EP3649665B1 - Fonctionnement d'un dispositif de coupure de circuit à courant continu - Google Patents

Fonctionnement d'un dispositif de coupure de circuit à courant continu Download PDF

Info

Publication number
EP3649665B1
EP3649665B1 EP17735530.2A EP17735530A EP3649665B1 EP 3649665 B1 EP3649665 B1 EP 3649665B1 EP 17735530 A EP17735530 A EP 17735530A EP 3649665 B1 EP3649665 B1 EP 3649665B1
Authority
EP
European Patent Office
Prior art keywords
blocking
breaking device
current
circuit breaking
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17735530.2A
Other languages
German (de)
English (en)
Other versions
EP3649665A1 (fr
Inventor
Thomas R. Eriksson
Anirudh ACHARYA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Energy Ltd
Original Assignee
ABB Power Grids Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Power Grids Switzerland AG filed Critical ABB Power Grids Switzerland AG
Publication of EP3649665A1 publication Critical patent/EP3649665A1/fr
Application granted granted Critical
Publication of EP3649665B1 publication Critical patent/EP3649665B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/543Contacts shunted by static switch means third parallel branch comprising an energy absorber, e.g. MOV, PTC, Zener
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/544Contacts shunted by static switch means the static switching means being an insulated gate bipolar transistor, e.g. IGBT, Darlington configuration of FET and bipolar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts

Definitions

  • the invention generally related to the interruption of currents in direct current power transmission systems. More particularly, the invention relates to a direct current circuit breaking device to be connected in series with a power line as well as to a method and computer program product for controlling the direct current circuit breaking device.
  • High Voltage Direct Current (HVDC) systems are known to be used in different power transmission situations, such as for transmitting power over long distances using power lines that may be over-headlines or cables.
  • a direct current circuit breaker may then comprise a number of parallel branches, where one branch comprises a mechanical disconnector in series with a load commutation switch, another branch comprises a main breaker made up of a number of series-connected power semiconductor switches and a further branch comprises at least one non-linear resistor often in the form of a surge arrester or varistor.
  • US 2012/234796 discloses a high voltage DC breaker comprising at least two individually controllable HVDC breaker sections connected in series.
  • the DC breaker In case of a fault in the transmission line, the DC breaker is operated to clear the fault. This operation involves opening or blocking the main breaker in order to force the fault current to flow through the surge arrester branch.
  • the arrester branch dissipates energy and gradually brings the fault current to zero.
  • Transition of the fault current from the main breaker to the surge arrester branch is carried out in the order of few microseconds through the blocking of the main breaker. Due to high value of the fault current and small transition time, the rate of change of current (di/dt) through the surge arrester branch is high.
  • the circuit breaker may because of this be exposed to an exceedingly high transient voltage.
  • the present invention is concerned with this problem.
  • One object of the invention is therefore to provide an improvement in the mitigating of overvoltages experienced by a direct current circuit breaking device.
  • This object is according to a first aspect achieved by a direct current circuit breaking device according to claim 1.
  • This object is according to a second aspect also achieved by a method of controlling a direct current circuit breaking device according to claim 9.
  • This object is according to a third aspect also achieved by a computer program product for controlling a direct current circuit breaking device according to claim 12.
  • the invention according to the above-mentioned aspects has a number of advantages. It reduces overvoltages experienced in the circuit breaking device when currents are diverted to the non-linear resistors. Thereby elements with lower ratings may also be used. This is furthermore obtained without any additional components. It may be implemented only using some modified control software.
  • Fig. 1 shows one variation of a high voltage direct current (HVDC) power transmission system.
  • HVDC high voltage direct current
  • the system in fig. 1 is a point-to-point system for connection between two Alternating Current (AC) power transmission systems.
  • the HVDC system includes a first and a second converter station 10 and 12, where the first converter station 10 includes a first transformer T1.
  • the first converter station 10 also comprises a first converter 14 for conversion between AC and DC, which converter therefore comprises an AC side connected to the transformer T1 and a DC side connected to a first reactor L1.
  • the first transformer T1 thus connects the first converter 14 to the first AC power transmission system (not shown).
  • the first converter 14 is connected to a second converter 16 of a second converter station 12 via a DC transmission medium 18, which DC transmission medium maybe a power line 18 such as an overhead line or a cable.
  • the first converter 10 may here be connected to a first end of the transmission medium via a first reactor L1 and the second converter may be connected to a second end of the transmission medium 18 via a second reactor L2.
  • the second converter 16 also converts between AC and DC and may be an inverter.
  • the second converter station 12 may also include a second transformer T2, which connects the second converter 16 to the second AC power transmission system (not shown).
  • the converters 14 and 16 may be any type of converters, such as line-commutated Current Source Converters (CSC) or forced commutated Voltage Source Converters (VSC).
  • the converters may more particularly comprise a number of converter valves.
  • a voltage source converter maybe a two-level voltage source converter or a multi-level voltage source converter employing submodules.
  • DC Direct Current
  • the HVDC system in fig. 1 is a monopole system. It should however be realized that the system may also be a bipole system.
  • Fig. 2 shows another type of HVDC system.
  • the system is here a multi-terminal HVDC system, such as an HVDC system comprising a number of converters converting between AC and DC.
  • Each converter comprises an AC side and a DC side, where the DC side of a third converter 24 is connected to the DC side of a fourth converter 26 via a power transmission medium in the form of a power line that may be a second overhead line or cable 32, the DC side of a fifth converter 28 is connected to the DC side of a sixth converter 30 via a third DC line or cable 34.
  • Fig. 3 shows a first embodiment of the DC circuit breaking device 20.
  • the DC circuit breaking device 20 may comprise two parallel branches. There is a first branch comprising a mechanical disconnector, which maybe a so-called ultrafast disconnector UFD, in series with a load commutation switch LCS that is a fast electronic switch. There is also a second branch with a number of series-connected current diverting modules, where each current diverting module comprises a non-linear resistor in parallel with a corresponding electronic power switch. The totality of power switches may together form a main breaker MB, while the totality of non-linear resistors may be seen as forming a surge arrester branch. There is in the example in fig.
  • a first current diverting module comprising a first surge arrester SA1 in parallel with a first power switch S1, a second current diverting module comprising a second surge arrester SA2 in parallel with a second power switch S2, a third current diverting module comprising a third surge arrester SA3 in parallel with a third power switch S3 and finally a fourth current diverting module comprising a fourth surge arrester SA4 in parallel with a fourth power switch S4.
  • the main breaker MB is furthermore operable to be opened for diverting a current through the main breaker MB to the non-linear resistors, i.e. to the surge arrester branch.
  • Each power switch S1, S2, S3 or S4 may be realized in the form of a switching element together with an anti-parallel freewheeling unidirectional conduction element, which may be a diode.
  • the power switches are each realized with switching elements that are controllable to be turned on and off via control terminals, such as gates or bases.
  • the switching elements are realized as IGBTs (Insulated Gate Bipolar Transistor) and the unidirectional conduction elements as diodes.
  • the main breaker MB shown in fig. 3 is only an example of one type of circuit breaker device only capable of performing blocking in one current direction. However, it should be realized that it is possible to modify the main breaker MB so that it can block current in two directions. The same is of course also true for the load commutation switch LCS.
  • control unit 40 which is shown as controlling the ultra fast disconnector UFD, the load commutation switch LCS as well as gates of the individual power electronic switches S1, S2, S3 and S4.
  • the control unit 40 may be realized in the form of as computer or processing circuitry, such as a Field-Programmable Gate Array (FPGA).
  • FPGA Field-Programmable Gate Array
  • circuit breaking device 20 being connected in series with a power line is to interrupt the current in the power line and to possibly also obtain a mechanical separation from the power line.
  • the DC circuit breaking device 20 is operated to interrupt the fault current through the power line and to clear the fault.
  • the operation involves forcing a fault current running through the main breaker MB to be diverted to the surge arrester branch, which typically involves blocking of the main breaker MB. Once the main breaker MB has been blocked, the fault current is forced to flow through the surge arrester branch. This operation is typically performed after the load commutation switch LCS has been blocked and the mechanical disconnector UFD has been opened.
  • Transition of the fault current from the main breaker MB to the surge arrester branch may take place quickly, such as in the order of a few microseconds. Due to the value of the fault current and small transition time, the rate of change of current (di/dt) through the surge arrester branch is high.
  • the stray parameters of the direct current circuit breaking device due to connection wires, current sensors, arrester mechanical arrangement and the physical property of the arrester, may lead to a voltage above the designed arrester protective voltage due to high di/dt.
  • the voltage distribution across each element in the first branch i.e. the branch comprising the mechanical disconnector UFD and the load commutation switch LCS, during initial transient, mainly depends on the capacitance across it.
  • the net capacitance across the LCS switch in blocked condition is significantly higher than the net capacitance across the UFD in open position. Therefore, the initial peak voltage developed by the arrester branch, along with the stray parameters in other branches, is seen by the UFD during the initial transient and the voltage across the LCS is negligible or is limited to a voltage magnitude by the arrester across it.
  • the voltage across the first branch over time is shown in fig. 4 for a conventionally operated circuit breaking device.
  • the main breaker MB i.e. the totality of power switches maybe set to take the system overrating for which the surge arresters have been designed, i.e. the arrestor protection voltage.
  • the power switches may as an example be designed for an overrating of 40 %. They may thus as an example be designed for a voltage that is 1.4 times the operational steady-state voltage Vss. It can here be seen that the first branch and therefore also the mechanical disconnector UFD may experience a voltage well above the protection voltage Vp.
  • the various elements are designed to withstand the arrester protection voltage Vp with a certain margin. It is not desirable, in practice, to exceed the arrester protection voltage Vp. Exceeding the voltage above the designed maximum blocking voltage may result in failure of one or more of the elements such as of the UFD. Another factor that is critical is the rate of rise of blocking voltage across an open or blocked element, such as an open UFD. Since the arrester conducts almost immediately, the rate of rise of voltage across the element may be high.
  • the method which is a modified circuit breaking activity, is possible to perform due to the modular structure of the used main breaker MB.
  • fig. 5 shows a flow chart of a method of controlling the DC circuit breaking device 20 and being performed by the control unit 40.
  • a current is initially, in steady state fault free operation of the system, running through the first branch comprising the mechanical disconnector UFD and load commutation switch LCS.
  • the first branch is thereby the normal current path.
  • Both the mechanical disconnector UFD and the load commutation switch LCS are thereby closed.
  • the main breaker MB is closed.
  • the control unit 40 first opens the load commutation switch LCS, step 42, in order to commutate the current over to the main breaker MB. Once the current has been commutated over to the main breaker MB, the control unit 40 then opens the mechanical disconnector UFD, step 44. Thereby the main current path has been disconnected and the fault current instead runs through the main breaker MB.
  • the control unit 40 turning off or blocking the power switches S1, S2, S3 and S4 of the main breaker MB according to a sequential blocking scheme, step 46.
  • the power switches are thus blocked according to a blocking sequence.
  • the sequential blocking scheme defines a sequence of blocking instances at which the power switches are blocked. Thereby at least some of the power switches are being blocked at different points in time.
  • Fig. 6 shows the voltage across the first branch and thus also the voltage experienced by the disconnector UFD, during the operation of the main breaker MB according to the sequential blocking scheme.
  • the voltage levels are here the same as those shown in fig. 4 .
  • Fig. 6 thus exemplifies the operation of a circuit breaking device comprising seven current diverting modules.
  • the power switches may be set to be blocked sequentially, i.e. in a sequence of blocking instances.
  • only one power switch is blocked at each blocking instance and the blocking instances are separated by the same blocking instance separation time or time delay..
  • the power switches of the main breaker MB may thus be blocked successively, one, two or more at a time, perhaps with a delay, so that the power switches of the current diverting blocks conduct in groups of one, two or more after each other.
  • One power switch may thus be controlled to be blocked at each blocking instance.
  • the voltage withstand levels of these power switches may need to be comparable with each other.
  • the voltage developed by each of the current diverting blocks are a fraction of the protection voltage Vp. Therefore, the voltage across the UFD builds to the protection voltage in steps- with a finite delay between each step.
  • the fault current is limited by blocking the main breaker MB and diverting it through the arrester. Since all of the arresters are forced to conduct an arrester protection voltage develops across each module. Therefore, across the UFD the voltage seen will be the superposition of the arrester protection voltage and ringing voltage due to parasitics.
  • the proposed scheme takes advantage of this fact.
  • the main breaker is made up of a series connection of power switches in current diverting blocks
  • the block structure provides the flexibility to connect several such blocks in series to develop a main breaker with desired voltage level.
  • Each block then receives a separate control command to block or de-block the corresponding power switch.
  • the proposed method takes advantage of this fact. Therefore, when the main breaker MB as a unit has to be blocked, a separate control command is sent to all the power semiconductor switches of the main breaker MB connected in series.
  • the rate of rise of voltage (dv/dt) and the peak voltage across the UFD is controlled by sequentially blocking the main breaker semiconductor switches.
  • the blocking instance separation time or delay between blocking of each main breaker power switch may be so chosen to avoid a large overshoot and to achieve the desired rate of rise of voltage across the element, such as the UFD.
  • the delay may be set such that the amplitude of the ringing experienced by the element is damped to an acceptable level,.
  • the delay may more particularly be set to allow a sufficient degree of the ringing caused by the parasitics of the circuit breaking device to be damped. It may for instance be set so that the amplitude of the ringing is damped to a suitable level where it settles across the element, like 50, 40, 30, 20 or 10 % of the initial ringing amplitude before a following blocking instance takes place.
  • the duration of the sequence is not really time critical as long as it can be completed within a maximum allowed time for completion of the circuit breaking operation after the detection of a fault, which as an example may be 5 ms.
  • the maximum allowed time may then also have to include the opening times of the mechanical disconnector UFD and the load commutation switch LCS as well as the time for receiving a fault indication from a fault detecting device.
  • the blocking scheme it is possible that more than one power switch is being blocked at the same time. It is thus possible that more than one power switch is blocked at a blocking instance. It is as an example possible that two or even more power switches are blocked at a blocking instance. It is more particularly possible that power switches of current diverting modules that together make up a voltage corresponding to the operational voltage Vss are being blocked at the same blocking instance. This may in turn be followed by singly blocked power switches.
  • the delay between blocking instances may also depend on the number of power switches being blocked.
  • the delay following a blocking instance may as an example generally be set as n times the delay of a single blocked power switch, where n is the number of simultaneously blocked power switches. Thereby it is clear that the delays between the blocking instances do not have to be equally sized.
  • one or more of the blocking instances at the end of the sequence each only involves the blocking of a single power switch. It is for instance possible that the last blocking instance in the sequence only blocks one power switch.
  • the actual power switch selected for being blocked at a certain blocking instance is not important.
  • the power switches all perform the same function. It may therefore be wise if the order in which the power switches are selected to be blocked in a blocking sequence is changed from time to time.
  • the power switches may thus be controlled to be blocked in a first sequence for a first interrupting of a current through the power line and in a second sequence for a second interrupting of a current through the power line, where the second sequence is different from the first sequence.
  • the order in which power switches are selected in the first sequence may thus be different than the order in which the same power switches are selected in the second following blocking sequence.
  • the invention has a number of advantages. It mitigates the overvoltages experienced in the circuit breaking device when currents are diverted to the non-linear resistors. This is furthermore obtained without any additional components. It may be implemented only using some modified control software.
  • a control unit may be realized in the form of discrete components, such as one or more FPGAs. However, it may also be implemented in the form of one or more processors with accompanying program memories comprising computer program code that performs the desired control functionality when being run on a processor.
  • a computer program product carrying such code can be provided as a data carrier such as one or more CD ROM discs or one or more memory sticks carrying the computer program code, which performs the above-described control functionality.
  • One such data carrier in the form of a CD ROM disk 48 carrying computer program code 50 is shown in fig. 7 .
  • circuit breaking device may be provided without the first branch.
  • the first branch with mechanical disconnector and optional load commutation switch may thus be omitted.
  • the main breaker is used for conducting current in steady state fault free operation. Therefore the invention is only to be limited by the following claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)

Claims (12)

  1. Dispositif de coupure de circuit à courant continu (20) destiné à être connecté en série à une ligne d'alimentation électrique (18 ; 32, 34, 36, 38) et comprenant :
    une branche comprenant un certain nombre de modules de déviation de courant connectés en série, chaque module de déviation de courant comprenant une résistance non linéaire (SA1, SA2, SA3, SA4) en parallèle avec un interrupteur de puissance correspondant (S1, S2, S3, S4), où les interrupteurs de puissance forment ensemble un disjoncteur principal (MB) pouvant être ouvert pour dévier un courant à travers le disjoncteur principal vers les résistances non linéaires (SA1, SA2, SA3, SA4),
    lesdits interrupteurs de puissance (S1, S2, S3, S4) pouvant être commandés, lorsque le dispositif de coupure de circuit est réglé, pour interrompre un courant à travers la ligne d'alimentation électrique causé par un défaut dans la ligne d'alimentation électrique,
    caractérisé en ce que :
    lesdits interrupteurs de puissance doivent être bloqués selon un schéma de blocage séquentiel qui définit une séquence d'instances de blocage auxquelles les interrupteurs de puissance doivent être bloqués afin de commuter le courant de défaut sur les résistances non linéaires,
    où les instances de blocage sont séparées par un temps de séparation d'instance de blocage défini pour permettre à une amplitude de sonnerie d'une tension de sonnerie d'être amortie à un niveau acceptable, où une tension observée aux bornes des résistances non linéaires est une superposition d'une tension de protection des résistances non linéaires et de la tension de sonnerie.
  2. Dispositif de coupure de circuit à courant continu (20) selon la revendication 1, dans lequel le nombre d'interrupteurs de puissance à bloquer à la dernière instance de blocage de la séquence est de un.
  3. Dispositif de coupure de circuit à courant continu (20) selon la revendication 1 ou la revendication 2, dans lequel plus d'un interrupteur de puissance peut être commandé pour être bloqué à une instance de blocage, où les niveaux de résistance à la tension de ces interrupteurs de puissance sont comparables.
  4. Dispositif de coupure de circuit à courant continu (20) selon l'une quelconque des revendications précédentes, dans lequel les interrupteurs de puissance d'un certain nombre de modules de dérivation de courant réglés ensemble pour maintenir une tension correspondant à la tension de fonctionnement nominale (Vss) peuvent être commandés pour être bloqués à la même instance de blocage.
  5. Dispositif de coupure de circuit à courant continu (20) selon la revendication 1 ou la revendication 2, dans lequel un interrupteur de puissance peut être commandé pour être bloqué à chaque instance de blocage.
  6. Dispositif de coupure de circuit à courant continu selon l'une quelconque des revendications précédentes, dans lequel lesdits interrupteurs de puissance peuvent être commandés pour être bloqués dans une première séquence pour une première interruption d'un courant à travers la ligne d'alimentation électrique (18 ; 32, 34, 36, 38) et dans une seconde séquence pour une seconde interruption d'un courant à travers la ligne d'alimentation électrique (18 ; 32, 34, 36, 38), où la seconde séquence est différente de la première séquence.
  7. Dispositif de coupure de circuit à courant continu (20) selon l'une quelconque des revendications précédentes, comprenant une autre branche en parallèle avec la branche des modules de déviation de courant connectés en série, ladite autre branche comprenant un dispositif de déconnexion mécanique (UFD) pouvant fonctionner pour obtenir une séparation mécanique de la ligne d'alimentation électrique.
  8. Dispositif de coupure de circuit à courant continu (20) selon l'une quelconque des revendications précédentes, comprenant en outre une unité de commande (40) configurée pour commander le blocage des interrupteurs de puissance (S1, S2, S3, S4) selon le schéma de blocage séquentiel.
  9. Procédé de commande d'un dispositif de coupure de circuit à courant continu (20) lors de l'interruption d'un courant dans une ligne d'alimentation électrique (18 ; 22, 24, 26, 28) connectée en série au dispositif de coupure de circuit, où le dispositif de coupure de circuit comprend une branche comprenant un certain nombre de blocs de dérivation de courant connectés en série, où chaque bloc de déviation de courant comprend une résistance non linéaire (SA1, SA2, SA3, SA4) en parallèle avec un interrupteur de puissance correspondant (S1, S2, S3, S4) et les interrupteurs de puissance (S1, S2, S3, S4) forment ensemble un disjoncteur principal (MB), le procédé étant exécuté dans le dispositif de coupure de circuit à courant continu (20) pendant l'ouverture du disjoncteur principal (MB) pour dévier un courant provoqué par un défaut dans la ligne d'alimentation électrique vers les résistances non linéaires (SA1, SA2, SA3, SA4), caractérisé en ce que le procédé comprend de commander (46) les interrupteurs de puissance (S1, S2, S3, S4) à bloquer selon un schéma de blocage séquentiel qui définit une séquence d'instances de blocage auxquelles les interrupteurs de puissance doivent être bloqués afin de commuter le courant de défaut sur les résistances non linéaires,
    où les instances de blocage sont séparées par un temps de séparation d'instance de blocage défini pour permettre à une amplitude de sonnerie d'une tension de sonnerie d'être amortie à un niveau acceptable, où une tension observée aux bornes des résistances non linéaires est une superposition d'une tension de protection des résistances non linéaires et de la tension de sonnerie.
  10. Procédé selon la revendication 9, dans lequel le nombre d'interrupteurs de puissance étant bloqués à la dernière instance de blocage de la séquence est de un.
  11. Procédé selon la revendication 9 ou la revendication 10, dans lequel il existe une autre branche connectée en parallèle avec la branche qui comprend un certain nombre de modules de dérivation de courant connectés en série, ladite autre branche comprenant un dispositif de déconnexion mécanique (UFD) pouvant fonctionner pour obtenir une séparation mécanique de la ligne d'alimentation électrique et un interrupteur de commutation de charge (LCS), le procédé comprenant en outre d'ouvrir (42) l'interrupteur de commutation de charge (LCS) pour commuter le courant vers le disjoncteur principal (MB) et d'ouvrir (44) le dispositif de déconnexion mécanique (UFD) pour séparer le dispositif de coupure de circuit de la ligne d'alimentation électrique et ouvrir (46) le disjoncteur principal (MB) pour dévier le courant vers les résistances non linéaires.
  12. Produit programme informatique pour commander un dispositif de coupure de circuit à courant continu (20) lors de l'interruption des courants dans une ligne d'alimentation électrique (18 ; 32, 34, 36, 38) connectée en série au dispositif de coupure de circuit, où le dispositif de coupure de circuit (20) comprend une branche comprenant un certain nombre de blocs de déviation de courant connectés en série, où chaque bloc de déviation de courant comprend une résistance non linéaire (SA1, SA2, SA3, SA4) en parallèle avec un interrupteur de puissance correspondant (S1, S2, S3, S4) et les interrupteurs de puissance forment ensemble un disjoncteur principal (MB), le produit programme informatique comprenant un support de données (48) avec un code de programme informatique (50) configuré pour :
    commander, lors de l'ouverture du disjoncteur principal (MB) pour dévier un courant provoqué par un défaut dans la ligne d'alimentation électrique vers les résistances non linéaires (SA1, SA2, SA3, SA4), les interrupteurs de puissance (S1, S2, S3, S4), caractérisé en ce que les interrupteurs de puissance doivent être bloqués selon un schéma de blocage séquentiel qui définit une séquence d'instances de blocage auxquelles les interrupteurs de puissance doivent être bloqués afin de commuter le courant de défaut sur les résistances non linéaires,
    où les instances de blocage sont séparées par un temps de séparation d'instance de blocage défini pour permettre à une amplitude de sonnerie d'une tension de sonnerie d'être amortie à un niveau acceptable, où une tension observée aux bornes des résistances non linéaires est une superposition d'une tension de protection des résistances non linéaires et de la tension de sonnerie.
EP17735530.2A 2017-07-05 2017-07-05 Fonctionnement d'un dispositif de coupure de circuit à courant continu Active EP3649665B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/066818 WO2019007505A1 (fr) 2017-07-05 2017-07-05 Fonctionnement d'un dispositif de coupure de circuit à courant continu

Publications (2)

Publication Number Publication Date
EP3649665A1 EP3649665A1 (fr) 2020-05-13
EP3649665B1 true EP3649665B1 (fr) 2021-09-01

Family

ID=59285234

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17735530.2A Active EP3649665B1 (fr) 2017-07-05 2017-07-05 Fonctionnement d'un dispositif de coupure de circuit à courant continu

Country Status (3)

Country Link
EP (1) EP3649665B1 (fr)
CN (1) CN110800078B (fr)
WO (1) WO2019007505A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2861157B2 (es) * 2021-03-15 2022-03-21 Univ Madrid Politecnica Sistema de proteccion para redes de corriente continua

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2494571B1 (fr) * 2009-10-27 2013-12-11 ABB Technology AG Disjoncteur pour courant continu haute tension (hvdc) et appareil de commande pour commander un disjoncteur hvdc
CN102870181B (zh) * 2010-05-11 2015-12-09 Abb技术有限公司 高压dc断路器装置
EP3082208B1 (fr) * 2013-12-11 2018-09-05 Mitsubishi Electric Corporation Dispositif de disjoncteur c.c.
US10243357B2 (en) * 2013-12-20 2019-03-26 Siemens Aktiengesellschaft Apparatus and method for switching a direct current
CN103928913B (zh) * 2014-03-31 2016-05-25 华中科技大学 一种基于快速斥力机构和绝缘变压器的高压直流断路器
CN104158171B (zh) * 2014-08-18 2017-06-06 国家电网公司 一种高压直流断路器拓扑电路
CN104901269B (zh) * 2015-06-02 2018-05-01 梦网荣信科技集团股份有限公司 一种全固态直流断路器及其控制方法
CN106253243B (zh) * 2016-08-09 2018-09-28 南京南瑞继保电气有限公司 一种高压直流断路器的合闸控制方法

Also Published As

Publication number Publication date
EP3649665A1 (fr) 2020-05-13
CN110800078A (zh) 2020-02-14
WO2019007505A1 (fr) 2019-01-10
CN110800078B (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
Li et al. Continuous operation of radial multiterminal HVDC systems under DC fault
EP2569793B1 (fr) Disjoncteur à courant continu haute tension
US8687389B2 (en) Apparatus having a converter
US6075684A (en) Method and arrangement for direct current circuit interruption
EP3001552A1 (fr) Convertisseur de source de tension et commande de celui-ci
EP2747267B1 (fr) Appareil électrique comprenant un convertisseur à cellules reliées en chaîne et un circuit de protection
CN109586327B (zh) 一种能量消耗装置及其控制方法
Sander et al. Characterization of a countercurrent injection-based HVDC circuit breaker
EP3353881B1 (fr) Convertisseur multiniveaux ayant un circuit hacheur
EP3008822B1 (fr) Ensemble de commutation à semi-conducteur
CN113872425A (zh) 电压源换流器的控制
WO2014177874A2 (fr) Appareil et procédé pour commander un courant continu
EP3424137B1 (fr) Protection contre les défaillances pour des convertisseurs de source de tension
Li et al. A DC fault handling method of the MMC-based DC system
US20180115253A1 (en) Improvements in or relating to electrical assemblies
US11239657B2 (en) AC switching arrangement
Sander et al. A novel current-injection based design for HVDC circuit breakers
EP3649665B1 (fr) Fonctionnement d'un dispositif de coupure de circuit à courant continu
CN115280448A (zh) 故障限流器断路器
JP2005295796A (ja) 組み込まれた電力スイッチを有する発電機
Palav et al. On using the solid state breaker in distribution systems
Anurag et al. Protection scheme for a medium voltage mobile utility support equipment based solid state transformer (MUSE-SST)
Zheng et al. A Flexible and Secure Evaluation Platform for Overvoltage Protection in Power Electronics Systems
Murugan et al. Modeling and simulation of thirty bus system employing solid state circuit breaker
Murugan et al. Simulation and Implementation of Solid State Circuit Breaker for the Protection of Power System

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191230

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 9/54 20060101AFI20210120BHEP

Ipc: H01H 9/30 20060101ALI20210120BHEP

Ipc: H01H 33/59 20060101ALI20210120BHEP

INTG Intention to grant announced

Effective date: 20210208

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB POWER GRIDS SWITZERLAND AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1427095

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017045170

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210901

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HITACHI ENERGY SWITZERLAND AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1427095

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017045170

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017045170

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017045170

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

26N No opposition filed

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602017045170

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017045170

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: HITACHI ENERGY SWITZERLAND AG, BADEN, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20240718 AND 20240724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240725

Year of fee payment: 8