EP3647553A1 - Supply of an electromechanical power converter with electrical energy from a thermodynamic cyclical process - Google Patents

Supply of an electromechanical power converter with electrical energy from a thermodynamic cyclical process Download PDF

Info

Publication number
EP3647553A1
EP3647553A1 EP18204344.8A EP18204344A EP3647553A1 EP 3647553 A1 EP3647553 A1 EP 3647553A1 EP 18204344 A EP18204344 A EP 18204344A EP 3647553 A1 EP3647553 A1 EP 3647553A1
Authority
EP
European Patent Office
Prior art keywords
voltage
converter
intermediate circuit
generator
electromechanical energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18204344.8A
Other languages
German (de)
French (fr)
Other versions
EP3647553B1 (en
Inventor
Roy Langer
Alexander Zimmermann
Ulf Schwalbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP18204344.8A priority Critical patent/EP3647553B1/en
Priority to PCT/EP2019/079126 priority patent/WO2020094418A1/en
Priority to CN201980072013.0A priority patent/CN113167132A/en
Priority to JP2021523672A priority patent/JP7471287B2/en
Publication of EP3647553A1 publication Critical patent/EP3647553A1/en
Application granted granted Critical
Publication of EP3647553B1 publication Critical patent/EP3647553B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours

Definitions

  • the invention relates to a device for operating an electromechanical energy converter and a method for operating an electromechanical energy converter.
  • the liquid working medium returns from the condenser to the system feed pump, which closes the thermodynamic cycle.
  • the working medium is an organic working medium, it is an Organic Rankine Cycle as a thermodynamic cycle (ORC process).
  • the prior art includes so-called dry coolers (for example, recoolers in combined heat and power plants, CHPs) through which air flows through electrically driven fans.
  • these fans should be supplied with electrical energy via a thermodynamic cycle (for example an ORC process).
  • the heat dissipation of the cycle should be realized by the fans of the dry cooler (normally the cycle contains or ORC process a separate fan to provide cooling of the condenser via an air flow).
  • the cycle process converts heat (eg unused exhaust gas heat from an internal combustion engine or part of the heat of the fluid to be cooled in the cooler) into electrical energy.
  • the object of the invention is to avoid or at least alleviate the disadvantages mentioned.
  • the cycle or ORC process should always deliver as much power as possible as the fan consumes (quasi-island operation). Due to the joint use of the fan for the cooling process and the cycle, the speed of the fan and thus its power consumed is only dependent on the cooling requirement of the cooling process. The recooler of the ORC process cannot be influenced in terms of control technology. In order to ensure a high level of operational safety, additional power must be able to be drawn from the public power grid if the ORC process (e.g. due to high outside temperature or insufficient process energy (waste heat)) cannot provide enough power to operate the fan.
  • the ORC process e.g. due to high outside temperature or insufficient process energy (waste heat)
  • the invention describes the solution to at least part of the problems mentioned above.
  • the invention thus discloses a device for operating an electromechanical energy converter, for example a fan or a pump; the device comprising: a thermodynamic cycle device; an electric generator connected to a shaft of an expansion machine of the thermodynamic cycle device and rotatable together with the shaft; wherein the generator is electrically connected to a first voltage converter, the first voltage converter is electrically connected to a DC voltage intermediate circuit and the DC voltage intermediate circuit for operating the electromechanical energy converter can be electrically connected to the latter; wherein the first voltage converter is designed to convert a first AC voltage of the electrical generator into a DC voltage; and wherein the DC voltage intermediate circuit can be connected to an additional electrical power supply, in particular a public power grid.
  • the device further comprises a regulating device (60) for regulating the electrical energy supplied to the electromechanical energy converter, so that the electromechanical energy converter can be operated at a predetermined speed, the regulating device for regulating the electrical energy supplied to the electromechanical energy converter from the generator and, if that Electrical energy provided by the generator is not sufficient to regulate the electrical energy supplied to the electromechanical energy converter from the additional energy supply.
  • a regulating device 60 for regulating the electrical energy supplied to the electromechanical energy converter, so that the electromechanical energy converter can be operated at a predetermined speed
  • the regulating device for regulating the electrical energy supplied to the electromechanical energy converter from the generator and, if that Electrical energy provided by the generator is not sufficient to regulate the electrical energy supplied to the electromechanical energy converter from the additional energy supply.
  • the device according to the invention has the advantages that energy is saved by supplying an electromechanical energy converter (for example fan or pump) via a circuit or ORC process using waste heat, and that for example a separate circuit process or ORC fan is not required. that the operation of the fan is independent of the ORC process and thus a high level of system reliability is achieved, and that grid feed-in is avoided and the supply of feed-in requirements is thereby avoided.
  • an electromechanical energy converter for example fan or pump
  • the device according to the invention can be further developed such that a second voltage converter for converting a DC voltage in the DC voltage intermediate circuit into a second AC voltage for operating an electromechanical energy converter without its own voltage converter is further provided, the second voltage converter being electrically connected to the DC voltage intermediate circuit.
  • the additional energy supply is a public electricity network, which is connected to the DC voltage intermediate circuit via a rectifier circuit or via a power factor correction stage, and the control device in particular is further designed to reduce the energy provided by the generator in order to feed electrical energy into it To avoid energy in the public power grid, in particular by reducing the heat flow introduced into the thermodynamic cycle device and / or by reducing the efficiency of the thermodynamic cycle device.
  • the public power grid can be connected to the direct voltage intermediate circuit via a bidirectional converter circuit in order to feed excess energy from the generator into the public power grid.
  • the DC voltage intermediate circuit can comprise a first partial DC voltage intermediate circuit connected to the first voltage converter, a second partial DC voltage intermediate circuit which can be connected to the electromechanical energy converter or connected to the second voltage converter, and a step-up converter arranged between the two partial circuits.
  • a further electromechanical energy converter can be operated via a parallel connection on the second partial DC voltage intermediate circuit, a third voltage converter for converting the direct voltage in the second partial DC voltage intermediate circuit into a third AC voltage for operating the further electromechanical energy converter being optionally provided, wherein the further electromechanical energy converter is, for example, a further pump, in particular a feed pump for pumping a working medium in the thermodynamic cycle device or a further fan.
  • the electromechanical energy converter can comprise an intermediate circuit with an AC voltage connection and the AC voltage connection can be connected directly to the second partial DC voltage intermediate circuit.
  • a battery can be connected via a parallel connection to the second partial DC voltage intermediate circuit and a bidirectional DC voltage converter.
  • the invention further provides a system comprising: a heat generating device with a cooling fluid for dissipating heat from the heat generating device and a cooling device with an electrically operated fan for cooling the cooling fluid, in particular the speed of the fan and thus in particular its intake Power is predetermined by the cooling requirement of the cooling device; and a thermodynamic cycle device, in particular an organic Rankine cycle device, which comprises an evaporator for evaporating a working medium, an expansion machine which can be operated by expanding the evaporated working medium with the evaporated working medium, an electric generator which can be operated with the expansion machine and a capacitor for condensing the expanded Working medium includes; wherein the fan is further provided for cooling the working medium in the condenser; and wherein the system further comprises a device according to the invention for operating the fan as an electromechanical energy converter or one of the developments described above.
  • the system can be developed in such a way that the speed of the fan is predetermined by a temperature of the cooling fluid to be achieved with the cooling device.
  • the invention thus discloses a method for operating an electromechanical energy converter, for example a pump or a fan at a predetermined speed, comprising the steps: converting a first alternating voltage of a generator into a direct voltage in a direct current intermediate circuit between the generator and the electromechanical energy converter, the electrical Generator is connected to a shaft of an expansion machine of a thermodynamic cycle device, rotates together with the shaft and is driven by the shaft; Applying the DC voltage in the DC voltage intermediate circuit to the electromechanical energy converter; Applying a DC voltage to the DC voltage intermediate circuit from an additional electrical energy supply, in particular with electrical energy from a public electricity network; Regulating the electrical energy supplied to the electromechanical energy converter from the generator in order to operate the electromechanical energy converter at the predetermined speed, and regulating the electrical energy supplied to the electromechanical energy converter from the additional energy supply if the electrical energy provided by the generator for operating the electromechanical energy converter with the predetermined speed is not sufficient.
  • a second AC voltage can be generated from the DC voltage intermediate circuit, and this (instead of the DC voltage in the DC voltage intermediate circuit) can be applied to the electromechanical energy converter (for example to a fan motor).
  • the method according to the invention can be further developed in such a way that the additional energy supply is a public electricity network, which is connected to the DC voltage intermediate circuit via a rectifier circuit, and the method further comprises the following step: avoiding feeding electrical energy into the public electricity network by reducing the amount generated by the generator provided energy, in particular by reducing the heat flow introduced into the thermodynamic cycle device and / or by reducing the efficiency of the thermodynamic cycle device.
  • the method according to the invention can be further developed such that the additional energy supply is a public electricity network that is connected to the direct voltage intermediate circuit via a bidirectional converter circuit, the method further comprises the following step: feeding excess energy from the generator into the public electricity network.
  • the DC voltage intermediate circuit comprises a first partial DC voltage intermediate circuit connected to the generator and a second partial DC voltage intermediate circuit connected to the electromechanical energy converter, the method comprising the following further step: converting the first DC voltage in the first partial DC voltage intermediate circuit to a higher second direct voltage introduced into the second partial direct voltage intermediate circuit.
  • the method comprises the further step: setting the second DC voltage below a third DC voltage provided by the additional energy supply in the second partial DC voltage intermediate circuit if the electrical energy provided by the generator for operating the electromechanical energy converter at the predetermined speed is not is sufficient.
  • the method can include the following further step: converting the DC voltage in the DC voltage intermediate circuit into a third AC voltage for operating a further electromechanical energy converter, in particular a pump, for example a feed pump for pumping a working medium in the thermodynamic cycle device or for operating a further fan .
  • a further electromechanical energy converter in particular a pump, for example a feed pump for pumping a working medium in the thermodynamic cycle device or for operating a further fan .
  • Electromechanical energy converters As electromechanical energy converters, the embodiments show, by way of example only, one or more fans and / or one or more pumps, in particular, for example, a feed pump in the thermodynamic cycle device. Electromechanical energy converters convert electrical energy into mechanical kinetic energy, whereby the movement can be linear or rotating. Accordingly, a distinction is made between linear machines and rotating electrical machines. The embodiments relate to rotating electrical machines, but linear machines can also be used for the electromechanical energy converters in the embodiments in which speed control is not essential.
  • the electromechanical energy converters in the embodiments are predominantly constructed in such a way that the electromechanical energy converter itself Has intermediate circuit with an AC voltage connection.
  • These embodiments can each be modified such that a corresponding voltage converter is provided on the DC link for connection to the electromechanical energy converter.
  • Fig. 1A shows a first embodiment 100 of the device according to the invention for operating a fan.
  • the device 100 comprises an electrically operable fan 80 with a motor 10 and a DC / AC voltage converter 44, an electrical generator 20 which is connected to a shaft 35 of an expansion machine 30 of a thermodynamic cycle device, here an ORC device, and together with the Shaft 35 is rotatable.
  • a first voltage converter 42 (input converter 42) and a DC voltage intermediate circuit 40 are provided between the generator 20 and the fan 80.
  • the first voltage converter 42 is designed to convert a first AC voltage of the electrical generator 20 into a DC voltage.
  • the DC / AC voltage converter 44 (or output converter 44) is designed to convert a DC voltage in the DC voltage intermediate circuit 40 into a second AC voltage for operating the fan motor 10.
  • the DC voltage intermediate circuit 40 is connected to an additional electrical energy supply 50, here a public power grid 51.
  • the device 100 further comprises a control device 60 for controlling the electrical energy supplied to the fan 80, so that the fan can be operated at a predetermined speed, the control device 60 being designed such that it controls the electrical energy supplied to the fan 80 from the generator 20 and, if the electrical energy provided by the generator 20 is not sufficient for this, regulates the electrical energy supplied to the fan 80 from the additional energy supply 50.
  • the DC voltage intermediate circuit 40 includes a capacitor 41.
  • the AC voltage from the public power grid 51 is rectified by a rectifier circuit 52 and applied to the DC voltage intermediate circuit 40.
  • the control device 60 is also designed to reduce the energy provided by the generator 20 in order to meet the energy requirements of the To meet consumer (s), in particular by reducing the heat flow introduced into the thermodynamic cycle device and / or by reducing the efficiency of the thermodynamic cycle device.
  • the ORC device for the generation of electrical energy from thermal energy comprises: a feed pump which conveys liquid working medium to an evaporator while increasing the pressure, the evaporator itself, in which the working medium is preheated, evaporated and optionally additionally overheated by supplying heat , the expansion machine 30, in which the vaporized working medium under high pressure is expanded and thereby generates mechanical energy, which can be converted into electrical energy via the generator 20, and a condenser in which the low-pressure steam (expanded working medium) from the expansion machine 30 is heated and liquefied.
  • the liquid working medium returns from the condenser to the system feed pump, which closes the thermodynamic cycle.
  • Figure 1B shows a system according to the invention in combination with the first embodiment of the device according to the invention Fig. 1A .
  • the system comprises a heat-generating device 110, an outlet 111 of the heat-generating device, the outlet 111 being provided for removing process fluid to be cooled from the heat-generating device 110; an input 112 of the heat generating device 110, the input 112 being provided for supplying cooled process fluid to the heat generating device 110; and a thermodynamic cycle device, in particular an ORC device, the thermodynamic cycle device comprising: an evaporator 120 with an inlet 121 for supplying the process fluid to be cooled from the outlet 111 of the heat-generating device 110 and with an outlet 122 for discharging the cooled process fluid to the inlet 112 the heat-generating device 110, the evaporator 120 being designed to evaporate a working medium of the thermodynamic cycle device by means of heat from the process fluid; the expansion machine 30 for expanding the evaporated working medium and for generating electrical energy electric generator 20; an air-cooled condenser 150 for liquefying the expanded working medium; and a pump 160 for pumping the liquefied working medium to the evaporator.
  • an air cooler 170 is provided for cooling at least part of the process fluid to be cooled.
  • the system includes a branch 171, which is provided, for example with respect to a flow direction of the process fluid downstream of the outlet 111 and upstream of the inlet 121, for dividing the process fluid to be cooled into a first and a second partial flow of the process fluid.
  • the system further includes a junction 172 that is provided with respect to a flow direction of the process fluid downstream of the outlet 122 and upstream of the inlet 112 for merging the second partial flow of the process fluid cooled by the cooler 170 and the first partial flow of the process fluid cooled by the evaporator 120 ; the branch 171 is designed to supply the first partial flow to the evaporator 120 and to supply the second partial flow to the cooler 170.
  • the flow of ambient air is sequentially first through the cooler 170 and then through the condenser 150.
  • Fig. 2 shows the operating states of the fan or fans in the first embodiment 100 of the device according to the invention in a diagram of power versus outside temperature, which are described in more detail below.
  • the fan 80 is connected to the generator 20 via the DC intermediate circuit 40 (or via a plurality of DC intermediate circuits).
  • the speed of the fan 80 is regulated depending on a target flow temperature of a cooling system and is independent of the generator speed and energy supply from the ORC process.
  • the ORC process generates less energy than is required at the intermediate circuit 40 (U_DC)
  • the missing energy is obtained from the public network 51 via the rectifier 52.
  • Rectifier 52 also provides operation of fan 80 independent of the thermodynamic cycle (e.g. in the event of failure, errors). In the event of an error or failure of the cycle, the entire required power is drawn from the network 51.
  • the cooler which is operated by this fan 80, can therefore consistently and independently provide sufficient cooling capacity.
  • the speed of the generator 20 is first aligned to the optimal operating point of the ORC process and regulated by means of input converter 42 (regulated operation). At this operating point, the amount of heat Q transferred to the ORC is converted into electrical energy P el with an optimum efficiency ⁇ ORC .
  • the measures will influence each other slightly, e.g. the reduction of the feed pump speed leads to different steam parameters and thus also to a changed thermal efficiency.
  • the voltage U_DC is now used as a control variable for the generator speed and / or the feed pump speed and the speed is reduced or increased again until it increases establishes a stable balance between ORC power generation and energy consumption. With a constant decrease by the fan, the voltage U_DC behaves in such a way that it also increases with increasing ORC output. The voltage U_DC thus serves as a controlled variable.
  • a brake chopper would be provided on the intermediate circuit 40, which limits the intermediate circuit voltage to a value that is not critical for the components.
  • this has the disadvantage that sufficient heat dissipation of the braking resistor must be ensured and the material costs increase due to the additional component. This can be omitted here.
  • more losses are generated in the generator 20 by rapidly regulating the input converter 42 and activating the generator 20 in the suboptimal range, thereby limiting the intermediate circuit voltage. That is, the input converter 42 is intentionally operated with poorer efficiency.
  • Fig. 3 shows a second embodiment 200 of the device according to the invention for operating a fan.
  • the DC voltage intermediate circuit 40 comprises a first partial DC voltage link 46 connected to the input converter 42, a second partial DC voltage link 48 connected to the output converter 44 and a step-up converter 45 arranged between the two step circuits.
  • the step-up converter 45 also becomes synonymous as a step-up converter or step-up converter designated.
  • the step-up converter 45 is interposed.
  • the mains connection consists of a passive B6 rectifier 52 which is connected in three phases.
  • Fig. 4 shows a third embodiment 300 of the device according to the invention for operating a fan.
  • the network coupling can also take place on the input side of the step-up converter 45.
  • an active network coupling via power factor correction stage 54 (active PFC, Power Factor Correction) is used, which always draws low power from the network and thus provides scope for regulating the power balance between the ORC generator and the consumer (fan).
  • active PFC Power Factor Correction
  • a 1-phase mains connection is sufficient.
  • the active PFC makes the current consumption almost sinusoidal (avoiding harmonics).
  • Fig. 5 shows a fourth embodiment 400 of the device according to the invention.
  • a parallel connection is provided on the second partial DC voltage intermediate circuit 48.
  • a pump 81 can via a further output converter 49 for converting the direct voltage in the second partial direct voltage intermediate circuit 48 into a third alternating voltage for operating a motor 11 of the pump 81, for example a water pump and / or a feed pump for pumping a working medium in the thermodynamic Cyclic device are driven.
  • the pump 81 is also supplied from the second intermediate circuit 48 (U_DC2).
  • U_DC2 the second intermediate circuit 48
  • the advantage is a further increase in efficiency, since in normal operation the energy of the pump 81 also comes from the ORC process and does not have to be obtained from the network 51.
  • the energy is drawn from the network 51 via the B6 bridge 52.
  • an auxiliary voltage supply (for example 24 VDC, not shown) can also be taken from the intermediate circuit 48.
  • Fig. 6 shows a fifth embodiment 500 of the device according to the invention.
  • a further fan 82 is driven instead of the pump 81.
  • the fifth embodiment 500 shows a parallel connection of several fans 80, 82 on the common DC link. Depending on the performance of the fans, any number of fans can be connected in parallel here. In practice, multiple fans and larger coolers are often used to improve smoothness and efficiency through reduced air speeds.
  • Fig. 7 shows a sixth embodiment 600 of the device according to the invention.
  • the sixth embodiment 600 includes the supply of a plurality of fans 80, 82 via a common converter, namely the output converter 44.
  • the parallel connection therefore takes place on the AC side.
  • a sine filter 13 connected downstream of the common converter 44 is required for this. This delivers a sinusoidal output current of variable frequency.
  • the advantage over the fifth embodiment 500 results from simpler cabling (dielectric strength, no shielded cable) and better EMC properties (electromagnetic compatibility).
  • the cabling between converter 44 and fan motor can become 10 m and longer, for example.
  • Fig. 8 shows a seventh embodiment 700 of the device according to the invention.
  • the seventh embodiment 700 shows the connection of a three-phase AC input of a fan 80 directly to the DC intermediate circuit 48.
  • the converter 44 generally has input rectifier diodes (body diodes) which enable a direct connection to a DC circuit.
  • the intermediate circuit 48 (U_DC2) is thus connected directly to the intermediate circuit of the fan converter (converter 44).
  • U_DC2 input rectifier diodes
  • U_DC2 output rectifier diodes
  • Fig. 9 shows an eighth embodiment 800 of the device according to the invention.
  • the eighth embodiment 800 shows an energy store, for example a battery 70 on the intermediate circuit 48.
  • This is a step in the direction of a completely de-energized fan (all consumers such as pumps, fans, auxiliary voltage supply are connected to the intermediate circuit, at least there is no permanent connection to the electrical supply network required, and with appropriate dimensioning of the battery 70, the mains connection can be dispensed with entirely) and also allows more freedom in the design of the control loop of the ORC power.
  • Fig. 10 shows a ninth embodiment 900 of the device according to the invention.
  • a topology with a regenerative power converter 53 (bidirectional converter circuit) is shown. Excess energy thus flows back into the network 51 without limiting the performance of the ORC generator.
  • the infeed converter 53 must comply with the infeed guidelines applicable in the respective country. The elimination of the increased effort for the fulfillment of all technical and regulatory feed-in guidelines is the advantage of all previous embodiments.
  • Fig. 11 shows a tenth embodiment 1000 of the device according to the invention.
  • the tenth embodiment 1000 represents the supply of a pump 83, for example a hot water pump of a heating circuit from the DC intermediate circuit 48.
  • a pump 83 for example a hot water pump of a heating circuit from the DC intermediate circuit 48.
  • a compressor or any other electrical consumer can also be connected.

Abstract

Die Erfindung offenbart eine Vorrichtung zum Betreiben eines elektromechanischen Energiewandlers, beispielsweise eines Ventilators oder einer Pumpe; wobei die Vorrichtung Folgendes umfasst: eine thermodynamische Kreisprozessvorrichtung; einen elektrischen Generator, der mit einer Welle einer Expansionsmaschine der thermodynamischen Kreisprozessvorrichtung verbunden ist und zusammen mit der Welle drehbar ist; wobei der Generator elektrisch mit einem ersten Spannungswandler verbunden ist, der erste Spannungswandler elektrisch mit einem Gleichspannungszwischenkreis verbunden ist und der Gleichspannungszwischenkreis zum Betreiben des elektromechanischen Energiewandlers elektrisch mit diesem verbindbar ist; wobei der erste Spannungswandler zum Wandeln einer ersten Wechselspannung des elektrischen Generators in eine Gleichspannung ausgebildet ist; und wobei der Gleichspannungszwischenkreis mit einer elektrischen Zusatzenergieversorgung, insbesondere einem öffentlichen Stromnetz, verbindbar ist. Die Vorrichtung umfasst weiterhin eine Regeleinrichtung (60) zum Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie, so dass der elektromechanische Energiewandler mit einer vorbestimmten Drehzahl betreibbar ist, wobei die Regeleinrichtung zum Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie vom Generator und, falls die vom Generator bereitgestellte elektrische Energie dafür nicht ausreichend ist, zum Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie von der Zusatzenergieversorgung, ausgebildet ist. Die Erfindung offenbart weiterhin ein entsprechendes Verfahren zum Betreiben eines elektromechanischen Energiewandlers.The invention discloses a device for operating an electromechanical energy converter, for example a fan or a pump; the device comprising: a thermodynamic cycle device; an electric generator connected to a shaft of an expansion machine of the thermodynamic cycle device and rotatable together with the shaft; wherein the generator is electrically connected to a first voltage converter, the first voltage converter is electrically connected to a DC voltage intermediate circuit and the DC voltage intermediate circuit for operating the electromechanical energy converter can be electrically connected to the latter; wherein the first voltage converter is designed to convert a first AC voltage of the electrical generator into a DC voltage; and wherein the DC voltage intermediate circuit can be connected to an additional electrical power supply, in particular a public power grid. The device further comprises a regulating device (60) for regulating the electrical energy supplied to the electromechanical energy converter, so that the electromechanical energy converter can be operated at a predetermined speed, the regulating device for regulating the electrical energy supplied to the electromechanical energy converter from the generator and, if that Electrical energy provided by the generator is not sufficient to regulate the electrical energy supplied to the electromechanical energy converter from the additional energy supply. The invention further discloses a corresponding method for operating an electromechanical energy converter.

Description

Gebiet der ErfindungField of the Invention

Die Erfindung betrifft eine Vorrichtung zum Betreiben eines elektromechanischen Energiewandlers und ein Verfahren zum Betreiben eines elektromechanischen Energiewandlers.The invention relates to a device for operating an electromechanical energy converter and a method for operating an electromechanical energy converter.

Stand der TechnikState of the art

Eine thermodynamische Kreisprozessvorrichtung zur Gewinnung von elektrischer Energie aus Wärmeenergie umfasst die folgenden Hauptkomponenten: eine Speisepumpe, die flüssiges Arbeitsmedium unter Druckerhöhung zu einem Verdampfer fördert, den Verdampfer selbst, in dem das Arbeitsmedium unter Zuführung von Wärme vorgewärmt, verdampft und optional zusätzlich überhitzt wird, eine Expansionsmaschine, in welcher das unter hohem Druck stehende verdampfte Arbeitsmedium entspannt wird und dabei mechanische Energie erzeugt, welche beispielsweise über einen Generator in elektrische Energie gewandelt werden kann, und einen Kondensator, in dem der Niederdruckdampf (entspanntes Arbeitsmedium) aus der Expansionsmaschine enthitzt und verflüssigt wird. Aus dem Kondensator gelangt das flüssige Arbeitsmedium wieder zur Speisepumpe des Systems, wodurch der thermodynamische Kreislauf geschlossen ist. Im Falle, dass das Arbeitsmedium ein organisches Arbeitsmedium ist, handelt es sich um einen Organic Rankine Cycle als thermodynamischen Kreisprozess (ORC-Prozess).A thermodynamic cycle device for the production of electrical energy from thermal energy comprises the following main components: a feed pump, which conveys liquid working medium to an evaporator while increasing the pressure, the evaporator itself, in which the working medium is preheated, evaporated and optionally additionally overheated, with the addition of heat Expansion machine in which the vaporized working medium under high pressure is expanded and thereby generates mechanical energy, which can be converted into electrical energy, for example, via a generator, and a condenser in which the low-pressure steam (relaxed working medium) from the expansion machine is heated and liquefied . The liquid working medium returns from the condenser to the system feed pump, which closes the thermodynamic cycle. In the event that the working medium is an organic working medium, it is an Organic Rankine Cycle as a thermodynamic cycle (ORC process).

Aus dem Stand der Technik sind sogenannte Trockenkühler (z.B. Rückkühler an Motor-Blockheizkraftwerken, BHKWs), die durch elektrisch angetriebene Ventilatoren mit Luft durchströmt werden. Um dabei den Energieverbrauch zu minimieren, sollen gemäß internem Stand der Technik des Anmelders diese Ventilatoren über einen thermodynamischen Kreisprozess (z.B. einen ORC-Prozess) mit elektrischer Energie versorgt werden. Gleichzeitig soll die Wärmeabfuhr des Kreisprozesses über die Ventilatoren des Trockenkühlers realisiert werden (normalerweise enthält der Kreis- bzw. ORC-Prozess einen separaten Ventilator, um eine Kühlung des Kondensators über einen Luftstrom bereitzustellen). Der Kreisprozess wandelt hierbei Wärme (z.B. ungenutzte Abgaswärme eines Verbrennungsmotors oder aber einen Teil der Wärme des im Kühler abzukühlenden Fluids) in elektrische Energie um. Problematisch ist dabei, eine stabile Versorgung des Ventilators mit elektrischer Energie zu gewährleisten, um die Kühlungsfunktion nicht zu beeinträchtigen. Weiterhin ist nachteilig, dass überschüssige Energie des ORC-Prozesses in das öffentliche Stromnetz zurückgespeist wird. Eine Einspeisung von Energie in das Stromnetz ist nämlich mit weiteren Erfordernissen verbunden, wie z.B. Einhaltung der Einspeiserichtlinien, Anlagenzertifizierung, Anmeldung beim Netzbetreiber, und die Zahlung der EEG-Umlage gemäß dem Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz, EEG).The prior art includes so-called dry coolers (for example, recoolers in combined heat and power plants, CHPs) through which air flows through electrically driven fans. In order to minimize energy consumption, according to the applicant's internal state of the art, these fans should be supplied with electrical energy via a thermodynamic cycle (for example an ORC process). At the same time, the heat dissipation of the cycle should be realized by the fans of the dry cooler (normally the cycle contains or ORC process a separate fan to provide cooling of the condenser via an air flow). The cycle process converts heat (eg unused exhaust gas heat from an internal combustion engine or part of the heat of the fluid to be cooled in the cooler) into electrical energy. It is problematic here to ensure a stable supply of the fan with electrical energy in order not to impair the cooling function. Another disadvantage is that excess energy from the ORC process is fed back into the public power grid. Feeding energy into the power grid is linked to other requirements, such as compliance with the feed-in guidelines, system certification, registration with the network operator, and payment of the EEG surcharge in accordance with the Renewable Energy Sources Act (Renewable Energies Act, EEG) .

Beschreibung der ErfindungDescription of the invention

Aufgabe der Erfindung ist es, die genannten Nachteile zu vermeiden oder zumindest abzumildern.The object of the invention is to avoid or at least alleviate the disadvantages mentioned.

Der Kreis- bzw. ORC-Prozess sollte möglichst immer genau so viel Leistung liefern wie der Ventilator verbraucht (quasi-Inselbetrieb). Durch die gemeinsame Nutzung des Ventilators für Kühlprozess und Kreisprozess ist die Drehzahl des Ventilators und somit seine aufgenommene Leistung nur vom Kühlbedarf des Kühlprozesses abhängig. Der Rückkühler des ORC-Prozesses kann somit regelungstechnisch nicht beeinflusst werden. Um eine hohe Betriebssicherheit zu gewährleisten, muss zusätzliche Leistung aus dem öffentlichen Stromnetz entnommen werden können, wenn der ORC-Prozess (z.B. wegen hoher Außentemperatur oder zu geringer Prozessenergie (Abwärme)) nicht genügend Leistung zum Betrieb des Ventilators liefern kann.The cycle or ORC process should always deliver as much power as possible as the fan consumes (quasi-island operation). Due to the joint use of the fan for the cooling process and the cycle, the speed of the fan and thus its power consumed is only dependent on the cooling requirement of the cooling process. The recooler of the ORC process cannot be influenced in terms of control technology. In order to ensure a high level of operational safety, additional power must be able to be drawn from the public power grid if the ORC process (e.g. due to high outside temperature or insufficient process energy (waste heat)) cannot provide enough power to operate the fan.

Es muss also eine Möglichkeit gefunden werden, den fluktuierenden Leistungsbedarf des Ventilators möglichst genau mit dem ORC-Generator zu decken. Sollte der Kreisprozess nicht genügend Energie zur Verfügung stellen, muss es eine Möglichkeit geben, den Ventilator durch das öffentliche Stromnetz bzw. über eine andere Quelle mit Energie zu versorgen und gleichzeitig eine Einspeisung ins Netz zu vermeiden.So a way must be found to cover the fluctuating power requirement of the fan as accurately as possible with the ORC generator. If the cycle does not provide enough energy, there must be a way to supply the fan with energy from the public grid or another source and at the same time to avoid feeding it into the grid.

Die Erfindung beschreibt die Lösung wenigstens eines Teils der oben genannten Probleme.The invention describes the solution to at least part of the problems mentioned above.

Die erfindungsgemäße Lösung wird definiert durch eine Vorrichtung mit den Merkmalen gemäß Anspruch 1.The solution according to the invention is defined by a device with the features according to claim 1.

Die Erfindung offenbart somit eine Vorrichtung zum Betreiben eines elektromechanischen Energiewandlers, beispielsweise eines Ventilators oder einer Pumpe; wobei die Vorrichtung Folgendes umfasst: eine thermodynamische Kreisprozessvorrichtung; einen elektrischen Generator, der mit einer Welle einer Expansionsmaschine der thermodynamischen Kreisprozessvorrichtung verbunden ist und zusammen mit der Welle drehbar ist; wobei der Generator elektrisch mit einem ersten Spannungswandler verbunden ist, der erste Spannungswandler elektrisch mit einem Gleichspannungszwischenkreis verbunden ist und der Gleichspannungszwischenkreis zum Betreiben des elektromechanischen Energiewandlers elektrisch mit diesem verbindbar ist; wobei der erste Spannungswandler zum Wandeln einer ersten Wechselspannung des elektrischen Generators in eine Gleichspannung ausgebildet ist; und wobei der Gleichspannungszwischenkreis mit einer elektrischen Zusatzenergieversorgung, insbesondere einem öffentlichen Stromnetz, verbindbar ist. Die Vorrichtung umfasst weiterhin eine Regeleinrichtung (60) zum Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie, so dass der elektromechanische Energiewandler mit einer vorbestimmten Drehzahl betreibbar ist, wobei die Regeleinrichtung zum Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie vom Generator und, falls die vom Generator bereitgestellte elektrische Energie dafür nicht ausreichend ist, zum Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie von der Zusatzenergieversorgung, ausgebildet ist.The invention thus discloses a device for operating an electromechanical energy converter, for example a fan or a pump; the device comprising: a thermodynamic cycle device; an electric generator connected to a shaft of an expansion machine of the thermodynamic cycle device and rotatable together with the shaft; wherein the generator is electrically connected to a first voltage converter, the first voltage converter is electrically connected to a DC voltage intermediate circuit and the DC voltage intermediate circuit for operating the electromechanical energy converter can be electrically connected to the latter; wherein the first voltage converter is designed to convert a first AC voltage of the electrical generator into a DC voltage; and wherein the DC voltage intermediate circuit can be connected to an additional electrical power supply, in particular a public power grid. The device further comprises a regulating device (60) for regulating the electrical energy supplied to the electromechanical energy converter, so that the electromechanical energy converter can be operated at a predetermined speed, the regulating device for regulating the electrical energy supplied to the electromechanical energy converter from the generator and, if that Electrical energy provided by the generator is not sufficient to regulate the electrical energy supplied to the electromechanical energy converter from the additional energy supply.

Die erfindungsgemäße Vorrichtung hat die Vorteile, dass eine Energieeinsparung durch Versorgung eines elektromechanischen Energiewandlers (z.B. Ventilator oder Pumpe) über einen Abwärme nutzenden Kreis- bzw. ORC-Prozess erfolgt, dass beispielsweise ein separater Kreisprozess- bzw. ORC-Ventilator nicht benötigt wird, dass der Betrieb des Ventilators unabhängig vom ORC-Prozess ist und dadurch eine hohe Zuverlässigkeit des Systems erzielt wird, und dass eine Netzeinspeisung vermieden und dadurch die Bereitstellung von Einspeise-Erfordernissen umgangen wird.The device according to the invention has the advantages that energy is saved by supplying an electromechanical energy converter (for example fan or pump) via a circuit or ORC process using waste heat, and that for example a separate circuit process or ORC fan is not required. that the operation of the fan is independent of the ORC process and thus a high level of system reliability is achieved, and that grid feed-in is avoided and the supply of feed-in requirements is thereby avoided.

Die erfindungsgemäße Vorrichtung kann dahingehend weitergebildet werden, dass weiterhin ein zweiter Spannungswandler zum Wandeln einer Gleichspannung im Gleichspannungszwischenkreis in eine zweite Wechselspannung zum Betreiben eines elektromechanischen Energiewandlers ohne eigenen Spannungswandler vorgesehen ist, wobei der zweite Spannungswandler elektrisch mit dem Gleichspannungszwischenkreis verbunden ist.The device according to the invention can be further developed such that a second voltage converter for converting a DC voltage in the DC voltage intermediate circuit into a second AC voltage for operating an electromechanical energy converter without its own voltage converter is further provided, the second voltage converter being electrically connected to the DC voltage intermediate circuit.

Eine andere Weiterbildung besteht darin, dass die Zusatzenergieversorgung ein öffentliches Stromnetz ist, das über eine Gleichrichterschaltung oder über eine Leistungsfaktorkorrekturstufe mit dem Gleichspannungszwischenkreis verbunden ist, und die Regeleinrichtung insbesondere weiterhin dazu ausgebildet ist, die vom Generator bereitgestellte Energie zu reduzieren, um eine Einspeisung von elektrischer Energie in das öffentliche Stromnetz zu vermeiden, insbesondere durch Reduzieren des in die thermodynamische Kreisprozessvorrichtung eingebrachten Wärmestroms und/oder durch Reduzieren des Wirkungsgrades der thermodynamischen Kreisprozessvorrichtung.Another further development is that the additional energy supply is a public electricity network, which is connected to the DC voltage intermediate circuit via a rectifier circuit or via a power factor correction stage, and the control device in particular is further designed to reduce the energy provided by the generator in order to feed electrical energy into it To avoid energy in the public power grid, in particular by reducing the heat flow introduced into the thermodynamic cycle device and / or by reducing the efficiency of the thermodynamic cycle device.

Alternativ dazu kann das öffentliche Stromnetz über eine bidirektionale Stromrichterschaltung mit dem Gleichspannungszwischenkreis verbunden sein, um überschüssige Energie vom Generator in das öffentliche Stromnetz einzuspeisen.Alternatively, the public power grid can be connected to the direct voltage intermediate circuit via a bidirectional converter circuit in order to feed excess energy from the generator into the public power grid.

Gemäß einer anderen Weiterbildung kann der Gleichspannungszwischenkreis einen mit dem ersten Spannungswandler verbundenen ersten Teil-Gleichspannungszwischenkreis, einen mit dem elektromechanischen Energiewandler verbindbaren oder mit dem zweiten Spannungswandler verbundenen zweiten Teil-Gleichspannungszwischenkreis und einen zwischen den beiden Teilkreisen angeordneten Aufwärtswandler umfassen.According to another development, the DC voltage intermediate circuit can comprise a first partial DC voltage intermediate circuit connected to the first voltage converter, a second partial DC voltage intermediate circuit which can be connected to the electromechanical energy converter or connected to the second voltage converter, and a step-up converter arranged between the two partial circuits.

Dies kann dahingehend weitergebildet werden, dass über eine Parallelschaltung am zweiten Teil-Gleichspannungszwischenkreis ein weiterer elektromechanischer Energiewandler betreibbar ist, wobei optional ein dritter Spannungswandler zum Wandeln der Gleichspannung im zweiten Teil-Gleichspannungszwischenkreis in eine dritte Wechselspannung zum Betreiben des weiteren elektromechanischen Energiewandlers vorgesehen ist, wobei der weitere elektromechanische Energiewandler beispielsweise eine weitere Pumpe, insbesondere eine Speisepumpe zum Pumpen eines Arbeitsmediums in der thermodynamischen Kreisprozessvorrichtung oder ein weiterer Ventilator ist.This can be developed in such a way that a further electromechanical energy converter can be operated via a parallel connection on the second partial DC voltage intermediate circuit, a third voltage converter for converting the direct voltage in the second partial DC voltage intermediate circuit into a third AC voltage for operating the further electromechanical energy converter being optionally provided, wherein the further electromechanical energy converter is, for example, a further pump, in particular a feed pump for pumping a working medium in the thermodynamic cycle device or a further fan.

Dabei kann der elektromechanische Energiewandler einen Zwischenkreis mit einem Wechselspannungsanschluss umfassen und der Wechselspannungsanschluss kann direkt mit dem zweiten Teil-Gleichspannungszwischenkreis verbunden sein.The electromechanical energy converter can comprise an intermediate circuit with an AC voltage connection and the AC voltage connection can be connected directly to the second partial DC voltage intermediate circuit.

Gemäß einer anderen Weiterbildung kann über eine Parallelschaltung am zweiten Teil-Gleichspannungszwischenkreis und einen bidirektionalen Gleichspannungswandler eine Batterie angeschlossen sein.According to another development, a battery can be connected via a parallel connection to the second partial DC voltage intermediate circuit and a bidirectional DC voltage converter.

Die Erfindung stellt weiterhin ein System bereit, das Folgendes umfasst: eine wärmeerzeugende Vorrichtung mit einem Kühlfluid zum Abführen von Wärme aus der wärmeerzeugenden Vorrichtung und einer Kühlvorrichtung mit einem elektrisch betreibbaren Ventilator zum Kühlen des Kühlfluids, wobei insbesondere die Drehzahl des Ventilators und somit insbesondere seine aufgenommene Leistung vom Kühlbedarf der Kühlvorrichtung vorbestimmt ist; und eine thermodynamische Kreisprozessvorrichtung, insbesondere eine Organic-Rankine-Cycle-Vorrichtung, die einen Verdampfer zum Verdampfen eines Arbeitsmediums, eine durch Expandieren des verdampften Arbeitsmediums mit dem verdampften Arbeitsmedium betreibbare Expansionsmaschine, einen mit der Expansionsmaschine betreibbaren elektrischen Generator und einen Kondensator zum Kondensieren des expandierten Arbeitsmediums umfasst; wobei der Ventilator weiterhin zum Kühlen des Arbeitsmediums im Kondensator vorgesehen ist; und wobei das System weiterhin eine erfindungsgemäße Vorrichtung zum Betreiben des Ventilators als elektromechanischen Energiewandler oder eine der oben beschriebenen Weiterbildungen umfasst.The invention further provides a system comprising: a heat generating device with a cooling fluid for dissipating heat from the heat generating device and a cooling device with an electrically operated fan for cooling the cooling fluid, in particular the speed of the fan and thus in particular its intake Power is predetermined by the cooling requirement of the cooling device; and a thermodynamic cycle device, in particular an organic Rankine cycle device, which comprises an evaporator for evaporating a working medium, an expansion machine which can be operated by expanding the evaporated working medium with the evaporated working medium, an electric generator which can be operated with the expansion machine and a capacitor for condensing the expanded Working medium includes; wherein the fan is further provided for cooling the working medium in the condenser; and wherein the system further comprises a device according to the invention for operating the fan as an electromechanical energy converter or one of the developments described above.

Das System kann dahingehend weitergebildet werden, dass die Drehzahl des Ventilators durch eine mit der Kühlvorrichtung zu erzielende Temperatur des Kühlfluid vorgegeben ist.The system can be developed in such a way that the speed of the fan is predetermined by a temperature of the cooling fluid to be achieved with the cooling device.

Die oben genannten Probleme werden zumindest teilweise auch durch das erfindungsgemäße Verfahren gemäß Anspruch 10 gelöst.The above-mentioned problems are at least partially solved by the inventive method according to claim 10.

Die Erfindung offenbart somit ein Verfahren zum Betreiben eines elektromechanischen Energiewandlers, beispielsweise einer Pumpe oder eines Ventilators mit einer vorbestimmten Drehzahl, umfassend die Schritte: Wandeln einer ersten Wechselspannung eines Generators in eine Gleichspannung in einem Gleichstromzwischenkreis zwischen dem Generator und dem elektromechanischen Energiewandler, wobei der elektrische Generator mit einer Welle einer Expansionsmaschine einer thermodynamischen Kreisprozessvorrichtung verbunden ist, sich zusammen mit der Welle dreht und durch die Welle angetrieben wird; Anlegen der Gleichspannung im Gleichspannungszwischenkreis an den elektromechanischen Energiewandler; Anlegen einer Gleichspannung an den Gleichspannungszwischenkreis von einer elektrischen Zusatzenergieversorgung, insbesondere mit elektrischer Energie aus einem öffentlichen Stromnetz; Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie vom Generator, um den elektromechanischen Energiewandler mit der vorbestimmten Drehzahl zu betreiben, und Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie von der Zusatzenergieversorgung, falls die vom Generator bereitgestellte elektrische Energie für das Betreiben des elektromechanischen Energiewandlers mit der vorbestimmten Drehzahl nicht ausreichend ist.The invention thus discloses a method for operating an electromechanical energy converter, for example a pump or a fan at a predetermined speed, comprising the steps: converting a first alternating voltage of a generator into a direct voltage in a direct current intermediate circuit between the generator and the electromechanical energy converter, the electrical Generator is connected to a shaft of an expansion machine of a thermodynamic cycle device, rotates together with the shaft and is driven by the shaft; Applying the DC voltage in the DC voltage intermediate circuit to the electromechanical energy converter; Applying a DC voltage to the DC voltage intermediate circuit from an additional electrical energy supply, in particular with electrical energy from a public electricity network; Regulating the electrical energy supplied to the electromechanical energy converter from the generator in order to operate the electromechanical energy converter at the predetermined speed, and regulating the electrical energy supplied to the electromechanical energy converter from the additional energy supply if the electrical energy provided by the generator for operating the electromechanical energy converter with the predetermined speed is not sufficient.

Optional kann eine zweite Wechselspannung aus dem Gleichspannungszwischenkreis erzeugt werden, und diese (anstatt der Gleichspannung im Gleichspannungszwischenkreis) an den elektromechanischen Energiewandler (z.B. an einen Ventilatormotor) angelegt werden.Optionally, a second AC voltage can be generated from the DC voltage intermediate circuit, and this (instead of the DC voltage in the DC voltage intermediate circuit) can be applied to the electromechanical energy converter (for example to a fan motor).

Die Vorteile des erfindungsgemäßen Verfahrens oder dessen Weiterbildungen entsprechen jenen der erfindungsgemäßen Vorrichtung bzw. deren Weiterbildungen und werden daher hier nicht wiederholt.The advantages of the method according to the invention or its developments correspond to those of the device according to the invention or its developments and are therefore not repeated here.

Das erfindungsgemäße Verfahren kann dahingehend weitergebildet werden, dass die Zusatzenergieversorgung ein öffentliches Stromnetz ist, das über eine Gleichrichterschaltung mit dem Gleichspannungszwischenkreis verbunden ist, und das Verfahren weiterhin den folgenden Schritt umfasst: Vermeiden einer Einspeisung von elektrischer Energie in das öffentliche Stromnetz durch Reduzieren der vom Generator bereitgestellten Energie, insbesondere durch Reduzieren des in den thermodynamischen Kreisprozessvorrichtung eingebrachten Wärmestroms und/oder durch Reduzieren des Wirkungsgrades der thermodynamischen Kreisprozessvorrichtung.The method according to the invention can be further developed in such a way that the additional energy supply is a public electricity network, which is connected to the DC voltage intermediate circuit via a rectifier circuit, and the method further comprises the following step: avoiding feeding electrical energy into the public electricity network by reducing the amount generated by the generator provided energy, in particular by reducing the heat flow introduced into the thermodynamic cycle device and / or by reducing the efficiency of the thermodynamic cycle device.

Alternativ dazu kann das erfindungsgemäße Verfahren dahingehend weitergebildet werden, dass die Zusatzenergieversorgung ein öffentliches Stromnetz ist, das über eine bidirektionale Stromrichterschaltung mit dem Gleichspannungszwischenkreis verbunden ist, das Verfahren weiterhin den folgenden Schritt umfasst: Einspeisen von überschüssiger Energie vom Generator in das öffentliche Stromnetz.As an alternative to this, the method according to the invention can be further developed such that the additional energy supply is a public electricity network that is connected to the direct voltage intermediate circuit via a bidirectional converter circuit, the method further comprises the following step: feeding excess energy from the generator into the public electricity network.

Eine andere Weiterbildung besteht darin, dass der Gleichspannungszwischenkreis einen mit dem Generator verbundenen ersten Teil-Gleichspannungszwischenkreis und einen mit dem elektromechanischen Energiewandler verbundenen zweiten Teil-Gleichspannungszwischenkreis umfasst, wobei das Verfahren den folgenden weiteren Schritt umfasst: Wandeln der ersten Gleichspannung im ersten Teil-Gleichspannungszwischenkreis in eine höhere, in den zweiten Teil-Gleichspannungszwischenkreis eingebrachte zweite Gleichspannung.Another development is that the DC voltage intermediate circuit comprises a first partial DC voltage intermediate circuit connected to the generator and a second partial DC voltage intermediate circuit connected to the electromechanical energy converter, the method comprising the following further step: converting the first DC voltage in the first partial DC voltage intermediate circuit to a higher second direct voltage introduced into the second partial direct voltage intermediate circuit.

Dies kann so weitergebildet werden, dass das Verfahren den weiteren Schritt umfasst: Einstellen der zweiten Gleichspannung unterhalb einer von der Zusatzenergieversorgung bereitgestellten dritten Gleichspannung im zweiten Teil-Gleichspannungszwischenkreis, falls die vom Generator bereitgestellte elektrische Energie für das Betreiben des elektromechanischen Energiewandlers mit der vorbestimmten Drehzahl nicht ausreichend ist.This can be developed in such a way that the method comprises the further step: setting the second DC voltage below a third DC voltage provided by the additional energy supply in the second partial DC voltage intermediate circuit if the electrical energy provided by the generator for operating the electromechanical energy converter at the predetermined speed is not is sufficient.

Gemäß einer anderen Weiterbildung kann das Verfahren den folgenden weiteren Schritt umfassen: Wandeln der Gleichspannung im Gleichspannungszwischenkreis in eine dritte Wechselspannung zum Betreiben eines weiteren elektromechanischen Energiewandlers, insbesondere einer Pumpe, beispielsweise einer Speisepumpe zum Pumpen eines Arbeitsmediums in der thermodynamischen Kreisprozessvorrichtung oder zum Betreiben eines weiteren Ventilators.According to another development, the method can include the following further step: converting the DC voltage in the DC voltage intermediate circuit into a third AC voltage for operating a further electromechanical energy converter, in particular a pump, for example a feed pump for pumping a working medium in the thermodynamic cycle device or for operating a further fan .

Die genannten Weiterbildungen können einzeln eingesetzt oder wie beansprucht geeignet miteinander kombiniert werden.The further developments mentioned can be used individually or, as claimed, suitably combined with one another.

Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.Further features and exemplary embodiments and advantages of the present invention are explained in more detail below with reference to the drawings. It is to be understood that the embodiments are not exhaustive of the scope of the present invention. It goes without saying that some or all of the features described below can also be combined with one another in other ways.

Zeichnungendrawings

Fig. 1AFig. 1A
zeigt eine erste Ausführungsform der erfindungsgemäßen Vorrichtung.shows a first embodiment of the device according to the invention.
Fig. 1BFigure 1B
zeigt ein erfindungsgemäßes System mit der ersten Ausführungsform der erfindungsgemäßen Vorrichtung.shows an inventive system with the first embodiment of the device according to the invention.
Fig. 2Fig. 2
zeigt Betriebszustände des oder der Ventilatoren in der ersten Ausführungsform der erfindungsgemäßen Vorrichtung.shows operating states of the fan or fans in the first embodiment of the device according to the invention.
Fig. 3Fig. 3
zeigt eine zweite Ausführungsform der erfindungsgemäßen Vorrichtung.shows a second embodiment of the device according to the invention.
Fig. 4Fig. 4
zeigt eine dritte Ausführungsform der erfindungsgemäßen Vorrichtung.shows a third embodiment of the device according to the invention.
Fig. 5Fig. 5
zeigt eine vierte Ausführungsform der erfindungsgemäßen Vorrichtung.shows a fourth embodiment of the device according to the invention.
Fig. 6Fig. 6
zeigt eine fünfte Ausführungsform der erfindungsgemäßen Vorrichtung.shows a fifth embodiment of the device according to the invention.
Fig. 7Fig. 7
zeigt eine sechste Ausführungsform der erfindungsgemäßen Vorrichtung.shows a sixth embodiment of the device according to the invention.
Fig. 8Fig. 8
zeigt eine siebte Ausführungsform der erfindungsgemäßen Vorrichtung.shows a seventh embodiment of the device according to the invention.
Fig. 9Fig. 9
zeigt eine achte Ausführungsform der erfindungsgemäßen Vorrichtung.shows an eighth embodiment of the device according to the invention.
Fig. 10Fig. 10
zeigt eine neunte Ausführungsform der erfindungsgemäßen Vorrichtung.shows a ninth embodiment of the device according to the invention.
Fig. 11Fig. 11
zeigt eine zehnte Ausführungsform der erfindungsgemäßen Vorrichtung.shows a tenth embodiment of the device according to the invention.

Gleiche Bezugszeichen in den Zeichnungen beziehen sich auf identische oder entsprechende Komponenten. Teilweise werden zur Vereinfachung der Darstellung in den Zeichnungen gegenüber zuvor beschriebenen Ausführungsformen nur zusätzliche Komponenten mit Bezugszeichen versehen.The same reference symbols in the drawings refer to identical or corresponding components. In some cases, in order to simplify the illustration in the drawings, only additional components are provided with reference numerals compared to the previously described embodiments.

AusführungsformenEmbodiments

Die Ausführungsformen zeigen als elektromechanische Energiewandler lediglich beispielhaft einen oder mehrere Ventilatoren und/oder eine oder mehrere Pumpen, insbesondere beispielsweise eine Speisepumpe in der thermodynamischen Kreisprozessvorrichtung. Elektromechanische Energiewandler wandeln elektrische Energie in mechanische Bewegungsenergie um, wobei die Bewegung linear oder rotierend erfolgen kann. Dementsprechend wird zwischen Linearmaschinen und rotierenden elektrischen Maschinen unterschieden. Die Ausführungsformen betreffen rotierende elektrische Maschinen, jedoch können für die elektromechanischen Energiewandler in den Ausführungsformen bei denen eine Drehzahlregelung nicht wesentlich ist, auch Linearmaschinen eingesetzt werden.As electromechanical energy converters, the embodiments show, by way of example only, one or more fans and / or one or more pumps, in particular, for example, a feed pump in the thermodynamic cycle device. Electromechanical energy converters convert electrical energy into mechanical kinetic energy, whereby the movement can be linear or rotating. Accordingly, a distinction is made between linear machines and rotating electrical machines. The embodiments relate to rotating electrical machines, but linear machines can also be used for the electromechanical energy converters in the embodiments in which speed control is not essential.

Weiterhin sind die elektromechanischen Energiewandler in den Ausführungsformen überwiegend so konstruiert, dass der elektromechanische Energiewandler selbst einen Zwischenkreis mit einem Wechselspannungsanschluss aufweist. Diese Ausführungsformen können jeweils so abgewandelt werden, dass ein entsprechender Spannungswandler am Gleichspannungszwischenkreis zur Verbindung mit dem elektromechanischen Energiewandler vorgesehen ist.Furthermore, the electromechanical energy converters in the embodiments are predominantly constructed in such a way that the electromechanical energy converter itself Has intermediate circuit with an AC voltage connection. These embodiments can each be modified such that a corresponding voltage converter is provided on the DC link for connection to the electromechanical energy converter.

Fig. 1A zeigt eine erste Ausführungsform 100 der erfindungsgemäßen Vorrichtung zum Betreiben eines Ventilators. Fig. 1A shows a first embodiment 100 of the device according to the invention for operating a fan.

Die Vorrichtung 100 umfasst einen elektrisch betreibbaren Ventilator 80 mit einem Motor 10 und einem DC/AC Spannungswandler 44, einen elektrischen Generator 20, der mit einer Welle 35 einer Expansionsmaschine 30 einer thermodynamischen Kreisprozessvorrichtung, hier einer ORC-Vorrichtung, verbunden ist und zusammen mit der Welle 35 drehbar ist. Zwischen dem Generator 20 und dem Ventilator 80 sind ein erster Spannungswandler 42 (Eingangswandler 42) und ein Gleichspannungszwischenkreis 40 vorgesehen. Der erste Spannungswandler 42 ist zum Wandeln einer ersten Wechselspannung des elektrischen Generators 20 in eine Gleichspannung ausgebildet. Der DC/AC Spannungswandler 44 (oder Ausgangswandler 44) ist zum Wandeln einer Gleichspannung im Gleichspannungszwischenkreis 40 in eine zweite Wechselspannung zum Betreiben des Ventilatormotors 10 ausgebildet. Der Gleichspannungszwischenkreis 40 ist mit einer elektrischen Zusatzenergieversorgung 50, hier einem öffentlichen Stromnetz 51, verbunden. Die Vorrichtung 100 umfasst weiterhin eine Regeleinrichtung 60 zum Regeln der dem Ventilator 80 zugeführten elektrischen Energie, so dass der Ventilator mit einer vorbestimmten Drehzahl betreibbar ist, wobei die Regeleinrichtung 60 so ausgebildet ist, dass sie die dem Ventilator 80 zugeführte elektrische Energie vom Generator 20 regelt und, falls die vom Generator 20 bereitgestellte elektrische Energie dafür nicht ausreichend ist, die dem Ventilator 80 zugeführte elektrische Energie von der Zusatzenergieversorgung 50 regelt.The device 100 comprises an electrically operable fan 80 with a motor 10 and a DC / AC voltage converter 44, an electrical generator 20 which is connected to a shaft 35 of an expansion machine 30 of a thermodynamic cycle device, here an ORC device, and together with the Shaft 35 is rotatable. A first voltage converter 42 (input converter 42) and a DC voltage intermediate circuit 40 are provided between the generator 20 and the fan 80. The first voltage converter 42 is designed to convert a first AC voltage of the electrical generator 20 into a DC voltage. The DC / AC voltage converter 44 (or output converter 44) is designed to convert a DC voltage in the DC voltage intermediate circuit 40 into a second AC voltage for operating the fan motor 10. The DC voltage intermediate circuit 40 is connected to an additional electrical energy supply 50, here a public power grid 51. The device 100 further comprises a control device 60 for controlling the electrical energy supplied to the fan 80, so that the fan can be operated at a predetermined speed, the control device 60 being designed such that it controls the electrical energy supplied to the fan 80 from the generator 20 and, if the electrical energy provided by the generator 20 is not sufficient for this, regulates the electrical energy supplied to the fan 80 from the additional energy supply 50.

Der Gleichspannungszwischenkreis 40 beinhaltet einen Kondensator 41. Die Wechselspannung vom öffentlichen Stromnetz 51 wird durch eine Gleichrichterschaltung 52 gleichgereichtet und an den Gleichspannungszwischenkreis 40 angelegt. Die Regeleinrichtung 60 ist weiterhin dazu ausgebildet ist, die vom Generator 20 bereitgestellte Energie zu reduzieren, um dem Energiebedarf der/des Verbraucher(s) zu entsprechen, insbesondere durch Reduzieren des in die thermodynamische Kreisprozessvorrichtung eingebrachten Wärmestroms und/oder durch Reduzieren des Wirkungsgrades der thermodynamischen Kreisprozessvorrichtung.The DC voltage intermediate circuit 40 includes a capacitor 41. The AC voltage from the public power grid 51 is rectified by a rectifier circuit 52 and applied to the DC voltage intermediate circuit 40. The control device 60 is also designed to reduce the energy provided by the generator 20 in order to meet the energy requirements of the To meet consumer (s), in particular by reducing the heat flow introduced into the thermodynamic cycle device and / or by reducing the efficiency of the thermodynamic cycle device.

Die ORC-Vorrichtung zur Gewinnung von elektrischer Energie aus Wärmeenergie (beispielsweise Abwärme) umfasst: eine Speisepumpe, die flüssiges Arbeitsmedium unter Druckerhöhung zu einem Verdampfer fördert, dem Verdampfer selbst, in dem das Arbeitsmedium unter Zuführung von Wärme vorgewärmt, verdampft und optional zusätzlich überhitzt wird, die Expansionsmaschine 30, in welcher das unter hohem Druck stehende verdampfte Arbeitsmedium entspannt wird und dabei mechanische Energie erzeugt, welche über den Generator 20 in elektrische Energie gewandelt werden kann, und einem Kondensator, in dem der Niederdruckdampf (entspanntes Arbeitsmedium) aus der Expansionsmaschine 30 enthitzt und verflüssigt wird. Aus dem Kondensator gelangt das flüssige Arbeitsmedium wieder zur Speisepumpe des Systems, wodurch der thermodynamische Kreislauf geschlossen ist.The ORC device for the generation of electrical energy from thermal energy (for example waste heat) comprises: a feed pump which conveys liquid working medium to an evaporator while increasing the pressure, the evaporator itself, in which the working medium is preheated, evaporated and optionally additionally overheated by supplying heat , the expansion machine 30, in which the vaporized working medium under high pressure is expanded and thereby generates mechanical energy, which can be converted into electrical energy via the generator 20, and a condenser in which the low-pressure steam (expanded working medium) from the expansion machine 30 is heated and liquefied. The liquid working medium returns from the condenser to the system feed pump, which closes the thermodynamic cycle.

Fig. 1B zeigt ein erfindungsgemäßes System in Kombination mit der ersten Ausführungsform der erfindungsgemäßen Vorrichtung gemäß Fig. 1A. Figure 1B shows a system according to the invention in combination with the first embodiment of the device according to the invention Fig. 1A .

Das System umfasst eine wärmeerzeugende Einrichtung 110, einen Ausgang 111 der wärmeerzeugenden Einrichtung, wobei der Ausgang 111 zum Abführen von zu kühlendem Prozessfluid von der wärmeerzeugenden Einrichtung 110 vorgesehen ist; einen Eingang 112 der wärmeerzeugenden Einrichtung 110, wobei der Eingang 112 zum Zuführen von gekühltem Prozessfluid zur wärmeerzeugenden Einrichtung 110 vorgesehen ist; und eine thermodynamische Kreisprozessvorrichtung, insbesondere eine ORC-Vorrichtung, wobei die thermodynamische Kreisprozessvorrichtung umfasst: einen Verdampfer 120 mit einem Einlass 121 zum Zuführen des zu kühlenden Prozessfluids vom Ausgang 111 der wärmeerzeugenden Einrichtung 110 und mit einem Auslass 122 zum Abführen des gekühlten Prozessfluids zum Eingang 112 der wärmeerzeugenden Einrichtung 110, wobei der Verdampfer 120 zum Verdampfen eines Arbeitsmediums der thermodynamischen Kreisprozessvorrichtung mittels Wärme aus dem Prozessfluid ausgebildet ist; die Expansionsmaschine 30 zum Expandieren des verdampften Arbeitsmediums und zur Erzeugung von elektrischer Energie mittels elektrischem Generator 20; einen luftgekühlten Kondensator 150 zum Verflüssigen des expandierten Arbeitsmediums; und eine Pumpe 160 zum Pumpen des verflüssigten Arbeitsmediums zum Verdampfer.The system comprises a heat-generating device 110, an outlet 111 of the heat-generating device, the outlet 111 being provided for removing process fluid to be cooled from the heat-generating device 110; an input 112 of the heat generating device 110, the input 112 being provided for supplying cooled process fluid to the heat generating device 110; and a thermodynamic cycle device, in particular an ORC device, the thermodynamic cycle device comprising: an evaporator 120 with an inlet 121 for supplying the process fluid to be cooled from the outlet 111 of the heat-generating device 110 and with an outlet 122 for discharging the cooled process fluid to the inlet 112 the heat-generating device 110, the evaporator 120 being designed to evaporate a working medium of the thermodynamic cycle device by means of heat from the process fluid; the expansion machine 30 for expanding the evaporated working medium and for generating electrical energy electric generator 20; an air-cooled condenser 150 for liquefying the expanded working medium; and a pump 160 for pumping the liquefied working medium to the evaporator.

Zusätzlich ist ein Luftkühler 170 zum Kühlen wenigstens eines Teils des zu kühlenden Prozessfluids vorgesehen. Das System umfasst eine Abzweigung 171, die beispielhaft in Bezug auf eine Strömungsrichtung des Prozessfluids stromabwärts des Ausgangs 111 und stromaufwärts des Einlasses 121 zum Aufteilen des zu kühlenden Prozessfluids in einen ersten und einen zweiten Teilstrom des Prozessfluids vorgesehen ist. Das System umfasst weiterhin eine Zusammenführung 172, die in Bezug auf eine Strömungsrichtung des Prozessfluids stromabwärts des Auslasses 122 und stromaufwärts des Eingangs 112 zum Zusammenführen des durch den Kühler 170 gekühlten zweiten Teilstroms des Prozessfluids und des durch den Verdampfer 120 gekühlten ersten Teilstroms des Prozessfluids vorgesehen ist; wobei die Abzweigung 171 zum Zuführen des ersten Teilstroms zum Verdampfer 120 und zum Zuführen des zweiten Teilstroms zum Kühler 170 ausgebildet ist. Der Strom der Umgebungsluft geht nacheinander zuerst durch den Kühler 170 und danach durch den Kondensator 150.In addition, an air cooler 170 is provided for cooling at least part of the process fluid to be cooled. The system includes a branch 171, which is provided, for example with respect to a flow direction of the process fluid downstream of the outlet 111 and upstream of the inlet 121, for dividing the process fluid to be cooled into a first and a second partial flow of the process fluid. The system further includes a junction 172 that is provided with respect to a flow direction of the process fluid downstream of the outlet 122 and upstream of the inlet 112 for merging the second partial flow of the process fluid cooled by the cooler 170 and the first partial flow of the process fluid cooled by the evaporator 120 ; the branch 171 is designed to supply the first partial flow to the evaporator 120 and to supply the second partial flow to the cooler 170. The flow of ambient air is sequentially first through the cooler 170 and then through the condenser 150.

Die konkrete Ausgestaltung des Systems ist lediglich beispielhaft.The specific design of the system is only an example.

Fig. 2 zeigt Betriebszustände des oder der Ventilatoren in der ersten Ausführungsform 100 der erfindungsgemäßen Vorrichtung in einem Diagramm Leistung gegen Außentemperatur, die im Folgenden genauer beschrieben werden. Fig. 2 shows the operating states of the fan or fans in the first embodiment 100 of the device according to the invention in a diagram of power versus outside temperature, which are described in more detail below.

Der Ventilator 80 wird über den DC-Zwischenkreis (Direct Current) 40 (oder über mehrere DC-Zwischenkreise) mit dem Generator 20 verbunden. Die Drehzahl des Ventilators 80 wird abhängig von einer Soll-Vorlauftemperatur eines Kühlsystems geregelt und ist unabhängig von der Generatordrehzahl und Energiezufuhr aus dem ORC-Prozess.The fan 80 is connected to the generator 20 via the DC intermediate circuit 40 (or via a plurality of DC intermediate circuits). The speed of the fan 80 is regulated depending on a target flow temperature of a cooling system and is independent of the generator speed and energy supply from the ORC process.

Erzeugt der ORC-Prozess weniger Energie als am Zwischenkreis 40 (U_DC) benötigt wird, so wird die fehlende Energie aus dem öffentlichen Netz 51 über den Gleichrichter 52 bezogen. Der Gleichrichter 52 stellt auch einen Betrieb des Ventilators 80 unabhängig vom thermodynamischen Kreisprozesses sicher (z.B. bei Ausfall, Fehler). Im Falle eines Fehlers oder Ausfalls des Kreisprozesses wird die gesamte benötigte Leistung aus dem Netz 51 bezogen. Der Kühler, der von diesem Ventilator 80 betrieben wird, kann also durchgängig und unabhängig eine ausreichende Kühlleistung zur Verfügung stellen.If the ORC process generates less energy than is required at the intermediate circuit 40 (U_DC), the missing energy is obtained from the public network 51 via the rectifier 52. Rectifier 52 also provides operation of fan 80 independent of the thermodynamic cycle (e.g. in the event of failure, errors). In the event of an error or failure of the cycle, the entire required power is drawn from the network 51. The cooler, which is operated by this fan 80, can therefore consistently and independently provide sufficient cooling capacity.

Erzeugt der ORC-Prozess mehr Energie, als am Zwischenkreis 40 (U_DC) benötigt wird (dafür ist das System für den normalen Betriebsfall unterhalb einer bestimmten Außentemperatur ausgelegt) müssen geeignete Maßnahmen ergriffen werden.If the ORC process generates more energy than is required at the DC link 40 (U_DC) (the system is designed for this under normal operating conditions below a certain outside temperature), suitable measures must be taken.

Die Drehzahl des Generators 20 wird zunächst am optimalen Arbeitspunkt des ORC-Prozesses ausgerichtet und mittels Eingangswandler 42 geregelt (geregelter Betrieb). Es wird in diesem Betriebspunkt die an den ORC übertragene Wärmemenge Qzu mit einem optimalen Wirkungsgrad ηORC in elektrische Energie Pel gewandelt.The speed of the generator 20 is first aligned to the optimal operating point of the ORC process and regulated by means of input converter 42 (regulated operation). At this operating point, the amount of heat Q transferred to the ORC is converted into electrical energy P el with an optimum efficiency η ORC .

Um die gewandelte elektrische Energie wunschgemäß zu reduzieren, gibt es prinzipiell zwei unterschiedliche Möglichkeiten:

  • Reduktion der zugeführten Wärme Qzu durch Reduktion der Speisepumpendrehzahl
  • Reduktion des Wirkungsgrads ηORCth•ηGen•ηEW durch Verschlechterung von einzelnen Wirkungsgraden in der Wirkungsgradkette wie z.B. des thermischen Wirkungsgrads ηth, des Generatorwirkungsgrads ηGen oder des Wirkungsgrads des Eingangswandlers ηEW
In principle, there are two different ways of reducing the converted electrical energy:
  • Reduction of the heat supplied Q to by reducing the feed pump speed
  • Reduction of the efficiency η ORC = η th • η Gen • η EW due to deterioration of individual efficiencies in the efficiency chain such as the thermal efficiency η th , the generator efficiency η Gen or the efficiency of the input converter η EW

In der realen Umsetzung werden die Maßnahmen sich jeweils geringfügig gegenseitig beeinflussen, so wird z.B. die Reduktion der Speisepumpendrehzahl zu anderen Dampfparametern und somit auch zu einem geänderten thermischen Wirkungsgrad führen.In the real implementation, the measures will influence each other slightly, e.g. the reduction of the feed pump speed leads to different steam parameters and thus also to a changed thermal efficiency.

Anders als bei bisherigen ORC-Regelungen wird die Spannung U_DC nun als Regelgröße für Generatordrehzahl und / oder die Speisepumpendrehzahl herangezogen und die Drehzahl solange reduziert oder auch wieder erhöht, bis sich ein stabiles Gleichgewicht zwischen ORC-Leistungserzeugung und Energieverbrauch einstellt. Bei konstanter Abnahme durch den Ventilator verhält sich die Spannung U_DC so, dass sie bei steigender ORC-Leistung ebenfalls steigt. Die Spannung U_DC dient somit als Regelgröße.In contrast to previous ORC regulations, the voltage U_DC is now used as a control variable for the generator speed and / or the feed pump speed and the speed is reduced or increased again until it increases establishes a stable balance between ORC power generation and energy consumption. With a constant decrease by the fan, the voltage U_DC behaves in such a way that it also increases with increasing ORC output. The voltage U_DC thus serves as a controlled variable.

Nach Stand der Technik würde am Zwischenkreis 40 ein Brems-Chopper vorgesehen, welcher die Zwischenkreisspannung auf einen für die Bauteile unkritischen Wert begrenzt. Dieser besitzt jedoch den Nachteil, dass eine ausreichende Wärmeabfuhr des Bremswiderstandes gewährleistet werden muss und die Materialkosten durch die zusätzliche Komponente steigen. Auf diesen kann hier verzichtet werden. Stattdessen werden erfindungsgemäß über eine schnelle Regelung des Eingangswandlers 42 und einer Ansteuerung des Generators 20 im suboptimalen Bereich mehr Verluste im Generator 20 erzeugt und dadurch die Zwischenkreisspannung begrenzt. Das heißt, der Eingangswandlers 42 wird in beabsichtigter Weise mit einem schlechteren Wirkungsgrad betrieben.According to the prior art, a brake chopper would be provided on the intermediate circuit 40, which limits the intermediate circuit voltage to a value that is not critical for the components. However, this has the disadvantage that sufficient heat dissipation of the braking resistor must be ensured and the material costs increase due to the additional component. This can be omitted here. Instead, according to the invention, more losses are generated in the generator 20 by rapidly regulating the input converter 42 and activating the generator 20 in the suboptimal range, thereby limiting the intermediate circuit voltage. That is, the input converter 42 is intentionally operated with poorer efficiency.

Fig. 3 zeigt eine zweite Ausführungsform 200 der erfindungsgemäßen Vorrichtung zum Betreiben eines Ventilators. Fig. 3 shows a second embodiment 200 of the device according to the invention for operating a fan.

Gegenüber der ersten Ausführungsform 100 gemäß Fig. 1A umfasst der Gleichspannungszwischenkreis 40 einen mit dem Eingangswandler 42 verbundenen ersten Teil-Gleichspannungszwischenkreis 46, einen mit dem Ausgangswandler 44 verbundenen zweiten Teil-Gleichspannungszwischenkreis 48 und einen zwischen den beiden Teilkreisen angeordneten Aufwärtswandler 45. Der Aufwärtswandler 45 wird synonym auch als Hochsetzsteller oder Step-Up Converter bezeichnet.Compared to the first embodiment 100 according to Fig. 1A The DC voltage intermediate circuit 40 comprises a first partial DC voltage link 46 connected to the input converter 42, a second partial DC voltage link 48 connected to the output converter 44 and a step-up converter 45 arranged between the two step circuits. The step-up converter 45 also becomes synonymous as a step-up converter or step-up converter designated.

Um Generatoren mit einer Nennspannung deutlich unterhalb der benötigten Ausgangsspannung für die Ventilatoren zu erhalten wird der Hochsetzsteller 45 zwischengeschaltet. Der Netzanschluss besteht hierbei aus einem passiven B6-Gleichrichter 52 welcher 3phasig angeschlossen wird.In order to obtain generators with a nominal voltage significantly below the required output voltage for the fans, the step-up converter 45 is interposed. The mains connection consists of a passive B6 rectifier 52 which is connected in three phases.

Fig. 4 zeigt eine dritte Ausführungsform 300 der erfindungsgemäßen Vorrichtung zum Betreiben eines Ventilators. Fig. 4 shows a third embodiment 300 of the device according to the invention for operating a fan.

Alternativ zur zweiten Ausführungsform 200 gemäß Fig. 3 kann die Netzkopplung auch auf Eingangsseite des Hochsetzstellers 45 erfolgen. Außerdem wird eine aktive Netzkopplung über Leistungsfaktorkorrekturstufe 54 (aktive PFC, Power Factor Correction) verwendet, welche immer eine geringe Leistung aus dem Netz zieht und so der Regelung der Leistungsbalance zwischen ORC Generator und Verbraucher (Ventilator) Spielraum verschafft. Im Unterschied zur zweiten Ausführungsform reicht ein 1 phasiger Netzanschluss. Durch die aktive PFC wird die Stromaufnahme im Unterschied zur zweiten Ausführungsform nahezu sinusförmig (Vermeidung von Oberwellen).As an alternative to the second embodiment 200 according to FIG Fig. 3 the network coupling can also take place on the input side of the step-up converter 45. In addition, an active network coupling via power factor correction stage 54 (active PFC, Power Factor Correction) is used, which always draws low power from the network and thus provides scope for regulating the power balance between the ORC generator and the consumer (fan). In contrast to the second embodiment, a 1-phase mains connection is sufficient. In contrast to the second embodiment, the active PFC makes the current consumption almost sinusoidal (avoiding harmonics).

Fig. 5 zeigt eine vierte Ausführungsform 400 der erfindungsgemäßen Vorrichtung. Fig. 5 shows a fourth embodiment 400 of the device according to the invention.

In der vierten Ausführungsform 400 ist im Vergleich zu der zweiten Ausführungsform 200 eine Parallelschaltung am zweiten Teil-Gleichspannungszwischenkreis 48 vorgesehen. Auf diese Weise kann eine Pumpe 81 über einen weiteren Ausgangswandler 49 zum Wandeln der Gleichspannung im zweiten Teil-Gleichspannungszwischenkreis 48 in eine dritte Wechselspannung zum Betreiben eines Motors 11 der Pumpe 81, beispielsweise einer Wasserpumpe und/oder einer Speisepumpe zum Pumpen eines Arbeitsmediums in der thermodynamischen Kreisprozessvorrichtung angetrieben werden.In the fourth embodiment 400, in comparison to the second embodiment 200, a parallel connection is provided on the second partial DC voltage intermediate circuit 48. In this way, a pump 81 can via a further output converter 49 for converting the direct voltage in the second partial direct voltage intermediate circuit 48 into a third alternating voltage for operating a motor 11 of the pump 81, for example a water pump and / or a feed pump for pumping a working medium in the thermodynamic Cyclic device are driven.

Hierbei wird neben dem Ventilator 80 auch die Pumpe 81 aus dem zweiten Zwischenkreis 48 (U_DC2) versorgt. Der Vorteil ist eine weitere Effizienzsteigerung, da im normalen Betrieb auch die Energie der Pumpe 81 aus dem ORC-Prozess stammt und nicht aus dem Netz 51 bezogen werden muss. Für den Anlauf des ORC-Prozesses wird die Energie über die B6 Brücke 52 aus dem Netz 51 bezogen. In gleicher Weise kann auch eine Hilfsspannungsversorgung (z.B. 24 VDC, nicht dargestellt) aus dem Zwischenkreis 48 entnommen werden.In addition to the fan 80, the pump 81 is also supplied from the second intermediate circuit 48 (U_DC2). The advantage is a further increase in efficiency, since in normal operation the energy of the pump 81 also comes from the ORC process and does not have to be obtained from the network 51. For the start of the ORC process, the energy is drawn from the network 51 via the B6 bridge 52. In the same way, an auxiliary voltage supply (for example 24 VDC, not shown) can also be taken from the intermediate circuit 48.

Fig. 6 zeigt eine fünfte Ausführungsform 500 der erfindungsgemäßen Vorrichtung. Fig. 6 shows a fifth embodiment 500 of the device according to the invention.

Gegenüber der vierten Ausführungsform 400 wird anstatt der Pumpe 81 ein weiterer Ventilator 82 angetrieben.Compared to the fourth embodiment 400, a further fan 82 is driven instead of the pump 81.

Die fünfte Ausführungsform 500 zeigt eine Parallelschaltung mehrerer Ventilatoren 80, 82 am gemeinsamen DC-Zwischenkreis. Hier lassen sich, abhängig von der Leistung der Ventilatoren, beliebig viele Ventilatoren parallel schalten. In der Praxis werden häufig mehrere Ventilatoren und größere Kühler eingesetzt, um Laufruhe und Effizienz durch verringerte Luftgeschwindigkeiten zu verbessern.The fifth embodiment 500 shows a parallel connection of several fans 80, 82 on the common DC link. Depending on the performance of the fans, any number of fans can be connected in parallel here. In practice, multiple fans and larger coolers are often used to improve smoothness and efficiency through reduced air speeds.

Fig. 7 zeigt eine sechste Ausführungsform 600 der erfindungsgemäßen Vorrichtung. Fig. 7 shows a sixth embodiment 600 of the device according to the invention.

Die sechste Ausführungsform 600 beinhaltet die Versorgung mehrerer Ventilatoren 80, 82 über einen gemeinsamen Umrichter, nämlich den Ausgangswandler 44. Die Parallelschaltung erfolgt also AC-seitig. Hierfür ist ein dem gemeinsamen Umrichter 44 nachgeschaltetes Sinusfilter 13 erforderlich. Dieser liefert einen sinusförmigen Ausgangsstrom variabler Frequenz. Der Vorteil gegenüber der fünften Ausführungsform 500 ergibt sich durch eine einfachere Verkabelung (Spannungsfestigkeit, Wegfall geschirmter Leitung) und bessere EMV-Eigenschaften (Elektromagnetische Verträglichkeit). Die Verkabelung zwischen Umrichter 44 und Ventilatormotor kann dabei beispielsweise 10 m und länger werden.The sixth embodiment 600 includes the supply of a plurality of fans 80, 82 via a common converter, namely the output converter 44. The parallel connection therefore takes place on the AC side. A sine filter 13 connected downstream of the common converter 44 is required for this. This delivers a sinusoidal output current of variable frequency. The advantage over the fifth embodiment 500 results from simpler cabling (dielectric strength, no shielded cable) and better EMC properties (electromagnetic compatibility). The cabling between converter 44 and fan motor can become 10 m and longer, for example.

Fig. 8 zeigt eine siebente Ausführungsform 700 der erfindungsgemäßen Vorrichtung. Fig. 8 shows a seventh embodiment 700 of the device according to the invention.

Die siebente Ausführungsform 700 zeigt den Anschluss eines dreiphasigen AC-Eingangs eines Lüfters 80 direkt an den DC Zwischenkreis 48. Der Wandler 44 verfügt in der Regel über Eingangsgleichrichterdioden (Bodydioden), welche einen direkten Anschluss an einen DC Kreis ermöglichen. Der Zwischenkreis 48 (U_DC2) wird somit direkt an den Zwischenkreis des Ventilatorconverters (Wandler 44) angeschlossen. So können direkt handelsübliche geregelte EC-Lüfter (Electronically Commutated Motor) eingesetzt werden. Eine ggf. vorhandene Phasenausfall- oder AC-Spannungsüberwachung muss hierfür deaktiviert werden. Auch diese Ausführungsform lässt in einer Abwandlung den Anschluss mehrerer Lüfter parallel zu.The seventh embodiment 700 shows the connection of a three-phase AC input of a fan 80 directly to the DC intermediate circuit 48. The converter 44 generally has input rectifier diodes (body diodes) which enable a direct connection to a DC circuit. The intermediate circuit 48 (U_DC2) is thus connected directly to the intermediate circuit of the fan converter (converter 44). For example, commercially available regulated EC fans (Electronically Commutated Motor) can be used. Any phase failure or AC voltage monitoring must be deactivated for this. This embodiment also allows a plurality of fans to be connected in parallel in a modification.

Fig. 9 zeigt eine achte Ausführungsform 800 der erfindungsgemäßen Vorrichtung. Fig. 9 shows an eighth embodiment 800 of the device according to the invention.

Die achte Ausführungsform 800 zeigt einen Energiespeicher, beispielsweise eine Batterie 70 am Zwischenkreis 48. Dies ist ein Schritt in Richtung eines komplett stromlosen Lüfters (alle Verbraucher wie Pumpen, Lüfter, Hilfsspannungsversorgung sind am Zwischenkreis angeschlossen, es wird zumindest keine dauerhafte Anbindung an das elektrische Versorgungsnetz benötigt, und bei entsprechender Dimensionierung der Batterie 70 kann der Netzanschluss ganz entfallen) und ermöglicht außerdem mehr Freiheiten bei der Auslegung des Regelkreises der ORC-Leistung.The eighth embodiment 800 shows an energy store, for example a battery 70 on the intermediate circuit 48. This is a step in the direction of a completely de-energized fan (all consumers such as pumps, fans, auxiliary voltage supply are connected to the intermediate circuit, at least there is no permanent connection to the electrical supply network required, and with appropriate dimensioning of the battery 70, the mains connection can be dispensed with entirely) and also allows more freedom in the design of the control loop of the ORC power.

Fig. 10 zeigt eine neunte Ausführungsform 900 der erfindungsgemäßen Vorrichtung. Fig. 10 shows a ninth embodiment 900 of the device according to the invention.

In der neunten Ausführungsform 900 ist eine Topologie mit rückspeisefähigem Netzumrichter 53 (bidirektionale Stromrichterschaltung) dargestellt. Überschüssige Energie fließt so ins Netz 51 zurück ohne den ORC-Generator in seiner Leistung zu begrenzen. Der Einspeiseumrichter 53 muss den im jeweiligen Land gültigen Einspeiserichtlinien entsprechen. Der Entfall des erhöhten Aufwands für die Erfüllung aller technischen und regulatorischen Einspeiserichtlinien ist der Vorteil aller vorangegangenen Ausführungsformen.In the ninth embodiment 900, a topology with a regenerative power converter 53 (bidirectional converter circuit) is shown. Excess energy thus flows back into the network 51 without limiting the performance of the ORC generator. The infeed converter 53 must comply with the infeed guidelines applicable in the respective country. The elimination of the increased effort for the fulfillment of all technical and regulatory feed-in guidelines is the advantage of all previous embodiments.

Fig. 11 zeigt eine zehnte Ausführungsform 1000 der erfindungsgemäßen Vorrichtung. Fig. 11 shows a tenth embodiment 1000 of the device according to the invention.

Die zehnte Ausführungsform 1000 stellt die Versorgung einer Pumpe 83, beispielsweise einer Heißwasserpumpe eines Heizkreises aus dem DC-Zwischenkreis 48, dar. Es kann jedoch statt der Pumpe 83 auch ein Kompressor oder jeder sonstige elektrische Verbraucher angeschlossen werden.The tenth embodiment 1000 represents the supply of a pump 83, for example a hot water pump of a heating circuit from the DC intermediate circuit 48. However, instead of the pump 83, a compressor or any other electrical consumer can also be connected.

Pumpen haben in dieser Anwendung oft einen höheren Leistungsbedarf als die Ventilatoren. Ist die benötigte Pumpenleistung dauerhaft größer als die ORC-Leistung ist ein direkter Anschluss des DC-Ausgangs des ORC Generatorumrichters an den Spannungszwischenkreis einer geregelten Pumpe möglich. Der ORC wird dann in seinem optimalen Arbeitspunkt maximal Energie erzeugen, welche zum Betrieb der Pumpe verwendet wird. Zusätzliche Energie wird dauerhaft aus dem Netz bezogen.In this application pumps often have a higher power requirement than the fans. If the required pump power is permanently higher than the ORC power, a direct connection of the DC output of the ORC generator converter to the voltage intermediate circuit of a regulated pump is possible. The ORC will then generate maximum energy at its optimal operating point, which is used to operate the pump. Additional energy is permanently drawn from the grid.

Die dargestellten Ausführungsformen sind lediglich beispielhaft. Der vollständige Umfang der vorliegenden Erfindung wird durch die Ansprüche definiert.The illustrated embodiments are only examples. The full scope of the present invention is defined by the claims.

Claims (15)

Vorrichtung (100-1000) zum Betreiben eines elektromechanischen Energiewandlers (80, 81, 82, 83), beispielsweise eines Ventilators oder einer Pumpe; umfassend: eine thermodynamische Kreisprozessvorrichtung (30, 120, 150, 160); einen elektrischen Generator (20), der mit einer Welle (35) einer Expansionsmaschine (30) der thermodynamischen Kreisprozessvorrichtung verbunden ist und zusammen mit der Welle drehbar ist; wobei der Generator (20) elektrisch mit einem ersten Spannungswandler (42) verbunden ist, der erste Spannungswandler (42) elektrisch mit einem Gleichspannungszwischenkreis (40) verbunden ist und der Gleichspannungszwischenkreis (40) zum Betreiben des elektromechanischen Energiewandlers (80, 81, 82, 83) elektrisch mit diesem verbindbar ist; wobei der erste Spannungswandler (42) zum Wandeln einer ersten Wechselspannung des elektrischen Generators (20) in eine Gleichspannung ausgebildet ist; und wobei der Gleichspannungszwischenkreis (40) mit einer elektrischen Zusatzenergieversorgung (50), insbesondere einem öffentlichen Stromnetz, verbindbar ist; und eine Regeleinrichtung (60) zum Regeln der dem elektromechanischen Energiewandler (80, 81, 82, 83) zugeführten elektrischen Energie, so dass der elektromechanische Energiewandler mit einer vorbestimmten Drehzahl betreibbar ist, wobei die Regeleinrichtung zum Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie vom Generator und, falls die vom Generator bereitgestellte elektrische Energie dafür nicht ausreichend ist, zum Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie von der Zusatzenergieversorgung, ausgebildet ist. Device (100-1000) for operating an electromechanical energy converter (80, 81, 82, 83), for example a fan or a pump; full: a thermodynamic cycle device (30, 120, 150, 160); an electric generator (20) connected to a shaft (35) of an expansion machine (30) of the thermodynamic cycle device and rotatable together with the shaft; wherein the generator (20) is electrically connected to a first voltage converter (42), the first voltage converter (42) is electrically connected to a DC voltage intermediate circuit (40) and the DC voltage intermediate circuit (40) for operating the electromechanical energy converter (80, 81, 82, 83) can be electrically connected to it; wherein the first voltage converter (42) is designed to convert a first AC voltage of the electrical generator (20) into a DC voltage; and wherein the DC voltage intermediate circuit (40) can be connected to an additional electrical energy supply (50), in particular a public electricity network; and a regulating device (60) for regulating the electrical energy supplied to the electromechanical energy converter (80, 81, 82, 83) so that the electromechanical energy converter can be operated at a predetermined speed, the regulating device for regulating the electrical energy supplied to the electromechanical energy converter from the generator and, if the electrical energy provided by the generator is not sufficient for this, to regulate the electromechanical Energy converter supplied electrical energy from the additional energy supply, is formed. Vorrichtung nach Anspruch 1, wobei weiterhin ein zweiter Spannungswandler (44) zum Wandeln einer Gleichspannung im Gleichspannungszwischenkreis in eine zweite Wechselspannung zum Betreiben des elektromechanischen Energiewandlers vorgesehen ist, wobei der zweite Spannungswandler elektrisch mit dem Gleichspannungszwischenkreis verbunden ist.The apparatus of claim 1, further comprising a second voltage converter (44) for converting a DC voltage in the DC voltage intermediate circuit into a second AC voltage for operating the electromechanical energy converter, the second voltage converter being electrically connected to the DC voltage intermediate circuit. Vorrichtung nach Anspruch 1 oder 2, wobei die Zusatzenergieversorgung ein öffentliches Stromnetz (51) ist, das über eine Gleichrichterschaltung (52) oder über eine Leistungsfaktorkorrekturstufe (54) mit dem Gleichspannungszwischenkreis verbindbar ist, und die Regeleinrichtung optional weiterhin dazu ausgebildet ist, die vom Generator bereitgestellte Energie zu reduzieren, um eine Einspeisung von elektrischer Energie in das öffentliche Stromnetz zu vermeiden, insbesondere durch Reduzieren des in die thermodynamische Kreisprozessvorrichtung eingebrachten Wärmestroms und/oder durch Reduzieren des Wirkungsgrades der thermodynamischen Kreisprozessvorrichtung; oder
wobei die Zusatzenergieversorgung ein öffentliches Stromnetz (51) ist, das über eine bidirektionale Stromrichterschaltung (53) mit dem Gleichspannungszwischenkreis verbindbar ist, und überschüssige Energie vom Generator in das öffentliche Stromnetz einspeisbar.
Apparatus according to claim 1 or 2, wherein the additional energy supply is a public electricity network (51) which can be connected to the DC voltage intermediate circuit via a rectifier circuit (52) or via a power factor correction stage (54), and the control device is optionally further designed to be provided by the generator reduce the energy provided in order to avoid feeding electrical energy into the public power grid, in particular by reducing the heat flow introduced into the thermodynamic cycle device and / or by reducing the efficiency of the thermodynamic cycle device; or
wherein the additional energy supply is a public electricity network (51) which can be connected to the DC voltage intermediate circuit via a bidirectional converter circuit (53), and excess energy can be fed into the public electricity network from the generator.
Vorrichtung nach einem der Ansprüche 1 bis 3, wobei der Gleichspannungszwischenkreis (40) einen mit dem ersten Spannungswandler (42) verbundenen ersten Teil-Gleichspannungszwischenkreis (46), einen mit dem elektromechanischen Energiewandler verbindbaren oder in Kombination mit Anspruch 2 mit dem zweiten Spannungswandler verbundenen zweiten Teil-Gleichspannungszwischenkreis (48) und einen zwischen den beiden Teilkreisen angeordneten Aufwärtswandler (45) umfasst.Apparatus according to one of claims 1 to 3, wherein the direct voltage intermediate circuit (40) comprises a first partial direct voltage intermediate circuit (46) connected to the first voltage converter (42), a second one which can be connected to the electromechanical energy converter or, in combination with claim 2, is connected to the second voltage converter Partial DC voltage intermediate circuit (48) and a step-up converter (45) arranged between the two partial circuits. Vorrichtung nach Anspruch 4, wobei über eine Parallelschaltung am zweiten Teil-Gleichspannungszwischenkreis ein weiterer elektromechanischer Energiewandler betreibbar ist, wobei optional in Kombination mit Anspruch 2 ein dritter Spannungswandler zum Wandeln der Gleichspannung im zweiten Teil-Gleichspannungszwischenkreis in eine dritte Wechselspannung zum Betreiben des weiteren elektromechanischen Energiewandlers vorgesehen ist, wobei der weitere elektromechanische Energiewandler beispielsweise eine weitere Pumpe, insbesondere eine Speisepumpe zum Pumpen eines Arbeitsmediums in der thermodynamischen Kreisprozessvorrichtung oder ein weiterer Ventilator ist.Apparatus according to claim 4, wherein a further electromechanical energy converter can be operated via a parallel circuit on the second partial direct voltage intermediate circuit, optionally in combination with claim 2 a third voltage converter for converting the direct voltage in the second partial direct voltage intermediate circuit into a third alternating voltage for operating the further electromechanical energy converter is provided, the further electromechanical energy converter being, for example, a further pump, in particular a feed pump for pumping a working medium in the thermodynamic cycle device or a further fan. Vorrichtung nach einem der Anspruch 4 oder 5 in Kombination mit Anspruch 2, wobei der elektromechanische Energiewandler einen Zwischenkreis mit einem Wechselspannungsanschluss umfasst und der Wechselspannungsanschluss direkt mit dem zweiten Teil-Gleichspannungszwischenkreis verbunden ist.Device according to one of claims 4 or 5 in combination with claim 2, wherein the electromechanical energy converter comprises an intermediate circuit with an AC voltage connection and the AC voltage connection is connected directly to the second partial DC voltage intermediate circuit. Vorrichtung nach einem der Ansprüche 3 bis 6, wobei über eine Parallelschaltung am zweiten Teil-Gleichspannungszwischenkreis und einen bidirektionalen Gleichspannungswandler eine Batterie angeschlossen ist.Device according to one of claims 3 to 6, wherein a battery is connected via a parallel connection to the second partial direct voltage intermediate circuit and a bidirectional direct voltage converter. System, umfassend: eine wärmeerzeugende Vorrichtung (110) mit einem Kühlfluid zum Abführen von Wärme aus der wärmeerzeugenden Vorrichtung und einer Kühlvorrichtung (150) mit einem elektrisch betreibbaren Ventilator (80) zum Kühlen des Kühlfluids; wobei die thermodynamische Kreisprozessvorrichtung insbesondere eine Organic-Rankine-Cycle-Vorrichtung ist und wobei die thermodynamische Kreisprozessvorrichtung einen Verdampfer (120) zum Verdampfen eines Arbeitsmediums, die durch Expandieren des verdampften Arbeitsmediums mit dem verdampften Arbeitsmedium betreibbare Expansionsmaschine (30), und einen Kondensator zum Kondensieren des expandierten Arbeitsmediums umfasst; wobei der Ventilator (80) weiterhin zum Kühlen des Arbeitsmediums im Kondensator (150) vorgesehen ist; und wobei das System weiterhin eine Vorrichtung gemäß einem der Ansprüche 1 bis 7 zum Betreiben des Ventilators als elektromechanischen Energiewandler umfasst. System comprising: a heat generating device (110) having a cooling fluid for removing heat from the heat generating device and a cooling device (150) having an electrically operated fan (80) for cooling the cooling fluid; wherein the thermodynamic cycle device is in particular an organic Rankine cycle device and wherein the thermodynamic A cycle process device includes an evaporator (120) for evaporating a working medium, the expansion machine (30) operable by expanding the evaporated working medium with the evaporated working medium, and a condenser for condensing the expanded working medium; the fan (80) is further provided for cooling the working medium in the condenser (150); and wherein the system further comprises a device according to one of claims 1 to 7 for operating the fan as an electromechanical energy converter. System nach Anspruch 8, wobei die Drehzahl des Ventilators durch eine mit der Kühlvorrichtung zu erzielende Temperatur des Kühlfluid vorgegeben ist.The system of claim 8, wherein the speed of the fan is predetermined by a temperature of the cooling fluid to be achieved with the cooling device. Verfahren zum Betreiben eines elektromechanischen Energiewandlers, beispielsweise einer Pumpe oder eines Ventilators mit einer vorbestimmten Drehzahl, umfassend die Schritte: Wandeln einer ersten Wechselspannung eines Generators in eine Gleichspannung, die einem Gleichstromzwischenkreis zwischen dem Generator und dem elektromechanischen Energiewandler zugeführt wird, wobei der elektrische Generator mit einer Welle einer Expansionsmaschine einer thermodynamischen Kreisprozessvorrichtung verbunden ist, sich zusammen mit der Welle dreht und durch die Welle angetrieben wird; optionales Wandeln einer Gleichspannung im Gleichspannungszwischenkreis in eine zweite Wechselspannung; Anlegen der Gleichspannung im Gleichspannungszwischenkreis oder der zweiten Wechselspannung an den elektromechanischen Energiewandler; Anlegen einer Gleichspannung an den Gleichspannungszwischenkreis von einer elektrischen Zusatzenergieversorgung, insbesondere mit elektrischer Energie aus einem öffentlichen Stromnetz; Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie vom Generator, um den elektromechanischen Energiewandler mit der vorbestimmten Drehzahl zu betreiben, und Regeln der dem elektromechanischen Energiewandler zugeführten elektrischen Energie von der Zusatzenergieversorgung, falls die vom Generator bereitgestellte elektrische Energie für das Betreiben des elektromechanischen Energiewandlers mit der vorbestimmten Drehzahl nicht ausreichend ist. Method for operating an electromechanical energy converter, for example a pump or a fan at a predetermined speed, comprising the steps: Converting a first alternating voltage of a generator into a direct voltage which is supplied to a direct current intermediate circuit between the generator and the electromechanical energy converter, the electrical generator being connected to a shaft of an expansion machine of a thermodynamic cycle device, rotating together with the shaft and being driven by the shaft ; optionally converting a DC voltage in the DC voltage intermediate circuit into a second AC voltage; Applying the DC voltage in the DC voltage intermediate circuit or the second AC voltage to the electromechanical energy converter; Applying a DC voltage to the DC voltage intermediate circuit from an additional electrical energy supply, in particular with electrical energy from a public electricity network; Regulating the electrical energy supplied to the electromechanical energy converter from the generator to operate the electromechanical energy converter at the predetermined speed, and Regulating the electrical energy supplied to the electromechanical energy converter from the additional energy supply if the electrical energy provided by the generator is not sufficient for operating the electromechanical energy converter at the predetermined speed. Verfahren nach Anspruch 10, wobei die Zusatzenergieversorgung ein öffentliches Stromnetz ist, das über eine Gleichrichterschaltung mit dem Gleichspannungszwischenkreis verbunden ist, und das Verfahren weiterhin den folgenden Schritt umfasst:
Vermeiden einer Einspeisung von elektrischer Energie in das öffentliche Stromnetz durch Reduzieren der vom Generator bereitgestellten Energie, insbesondere durch Reduzieren des in die thermodynamische Kreisprozessvorrichtung eingebrachten Wärmestroms und/oder durch Reduzieren des Wirkungsgrades der thermodynamischen Kreisprozessvorrichtung.
The method of claim 10, wherein the additional power supply is a public power grid, which is connected to the DC voltage intermediate circuit via a rectifier circuit, and the method further comprises the following step:
Avoid feeding electrical energy into the public power grid by reducing the energy provided by the generator, in particular by reducing the heat flow introduced into the thermodynamic cycle device and / or by reducing the efficiency of the thermodynamic cycle device.
Verfahren nach Anspruch 10, wobei die Zusatzenergieversorgung ein öffentliches Stromnetz ist, das über eine bidirektionale Stromrichterschaltung mit dem Gleichspannungszwischenkreis verbunden ist, das Verfahren weiterhin den folgenden Schritt umfasst:
Einspeisen von überschüssiger Energie vom Generator in das öffentliche Stromnetz.
The method of claim 10, wherein the auxiliary power supply is a public power grid connected to the DC link via a bidirectional converter circuit, the method further comprising the step of:
Feeding surplus energy from the generator into the public power grid.
Verfahren nach einem der Ansprüche 10 bis 12, wobei der Gleichspannungszwischenkreis einen mit dem Generator verbundenen ersten Teil-Gleichspannungszwischenkreis und einen mit dem elektromechanischen Energiewandler verbundenen zweiten Teil-Gleichspannungszwischenkreis umfasst, wobei das Verfahren den folgenden weiteren Schritt umfasst:
Wandeln der ersten Gleichspannung im ersten Teil-Gleichspannungszwischenkreis in eine höhere, in den zweiten Teil-Gleichspannungszwischenkreis eingebrachte zweite Gleichspannung.
Method according to one of claims 10 to 12, wherein the direct voltage intermediate circuit comprises a first partial direct voltage intermediate circuit connected to the generator and a second partial direct voltage intermediate circuit connected to the electromechanical energy converter, the method comprising the following further step:
Converting the first direct voltage in the first partial direct voltage intermediate circuit into a higher second direct voltage introduced in the second partial direct voltage intermediate circuit.
Verfahren nach Anspruch 13, mit dem weiteren Schritt:
Einstellen der zweiten Gleichspannung unterhalb einer von der Zusatzenergieversorgung bereitgestellten dritten Gleichspannung im zweiten Teil-Gleichspannungszwischenkreis, falls die vom Generator bereitgestellte elektrische Energie für das Betreiben des elektromechanischen Energiewandlers mit der vorbestimmten Drehzahl nicht ausreichend ist.
The method of claim 13, further comprising the step of:
Setting the second DC voltage below a third DC voltage provided by the additional energy supply in the second partial DC voltage intermediate circuit if the electrical energy provided by the generator is not sufficient to operate the electromechanical energy converter at the predetermined speed.
Verfahren nach einem der Ansprüche 10 bis 14, mit dem weiteren Schritt:
Wandeln der Gleichspannung im Gleichspannungszwischenkreis in eine dritte Wechselspannung zum Betreiben eines weiteren elektromechanischen Energiewandlers, insbesondere einer Pumpe, beispielsweise einer Speisepumpe zum Pumpen eines Arbeitsmediums in der thermodynamischen Kreisprozessvorrichtung oder zum Betreiben eines weiteren Ventilators.
Method according to one of claims 10 to 14, with the further step:
Converting the DC voltage in the DC voltage intermediate circuit into a third AC voltage for operating a further electromechanical energy converter, in particular a pump, for example a feed pump for pumping a working medium in the thermodynamic cycle device or for operating a further fan.
EP18204344.8A 2018-11-05 2018-11-05 Supply of an electromechanical power converter with electrical energy from a thermodynamic cyclical process Active EP3647553B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18204344.8A EP3647553B1 (en) 2018-11-05 2018-11-05 Supply of an electromechanical power converter with electrical energy from a thermodynamic cyclical process
PCT/EP2019/079126 WO2020094418A1 (en) 2018-11-05 2019-10-25 Supplying an electromechanical energy converter with electrical energy from a thermodynamic cycle
CN201980072013.0A CN113167132A (en) 2018-11-05 2019-10-25 Supplying electrical energy to an electromechanical energy converter from a thermodynamic cycle process
JP2021523672A JP7471287B2 (en) 2018-11-05 2019-10-25 Supply of electrical energy from a thermodynamic cycle process to an electromechanical energy converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18204344.8A EP3647553B1 (en) 2018-11-05 2018-11-05 Supply of an electromechanical power converter with electrical energy from a thermodynamic cyclical process

Publications (2)

Publication Number Publication Date
EP3647553A1 true EP3647553A1 (en) 2020-05-06
EP3647553B1 EP3647553B1 (en) 2022-12-28

Family

ID=64172371

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18204344.8A Active EP3647553B1 (en) 2018-11-05 2018-11-05 Supply of an electromechanical power converter with electrical energy from a thermodynamic cyclical process

Country Status (4)

Country Link
EP (1) EP3647553B1 (en)
JP (1) JP7471287B2 (en)
CN (1) CN113167132A (en)
WO (1) WO2020094418A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008039449A1 (en) * 2008-08-25 2010-03-04 Rheinisch-Westfälische Technische Hochschule Aachen Emission-free Karftwerk
WO2011018404A1 (en) * 2009-08-12 2011-02-17 Siemens Aktiengesellschaft Power plant and method for operating a power plant
WO2011093854A1 (en) * 2010-01-27 2011-08-04 United Technologies Corporation Organic rankine cycle (orc) load following power generation system and method of operation
DE102011008027A1 (en) * 2011-01-05 2012-07-05 Frank Eckert System for recovering waste electrical and mechanical energy in organic Rankine cycle turbine and internal combustion engine, has electromotor exerting rotational torque on drive, where speed of generator is transmitted to electromotor
EP2957732A1 (en) * 2014-06-17 2015-12-23 Panasonic Intellectual Property Management Co., Ltd. Thermal power generation apparatus and thermal power generation system
EP3163035A1 (en) * 2015-10-16 2017-05-03 Panasonic Corporation Rankine-cycle power-generating apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019476A (en) * 2002-06-12 2004-01-22 Ebara Corp Gas turbine system
DE102008008832A1 (en) * 2008-02-13 2009-08-27 Dynatronic Gmbh Electricity producing heating system
JP6167341B2 (en) 2012-11-01 2017-07-26 日東工業株式会社 Grid interconnection system
EP3006682B1 (en) * 2014-10-07 2022-08-03 Orcan Energy AG Device and method for operating a heating distribution station
CN104879177A (en) * 2015-04-21 2015-09-02 同济大学 Organic Rankin cycle and heat pump cycle coupling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008039449A1 (en) * 2008-08-25 2010-03-04 Rheinisch-Westfälische Technische Hochschule Aachen Emission-free Karftwerk
WO2011018404A1 (en) * 2009-08-12 2011-02-17 Siemens Aktiengesellschaft Power plant and method for operating a power plant
WO2011093854A1 (en) * 2010-01-27 2011-08-04 United Technologies Corporation Organic rankine cycle (orc) load following power generation system and method of operation
DE102011008027A1 (en) * 2011-01-05 2012-07-05 Frank Eckert System for recovering waste electrical and mechanical energy in organic Rankine cycle turbine and internal combustion engine, has electromotor exerting rotational torque on drive, where speed of generator is transmitted to electromotor
EP2957732A1 (en) * 2014-06-17 2015-12-23 Panasonic Intellectual Property Management Co., Ltd. Thermal power generation apparatus and thermal power generation system
EP3163035A1 (en) * 2015-10-16 2017-05-03 Panasonic Corporation Rankine-cycle power-generating apparatus

Also Published As

Publication number Publication date
JP2022506349A (en) 2022-01-17
JP7471287B2 (en) 2024-04-19
CN113167132A (en) 2021-07-23
EP3647553B1 (en) 2022-12-28
WO2020094418A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
EP1282774B1 (en) Method for operating a wind power station and wind power station
DE102008037449B4 (en) Wind turbine
CH618556A5 (en)
EP1313206A2 (en) Circuit arrangement
DE112014004595T5 (en) System and method for increasing the efficiency of generator sets in micro-grid systems
WO2011137980A2 (en) Control of a thermal cyclic process
DE102017119743A1 (en) Method for controlling a multiphase, externally excited synchronous generator of a wind energy plant
DE102013222452A1 (en) Method for operating a wind energy plant
EP2136035A1 (en) Operation of a gas and steam turbine plant using a frequency converter
DE102016120700A1 (en) Method for operating a wind energy plant
DE10339086A1 (en) Power conditioning device and method for a turbine engine / generator
EP3330499B1 (en) System and method for energy recovery in industrial facilities
KR102403914B1 (en) Method and energy supply device for supplying energy to components of wind power plant and wind power plant having same
DE102012101928B4 (en) Power management for the decentralized stabilization of a power grid
WO2013020148A2 (en) Energy generation plant, in particular a wind power plant
EP3647553B1 (en) Supply of an electromechanical power converter with electrical energy from a thermodynamic cyclical process
DE102011053982A1 (en) Generator circuit arrangement for e.g. rotation speed-variable mains supply generator device in wind-power plant, has rectifier and generator-inverter including direct current potentials that are connected together in generator operation
DE202012006090U1 (en) Arrangement with a static input / regenerative unit and with an internal combustion engine generator unit
DE19827261C1 (en) Power fluctuation compensation method for generator e.g. of wind-power station
EP3555463B1 (en) Method and device for operating wind turbines
EP0047867B1 (en) Circuit for economically using primary-energy converters
EP2393708A1 (en) Internal combustion engine system having exhaust gas energy recapture for floating devices
EP2759509B1 (en) Portal forklift truck
DE102016212789A1 (en) Energy supply system for an isolated grid
WO2010018194A2 (en) Power plant system for selective operation in power networks at various network frequencies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200812

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220707

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHWALBE, ULF

Inventor name: ZIMMERMANN, ALEXANDER

Inventor name: LANGER, ROY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHWALBE, ULF

Inventor name: ZIMMERMANN, ALEXANDER

Inventor name: LANGER, ROY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011304

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1540623

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230428

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230428

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011304

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231130

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231128

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 6

Ref country code: FR

Payment date: 20231128

Year of fee payment: 6

Ref country code: DE

Payment date: 20231129

Year of fee payment: 6

Ref country code: CZ

Payment date: 20231102

Year of fee payment: 6