EP3630451A1 - Apparatus and method for creating a pattern from a first fluid in a second fluid - Google Patents

Apparatus and method for creating a pattern from a first fluid in a second fluid

Info

Publication number
EP3630451A1
EP3630451A1 EP18729548.0A EP18729548A EP3630451A1 EP 3630451 A1 EP3630451 A1 EP 3630451A1 EP 18729548 A EP18729548 A EP 18729548A EP 3630451 A1 EP3630451 A1 EP 3630451A1
Authority
EP
European Patent Office
Prior art keywords
fluid
capillary
pattern
positioning unit
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18729548.0A
Other languages
German (de)
French (fr)
Inventor
Benjamin GREIMEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Greimel Benjamin
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3630451A1 publication Critical patent/EP3630451A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • B29C64/194Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0032Pigments, colouring agents or opacifiyng agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0094Condition, form or state of moulded material or of the material to be shaped having particular viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the invention relates to a method and an apparatus for producing a pattern from a first fluid in a second fluid, the density of which is adjusted as a function of its viscosity to the density of the first fluid and wherein both fluids are not or only with difficulty miscible, with a Reservoir for the first fluid and a, associated with a positioning unit and connected to the reservoir injector, as well as a fluid combination thereof.
  • a printing medium is applied in layers to a support, for example by heating.
  • a fluid can be cured in layers, for example, by UV irradiation.
  • the invention is therefore based on the object, a method and an apparatus of the type described above in such a way that generating floating patterns from a first fluid in a second fluid, especially in the food sector for generating predetermined floating pattern in drinks, is possible.
  • the invention achieves the stated object in that the injector forms a capillary, which is connected via a metering device to the reservoir and whose length corresponds at least to the maximum pattern depth in the second fluid, and that the outlet tip of the capillary via the positioning unit in the longitudinal direction of the capillary and is displaceable in at least one transverse direction.
  • any pattern of the first fluid can be introduced into the second fluid pointwise or in lines from the reservoir via the metering device.
  • the capillary must be designed such that the first fluid can be metered and possibly introduced into the second fluid in point form by displacement, without the capillaries, by their own movement in the second fluid, to dispose of the parts already introduced Pattern destroyed.
  • Decisive are the capillary action and the internal friction within the capillary in relation to the viscosity of the first fluid.
  • Advantageous materials for the capillary are therefore for example glass or plastic.
  • a capillary according to the invention also has a sufficiently small outer diameter to prevent damage to the already introduced parts of the pattern to be produced.
  • the outlet tip of the capillary can be displaced by the positioning unit in the longitudinal direction of the capillary and in at least one transverse direction, planar three-dimensional patterns can already be generated in the second fluid. If the positioning unit is designed in such a way that the outlet tip of the capillary can be displaced in a further axis running normal to the longitudinal direction and to the first transverse direction, spatial three-dimensional patterns in the second fluid can also be generated. This is the case, for example, when the positioning unit is designed as a linear delta kinematics.
  • the displaceability of the outlet tip of the capillary is important, that is theoretically also an orientation of the longitudinal axis of the capillary which is not normal to the surface of the second fluid conceivable.
  • a particularly favorable embodiment variant results in a manner that can be understood by the person skilled in the art if the longitudinal direction of the capillary coincides with the surface normal of the surface of the second fluid.
  • the second fluid can be arranged in an upwardly at least partially open vessel, such as a drinking glass below the injector.
  • the second fluid does not have to completely fill the vessel, but can for example only form a layer resulting from the density ratios within several fluids.
  • the capillary forms at its outlet tip a break-off edge for the first fluid.
  • the tear-off edge must of course be found at the inner edge of the outlet tip of the capillary, which is achieved, for example, by grinding the capillary transverse to the longitudinal axis.
  • the metering device has a peristaltic pump for the first fluid.
  • a peristaltic pump further a simple change of the pump tube, which is formed in a preferred embodiment directly through the connecting line between the reservoir and capillary.
  • the pulsation of the fluid to be pumped which usually occurs in peristaltic pumps for technical reasons, is advantageous in the application according to the invention if a pulse corresponds exactly to the dosing unit for an injection procedure.
  • the peristaltic pump can be arranged upstream and downstream in the flow path of the first fluid depending on a non-return valve permeable in the direction of the injector.
  • the peristaltic pump can be operated reversibly, that is to say alternately in the forward and the reverse, so that smaller metering units can be reliably provided at the outlet tip of the capillary.
  • the invention also provides a method for producing a pattern from a first fluid in a second fluid whose density is adjusted as a function of its viscosity to the density of the first fluid and both fluids are not difficult to mix, the capillary the positioning unit is introduced into the second fluid to a first pattern position and with the aid of the metering device a predetermined amount of the first fluid from the reservoir via the capillary at the outlet tip is introduced into the second fluid, after which the positioning unit with the outlet tip of the capillary performs a tear-off movement.
  • the tear-off movement ensures that the first fluid does not form streaks in the second fluid and forms the desired defined pattern.
  • a particularly advantageous injection of the first fluid into the second fluid can take place when the time of the return of the peristaltic pump with the beginning of the Demolition movement coincides, because this favors the demolition of the fluid flow in addition.
  • the velocity of separation from the capillary is dependent on the fluid flow from the capillary, depending on the fluid combination and injection speed, at a speed of 10 mm / s to 400 mm / s with an acceleration between 5 mm / s 2 and 6000 mm / s 2 .
  • solid lines may be generated when the positioning unit advances the capillary along a line of the pattern during metered introduction of the second fluid into the first fluid.
  • it is also possible to generate pattern elements in points if the pattern to be generated is first dissolved into individual injection points and the positioning unit moves the outlet tip of the capillary to one of the injection points as pattern position, with the aid of the metering device a predetermined amount of the first Fluid is introduced at the point of Injek- tion point in the second fluid and performs the positioning with the outlet tip of the capillary a tearing movement and movement to another of the injection points so that the capillary crosses none of the already introduced injection points.
  • the tear-off movement may coincide with the movement to a further one of the injection points, if a retraction or sideward movement of the outlet tip with respect to the fluid flow from the capillary is thereby initiated.
  • a retraction or sideward movement of the outlet tip with respect to the fluid flow from the capillary is thereby initiated.
  • fluid combinations according to the invention may be considered, wherein one of the fluids is an oil-based fluid and the other fluid is a water-based fluid, the water-based fluid containing a thickener to increase its viscosity.
  • agar-agar, pectin, sago or others can be used as thickening agent for the aqueous fluid solution.
  • an inner diameter of the capillary of 0.8 to 1, 2 mm, in particular of 1 mm has proven to be advantageous, especially in the case of the use of edible oil.
  • all fluid combinations come into consideration, wherein the fluids either have an approximately matching density and / or have a sufficiently high viscosity.
  • a high viscosity can be a greater density difference at least temporarily compensate and also facilitates the injection process, because the already injected pattern is protected by a higher viscosity of the second fluid especially against damage.
  • High viscosity also allows greater flexibility in the use of color pigments, because they can significantly affect the density of the yes yes only small amounts injected the first fluid depending on the material composition. Extremely high viscosity also permits a fluid combination between liquids and gases, such as air as the first fluid and honey as the second fluid.
  • the density of the second fluid is adjusted as a function of its viscosity to the density of the first fluid thus means that the density and viscosity of the two fluids are adapted to one another so that upon injection of the first fluid in the second fluid according to the invention at least For a certain period of time from a few minutes to several hours or even longer a floating pattern results that due to the approximately matching densities and / or the viscosity of the second fluid in particular neither rises nor sinks in the second fluid or changed its structure.
  • the oil-based fluid contains a color pigment to increase its density. Due to its particularly high density, the color pigment can be, for example, titanium oxide.
  • Such a device for generating a pattern of a first fluid in a second fluid the density of which depends on its viscosity at the density is adapted to the first fluid and wherein both fluids are difficult or impossible to mix, comprises a reservoir 1 for the first fluid, which is connected via an only schematically illustrated connecting line 2 with a capillary 3 designed as an injector.
  • a metering device 4 is provided, with the aid of which metering units of the first fluid are conveyed to the capillary.
  • the capillary 3 is detachably connected to a positioning unit 5, which is controlled together with the metering device 4 via a common control 6.
  • the positioning unit 5 is designed so that it can move the outlet tip 9 of the capillary 3 in the longitudinal direction of the capillary 3 and in at least one transverse direction thereto.
  • the positioning unit 5, as in the illustrated embodiment, be designed as a linear delta kinematics, which allows the capillary 3 to move in a further transverse direction, which is normal both to the longitudinal direction of the capillary 3 and the at least first transverse direction.
  • the outlet tip 9 of the capillary 3 can form a tear-off edge for the first fluid, in that the capillary 3 or its outlet tip 9 is ground off transversely to the longitudinal direction of the capillary 3.
  • the metering device 4 may comprise a peristaltic pump 10 for the first fluid, wherein the peristaltic pump 10 in the flow path of the first fluid, ie in the connecting line 2 per permeable in the direction of the capillary designed as 3 injector Check valve 11 is upstream and downstream.

Abstract

The invention describes a method and also an apparatus for creating a pattern (7) from a first fluid in a second fluid, the density of said second fluid being matched to the density of the first fluid depending on the viscosity of said second fluid, and wherein the two fluids are immiscible or miscible only with difficulty, comprising a storage container (1) for the first fluid and an injector which is associated with a positioning unit (5) and is connected to the storage container (1). In order to enable floating patterns (7) from a first fluid to be created in a second fluid, in particular in the food sector for creating prespecified floating patterns (7) in beverages, it is proposed that the injector forms a capillary (3) which is connected to the storage container (1) by means of a metering apparatus (4) and of which the length corresponds at least to the maximum pattern depth in the second fluid, and in that the outlet tip (9) of the capillary (3) can be moved in the longitudinal direction of the capillary (3) and in at least one transverse direction thereto by means of the positioning unit (5).

Description

Vorrichtung und Verfahren zum Erzeugen eines Musters aus einem ersten Fluid in einem zweiten Fluid Technisches Gebiet  Apparatus and method for generating a pattern of a first fluid in a second fluidic technical field
Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zum Erzeugen eines Musters aus einem ersten Fluid in einem zweiten Fluid, dessen Dichte in Abhängigkeit seiner Viskosität an die Dichte des ersten Fluides angepasst ist und wobei beide Fluide nicht oder nur schwer mischbar sind, mit einem Vorratsbehälter für das erste Fluid und einem, einer Positioniereinheit zugeordneten und mit dem Vorratsbehälter verbundenen Injektor, sowie auf ein Fluidkombination hierfür. The invention relates to a method and an apparatus for producing a pattern from a first fluid in a second fluid, the density of which is adjusted as a function of its viscosity to the density of the first fluid and wherein both fluids are not or only with difficulty miscible, with a Reservoir for the first fluid and a, associated with a positioning unit and connected to the reservoir injector, as well as a fluid combination thereof.
Stand der Technik State of the art
Zum Drucken dreidimensionaler Muster sind Druckverfahren bekannt, bei denen ein Druckmedium beispielsweise durch Erhitzen schichtweise auf einen Träger aufge- bracht wird. Alternativ dazu kann auch ein Fluid schichtweise beispielsweise durch UV-Bestrahlung ausgehärtet werden. For printing three-dimensional patterns, printing processes are known in which a printing medium is applied in layers to a support, for example by heating. Alternatively, a fluid can be cured in layers, for example, by UV irradiation.
Zum Drucken dreidimensionaler Strukturen, wie beispielsweise auch für Nahrungsmittel wurde bereits vorgeschlagen (CN 204019803 U) ein Druckmedium über eine Peristaltikpumpe einer Druckdüse zuzuführen, um mithilfe dieser Druckdüse eben- falls schichtweise dreidimensionale Strukturen auf einen Träger aufzubringen. For printing three-dimensional structures, such as for food, it has already been proposed (CN 204019803 U) to supply a pressure medium via a peristaltic pump to a pressure nozzle in order to apply three-dimensional structures layer by layer onto a carrier with the aid of this pressure nozzle.
Ein Erzeugen von schwebenden Mustern aus einem ersten Fluid in einem zweiten Fluid, dessen Dichte in Abhängigkeit seiner Viskosität an die Dichte des ersten Fluides angepasst ist und wobei beide Fluide nicht oder nur schwer mischbar sind, ist durch diese Verfahren allerdings nicht möglich. Darstellung der Erfindung However, it is not possible to produce floating patterns from a first fluid in a second fluid whose density is adjusted as a function of its viscosity to the density of the first fluid and in which both fluids are immiscible or difficult to mix. Presentation of the invention
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs beschriebenen Art so auszugestalten, dass ein Erzeugen von schwebenden Mustern aus einem ersten Fluid in einem zweiten Fluid, insbesondere im Lebensmittelbereich zum Erzeugen vorgegebener schwebender Muster in Getränken, ermöglicht wird. The invention is therefore based on the object, a method and an apparatus of the type described above in such a way that generating floating patterns from a first fluid in a second fluid, especially in the food sector for generating predetermined floating pattern in drinks, is possible.
Die Erfindung löst die gestellte Aufgabe dadurch, dass der Injektor eine Kapillare bildet, die über eine Dosiervorrichtung mit dem Vorratsbehälter verbunden ist und deren Länge wenigstens der maximalen Mustertiefe im zweiten Fluid entspricht, und dass die Auslassspitze der Kapillare über die Positioniereinheit in Längsrichtung der Kapillare und in wenigstens einer Querrichtung dazu verlagerbar ist. The invention achieves the stated object in that the injector forms a capillary, which is connected via a metering device to the reservoir and whose length corresponds at least to the maximum pattern depth in the second fluid, and that the outlet tip of the capillary via the positioning unit in the longitudinal direction of the capillary and is displaceable in at least one transverse direction.
Zufolge dieser Maßnahmen kann ein beliebiges Muster aus dem ersten Fluid punktweise oder in Linien aus dem Vorratsbehälter über die Dosiervorrichtung in das zweite Fluid eingebracht werden. Die Kapillare muss zu diesem Zweck so aus- gebildet sein, dass das erste Fluid dosiert und gegebenenfalls auch in Punktform durch Verdrängung in das zweite Fluid eingebracht werden kann, ohne dass die Kapillare durch die eigene Bewegung im zweiten Fluid die bereits eingebrachten Teile des zu erzeugenden Musters zerstört. Maßgeblich sind dabei die Kapillarwirkung und die innere Reibung innerhalb der Kapillare im Verhältnis zur Viskosität des ersten Fluides. Vorteilhafte Materialien für die Kapillare sind daher beispielsweise Glas oder Kunststoff. Eine erfindungsgemäße Kapillare weist auch einen ausreichend kleinen Außendurchmesser auf, um eine Beschädigung der bereits eingebrachten Teile des zu erzeugenden Musters zu verhindern. Dadurch, dass die Auslassspitze der Kapillare durch die Positioniereinheit in Längsrichtung der Kapillare und in wenigstens einer Querrichtung dazu verlagerbar ist, können bereits flächige dreidimensionale Muster im zweiten Fluid erzeugt werden. Wird die Positioniereinheit so ausgestaltet, dass die Auslassspitze der Kapillare in einer weiteren, zur Längsrichtung und zur ersten Querrichtung normal verlaufenden Achse verlagerbar ist, so lassen sich auch räumliche dreidimensionale Muster im zweiten Fluid erzeu- gen. Dies ist beispielsweise dann der Fall, wenn die Positioniereinheit als lineare Deltakinematik ausgeführt ist. In diesem Zusammenhang ist darauf hinzuweisen, dass es für die Erfindung lediglich auf die Verlagerbarkeit der Auslassspitze der Kapillare ankommt, dass also theoretisch auch eine zur Oberfläche des zweiten Flui- des nicht normale Ausrichtung der Längsachse der Kapillare denkbar ist. Eine besonders günstige Ausführungsvariante ergibt sich in für den Fachmann nachvollziehbarer Weise dann, wenn die Längsrichtung der Kapillare mit der Flächennormale der Oberfläche des zweiten Fluides zusammenfällt. Das zweite Fluid kann in einem nach oben zumindest abschnittsweise offenen Gefäß, wie beispielsweise ei- nem Trinkglas unterhalb des Injektors angeordnet werden. Das zweite Fluid muss dabei das Gefäß nicht vollständig ausfüllen, sondern kann beispielsweise nur eine sich aus den Dichteverhältnissen ergebende Schicht innerhalb mehrerer Fluide bilden. Um eine einfache Auswechselbarkeit der Kapillare zu ermöglichen, kann diese lösbar mit der Positioniereinheit verbunden sein. Um ein regelmäßiges und sauberes Muster zu erzeugen, wird vorgeschlagen, dass die Kapillare an ihrer Auslassspitze eine Abrisskante für das erste Fluid bildet. Die Abrisskante muss sich dabei selbstverständlich am inneren Rand der Auslassspitze der Kapillare ergeben, was beispielsweise durch ein Anschleifen der Kapillare quer zur Längsachse erreicht wird. Um einen hygienischen Abschluss des ersten Fluides zu ermöglichen, ohne dass dieses mit Teilen der Dosiereinrichtung in direkten Kontakt kommt, wird vorgeschlagen, dass die Dosiereinrichtung eine Peristaltikpumpe für das erste Fluid aufweist. Gerade bei Fluiden mit hoher Viskosität erlaubt eine Peristaltikpumpe weiters einen einfachen Wechsel des Pumpschlauches, der in einer bevorzugten Ausführungs- form direkt durch die Verbindungsleitung zwischen Vorratsbehälter und Kapillare gebildet wird. Die aus technischen Gründen bei Peristaltikpumpen üblicherweise auftretende Pulsierung des zu pumpenden Fluides ist im erfindungsgemäßen Anwendungsfall von Vorteil, sofern ein Puls genau der Dosiereinheit für einen Injektionsvorgang entspricht. Nachdem üblicherweise allerdings geringere Dosiereinheiten benötigt werden, wie beispielsweise im Bereich von 1 bis 3 μΙ, kann der Peristaltikpumpe im Strömungsweg des ersten Fluides je ein in Richtung des Injektors durchlässiges Rückschlagventil vor- und nachgeordnet sein. Zufolge dieser Maßnahme kann die Peristaltik- pumpe reversierend, das heißt abwechselnd im Vor- und im Rücklauf betrieben werden, sodass auch kleinere Dosiereinheiten zuverlässig an der Auslassspitze der Kapillare zur Verfügung gestellt werden können. In diesem Zusammenhang ist es von besonderem Vorteil, den Antrieb der Peristaltikpumpe beispielsweise mit einem Schrittmotor zu realisieren, wobei in diesem Fall auch die sonst notwendigen meh- reren Rollen oder Gleitschuhe auf genau eine Rolle bzw. einen Gleitschuh reduziert werden können. According to these measures, any pattern of the first fluid can be introduced into the second fluid pointwise or in lines from the reservoir via the metering device. For this purpose, the capillary must be designed such that the first fluid can be metered and possibly introduced into the second fluid in point form by displacement, without the capillaries, by their own movement in the second fluid, to dispose of the parts already introduced Pattern destroyed. Decisive are the capillary action and the internal friction within the capillary in relation to the viscosity of the first fluid. Advantageous materials for the capillary are therefore for example glass or plastic. A capillary according to the invention also has a sufficiently small outer diameter to prevent damage to the already introduced parts of the pattern to be produced. Because the outlet tip of the capillary can be displaced by the positioning unit in the longitudinal direction of the capillary and in at least one transverse direction, planar three-dimensional patterns can already be generated in the second fluid. If the positioning unit is designed in such a way that the outlet tip of the capillary can be displaced in a further axis running normal to the longitudinal direction and to the first transverse direction, spatial three-dimensional patterns in the second fluid can also be generated. This is the case, for example, when the positioning unit is designed as a linear delta kinematics. In this context, it should be pointed out that for the invention, only the displaceability of the outlet tip of the capillary is important, that is theoretically also an orientation of the longitudinal axis of the capillary which is not normal to the surface of the second fluid conceivable. A particularly favorable embodiment variant results in a manner that can be understood by the person skilled in the art if the longitudinal direction of the capillary coincides with the surface normal of the surface of the second fluid. The second fluid can be arranged in an upwardly at least partially open vessel, such as a drinking glass below the injector. The second fluid does not have to completely fill the vessel, but can for example only form a layer resulting from the density ratios within several fluids. To allow easy replacement of the capillary, this can be releasably connected to the positioning. In order to produce a regular and clean pattern, it is proposed that the capillary forms at its outlet tip a break-off edge for the first fluid. The tear-off edge must of course be found at the inner edge of the outlet tip of the capillary, which is achieved, for example, by grinding the capillary transverse to the longitudinal axis. In order to enable a hygienic completion of the first fluid, without this coming into direct contact with parts of the metering device, it is proposed that the metering device has a peristaltic pump for the first fluid. Especially for fluids with high viscosity allows a peristaltic pump further a simple change of the pump tube, which is formed in a preferred embodiment directly through the connecting line between the reservoir and capillary. The pulsation of the fluid to be pumped, which usually occurs in peristaltic pumps for technical reasons, is advantageous in the application according to the invention if a pulse corresponds exactly to the dosing unit for an injection procedure. However, since usually lower dosing units are required, for example in the range of 1 to 3 μΙ, the peristaltic pump can be arranged upstream and downstream in the flow path of the first fluid depending on a non-return valve permeable in the direction of the injector. As a result of this measure, the peristaltic pump can be operated reversibly, that is to say alternately in the forward and the reverse, so that smaller metering units can be reliably provided at the outlet tip of the capillary. In this context, it is of particular advantage to realize the drive of the peristaltic pump, for example with a stepping motor, in which case the otherwise necessary multiple rollers or sliding shoes can be reduced to exactly one roller or one sliding block.
Gegenstand der Erfindung ist auch ein Verfahren zum Erzeugen eines Musters aus einem ersten Fluid in einem zweiten Fluid, dessen Dichte in Abhängigkeit seiner Viskosität an die Dichte des ersten Fluides angepasst ist und beide Fluide nicht o- der nur schwer mischbar sind, wobei die Kapillare durch die Positioniereinheit in das zweite Fluid an eine erste Musterposition eingeführt und mit Hilfe der Dosiervorrichtung eine vorgegebene Menge des ersten Fluides aus dem Vorratsbehälter über die Kapillare an deren Auslassspitze in das zweite Fluid eingebracht wird, wonach die Positioniereinheit mit der Auslassspitze der Kapillare eine Abrissbewegung ausführt. Die Abrissbewegung stellt dabei sicher, dass das erste Fluid nicht im zweiten Fluid Schlieren bildet und sich das gewünschte definierte Muster ausbildet. Gemeinsam mit einer Peristaltikpumpe im Strömungsweg des ersten Fluides, der je ein in Richtung des Injektors durchlässiges Rückschlagventil vor- und nachgeordnet ist, kann eine besonders vorteilhafte Injektion des ersten Fluides in das zweite Fluid erfolgen, wenn der Zeitpunkt des Rücklaufes der Peristaltikpumpe mit dem Beginn der Abrissbewegung zusammenfällt, weil dies den Abriss des Fluidstromes zusätzlich begünstigt. Die Abrisswegung selbst erfolgt bezogen auf den Fluidstrom aus der Kapillare in einer Rückzugs- oder Seitwärtsbewegung der Auslassspitze mit, je nach Flu- idkombination und Injektionsgeschwindigkeit, einer Geschwindigkeit von 10mm/s bis 400mm/s bei einer Beschleunigung zwischen 5mm/s2 und 6000mm/s2. Mit dem Erfindungsgemäßen Verfahren können unterschiedliche Musterelemente injiziert werden. Beispielsweise können durchgehende Linien erzeugt werden, wenn die Positioniereinheit die Kapillare während des dosierten Einbringens des zweiten Fluides in das erste Fluid entlang einer Linie des Musters weiterbewegt. Es ist allerdings alternativ oder ergänzend dazu auch eine punktweise Erzeugung von Musterelementen möglich, wenn das zu erzeugende Muster zunächst in einzelne Injektionspunkte aufgelöst wird und die Positioniereinheit die Auslassspitze der Kapillare zu einem der Injektionspunkte als Musterposition bewegt, mit Hilfe der Dosiervorrichtung eine vorgegebene Menge des ersten Fluides an der Stelle des Injek- tionspunktes in das zweite Fluid eingebracht wird und die Positioniereinheit mit der Auslassspitze der Kapillare eine Abrissbewegung und eine Bewegung zu einem weiteren der Injektionspunkte so ausführt, dass die Kapillare keine der bereits eingebrachten Injektionspunkte kreuzt. Je Injektionspunkt können auf diese Weise beispielsweise 1— 3 μΙ des ersten Fluides in das zweite Fluid injiziert werden. Die Ab- rissbewegung kann dabei mit der Bewegung zu einem weiteren der Injektionspunkte zusammenfallen, wenn dadurch eine in Bezug auf den Fluidstrom aus der Kapillare Rückzugs- oder Seitwärtsbewegung der Auslassspitze eingeleitet wird. Dies ist beispielsweise der Fall, wenn helixförmige Muster entlang einer zur Kapillare im Wesentlichen parallelen Achse erzeugt werden sollen. Für die beschriebene Vorrichtung und das beschriebene Verfahren können erfindungsgemäß Fluidkombination in Betracht kommen, wobei eines der Fluide eine Flüssigkeit auf Ölbasis und das andere Fluid eine Flüssigkeit auf Wasserbasis ist, wobei die Flüssigkeit auf Wasserbasis ein Verdickungsmittel zur Erhöhung deren Viskosität enthält. Als Verdickungsmittel für die wässrige Fluidlösung kann dabei beispielsweise Agar-Agar, Pektin, Sago oder andere zum Einsatz kommen. In diesem Fall hat sich ein Innendurchmesser der Kapillare von 0,8 bis 1 ,2 mm, insbesondere von 1 mm als vorteilhaft erwiesen, insbesondere für den Fall des Einsatzes von Speiseöl. Grundsätzlich kommen aber alle Fluidkombinationen in Betracht, wobei die Fluide entweder eine in etwa übereinstimmende Dichte aufweisen und/oder eine ausreichend hohe Viskosität besitzen. Eine hohe Viskosität kann dabei einen größeren Dichteunterschied zumindest vorübergehend kompensieren und erleichtert auch den Injektionsvorgang, weil das bereits injizierte Muster durch eine höhere Viskosität gerade des zweiten Fluides gegen eine Beschädigung geschützt wird. Hohe Viskosität erlaubt auch eine größere Flexibilität bei der Verwendung von Farbpigmenten, weil diese je nach stofflicher Zusammensetzung die Dichte der ja nur geringen injizierten Mengen des ersten Fluides erheblich beeinflussen können. Extrem hohe Viskosität erlaubt auch eine Fluidkombination zwischen Flüssigkeiten und Gasen, wie beispielsweise Luft als erstes Fluid und Honig als zweites Fluid. Dass die Dichte des zweiten Fluides in Abhängigkeit seiner Viskosität an die Dichte des ersten Fluids angepasst ist bedeutet somit, dass Dichte und Viskosität der beiden Fluide so aneinander angepasst sind, dass sich bei Injektion des ersten Fluides in das zweite Fluid im Sinne der Erfindung ein zumindest für einen bestimmten Zeitraum von wenigen Minuten bis mehreren Stunden oder noch länger ein schwebendes Muster ergibt, dass aufgrund der in etwa übereinstimmenden Dichten und/der der Viskosität insbesondere des zweiten Fluids weder im zweiten Fluid aufsteigt noch absinkt oder seine Struktur verändert. The invention also provides a method for producing a pattern from a first fluid in a second fluid whose density is adjusted as a function of its viscosity to the density of the first fluid and both fluids are not difficult to mix, the capillary the positioning unit is introduced into the second fluid to a first pattern position and with the aid of the metering device a predetermined amount of the first fluid from the reservoir via the capillary at the outlet tip is introduced into the second fluid, after which the positioning unit with the outlet tip of the capillary performs a tear-off movement. The tear-off movement ensures that the first fluid does not form streaks in the second fluid and forms the desired defined pattern. Together with a peristaltic pump in the flow path of the first fluid, each upstream and downstream of a permeable in the direction of the injector check valve, a particularly advantageous injection of the first fluid into the second fluid can take place when the time of the return of the peristaltic pump with the beginning of the Demolition movement coincides, because this favors the demolition of the fluid flow in addition. Depending on the fluid combination and injection rate, the velocity of separation from the capillary is dependent on the fluid flow from the capillary, depending on the fluid combination and injection speed, at a speed of 10 mm / s to 400 mm / s with an acceleration between 5 mm / s 2 and 6000 mm / s 2 . With the method according to the invention different pattern elements can be injected. For example, solid lines may be generated when the positioning unit advances the capillary along a line of the pattern during metered introduction of the second fluid into the first fluid. However, alternatively or additionally, it is also possible to generate pattern elements in points if the pattern to be generated is first dissolved into individual injection points and the positioning unit moves the outlet tip of the capillary to one of the injection points as pattern position, with the aid of the metering device a predetermined amount of the first Fluid is introduced at the point of Injek- tion point in the second fluid and performs the positioning with the outlet tip of the capillary a tearing movement and movement to another of the injection points so that the capillary crosses none of the already introduced injection points. Depending on the injection point, for example, 1-3 μΙ of the first fluid can be injected into the second fluid. In this case, the tear-off movement may coincide with the movement to a further one of the injection points, if a retraction or sideward movement of the outlet tip with respect to the fluid flow from the capillary is thereby initiated. This is the case, for example, when helical patterns are to be generated along an axis substantially parallel to the capillary. For the described apparatus and method, fluid combinations according to the invention may be considered, wherein one of the fluids is an oil-based fluid and the other fluid is a water-based fluid, the water-based fluid containing a thickener to increase its viscosity. For example, agar-agar, pectin, sago or others can be used as thickening agent for the aqueous fluid solution. In this case, an inner diameter of the capillary of 0.8 to 1, 2 mm, in particular of 1 mm has proven to be advantageous, especially in the case of the use of edible oil. In principle, however, all fluid combinations come into consideration, wherein the fluids either have an approximately matching density and / or have a sufficiently high viscosity. A high viscosity can be a greater density difference at least temporarily compensate and also facilitates the injection process, because the already injected pattern is protected by a higher viscosity of the second fluid especially against damage. High viscosity also allows greater flexibility in the use of color pigments, because they can significantly affect the density of the yes yes only small amounts injected the first fluid depending on the material composition. Extremely high viscosity also permits a fluid combination between liquids and gases, such as air as the first fluid and honey as the second fluid. The fact that the density of the second fluid is adjusted as a function of its viscosity to the density of the first fluid thus means that the density and viscosity of the two fluids are adapted to one another so that upon injection of the first fluid in the second fluid according to the invention at least For a certain period of time from a few minutes to several hours or even longer a floating pattern results that due to the approximately matching densities and / or the viscosity of the second fluid in particular neither rises nor sinks in the second fluid or changed its structure.
Nachdem nicht oder nur schwer mischbare Fluide üblicherweise unterschiedliche Dichten aufweisen, wird im vorgenannten Beispiel vorgeschlagen, dass die Flüssigkeit auf Ölbasis ein Farbpigment zur Erhöhung deren Dichte enthält. Das Farbpigment kann aufgrund seiner besonders hohen Dichte beispielsweise Titanoxid sein. Since fluids which are immiscible or difficult to mix usually have different densities, it is proposed in the aforementioned example that the oil-based fluid contains a color pigment to increase its density. Due to its particularly high density, the color pigment can be, for example, titanium oxide.
Kurze Beschreibung der Erfindung Brief description of the invention
In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt, und zwar in einer schematischen Darstellung der erfindungsgemäßen Vorrichtung. Weg zur Ausführung der Erfindung In the drawing, the subject invention is illustrated, for example, in a schematic representation of the device according to the invention. Way to carry out the invention
Eine solche Vorrichtung zum Erzeugen eines Musters aus einem ersten Fluid in einem zweiten Fluid, dessen Dichte in Abhängigkeit seiner Viskosität an die Dichte des ersten Fluides angepasst ist und wobei beide Fluide nicht oder nur schwer mischbar sind, umfasst einen Vorratsbehälter 1 für das erste Fluid, der über eine nur schematisch dargestellte Verbindungsleitung 2 mit einem als Kapillare 3 ausgebildeten Injektor verbunden ist. Innerhalb der Verbindungsleitung 2 zwischen dem Vorratsbehälter 1 und der Kapillare 3 ist eine Dosiereinrichtung 4 vorgesehen, mit deren Hilfe Dosiereinheiten des ersten Fluides zur Kapillare gefördert werden. Such a device for generating a pattern of a first fluid in a second fluid, the density of which depends on its viscosity at the density is adapted to the first fluid and wherein both fluids are difficult or impossible to mix, comprises a reservoir 1 for the first fluid, which is connected via an only schematically illustrated connecting line 2 with a capillary 3 designed as an injector. Within the connecting line 2 between the reservoir 1 and the capillary 3, a metering device 4 is provided, with the aid of which metering units of the first fluid are conveyed to the capillary.
Die Kapillare 3 ist lösbar mit einer Positioniereinheit 5 verbunden, die gemeinsam mit der Dosiereinrichtung 4 über eine gemeinsame Steuerung 6 angesteuert wird. Zum Erzeugen eines Musters 7 in einem, mit dem zweiten Fluid zumindest teilweise befüllten Gefäß 8 ist die Positioniereinheit 5 so ausgebildet, dass sie die Auslassspitze 9 der Kapillare 3 in Längsrichtung der Kapillare 3 und in wenigstens einer Querrichtung dazu bewegen kann. Die Positioniereinheit 5 kann, wie im dargestellten Ausführungsbeispiel, als lineare Deltakinematik ausgeführt sein, die es erlaubt, die Kapillare 3 auch in einer weiteren Querrichtung zu bewegen, die sowohl zur Längsrichtung der Kapillare 3 als auch zur wenigstens ersten Querrichtung normal verläuft. The capillary 3 is detachably connected to a positioning unit 5, which is controlled together with the metering device 4 via a common control 6. For generating a pattern 7 in a, at least partially filled with the second fluid vessel 8, the positioning unit 5 is designed so that it can move the outlet tip 9 of the capillary 3 in the longitudinal direction of the capillary 3 and in at least one transverse direction thereto. The positioning unit 5, as in the illustrated embodiment, be designed as a linear delta kinematics, which allows the capillary 3 to move in a further transverse direction, which is normal both to the longitudinal direction of the capillary 3 and the at least first transverse direction.
Die Auslassspitze 9 der Kapillare 3 kann eine Abrisskante für das erste Fluid bilden, indem die Kapillare 3 bzw. deren Auslassspitze 9 quer zur Längsrichtung der Kapillare 3 abgeschliffen ist. Gemäß einer, in der Figur dargestellten vorteilhaften Ausführungsform der Erfindung kann die Dosiereinrichtung 4 eine Peristaltikpumpe 10 für das erste Fluid aufweisen, wobei der Peristaltikpumpe 10 im Strömungsweg des ersten Fluides, also in der Verbindungsleitung 2 je ein in Richtung des als Kapillare 3 ausgebildeten Injektors durchlässiges Rückschlagventil 11 vor- und nachgeordnet ist. The outlet tip 9 of the capillary 3 can form a tear-off edge for the first fluid, in that the capillary 3 or its outlet tip 9 is ground off transversely to the longitudinal direction of the capillary 3. According to an advantageous embodiment of the invention shown in the figure, the metering device 4 may comprise a peristaltic pump 10 for the first fluid, wherein the peristaltic pump 10 in the flow path of the first fluid, ie in the connecting line 2 per permeable in the direction of the capillary designed as 3 injector Check valve 11 is upstream and downstream.

Claims

Patentansprüche claims
1 . Vorrichtung zum Erzeugen eines Musters (7) aus einem ersten Fluid in einem zweiten Fluid, dessen Dichte in Abhängigkeit seiner Viskosität an die Dichte des ersten Fluids angepasst ist und wobei beide Fluide nicht oder nur schwer mischbar sind, mit einem Vorratsbehälter (1 ) für das erste Fluid und einem, einer Positioniereinheit (5) zugeordneten und mit dem Vorratsbehälter (1 ) verbundenen Injektor, dadurch gekennzeichnet, dass der Injektor eine Kapillare (3) bildet, die über eine Dosiervorrichtung (4) mit dem Vorratsbehälter (1 ) verbunden ist und deren Länge wenigstens der maximalen Mustertiefe im zweiten Fluid entspricht, und dass die Auslassspitze (9) der Kapillare (3) über die Positioniereinheit (5) in1 . Device for producing a pattern (7) from a first fluid in a second fluid, the density of which is adjusted as a function of its viscosity to the density of the first fluid and wherein both fluids are immiscible or difficult to mix with a reservoir (1) for the first fluid and a, associated with a positioning unit (5) and with the reservoir (1) connected injector, characterized in that the injector forms a capillary (3), which is connected via a metering device (4) with the reservoir (1) and the length of which corresponds at least to the maximum pattern depth in the second fluid, and in that the outlet tip (9) of the capillary (3) via the positioning unit (5) in
Längsrichtung der Kapillare (3) und in wenigstens einer Querrichtung dazu verlagerbar ist. Longitudinal direction of the capillary (3) and in at least one transverse direction to be displaced.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Kapillare (3) an ihrer Auslassspitze (9) eine Abrisskante für das erste Fluid bildet. 2. Apparatus according to claim 1, characterized in that the capillary (3) forms a tear-off edge for the first fluid at its outlet tip (9).
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Dosiereinrichtung (4) eine Peristaltikpumpe (10) für das erste Fluid aufweist. 3. Apparatus according to claim 1 or 2, characterized in that the metering device (4) has a peristaltic pump (10) for the first fluid.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Peristaltikpumpe (10) im Strömungsweg des ersten Fluids je ein in Richtung des Injektors durchlässiges Rückschlagventil (1 1 ) vor- und nachgeordnet ist. 4. Apparatus according to claim 3, characterized in that the peristaltic pump (10) in the flow path of the first fluid depending on a permeable in the direction of the injector check valve (1 1) upstream and downstream.
5. Verfahren zum Erzeugen eines Musters (7) aus einem ersten Fluid in einem zweiten Fluid, dessen Dichte in Abhängigkeit seiner Viskosität an die Dichte des ersten Fluids angepasst ist und beide Fluide nicht oder nur schwer mischbar sind, dadurch gekennzeichnet, dass die Kapillare (3) durch die Positioniereinheit (5) in das zweite Fluid an eine erste Musterposition eingeführt und mit Hilfe der Dosier- Vorrichtung (4) eine vorgegebene Menge des ersten Fluides aus dem Vorratsbehälter (1 ) über die Kapillare (3) an deren Auslassspitze (9) in das zweite Fluid eingebracht wird, wonach die Positioniereinheit (5) mit der Auslassspitze (9) der Kapillare (3) eine Abrissbewegung ausführt. 5. A method for producing a pattern (7) from a first fluid in a second fluid whose density is adjusted as a function of its viscosity to the density of the first fluid and both fluids are immiscible or difficult to mix, characterized in that the capillary ( 3) introduced by the positioning unit (5) in the second fluid to a first pattern position and with the aid of the metering device (4) a predetermined amount of the first fluid from the reservoir (1) via the capillary (3) at the outlet tip (9 ) is introduced into the second fluid, after which the positioning unit (5) with the outlet tip (9) of the capillary (3) performs a tear-off movement.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Positioniereinheit (5) die Kapillare (3) während des dosierten Einbringens des zweiten Fluides in das erste Fluid entlang einer Linie des Musters (7) weiterbewegt. 6. The method according to claim 5, characterized in that the positioning unit (5) moves the capillary (3) during the metered introduction of the second fluid into the first fluid along a line of the pattern (7).
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das zu erzeu- gende Muster (7) zunächst in einzelne Injektionspunkte aufgelöst wird und die7. The method according to claim 5, characterized in that the pattern to be generated (7) is first dissolved into individual injection points and the
Positioniereinheit (5) die Auslassspitze (9) der Kapillare (3) zu einem der Injektionspunkte als Musterposition bewegt, mit Hilfe der Dosiervorrichtung (4) eine vorgegebene Menge des ersten Fluides an der Stelle des Injektionspunktes in das zweite Fluid eingebracht wird und die Positioniereinheit (5) mit der Auslassspitze (9) der Kapillare (3) eine Abrissbewegung und eine Bewegung zu einem weiteren der Injektionspunkte so ausführt, dass die Kapillare (3) keine der bereits eingebrachten Injektionspunkte kreuzt. Positioning unit (5) the outlet tip (9) of the capillary (3) moves to one of the injection points as a pattern position, using the metering device (4) a predetermined amount of the first fluid is introduced at the point of the injection point in the second fluid and the positioning unit ( 5) with the outlet tip (9) of the capillary (3) performs a tear-off movement and a movement to another of the injection points so that the capillary (3) does not cross any of the already introduced injection points.
8. Fluidkombination für eine Vorrichtung und ein Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass eines der Fluide eine Flüssigkeit auf Ölbasis und das andere Fluid eine Flüssigkeit auf Wasserbasis ist, wobei die Flüssigkeit auf Wasserbasis ein Verdickungsmittel zur Erhöhung deren Viskosität enthält. 8. fluid combination for a device and a method according to any one of the preceding claims, characterized in that one of the fluids is an oil-based fluid and the other fluid is a water-based fluid, wherein the water-based fluid contains a thickening agent to increase the viscosity thereof.
9. Fluidkombination nach Anspruch 8, dadurch gekennzeichnet, dass die Flüssigkeit auf Ölbasis ein Farbpigment zur Erhöhung deren Dichte enthält. 9. fluid combination according to claim 8, characterized in that the oil-based fluid contains a color pigment to increase their density.
10. Fluidkombination nach Anspruch 9, dadurch gekennzeichnet, dass das Farbpigment Titanoxid ist. 10. fluid combination according to claim 9, characterized in that the color pigment is titanium oxide.
EP18729548.0A 2017-06-02 2018-05-23 Apparatus and method for creating a pattern from a first fluid in a second fluid Pending EP3630451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50467/2017A AT519459B1 (en) 2017-06-02 2017-06-02 Apparatus and method for generating a pattern of a first fluid in a second fluid
PCT/AT2018/050012 WO2018218264A1 (en) 2017-06-02 2018-05-23 Apparatus and method for creating a pattern from a first fluid in a second fluid

Publications (1)

Publication Number Publication Date
EP3630451A1 true EP3630451A1 (en) 2020-04-08

Family

ID=62554912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18729548.0A Pending EP3630451A1 (en) 2017-06-02 2018-05-23 Apparatus and method for creating a pattern from a first fluid in a second fluid

Country Status (4)

Country Link
US (1) US11794403B2 (en)
EP (1) EP3630451A1 (en)
AT (1) AT519459B1 (en)
WO (1) WO2018218264A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7260636B2 (en) * 2018-10-29 2023-04-18 ザ プロクター アンド ギャンブル カンパニー Method for preparing encapsulated liquid composition
CN117881301A (en) 2021-08-23 2024-04-12 三得利控股株式会社 Method for producing liquid with pattern and system for producing liquid with pattern

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176874B1 (en) * 1993-10-18 2001-01-23 Masschusetts Institute Of Technology Vascularized tissue regeneration matrices formed by solid free form fabrication techniques
GB2291838B (en) * 1994-07-29 1998-11-18 Robert John Young A machine and method for printing on an edible substrate
US7648352B2 (en) * 2001-10-29 2010-01-19 Frito-Lay North America, Inc. Apparatus for imprinting lines on direct-expanded food products having complex shapes with improved dimensional quality
JP2005047207A (en) * 2003-07-31 2005-02-24 Shinko Electric Ind Co Ltd Inkjet printer
US8639484B2 (en) * 2003-11-14 2014-01-28 Drexel University Method and apparatus for computer-aided tissue engineering for modeling, design and freeform fabrication of tissue scaffolds, constructs, and devices
US8753702B2 (en) * 2004-01-20 2014-06-17 Fujifilm Dimatix, Inc. Printing on edible substrates
IL159990A (en) * 2004-01-21 2008-03-20 Eyal Eliav Device, method and system for the application of content onto the surface of a beverage
WO2006093778A2 (en) * 2005-02-25 2006-09-08 Drexel University Layered manufacturing utilizing foam as a support and multifunctional material for the creation of parts and for tissue engineering
US20060286218A1 (en) * 2005-05-12 2006-12-21 David Salzman Substantially soluble display medium
US20090263849A1 (en) * 2006-04-21 2009-10-22 Drexel University Bioprinting Three-Dimensional Structure Onto Microscale Tissue Analog Devices for Pharmacokinetic Study and Other Uses
WO2008018075A2 (en) * 2006-08-09 2008-02-14 Brand Partner Llc A floating beverage topping
DE102007004855B4 (en) 2007-01-31 2014-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for deposition of biological material in a target substrate
BR112013009744A2 (en) * 2010-10-21 2016-07-19 Organovo Inc fabric fabrication device, systems and methods
US10119107B2 (en) * 2013-05-30 2018-11-06 The University Of Akron Automated cell and tissue bioprinter
US20150050686A1 (en) * 2013-08-13 2015-02-19 Lawrence Livermore National Security, Llc Omnidirectional, multiaxial bioprinted tissue system, techniques and applications
CN204019803U (en) * 2014-08-04 2014-12-17 北京南极熊科技有限公司 A kind of feeding device for 3D printer
US9777173B2 (en) 2014-08-04 2017-10-03 Xerox Corporation Encapsulated titanium dioxide, fluorescent pigments, and pigmented polyurethane dispersion
US10005235B2 (en) * 2014-09-08 2018-06-26 Empire Technology Development Llc Methods and systems for making a three-dimensional object
CN106388970B (en) 2016-11-02 2018-04-13 四川蓝光英诺生物科技股份有限公司 A kind of ejecting device with parcel
US10596757B2 (en) * 2016-12-06 2020-03-24 Northeastern University Three dimensional mineralization printer
CN106510898A (en) * 2016-12-21 2017-03-22 中国人民大学 Multicomponent three-dimensional organism printing device and method based on multi-channel nozzle
US20180304531A1 (en) * 2017-03-03 2018-10-25 University Of South Florida Systems and methods of manipulating polymers

Also Published As

Publication number Publication date
US11794403B2 (en) 2023-10-24
WO2018218264A1 (en) 2018-12-06
US20210138718A1 (en) 2021-05-13
AT519459B1 (en) 2018-07-15
AT519459A4 (en) 2018-07-15

Similar Documents

Publication Publication Date Title
DE69722611T2 (en) PATIENT CONTROLLABLE FLOW REGULATION FOR A MEDICINE DISPENSING SYSTEM
DE2742248C2 (en) Piston pump for filling liquids into hard gelatine capsules
DE2513492B2 (en) DEVICE FOR MIXING A LIQUID PROPELLER WITH LOW BOILING POINT WITH OTHER COMPONENTS FOR THE PRODUCTION OF FOAM
DE10233468A1 (en) Device and method for feeding a liquid paint into a polymer melt
EP3630451A1 (en) Apparatus and method for creating a pattern from a first fluid in a second fluid
EP3962669B1 (en) Cleaning device for applying a media pulse to a surface according to the venturi principle, compressed-air system, cleaning method, control system and vehicle
DE3129142A1 (en) OUTPUT DEVICE FOR A HIGH VISCOSITY PRODUCT
EP3310543B2 (en) Device and method for foaming a viscous material
DE2340611A1 (en) LIQUID CONTROL SYSTEM FOR CONTROLLING THE FLOW QUANTITY IN INTRAVENOUS INFUSION
DE102010039025A1 (en) Plasticizing unit for an injection molding machine, an extruder and the like and provided for liquid supply device
DE10050469B4 (en) Method and device for sealing a gap
DE1241385B (en) Device for introducing fluids into earth formations
DE60310445T2 (en) PROCESS AND DEVICE FOR COINJECTION MIXING
DE102016205555A1 (en) SCR device with valve arrangement
DE202008013784U1 (en) showerhead
DE3021095C2 (en) Method and device for producing a solid or foam-forming reaction mixture from at least two flowable reaction components
EP3275759B1 (en) Method for lifting a wheel rail friction coefficient in a rail vehicle
CH656194A5 (en) FILLING PIPE FOR CURABLE DIMENSIONS IN HOLLOW ARMERS.
DE102006036815B4 (en) Emulsifying means and method of forming an emulsion
DE102004062008A1 (en) Fuel filter with outlet openings, which are preferably processed by a hydroerosive method
EP2975487B1 (en) Device for dosing and mixing two flowable components
DE2219458A1 (en) Device for introducing flowing medium into a main liquid stream running along a closed passage, for example a pipe
DE1964273A1 (en) Method and device for controlling the heat transfer to an elongated body
EP3645148A1 (en) Foam generator for a vehicle-treatment device
DE19530968A1 (en) Dosing system for dosing aggressive liquids into fluid stream

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220525

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GREIMEL, BENJAMIN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GREIMEL, BENJAMIN