, the change in absorbance A'510/A510 at the wavelength of 510 nm when held at the acceleration condition of 70°C for 2 days was 1.271.
  • The results are shown in Table 1.
  • (Example 2)
  • A 1 L four-necked flask equipped with a stirrer, a thermometer, and a condenser was charged with 318.29 g of allylamine hydrochloride aqueous solution having the concentration of 58.79 mass%, and the temperature was raised to 50°C. Polymerization was initiated by adding dropwise an initiator aqueous solution consisting of 33.68g of ammonium persulfuric acid and 62.55g of water at the internal temperature of 49°C. While maintaining the internal temperature at 50 to 55°C, the initiator aqueous solution was added dropwise over 3 hours. The polymerization was further continued for 1 hour, and the polymerization was performed for the total of 4 hours to obtain a pale yellow aqueous solution of an allylamine polymer hydrochloride having the GPC yield of 53.40% and the Mw of 1,143.
  • Furthermore, the temperature was raised to 70°C, and the sulfuric acid group was thermally decomposed for 48 hours to obtain an orange solution. Under cooling at 30°C or less, 416.00g of sodium hydroxide having the concentration of 25 mass% was added, mixed and neutralized. 798.48g of the obtained allylamine polymer aqueous solution having the allylamine concentration of 14.89 mass% was distilled at 50°C under the reduced pressure of 30 mmHg to distill off unreacted allylamine until the allylamine polymer aqueous solution was 397.19g. Further, 841.40g of allylamine polymer aqueous solution having the concentration of 10.01 mass% was obtained by being diluted with water. This aqueous solution was subjected to electrodialysis using an ion exchange membrane (CH-0 type manufactured by Nippon Rensui Co., Ltd. was used as the dialysis device. Eight CMVs manufactured by Asahi Glass Co., Ltd. were used as cation exchange membranes, and five AMVs manufactured by Asahi Glass Co., Ltd. were used as anion exchange membranes. 1 L of 1 mass% sodium chloride aqueous solution was put in a concentrated liquid tank, and 1 L of 1 mass% sodium sulfate aqueous solution was put in a polar liquid tank.) A maximum DC voltage of 5 A or 13.5 V was applied between electrodes, and the treatment was performed for 4 hours under these conditions.
  • The ion exchanged water was added to the treated solution to obtain 733.29g of yellow aqueous solution having the concentration of 10.33 mass%, pH of 11.41, and the weight average molecular weight, Mw, of 872. Using this solution, the sulfur concentration in the aqueous solution was measured with an ion chromatography equipped with a combustor and was as high as 1,957 ppm. Therefore, the electrodialysis is performed again, and 728.51 g of yellow aqueous solution having the concentration of 9.68 mass%, pH of 11.34 and the weight average molecular weight, Mw, of 957 was obtained. As a result of measuring the sulfur concentration in the aqueous solution, the sulfur concentration was still as high as 1,611 ppm. Therefore, 30 mL of ion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd., DIAION SA10AOH) that had been washed with water and dehydrated was added to 100 g of the aqueous solution and stirred for 10 minutes. Subsequently, the ion exchanged resin was filtered off by standing for 50 minutes to obtain 98.12 g of yellow aqueous solution having the concentration of 8.94 mass%. As a result of measuring the concentration of the sulfuric acid groups, the concentration of the sulfuric acid groups was 6,456 ppm by mass based on the mass of the allylamine polymer.
  • The initial absorbance A510 at the wavelength of 510 nm measured for the solution was 0.037. Further, the absorbance A'510 at the wavelength of 510 nm after the same solution was treated under the acceleration condition of 70°C for 2 days was 0.049. That is, the change in absorbance A'510/A510 at the wavelength of 510 nm when held under the acceleration condition of 70°C for 2 days was 1.324.
  • The results are shown in Table 1.
  • (Example 3)
  • A 1 L four-necked flask equipped with a stirrer, a thermometer, and a condenser was charged with 322.40 g of allylamine hydrochloride aqueous solution having the concentration of 58.04 mass%, and the temperature was raised to 50°C. Polymerization was initiated by adding dropwise an initiator aqueous solution consisting of 70.48g of sodium persulfuric acid and 130.89g of water at the internal temperature of 49°C. While maintaining the internal temperature at 50 to 55°C, the initiator aqueous solution was added dropwise over 3 hours. The polymerization was further continued for 1 hour, and the polymerization was performed for the total of 4 hours to obtain a pale yellow aqueous solution of an allylamine polymer hydrochloride having the GPC yield of 74.19% and the weight average molecular weight, Mw, of 892.
  • Furthermore, the temperature was raised to 70°C, and the sulfuric acid group was thermally decomposed for 48 hours to obtain a brown solution. Under cooling at 30°C or less, 409.40g of sodium hydroxide having the concentration of 25 mass% was added, mixed and neutralized. 902.73g of the obtained allylamine polymer aqueous solution having the allylamine concentration of 11.58 mass% was distilled at 50°C under the reduced pressure of 30 mmHg to distill off unreacted allylamine until the allylamine polymer aqueous solution was 422.94g. Further, 1,018.75g of allylamine polymer aqueous solution having the concentration of 9.64 mass% was obtained by being diluted with water. This aqueous solution was subjected to electrodialysis using an ion exchange membrane (CH-0 type manufactured by Nippon Rensui Co., Ltd. was used as the dialysis device. Eight CMVs manufactured by Asahi Glass Co., Ltd. were used as cation exchange membranes, and five AMVs manufactured by Asahi Glass Co., Ltd. were used as anion exchange membranes. 1 L of 1 mass% sodium chloride aqueous solution was put in a concentrated liquid tank, and 1 L of 1 mass% sulfuric acid sodium aqueous solution was put in a polar liquid tank.) A maximum DC voltage of 5A or 13.5 V was applied between the electrodes. The treatment was performed for 10 hours under these conditions.
  • The ion exchanged water was added to the treated solution to obtain 789.80g of brown aqueous solution having the concentration of 10.20 mass%, the pH of 11.08, and the weight average molecular weight, Mw, of 791. Using this solution, the sulfur concentration in the aqueous solution was measured with an ion chromatography equipped with a combustor and was as high as 3,983 ppm. Therefore, the electrodialysis is performed again, and 773.06g of brown aqueous solution having the concentration of 9.42 mass%, pH of 11.13 and the weight average molecular weight, Mw, of 747 was obtained. As a result of measuring the sulfur concentration in the aqueous solution, the sulfur concentration was still as high as 2,997 ppm. Therefore, 30 mL of ion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd., DIAION SAIOAOH) that had been washed with water and dehydrated was added to 100 g of the aqueous solution and stirred for 10 minutes. Subsequently, the ion exchanged resin was filtered off by standing for 50 minutes to obtain 98.62g of brown aqueous solution having the concentration of 7.66 mass%. As a result of measuring the concentration of the sulfuric acid groups, the concentration of the sulfuric acid groups was 10,663 ppm by mass based on the mass of the allylamine polymer.
  • The initial absorbance A510 at the wavelength of 510 nm measured for the solution was 0.185. Further, the absorbance A'510 at the wavelength of 510 nm after the same solution was treated under the acceleration condition of 70°C was 0.241. That is, the change in absorbance A'510/A510 at the wavelength of 510 nm when held under the acceleration condition of 70°C for 2 days was 1.303.
  • The results are shown in Table 1.
  • (Comparative Example 1)
  • A 1 L four-necked flask equipped with a stirrer, a thermometer, and a condenser was charged with 319.86 g of allylamine hydrochloride aqueous solution having the concentration of 58.5 mass%, and the temperature was raised to 50°C. Polymerization was initiated by adding dropwise an initiator aqueous solution consisting of 35.24 g of sodium persulfuric acid and 65.44g of water at the internal temperature of 48°C. While maintaining the internal temperature at 50 to 55°C, the initiator aqueous solution was added dropwise over 3 hours. The polymerization was further continued for 1 hour, and the polymerization was performed for the total of 4 hours to obtain a pale yellow aqueous solution of an allylamine polymer hydrochloride having the GPC yield of 63.75 and the weight average molecular weight, Mw, of 1,055.
  • Under cooling at 30°C or less, 368g of sodium hydroxide having the concentration of 25 mass% was added, mixed and neutralized. 782.66g of the obtained allylamine polymer aqueous solution having the allylamine concentration of 12.66 mass% was distilled at 50°C under the reduced pressure of 30 mmHg to distill off unreacted allylamine until the allylamine polymer aqueous solution was 362.89g. Further, 879.25g of allylamine polymer aqueous solution having the concentration of 6.54 mass% was obtained by being diluted with water. This aqueous solution was subjected to electrodialysis using an ion exchange membrane (CH-0 type manufactured by Nippon Rensui Co., Ltd. was used as the dialysis device. Eight CMVs manufactured by Asahi Glass Co., Ltd. were used as cation exchange membranes, and five AMVs manufactured by Asahi Glass Co., Ltd. were used as anion exchange membranes. 1 L of 1 mass% sodium chloride aqueous solution was put in a concentrated liquid tank, and 1 L of 1 mass% sulfuric acid sodium aqueous solution was put in a polar liquid tank.) A maximum DC voltage of 5 A or 13.5 V was applied between electrodes, and the treatment was performed for 4 hours under these conditions.
  • The ion exchanged water was added to the solution subjected to the concentrated treatment to obtain 482.47g of pale yellow aqueous solution having the concentration of 10.28 mass%, the pH of 11.44, and the weight average molecular weight Mw of 1,013. As a result of measuring the concentration of the sulfuric acid groups using this solution, the concentration of the sulfuric acid groups was 27,466 ppm by mass based on the mass of the allylamine polymer.
  • The initial absorbance A510 at the wavelength of 510 nm measured for the solution was 0.033. Further, the absorbance A'510 at the wavelength of 510 nm after the same solution was treated under an acceleration condition of 70°C for 2 days was 0.140. That is, the change in absorbance A'510/A510 at the wavelength of 510 nm when held under the acceleration condition of 70°C for 2 days was 4.242.
  • The results are shown in Table 1.
  • (Example 4)
  • As a result of measuring the initial absorbance A510 at the wavelength of 510 nm of the allylamine polymer aqueous solution having the concentration of 10.22 mass% and the pH of 11.64 prepared in Example 1 under the condition that pH was adjusted to 7 with a 35% hydrochloric acid, the initial absorbance A510 was 0.081. Further, the absorbance A'510 at the wavelength of 510 nm after the same solution was treated under the acceleration condition at 70°C for 2 days was 0.168. That is, when pH was adjusted to 7, the change in absorbance A'510/A510 at the wavelength of 510 nm when held under the acceleration condition of 70°C for 2 days was 2.074.
  • The results are shown in Table 1.
  • (Comparative Example 2)
  • The initial absorbance A510 at the wavelength of 510 nm of the allylamine polymer aqueous solution having the concentration of 10.28 mass% and the pH of 11.44 prepared in Comparative Example 1 was 0.055 under the condition that pH was adjusted to 7 with 35% hydrochloric acid. Further, the absorbance A'510 at the wavelength of 510 nm after the same solution was treated under an acceleration condition of 70°C for 2 days was 0.718. That is, when pH was adjusted to 7, the change in absorbance A'510/A510 at the wavelength of 510 nm when held under the acceleration condition of 70°C for 2 days was 13.055.
  • The results are shown in Table 1.
  • [Table 1]
  • Table 1
    Yield Mw Solid content Decomposition treatment time of sulfuric acid groups (70°C) Remaining sulfuric acid groups (ppm by mass) Initial absorbance A510 After maintaining at 70°C for 2 days A'510 A'510/A510
    Example 1 63.27% 1,016 0.1022 96 hr 13665 0.059 0.075 1.271
    Example 2 53.40% 924 0.0968 48 hr 6456 0.037 0.049 1.324
    Example 3 74.19% 557 0.0942 48 hr 10663 0.185 0.241 1.303
    Comparative Example 1 63.75% 1.055 0.1028 No treatment 27466 0.033 0.140 4.242
    Test after pH is adjusted to 7
    Example 4 - - - - - 0.081 0.168 2.074
    Comparative Example 2 - - - - - 0.055 0.718 13.055
  • INDUSTRIAL APPLICABILITY
  • The allylamine (co)polymer of the present invention realizes remarkable technical effects of high practical value that the coloring and impurities can be reduced to an extremely low level and these preferred characteristics can be maintained over a long period of time beyond the limitations of the prior art, and thus has high applicability in various fields of industries such as chemical industry, paper industry, and electrical and electronics industries.
  • The method of the present invention can efficiently produce the allylamine (co)polymer having preferable characteristics represented by the above allylamine (co)polymer, and thus has high applicability in various industrial fields.

Claims (12)

  1. An allylamine (co)polymer which has constituent units derived from allylamine and contains sulfuric acid groups in the structure thereof, in which the proportion of the sulfuric acid groups with respect to the total mass of the allylamine (co)polymer is 20,000 ppm by mass or less.
  2. The allylamine (co)polymer according to claim 1, wherein the proportion of the sulfuric acid groups with respect to the total mass of the allylamine (co)polymer is 15,000 ppm by mass or less.
  3. The allylamine (co)polymer according to claim 1 or 2, wherein the weight average molecular weight is 250 to 2500.
  4. The allylamine (co)polymer according to any one of claims 1 to 3, wherein the initial absorbance A510 at the wavelength of 510 nm, which is measured for an aqueous solution of the allylamine (co)polymer prepared to have the concentration of 10 mass% and the pH of 11, is 0.5 or less, and the ratio A'510/A510 between the absorbance A'510 at the wavelength of 510 nm after the aqueous solution is held at 70°C for 2 days and the initial absorbance A510 is 3 or less.
  5. The allylamine (co)polymer according to any one of claims 1 to 4, wherein the proportion of the constituent units derived from the allylamine in all of the constituent units is 10 mol% or more.
  6. A method for producing an allylamine (co)polymer, comprising:
    a) obtaining an allylamine (co)polymer by polymerizing an allylamine monomer;
    b) decomposing sulfuric acid groups in the obtained allylamine (co)polymer; and
    c) removing a sulfur compound generated by the decomposition of the sulfuric acid groups.
  7. The method for producing an allylamine (co)polymer according to claim 6, wherein, in the step b), the amount of the sulfuric acid groups in the allylamine (co)polymer is reduced to 20,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
  8. The method for producing an allylamine (co)polymer according to claim 6, wherein, in the step b), an amount of the sulfuric acid groups in the allylamine (co)polymer is reduced to 15,000 ppm by mass or less with respect to the total mass of the allylamine (co)polymer.
  9. The method for producing allylamine (co)polymer according to any one of claims 6 to 8, wherein, in the step b), the allylamine (co)polymer obtained in the step a) is heated at a temperature of 70°C or higher for 12 hours or longer.
  10. A papermaking treatment agent, an ink, a paint, or an adhesive comprising the allylamine (co)polymer according to any one of claims 1 to 5.
  11. An electrical electronic material or a display material comprising the allylamine (co)polymer according to any one of claims 1 to 5.
  12. A light transmitting material comprising the allylamine (co)polymer according to any one of claims 1 to 5.
EP18827597.8A 2017-07-05 2018-06-19 High purity allylamine (co)polymer and method for producing same Pending EP3650474A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017131615 2017-07-05
PCT/JP2018/023209 WO2019009057A1 (en) 2017-07-05 2018-06-19 High purity allylamine (co)polymer and method for producing same

Publications (2)

Publication Number Publication Date
EP3650474A1 true EP3650474A1 (en) 2020-05-13
EP3650474A4 EP3650474A4 (en) 2021-04-14

Family

ID=64949884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18827597.8A Pending EP3650474A4 (en) 2017-07-05 2018-06-19 High purity allylamine (co)polymer and method for producing same

Country Status (6)

Country Link
US (2) US20200123284A1 (en)
EP (1) EP3650474A4 (en)
JP (1) JP7057902B2 (en)
KR (2) KR102610953B1 (en)
CN (2) CN110831984B (en)
WO (1) WO2019009057A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414697B (en) * 2022-01-21 2024-09-27 湖北华世通生物医药科技有限公司 Allyl amine and method for measuring impurities thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504640A (en) 1982-05-19 1985-03-12 Nitto Boseki Co., Ltd. Process for producing monoallylamine polymer
JPS62151411A (en) * 1985-12-26 1987-07-06 Freunt Ind Co Ltd Deodorization of polyallylamine or salt thereof
JPH062780B2 (en) 1986-01-24 1994-01-12 日東紡績株式会社 Method for producing low molecular weight polymer of monoallylamine hydrochloride
JP2896015B2 (en) 1991-06-05 1999-05-31 日東紡績株式会社 Dye fixative for direct dye
JP3291506B2 (en) * 1993-01-20 2002-06-10 日東紡績株式会社 Papermaking chemicals
ES2221190T3 (en) * 1997-10-13 2004-12-16 Nitto Boseki Co., Ltd. PROCEDURE TO PRODUCE LOW MOLECULAR WEIGHT ALILAMINE POLYMERS OR THEIR ADDITIONAL SALTS.
JP4730547B2 (en) * 1997-10-13 2011-07-20 日東紡績株式会社 Water-resistant agent for ink addition and ink composition
AU9184998A (en) * 1997-10-29 1999-05-17 Nitto Boseki Co. Ltd. Processes for producing n,n-dialkylallylamine polymers and n,n-dialkylallylaminepolymers
JPH11255841A (en) * 1998-03-13 1999-09-21 Nitto Boseki Co Ltd Allyltrialkylammonium salt copolymer and manufacture thereof
US6579933B1 (en) * 1999-03-03 2003-06-17 Nitto Boseki Co., Ltd. Process for producing aqueous solution of monoallylamine polymer
JP4135255B2 (en) * 1999-04-01 2008-08-20 日東紡績株式会社 Method for producing a copolymer of allylamines and allyl alcohol
TW200500046A (en) 2003-03-26 2005-01-01 Basf Ag Color-stable superabsorbent polymer composition
US7209039B2 (en) 2003-05-08 2007-04-24 Illinois Tool Works Inc. Decorative surface covering with embedded RF antenna and RF shield and method for making the same
EP2016947A1 (en) * 2007-07-17 2009-01-21 Chemo Ibérica, S.A. Novel one step process for preparing cross-linked poly(allylamine) polymers
JP5228690B2 (en) * 2008-08-12 2013-07-03 日東紡績株式会社 Method for producing high-purity cationic polymer
JP5408476B2 (en) * 2009-03-25 2014-02-05 Dic株式会社 Pigment dispersant and pigment dispersion
CN104768979B (en) * 2012-11-02 2017-08-25 三菱化学株式会社 The manufacture method of the polymer solution of vinylamine-containing unit

Also Published As

Publication number Publication date
CN110831984A (en) 2020-02-21
JP7057902B2 (en) 2022-04-21
KR20230147755A (en) 2023-10-23
KR20200026885A (en) 2020-03-11
CN110831984B (en) 2023-06-06
WO2019009057A1 (en) 2019-01-10
US20200123284A1 (en) 2020-04-23
EP3650474A4 (en) 2021-04-14
CN116217763A (en) 2023-06-06
JPWO2019009057A1 (en) 2020-04-30
US20240117082A1 (en) 2024-04-11
KR102610953B1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
US20240117082A1 (en) High purity allylamine (co)polymer and method for producing same
EP2980105B1 (en) Terminal group conversion method and terminal stabilizing method
US10703080B2 (en) Film for medicine packaging and method of preparing the same
CN110407982B (en) Antibacterial hydrogel material and preparation method thereof
CN100545176C (en) Poly-(vinyl-acetic ester) emulsion and preparation method thereof
JP6246809B2 (en) Preparation of aqueous solution of vinyl lactam polymer and its powder
JP2005120387A (en) Manufacturing process of n,n-dialkylallylamine-based polymer and n,n-dialkylallylamine-based polymer
EP2838905B1 (en) Novel, mono-synthesizable, spontaneously water-soluble, substantially voc-free, environmentally friendly (meth)acrylamido-functional siloxanol systems, process for their preparation and use
AU745232B2 (en) Process for producing low-molecular-weight allylamine polymers or addition salts thereof
JP4186748B2 (en) Process for producing a copolymer of diallylamines and sulfur dioxide and process for producing an acid salt of a copolymer of diallylamines and sulfur dioxide
JP4140453B2 (en) Method for producing diallylamine acetate polymer
JP6766653B2 (en) Method for Purifying Triazine Ring-Containing Polymer
CN113583368A (en) Modified starch PVA (polyvinyl alcohol) -based composite film and preparation method thereof
CN115028953A (en) Antibacterial medical PVC material and preparation method thereof
EP1083191B1 (en) Process for producing aqueous solution of monoallylamine polymer
JPS6358841B2 (en)
JPH0254370B2 (en)
JP7510595B2 (en) Method for producing high purity cationic polymer
JP4730547B2 (en) Water-resistant agent for ink addition and ink composition
JP4474696B2 (en) Diallylalkylenediamine polymer and ink composition using the same
CN109679009A (en) A kind of preparation method of 30 POVIDONE K 30 BP/USP 60
CN105524196A (en) Preparation method of high-performance cationic polyacrylamide flocculating agent
JP3011299B2 (en) Method for purifying 2-pyrrolidone
JP2003055452A (en) Polyol polymer and meso-erythritol polymer
JPH04348129A (en) Method for treating polyarylene sulfide resin

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20210315

RIC1 Information provided on ipc code assigned before grant

Ipc: C08F 26/02 20060101AFI20210310BHEP

Ipc: C09D 11/106 20140101ALI20210310BHEP

Ipc: C09D 139/02 20060101ALI20210310BHEP

Ipc: C09J 139/02 20060101ALI20210310BHEP

Ipc: C08F 2/10 20060101ALI20210310BHEP

Ipc: C08F 6/00 20060101ALI20210310BHEP

Ipc: C08F 126/02 20060101ALI20210310BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230705