EP3601955B1 - Interference field-compensated angle sensor device and method for interference field-compensated angle determination - Google Patents

Interference field-compensated angle sensor device and method for interference field-compensated angle determination Download PDF

Info

Publication number
EP3601955B1
EP3601955B1 EP18723407.5A EP18723407A EP3601955B1 EP 3601955 B1 EP3601955 B1 EP 3601955B1 EP 18723407 A EP18723407 A EP 18723407A EP 3601955 B1 EP3601955 B1 EP 3601955B1
Authority
EP
European Patent Office
Prior art keywords
angle
angle sensor
magnetic field
sensors
sensor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18723407.5A
Other languages
German (de)
French (fr)
Other versions
EP3601955A1 (en
Inventor
Ronald LEHNDORFF
Claudia Glenske
Sebastian Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sensitec GmbH
Original Assignee
Sensitec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sensitec GmbH filed Critical Sensitec GmbH
Publication of EP3601955A1 publication Critical patent/EP3601955A1/en
Application granted granted Critical
Publication of EP3601955B1 publication Critical patent/EP3601955B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices

Definitions

  • the invention relates to an interference field-compensated angle sensor device and an interference field compensation method based on a magnetic field-based determination of an angle of rotation of an axis of rotation.
  • a magnetic field generating device generates a magnetic field which rotates relative to an angle sensor device, the angle sensor device being able to determine the angular orientation of the rotating magnetic field.
  • a large number of magnetic field-based angle sensor devices are known from the prior art, which can determine the angle of rotation of an axis of rotation without contact on the basis of magnetoresistive resistance elements.
  • sensors are used in the automotive sector and in the field of electrical machines, for example to determine an angle of rotation or a frequency of rotation of a rotating motor or drive shaft, a wheel shaft or a steering wheel angle.
  • Electromagnetic sensors that use the measurement of an electrical or magnetic useful field must be able to be tolerant of these interference fields and, to a certain extent, perform a measurement correctly under the influence of an interference field.
  • the ISO-11452-8: 2015 "Road vehicle component test method for electrical disturbance variables through narrow-band radiated electromagnetic energy - Part 8: Immunity to magnetic fields” requires that electromagnetic sensors based on the detection of a useful magnetic field, disturbance fields in the area of 1 kA / m up to 3 kA / m field strength and must tolerate exact Should show values.
  • a Hall-based angle measuring sensor in which four Hall resistors are arranged in a bridge circuit, each resistor being able to measure a vector component of a rotating magnetic field and the four resistors of the measuring bridge being arranged axially distributed around an axis of rotation in order to compensate for the effect of an interfering magnetic field to be able to.
  • a single angle sensor is enlarged radially in order to be able to compensate for an almost homogeneous interfering magnetic field through the opposing orientations of the individual resistance elements of the measuring bridge.
  • a relatively large chip area is required or an enlargement of the sensor device is required, which in many cases is not practical.
  • the US 8,659,289 B2 a magnetic field-based angle measurement sensor device comprising two angle measurement sensors, each angle measurement sensor being assigned to a magnetic field generating device, that is to say a permanent magnet, and measuring a rotating magnetic field provided by the permanent magnet.
  • the magnetic fields that act on the both angle measuring sensor devices act are independent of one another.
  • the relative position of the angle measuring sensor devices with respect to the magnetic field generating device is identical, only the orientation of the useful magnetic field is changed in order to be able to compensate for such influences of an interference field.
  • the two angles output by the two angle measuring sensor devices are offset against one another in accordance with the relative position of the useful magnetic fields and the angle measuring devices to one another.
  • angle measuring devices are exposed to different magnetic fields from different permanent magnets or see different magnetic fluxes from a magnetic field generating device, compensation can be achieved based on a coordinated provision of the different magnetic fields and an identical behavior of the angle measuring sensor devices. For this purpose, a relatively expensive and exact manufacture of the angle measuring sensor device is necessary, which results in a correspondingly costly method and a correspondingly expensive sensor.
  • the DE 10 2016 202 378 A1 relates to an angle sensor device, whereby in the sense of the invention an overall system with angle sensor device (electrical part) and magnetic field generating device with rotating magnets (mechanical part) with an angle measurement sensor device (only electrical part) is meant, and the angle measurement sensor device means an angle sensor with two angled groups of sensitive elements includes, which are designed to output an angle signal.
  • the angle sensor comprises a first group of sensitive elements and a second group of sensitive elements.
  • the first group is designed to detect a magnetic field along a first direction
  • the second group is designed to detect the magnetic field along a second direction, preferably 90 ° to the first direction.
  • An evaluation unit determines an angle signal from the signals of the sensitive elements of the first and second group.
  • an angle sensor in which a sine and a cosine signal are each measured with three magnetoresistive elements and can be determined into a single angle signal.
  • it is proposed to determine the sine and cosine signals redundantly by measuring two of the three sensitive elements, and thus to average two or more sine and cosine values. In each case, however, only a single angle value is determined, so that within the meaning of the invention it is only possible to speak of a single angle sensor that outputs only a single gradient.
  • the DE 10 2014 109 693 A1 relates to a generic angle sensor device with a rotating multi-pole permanent magnet, and an angle measuring sensor device, which comprises an angle sensor with at least Hall elements, which are arranged along a circular path, and whose signals are calculated to determine an angular position by means of illustrated trigonometric relationships.
  • the use of second angle sensors for interference field compensation can thus be recognized.
  • the Hall elements of the two angle sensors are angled offset from one another on a common circular path, with no axial or radial displacement of the angle sensors relative to the axis of rotation being discernible.
  • no gradient of angle values of the two angle sensors is determined, but rather interference fields are calculated by determining the gradients of individual sensor element values by means of complicated trigonometric relationships.
  • From the DE 10 2010 040 584 A1 also shows an angle sensor device with an angle sensor unit which comprises an angle sensor which comprises two sensor elements. These are arranged in a circular path around a rotating magnet and provide a sine and cosine signal.
  • the DE 10 2010 040 584 A1 recommends the effect of an interference field, for example To determine commissioning and, for example, in the form of characteristics or calculation rules to be deducted from the sensor signals when determining the angle value.
  • the DE 10 2010 040 584 A1 only one angle sensor and tries to actively compensate for static or dynamic external field influences in test or simulation scenarios in advance, for which a corresponding evaluation logic or computer capacity must be provided.
  • the DE 10 2010 040 584 A1 does not react to unexpected external field influences and also does not have two angle sensors for the independent determination of two angle values. Also, no radial or axial displacement of such angle sensors with respect to the axis of rotation can be detected.
  • the DE 10 2013 205 313 A1 an angle sensor device with an angle sensor device which comprises an angle sensor consisting of at least three diagonally opposite pairs of Hall sensors arranged in a circle. The resulting three or more measurement signals from the Hall sensor pairs are calculated to form a common angle signal.
  • the concept of DE 10 2013 205 313 A1 Similarities with the concept of DE 10 2016 202 378 A1 and DE 10 2014 109 693 A1 because a redundant number of sensors is provided in an angle sensor in order to eliminate interference fields.
  • the DE 10 2011 083249 A1 discloses several angle sensor devices with a magnetic field generating device and an angle sensor device which comprise two angle sensors.
  • a magnetic field of the magnetic field generating device rotates relative to the angle sensor device, with different magnetic field areas of the magnetic field of the magnetic field generating device being detected in these devices.
  • a first angle sensor is located at a first position and a second angle sensor 20 is located at a second position, the reference directions of the first angle sensor and the second angle sensor differing. Both angle sensors are at the same distance from the magnetic field generating device and measure identical amplitudes of the useful magnetic field.
  • angle sensors are arranged axially at different distances along the axis of rotation and / or the angle sensors are arranged radially at different distances from the axis of rotation.
  • an interference field-compensated angle sensor device for magnetic field-based determination of an angle of rotation of a rotation axis, which comprises at least one magnetic field generating device, in particular a permanent magnet, and an angle sensor device, a magnetic field (useful magnetic field) of the magnetic field generating device rotating relative to the angle sensor device.
  • the angle sensor device comprises at least two angle sensors which are arranged axially and / or radially offset to the axis of rotation so that an influence of an interference field can be compensated for by an algebraic evaluation of the angle values or the sensor signals of the at least two angle sensors.
  • the angle sensor device comprises at least two angle sensor devices, each of the angle sensor devices being set up to detect the angle of a magnetic field, to output sensor signals, in particular a sine and a cosine value, which result in an angle value of the useful magnetic field through an arctangent operation.
  • the at least two angle sensors of the angle sensor device are arranged axially offset from one another and / or are arranged offset radially to the axis of rotation. Accordingly, the two angle sensors detect different magnetic field areas of a single useful magnetic field of the magnetic field generating device.
  • the size and possibly also the direction of the interference field can be determined, with the influence of the interference field being compensated arithmetically or by the hardware. can be minimized or eliminated.
  • the gradient can be determined through hardware wiring or determined through software processing.
  • the invention is based on the idea of detecting different influences of the useful magnetic field of the magnetic field generating device by means of a radially or axially offset arrangement of angle sensors of the angle sensor device, and with almost the same influence of an interference magnetic field and the known differences in angle detection due to the offset, the size of the interference field can determined and / or its influence compensated.
  • the influence of the interference field can be reduced or compensated for, at least without knowledge of the size and direction of the interference field.
  • the angle sensor device comprises at least two separate angle sensors which are arranged axially and / or radially offset to the axis of rotation and which can output two independent angle values so that an influence of an interference field can be compensated for by determining the gradient of the angle values of the angle sensors.
  • the magnetic field generating device can be designed as a permanent magnet, in particular a dipole magnet with two pronounced magnetic poles, preferably as a disk-shaped dipole magnet with a circular disk half as the north pole and a circular disk half as the south pole, which is arranged in a rotationally fixed manner on an end face of the axis of rotation, the angle sensor device is arranged in an axial extension of the axis of rotation opposite to the end face of the axis of rotation. It is hereby proposed that a permanent magnet be arranged in a rotationally fixed manner with the axis of rotation, which in particular comprises a dipole magnet with two distinct magnetic poles.
  • the two magnetic poles are arranged in such a way that they form a gradient field in the direction of the axis of rotation, in particular as a disk-shaped magnet with half a circular disk that is magnetized as the north pole and half a circular disk that is magnetized as the south pole.
  • This forms a U-shaped or club-shaped magnetic field in both directions of the permanent magnet, in which angle sensors of the angle sensor device can be arranged in a sensitive measuring plane perpendicular to the axis of rotation or parallel to the axis of rotation in order to be able to measure an angular position of the useful magnetic field of the magnetic field generating device.
  • the angle sensor device can in principle either be arranged as an extension of the axis of rotation or set back along the axis of rotation, a radial offset of the angle sensor device being particularly advantageous, especially if only a small amount of installation space is available stands. If the angle sensor device is arranged as an extension of the axis of rotation, the angle sensors can be arranged both along the axis of rotation and also radially offset; a high level of accuracy can be achieved in the positioning of the angle sensor device, so that a high level of accuracy in angle detection can be achieved.
  • the angle sensors are based on an xMR sensor topology, in particular an AMR, TMR or GMR magnetoresistive sensor topology.
  • the sensor types known as xMR angle sensors are distinguished from Hall sensors by up to 50 times higher sensitivity, so that they enable highly accurate angle determinations, especially in weak field operation with field strengths ⁇ 1kA / m.
  • MR sensors can detect the earth's magnetic field for compass applications and are successfully used for non-destructive material testing and vehicle detection. In these applications, extremely weak magnetic fields are measured very precisely.
  • xMR angle sensors typically have a higher accuracy of up to 0.1 ° without the sensor signals having to be post-processed in a complex manner.
  • This type of sensor is based partly on thin-film effects and partly on magnetoresistive properties of a premagnetized layer, the current flow being angled to the internal magnetization in order to enable a highly accurate resolution of the magnetic field direction.
  • each angle sensor can comprise a Wheatstone measuring bridge made of magnetoresistive resistance elements, the Wheatstone measuring bridges of the various angle sensors being hard-wired and outputting an interfering field-compensated angle sensor value.
  • Each angle sensor usually includes two Wheatstone measuring bridges that determine a sine and a cosine component of a magnetic field can, and which in the case of GMR and TMR sensors are generally offset by 90 ° and in the case of AMR sensors generally offset by 45 ° on a chip substrate.
  • the angle sensor device comprises at least two or more angle sensors which, due to a different spatial arrangement in the useful magnetic field of the magnetic field generating device, have different sensitivities for an interfering magnetic field.
  • a phase offset or an amplitude offset of the useful magnetic field can also occur.
  • an interfering field-compensated angle can be determined in that the influence of the interfering magnetic field can be compensated for by the different localization of the angle sensors.
  • the angle sensor device outputs a compensated angle and there is no need to subsequently process different angles in order to be able to calculate the influence of an interfering magnetic field.
  • two or more angle sensors can be arranged in a circumferential circle around the axis of rotation and offset from one another by predetermined angles, for example 90 ° or 180 °.
  • a bridge resistance of an angle sensor that detects a sine component can be hard-wired with a cosine measuring bridge of a 90 ° offset or wired phase-reversed with a sine measuring bridge offset by 180 ° of an angle sensor offset by 180 °.
  • Both angle sensors are subject to the same influence of an interfering magnetic field, whereby the influence of the interfering magnetic field can be compensated for by interconnecting the various resistance bridges in the correct phase.
  • an angle calculation device can be included which receives angle values or sensor signals from each angle sensor of the angle sensor device and processes them to calculate an interference field-compensated angle value.
  • two or more angle sensors of the angle sensor device have their angle value to the angle calculation device, and these angle values are offset against one another in an angle calculation device, for example, taking into account an arithmetic function, tabulated values, characteristic diagrams or the like for interference field compensation.
  • the gradient ie the deviation of the angle values or sensor signal values of the individual angle sensor devices, can be recorded, for example, in a calibration or measurement method for an interfering field-free and an interfering field-affected angle measurement in order to be able to calculate the size and direction of an interfering field.
  • the size and direction of the interference field can be determined with a corresponding table or a characteristic diagram.
  • compensation can also be achieved by weighting with a single factor, by means of which an angle value that is almost free of interference fields is generated from the two sensor signals. It is not absolutely necessary to determine the size and direction of the interference field.
  • At least two or more of the angle sensors included in the angle sensor device are arranged axially centered. Due to an axis-centric arrangement, the angle sensors detect the same angular value of the useful magnetic field in superposition with the interference field, but the influence of the useful magnetic field is reduced with increasing distance along the axis. As a result, an interference field has a stronger effect on the more distant angle sensors than on the closer angle sensors, which results in different measurement angles. This results in a deviation of the angle values, the angle value of the angle sensor located closer to the magnetic field generating device being closer to the useful field angle than the angle value of the remote angle sensor.
  • each angle sensor of a Wheatstone measuring bridge can advantageously comprise magnetoresistive resistance elements, the radial distances between the magnetoresistive resistance elements of the Wheatstone measuring bridge of each angle sensor being different from the axis of rotation.
  • each individual angle sensor can include not only resistors for two measuring bridges but for four or more measuring bridges, the individual resistors, for example for the sine and cosine measuring bridges, being arranged axially centered, but having different radii to the axis of rotation. In this case, depending on the structure of the useful magnetic field, the resistors arranged further away from the axis of rotation have a stronger or weaker influence of the useful magnetic field.
  • the resistors of the bridge circuits can be wired to one another in such a way that the influence of an interfering magnetic field, which has the same effect on all resistors of the angle sensor, can be compensated.
  • two or more resistance elements arranged along a circle or rectangle around the axis can take into account the influence of an interfering magnetic field by creating a gradient, whereby the individual resistors can be hard-wired in the Wheatstone measuring bridge.
  • radially offset magnetoresistive resistance elements of the angle sensors can be connected in opposite directions to form a compensating Wheatstone measuring bridge.
  • an angle sensor axially centered and to arrange resistance elements for the sine and cosine bridges along a circumferential circle or a circumferential rectangle, with two or more radial circumferential circles or circumferential rectangles being provided.
  • Associated magnetoresistive resistance elements of two or more measuring bridges are thus in a radial one Relocation can be arranged.
  • Radially offset resistance elements can be connected in opposite directions in a measuring bridge. A useful magnetic field has different effects on the radially offset resistance elements, while an interfering magnetic field has the same effect.
  • a radial position of the angle sensors can be different, in particular at least two angle sensors can be arranged radially opposite one another, or preferably four angle sensors can be arranged on a circular path offset by 90 ° around the axis of rotation.
  • radially spaced angle sensors of predefined offset angles in particular 90 ° or 180 °, are proposed, which are included in the angle sensor device.
  • the angle sensors measure the useful magnetic field in a specified phase position; for this purpose, their sensitive measuring surface is aligned parallel to the axis of rotation and can, for example, measure a rotating field of the useful magnetic field with a 90 ° offset in 90 ° phases.
  • An interfering magnetic field would have the same influence on all angle sensors and can be compensated for if the angle values of the individual angle sensors are combined in the correct phase.
  • the individual angle values of the individual angle sensors can be connected to one another in a calculation unit in order to be able to computationally compensate for the influence of the interfering magnetic field.
  • the magnetic field generating device can comprise a permanent magnet with the same number of poles as angle sensors, in particular a quadrupole magnet.
  • a quadrupole magnet In relation to the previous embodiment, it is proposed to use an embodiment of an angle sensor device with four angle sensors offset by 90 ° and a quadrupole magnet as a magnetic field generating device, the quadrupole magnet each having circular segments offset by 90 ° with alternating polarity.
  • the angle sensor device can detect 90 ° or 180 ° rotations depending on the resistance technology used, with all angle sensors ideally displaying rigidly phase-shifted values and, if there is a phase difference, the sensors arranged along a Y-axis show a deviation of the axis of rotation in the X-direction can be detected towards.
  • status monitoring of the axis of rotation is possible, in particular when the pivot point is moving, since in this case a signal or phase difference would result. Monitoring of the position of the axis of rotation can thus be made possible.
  • the axial position of the at least two angle sensors can be different.
  • the amplitude of the useful magnetic field on each angle sensor is different.
  • each angle sensor or each group of angle sensors would determine the same angle of the useful magnetic field.
  • the influence of the interfering magnetic field is the same on all sensors, so that due to the gradient of the different axial Positioned angle sensors, the influence of the interference magnetic field can be determined.
  • the influence can be determined purely arithmetically or by means of a characteristic curve or a map. The greater the axial distance between the angle sensors, the more a measurement angle would be influenced by the interfering magnetic field.
  • a correction factor can be determined as a function of a known useful field and various interference fields, and by a correction calculation, for example based on the angle value of the axially closest angle sensor to the magnetic field generating device and on the basis of a gradient of the two angles or the underlying sensor signals of the axially offset angle sensors by means of the Correction factor a correction to a true angle value can be determined.
  • a characteristic curve for different strengths of useful and interference fields can be provided.
  • a further, externally arranged magnetic field sensor can also be provided for detecting the size of the interfering magnetic field in order to use it to select a suitable correction value.
  • a method for the interference field-compensated angle determination of an axis of rotation using an angle sensor device in which an aforementioned embodiment of an angle sensor device is used, and in which an angle deviation between the at least two angle sensors of the angle sensor device can be used to compensate for an external interference field .
  • the gradient ie the angular deviation or a sensor signal deviation between the at least two angle sensors which are arranged axially and / or radially offset along the axis of rotation and which are exposed to the influence of a useful magnetic field of a magnetic field generating device, can be used to determine an external interference field and to be able to compensate.
  • a correction value would be able to be determined by a decrease in the amplitude of the useful magnetic field, however, with a practically identical influence of the interfering magnetic field.
  • a correction can be made that offers a compensation option both in terms of hardware and calculation. In this way, the influence of an interference magnetic field can be effectively and easily compensated for, even with high interference magnetic fields, as prescribed by ISO-11452-8 from 2015, and exact angle values can be determined for interference fields with a field strength of up to 3 kA / m.
  • a correction factor, a characteristic curve or a characteristic map of correction factors can be used to compensate for an external interference field.
  • a characteristic curve, a characteristic diagram or a correction factor can be used in order to compensate for the interfering magnetic field.
  • the correction factor, the characteristic curve or the characteristic field can be determined when the angle sensor device is manufactured with a calibration using various magnetic interference and useful fields.
  • the correction factor or the correction factors or characteristic curves or characteristic diagrams can be stored in a memory of an angle calculation device and can be taken into account when determining the angle values of the various angle sensors.
  • the correction factor can take into account an influence of an axial distance between the angle sensors and / or a radial distance between magnetoresistive resistance elements of the Wheatstone measuring bridge of the angle sensors.
  • several angle sensors in particular four, eight or even more angle sensors, can be arranged at different axial and also radial distances along the axis of rotation, and their interference field compensation can partly be achieved by a hard-wired circuit of the resistance elements, possibly also with phase shifter elements, but also through arithmetic post-processing, for example through correction with correction factors.
  • the correction factors can take into account an axial distance or a radial distance between the resistance elements. It is conceivable that radial and / or axial distances of the angle sensors can be changed in the course of the measurement or at intervals in order to thereby redefine the characteristics or characteristic values and to be able to recalibrate the angle sensor device.
  • FIG. 1 an embodiment 100 of an angle sensor device from the prior art is shown.
  • the angle sensor device 100 has an axis of rotation 12, at the axial end of which a disk-shaped permanent magnet 10 is arranged as a dipole magnet with two dipole magnet circle segments as the north and south pole 18.
  • the magnetic field generating device 16, which comprises the rotatable dipole magnet 10 is thus arranged at the axial end of the axis of rotation 12.
  • the dipole magnet 10 has a diameter d M and a height h M.
  • An angle sensor 20 of an angle sensor device 102 is arranged at an axial distance d as from the dipole magnet 10.
  • the dipole magnet 10 generates a U-shaped useful magnetic field aligned in the axial direction, which penetrates the angle sensor 20.
  • the Angle sensor 20 is a Wheatstone measuring bridge, as shown in Figure 2b is shown, integrated.
  • the sensitive surface of the angle sensor 20 is oriented at right angles to the axis 12.
  • FIG. 2a A plan view of the chip substrate surface of the angle sensor 20 is shown in FIG Fig. 2a the arrangement of the resistance elements for the sine bridge S1, S2 and the cosine bridge C1, C2 is shown.
  • the resistance elements 24 can be AMR, GMR, TMR or, in general, xMR resistance elements.
  • the angle sensor 20 comprises four resistance elements each for the sine branch and for the cosine branch, which can be contacted individually.
  • the sinusoidal resistance elements S1, S2 are arranged opposite one another in pairs and are disposed axially centered around the axis of rotation 12 in a square offset by 90 ° in relation to the cosine resistance elements C1, C2.
  • FIG. 2b shows a Wheatstone angle measuring bridge 22 with a phase-correct interconnection of the two Wheatstone measuring bridges for the sine and cosine parts.
  • Each measuring bridge comprises four resistance elements 24, which are located diagonally opposite at the same point on the chip substrate surface.
  • the angle of the useful magnetic field with respect to the chip substrate can be determined by forming the arctangent of the quotient of the sine and cosine values. If an external interfering magnetic field acts on the angle sensor device 100, this is superimposed on the useful field and leads to a falsification of the useful magnetic field angle, which becomes stronger the stronger the interfering magnetic field is in relation to the useful magnetic field. Significant angular distortions can occur, particularly with high interference magnetic fields of up to 3000 A / m, so that the angle of the axis of rotation cannot be determined exactly.
  • the angle sensor device 30 comprises a magnetic field generating unit 16 in the form of a dipole permanent magnet 10 with a north pole and a south pole 18. This is arranged in a rotationally fixed manner at the end of an axis of rotation 12.
  • an angle sensor device 50 is arranged, which also includes four angle sensors 20 that are radially evenly spaced about the axis of rotation.
  • the angle sensors W11, W12, W13 and W14 each have a radius d ss / 2 as a distance from the axis of rotation and are offset by 90 ° to one another.
  • the sensitive plane of the individual angle sensors 20 is aligned parallel to the axis of rotation 12, so that magnetic fields that are aligned parallel to the axis of rotation can be detected. If an interference field acts from the outside, then all four angle sensors 20 of the angle sensor device 50 correspondingly deviate from an angle which is caused by the useful field of the magnetic field generating device 16. Since the useful field in each angle sensor 20 has a different phase due to the offset arrangement, but the interference has approximately the same effect in each of the sensors, the interference component can be filtered out due to the symmetrical arrangement of the sensors W11 to W14.
  • the Fig. 4 a Wheatstone bridge 70 in which the individual Wheatstone bridges of the four angle sensors 20 W11 to W14 are connected in parallel with the correct phase.
  • the sine component for example, the sine bridge of the angle sensor W11, the negative cosine bridge of the angle sensor W12, the negative sine bridge of the angle sensor W13 and the cosine bridge of the angle sensor W14 are connected in parallel. These are thus connected in parallel with one another in the correct phase and a disturbance, which is reflected in all these bridges, can be compensated.
  • the individual sine and cosine measuring bridges of the individual sensors 20 are connected in parallel for the cosine bridge.
  • the cosine bridge of sensor W11 is connected in parallel to the sine bridge of sensor W12, the negative cosine bridge of sensor W13 and the negative sine bridge of sensor W14 in order to output an averaged cosine value.
  • the sine and cosine bridges of the four sensors 20 are thus wired to one another in the correct phase and carry out a signal message.
  • the distance d as between the angle sensor device 50 and the magnetic field generating device 16 can for example be between 1 mm and 3 mm, the diameter d m of the permanent magnet being about 6 mm and the height h M of the dipole magnet being about 2.5 mm.
  • angle sensors it is conceivable to use only two or more than four angle sensors in order to achieve improved averaging, the phases must be taken into account accordingly, or a subsequent averaging with the aid of delay transmitters must be inserted.
  • the sensitive planes of the angle sensors can also be aligned at right angles to the axis of rotation 12. No electronic processing of the signals is required in order to suppress the interference fields, and at least a factor of 2 can be achieved in the suppression of the interference field.
  • FIGs. 5a and 5b a further embodiment 32 of an angle sensor device is shown.
  • the execution of the Figure 5a basically corresponds to the execution according to Fig. 3
  • a quadrupole magnet 14 is used as the magnetic field generating unit 16 which comprises four poles 18 which are alternately polarized. This makes it possible to detect a deviation of the axis of rotation in the X or Y direction, ie to detect a radial deviation, and thus to detect imbalances or a shifted axial profile of the axis of rotation 12. This is expressed by a phase difference in the angle detection of the individual sensors, although detection of up to 180 ° is only possible.
  • the Figure 5a shows schematically a perspective illustration of the angle sensor device 32, while Figure 5b represents a plan view.
  • This enables the condition of the shaft 12 to be monitored, with the phase differences between the individual sensors changing, for example, when the pivot point is moving.
  • the output signals of the individual sensors can be wired to one another in terms of hardware, for example in the Fig. 4 is shown. But they can also be prepared and processed individually, for example by a computer logic of an angle calculation device.
  • the status of the rotor position can be monitored, since a slight change in the position of the axis of rotation results in a phase difference in the angle signals.
  • the angle sensor device 34 comprises a magnetic field generating device 16 with a disk-shaped dipole magnet 10 with two poles 18.
  • the dipole magnet 10 is arranged at the axial end of an axis of rotation 12, has a diameter d M and a height h M.
  • a first angle measuring sensor 20 W1 is arranged at a distance d as1
  • a second angle sensor 20 W2 of the magnetic field generating device 54 is arranged at a further distance d as2. Both angle sensors 20 detect the rotating useful field with different amplitudes.
  • An interfering magnetic field acts uniformly on the two angle sensors W1 and W2 20, so that the angle of the two angle sensors will change in different directions, since the size of the useful field of the two angle sensors is different.
  • This impact is in the Figure 6b shown, wherein an interference magnetic field B ext acts in the plane of the angle sensors, the measuring active plane is oriented at right angles to the axis of rotation 12.
  • the useful magnetic field B M is angled to this.
  • the measurement angle recorded by the axially closer angle sensor W1 is closer to the exact alignment of the useful magnetic field B M , while the angle of the axially further away angle sensor 20 W2 is more strongly influenced by the external magnetic field B ext .
  • the magnetic field amplitude of the useful field decreases with the distance, while the interference field acts uniformly on both sensors.
  • a magnetic field generating device the distance d as1 is 3 mm and the distance d as2 is 1 mm or less.
  • the distance d as1 can be between 0.5 mm and 3 mm.
  • the specified distances which are intended to describe the distance relationships, can vary depending on the strength of the permanent measuring magnet used, although larger distances are of course possible. The greater the distance from the magnetic field generating device 16, the more strongly the field angle is influenced by the interference field.
  • the gradient that is to say the deviation of the sensor signals of the angle sensor 20 W1 from the angle sensor 20 W2 is stronger the greater the interference field. This deviation can be used to correct the measurement signal and the influence of the interference field can thereby be suppressed.
  • the device can be used both with angle sensors in the narrower sense and with a combination of field sensors rotated by 90 ° to determine the field components in the X and Y directions.
  • the axially closer angle sensor W1 detects the useful field with an angle ⁇ 1.
  • a further embodiment 36 of an angle sensor device is shown.
  • the angle sensors 20 of the angle sensor device 56 are both radially spaced and axially spaced and comprise in a first axially closer group W11 to W14 four angle sensors 20, which are each arranged radially offset by 90 ° about the axis of rotation 12, and which, for example hardwired can output a first angle ⁇ 1.
  • Another group of angle sensors 20 W21 to W24 is located at an axial distance d as2 therefrom.
  • the Fig. 8 shows a further embodiment 38 of an angle sensor device.
  • an angle sensor device 58 which comprises two angle sensors 20 W1 and W2, is arranged at an axial distance d as from the magnetic field generating device 16.
  • Both angle sensors 20 are arranged on a common chip substrate and each include a sine bridge and a cosine bridge made of magnetoresistive resistance elements.
  • the resistance elements 24 of the first angle sensor 20 W1 and of the second angle sensor 20 W2 are arranged in a plane at right angles to the axis of rotation 12.
  • the resistance elements 24 are each arranged along the edges of a square or a circle around the axis of rotation 12, the Resistance elements 24 of the first angle sensor 20 W1 are arranged axially closer to the axis of rotation 12 than the resistance elements 24 of the second angle sensor 20 W2.
  • the arrangement of the individual resistance elements 24 is shown in FIG Figure 9a shown.
  • the resistance elements 24 C1 ', S1', S2 'and C2' of the first angle sensor 20 W1 are located at a close distance d ss1 to the axis of rotation 12, and the resistance elements 24 of the second angle sensor W2 S1, C1, C2 and S2 are located in one greater distance d ss2 to the axis of rotation.
  • a Wheatstone bridge 72 is shown in which the individual resistance elements 24 of the two angle sensors 20 W1, W2 are interconnected so hard that the angle sensors 20 behave opposite to one another with respect to the useful magnetic field.
  • the elements S1 and S2 'and the elements S1' and S2 are connected in series in one branch of the sine bridge and the elements S1 ', S2 and S1 and S2' are connected in the opposite branch.
  • the arrangement is also chosen in the cosine bridge. This partially compensates for the useful signals of the two angle sensors, the basic principle being based on the fact that one angle sensor is penetrated by a stronger useful field than the other angle sensor.
  • the overall circuit 72 is the Figure 9b a damped sine and a damped cosine value.
  • the useful field acts more strongly on the radially inner resistance elements 24 of the angle sensor W1 than on the radially outer resistance elements 24 of the angle sensor W2, so that the dominant portion of the useful angle signal is generated by the angle sensor W1.
  • the angle sensor W2 compensates for this useful signal to a lesser extent and virtually completely compensates for an external interference signal.
  • the circuit can be wired in terms of hardware, so that a total angle value can be output, and no numerical recalculation is necessary.
  • This exemplary embodiment is particularly suitable for use in GMR or TMR resistance elements 24, since these can be pinned in a direction-dependent manner and thus enable 360 ° detection and have a high level of sensitivity.
  • a further embodiment 40 is shown, which basically consists of a combination of the in Fig. 8 embodiment shown and in Figure 6a illustrated embodiment results.
  • a radial offset of the resistance elements 24 of two groups of two angle sensors W11, W12 and W21, W22 is used, as well as the gradient utilization of different axial distances of the distances d as1 and d as2 of the two groups W11, W12 and W21, W22 and the Taking a correction factor into account, further interference field suppression is possible.
  • three-dimensional interference fields which act on the angle detection unit 60 both in the axial and in the radial direction can be effectively suppressed as a result.
  • FIG. 11 an embodiment of an angle sensor device in which angle values of individual angle sensors 20 of an angle sensor device 50, 52, 54, 56, 58 or 60 according to the embodiments 30, 32, 34, 36, 38 or 40 are recorded individually.
  • the angle calculation device 26 comprises a characteristic value memory 44, which includes various characteristic values K for different useful field sizes and interference field sizes, as well as a calculation unit 46 which calculates an interference field-compensated angle ⁇ as a function of two or more measured angles in the angle sensor device 50, 52, 54, 56, 58 or 60 included angle sensors 20 are detected.
  • the angle sensors 20 or groups of angle sensors 20 are arranged at different axial distances from the magnetic field generating device 16, a characteristic map K, which can be read from the characteristic value memory 44, being used to correct the interference field influence. Finally, an interference field-compensated angle value ⁇ 66 is output.
  • the invention proposes several embodiments of angle sensor devices 30, 32, 34, 36, 38 or 40, in which two or more angle sensors 20 are used in an angle sensor device 50, 52, 54, 56, 58 or 60, both axially and radially are arranged offset about an axis of rotation 12 in the vicinity of a magnetic field generating device 16.
  • an influence of an interference field can be determined and compensated.
  • the geometric relationships as well as compensation effects due to different spatial arrangements can be used.
  • the interference field compensation can on the one hand be permanently wired on the hardware side, on the other hand it can be carried out subsequently by means of a calculation unit.
  • interference fields can also be effectively compensated in the range of up to 3,000 A / m field strength, so that the new ISO-11452-8: 2015 can be complied with.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

Die Erfindung betrifft eine störfeldkompensierte Winkelsensorvorrichtung und ein Störfeldkompensationsverfahren, beruhend auf einer magnetfeldbasierten Bestimmung eines Drehwinkels einer Rotationsachse. Dabei erzeugt eine Magnetfelderzeugungseinrichtung ein Magnetfeld, das relativ zu einer Winkelsensoreinrichtung rotiert, wobei die Winkelsensoreinrichtung die Winkelausrichtung des Drehmagnetfeldes bestimmen kann.The invention relates to an interference field-compensated angle sensor device and an interference field compensation method based on a magnetic field-based determination of an angle of rotation of an axis of rotation. A magnetic field generating device generates a magnetic field which rotates relative to an angle sensor device, the angle sensor device being able to determine the angular orientation of the rotating magnetic field.

STAND DER TECHNIKSTATE OF THE ART

Aus dem Stand der Technik ist eine Vielzahl von magnetfeldbasierten Winkelsensorvorrichtungen bekannt, die kontaktfrei auf Basis magnetoresistiver Widerstandselemente den Drehwinkel einer Rotationsachse bestimmen können. Unter anderem werden derartige Sensoren im Automotive-Bereich und im Bereich elektrischer Maschinen eingesetzt, um beispielsweise einen Drehwinkel oder eine Drehfrequenz einer rotierenden Motor- oder Antriebswelle, einer Radwelle oder einen Lenkradwinkel festzustellen.A large number of magnetic field-based angle sensor devices are known from the prior art, which can determine the angle of rotation of an axis of rotation without contact on the basis of magnetoresistive resistance elements. Among other things, such sensors are used in the automotive sector and in the field of electrical machines, for example to determine an angle of rotation or a frequency of rotation of a rotating motor or drive shaft, a wheel shaft or a steering wheel angle.

Im technischen Umfeld nimmt die Zahl von elektromagnetischen Störquellen, die elektrische oder magnetische Störfelder verursachen, permanent zu. Dies wird auch als Elektrosmog bezeichnet. Elektromagnetische Sensoren, die auf Messung eines elektrischen oder magnetischen Nutzfelds nutzen, müssen in der Lage sein, tolerant gegenüber diesen Störfeldern zu sein, und bis zu einem gewissen Maß eine Messung unter Einfluss eines Störfelds korrekt durchzuführen. Insbesondere im Bereich Automotive fordert die ISO-11452-8:2015 "Straßenfahrzeuge-Komponentenprüfverfahren für elektrische Störgrößen durch schmalbandige gestrahlte elektromagnetische Energie - Teil 8: Störfestigkeit gegen Magnetfelder", dass elektromagnetische Sensoren, die auf der Erfassung eines magnetischen Nutzfeldes beruhen, Störfelder im Bereich von 1 kA/m bis zu 3 kA/m Feldstärke tolerieren müssen und exakte Werte anzeigen sollen.In the technical environment, the number of electromagnetic interference sources that cause electrical or magnetic interference fields is constantly increasing. This is also known as electrosmog. Electromagnetic sensors that use the measurement of an electrical or magnetic useful field must be able to be tolerant of these interference fields and, to a certain extent, perform a measurement correctly under the influence of an interference field. Particularly in the automotive sector, the ISO-11452-8: 2015 "Road vehicle component test method for electrical disturbance variables through narrow-band radiated electromagnetic energy - Part 8: Immunity to magnetic fields" requires that electromagnetic sensors based on the detection of a useful magnetic field, disturbance fields in the area of 1 kA / m up to 3 kA / m field strength and must tolerate exact Should show values.

Somit sind in jüngster Zeit Versuche unternommen worden, Störfeldkompensationsmaßnahmen zu entwickeln, die versuchen, magnetische Störfelder bei Winkelmesssensoren zu kompensieren.Thus, in recent times, attempts have been made to develop interference field compensation measures which attempt to compensate for magnetic interference fields in angle measurement sensors.

So wird beispielsweise von Thomas Tille: "Automobil-Sensorik, ausgewählte Sensorprinzipien und deren automobile Anwendung", BMW AG, Springer Vieweg Verlag, 2016, ISBN 978-3-662-48943-7 auf den Seiten 242 bis 250 ein in einer Welle integriertes magnetisches Winkelsensorsystem vorgestellt, bei dem ein Winkelsensor von einer ferromagnetischen Hohlzylinderwandung der Welle umschirmt ist, um Störfelder kompensieren zu können. Eine derartige elektromagnetische Abschirmung des Winkelsensors erfordert einen hohen konstruktiven Aufwand und lässt sich nur in wenigen Anwendungsfällen praxisgerecht einsetzen.For example by Thomas Tille: "Automotive sensors, selected sensor principles and their automotive application", BMW AG, Springer Vieweg Verlag, 2016, ISBN 978-3-662-48943-7 on pages 242 to 250 a magnetic angle sensor system integrated in a shaft is presented, in which an angle sensor is shielded by a ferromagnetic hollow cylinder wall of the shaft in order to be able to compensate for interference fields. Electromagnetic shielding of this type for the angle sensor requires a great deal of construction effort and can only be used in a practical manner in a few applications.

Daneben ist beispielsweise aus der WO 1998/054547 A1 ein Winkelmesssensor auf Hall-Basis bekannt, bei dem vier Hall-Widerstände in einer Brückenschaltung angeordnet sind, wobei jeder Widerstand eine vektorielle Komponente eines Drehmagnetfeldes messen kann und die vier Widerstände der Messbrücke axial verteilt um eine Rotationsachse angeordnet sind, um die Wirkung eines Störmagnetfeldes kompensieren zu können. Somit wird ein einzelner Winkelsensor radial vergrößert, um ein nahezu homogenes Störmagnetfeld durch die gegengerichteten Ausrichtungen der einzelnen Widerstandselemente der Messbrücke kompensieren zu können. Hierzu wird eine relativ große Chipfläche benötigt bzw. eine Vergrößerung der Sensorvorrichtung erforderlich, die in vielen Fällen nicht praxisgerecht ist.In addition, for example, from the WO 1998/054547 A1 a Hall-based angle measuring sensor is known in which four Hall resistors are arranged in a bridge circuit, each resistor being able to measure a vector component of a rotating magnetic field and the four resistors of the measuring bridge being arranged axially distributed around an axis of rotation in order to compensate for the effect of an interfering magnetic field to be able to. Thus, a single angle sensor is enlarged radially in order to be able to compensate for an almost homogeneous interfering magnetic field through the opposing orientations of the individual resistance elements of the measuring bridge. For this purpose, a relatively large chip area is required or an enlargement of the sensor device is required, which in many cases is not practical.

Des Weiteren betrifft die US 8,659,289 B2 eine magnetfeldbasierte Winkelmesssensorvorrichtung, die zwei Winkelmesssensoren umfasst, wobei jeder Winkelmesssensor einer Magnetfelderzeugungseinrichtung, sprich einem Permanentmagneten, zugeordnet ist, und ein für sich bereitgestelltes Drehmagnetfeld des Permanentmagneten misst. Die Magnetfelder, die auf die beiden Winkelmesssensoreinrichtungen einwirken, sind unabhängig voneinander. Die relative Lage der Winkelmesssensoreinrichtungen bezüglich der Magnetfelderzeugungseinrichtung ist identisch, lediglich die Ausrichtung des Nutzmagnetfelds ist geändert, um derart Einflüsse eines Störfeldes kompensieren zu können. Die herausgegebenen beiden Winkel der beiden Winkelmesssensoreinrichtungen werden miteinander verrechnet entsprechend der relativen Lage der Nutzmagnetfelder und der Winkelmesseinrichtungen zueinander. Da die Winkelmesseinrichtungen unterschiedlichen Magnetfeldern verschiedener Permanentmagneten ausgesetzt sind bzw. unterschiedliche Magnetflüsse von einer Magnetfelderzeugungseinrichtung sehen, kann eine Kompensation beruhend auf einer abgestimmten Bereitstellung der verschiedenen Magnetfelder und einem identischen Verhalten der Winkelmesssensoreinrichtungen erreicht werden. Hierzu ist eine relativ kostspielige und exakte Herstellung der Winkelmesssensorvorrichtung notwendig, die ein entsprechend kostenintensives Verfahren und einen entsprechend teueren Sensor zur Folge hat.Furthermore, the US 8,659,289 B2 a magnetic field-based angle measurement sensor device comprising two angle measurement sensors, each angle measurement sensor being assigned to a magnetic field generating device, that is to say a permanent magnet, and measuring a rotating magnetic field provided by the permanent magnet. The magnetic fields that act on the both angle measuring sensor devices act are independent of one another. The relative position of the angle measuring sensor devices with respect to the magnetic field generating device is identical, only the orientation of the useful magnetic field is changed in order to be able to compensate for such influences of an interference field. The two angles output by the two angle measuring sensor devices are offset against one another in accordance with the relative position of the useful magnetic fields and the angle measuring devices to one another. Since the angle measuring devices are exposed to different magnetic fields from different permanent magnets or see different magnetic fluxes from a magnetic field generating device, compensation can be achieved based on a coordinated provision of the different magnetic fields and an identical behavior of the angle measuring sensor devices. For this purpose, a relatively expensive and exact manufacture of the angle measuring sensor device is necessary, which results in a correspondingly costly method and a correspondingly expensive sensor.

Die DE 10 2016 202 378 A1 betrifft eine Winkelsensorvorrichtung, wobei im Sinne der Erfindung ein Gesamtsystem mit Winkelsensoreinrichtung (elektrischer Teil) und Magnetfelderzeugungseinrichtung mit rotierenden Magneten (mechanischer Teil) mit einer Winkelmesssensoreinrichtung (nur elektrischer Teil) gemeint ist, und die Winkelmesssensoreinrichtung einen Winkelsensor mit zwei voneinander abgewinkelten Gruppen von sensitiven Elementen umfasst, der dazu ausgelegt sind ein Winkelsignal auszugeben. Der Winkelsensor umfasst eine erste Gruppe von sensitiven Elementen und eine zweite Gruppe mit sensitiven Elementen. Die erste Gruppe ist ausgelegt, ein Magnetfeld entlang einer ersten Richtung zu erfassen, die zweite Gruppe ist ausgelegt, das Magnetfeld entlang einer zweiten Richtung, vorzugsweise 90° zur ersten Richtung zu erfassen. Eine Auswerteeinheit bestimmt aus den Signalen der sensitiven Elemente der ersten und zweiten Gruppe ein Winkelsignal. Somit wird ein Winkelsensor vorgeschlagen, bei dem ein Sinus-und ein Kosinus-Signal jeweils mit drei magnetoresistiven Elementen gemessen und zu einem einzigen Winkelsignal bestimmt werden. In weiteren Ausbildungen wird vorgeschlagen, jeweils das Sinus- und das Kosinus-Signal redundant durch Messung von jeweils zwei der drei sensitiven Elemente zu ermitteln, und somit zwei oder mehrere Sinus- und Kosinus-Werte zu mitteln. Es wird allerdings in jedem Fall nur ein einziger Winkelwert bestimmt, so dass im Sinne der Erfindung nur von einem einzigen Winkelsensor gesprochen werden kann, der nur einen einzelnen Gradienten ausgibt.The DE 10 2016 202 378 A1 relates to an angle sensor device, whereby in the sense of the invention an overall system with angle sensor device (electrical part) and magnetic field generating device with rotating magnets (mechanical part) with an angle measurement sensor device (only electrical part) is meant, and the angle measurement sensor device means an angle sensor with two angled groups of sensitive elements includes, which are designed to output an angle signal. The angle sensor comprises a first group of sensitive elements and a second group of sensitive elements. The first group is designed to detect a magnetic field along a first direction, the second group is designed to detect the magnetic field along a second direction, preferably 90 ° to the first direction. An evaluation unit determines an angle signal from the signals of the sensitive elements of the first and second group. Thus, an angle sensor is proposed in which a sine and a cosine signal are each measured with three magnetoresistive elements and can be determined into a single angle signal. In further developments, it is proposed to determine the sine and cosine signals redundantly by measuring two of the three sensitive elements, and thus to average two or more sine and cosine values. In each case, however, only a single angle value is determined, so that within the meaning of the invention it is only possible to speak of a single angle sensor that outputs only a single gradient.

Die DE 10 2014 109 693 A1 betrifft eine gattungsgemäße Winkelsensorvorrichtung mit einem rotierenden mehrpoligen Dauermagneten, und einer Winkelmesssensoreinrichtung, die einen Winkelsensor mit zumindest Hall-Elementen umfasst, die entlang einer Kreisbahn angeordnet sind, und deren Signale zur Bestimmung einer Winkelposition mittels dargestellter trigonometrischer Beziehungen verrechnet werden. In einer Variante schlägt ein Vorsehen dreier weiterer Hall-Elemente eines zweiten Winkelsensors vor, die entlang der Kreisbahn versetzt zu den ersten Hall-Elementen angeordnet sind. Differenzen in der Winkelbestimmung durch beide Winkelsensoren können ein Störfeld minimieren. In der DE 10 2014 109 693 A1 kann somit die Anwendung zweiter Winkelsensoren zur Störfeldkompensation erkannt werden. Allerdings sind die Hall-Elemente der beiden Winkelsensoren auf einer gemeinsamen Kreisbahn abgewinkelt versetzt zueinander angeordnet, wobei keine axiale oder radiale Versetzung der Winkelsensoren zur Rotationsachse erkennbar. Dabei ist kein Gradient von Winkelwerten der beiden Winkelsensoren bestimmt, sondern es werden mittels komplizierter trigonometrischer Beziehungen Störfelder durch Gradientenbestimmung von einzelnen Sensorelementwerten berechnet.The DE 10 2014 109 693 A1 relates to a generic angle sensor device with a rotating multi-pole permanent magnet, and an angle measuring sensor device, which comprises an angle sensor with at least Hall elements, which are arranged along a circular path, and whose signals are calculated to determine an angular position by means of illustrated trigonometric relationships. In one variant, it is proposed to provide three further Hall elements of a second angle sensor, which are arranged along the circular path offset with respect to the first Hall elements. Differences in the angle determination by the two angle sensors can minimize an interference field. In the DE 10 2014 109 693 A1 the use of second angle sensors for interference field compensation can thus be recognized. However, the Hall elements of the two angle sensors are angled offset from one another on a common circular path, with no axial or radial displacement of the angle sensors relative to the axis of rotation being discernible. In this case, no gradient of angle values of the two angle sensors is determined, but rather interference fields are calculated by determining the gradients of individual sensor element values by means of complicated trigonometric relationships.

Aus der DE 10 2010 040 584 A1 geht ebenfalls eine Winkelsensorvorrichtung mit einer Winkelsensoreinheit hervor, die einen Winkelsensor umfasst, der zwei Sensorelemente umfasst. Diese sind in einer Kreisbahn um einen rotierenden Magneten angeordnet und stellen ein Sinus- und Kosinussignal bereit. Die DE 10 2010 040 584 A1 empfiehlt, die Wirkung eines Störfelds z.B. vor Inbetriebnahme zu ermitteln und beispielsweise in Form von Kennlinien oder Berechnungsregeln bei der Ermittlung des Winkelwerts von den Sensorsignalen abzuziehen. Insofern offenbart die DE 10 2010 040 584 A1 nur einen Winkelsensor und versucht, bereits im Vorfeld statische, oder in Prüf- oder Simulationsszenarien dynamisch auftretende Fremdfeldeinflüsse aktiv zu kompensieren, wozu eine entsprechende Auswertelogik bzw. Rechnerkapazität bereitgestellt werden muss. Dabei kann die DE 10 2010 040 584 A1 nicht auf unerwartete Fremdfeldeinflüsse reagieren und weist auch keine zwei Winkelsensoren zur unabhängigen Ermittlung zweier Winkelwerte auf. Auch kann keine radiale oder axiale Versetzung derartiger Winkelsensoren gegenüber der Rotationsachse erkannt werden.From the DE 10 2010 040 584 A1 also shows an angle sensor device with an angle sensor unit which comprises an angle sensor which comprises two sensor elements. These are arranged in a circular path around a rotating magnet and provide a sine and cosine signal. The DE 10 2010 040 584 A1 recommends the effect of an interference field, for example To determine commissioning and, for example, in the form of characteristics or calculation rules to be deducted from the sensor signals when determining the angle value. In this respect, the DE 10 2010 040 584 A1 only one angle sensor and tries to actively compensate for static or dynamic external field influences in test or simulation scenarios in advance, for which a corresponding evaluation logic or computer capacity must be provided. The DE 10 2010 040 584 A1 does not react to unexpected external field influences and also does not have two angle sensors for the independent determination of two angle values. Also, no radial or axial displacement of such angle sensors with respect to the axis of rotation can be detected.

Weiterhin betrifft die DE 10 2013 205 313 A1 eine Winkelsensorvorrichtung mit einer Winkelsensoreinrichtung, die einen aus zumindest drei diagonal gegenüberliegenden Paaren von kreisförmig angeordneten Hallsensoren bestehenden Winkelsensor umfasst. Die hervorgehenden drei oder mehreren Messsignale der Hallsensorpaare werden zu einem gemeinsamen Winkelsignal verrechnet. Insofern weist das Konzept der DE 10 2013 205 313 A1 Gemeinsamkeiten mit dem Konzept der DE 10 2016 202 378 A1 und DE 10 2014 109 693 A1 auf, da eine redundante Anzahl von Sensoren in einem Winkelsensor vorgesehen ist, um Störfelder zu eliminieren. Allerdings sind auch in der DE 10 2013 205 313 A1 , wie in den übrigen Druckschriften, keine explizit getrennte Winkelsensoren zur unabhängigen Erfassung zweier Winkelwerte angegeben, und es ist ebenfalls keine axiale oder radiale Versetzung der Winkelsensoren bzw. der hieraus beruhenden Sensorelemente erkennbar.Furthermore, the DE 10 2013 205 313 A1 an angle sensor device with an angle sensor device which comprises an angle sensor consisting of at least three diagonally opposite pairs of Hall sensors arranged in a circle. The resulting three or more measurement signals from the Hall sensor pairs are calculated to form a common angle signal. In this respect, the concept of DE 10 2013 205 313 A1 Similarities with the concept of DE 10 2016 202 378 A1 and DE 10 2014 109 693 A1 because a redundant number of sensors is provided in an angle sensor in order to eliminate interference fields. However, are also in the DE 10 2013 205 313 A1 As in the other publications, no explicitly separate angle sensors are specified for the independent detection of two angle values, and there is also no discernible axial or radial displacement of the angle sensors or the sensor elements based on them.

Die DE 10 2011 083249 A1 offenbart mehrere Winkelsensorvorrichtungen mit einer Magnetfelderzeugungseinrichtung und einer Winkelsensoreinrichtung, die zwei Winkelsensoren umfassen. Dabei rotiert ein Magnetfeld der Magnetfelderzeugungseinrichtung relativ zur Winkelsensoreinrichtung, wobei in diesen Vorrichtungen unterschiedliche Magnetfeldbereiche des Magnetfelds der Magnetfelderzeugungseinrichtung erfasst werden. Ein erster Winkelsensor befindet sich an einer ersten Position und ein zweiter Winkelsensor 20 befindet sich an einer zweiten Position befindet, wobei sich die Bezugsrichtungen des ersten Winkelsensors und des zweiten Winkelsensors sich unterscheiden. Beide Winkelsensoren weisen desselben Abstands zur Magnetfelderzeugungseinrichtung auf und messen identische Amplituden des Nutzmagnetfelds.The DE 10 2011 083249 A1 discloses several angle sensor devices with a magnetic field generating device and an angle sensor device which comprise two angle sensors. A magnetic field of the magnetic field generating device rotates relative to the angle sensor device, with different magnetic field areas of the magnetic field of the magnetic field generating device being detected in these devices. A first angle sensor is located at a first position and a second angle sensor 20 is located at a second position, the reference directions of the first angle sensor and the second angle sensor differing. Both angle sensors are at the same distance from the magnetic field generating device and measure identical amplitudes of the useful magnetic field.

Aus der DE 10 2011 080679 A1 geht eine Winkelsensorvorrichtung mit zwei Magnetfelderzeugungseinrichtungen hervor, wobei zwei Magnetfeldsensoren in entgegengesetzt ausgerichteten Magnetfeldbereichen getrennter Nutzfelder der beiden Magnetfelderzeugungseinrichtungen angeordnet sind. Daneben zeigt diese Druckschrift auch eine Winkelsensorvorrichtung mit einer Magnetfelderzeugungseinrichtung, wobei die beiden Winkelsensoren in Bereichen entgegengesetzter Magnetfeldausrichtung angeordnet sind.From the DE 10 2011 080679 A1 shows an angle sensor device with two magnetic field generating devices, two magnetic field sensors being arranged in oppositely oriented magnetic field areas of separate useful fields of the two magnetic field generating devices. In addition, this document also shows an angle sensor device with a magnetic field generating device, the two angle sensors being arranged in areas of opposite magnetic field orientations.

Schließlich betrifft die DE 101 30 988 A1 eine justierbare Winkelsensorvorrichtung mit einem aus zwei gegeneinander abgewinkelt ausgerichteten magnetoresistiven Messbrücken. Durch einen Korrekturfaktor der Messbrückensignale wird die Genauigkeit des Winkelsensors erhöht.Finally concerns the DE 101 30 988 A1 an adjustable angle sensor device with one of two magnetoresistive measuring bridges aligned at an angle to one another. A correction factor for the measuring bridge signals increases the accuracy of the angle sensor.

Ausgehend von dem obigen Stand der Technik ist es Aufgabe der Erfindung, eine Winkelmesssensorvorrichtung vorzuschlagen, die kostengünstig und einfach herzustellen ist, und die eine effektive Kompensation eines Störfeldes ohne großen konstruktiven Aufwand ermöglicht.Based on the above prior art, it is the object of the invention to propose an angle measuring sensor device which is inexpensive and simple to manufacture and which enables an effective compensation of an interference field without great structural effort.

Diese Aufgabe wird durch eine Winkelmesssensorvorrichtung und ein Winkelmesssensorverfahren nach den unabhängigen Ansprüchen gelöst.This object is achieved by an angle measurement sensor device and an angle measurement sensor method according to the independent claims.

Vorteilhafte Ausbildungen der Erfindung sind Gegenstand der Unteransprüche.Advantageous embodiments of the invention are the subject of the subclaims.

Wesentlich für die Erfindung ist die Tatsache, dass die Winkelsensoren axial in verschiedenen Abständen entlang der Rotationsachse und/oder die Winkelsensoren radial in verschiedenen Abständen zur Rotationsachse angeordnet sind.What is essential for the invention is the fact that the angle sensors are arranged axially at different distances along the axis of rotation and / or the angle sensors are arranged radially at different distances from the axis of rotation.

Daher fallen nur die Anordnungen der Fig. 6-11 unter den Gegenstand von Anspruch 1 und die folgende Beschreibung ist auch so zu interpretieren.Therefore, only the arrangements of the Fig. 6-11 under the subject matter of claim 1 and the following description is also to be interpreted in this way.

OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION

Erfindungsgemäß wird eine störfeldkompensierte Winkelsensoreinrichtung zur magnetfeldbasierten Bestimmung eines Drehwinkels einer Rotationsachse vorgeschlagen, die zumindest eine Magnetfelderzeugungseinrichtung, insbesondere einen Permanentmagneten, und eine Winkelsensorvorrichtung umfasst, wobei ein Magnetfeld (Nutzmagnetfeld) der Magnetfelderzeugungseinrichtung relativ zur Winkelsensoreinrichtung rotiert. Dies bedeutet, dass entweder der Permanentmagnet ruht und die Winkelsensoreinrichtung mit der Rotationsachse rotiert, oder die Magnetfelderzeugungseinrichtung mit der Rotationsachse rotiert und die Winkelsensoreinrichtung ruht.According to the invention, an interference field-compensated angle sensor device for magnetic field-based determination of an angle of rotation of a rotation axis is proposed, which comprises at least one magnetic field generating device, in particular a permanent magnet, and an angle sensor device, a magnetic field (useful magnetic field) of the magnetic field generating device rotating relative to the angle sensor device. This means that either the permanent magnet is at rest and the angle sensor device rotates with the axis of rotation, or the magnetic field generating device rotates with the axis of rotation and the angle sensor device is at rest.

Die Erfindung schlägt vor, dass die Winkelsensoreinrichtung zumindest zwei Winkelsensoren umfasst, die axial und/oder radial zur Rotationsachse versetzt angeordnet sind, so dass durch eine algebraische Auswertung der Winkelwerte oder der Sensorsignale der zumindest zwei Winkelsensoren ein Einfluss eines Störfeldes kompensierbar ist.The invention proposes that the angle sensor device comprises at least two angle sensors which are arranged axially and / or radially offset to the axis of rotation so that an influence of an interference field can be compensated for by an algebraic evaluation of the angle values or the sensor signals of the at least two angle sensors.

Mit anderen Worten umfasst die Winkelsensorvorrichtung zumindest zwei Winkelsensoreinrichtungen, wobei jede der Winkelsensoreinrichtungen eingerichtet ist, den Winkel eines Magnetfelds zu erfassen, Sensorsignale, insbesondere einen Sinus- und einen Cosinuswert auszugeben, die durch eine Arcustangensoperation einen Winkelwert des Nutzmagnetfeldes ergeben. Die zumindest zwei Winkelsensoren der Winkelsensoreinrichtung sind axial gegeneinander versetzt angeordnet und/oder radial zur Rotationsachse versetzt angeordnet. Dementsprechend erfassen die beiden Winkelsensoren unterschiedliche Magnetfeldbereiche eines einzelnen Nutzmagnetfelds der Magnetfelderzeugungseinrichtung. Hierdurch wird es beispielsweise bei einer axialen Versetzung möglich, verschiedene Amplitudenwerte des Nutzmagnetfelds der Magnetfelderzeugungseinrichtung zu erfassen, oder bei einer radialen Versetzung kann es möglich sein, unterschiedliche Phasenwerte des Nutzmagnetfelds der Magnetfelderzeugungseinrichtung zu erfassen, insbesondere wenn die beiden Winkelsensoren kreisförmig um den Umfang der Rotationsachse versetzt angeordnet sind, oder amplitudenmäßig unterschiedliche Werte des Magnetfelds der Magnetfelderzeugungseinrichtung erfassen. Ein von außen erzeugtes Störfeld wirkt, da die beiden Winkelsensoren im Verhältnis zur Störfeldquelle dicht benachbart sind, auf beide Winkelsensoren gleich. Hierdurch kann sich ein Gradient, d. h. ein Unterschied der Winkelerfassung bzw. der Sensorsignale der beiden Winkelsensoren ergeben. So kann beim Vergleich einer ungestörten Winkelsensoreinrichtung und einer gestörten Winkelsensoreinrichtung und den sich hieraus ergebenden unterschiedlichen Gradienten der ausgegebenen Winkel oder der Sensorsignale der beiden Winkelsensoren die Größe und eventuell auch die Richtung des Störfeldes bestimmt werden, wobei der Einfluss des Störfeldes arithmetisch oder hardwareseitig kompensiert bzw. minimiert oder eliminiert werden kann. Der Gradient kann durch eine Hardwareverdrahtung ermittelt oder durch eine Softwarebearbeitung bestimmt werden.In other words, the angle sensor device comprises at least two angle sensor devices, each of the angle sensor devices being set up to detect the angle of a magnetic field, to output sensor signals, in particular a sine and a cosine value, which result in an angle value of the useful magnetic field through an arctangent operation. The at least two angle sensors of the angle sensor device are arranged axially offset from one another and / or are arranged offset radially to the axis of rotation. Accordingly, the two angle sensors detect different magnetic field areas of a single useful magnetic field of the magnetic field generating device. This makes it possible, for example in the case of an axial offset, to detect different amplitude values of the useful magnetic field of the magnetic field generating device, or in the case of With a radial offset, it may be possible to detect different phase values of the useful magnetic field of the magnetic field generating device, in particular if the two angle sensors are arranged offset in a circle around the circumference of the axis of rotation, or detect different values of the magnetic field of the magnetic field generating device in terms of amplitude. An externally generated interference field has the same effect on both angle sensors since the two angle sensors are closely adjacent in relation to the interference field source. This can result in a gradient, ie a difference in the angle detection or the sensor signals of the two angle sensors. Thus, when comparing an undisturbed angle sensor device and a disturbed angle sensor device and the resulting different gradients of the output angles or the sensor signals of the two angle sensors, the size and possibly also the direction of the interference field can be determined, with the influence of the interference field being compensated arithmetically or by the hardware. can be minimized or eliminated. The gradient can be determined through hardware wiring or determined through software processing.

Insoweit beruht die Erfindung auf der Idee, unterschiedliche Einflüsse des Nutzmagnetfelds der Magnetfelderzeugungseinrichtung durch eine radial oder axial versetzte Anordnung von Winkelsensoren der Winkelsensoreinrichtung zu erfassen, und bei einem nahezu gleichen Einfluss eines Störmagnetfelds und den bekannten Unterschieden der Winkelerfassung aufgrund der Versetzung kann die Größe des Störfelds bestimmt und/oder dessen Einfluss kompensiert werden. In der praktischen Umsetzung kann zumindest ohne Wissen über Größe und Richtung des Störfeldes dessen Einfluss reduziert oder kompensiert werden.To this extent, the invention is based on the idea of detecting different influences of the useful magnetic field of the magnetic field generating device by means of a radially or axially offset arrangement of angle sensors of the angle sensor device, and with almost the same influence of an interference magnetic field and the known differences in angle detection due to the offset, the size of the interference field can determined and / or its influence compensated. In practical implementation, the influence of the interference field can be reduced or compensated for, at least without knowledge of the size and direction of the interference field.

Insofern umfasst die erfindungsgemäße störfeldkompensierte Winkelsensorvorrichtung zur magnetfeldbasierten Bestimmung eines Drehwinkels einer Rotationsachse eine Magnetfelderzeugungseinrichtung (Permanentmagneten) und eine Winkelsensoreinrichtung, wobei ein Magnetfeld der Magnetfelderzeugungseinrichtung relativ zur Winkelsensoreinrichtung rotiert. Erfindungswesentlich wird vorgeschlagen, dass die Winkelsensoreinrichtung zumindest zwei getrennte Winkelsensoren umfasst, die axial und/oder radial zur Rotationsachse versetzt angeordnet sind und die zwei unabhängige Winkelwerte ausgeben können, so dass durch eine Gradientenbestimmung der Winkelwerte der Winkelsensoren ein Einfluss eines Störfeldes kompensierbar ist.In this respect, the interference field-compensated angle sensor device according to the invention for the magnetic field-based determination of an angle of rotation of a rotation axis comprises a magnetic field generating device (Permanent magnets) and an angle sensor device, wherein a magnetic field of the magnetic field generating device rotates relative to the angle sensor device. It is essential to the invention that the angle sensor device comprises at least two separate angle sensors which are arranged axially and / or radially offset to the axis of rotation and which can output two independent angle values so that an influence of an interference field can be compensated for by determining the gradient of the angle values of the angle sensors.

In einer vorteilhaften Weiterbildung der Erfindung kann die Magnetfelderzeugungseinrichtung als Permanentmagnet, insbesondere Dipolmagnet mit zwei ausgeprägten Magnetpolen, ausgebildet sein, bevorzugt als scheibenförmiger Dipolmagnet mit einer Kreisscheibenhälfte als Nordpol und einer Kreisscheibenhälfte als Südpol, der an einer Stirnfläche der Rotationsachse drehfest angeordnet ist, wobei die Winkelsensoreinrichtung in axialer Verlängerung der Rotationsachse gegenüber zur Stirnfläche der Rotationsachse angeordnet ist. Hierdurch wird vorgeschlagen, dass drehfest mit der Rotationsachse ein Permanentmagnet angeordnet ist, der insbesondere ein Dipolmagnet mit zwei ausgezeichneten Magnetpolen umfasst. Die beiden Magnetpole sind derart angeordnet, dass sie ein Gradientenfeld in Richtung Drehachse ausbilden, insbesondere als scheibenförmiger Magnet mit einer halben Kreisscheibe, die als Nordpol und einer halben Kreisscheibe, die als Südpol magnetisiert ist. Daraus bildet sich ein in beide Richtungen des Permanentmagneten ausgebildetes U-förmiges oder keulenförmiges Magnetfeld, in dem Winkelsensoren der Winkelsensoreinrichtung in einer sensitiven Messebene senkrecht zur Rotationsachse oder parallel zur Rotationsachse angeordnet sein können, um eine Winkelstellung des Nutzmagnetfelds der Magnetfelderzeugungseinrichtung messen zu können. Die Winkelsensoreinrichtung kann grundsätzlich entweder in Verlängerung der Rotationsachse oder rückversetzt entlang der Rotationsachse angeordnet sein, wobei dabei insbesondere eine radiale Versetzung der Winkelsensoreinrichtung von Vorteil ist, insbesondere wenn nur ein geringer Bauraum zur Verfügung steht. Ist die Winkelsensoreinrichtung in Verlängerung der Rotationsachse angeordnet, so können die Winkelsensoren sowohl entlang der Rotationsachse als auch radial versetzt angeordnet sein, es kann eine hohe Genauigkeit bei der Positionierung der Winkelsensoreinrichtung erreicht werden, so dass eine hohe Genauigkeit der Winkelerfassung ermöglicht werden kann.In an advantageous development of the invention, the magnetic field generating device can be designed as a permanent magnet, in particular a dipole magnet with two pronounced magnetic poles, preferably as a disk-shaped dipole magnet with a circular disk half as the north pole and a circular disk half as the south pole, which is arranged in a rotationally fixed manner on an end face of the axis of rotation, the angle sensor device is arranged in an axial extension of the axis of rotation opposite to the end face of the axis of rotation. It is hereby proposed that a permanent magnet be arranged in a rotationally fixed manner with the axis of rotation, which in particular comprises a dipole magnet with two distinct magnetic poles. The two magnetic poles are arranged in such a way that they form a gradient field in the direction of the axis of rotation, in particular as a disk-shaped magnet with half a circular disk that is magnetized as the north pole and half a circular disk that is magnetized as the south pole. This forms a U-shaped or club-shaped magnetic field in both directions of the permanent magnet, in which angle sensors of the angle sensor device can be arranged in a sensitive measuring plane perpendicular to the axis of rotation or parallel to the axis of rotation in order to be able to measure an angular position of the useful magnetic field of the magnetic field generating device. The angle sensor device can in principle either be arranged as an extension of the axis of rotation or set back along the axis of rotation, a radial offset of the angle sensor device being particularly advantageous, especially if only a small amount of installation space is available stands. If the angle sensor device is arranged as an extension of the axis of rotation, the angle sensors can be arranged both along the axis of rotation and also radially offset; a high level of accuracy can be achieved in the positioning of the angle sensor device, so that a high level of accuracy in angle detection can be achieved.

In einer vorteilhaften Weiterbildung beruhen die Winkelsensoren auf einer xMR-Sensortopologie, insbesondere einer AMR, TMR oder GMR magnetoresistiven Sensortopologie. Die als xMR-Winkelsensoren bezeichneten Sensortypen zeichnen sich gegenüber Hall-Sensoren durch eine bis zu 50-mal höhere Sensitivität aus, so dass diese insbesondere im Schwachfeldbetrieb mit Feldstärken <1kA/m hochgenaue Winkelbestimmungen ermöglichen. MR-Sensoren können das Erdmagnetfeld für Kompassanwendungen erfassen und werden erfolgreich für zerstörungsfreie Materialprüfung und Fahrzeugerkennung eingesetzt. In diesen Anwendungen werden extrem schwache Magnetfelder sehr genau gemessen. Des Weiteren weisen xMR Winkelsensoren typischerweise eine höhere Genauigkeit von bis zu 0,1° auf, ohne dass dazu die Sensorsignale aufwändig nachbearbeitet werden müssen. Dies führt gleichzeitig zu einer höheren Bandbreite da keine Signalkonditionierungsverfahren wie z.B. das Spinning Current Prinzip zur Erzielung einer hohen Winkelgenauigkeit, deutlich besser als 1°, erforderlich sind. Diese Art von Sensoren beruhen teilweise auf Dünnschichteffekten, und teilweise auf magnetoresistive Eigenschaften einer vormagnetisierten Schicht, wobei der Stromfluss abgewinkelt zur inneren Magnetisierung ist, um eine hochgenaue Auflösung der Magnetfeldrichtung zu ermöglichen.In an advantageous development, the angle sensors are based on an xMR sensor topology, in particular an AMR, TMR or GMR magnetoresistive sensor topology. The sensor types known as xMR angle sensors are distinguished from Hall sensors by up to 50 times higher sensitivity, so that they enable highly accurate angle determinations, especially in weak field operation with field strengths <1kA / m. MR sensors can detect the earth's magnetic field for compass applications and are successfully used for non-destructive material testing and vehicle detection. In these applications, extremely weak magnetic fields are measured very precisely. Furthermore, xMR angle sensors typically have a higher accuracy of up to 0.1 ° without the sensor signals having to be post-processed in a complex manner. At the same time, this leads to a higher bandwidth since no signal conditioning processes such as the spinning current principle are required to achieve a high angle accuracy, significantly better than 1 °. This type of sensor is based partly on thin-film effects and partly on magnetoresistive properties of a premagnetized layer, the current flow being angled to the internal magnetization in order to enable a highly accurate resolution of the magnetic field direction.

In einer vorteilhaften Weiterbildung kann jeder Winkelsensor eine Wheatstone-Messbrücke aus magnetoresistiven Widerstandselementen umfassen, wobei die Wheatstone-Messbrücken der verschiedenen Winkelsensoren hart verdrahtet sind und einen störfeldkompensierten Winkelsensorwert ausgeben. Jeder Winkelsensor umfasst in der Regel zwei Wheatstone-Messbrücken, die eine Sinus- und eine Cosinus-Komponente eines Magnetfelds bestimmen können, und die bei GMR- und TMR-Sensoren n der Regel 90° und beim AMR-Sensoren in der Regel um 45° zueinander versetzt auf einem Chipsubstrat angeordnet sind. Die Winkelsensoreinrichtung umfasst zumindest zwei oder mehrere Winkelsensoren, die aufgrund einer unterschiedlichen räumlichen Anordnung im Nutzmagnetfeld der Magnetfelderzeugungseinrichtung unterschiedliche Empfindlichkeiten für ein Störmagnetfeld aufweisen. Des Weiteren können aufgrund der räumlichen Lage auch ein Phasenversatz oder ein Amplitudenversatz des Nutzmagnetfelds auftreten. Durch eine phasenrichtige Verschaltung der einzelnen Messbrücken der verschiedenen Winkelsensoren kann ein störfeldkompensierter Winkel bestimmt werden, indem der Einfluss des Störmagnetfelds durch die unterschiedliche Lokalisation der Winkelsensoren ausgeglichen werden kann. Somit gibt die Winkelsensoreinrichtung einen kompensierten Winkel aus und es braucht keine nachträgliche Bearbeitung verschiedener Winkel erfolgen, um den Einfluss eines Störmagnetfelds herausrechnen zu können.In an advantageous development, each angle sensor can comprise a Wheatstone measuring bridge made of magnetoresistive resistance elements, the Wheatstone measuring bridges of the various angle sensors being hard-wired and outputting an interfering field-compensated angle sensor value. Each angle sensor usually includes two Wheatstone measuring bridges that determine a sine and a cosine component of a magnetic field can, and which in the case of GMR and TMR sensors are generally offset by 90 ° and in the case of AMR sensors generally offset by 45 ° on a chip substrate. The angle sensor device comprises at least two or more angle sensors which, due to a different spatial arrangement in the useful magnetic field of the magnetic field generating device, have different sensitivities for an interfering magnetic field. Furthermore, due to the spatial position, a phase offset or an amplitude offset of the useful magnetic field can also occur. By interconnecting the individual measuring bridges of the various angle sensors in the correct phase, an interfering field-compensated angle can be determined in that the influence of the interfering magnetic field can be compensated for by the different localization of the angle sensors. Thus, the angle sensor device outputs a compensated angle and there is no need to subsequently process different angles in order to be able to calculate the influence of an interfering magnetic field.

Beispielsweise können zwei oder mehrere Winkelsensoren in einem Umfangskreis um die Rotationsachse angeordnet sein, und um vorgegebene Winkel, zum Beispiel 90° oder 180° gegeneinander versetzt sein. Somit kann ein Brückenwiderstand eines Winkelsensors, der eine Sinuskomponente erfasst, hart verdrahtet mit einer Cosinus-Messbrücke eines um 90° oder phasenvertauscht mit einer um 180° versetzen Sinus-Messbrücke eines um 180° versetzten Winkelsensors verdrahtet sein. Beide Winkelsensoren unterliegen dem gleichen Einfluss eines Störmagnetfelds, wobei sich durch die phasenrichtige Zusammenschaltung der verschiedenen Widerstandsbrücken der Einfluss des Störmagnetfelds kompensieren lässt.For example, two or more angle sensors can be arranged in a circumferential circle around the axis of rotation and offset from one another by predetermined angles, for example 90 ° or 180 °. Thus, a bridge resistance of an angle sensor that detects a sine component can be hard-wired with a cosine measuring bridge of a 90 ° offset or wired phase-reversed with a sine measuring bridge offset by 180 ° of an angle sensor offset by 180 °. Both angle sensors are subject to the same influence of an interfering magnetic field, whereby the influence of the interfering magnetic field can be compensated for by interconnecting the various resistance bridges in the correct phase.

In einer vorteilhaften Weiterbildung kann eine Winkelberechnungseinrichtung umfasst sein, die Winkelwerte oder Sensorsignale jedes Winkelsensors der Winkelsensoreinrichtung empfängt und zur Berechnung eines störfeldkompensierten Winkelwerts verarbeitet. So ist es denkbar, dass zwei oder mehrere Winkelsensoren der Winkelsensoreinrichtung ihren Winkelwert der Winkelberechnungseinrichtung zuführen, und in einer Winkelberechnungseinrichtung diese Winkelwerte beispielsweise unter Berücksichtigung einer arithmetischen Funktion, von tabellierten Werten, Kennfeldern oder dergleichen zur Störfeldkompensation miteinander verrechnet werden. Der Gradient, d. h. die Abweichung der Winkelwerte oder Sensorsignalwerte der einzelnen Winkelsensoreinrichtungen, kann beispielsweise in einem Kalibrierungs- oder Messverfahren für eine störfeldfreie und eine störfeldbehaftete Winkelmessung aufgenommen werden, um so Größe und auch Richtung eines Störfeldes ausrechnen zu können. So kann beispielsweise mit einer entsprechenden Tabelle oder einem Kennfeld die Größe und Richtung des Störfeldes bestimmt werden. In der Praxis kann eine Kompensation auch durch einen Wichtung mit einem einzelnen Faktor erreicht werden, durch den ein nahezu störfeldfreier Winkelwert aus den zwei Sensorsignalen erzeugt wird. Ein Ermitteln von Größe und Richtung des Störfeldes ist hierzu nicht zwingend erforderlich.In an advantageous development, an angle calculation device can be included which receives angle values or sensor signals from each angle sensor of the angle sensor device and processes them to calculate an interference field-compensated angle value. So it is conceivable that two or more angle sensors of the angle sensor device have their angle value to the angle calculation device, and these angle values are offset against one another in an angle calculation device, for example, taking into account an arithmetic function, tabulated values, characteristic diagrams or the like for interference field compensation. The gradient, ie the deviation of the angle values or sensor signal values of the individual angle sensor devices, can be recorded, for example, in a calibration or measurement method for an interfering field-free and an interfering field-affected angle measurement in order to be able to calculate the size and direction of an interfering field. For example, the size and direction of the interference field can be determined with a corresponding table or a characteristic diagram. In practice, compensation can also be achieved by weighting with a single factor, by means of which an angle value that is almost free of interference fields is generated from the two sensor signals. It is not absolutely necessary to determine the size and direction of the interference field.

In einer vorteilhaften Weiterbildung sind zumindest zwei oder mehrere der in der Winkelsensoreinrichtung umfassten Winkelsensoren achszentrisch angeordnet. Durch eine achszentrische Anordnung erfassen die Winkelsensoren den gleichen Winkelwert des Nutzmagnetfelds in Superposition mit dem Störfeld, jedoch ist der Einfluss des Nutzmagnetfelds mit zunehmendem Abstand entlang der Achse verringert. Dadurch wirkt sich ein Störfeld auf die weiter entfernten Winkelsensoren stärker aus als auf die näherliegenden Winkelsensoren, was in abweichenden Messwinkeln resultiert. Hierdurch ergibt sich eine Abweichung der Winkelwerte, wobei der Winkelwert des näher an der Magnetfelderzeugungseinrichtung liegenden Winkelsensors näher am Nutzfeldwinkel liegt, als der Winkelwert des entfernten Winkelsensors. Durch den Gradienten der Winkelabweichung oder der Sensorsignale zwischen den Winkelsensoren und deren Distanzen von der Magnetfelderzeugungseinrichtung kann dieser Einfluss signifikant kompensiert werden. In der Praxis ist eine vollständige Kompensation nur mit hohem Aufwand erzielbar, allerdings ist eine deutliche Verringerung des StörfeldEinflusses relativ einfach erreichbar.In an advantageous development, at least two or more of the angle sensors included in the angle sensor device are arranged axially centered. Due to an axis-centric arrangement, the angle sensors detect the same angular value of the useful magnetic field in superposition with the interference field, but the influence of the useful magnetic field is reduced with increasing distance along the axis. As a result, an interference field has a stronger effect on the more distant angle sensors than on the closer angle sensors, which results in different measurement angles. This results in a deviation of the angle values, the angle value of the angle sensor located closer to the magnetic field generating device being closer to the useful field angle than the angle value of the remote angle sensor. This influence can be significantly compensated for by the gradient of the angular deviation or the sensor signals between the angle sensors and their distances from the magnetic field generating device. In practice, full compensation can only be achieved with great effort, but there is a significant reduction in the interference field influence relatively easy to reach.

In einer Weiterbildung der vorgenannten Ausführungsform kann vorteilhaft jeder Winkelsensor einer Wheatstone-Messbrücke magnetoresistive Widerstandselemente umfassen, wobei die radialen Abstände der magnetoresistiven Widerstandselemente der Wheatstone-Messbrücke jedes Winkelsensors von der Rotationsachse verschieden sind. So kann beispielsweise jeder einzelne Winkelsensor nicht nur Widerstände für zwei Messbrücken, sondern für vier oder mehrere Messbrücken umfassen, wobei die einzelnen Widerstände, beispielsweise für die Sinus- und die Cosinus-Messbrücke achszentrisch angeordnet sind, jedoch verschiedene Radien zur Drehachse aufweisen. Hierbei weisen - je nach Struktur des Nutzmagnetfelds - die weiter entfernt von der Drehachse angeordneten Widerstände einen stärkeren oder schwächeren Einfluss des Nutzmagnetfeldes auf. Die Widerstände der Brückenschaltungen können derart miteinander verdrahtet sein, dass der Einfluss eines Störmagnetfeldes, der sich auf alle Widerstände des Winkelsensors gleich auswirkt, kompensiert werden kann. Insbesondere bei einem achszentrisch angeordneten Winkelsensor können somit zwei oder mehrere entlang eines Kreises oder Rechtecks um die Achse angeordneten Widerstandselemente den Einfluss eines Störmagnetfelds durch eine Gradientenbildung berücksichtigen, wobei die einzelnen Widerstände hart verdrahtet in der Wheatstone-Messbrücke miteinander verschaltet sein können.In a further development of the aforementioned embodiment, each angle sensor of a Wheatstone measuring bridge can advantageously comprise magnetoresistive resistance elements, the radial distances between the magnetoresistive resistance elements of the Wheatstone measuring bridge of each angle sensor being different from the axis of rotation. For example, each individual angle sensor can include not only resistors for two measuring bridges but for four or more measuring bridges, the individual resistors, for example for the sine and cosine measuring bridges, being arranged axially centered, but having different radii to the axis of rotation. In this case, depending on the structure of the useful magnetic field, the resistors arranged further away from the axis of rotation have a stronger or weaker influence of the useful magnetic field. The resistors of the bridge circuits can be wired to one another in such a way that the influence of an interfering magnetic field, which has the same effect on all resistors of the angle sensor, can be compensated. In particular in the case of an axially arranged angle sensor, two or more resistance elements arranged along a circle or rectangle around the axis can take into account the influence of an interfering magnetic field by creating a gradient, whereby the individual resistors can be hard-wired in the Wheatstone measuring bridge.

In einer vorteilhaften Weiterbildung des vorigen Ausführungsbeispiels können radial versetzte magnetoresistive Widerstandselemente der Winkelsensoren gegensinnig zu einer sich kompensierenden Wheatstone-Messbrücke verschaltet sein. So ist beispielsweise denkbar, einen Winkelsensor achszentrisch anzuordnen und entlang eines Umfangskreises oder eines Umfangsrechtecks Widerstandselemente für die Sinus- und die CosinusBrücken anzuordnen, wobei zwei oder mehrere radiale Umfangkreise oder Umfangsrechtecke vorgesehen sind. Somit sind zugehörige magnetresistive Widerstandselemente zweier oder mehrerer Messbrücken in einer radialen Versetzung anordenbar. Radial versetzte Widerstandselemente können gegensinnig in einer Messbrücke verschaltet sein. Ein Nutzmagnetfeld wirkt sich auf die radial versetzten Widerstandselemente verschieden aus, während ein Störmagnetfeld sich gleichartig auswirkt. Durch die gegensinnige Verschaltung der Widerstandselemente in der Messbrücke kann der Einfluss des Störmagnetfeldes, der sich für alle Widerstandselemente gleich auswirkt, kompensiert werden. Hierdurch ist eine effektive und bauliche einfache Maßnahme zur Kompensation eines Störmagnetfelds gegeben, wobei ein entsprechend großflächiger Chip vorgesehen werden kann. Günstigerweise wirkt sich der Einfluss des Nutzmagnetfelds auf eine Gruppe von Widerstandselementen, die sich entlang eines der geschlossenen Umfangskreise oder Umfangsrechtecke angeordnet sind, besonders stark gegenüber einer weiteren Gruppe aus, die radial versetzt ist. Es ist gleichwohl denkbar, dass die beiden Gruppen radial und auch axial zueinander versetzt sind.In an advantageous development of the previous exemplary embodiment, radially offset magnetoresistive resistance elements of the angle sensors can be connected in opposite directions to form a compensating Wheatstone measuring bridge. For example, it is conceivable to arrange an angle sensor axially centered and to arrange resistance elements for the sine and cosine bridges along a circumferential circle or a circumferential rectangle, with two or more radial circumferential circles or circumferential rectangles being provided. Associated magnetoresistive resistance elements of two or more measuring bridges are thus in a radial one Relocation can be arranged. Radially offset resistance elements can be connected in opposite directions in a measuring bridge. A useful magnetic field has different effects on the radially offset resistance elements, while an interfering magnetic field has the same effect. Due to the opposing connection of the resistance elements in the measuring bridge, the influence of the interfering magnetic field, which has the same effect on all resistance elements, can be compensated. This provides an effective and structurally simple measure for compensating for an interfering magnetic field, it being possible to provide a chip with a correspondingly large area. The influence of the useful magnetic field on a group of resistance elements, which are arranged along one of the closed circumferential circles or circumferential rectangles, has a particularly strong effect compared to another group which is radially offset. It is nevertheless conceivable that the two groups are offset radially and axially with respect to one another.

In einer vorteilhaften Weiterbildung kann eine radiale Position der Winkelsensoren verschieden sein, insbesondere können zumindest zwei Winkelsensoren radial gegenüberliegend angeordnet sein, oder bevorzugt vier Winkelsensoren auf einer Kreisbahn jeweils um 90° versetzt um die Rotationsachse angeordnet sein. Hierdurch werden radial beabstandete Winkelsensoren vordefinierter Versetzungswinkel, insbesondere 90° oder 180°, vorgeschlagen, die in der Winkelsensoreinrichtung umfasst sind. Die Winkelsensoren messen das Nutzmagnetfeld in einer vorgegebenen Phasenlage, dazu sind sie insbesondere mit ihrer sensitiven Messfläche parallel zur Rotationsachse ausgerichtet und können beispielsweise bei einer 90°-Versetzung in 90°-Phasen ein Drehfeld des Nutzmagnetfelds messen. Ein Störmagnetfeld würde auf alle Winkelsensoren den gleichen Einfluss haben, und kann bei einem phasenrichtigen Zusammenfassen der Winkelwerte der einzelnen Winkelsensoren kompensiert werden. Dabei gibt es die Möglichkeit, die einzelnen Messbrücken der Winkelsensoren fest zu verdrahten, so dass ein gemeinsamer Winkelwert beispielsweise durch eine ArcTangens-Bildung ohne aufwändige Berechnungseinheit ausgegeben werden kann. Alternativ oder zusätzlich können die einzelnen Winkelwerte der einzelnen Winkelsensoren in einer Berechnungseinheit miteinander verbunden werden, um den Einfluss des Störmagnetfelds rechnerisch kompensieren zu können.In an advantageous development, a radial position of the angle sensors can be different, in particular at least two angle sensors can be arranged radially opposite one another, or preferably four angle sensors can be arranged on a circular path offset by 90 ° around the axis of rotation. As a result, radially spaced angle sensors of predefined offset angles, in particular 90 ° or 180 °, are proposed, which are included in the angle sensor device. The angle sensors measure the useful magnetic field in a specified phase position; for this purpose, their sensitive measuring surface is aligned parallel to the axis of rotation and can, for example, measure a rotating field of the useful magnetic field with a 90 ° offset in 90 ° phases. An interfering magnetic field would have the same influence on all angle sensors and can be compensated for if the angle values of the individual angle sensors are combined in the correct phase. There is the option of permanently wiring the individual measuring bridges of the angle sensors, so that a common angle value can be created, for example, by creating an ArcTangent without complex calculation unit can be output. Alternatively or additionally, the individual angle values of the individual angle sensors can be connected to one another in a calculation unit in order to be able to computationally compensate for the influence of the interfering magnetic field.

In einer vorteilhaften Weiterbildung des vorherigen Ausführungsbeispiels kann die Magnetfelderzeugungseinrichtung einen Permanentmagneten mit einer gleichen Anzahl von Polen wie Winkelsensoren umfassen, insbesondere ein Quadropolmagnet umfassen. Hierbei wird in Bezug auf das vorhergehende Ausführungsbeispiel vorgeschlagen, eine Ausführung einer Winkelsensoreinrichtung mit vier um 90° versetzte Winkelsensoren sowie einen Quadropolmagneten als Magnetfelderzeugungseinrichtung einzusetzen, wobei der Quadropolmagnet jeweils um 90° versetzte Kreissegmente mit alternierender Polarität aufweist. In dieser Ausführungsform kann die Winkelsensoreinrichtung je nach eingesetzter Widerstandstechnik 90°- oder 180°-Drehungen erfassen, wobei alle Winkelsensoren im Idealfall starr phasenversetzte Werte anzeigen und bei einer auftretenden Phasendifferenz der entlang einer Y-Achse angeordnete Sensoren eine Abweichung der Drehachse in X-Richtung hin detektiert werden kann. Dabei ist eine Zustandsüberwachung der Rotationsachse, insbesondere bei wanderndem Drehpunkt möglich, da sich in diesem Fall eine Signal- bzw. Phasendifferenz ergeben würde. Somit kann eine Überwachung der Rotationsachsenlage ermöglicht werden.In an advantageous development of the previous exemplary embodiment, the magnetic field generating device can comprise a permanent magnet with the same number of poles as angle sensors, in particular a quadrupole magnet. In relation to the previous embodiment, it is proposed to use an embodiment of an angle sensor device with four angle sensors offset by 90 ° and a quadrupole magnet as a magnetic field generating device, the quadrupole magnet each having circular segments offset by 90 ° with alternating polarity. In this embodiment, the angle sensor device can detect 90 ° or 180 ° rotations depending on the resistance technology used, with all angle sensors ideally displaying rigidly phase-shifted values and, if there is a phase difference, the sensors arranged along a Y-axis show a deviation of the axis of rotation in the X-direction can be detected towards. In this case, status monitoring of the axis of rotation is possible, in particular when the pivot point is moving, since in this case a signal or phase difference would result. Monitoring of the position of the axis of rotation can thus be made possible.

In einer vorteilhaften Weiterbildung kann die axiale Position der zumindest zwei Winkelsensoren, insbesondere zumindest zweier Gruppen von Winkelsensoren verschieden sein. Durch eine axial verschiedenartige Positionierung der Winkelsensoren oder der Gruppen von Winkelsensoren ist die Amplitude des Nutzmagnetfelds auf jeden Winkelsensor verschieden. Jeder Winkelsensor oder jede Gruppe von Winkelsensoren würde aber den gleichen Winkel des Nutzmagnetfeldes bestimmen. Der Einfluss des Störmagnetfeldes ist auf alle Sensoren gleich, so dass durch den Gradienten der an verschiedenen axialen Positionen angeordneten Winkelsensoren der Einfluss des Störmagnetfelds bestimmt werden kann. Der Einfluss kann rein rechnerisch oder mittels einer Kennlinie oder einem Kennfeld bestimmt werden. Je größer der axiale Abstand der Winkelsensoren ist, umso stärker würde ein Messwinkel vom Störmagnetfeld beeinflusst werden. Beispielsweise kann ein Korrekturfaktor in Abhängigkeit eines bekannten Nutzfeldes und verschiedener Störfelder bestimmt werden, und durch eine Korrekturrechnung, beispielsweise ausgehend vom Winkelwert des axial am nächsten liegenden Winkelsensors zur Magnetfelderzeugungseinrichtung und auf Basis eines Gradienten der beiden Winkel oder der zugrundeliegenden Sensorsignale der axial versetzten Winkelsensoren mittels des Korrekturfaktors eine Korrektur zu einem wahren Winkelwert, bestimmt werden. Hierzu kann eine Kennlinie für verschiedene Stärken von Nutz- und Störfeldern vorgesehen sein. Auch kann ein weiterer, extern angeordneter Magnetfeldsensor zur Erfassung der Größe des Störmagnetfelds vorgesehen sein, um mit dessen Hilfe einen geeigneten Korrekturwert auszuwählen.In an advantageous development, the axial position of the at least two angle sensors, in particular at least two groups of angle sensors, can be different. As a result of an axially different positioning of the angle sensors or the groups of angle sensors, the amplitude of the useful magnetic field on each angle sensor is different. However, each angle sensor or each group of angle sensors would determine the same angle of the useful magnetic field. The influence of the interfering magnetic field is the same on all sensors, so that due to the gradient of the different axial Positioned angle sensors, the influence of the interference magnetic field can be determined. The influence can be determined purely arithmetically or by means of a characteristic curve or a map. The greater the axial distance between the angle sensors, the more a measurement angle would be influenced by the interfering magnetic field. For example, a correction factor can be determined as a function of a known useful field and various interference fields, and by a correction calculation, for example based on the angle value of the axially closest angle sensor to the magnetic field generating device and on the basis of a gradient of the two angles or the underlying sensor signals of the axially offset angle sensors by means of the Correction factor a correction to a true angle value can be determined. For this purpose, a characteristic curve for different strengths of useful and interference fields can be provided. A further, externally arranged magnetic field sensor can also be provided for detecting the size of the interfering magnetic field in order to use it to select a suitable correction value.

In einem nebengeordneten Aspekt der Erfindung wird ein Verfahren zur störfeldkompensierten Winkelbestimmung einer Rotationsachse unter Verwendung einer Winkelsensorvorrichtung vorgeschlagen, bei der eine vorgenannte Ausführungsform einer Winkelsensorvorrichtung eingesetzt wird, und bei der eine Winkelabweichung zwischen den zumindest beiden Winkelsensoren der Winkelsensoreinrichtung zur Kompensation eines externen Störfelds herangezogen werden kann. So kann der Gradient, d. h. die Winkelabweichung oder eine Sensorsignalabweichung zwischen den zumindest zwei Winkelsensoren, die axial und/oder radial entlang der Rotationsachse versetzt angeordnet sind, und die dem Einfluss eines Nutzmagnetfeldes einer Magnetfelderzeugungseinrichtung ausgesetzt sind, genutzt werden, um ein externes Störfeld bestimmen und kompensieren zu können. Bei einer axialen Versetzung der Winkelsensoren würde durch eine Abnahme der Amplitude des Nutzmagnetfelds aber einen praktisch identischen Einfluss des Störmagnetfelds ein Korrekturwert ermittelt werden können. Bei einer radialen Versetzung kann aufgrund verschiedener Phasen, aber auch verschiedener Amplituden und bei gleichem Einfluss des Störmagnetfelds, aber unterschiedlichem Einfluss des Nutzmagnetfelds eine Korrektur vorgenommen werden, die sowohl hardwaretechnisch als auch rechnerisch eine Kompensationsmöglichkeit bietet. Somit lassen sich effektiv und einfach der Einfluss eines Störmagnetfelds auch bei hohen Störmagnetfeldern, wie sie die ISO-11452-8 aus 2015 vorschreibt, kompensieren und bei Störfeldern mit Feldstärke bis zu 3 kA/m exakte Winkelwerte bestimmen.In a secondary aspect of the invention, a method for the interference field-compensated angle determination of an axis of rotation using an angle sensor device is proposed, in which an aforementioned embodiment of an angle sensor device is used, and in which an angle deviation between the at least two angle sensors of the angle sensor device can be used to compensate for an external interference field . The gradient, ie the angular deviation or a sensor signal deviation between the at least two angle sensors which are arranged axially and / or radially offset along the axis of rotation and which are exposed to the influence of a useful magnetic field of a magnetic field generating device, can be used to determine an external interference field and to be able to compensate. With an axial displacement of the angle sensors, a correction value would be able to be determined by a decrease in the amplitude of the useful magnetic field, however, with a practically identical influence of the interfering magnetic field. In the case of a radial offset, Due to different phases, but also different amplitudes and with the same influence of the interfering magnetic field, but different influence of the useful magnetic field, a correction can be made that offers a compensation option both in terms of hardware and calculation. In this way, the influence of an interference magnetic field can be effectively and easily compensated for, even with high interference magnetic fields, as prescribed by ISO-11452-8 from 2015, and exact angle values can be determined for interference fields with a field strength of up to 3 kA / m.

In einer vorteilhaften Weiterbildung des Verfahrens kann ein Korrekturfaktor, eine Kennlinie oder ein Kennfeld von Korrekturfaktoren zur Kompensation eines externen Störfeldes herangezogen werden. Insbesondere bei einer arithmetischen Nachbehandlung der Winkelwerte der einzelnen Winkelsensoren kann eine Kennlinie, ein Kennfeld oder ein Korrekturfaktor herangezogen werden, um eine Kompensation des Störmagnetfelds herbeizuführen. Aufbauend auf dem vorgenannten Verfahrensbeispiel kann der Korrekturfaktor die Kennlinie oder das Kennfeld bei Herstellen der Winkelsensorvorrichtung mit einer Kalibration unter Verwendung verschiedener magnetischer Stör- und Nutzfelder bestimmt werden. Der Korrekturfaktor oder die Korrekturfaktoren oder Kennlinien oder Kennfelder kann bzw. können in einem Speicher einer Winkelberechnungseinrichtung gespeichert sein, und kann bei Ermittlung der Winkelwerte der verschiedenen Winkelsensoren berücksichtigt werden.In an advantageous development of the method, a correction factor, a characteristic curve or a characteristic map of correction factors can be used to compensate for an external interference field. In particular in the case of an arithmetic post-treatment of the angle values of the individual angle sensors, a characteristic curve, a characteristic diagram or a correction factor can be used in order to compensate for the interfering magnetic field. Based on the above-mentioned method example, the correction factor, the characteristic curve or the characteristic field can be determined when the angle sensor device is manufactured with a calibration using various magnetic interference and useful fields. The correction factor or the correction factors or characteristic curves or characteristic diagrams can be stored in a memory of an angle calculation device and can be taken into account when determining the angle values of the various angle sensors.

In einer vorteilhaften Weiterbildung des Verfahrens kann der Korrekturfaktor einen Einfluss eines axialen Abstands der Winkelsensoren und/oder einen radialen Abstand von magnetoresistiven Widerstandselementen der Wheatstone-Messbrücke der Winkelsensoren berücksichtigen. Somit können zum Beispiel mehrere Winkelsensoren, insbesondere vier, acht oder noch mehr Winkelsensoren in verschiedenen axialen und auch radialen Abständen entlang der Rotationsachse angeordnet sein, und deren Störfeldkompensation kann teilweise durch eine hart verdrahtete Schaltung der Widerstandselemente, eventuell auch mit Phasenschiebergliedern, aber auch durch eine arithmetische Nachbehandlung, zum Beispiel durch Korrektur mit Korrekturfaktoren kompensiert werden. Die Korrekturfaktoren können einen axialen Abstand oder einen radialen Abstand der Widerstandselemente berücksichtigen. Es ist denkbar, dass im Laufe der Messung oder in intervallmäßigen Abständen radiale und/oder axiale Abstände der Winkelsensoren geändert werden können, um hierdurch die Kennlinien oder Kennwerte neu zu bestimmen und eine Neukalibrierung der Winkelsensorvorrichtung vornehmen zu können.In an advantageous development of the method, the correction factor can take into account an influence of an axial distance between the angle sensors and / or a radial distance between magnetoresistive resistance elements of the Wheatstone measuring bridge of the angle sensors. Thus, for example, several angle sensors, in particular four, eight or even more angle sensors, can be arranged at different axial and also radial distances along the axis of rotation, and their interference field compensation can partly be achieved by a hard-wired circuit of the resistance elements, possibly also with phase shifter elements, but also through arithmetic post-processing, for example through correction with correction factors. The correction factors can take into account an axial distance or a radial distance between the resistance elements. It is conceivable that radial and / or axial distances of the angle sensors can be changed in the course of the measurement or at intervals in order to thereby redefine the characteristics or characteristic values and to be able to recalibrate the angle sensor device.

ZEICHNUNGENDRAWINGS

Weitere Vorteile ergeben sich aus der vorliegenden Zeichnungsbeschreibung. In den Zeichnungen sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.Further advantages emerge from the present description of the drawings. Exemplary embodiments of the invention are shown in the drawings. The drawing, the description and the claims contain numerous features in combination. The person skilled in the art will expediently also consider the features individually and combine them into meaningful further combinations.

Es zeigen:

Fig. 1
schematisch eine Winkelsensorvorrichtung aus dem Stand der Technik,
Fig. 2
eine Anordnung von Widerstandselementen und eine Widerstandsmessbrücke gemäß des Stands der Technik,
Fig. 3
radial um 90° versetzte Winkelsensoren,
Fig. 4
eine hart verschaltete Wheatstone-Messbrücke des in Fig. 3 dargestellten Bespiels,
Fig. 5
Quadropolmagnet und um 90° versetzte Winkelsensoren,
Fig. 6
ein Ausführungsbeispiel der Erfindung mit axial versetzten Winkelsensoren,
Fig. 7
ein weiteres Ausführungsbeispiel der Erfindung, das sowohl axial als auch radial versetzte Winkelsensoren kombiniert,
Fig. 8
ein weiteres Ausführungsbeispiel mit radial versetzten Widerstandselementen zweier Winkelsensoren,
Fig. 9
Anordnung von Widerstandselementen und Wheatstone-Messbrücke der in Fig. 8 dargestellten Ausführungsform,
Fig. 10
ein weiteres Ausführungsbeispiel von axial und radial versetzten Winkelsensoren,
Fig. 11
schematisch eine Winkelberechnungseinrichtung zum Verarbeiten der Winkelwerte verschiedener Winkelsensoren eines Ausführungsbeispiels.
Show it:
Fig. 1
schematically an angle sensor device from the prior art,
Fig. 2
an arrangement of resistance elements and a resistance measuring bridge according to the prior art,
Fig. 3
angle sensors offset radially by 90 °,
Fig. 4
a hard-wired Wheatstone measuring bridge of the in Fig. 3 example shown,
Fig. 5
Quadrupole magnet and angle sensors offset by 90 °,
Fig. 6
an embodiment of the invention with axially offset angle sensors,
Fig. 7
another embodiment of the invention, which combines both axially and radially offset angle sensors,
Fig. 8
another embodiment with radially offset resistance elements of two angle sensors,
Fig. 9
Arrangement of resistance elements and Wheatstone measuring bridge of the in Fig. 8 illustrated embodiment,
Fig. 10
another embodiment of axially and radially offset angle sensors,
Fig. 11
schematically an angle calculation device for processing the angle values of various angle sensors of an embodiment.

In den Figuren sind gleichartige Elemente mit gleichen Bezugszeichen beziffert. Die Figuren zeigen lediglich Beispiele und sind nicht beschränkend zu verstehen.
In der Fig. 1 ist ein Ausführungsbeispiel 100 einer Winkelsensorvorrichtung aus dem Stand der Technik dargestellt. Die Winkelsensorvorrichtung 100 weist eine Rotationsachse 12 auf, an deren axialem Ende ein scheibenförmiger Permanentmagnet 10 als Dipolmagnet mit zwei Dipolmagnet-Kreissegmenten als Nord- und Südpol 18 angeordnet ist. Die Magnetfelderzeugungseinrichtung 16, die den drehbaren Dipolmagneten 10 umfasst, ist somit am axialen Ende der Rotationsachse 12 angeordnet. Der Dipolmagnet 10 weist einen Durchmesser dM und eine Höhe hM auf. In einem axialen Abstand das vom Dipolmagneten 10 ist ein Winkelsensor 20 einer Winkelsensoreinrichtung 102 angeordnet. Der Dipolmagnet 10 erzeugt ein in axialer Richtung ausgerichtetes U-förmiges Nutzmagnetfeld, das den Winkelsensor 20 durchdringt. Im Winkelsensor 20 ist eine Wheatstone-Messbrücke, wie sie in Fig. 2b dargestellt ist, integriert. Die sensitive Fläche des Winkelsensors 20 ist rechtwinklig zur Achse 12 ausgerichtet.
In the figures, similar elements are numbered with the same reference numerals. The figures show only examples and are not to be understood as restrictive.
In the Fig. 1 an embodiment 100 of an angle sensor device from the prior art is shown. The angle sensor device 100 has an axis of rotation 12, at the axial end of which a disk-shaped permanent magnet 10 is arranged as a dipole magnet with two dipole magnet circle segments as the north and south pole 18. The magnetic field generating device 16, which comprises the rotatable dipole magnet 10, is thus arranged at the axial end of the axis of rotation 12. The dipole magnet 10 has a diameter d M and a height h M. An angle sensor 20 of an angle sensor device 102 is arranged at an axial distance d as from the dipole magnet 10. The dipole magnet 10 generates a U-shaped useful magnetic field aligned in the axial direction, which penetrates the angle sensor 20. in the Angle sensor 20 is a Wheatstone measuring bridge, as shown in Figure 2b is shown, integrated. The sensitive surface of the angle sensor 20 is oriented at right angles to the axis 12.

In einer Draufsicht auf die Chipsubstratfläche des Winkelsensors 20 ist in Fig. 2a die Anordnung der Widerstandselemente für die Sinusbrücke S1, S2 und die Cosinusbrücke C1, C2 dargestellt. Die Widerstandselemente 24 können AMR-, GMR-, TMR- oder allgemein xMR-Widerstandselemente sein. Der Winkelsensor 20 umfasst für den Sinuszweig und für den Cosinuszweig jeweils vier Widerstandselemente, die einzeln kontaktierbar sind. Die Sinuswiderstandselemente S1, S2 sind paarweise gegenüberliegend angeordnet und gegenüber den Cosinuswiderstandselementen C1, C2 um 90° versetzt in einem Quadrat achszentrisch um die Rotationsachse 12 angeordnet.A plan view of the chip substrate surface of the angle sensor 20 is shown in FIG Fig. 2a the arrangement of the resistance elements for the sine bridge S1, S2 and the cosine bridge C1, C2 is shown. The resistance elements 24 can be AMR, GMR, TMR or, in general, xMR resistance elements. The angle sensor 20 comprises four resistance elements each for the sine branch and for the cosine branch, which can be contacted individually. The sinusoidal resistance elements S1, S2 are arranged opposite one another in pairs and are disposed axially centered around the axis of rotation 12 in a square offset by 90 ° in relation to the cosine resistance elements C1, C2.

In der Fig. 2b ist eine Wheatstone-Winkelmessbrücke 22 mit einer phasenrichtigen Verschaltung der beiden Wheatstone-Messbrücken für den Sinus- und den Cosinusteil dargestellt. Jede Messbrücke umfasst vier Widerstandselemente 24, die diagonal gegenüberliegend an der gleichen Stelle auf der Chipsubstratfläche lokalisiert sind. Durch eine Arcustangensbildung des Quotienten von Sinus- und Cosinuswert kann der Winkel des Nutzmagnetfelds bezüglich des Chipsubstrates bestimmt werden. Wirkt ein externes Störmagnetfeld auf die Winkelsensorvorrichtung 100 ein, so überlagert dieses sich mit dem Nutzfeld und führt zu einer Verfälschung des Nutzmagnetfeldwinkels, die umso stärker ausfällt, je stärker das Störmagnetfeld im Verhältnis zum Nutzmagnetfeld ist. Insbesondere bei hohen Störmagnetfeldern von bis zu 3000 A/m können signifikante Winkelverfälschungen auftreten, so dass der Winkel der Rotationsachse nicht exakt bestimmt werden kann.In the Figure 2b shows a Wheatstone angle measuring bridge 22 with a phase-correct interconnection of the two Wheatstone measuring bridges for the sine and cosine parts. Each measuring bridge comprises four resistance elements 24, which are located diagonally opposite at the same point on the chip substrate surface. The angle of the useful magnetic field with respect to the chip substrate can be determined by forming the arctangent of the quotient of the sine and cosine values. If an external interfering magnetic field acts on the angle sensor device 100, this is superimposed on the useful field and leads to a falsification of the useful magnetic field angle, which becomes stronger the stronger the interfering magnetic field is in relation to the useful magnetic field. Significant angular distortions can occur, particularly with high interference magnetic fields of up to 3000 A / m, so that the angle of the axis of rotation cannot be determined exactly.

In der Fig. 3 ist ein erstes Ausführungsbeispiel 30 einer Winkelsensorvorrichtung dargestellt. Die Winkelsensorvorrichtung 30 umfasst eine Magnetfelderzeugungseinheit 16 in Form eines dipoligen Permanentmagneten 10 mit einem Nordpol und einem Südpol 18. Diese ist drehfest am Ende einer Rotationsachse 12 angeordnet. In einer axialen Verlängerung zur Rotationsachse 12 ist eine Winkelsensoreinrichtung 50 angeordnet, die auch vier radial gleichmäßig um die Rotationsachse beabstandete Winkelsensoren 20 umfasst. Die Winkelsensoren W11, W12, W13 und W14 weisen jeweils einen Radius dss/2 als Abstand zur Rotationsachse auf und sind um 90° zueinander versetzt. Die sensitive Ebene der einzelnen Winkelsensoren 20 ist parallel zur Rotationsachse 12 ausgerichtet, so dass Magnetfelder, die parallel zur Drehachse ausgerichtet sind, erfasst werden können. Wirkt ein Störfeld von außen ein, so weichen alle vier Winkelsensoren 20 der Winkelsensoreinrichtung 50 entsprechend von einem Winkel, der durch das Nutzfeld der Magnetfelderzeugungseinrichtung 16 hervorgerufen wird, ab. Da das Nutzfeld in jedem Winkelsensor 20 aufgrund der versetzten Anordnung eine andere Phase aufweist, die Störung allerdings in jedem der Sensoren in etwa gleich wirkt, kann aufgrund der symmetrischen Anordnung der Sensoren W11 bis W14 die Störkomponente herausgefiltert werden.In the Fig. 3 a first embodiment 30 of an angle sensor device is shown. The angle sensor device 30 comprises a magnetic field generating unit 16 in the form of a dipole permanent magnet 10 with a north pole and a south pole 18. This is arranged in a rotationally fixed manner at the end of an axis of rotation 12. In an axial extension of the axis of rotation 12, an angle sensor device 50 is arranged, which also includes four angle sensors 20 that are radially evenly spaced about the axis of rotation. The angle sensors W11, W12, W13 and W14 each have a radius d ss / 2 as a distance from the axis of rotation and are offset by 90 ° to one another. The sensitive plane of the individual angle sensors 20 is aligned parallel to the axis of rotation 12, so that magnetic fields that are aligned parallel to the axis of rotation can be detected. If an interference field acts from the outside, then all four angle sensors 20 of the angle sensor device 50 correspondingly deviate from an angle which is caused by the useful field of the magnetic field generating device 16. Since the useful field in each angle sensor 20 has a different phase due to the offset arrangement, but the interference has approximately the same effect in each of the sensors, the interference component can be filtered out due to the symmetrical arrangement of the sensors W11 to W14.

Hierzu zeigt die Fig. 4 eine Wheatstone-Brücke 70, in der phasenrichtig die einzelnen Wheatstone-Brücken der vier Winkelsensoren 20 W11 bis W14 parallel geschaltet sind. Zur Ermittlung der Sinuskomponente werden beispielsweise die Sinusbrücke des Winkelsensors W11, die negative Cosinusbrücke des Winkelsensors W12, die negative Sinusbrücke des Winkelsensors W13 und die Cosinusbrücke des Winkelsensors W14 parallel geschaltet. Diese sind somit phasenrichtig parallel miteinander verschaltet und eine Störung, die sich gleichsam in all diesen Brücken widerspiegelt, kann kompensiert werden. In ähnlicher Weise sind für die Cosinusbrücke die einzelnen Sinus- bzw. Cosinusmessbrücken der einzelnen Sensoren 20 parallel geschaltet. Die Cosinusbrücke des Sensors W11 ist parallel zur Sinusbrücke des Sensors W12, der negativen Cosinusbrücke des Sensors W13 und der negativen Sinusbrücke des Sensors W14 geschaltet, um einen gemittelten Cosinuswert auszugeben. Durch Parallelschaltung und Hartverdrahtung der einzelnen Brücken der Winkelsensoren 20, die phasenrichtig miteinander kombiniert sind, lässt sich die Störung des Störmagnetfelds kompensieren. Die Sinus- und Cosinusbrücken der vier Sensoren 20 sind somit phasenrichtig miteinander verdrahtet und führen eine Signalmitteilung durch. Der Abstand das zwischen der Winkelsensoreinrichtung 50 und der Magnetfelderzeugungseinrichtung 16 kann beispielsweise zwischen 1 mm bis 3 mm betragen, wobei der Durchmesser dm des Permanentmagneten etwa 6 mm und die Höhe hM des Dipolmagneten etwa 2,5 mm betragen kann. Es ist denkbar, nur zwei oder mehr als vier Winkelsensoren einzusetzen, um eine verbesserte Mittlung zu erreichen, dabei müssen die Phasen entsprechend berücksichtigt werden, oder es muss eine nachträgliche Mittlung mithilfe von Verzögerungsgebern eingefügt werden. Auch können die sensitiven Ebenen der Winkelsensoren rechtwinklig zur Drehachse 12 ausgerichtet sein. Es ist keine elektronische Bearbeitung der Signale erforderlich, um die Störfelder zu unterdrücken, und es kann zumindest ein Faktor 2 an Unterdrückung des Störfelds erreicht werden.The Fig. 4 a Wheatstone bridge 70 in which the individual Wheatstone bridges of the four angle sensors 20 W11 to W14 are connected in parallel with the correct phase. To determine the sine component, for example, the sine bridge of the angle sensor W11, the negative cosine bridge of the angle sensor W12, the negative sine bridge of the angle sensor W13 and the cosine bridge of the angle sensor W14 are connected in parallel. These are thus connected in parallel with one another in the correct phase and a disturbance, which is reflected in all these bridges, can be compensated. In a similar way, the individual sine and cosine measuring bridges of the individual sensors 20 are connected in parallel for the cosine bridge. The cosine bridge of sensor W11 is connected in parallel to the sine bridge of sensor W12, the negative cosine bridge of sensor W13 and the negative sine bridge of sensor W14 in order to output an averaged cosine value. By connecting in parallel and hard wiring the individual bridges of the angle sensors 20, which are in phase with each other are combined, the disturbance of the interfering magnetic field can be compensated. The sine and cosine bridges of the four sensors 20 are thus wired to one another in the correct phase and carry out a signal message. The distance d as between the angle sensor device 50 and the magnetic field generating device 16 can for example be between 1 mm and 3 mm, the diameter d m of the permanent magnet being about 6 mm and the height h M of the dipole magnet being about 2.5 mm. It is conceivable to use only two or more than four angle sensors in order to achieve improved averaging, the phases must be taken into account accordingly, or a subsequent averaging with the aid of delay transmitters must be inserted. The sensitive planes of the angle sensors can also be aligned at right angles to the axis of rotation 12. No electronic processing of the signals is required in order to suppress the interference fields, and at least a factor of 2 can be achieved in the suppression of the interference field.

In den Figs. 5a und 5b sind ein weiteres Ausführungsbeispiel 32 einer Winkelsensorvorrichtung dargestellt. Die Ausführung der Fig. 5a entspricht grundsätzlich der Ausführung nach Fig. 3, jedoch wird als Magnetfelderzeugungseinheit 16 ein Quadropolmagnet 14 eingesetzt, der vier Pole 18 umfasst, die abwechselnd polarisiert sind. Hierdurch ist es möglich, eine Abweichung der Drehachse in X- oder Y-Richtung zu erfassen, d. h. eine radiale Abweichung zu erfassen, und somit Unwuchten oder einen verschobenen axialen Verlauf der Drehachse 12 zu detektieren. Dies äußert sich durch eine Phasendifferenz bei der Winkelerfassung der einzelnen Sensoren, wobei allerdings nur eine Erfassung bis 180° möglich ist.
Die Fig. 5a zeigt schematisch eine perspektivische Darstellung der Winkelsensorvorrichtung 32, während Fig. 5b eine Draufsicht darstellt. Hiermit ist eine Zustandsüberwachung der Welle 12 möglich, wobei bei einem wandernden Drehpunkt beispielsweise die Phasendifferenzen zwischen den einzelnen Sensoren sich ändern. Die Ausgangssignale der einzelnen Sensoren können hardwaremäßig miteinander verdrahtet werden, wie dies beispielsweise in der Fig. 4 dargestellt ist. Sie können aber auch einzeln aufbereitet und verarbeitet werden, zum Beispiel durch eine Rechnerlogik einer Winkelberechnungseinrichtung. Eine Zustandsüberwachung der Rotorlage ist möglich, da eine geringfügige Änderung der Drehachsenlage einer Phasendifferenz der Winkelsignale zur Folge hat.
In the Figs. 5a and 5b a further embodiment 32 of an angle sensor device is shown. The execution of the Figure 5a basically corresponds to the execution according to Fig. 3 However, a quadrupole magnet 14 is used as the magnetic field generating unit 16 which comprises four poles 18 which are alternately polarized. This makes it possible to detect a deviation of the axis of rotation in the X or Y direction, ie to detect a radial deviation, and thus to detect imbalances or a shifted axial profile of the axis of rotation 12. This is expressed by a phase difference in the angle detection of the individual sensors, although detection of up to 180 ° is only possible.
The Figure 5a shows schematically a perspective illustration of the angle sensor device 32, while Figure 5b represents a plan view. This enables the condition of the shaft 12 to be monitored, with the phase differences between the individual sensors changing, for example, when the pivot point is moving. The output signals of the individual sensors can be wired to one another in terms of hardware, for example in the Fig. 4 is shown. But they can also be prepared and processed individually, for example by a computer logic of an angle calculation device. The status of the rotor position can be monitored, since a slight change in the position of the axis of rotation results in a phase difference in the angle signals.

In den Fig. 6a und 6b ist eine weitere Ausführungsform 34 einer erfindungsgemäßen Winkelsensoreinrichtung dargestellt. Die Winkelsensorvorrichtung 34 umfasst eine Magnetfelderzeugungseinrichtung 16, mit einem scheibenförmigen Dipolmagneten 10 mit zwei Polen 18. Der Dipolmagnet 10 ist am axialen Ende einer Rotationsachse 12 angeordnet, weist einen Durchmesser dM und eine Höhe hM auf. In axialer Verlängerung der Rotationsachse 12 ist in einem Abstand das1 ein erster Winkelmesssensor 20 W1 und in einem weiteren Abstand das2 ein zweiter Winkelsensor 20 W2 der Magnetfelderzeugungseinrichtung 54 angeordnet. Beide Winkelsensoren 20 erfassen das drehende Nutzfeld mit unterschiedlichen Amplituden. Ein Störmagnetfeld wirkt gleichmäßig auf die beiden Winkelsensoren W1 und W2 20 ein, so dass sich eine Winkeländerung der beiden Winkelsensoren in unterschiedlicher Richtung ergeben wird, da die Größe des Nutzfeldes der beiden Winkelsensoren unterschiedlich ist. Diese Auswirkung ist in der Fig. 6b dargestellt, wobei ein Störmagnetfeld Bext in der Ebene der Winkelsensoren wirkt, deren messaktive Ebene rechtwinklig zur Drehachse 12 ausgerichtet ist. Abgewinkelt hierzu steht das Nutzmagnetfeld BM. Der Messwinkel, der von dem axial näheren Winkelsensor W1 aufgenommen wird, liegt näher bei der exakten Ausrichtung des Nutzmagnetfelds BM, während der Winkel des axial weiter entfernten Winkelsensors 20 W2 stärker durch das externe Magnetfeld Bext beeinflusst wird. Da die beiden Winkelsensoren 20 mit unterschiedlichem axialem Abstand zentrisch über der Rotationsachse angeordnet sind, sinkt mit dem Abstand die Magnetfeldamplitude des Nutzfeldes, während das Störfeld auf beide Sensoren gleichmäßig einwirkt. Beispielsweise kann bei einem typischen Permanentmessmagneten einer Magnetfelderzeugungseinrichtung der Abstand das1 3 mm und der Abstand das2 1 mm oder weniger betragen. Der Abstand das1 kann zwischen 0,5 mm bis 3 mm betragen. Die genannten Abstände, die Abstandsverhältnisse beschreiben sollen, können je nach Stärke des verwendeten Permanentmessmagneten variieren, wobei selbstverständliche größere Abstände möglich sind. Je höher der Abstand zur Magnetfelderzeugungseinrichtung 16 ist, umso stärker wird der Feldwinkel durch das Störfeld beeinflusst. Der Gradient, d. h. die Abweichung der Sensorsignale des Winkelsensors 20 W1 zum Winkelsensor 20 W2 ist umso stärker, je größer das Störfeld ist. Diese Abweichung kann zur Korrektur des Messsignals verwendet werden und der Einfluss des Störfeldes kann dadurch unterdrückt werden. Die Vorrichtung kann sowohl bei Winkelsensoren im engeren Sinne als auch bei einer Kombination von um 90° gedrehten Feldsensoren zur Bestimmung der Feldkomponenten in X- und Y-Richtung angewendet werden.In the Figures 6a and 6b a further embodiment 34 of an angle sensor device according to the invention is shown. The angle sensor device 34 comprises a magnetic field generating device 16 with a disk-shaped dipole magnet 10 with two poles 18. The dipole magnet 10 is arranged at the axial end of an axis of rotation 12, has a diameter d M and a height h M. In the axial extension of the axis of rotation 12, a first angle measuring sensor 20 W1 is arranged at a distance d as1 and a second angle sensor 20 W2 of the magnetic field generating device 54 is arranged at a further distance d as2. Both angle sensors 20 detect the rotating useful field with different amplitudes. An interfering magnetic field acts uniformly on the two angle sensors W1 and W2 20, so that the angle of the two angle sensors will change in different directions, since the size of the useful field of the two angle sensors is different. This impact is in the Figure 6b shown, wherein an interference magnetic field B ext acts in the plane of the angle sensors, the measuring active plane is oriented at right angles to the axis of rotation 12. The useful magnetic field B M is angled to this. The measurement angle recorded by the axially closer angle sensor W1 is closer to the exact alignment of the useful magnetic field B M , while the angle of the axially further away angle sensor 20 W2 is more strongly influenced by the external magnetic field B ext . Since the two angle sensors 20 are arranged centrally above the axis of rotation at different axial distances, the magnetic field amplitude of the useful field decreases with the distance, while the interference field acts uniformly on both sensors. For example, in a typical permanent measuring magnet, a magnetic field generating device the distance d as1 is 3 mm and the distance d as2 is 1 mm or less. The distance d as1 can be between 0.5 mm and 3 mm. The specified distances, which are intended to describe the distance relationships, can vary depending on the strength of the permanent measuring magnet used, although larger distances are of course possible. The greater the distance from the magnetic field generating device 16, the more strongly the field angle is influenced by the interference field. The gradient, that is to say the deviation of the sensor signals of the angle sensor 20 W1 from the angle sensor 20 W2, is stronger the greater the interference field. This deviation can be used to correct the measurement signal and the influence of the interference field can thereby be suppressed. The device can be used both with angle sensors in the narrower sense and with a combination of field sensors rotated by 90 ° to determine the field components in the X and Y directions.

Beispielsweise erfasst der axial nähere Winkelsensor W1 das Nutzfeld mit einem Winkel ϕ1. Der Sensor W2 weist einen größeren Abstand auf und erfasst einen Winkel ϕ2. Sofern kein Störmagnetfeld vorhanden ist, gilt ϕ1 = ϕ2. Liegt ein homogenes Störmagnetfeld vor, so ergeben sich zwei Winkelfehler ϑ1 und ϑ2, wobei gilt ϑ1 < ϑ2. Dies resultiert daher, dass das einwirkende Nutzfeld auf die beiden Winkelsensoren W1 und W2 unterschiedlich stark ist. Für eine anfängliche Kalibrierung bzw. Eichung sollte ϑ1 und ϑ2 bekannt sein, wobei ϑ1 auf jeden Fall bestimmt werden muss. Eine Kalibrierung bzw. Ermittlung eines Korrekturfaktors kann dadurch stattfinden, dass bei mehreren Größen von Nutzfeldern und bei mehreren Größen von Störfeldern die Winkel ϕ1 und ϕ2 sowie ϑ1 bestimmt werden. Daraus lässt sich eine Winkeldifferenz δ = ϕ1-ϕ2 bestimmen und ein Korrekturfaktor K = ϑ1/δ = ϑ1/(ϕ1-ϕ2) für alle eingesetzten Nutzfelder und in diesem Fall bekannten Störfelder kann errechnet werden. Hierdurch ergibt sich ein Korrekturfaktor bzw. eine Kennlinie oder ein Kennfeld von Korrekturfaktoren für unterschiedliche Nutzfelder und unterschiedliche Störfelder. Bei einer Messung können die beiden Winkel ϕ1 und ϕ2 bestimmt werden und dann eine Korrektur des wahren Winkels ϕ = ϕ1-K·(ϕ1- ϕ2) erreicht werden. Es ist weiterhin denkbar, einen zusätzlichen Magnetfeld- oder Winkelsensor vorzusehen, der außerhalb der Winkelsensoreinrichtung angeordnet ist, und der Stärke und Richtung des Störmagnetfeldes zur Bestimmung des Korrekturfaktors K erfasst. Damit lässt sich effektiv ein Störfeld kompensieren.For example, the axially closer angle sensor W1 detects the useful field with an angle ϕ1. The sensor W2 has a greater distance and detects an angle ϕ2. If there is no interfering magnetic field, ϕ1 = ϕ2 applies. If there is a homogeneous interfering magnetic field, there are two angular errors ϑ1 and ,2, where ϑ1 <ϑ2 applies. This results from the fact that the effective field acting on the two angle sensors W1 and W2 is of different strength. For an initial calibration or verification, ϑ1 and ϑ2 should be known, where ϑ1 must be determined in any case. A calibration or determination of a correction factor can take place in that with several sizes of useful fields and with several sizes of interference fields the angles ϕ1 and ϕ2 as well as werden1 are determined. From this, an angle difference δ = ϕ1-ϕ2 can be determined and a correction factor K = ϑ1 / δ = ϑ1 / (ϕ1-ϕ2) for all used fields and, in this case, known interference fields can be calculated. This results in a correction factor or a characteristic curve or a characteristic map of correction factors for different useful fields and different interference fields. During a measurement, the two angles ϕ1 and ϕ2 can be determined and then a correction of the true angle ϕ = ϕ1-K · (ϕ1- ϕ2) can be achieved become. It is also conceivable to provide an additional magnetic field or angle sensor which is arranged outside the angle sensor device and which detects the strength and direction of the interfering magnetic field in order to determine the correction factor K. In this way, an interference field can be effectively compensated.

In der Fig. 7 ist ein weiteres Ausführungsbeispiel 36 einer Winkelsensorvorrichtung dargestellt. Diese entspricht im Wesentlichen einer Kombination des in Fig. 6a dargestellten Ausführungsbeispiels 34 und dem in Fig. 5a dargestellten Ausführungsbeispiel 32. Die Winkelsensoren 20 der Winkelsensoreinrichtung 56 sind sowohl radial beabstandet als auch axial beabstandet und umfassen in einer ersten axial näheren Gruppe W11 bis W14 vier Winkelsensoren 20, die jeweils um 90° radial versetzt um die Rotationsachse 12 angeordnet sind, und die beispielsweise hart verdrahtet einen ersten Winkel ϕ1 ausgeben können. In einem axialen Abstand das2 hiervon findet sich eine weitere Gruppe von Winkelsensoren 20 W21 bis W24. In dieser Anordnung können sowohl durch die radiale Versetzung Störfelder unterdrückt werden, als auch durch die axiale Versetzung mithilfe eines Korrekturfaktors ein weiterer Einfluss von Störfeldern unterdrückt werden, so dass eine verbesserte Störfeldkompensation ermöglicht wird.In the Fig. 7 a further embodiment 36 of an angle sensor device is shown. This essentially corresponds to a combination of the in Figure 6a illustrated embodiment 34 and in Figure 5a illustrated embodiment 32. The angle sensors 20 of the angle sensor device 56 are both radially spaced and axially spaced and comprise in a first axially closer group W11 to W14 four angle sensors 20, which are each arranged radially offset by 90 ° about the axis of rotation 12, and which, for example hardwired can output a first angle ϕ1. Another group of angle sensors 20 W21 to W24 is located at an axial distance d as2 therefrom. In this arrangement, interference fields can be suppressed both by the radial offset and a further influence of interference fields can be suppressed by the axial offset with the aid of a correction factor, so that an improved interference field compensation is made possible.

Die Fig. 8 zeigt ein weiteres Ausführungsbeispiel 38 einer Winkelsensorvorrichtung. Hierbei ist in einem axialen Abstand das von der Magnetfelderzeugungseinrichtung 16 eine Winkelsensoreinrichtung 58 angeordnet, die zwei Winkelsensoren 20 W1 und W2 umfasst. Beide Winkelsensoren 20 sind auf einem gemeinsamen Chipsubstrat angeordnet und umfassen jeweils eine Sinusbrücke und eine Cosinusbrücke aus magnetoresistiven Widerstandselementen. Die Widerstandselemente 24 des ersten Winkelsensors 20 W1 und des zweiten Winkelsensors 20 W2 sind in einer Ebene rechtwinklig zur Rotationsachse 12 angeordnet. Die Widerstandselemente 24 sind jeweils entlang der Kanten eines Quadrates bzw. eines Kreises um die Rotationsachse 12 angeordnet, wobei die Widerstandselemente 24 des ersten Winkelsensors 20 W1 axial näher an der Rotationsachse 12 als die Widerstandselemente 24 des zweiten Winkelsensors 20 W2 angeordnet sind. Die Anordnung der einzelnen Widerstandselemente 24 ist in der Fig. 9a dargestellt. Die Widerstandselemente 24 C1', S1', S2' und C2' des ersten Winkelsensors 20 W1 finden sich in einem nahen Abstand dss1 zur Rotationsachse 12, und die Widerstandselemente 24 des zweiten Winkelsensors W2 S1, C1, C2 und S2 befinden sich in einem größeren Abstand dss2 zur Rotationsachse.The Fig. 8 shows a further embodiment 38 of an angle sensor device. In this case, an angle sensor device 58, which comprises two angle sensors 20 W1 and W2, is arranged at an axial distance d as from the magnetic field generating device 16. Both angle sensors 20 are arranged on a common chip substrate and each include a sine bridge and a cosine bridge made of magnetoresistive resistance elements. The resistance elements 24 of the first angle sensor 20 W1 and of the second angle sensor 20 W2 are arranged in a plane at right angles to the axis of rotation 12. The resistance elements 24 are each arranged along the edges of a square or a circle around the axis of rotation 12, the Resistance elements 24 of the first angle sensor 20 W1 are arranged axially closer to the axis of rotation 12 than the resistance elements 24 of the second angle sensor 20 W2. The arrangement of the individual resistance elements 24 is shown in FIG Figure 9a shown. The resistance elements 24 C1 ', S1', S2 'and C2' of the first angle sensor 20 W1 are located at a close distance d ss1 to the axis of rotation 12, and the resistance elements 24 of the second angle sensor W2 S1, C1, C2 and S2 are located in one greater distance d ss2 to the axis of rotation.

In der Fig. 9b ist eine Wheatstone-Brücke 72 dargestellt, in der die einzelnen Widerstandselemente 24 der beiden Winkelsensoren 20 W1, W2 derart hart miteinander verschaltet sind, dass die Winkelsensoren 20 sich entgegengesetzt zueinander bezüglich des Nutzmagnetfelds verhalten. So sind in Reihe in einem Zweig der Sinusbrücke die Elemente S1 und S2' sowie die Elemente S1' und S2 geschaltet und im gegenüberliegenden Zweig die Elemente S1', S2 und S1 und S2' geschaltet. In der Cosinusbrücke ist die Anordnung ebenso gewählt. Hierdurch kompensieren sich teilweise die Nutzsignale der beiden Winkelsensoren, wobei das Grundprinzip darauf beruht, dass der eine Winkelsensor von einem stärkeren Nutzfeld als der andere Winkelsensor durchsetzt wird. Insofern gibt die Gesamtschaltung 72 der Fig. 9b einen gedämpften Sinus- und einen gedämpften Cosinuswert aus. Ein Störfeld, das auf alle Widerstandselemente 24 gleichsam einwirkt, würde komplett kompensiert werden, da die jeweils gleichgerichteten Widerstandselemente 24 der beiden Winkelsensoren 20 W1, W2 sich praktisch vollständig gegenseitig kompensieren. Dadurch, dass aufgrund der unterschiedlichen radialen Abstände dss1, dss2 der Widerstandselemente 24 der Messbrücken 72 des ersten Winkelsensors W1 zum zweiten Winkelsensor 20 W2, die achsnäher liegenden Widerstandselemente 24 stärker vom Nutzfeld als die achsferneren Widerstandselemente 24 durchsetzt werden, lässt sich ein Winkelwert bestimmen. In der Regel wirkt das Nutzfeld auf die radial innenliegenden Widerstandselementen 24 des Winkelsensors W1 stärker als auf die radial außen liegenden Widerstandselemente 24 des Winkelsensors W2, so dass der dominante Anteil des Nutzwinkelsignals von dem Winkelsensor W1 generiert wird. Der Winkelsensor W2 kompensiert in abgeschwächtem Maße dieses Nutzsignal, und kompensiert ein externes Störsignal praktisch vollständig. Wie in Fig. 9b dargestellt ist, kann die Schaltung hardwaremäßig verdrahtet werden, so dass ein Gesamtwinkelwert herausgegeben werden kann, und keine nummerische Nachberechnung notwendig ist. Insbesondere eignet sich dieses Ausführungsbeispiel für die Anwendung in GMR- oder TMR-Widerstandselemente 24, da diese richtungsabhängig gepinnt werden können und somit eine 360° Erfassung ermöglichen, und eine hohe Empfindlichkeit aufweisen.In the Figure 9b a Wheatstone bridge 72 is shown in which the individual resistance elements 24 of the two angle sensors 20 W1, W2 are interconnected so hard that the angle sensors 20 behave opposite to one another with respect to the useful magnetic field. The elements S1 and S2 'and the elements S1' and S2 are connected in series in one branch of the sine bridge and the elements S1 ', S2 and S1 and S2' are connected in the opposite branch. The arrangement is also chosen in the cosine bridge. This partially compensates for the useful signals of the two angle sensors, the basic principle being based on the fact that one angle sensor is penetrated by a stronger useful field than the other angle sensor. In this respect, the overall circuit 72 is the Figure 9b a damped sine and a damped cosine value. An interference field, which acts as it were on all resistance elements 24, would be completely compensated, since the respective rectified resistance elements 24 of the two angle sensors 20 W1, W2 almost completely compensate one another. Because of the different radial distances d ss1 , d ss2 of the resistance elements 24 of the measuring bridges 72 of the first angle sensor W1 to the second angle sensor 20 W2, the resistance elements 24 closer to the axis are penetrated more strongly by the useful field than the resistance elements 24 further away from the axis, an angle value can be determined . As a rule, the useful field acts more strongly on the radially inner resistance elements 24 of the angle sensor W1 than on the radially outer resistance elements 24 of the angle sensor W2, so that the dominant portion of the useful angle signal is generated by the angle sensor W1. The angle sensor W2 compensates for this useful signal to a lesser extent and virtually completely compensates for an external interference signal. As in Figure 9b is shown, the circuit can be wired in terms of hardware, so that a total angle value can be output, and no numerical recalculation is necessary. This exemplary embodiment is particularly suitable for use in GMR or TMR resistance elements 24, since these can be pinned in a direction-dependent manner and thus enable 360 ° detection and have a high level of sensitivity.

In der Fig. 10 ist ein weiteres Ausführungsbeispiel 40 dargestellt, das sich grundsätzlich aus einer Kombination der in Fig. 8 dargestellten Ausführungsform und der in Fig. 6a dargestellten Ausführungsform ergibt. Somit ist sowohl eine radiale Versetzung der Widerstandselemente 24 zweier Gruppen von zwei Winkelsensoren W11, W12 und W21, W22 eingesetzt, als auch durch die Gradientenausnutzung verschiedener axialer Abstände der Abstände das1 und das2 der beiden Gruppen W11, W12 und W21, W22 und die Berücksichtigung eines Korrekturfaktors eine weitere Störfeldunterdrückung möglich. Insbesondere dreidimensionale Störfelder, die sowohl in axialer als auch in radialer Richtung auf die Winkelerfassungseinheit 60 einwirken, können hierdurch effektiv unterdrückt werden.In the Fig. 10 a further embodiment 40 is shown, which basically consists of a combination of the in Fig. 8 embodiment shown and in Figure 6a illustrated embodiment results. Thus, a radial offset of the resistance elements 24 of two groups of two angle sensors W11, W12 and W21, W22 is used, as well as the gradient utilization of different axial distances of the distances d as1 and d as2 of the two groups W11, W12 and W21, W22 and the Taking a correction factor into account, further interference field suppression is possible. In particular, three-dimensional interference fields which act on the angle detection unit 60 both in the axial and in the radial direction can be effectively suppressed as a result.

Schließlich zeigt Fig. 11 ein Ausführungsbeispiel einer Winkelsensoreinrichtung, bei denen Winkelwerte einzelner Winkelsensoren 20 einer Winkelsensoreinrichtung 50, 52, 54, 56, 58 oder 60 nach den Ausführungsformen 30, 32, 34, 36, 38 oder 40 einzelerfasst werden. Die Winkelberechnungseinrichtung 26 umfasst einen Kennwertspeicher 44, der verschiedene Kennwerte K für verschiedene Nutzfeldgrößen und Störfeldgrößen umfasst, sowie eine Berechnungseinheit 46, die einen störfeldkompensierten Winkel ϕ als Funktion von zwei oder mehreren gemessenen Winkeln der in der Winkelsensoreinrichtung 50, 52, 54, 56, 58 oder 60 umfassten Winkelsensoren 20 erfasst werden, bestimmt. Die Winkelsensoren 20 oder Gruppen von Winkelsensoren 20 sind in verschiedenen axialen Abständen zur Magnetfelderzeugungseinrichtung 16 angeordnet, wobei ein Kennfeld K, das aus dem Kennwertspeicher 44 ausgelesen werden kann, zur Korrektur des Störfeldeinflusses herangezogen wird. Schließlich wird ein störfeldkompensierter Winkelwert ϕ66 ausgegeben.Finally shows Fig. 11 an embodiment of an angle sensor device in which angle values of individual angle sensors 20 of an angle sensor device 50, 52, 54, 56, 58 or 60 according to the embodiments 30, 32, 34, 36, 38 or 40 are recorded individually. The angle calculation device 26 comprises a characteristic value memory 44, which includes various characteristic values K for different useful field sizes and interference field sizes, as well as a calculation unit 46 which calculates an interference field-compensated angle ϕ as a function of two or more measured angles in the angle sensor device 50, 52, 54, 56, 58 or 60 included angle sensors 20 are detected. The angle sensors 20 or groups of angle sensors 20 are arranged at different axial distances from the magnetic field generating device 16, a characteristic map K, which can be read from the characteristic value memory 44, being used to correct the interference field influence. Finally, an interference field-compensated angle value ϕ66 is output.

Die Erfindung schlägt mehrere Ausführungsbeispiele von Winkelsensorvorrichtungen 30, 32, 34, 36, 38 oder 40 vor, bei denen zwei oder mehrere Winkelsensoren 20 in einer Winkelsensoreinrichtung 50, 52, 54, 56, 58 oder 60 eingesetzt werden, die sowohl axial als auch radial versetzt um eine Rotationsachse 12 in der Nähe einer Magnetfelderzeugungseinrichtung 16 angeordnet sind. Auf Basis eines Gradienten der Winkelmessung, d. h. unterschiedliche Winkelerfassungen der einzelnen Winkelsensoren 20, kann ein Einfluss eines Störfelds bestimmt und kompensiert werden. Dabei sind die geometrischen Verhältnisse als auch Kompensationseffekte aufgrund verschiedener räumlicher Anordnungen nutzbar. Die Störfeldkompensation kann zum einen hardwareseitig fest verdrahtet vorgesehen sein, andererseits mittels einer Berechnungseinheit nachträglich durchgeführt werden. Mithilfe einer erfindungsgemäßen Winkelsensorvorrichtung 30, 32, 34, 36, 38 oder 40 lassen sich effektiv Störfelder auch im Bereich von bis zu 3.000 A/m Feldstärke kompensieren, so dass die neue ISO-11452-8:2015 eingehalten werden kann.The invention proposes several embodiments of angle sensor devices 30, 32, 34, 36, 38 or 40, in which two or more angle sensors 20 are used in an angle sensor device 50, 52, 54, 56, 58 or 60, both axially and radially are arranged offset about an axis of rotation 12 in the vicinity of a magnetic field generating device 16. On the basis of a gradient of the angle measurement, ie different angle measurements of the individual angle sensors 20, an influence of an interference field can be determined and compensated. The geometric relationships as well as compensation effects due to different spatial arrangements can be used. The interference field compensation can on the one hand be permanently wired on the hardware side, on the other hand it can be carried out subsequently by means of a calculation unit. With the help of an angle sensor device 30, 32, 34, 36, 38 or 40 according to the invention, interference fields can also be effectively compensated in the range of up to 3,000 A / m field strength, so that the new ISO-11452-8: 2015 can be complied with.

BezugszeichenlisteList of reference symbols

1010
Permanentmagnet, DipolmagnetPermanent magnet, dipole magnet
1212th
RotationsachseAxis of rotation
1414th
Permanentmagnet, QuadropolmagnetPermanent magnet, quadrupole magnet
1616
MagnetfelderzeugungseinrichtungMagnetic field generating device
1818th
MagnetpolMagnetic pole
2020th
WinkelsensorAngle sensor
2222nd
Wheatstone-Messbrücke eines WinkelsensorsWheatstone measuring bridge of an angle sensor
2424
magnetoresistives Widerstandselementmagnetoresistive resistance element
2626th
WinkelberechnungseinrichtungAngle calculator
3030th
Erstes Ausführungsbeispiel einer WinkelsensorvorrichtungFirst embodiment of an angle sensor device
3232
Zweites Ausführungsbeispiel einer WinkelsensorvorrichtungSecond embodiment of an angle sensor device
3434
Drittes Ausführungsbeispiel einer WinkelsensorvorrichtungThird embodiment of an angle sensor device
3636
Viertes Ausführungsbeispiel einer WinkelsensorvorrichtungFourth embodiment of an angle sensor device
3838
Fünftes Ausführungsbeispiel einer WinkelsensorvorrichtungFifth embodiment of an angle sensor device
4040
Sechstes Ausführungsbeispiel einer WinkelsensorvorrichtungSixth embodiment of an angle sensor device
4444
Kennwert-SpeicherCharacteristic value memory
4646
BerechnungseinheitCalculation unit
5050
Winkelsensoreinrichtung des ersten AusführungsbeispielsAngle sensor device of the first embodiment
5252
Winkelsensoreinrichtung des zweiten AusführungsbeispielsAngle sensor device of the second embodiment
5454
Winkelsensoreinrichtung des dritten AusführungsbeispielsAngle sensor device of the third embodiment
5656
Winkelsensoreinrichtung des vierten AusführungsbeispielsAngle sensor device of the fourth embodiment
5858
Winkelsensoreinrichtung des fünften AusführungsbeispielsAngle sensor device of the fifth embodiment
6060
Winkelsensoreinrichtung des sechsten AusführungsbeispielsAngle sensor device of the sixth embodiment
6464
Sensorsignale oder Winkelwert eines WinkelsensorsSensor signals or angle value from an angle sensor
6666
Störfeldkompensierter WinkelwertInterference field compensated angle value
7070
Wheatstone-Brücke des Winkelsensors des ersten AusführungsbeispielsWheatstone bridge of the angle sensor of the first embodiment
7272
Wheatstone-Brücke des Winkelsensors des fünften AusführungsbeispielsWheatstone bridge of the angle sensor of the fifth embodiment
100100
Winkelsensorvorrichtung aus dem Stand der TechnikAngle sensor device from the prior art
102102
Winkelsensoreinrichtung des Stands der TechnikPrior art angle sensor device

Claims (14)

  1. Interference field-compensated angle sensor device (30, 32, 34, 36, 38, 40) for magnetic field-based determination of a rotation angle of a rotation axis (12) comprising a magnetic field generating unit, in particular a permanent magnet (10, 14), and an angle sensor unit (50, 52, 54, 56, 58, 60), with a magnetic field of the magnetic field generating unit (16) rotating relative to the angle sensor unit (50, 52, 54, 56, 58, 60), and the angle sensor unit (50, 52, 54, 56, 58, 60) comprising at least two angle sensors (20) for sensing different magnetic field areas of the magnetic field of the magnetic field generating unit, characterized in that the angle sensors (20) are arranged axially offset at different distances along the rotation axis (12) and/or the angle sensors (20) are arranged radially offset at different distances to the rotation axis (12) for sensing different amplitudes of the magnetic field, such that an influence of an interference field is compensatable by a gradient formation of the angle values or sensor signals (64) of the angle sensors (20).
  2. Angle sensor device (30, 32, 34, 36, 38, 40) according to claim 1, characterized in that the magnetic field generating unit (16) is designed as a permanent magnet (10, 14), in particular as a dipole magnet (10), which is arranged non-rotatably on an end face of the rotation axis (12), and the angle sensor unit (50, 52, 54, 56, 58, 60) is arranged in an axial extension of the rotation axis (12) opposite the end face of the rotation axis (12).
  3. Angle sensor device (30, 32, 34, 36, 38, 40) according to one of the aforementioned claims, characterized in that the angle sensors are xMR angle sensors (20), in particular AMR, TMR or GMR sensors.
  4. Angle sensor device (30, 32, 34, 36, 38, 40) according to one of the aforementioned claims, characterized in that each angle sensor (20) comprises a Wheatstone bridge (22, 70, 72) of magnetoresistive resistor elements (24), the Wheatstone bridges (22, 70, 72) of the different angle sensors (20) being hardwired to one another and outputting an interference field-compensated angle sensor value (66).
  5. Angle sensor device (30, 32, 34, 36, 38, 40) according to one of the aforementioned claims 1 to 3, characterized in that an angle computation unit (26) is comprised that receives angle values (64) or sensor signals of each angle sensor (20) of the angle sensor unit (50, 52, 54, 56, 58, 60) and processes them to calculate an interference field-compensated angle value (66).
  6. Angle sensor device (30, 32, 34, 36, 38, 40) according to one of the aforementioned claims, characterized in that the angle sensors (20) of the angle sensor unit (50, 52, 54, 56, 58, 60) are arranged axis-centric.
  7. Angle sensor device (30, 32, 34, 36, 38, 40) according to claim 6, characterized in that each angle sensor (20) comprises a Wheatstone bridge (22, 70, 72) of magnetoresistive resistor elements (24), the respective radial distances between the magnetoresistive resistor elements (24) of the Wheatstone bridge (22, 70, 72) of each angle sensor (20) from the rotation axis (12) differing.
  8. Angle sensor device (30, 32, 34, 36, 38, 40) according to claim 7, characterized in that die radially offset magnetoresistive resistor elements (24) of the angle sensors (20) are connected in opposite directions to form a self-compensating Wheatstone bridge (22, 70, 72).
  9. Angle sensor device (30, 32, 34, 36, 38, 40) according to claim 8, characterized in that the magnetic field generating unit (16) comprises a permanent magnet (10, 14) with the same number of poles as angle sensors (20), in particular a quadrupole magnet (14).
  10. Angle sensor device (30, 32, 34, 36, 38, 40) according to one of the aforementioned claims, characterized in that the axial positions of two groups of angle sensors (20) differ.
  11. Method for interference field-compensated angle determination of a rotation axis (12) using an angle sensor device (30, 32, 34, 36, 38, 40) according to one of the aforementioned claims, characterized in that an angle divergence between the angle sensors (20) of the angle sensor unit (50, 52, 54, 56, 58, 60) is used for compensation of an external interference field.
  12. Method according to claim 11, characterized in that a correction factor or a characteristic curve or a characteristic field of correction factors is used for compensation of an external interference field.
  13. Method according to claim 12, characterized in that the correction factor or the characteristic curve or the characteristic field is determined during manufacture of the angle sensor device (30, 32, 34, 36, 38, 40) in a calibration step using various magnetic interference fields and useful fields.
  14. Method according to one of claims 12 or 13, characterized in that the correction factor takes into account an influence of an axial distance of the angle sensors (20) and / or a radial distance of magnetoresistive resistor elements (24) of the Wheatstone bridge (22, 70, 72) of the angle sensors (20).
EP18723407.5A 2017-03-28 2018-03-15 Interference field-compensated angle sensor device and method for interference field-compensated angle determination Active EP3601955B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017106655.1A DE102017106655A1 (en) 2017-03-28 2017-03-28 Interference field compensated angle sensor device and method for interference field compensated angle determination
PCT/EP2018/056533 WO2018177762A1 (en) 2017-03-28 2018-03-15 Interference field-compensated angle sensor device and method for interference field-compensated angle determination

Publications (2)

Publication Number Publication Date
EP3601955A1 EP3601955A1 (en) 2020-02-05
EP3601955B1 true EP3601955B1 (en) 2021-05-12

Family

ID=62143102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18723407.5A Active EP3601955B1 (en) 2017-03-28 2018-03-15 Interference field-compensated angle sensor device and method for interference field-compensated angle determination

Country Status (3)

Country Link
EP (1) EP3601955B1 (en)
DE (1) DE102017106655A1 (en)
WO (1) WO2018177762A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175353B2 (en) 2018-02-16 2021-11-16 Analog Devices International Unlimited Company Position sensor with compensation for magnet movement and related position sensing method
EP3570049B1 (en) * 2018-05-14 2023-07-05 ETS-Lindgren Inc. Field probe isotropic compensation using orthogonal scalar field components
DE102020105253A1 (en) * 2020-02-28 2021-09-02 Schaeffler Technologies AG & Co. KG Method for determining an angular position of a shaft in the presence of an interference field
DE102020105254A1 (en) * 2020-02-28 2021-09-02 Schaeffler Technologies AG & Co. KG Method for determining an angular position of a shaft
KR20220060105A (en) * 2020-11-04 2022-05-11 주식회사 해치텍 Contactless magnetic sensing system and sensing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916074B1 (en) 1997-05-29 2003-07-30 AMS International AG Magnetic rotation sensor
DE10130988A1 (en) * 2001-06-27 2003-01-16 Philips Corp Intellectual Pty Adjustment of a magnetoresistive angle sensor
DE102010004584A1 (en) 2009-12-30 2011-07-07 Ebinger, Klaus, 51149 detector probe
JP5062450B2 (en) * 2010-08-11 2012-10-31 Tdk株式会社 Rotating magnetic field sensor
DE102010040584B4 (en) * 2010-09-10 2023-05-04 Robert Bosch Gmbh Method and device for interfering field compensation of magnetic angle sensors
JP5177197B2 (en) * 2010-10-13 2013-04-03 Tdk株式会社 Rotating magnetic field sensor
DE102013205313A1 (en) * 2013-03-26 2014-10-02 Robert Bosch Gmbh External magnetic field-insensitive Hall sensor
DE102014109693A1 (en) * 2014-07-10 2016-01-14 Micronas Gmbh Apparatus and method for non-contact measurement of an angle
DE102016202378B4 (en) * 2016-02-17 2020-04-23 Continental Automotive Gmbh Arrangement for detecting the angular position of a rotatable component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2018177762A1 (en) 2018-10-04
DE102017106655A1 (en) 2018-10-04
EP3601955A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
EP3601955B1 (en) Interference field-compensated angle sensor device and method for interference field-compensated angle determination
DE112008003911B4 (en) Magnetic encoder and actuator
EP2603774B1 (en) Device comprising a torque sensor and a rotation angle sensor
EP2545342B1 (en) Sensor assembly and method for determining a magnetization direction of an encoder magnet
DE102018103341A1 (en) ANGLE SENSOR WITH DISTURBANCE SUPPRESSION
DE102016102927B4 (en) Sensor error detection
EP3417243B1 (en) Arrangement for detecting the angular position of a rotatable component
DE102014116844A1 (en) Non-axial magnetic field angle sensors
DE102015114608A1 (en) Off-axis sensor system
DE102017109972A1 (en) Non-rotating mounting of a wheel speed sensor using a differential magnetoresistive sensor
DE102018113821A1 (en) Angle sensor bridges including star-connected magnetoresistive elements
DE102016102929B4 (en) Sensor error detection
DE102019205250B4 (en) rotation phase detection system
EP3884239B1 (en) Angle sensor with multipole magnet for motor vehicle steering
DE102016212829A1 (en) ANGLE SWEEP IN AN EXTERNAL CONFIGURATION
DE102010032061A1 (en) Device for measuring a rotation angle and / or a torque
DE102017103877A1 (en) Magnetic sensor arrangement and magnetic detection method
DE102013224098A1 (en) Sensor arrangement for detecting angles of rotation on a rotating component in a vehicle
DE102019102152A1 (en) MAGNETIC FIELD TORQUE AND / OR ANGLE SENSOR
DE112016004970T5 (en) MAGNETISM DETECTION APPARATUS AND DETECTION DEVICE FOR A BODY THAT HAS A MOVING BODY
DE102018219146B4 (en) MAGNETIC FIELD SENSOR SYSTEM AND POSITION DETECTION METHODS
DE102014113374B4 (en) Magnetic position sensor and detection method
DE102019119664A1 (en) Scanning an angle of rotation
DE102017204623B4 (en) magnetic sensor
DE102020121463A1 (en) REDUNDANT HALL ANGLE MEASUREMENT IN ONE CHIP

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SENSITEC GMBH

INTG Intention to grant announced

Effective date: 20201103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005256

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1392475

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005256

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220315

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220315

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230414

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230331

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240229

Year of fee payment: 7

Ref country code: GB

Payment date: 20240322

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240320

Year of fee payment: 7