EP3594287A1 - Resin for thermoplastic polyurethane yarn using nano-silica, and method for manufacturing thermoplastic polyurethane yarn by using same - Google Patents

Resin for thermoplastic polyurethane yarn using nano-silica, and method for manufacturing thermoplastic polyurethane yarn by using same Download PDF

Info

Publication number
EP3594287A1
EP3594287A1 EP18764089.1A EP18764089A EP3594287A1 EP 3594287 A1 EP3594287 A1 EP 3594287A1 EP 18764089 A EP18764089 A EP 18764089A EP 3594287 A1 EP3594287 A1 EP 3594287A1
Authority
EP
European Patent Office
Prior art keywords
yarn
tpu
thermoplastic polyurethane
resin
nanosilica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18764089.1A
Other languages
German (de)
French (fr)
Other versions
EP3594287A4 (en
Inventor
Heedae Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3594287A1 publication Critical patent/EP3594287A1/en
Publication of EP3594287A4 publication Critical patent/EP3594287A4/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0895Manufacture of polymers by continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing thermoplastic polyurethane yarn using the resin and, more particularly, to a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing thermoplastic polyurethane yarn using the resin, where it is possible to fabricate TPU thread continuously without a thread breakage (that is, a situation that the TPU thread breaks or snaps in a continuous process) by adding nanosilica in the fabrication of mono- or multi-filament yarns from thermoplastic polyurethane alone.
  • the yarns for footwear upper or industrial uses are mostly polyester, nylon, acryl resin, or the like.
  • the fabrics processed from those yarns are not only poor in durability and wear resistance, but also problematic in many aspects including adhesiveness, so they are unfit to use for high level functionality such as of footwear fabrics or the like.
  • coated yarn of which the surface is coated with a thermoplastic resin in order to enhance the strength of the yarn.
  • a coated yarn is generally fabricated by applying a coating of a thermoplastic resin such as PVP or PP or a thermoplastic polyurethane resin on a yarn like polyester or nylon in a dice using a general extruder.
  • the TPU coated yarns disclosed in the prior patents have such a viscosity not as high as polyester or nylon due to the characteristics of the thermoplastic polyurethane, so a thickening agent is necessarily used for the sake of smooth implementation of the extrusion process.
  • Silica of normal size may be used as a thickening agent for thick mono-filament yarns, but it cannot be used for thin multi-filament yarns, more specifically for multi-filament yarns having a denier count less than about 50.
  • mono-filament yarns for example, mono-filament yarns having a denier count of 50 to 350
  • thread breakage namely, the situation that the thread breaks or snaps
  • silica of normal size as suggested above is unavailable in the continuous production of TPU yarns to draw mono- or multi-filament yarns comprised of thermoplastic polyurethane continuously.
  • general silica is unfit to use as a thickening agent in drawing thin TPU yarns (namely, a single filament yarn that is less than 50 denier for multi-filament yarn and between 50 to 350 denier for mono-filament yarn) continuously without thread breakage.
  • the present invention is to solve the problems with thermoplastic polyurethane coated yarns as disclosed in the prior documents. It is therefore an object of the present invention to provide a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing a thermoplastic polyurethane yarn using the same, where silica of nanoscale size is used as a thickening agent suitable for the production of thin yarns using TPU alone to secure desired workability and properties and to draw TPU yarns continuously without thread breakage in the drawing process.
  • thermoplastic polyurethane yarn using nanosilica and a method for manufacturing a thermoplastic polyurethane yarn using the same, where TPU yarns can be drawn continuously without thread breakage in the production of multi-filament yarns using TPU alone.
  • the resin for thermoplastic polyurethane yarn according to the present invention comprises thermoplastic polyurethane and nanosilica having a particle size of 100 nm or less.
  • the method for manufacturing a TPU (thermoplastic polyurethane) yarn using the resin for TPU comprises: (a) preparing liquid base materials of polyol, isocyanate and short-chain glycol for polymerization of TPU pellets, selecting one of the liquid base materials, adding nanosilica having a particle size of 100 nm or less, and mixing the selected liquid base material and the nanosilica together; (b) adding the nanosilica-dispersed liquid base material and the other two base materials into an extruder and performing polymerization into TPU pellets to prepare a resin for TPU yarn; and (c) adding the resin for TPU yarn into an extruder for yarn production and performing a melt extrusion to produce a thermoplastic polyurethane yarn.
  • Another method for manufacturing the TPU yarn comprises: (a) compounding thermoplastic polyurethane and nanosilica having a particle size of 100 nm or less to prepare a master batch in the form of pellet, mixing the master batch and thermoplastic polyurethane together and then compounding the master batch and the thermoplastic polyurethane to prepare a resin for production of yarn; and (b) adding the resin for yarn production into an extrusion for yarn production and performing a melt extrusion to prepare a thermoplastic polyurethane yarn.
  • the TPU yarn is a mono-filament yarn having a denier count of 50 to 350, and the silica added has a particle size of 100 nm or less.
  • the TPU yarn is a multi-filament yarn of which a single filament yarn has a denier count of 50 or less, and the silica added has a particle size of 100 nm or less.
  • the present invention not only realizes the effects of the thermoplastic polyurethane coated yarn disclosed in the prior patents, but also enables drawing TPU yarns continuously without thread breakage by adding nanosilica (100 nm or less in particle size) in the fabrication of mono- or multi-filament yarns using TPU alone.
  • the present invention enables continuously drawing multi-filament yarns using TPU alone and having a denier count of 50 or less and mono-filament TPU yarns having a denier count of 50 to 350 as well without thread breakage, thereby enhancing productivity
  • nanosilica as used herein means silica having a primary particle size of 100 nm or less
  • the term “yarn” as used herein refers to a mono- or multi-filament yarn comprised of thermoplastic polyurethane (TPU) alone.
  • TPU thermoplastic polyurethane
  • producing TPU yarns continuously means continuously drawing TPU yarns without thread breakage.
  • the present invention is to realize a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing a thermoplastic polyurethane yarn using the same, where nanosilica having a particle size of 100 nm or less is added as a thickening agent for improving productivity and glossiness in the production of thermoplastic polyurethane yarns (preferably, mono- or multi-filament yarns using TPU alone), specifically in the production of thin TPU yarns, such as mono-filament TPU yarns having a denier count of 50 to 350 or multi-filament TPU yarns having a denier count of 50 or less without applying a coating of TPU to the surface of polyester or nylon yarns as disclosed in the above-mentioned prior patents, thereby securing desired workability and properties and realizing continuous drawing of TPU yarns without thread breakage.
  • nanosilica having a primary particle size of 100 nm or less
  • the nanosilica of the present invention is used in the production of a thin multi-filament yarn (that is, a single filament yarn) having a denier count of 50 or less, because such a thin filament yarn cannot be drawn with silica of normal size.
  • the nanosilica of the present invention is preferably used in the production of mono-filament yarns as well in order to draw the yarns continuously without thread breakage in the drawing process.
  • the present invention also proposes a method for manufacturing a thermoplastic polyurethane yarn using TPU alone without a core, which method comprises compounding a master batch using nanosilica and thermoplastic polyurethane and then performing a melt extrusion in an extruder for yarn production.
  • thermoplastic polyurethane yarn and its preparation method a method for preparing a master batch for thermoplastic polyurethane yarn and its composition; and a specific method for processing a thermoplastic polyurethane yarn using the TPU resin or the master batch.
  • Such methods are applied in the same manner in the fabrication of mono-filament yarns and multi-filament yarns.
  • the present invention is directed to a method for processing or manufacturing a thermoplastic polyurethane (hereinafter, referred to as "TPU") yarn using TPU alone without applying a coating of TPU to the surface of a polyester or nylon yarn.
  • TPU thermoplastic polyurethane
  • the TPU as used in the present invention is TPU in the form of virgin.
  • the virgin TPU is prepared by polymerizing short-chain glycols, such as polyester glycol, polyether glycol, polycarprolactone, etc. used as a chain extender with aromatic isocyanate and aliphatic isocyanate.
  • the present invention may also use any kind of TPU scrap, including footwear TPU scraps remaining after a high frequency process or TPU scraps after a hot melt TPU process, instead of the virgin TPU.
  • TPU scraps may be used alone or in combination with the virgin TPU.
  • the present invention uses nanosilica having a particle size of 100 nm or less to draw the TPU yarn continuously without thread breakage during the extrusion process, thereby enhancing productivity and improving glossiness.
  • the present invention includes adding nanosilica powder having a particle size of 100 nm or less to one of the liquid base materials for polymerization of TPU pellets, that is, polyol, isocyanate and short-chain glycol, sufficiently mixing them together, and performing polymerization into TPU pellets to prepare a resin for single type yarn processing.
  • the content of the nanosilica used in the present invention is preferably at most 10 %. Adding the nanosilica in an amount of greater than 10 % makes the mixing difficult.
  • the present invention includes concentrating and compounding nanosilica powder having a particle size of 100 nm or less in general TPU to prepare a master batch and then adding the master batch to a PTU resin by the content to prepare a TPU resin for single type yarn processing.
  • the content of the nanosilica is preferably at most 40 %.
  • the master batch is added to the TPU by the content to prepare a TPU resin for single type yarn processing.
  • the present invention adds the nanosilica having a particle size of 100 nm or less in a content of at most 40 % to the TPU.
  • the preferable content of the nanosilica is 30 %.
  • the preparation method of the resin for TPU yarn involves adding nanosilica to liquid base materials in the polymerization of TPU pellets and performing a polymerization to prepare a resin.
  • the preparation method consists of four steps.
  • Step 1 Liquid base materials for general polymerization of TPU pellets are prepared. More specifically, polyol, isocyanate and short-chain glycol are prepared.
  • Step 2 One of the liquid base materials prepared in Step 1 is selected, and nanosilica powder having a particle size of 100 nm or less is added to the selected liquid base material.
  • the temperature is preferably 80 to 100 °C and the mixing speed is 20 to 30 rpm.
  • the present invention includes mixing nanosilica and polyol together.
  • Step 3 The liquid base material in which the nanosilica is sufficiently dispersed in Step 2 and the other two liquid base materials are added into a reactive extruder at the same time to perform a polymerization into TPU pellets.
  • Step 4 The TPU pellets polymerized in Step 3 are dried and annealed to prepare a desired resin for TPU yarn according to the present invention.
  • Step 1 The above-suggested TPU (e.g., virgin TPU, TPU scrap, or a mixture of virgin TPU and TPU scrap) and nanosilica having a particle size of 100 nm or less are weighed. In this regard, the content of the nanosilica is not to exceed 40 %.
  • TPU e.g., virgin TPU, TPU scrap, or a mixture of virgin TPU and TPU scrap
  • Step 2 The nanosilica and the TPU are added into a general kneader and mixed together at temperature of 100 to 120 °C and a mixing speed of 20 to 30 rpm.
  • Step 3 The TPU mixed with the nanosilica is cooled down and pulverized to a diameter smaller than 10 mm.
  • the pulverized TPU is added into a general twin extruder.
  • the temperature of the twin extruder is 150 to 200 °C.
  • Step 4 A cooling water at 15 to 20 °C is added to the resin prepared in the twin extruder to make the resin into pellets.
  • Step 5 The master batch prepared throughout Steps 1 to 4, more specifically the master batch made into pellets is dried and annealed by a general method.
  • Step 6 The master batch is mixed with normal TPU to prepare a TPU resin for yarn processing.
  • the preparation method for TPU yarn as specifically described below is to prepare a core-free single type TPU yarn without applying a coating of TPU to the surface of a polyester or nylon yarn as disclosed in the prior patents.
  • Step 1 Thermoplastic polyurethane containing nanosilica having a particle size of 100 nm or less is prepared.
  • a resin for TPU yarn with nanosilica or a master batch with nanosilica is mixed with TPU to prepare a TPU resin.
  • the TPU resin is added into a general extruder for processing mono-filament yarns and subjected to melt extrusion at 170 to 230 °C.
  • Step 2 After melt extrusion in the extruder, the (TPU) yarn coming out from the dice of the extruder is cooled down with a cooling water at 25 to 40 °C.
  • Step 3 The cooled yarn is drawn.
  • the yarn is drawn to at most 7 times its original length, because it breaks when drawn to more than 7 times.
  • Step 4 The drawn yarn is annealed at 150 to 160 °C for 30 to 60 seconds in a general heat chamber.
  • Step 5 The annealed TPU yarn is wound up.
  • the present invention uses nanosilica having a particle size of 100 nm or less to continuously draw the TPU yarn without thread breakage in the drawing step (Step 3) and the winding step (Step 5) in the manufacture of mono-filament (TPU) yarns.
  • Step 1 Thermoplastic polyurethane containing nanosilica having a particle size of 100 nm or less is prepared.
  • a resin for TPU yarn with nanosilica or a master batch with nanosilica is mixed with TPU to prepare a TPU resin.
  • the TPU resin is added into a general extruder for processing mono-filament yarns and subjected to melt extrusion at 170 to 230 °C.
  • Step 2 After melt extrusion in the extruder, the (TPU) yarn coming out from the dice of the extruder is collected by the number of fillers (for example, 36 fillers, 48 fillers, etc.). Preferably, the yarn coming out from the dice is air-cooled down to 25 to 40 °C when collected by the number of fillers.
  • the number of fillers for example, 36 fillers, 48 fillers, etc.
  • the yarn coming out from the dice is air-cooled down to 25 to 40 °C when collected by the number of fillers.
  • Step 3 The collected yarn in Step 2 is drawn.
  • the yarn is drawn to at most 7 times its original length, because it breaks when drawn to more than 7 times.
  • Step 4 The TPU yarn drawn in Step 3 is wound up.
  • the present invention uses nanosilica having a particle size of 100 nm or less not only to continuously draw the TPU yarn without thread breakage in the drawing step (Step 3) and the winding step (Step 4) but also to draw a single filament yarn (that is, by the number of fillers) having a denier count of 50 or less in the manufacture of multi-filament (TPU) yarns.
  • the present invention presents the physical characteristics of the resin for TPU yarn containing nanosilica having a particle size of 100 nm or less and the resin for TPU yarn prepared from a master batch containing nanosilica having a particle size of 100 nm or less in Tables 1 and 2, respectively.
  • nanosilica is added to a general TPU by its content and a polymerization is performed to prepare a resin for TPU yarn.
  • a test is performed, and the results are presented in Table 1.
  • nanosilica is added in an amount of 0 phr, 3 phr, 5 phr, 7 phr, or 10 phr and used for polymerization to prepare a resin for TPU yarn containing nanosilica according to the present invention.
  • a comparison is made in regards to the change of viscosity, extrusion workability, and the surface condition.
  • the present invention uses a polyester polyol-based TPU having a hardness of shore 75D.
  • Test grade MFI (230 °C, 2.16 kg) T Melt viscosity Content of TPU yarn containing nanosilica Extrusion workability and surface condition (g/10min) (°C) (Pa.s) Multi-filament yarn (5 denier, 35 fillers) Mono-filament (150-200 denier) 230 °C 235 °C T-75D-1 30.21 218.4 32620 10060 0 phr Unworkable, runny Thread breakage, coarse surface T-75D-2 28.33 219.5 33480 11670 3 phr Good extrusion workability, frequent thread breakage Good extrusion workability, smooth surface without thread breakage T-75D-3 25.42 220.6 38570 13150 5 phr Good extrusion workability, smooth surface without thread breakage Good extrusion workability, smooth surface without thread breakage T-75D-4 18.25 221.3 42550 15090 7 phr Good extrusion workability, smooth surface without thread breakage Good extrusion workability, smooth surface
  • T-75D-1 T-75D-2
  • T-75D-3 T-75D-4
  • T-75D-5" T-75D-5" listed in the test grade section refer to the brand names of the resins for TPU yarn, more specifically the TPU yarns containing nanosilica having a particle size of 100 nm or less in an amount of 0 phr, 3 phr, 5 phr, 7 phr, and 10 phr, respectively.
  • the workability during the extrusion is good with melt flow index of 18.25 g/10 min and flow beginning temperature of 221.3 °C, and the melt viscosity (Pa.s) is 42550 at 230 °C and 15090 at 235 °C, causing no thread breakage and producing a TPU yarn with smooth surface.
  • the surface of the TPU yarn is extremely slippery.
  • the most desirable amount of the resin is 7 phr in the manufacture of a TPU yarn using nanosilica according to the present invention.
  • the use of the nanosilica in an amount of 10 phr or greater makes it difficult to mix the nanosilica with the liquid base material.
  • test results are presented in Table 2.
  • the master batch of the present invention (containing 30 wt.% of nanosilica) is added in an amount of 0 phr, 3 phr, 5 phr, 10 phr, or 20 phr and mixed with general TPU to prepare a TPU yarn.
  • a comparison is made in regards to the change of viscosity, extrusion workability, and the surface condition.
  • the present invention uses a polyester polyol-based TPU having a hardness of shore 75D.
  • Test grade MFI (230 °C, 2.16 kg) T Melt viscosity Content of TPU yarn containing nanosilica Extrusion workability and surface condition (g/10min) (°C) (Pa.s) Multi-filament yarn (5 denier, 35 fillers) Mono-filament (150-200 denier) 230 °C 235 °C NS-75D-1 19.58 215.2 35580 10010 0 phr Unworkable, runny Thread breakage, coarse surface NS-75D-2 16.83 216.3 31860 11450 3 phr Press shaking during extrusion, frequent thread breakage Press shaking during extrusion, thread breakage, slightly coarse surface NS-75D-3 14.32 218.2 40950 12830 5 phr Good extrusion workability, smooth surface without thread breakage Good extrusion workability, smooth surface without thread breakage NS-75D-4 8.35 222.3 44380 14030 10 phr Good extrusion workability, smooth surface without thread breakage Good extrutrusion work
  • the terms "NS-75D-1", “NS-75D-2”, “NS-75D-3”, “NS-75D-4", and “NS-75D-5" listed in the test grade section refer to the brand names of the resins for TPU yarn, more specifically the TPU yarns containing the master batch in an amount of 0 phr, 3 phr, 5 phr, 10 phr, and 20 phr, respectively.
  • the most desirable amount of the master batch (containing 30 wt.% of nanosilica in concentration) is 5 to 10 phr in the manufacture of a TPU yarn using the master batch of the present invention and TPU.
  • the use of the mater bath in an amount of 20 phr or greater causes a severe blooming effect in the TPU yarn.
  • Table 3 shows a comparison of physical characteristics between a single type TPU yarn made using nanosilica and a single type TPU yarn made using general silica. Namely, the test results are given specifically to present a comparison between a TPU yarn prepared using nanosilica having a particle size of 100 nm or less and a TPU yarn prepared using silica having a particle size of 300 to 500 nm. [Table 3] Items Using general silica Using nanosilica Ref.
  • TPU grade Resin for single type TPU yarn (brand name: NS-75D-10) Resin for single type TPU yarn (brand name: NS-75D-4)
  • General silica 30 wt.% nanosilica, Using 10 phr of TPU Silica Primary particle size 300-500 nm 100 nm or less Primary particle size of general nanosilica is 10 nm or less.
  • TPU MFI (melt flow index) 7.3 8.35 230 °C, 2.16 kgf TPU Tfb (flow beginning temp.) 224.5 222.3
  • TPU tear strength 178 kgf/cm 205 kgf/cm
  • TPU specific gravity 1.23-1.21 1.22-1.25 g/cc
  • TPU hardness 75 ⁇ 3D 75 ⁇ 3D Shore D
  • Silica size causes severe step difference and difficulty in extrusion and drawing processes. Nanosilica is used to serve as a drawing reinforcing agent during the drawing process to secure workability without step difference.
  • the single type TPU yarn prepared using general silica namely, silica having a particle size of 300-500 nm
  • the yarn surface coarse with poor extrusion workability.
  • the single type (mono- or multi-filament) TPU yarn prepared using nanosilica having a particle size of 100 nm or less has the yarn surface smooth and displays good productivity and workability as it can be drawn continuously without thread breakage during the extrusion process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)

Abstract

The present invention provides a resin for thermoplastic polyurethane (TPU) yarn using nanosilica and a method for manufacturing a thermoplastic polyurethane yarn using the same, where nanosilica having a particle size of 100 nm or less is added as a thickening agent for improving productivity and glossiness in the production of thermoplastic polyurethane yarns (preferably, mono- or multi-filament yarns using TPU alone), specifically in the production of thin TPU yarns, such as mono-filament TPU yarns having a denier count of 50 to 350 or multi-filament TPU yarns having a denier count of 50 or less without applying a coating of TPU to the surface of polyester or nylon yarns as disclosed in the prior art, thereby securing desired workability and properties and realizing continuous drawing of TPU yarns without thread breakage.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority benefit of Korean Patent Application No. 10-2016-130490 filed on October 10, 2016 , Korean Patent Application No. 10-2016-138458 filed on October 24, 2016 , and Korean Patent Application No. 10-2017-28116 filed on March 6, 2017 , the entire contents of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing thermoplastic polyurethane yarn using the resin and, more particularly, to a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing thermoplastic polyurethane yarn using the resin, where it is possible to fabricate TPU thread continuously without a thread breakage (that is, a situation that the TPU thread breaks or snaps in a continuous process) by adding nanosilica in the fabrication of mono- or multi-filament yarns from thermoplastic polyurethane alone.
  • BACKGROUND OF THE INVENTION
  • The yarns for footwear upper or industrial uses, as it is well known, are mostly polyester, nylon, acryl resin, or the like. The fabrics processed from those yarns are not only poor in durability and wear resistance, but also problematic in many aspects including adhesiveness, so they are unfit to use for high level functionality such as of footwear fabrics or the like.
  • Currently, a solution to this problem is a yarn (hereinafter, referred to as "coated yarn") of which the surface is coated with a thermoplastic resin in order to enhance the strength of the yarn. Such a coated yarn is generally fabricated by applying a coating of a thermoplastic resin such as PVP or PP or a thermoplastic polyurethane resin on a yarn like polyester or nylon in a dice using a general extruder.
  • But, when using a general thermoplastic resin, it is difficult to control the amount of the coating, particularly making it impossible to use a small amount of the coating, ending up producing a thick coated yarn having a high denier count above 350 and leading to deterioration in durability and wear resistance.
  • In an effort to solve this problem, as can be seen from the following patent documents 1 to 4, the inventors of the present invention have been making sustained research and development on a fabrication method for coated yarn, a compound for coated yarn, a thermoplastic polyurethane coated yarn, etc. since 2012.
  • These prior patents may produce coated yarns with excellences in wear resistance, adhesiveness, water resistance, molding properties, etc. Yet, the coated yarns of the prior patents are bound to have a core like polyester or nylon, which results in large thickness, making it impossible to realize a coated yarn of thinness.
  • Besides, the TPU coated yarns disclosed in the prior patents have such a viscosity not as high as polyester or nylon due to the characteristics of the thermoplastic polyurethane, so a thickening agent is necessarily used for the sake of smooth implementation of the extrusion process.
  • For single yarns, however, things are different from the TPU coated yarns of the prior patents. Silica of normal size may be used as a thickening agent for thick mono-filament yarns, but it cannot be used for thin multi-filament yarns, more specifically for multi-filament yarns having a denier count less than about 50. Even in the case of mono-filament yarns (for example, mono-filament yarns having a denier count of 50 to 350) using general silica, thread breakage (namely, the situation that the thread breaks or snaps) occurs inevitably in the drawing process. This makes it impossible to produce TPU yarns continuously and hence leads to low productivity.
  • Accordingly, silica of normal size as suggested above is unavailable in the continuous production of TPU yarns to draw mono- or multi-filament yarns comprised of thermoplastic polyurethane continuously. In particular, general silica is unfit to use as a thickening agent in drawing thin TPU yarns (namely, a single filament yarn that is less than 50 denier for multi-filament yarn and between 50 to 350 denier for mono-filament yarn) continuously without thread breakage.
  • SUMMARY OF THE INVENTION
  • The present invention is to solve the problems with thermoplastic polyurethane coated yarns as disclosed in the prior documents. It is therefore an object of the present invention to provide a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing a thermoplastic polyurethane yarn using the same, where silica of nanoscale size is used as a thickening agent suitable for the production of thin yarns using TPU alone to secure desired workability and properties and to draw TPU yarns continuously without thread breakage in the drawing process.
  • It is another object of the present invention to provide a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing a thermoplastic polyurethane yarn using the same, where TPU yarns can be drawn continuously without thread breakage in the production of mono-filament yarns using TPU alone.
  • It is still another object of the present invention to provide a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing a thermoplastic polyurethane yarn using the same, where mono-filament yarns having a denier count of 50 to 350 can be drawn continuously in the production of mono-filament yarns using TPU alone.
  • It is still further another object of the present invention to provide a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing a thermoplastic polyurethane yarn using the same, where TPU yarns can be drawn continuously without thread breakage in the production of multi-filament yarns using TPU alone.
  • It is still another object of the present invention to provide a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing a thermoplastic polyurethane yarn using the same, where a single filament yarn having a denier count of 50 to 350 can be drawn continuously in the production of multi-filament yarns using TPU alone.
  • The resin for thermoplastic polyurethane yarn according to the present invention comprises thermoplastic polyurethane and nanosilica having a particle size of 100 nm or less.
  • The method for manufacturing a TPU (thermoplastic polyurethane) yarn using the resin for TPU comprises: (a) preparing liquid base materials of polyol, isocyanate and short-chain glycol for polymerization of TPU pellets, selecting one of the liquid base materials, adding nanosilica having a particle size of 100 nm or less, and mixing the selected liquid base material and the nanosilica together; (b) adding the nanosilica-dispersed liquid base material and the other two base materials into an extruder and performing polymerization into TPU pellets to prepare a resin for TPU yarn; and (c) adding the resin for TPU yarn into an extruder for yarn production and performing a melt extrusion to produce a thermoplastic polyurethane yarn.
  • Another method for manufacturing the TPU yarn comprises: (a) compounding thermoplastic polyurethane and nanosilica having a particle size of 100 nm or less to prepare a master batch in the form of pellet, mixing the master batch and thermoplastic polyurethane together and then compounding the master batch and the thermoplastic polyurethane to prepare a resin for production of yarn; and (b) adding the resin for yarn production into an extrusion for yarn production and performing a melt extrusion to prepare a thermoplastic polyurethane yarn.
  • In this regard, the TPU yarn is a mono-filament yarn having a denier count of 50 to 350, and the silica added has a particle size of 100 nm or less.
  • Further, the TPU yarn is a multi-filament yarn of which a single filament yarn has a denier count of 50 or less, and the silica added has a particle size of 100 nm or less.
  • The present invention not only realizes the effects of the thermoplastic polyurethane coated yarn disclosed in the prior patents, but also enables drawing TPU yarns continuously without thread breakage by adding nanosilica (100 nm or less in particle size) in the fabrication of mono- or multi-filament yarns using TPU alone.
  • In addition, the present invention enables continuously drawing multi-filament yarns using TPU alone and having a denier count of 50 or less and mono-filament TPU yarns having a denier count of 50 to 350 as well without thread breakage, thereby enhancing productivity
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, the preferred embodiments of the present invention will be described in detain as follows. In the following detailed description, representative examples of the present invention will be given in order to achieve the above-described technical solutions. And, other embodiments that the present invention may provide are substituted by the detailed description of the present invention.
  • The term "nanosilica" as used herein means silica having a primary particle size of 100 nm or less, and the term "yarn" as used herein refers to a mono- or multi-filament yarn comprised of thermoplastic polyurethane (TPU) alone. Further, the term "producing TPU yarns continuously" means continuously drawing TPU yarns without thread breakage.
  • The present invention is to realize a resin for thermoplastic polyurethane yarn using nanosilica and a method for manufacturing a thermoplastic polyurethane yarn using the same, where nanosilica having a particle size of 100 nm or less is added as a thickening agent for improving productivity and glossiness in the production of thermoplastic polyurethane yarns (preferably, mono- or multi-filament yarns using TPU alone), specifically in the production of thin TPU yarns, such as mono-filament TPU yarns having a denier count of 50 to 350 or multi-filament TPU yarns having a denier count of 50 or less without applying a coating of TPU to the surface of polyester or nylon yarns as disclosed in the above-mentioned prior patents, thereby securing desired workability and properties and realizing continuous drawing of TPU yarns without thread breakage.
  • As stated above, nanosilica (having a primary particle size of 100 nm or less) is used in order to draw TPU yarns continuously without thread breakage in the continuous production of TPU yarns. Preferably, the nanosilica of the present invention is used in the production of a thin multi-filament yarn (that is, a single filament yarn) having a denier count of 50 or less, because such a thin filament yarn cannot be drawn with silica of normal size. The nanosilica of the present invention is preferably used in the production of mono-filament yarns as well in order to draw the yarns continuously without thread breakage in the drawing process.
  • The present invention also proposes a method for manufacturing a thermoplastic polyurethane yarn using TPU alone without a core, which method comprises compounding a master batch using nanosilica and thermoplastic polyurethane and then performing a melt extrusion in an extruder for yarn production.
  • For this purpose, it is necessary to disclose a TPU resin composition used in the fabrication of the thermoplastic polyurethane yarn and its preparation method; a method for preparing a master batch for thermoplastic polyurethane yarn and its composition; and a specific method for processing a thermoplastic polyurethane yarn using the TPU resin or the master batch. Such methods are applied in the same manner in the fabrication of mono-filament yarns and multi-filament yarns.
  • The preferred embodiments of the present invention may be described in detail as follows.
  • [Example 1]
  • The present invention is directed to a method for processing or manufacturing a thermoplastic polyurethane (hereinafter, referred to as "TPU") yarn using TPU alone without applying a coating of TPU to the surface of a polyester or nylon yarn.
  • The TPU as used in the present invention is TPU in the form of virgin. The virgin TPU is prepared by polymerizing short-chain glycols, such as polyester glycol, polyether glycol, polycarprolactone, etc. used as a chain extender with aromatic isocyanate and aliphatic isocyanate.
  • The present invention may also use any kind of TPU scrap, including footwear TPU scraps remaining after a high frequency process or TPU scraps after a hot melt TPU process, instead of the virgin TPU. Such TPU scraps may be used alone or in combination with the virgin TPU.
  • In the production of core-free TPU yarn using TPU alone without applying a coating of TPU to the surface of polyester or nylon yarns, the present invention uses nanosilica having a particle size of 100 nm or less to draw the TPU yarn continuously without thread breakage during the extrusion process, thereby enhancing productivity and improving glossiness.
  • In other words, the present invention includes adding nanosilica powder having a particle size of 100 nm or less to one of the liquid base materials for polymerization of TPU pellets, that is, polyol, isocyanate and short-chain glycol, sufficiently mixing them together, and performing polymerization into TPU pellets to prepare a resin for single type yarn processing. In this regard, the content of the nanosilica used in the present invention is preferably at most 10 %. Adding the nanosilica in an amount of greater than 10 % makes the mixing difficult.
  • In an alternative way, the present invention includes concentrating and compounding nanosilica powder having a particle size of 100 nm or less in general TPU to prepare a master batch and then adding the master batch to a PTU resin by the content to prepare a TPU resin for single type yarn processing. In the preparation of the master batch, the content of the nanosilica is preferably at most 40 %. The master batch is added to the TPU by the content to prepare a TPU resin for single type yarn processing. When the content of the nanosilica exceeds 40 %, mixing with the TPU is difficult to perform, making impossible to manufacture a master batch and a TPU yarn as well. Accordingly, the present invention adds the nanosilica having a particle size of 100 nm or less in a content of at most 40 % to the TPU. For the preparation of an ideal master batch, the preferable content of the nanosilica is 30 %.
  • The following descriptions are given as to: (1) a method of preparing a resin for TPU yarn by adding nanosilica having a particle size of 100 nm or less to a liquid base material; (2) a method of preparing a master batch by mixing nanosilica having a particle size of 100 nm or less and TPU; and (3) a method of manufacturing a core-free single type TPU yarn using the resin for TPU yarn or the master batch.
  • 1. Method for preparing resin for TPU yarn according to the present invention
  • The preparation method of the resin for TPU yarn involves adding nanosilica to liquid base materials in the polymerization of TPU pellets and performing a polymerization to prepare a resin. The preparation method consists of four steps.
  • Step 1: Liquid base materials for general polymerization of TPU pellets are prepared. More specifically, polyol, isocyanate and short-chain glycol are prepared.
  • Step 2: One of the liquid base materials prepared in Step 1 is selected, and nanosilica powder having a particle size of 100 nm or less is added to the selected liquid base material. During the mixing process, the temperature is preferably 80 to 100 °C and the mixing speed is 20 to 30 rpm. For example, the present invention includes mixing nanosilica and polyol together.
  • Step 3: The liquid base material in which the nanosilica is sufficiently dispersed in Step 2 and the other two liquid base materials are added into a reactive extruder at the same time to perform a polymerization into TPU pellets.
  • Step 4: The TPU pellets polymerized in Step 3 are dried and annealed to prepare a desired resin for TPU yarn according to the present invention.
  • 2. Method for preparing master batch according to the present invention
  • Step 1: The above-suggested TPU (e.g., virgin TPU, TPU scrap, or a mixture of virgin TPU and TPU scrap) and nanosilica having a particle size of 100 nm or less are weighed. In this regard, the content of the nanosilica is not to exceed 40 %.
  • Step 2: The nanosilica and the TPU are added into a general kneader and mixed together at temperature of 100 to 120 °C and a mixing speed of 20 to 30 rpm.
  • Step 3: The TPU mixed with the nanosilica is cooled down and pulverized to a diameter smaller than 10 mm. The pulverized TPU is added into a general twin extruder. The temperature of the twin extruder is 150 to 200 °C.
  • Step 4: A cooling water at 15 to 20 °C is added to the resin prepared in the twin extruder to make the resin into pellets.
  • Step 5: The master batch prepared throughout Steps 1 to 4, more specifically the master batch made into pellets is dried and annealed by a general method.
  • Step 6: The master batch is mixed with normal TPU to prepare a TPU resin for yarn processing.
  • 3. Method for preparing TPU yarn according to the present invention
  • The preparation method for TPU yarn as specifically described below is to prepare a core-free single type TPU yarn without applying a coating of TPU to the surface of a polyester or nylon yarn as disclosed in the prior patents.
  • Specific descriptions are given as to a method for manufacturing a mono-filament yarn using TPU alone and a method for manufacturing a multi-filament yarn using TPU alone in regards to the preparation of TPU yarn.
  • (A) Method for manufacturing mono-filament yarn
  • Step 1: Thermoplastic polyurethane containing nanosilica having a particle size of 100 nm or less is prepared. Preferably, a resin for TPU yarn with nanosilica or a master batch with nanosilica is mixed with TPU to prepare a TPU resin. The TPU resin is added into a general extruder for processing mono-filament yarns and subjected to melt extrusion at 170 to 230 °C.
  • Step 2: After melt extrusion in the extruder, the (TPU) yarn coming out from the dice of the extruder is cooled down with a cooling water at 25 to 40 °C.
  • Step 3: The cooled yarn is drawn. In the present invention, the yarn is drawn to at most 7 times its original length, because it breaks when drawn to more than 7 times.
  • Step 4: The drawn yarn is annealed at 150 to 160 °C for 30 to 60 seconds in a general heat chamber.
  • Step 5: The annealed TPU yarn is wound up.
  • As described above, the present invention uses nanosilica having a particle size of 100 nm or less to continuously draw the TPU yarn without thread breakage in the drawing step (Step 3) and the winding step (Step 5) in the manufacture of mono-filament (TPU) yarns.
  • (B) Method for manufacturing multi-filament yarn
  • Step 1: Thermoplastic polyurethane containing nanosilica having a particle size of 100 nm or less is prepared. Preferably, a resin for TPU yarn with nanosilica or a master batch with nanosilica is mixed with TPU to prepare a TPU resin. The TPU resin is added into a general extruder for processing mono-filament yarns and subjected to melt extrusion at 170 to 230 °C.
  • Step 2: After melt extrusion in the extruder, the (TPU) yarn coming out from the dice of the extruder is collected by the number of fillers (for example, 36 fillers, 48 fillers, etc.). Preferably, the yarn coming out from the dice is air-cooled down to 25 to 40 °C when collected by the number of fillers.
  • Step 3: The collected yarn in Step 2 is drawn. In the present invention, the yarn is drawn to at most 7 times its original length, because it breaks when drawn to more than 7 times.
  • Step 4: The TPU yarn drawn in Step 3 is wound up.
  • As described above, the present invention uses nanosilica having a particle size of 100 nm or less not only to continuously draw the TPU yarn without thread breakage in the drawing step (Step 3) and the winding step (Step 4) but also to draw a single filament yarn (that is, by the number of fillers) having a denier count of 50 or less in the manufacture of multi-filament (TPU) yarns.
  • In order to determine the physical characteristic of the TPU yarn (preferably, mono- and multi-filament yarns) prepared by the above-described method, the present invention presents the physical characteristics of the resin for TPU yarn containing nanosilica having a particle size of 100 nm or less and the resin for TPU yarn prepared from a master batch containing nanosilica having a particle size of 100 nm or less in Tables 1 and 2, respectively.
  • Firstly, nanosilica is added to a general TPU by its content and a polymerization is performed to prepare a resin for TPU yarn. A test is performed, and the results are presented in Table 1.
  • In other words, nanosilica is added in an amount of 0 phr, 3 phr, 5 phr, 7 phr, or 10 phr and used for polymerization to prepare a resin for TPU yarn containing nanosilica according to the present invention. A comparison is made in regards to the change of viscosity, extrusion workability, and the surface condition. At this point, the present invention uses a polyester polyol-based TPU having a hardness of shore 75D. [Table 1]
    Test grade MFI (230 °C, 2.16 kg) T Melt viscosity Content of TPU yarn containing nanosilica Extrusion workability and surface condition
    (g/10min) (°C) (Pa.s) Multi-filament yarn (5 denier, 35 fillers) Mono-filament (150-200 denier)
    230 °C 235 °C
    T-75D-1 30.21 218.4 32620 10060 0 phr Unworkable, runny Thread breakage, coarse surface
    T-75D-2 28.33 219.5 33480 11670 3 phr Good extrusion workability, frequent thread breakage Good extrusion workability, smooth surface without thread breakage
    T-75D-3 25.42 220.6 38570 13150 5 phr Good extrusion workability, smooth surface without thread breakage Good extrusion workability, smooth surface without thread breakage
    T-75D-4 18.25 221.3 42550 15090 7 phr Good extrusion workability, smooth surface without thread breakage Good extrusion workability, smooth surface without thread breakage
    T-75D-5 12.33 222.5 48080 17220 10 phr Too slippery surface with severe crystalliza-tion Too slippery surface with thread breakage due to crystalliza-tion
  • In the Table 1, the terms "T-75D-1", "T-75D-2", "T-75D-3", "T-75D-4", and "T-75D-5" listed in the test grade section refer to the brand names of the resins for TPU yarn, more specifically the TPU yarns containing nanosilica having a particle size of 100 nm or less in an amount of 0 phr, 3 phr, 5 phr, 7 phr, and 10 phr, respectively.
  • The extrusion workability and the surface condition of the TPU yarns can be described with reference to Table 1 as follows.
  • When a yarn is processed using a resin for TPU yarn (brand name: T-75D-1) prepared without the novel resin mixed with nanosilica, the resin is extremely runny during the extrusion process, ending up producing TPU yarns with coarse surface.
  • When a yarn is processed using a resin for TPU yarn (brand name: T-75D-2) containing nanosilica in an amount of 3 phr according to the present invention, the workability during the extrusion is good and the surface of the yarn is smooth without thread breakage.
  • When a yarn is processed using a resin for TPU yarn (brand name: T-75D-3) containing nanosilica in an amount of 5 phr according to the present invention, the workability during the extrusion is good and the extrusion works without thread breakage to produce a TPU yarn with smooth surface.
  • When a yarn is processed using a resin for TPU yarn (brand name: T-75D-4) containing nanosilica in an amount of 7 phr according to the present invention, the workability during the extrusion is good with melt flow index of 18.25 g/10 min and flow beginning temperature of 221.3 °C, and the melt viscosity (Pa.s) is 42550 at 230 °C and 15090 at 235 °C, causing no thread breakage and producing a TPU yarn with smooth surface.
  • When a yarn is processed using a resin for TPU yarn (brand name: T-75D-5) containing nanosilica in an amount of 10 phr according to the present invention, the surface of the TPU yarn is extremely slippery.
  • As described above, it is revealed from the experiments that the most desirable amount of the resin is 7 phr in the manufacture of a TPU yarn using nanosilica according to the present invention. In addition, the use of the nanosilica in an amount of 10 phr or greater makes it difficult to mix the nanosilica with the liquid base material.
  • Secondly, tests are performed by the amount of the master batch containing nanosilica mixed with general TPU. The test results are presented in Table 2.
  • In other words, the master batch of the present invention (containing 30 wt.% of nanosilica) is added in an amount of 0 phr, 3 phr, 5 phr, 10 phr, or 20 phr and mixed with general TPU to prepare a TPU yarn. A comparison is made in regards to the change of viscosity, extrusion workability, and the surface condition. At this point, the present invention uses a polyester polyol-based TPU having a hardness of shore 75D. [Table 2]
    Test grade MFI (230 °C, 2.16 kg) T Melt viscosity Content of TPU yarn containing nanosilica Extrusion workability and surface condition
    (g/10min) (°C) (Pa.s) Multi-filament yarn (5 denier, 35 fillers) Mono-filament (150-200 denier)
    230 °C 235 °C
    NS-75D-1 19.58 215.2 35580 10010 0 phr Unworkable, runny Thread breakage, coarse surface
    NS-75D-2 16.83 216.3 31860 11450 3 phr Press shaking during extrusion, frequent thread breakage Press shaking during extrusion, thread breakage, slightly coarse surface
    NS-75D-3 14.32 218.2 40950 12830 5 phr Good extrusion workability, smooth surface without thread breakage Good extrusion workability, smooth surface without thread breakage
    NS-75D-4 8.35 222.3 44380 14030 10 phr Good extrusion workability, smooth surface without thread breakage Good extrusion workability, smooth surface without thread breakage
    NS-75D-5 6.23 219.5 50570 16930 20 phr Too slippery surface with severe crystalliza-tion Good extrusion workability, but too slippery surface
  • In the Table 2, the terms "NS-75D-1", "NS-75D-2", "NS-75D-3", "NS-75D-4", and "NS-75D-5" listed in the test grade section refer to the brand names of the resins for TPU yarn, more specifically the TPU yarns containing the master batch in an amount of 0 phr, 3 phr, 5 phr, 10 phr, and 20 phr, respectively.
  • The extrusion workability and the surface condition of the TPU yarns can be described with reference to Table 2 as follows.
  • When a yarn is processed using a resin for TPU yarn (brand name: NS-75D-1) prepared without the master batch of the present invention, the resin is extremely runny during the extrusion process to cause severe step difference, ending up producing TPU yarns with coarse surface.
  • When a yarn is processed using a resin for TPU yarn (brand name: NS-75D-2) containing the master batch of the present invention in an amount of 3 phr, the resin is somewhat runny to cause a step difference and produce TPU yarns with slightly coarse surface.
  • When a yarn is processed using a resin for TPU yarn (brand name: NS-75D-3) containing the master batch of the present invention in an amount of 5 phr, the workability during the extrusion is good with melt flow index of 14.32 g/10 min and flow beginning temperature of 218.2 °C, and the melt viscosity (Pa.s) is 40950 at 230 °C and 12830 at 235 °C, causing no step difference during extrusion and producing a TPU yarn with smooth surface.
  • When a yarn is processed using a resin for TPU yarn (brand name: NS-75D-4) containing the master batch of the present invention in an amount of 10 phr, the workability during the extrusion is good with melt flow index of 8.35 g/10 min and flow beginning temperature of 222.3 °C, and the melt viscosity (Pa.s) is 44380 at 230 °C and 14030 at 235 °C, causing no step difference during extrusion and producing a TPU yarn with smooth surface.
  • When a yarn is processed using a resin for TPU yarn (brand name: NS-75D-5) containing the master batch of the present invention in an amount of 20 phr, the workability during the extrusion is good without step difference, but the surface of the TPU yarn is slippery.
  • As described above, it is revealed from the experiments that the most desirable amount of the master batch (containing 30 wt.% of nanosilica in concentration) is 5 to 10 phr in the manufacture of a TPU yarn using the master batch of the present invention and TPU. In addition, the use of the mater bath in an amount of 20 phr or greater causes a severe blooming effect in the TPU yarn.
  • Table 3 shows a comparison of physical characteristics between a single type TPU yarn made using nanosilica and a single type TPU yarn made using general silica. Namely, the test results are given specifically to present a comparison between a TPU yarn prepared using nanosilica having a particle size of 100 nm or less and a TPU yarn prepared using silica having a particle size of 300 to 500 nm. [Table 3]
    Items Using general silica Using nanosilica Ref.
    TPU grade Resin for single type TPU yarn (brand name: NS-75D-10) Resin for single type TPU yarn (brand name: NS-75D-4) General silica, 30 wt.% nanosilica, Using 10 phr of TPU
    Silica Primary particle size 300-500 nm 100 nm or less Primary particle size of general nanosilica is 10 nm or less.
    TPU MFI (melt flow index) 7.3 8.35 230 °C, 2.16 kgf
    TPU Tfb (flow beginning temp.) 224.5 222.3
    TPU tensile strength 250 kgf/cm2 350 kgf/cm2 Using injected specimens
    TPU tear strength 178 kgf/cm 205 kgf/cm Using injected specimens
    TPU specific gravity 1.23-1.21 1.22-1.25 g/cc
    TPU hardness 75±3D 75±3D Shore D
    TPU yarn thickness 150-200 denier 150-200 denier Mono-filament yarn
    TPU surface condition Very coarse Good (smooth)
    Extrusion workability Silica size causes severe step difference and difficulty in extrusion and drawing processes. Nanosilica is used to serve as a drawing reinforcing agent during the drawing process to secure workability without step difference.
  • As can be seen from Table 3, the single type TPU yarn prepared using general silica (namely, silica having a particle size of 300-500 nm) has the yarn surface coarse with poor extrusion workability. Particularly, it is impossible to manufacture a thin multi-filament yarn of which the single filament yarn (namely, filler-based) has a denier count below 50.
  • In the present invention, however, the single type (mono- or multi-filament) TPU yarn prepared using nanosilica having a particle size of 100 nm or less has the yarn surface smooth and displays good productivity and workability as it can be drawn continuously without thread breakage during the extrusion process.

Claims (6)

  1. A resin for thermoplastic polyurethane yarn, the resin comprising thermoplastic polyurethane and nanosilica.
  2. The resin for thermoplastic polyurethane yarn as claimed in claim 1, wherein the nanosilica has a particle size of 100 nm or less.
  3. The resin for thermoplastic polyurethane yarn as claimed in claim 1 or 2, wherein a single filament yarn has a denier count of 50 or less when the thermoplastic polyurethane yarn is a multi-filament yarn.
  4. The resin for thermoplastic polyurethane yarn as claimed in claim 1 or 2, wherein the denier count is 50 to 350 when the thermoplastic polyurethane yarn is a mono-filament yarn.
  5. A method for manufacturing a thermoplastic polyurethane yarn, comprising:
    (a) preparing liquid base materials of polyol, isocyanate and short-chain glycol for polymerization of TPU pellets, selecting one of the liquid base materials, adding nanosilica having a particle size of 100 nm or less, and mixing the liquid base material and the nanosilica together;
    (b) adding the nanosilica-dispersed liquid base material and the other two base materials into an extruder and polymerizing TPU pellets to prepare a resin for TPU yarn; and
    (c) adding the resin for TPU yarn into an extruder for yarn production and performing a melt extrusion to produce a thermoplastic polyurethane yarn.
  6. A method for manufacturing a thermoplastic polyurethane yarn, comprising:
    (a) mixing thermoplastic polyurethane and nanosilica having a particle size of 100 nm or less to prepare a master batch in the form of pellet, mixing the master batch and thermoplastic polyurethane together and then compounding the master batch and the thermoplastic polyurethane to prepare a resin for production of yarn; and
    (b) adding the resin for yarn production into an extrusion for yarn production and performing a melt extrusion to prepare a thermoplastic polyurethane yarn.
EP18764089.1A 2016-10-24 2018-03-05 Resin for thermoplastic polyurethane yarn using nano-silica, and method for manufacturing thermoplastic polyurethane yarn by using same Pending EP3594287A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20160138458 2016-10-24
KR1020170028116A KR101879981B1 (en) 2016-10-10 2017-03-06 method for manufcturing thermoplastic polyurethane yarn
PCT/KR2018/002589 WO2018164433A1 (en) 2016-10-10 2018-03-05 Resin for thermoplastic polyurethane yarn using nano-silica, and method for manufacturing thermoplastic polyurethane yarn by using same

Publications (2)

Publication Number Publication Date
EP3594287A1 true EP3594287A1 (en) 2020-01-15
EP3594287A4 EP3594287A4 (en) 2020-12-02

Family

ID=62082919

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18764089.1A Pending EP3594287A4 (en) 2016-10-24 2018-03-05 Resin for thermoplastic polyurethane yarn using nano-silica, and method for manufacturing thermoplastic polyurethane yarn by using same

Country Status (6)

Country Link
US (1) US10450437B2 (en)
EP (1) EP3594287A4 (en)
KR (1) KR101879981B1 (en)
CN (1) CN109790373B (en)
BR (1) BR112019006550B1 (en)
WO (1) WO2018164433A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564443B2 (en) 2019-08-02 2023-01-31 Nike, Inc. Textiles and articles and processes for making the same
US11779071B2 (en) 2012-04-03 2023-10-10 Nike, Inc. Apparel and other products incorporating a thermoplastic polymer material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104174B1 (en) * 2018-07-05 2020-04-23 박희대 Thermoplastic polyurethane yarn
WO2020060095A1 (en) * 2018-09-17 2020-03-26 박희대 Thermoplastic polyurethane filament for fdm-type 3d printers
KR101971849B1 (en) * 2019-02-25 2019-04-23 박희대 Thermoplastic Polyurethane Yarn
KR102057036B1 (en) * 2019-10-04 2019-12-18 박희대 Thermoplastic hot-melt film with excellent adhesive strength mixed with hydrophobic nano silica
KR102082090B1 (en) * 2019-12-09 2020-02-26 박희대 Thermoplastic polyurethane coating yarn comprising hydrophobic nano silica
KR102131606B1 (en) * 2020-02-19 2020-07-08 박희대 Dot-laminated shoe insole used adhesive resin mixed with hydrophobic nano silica and manufacturing process thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010000801A1 (en) * 1999-03-22 2001-05-03 Miller Paul J. Hydrophilic sleeve
US6702848B1 (en) * 1999-07-20 2004-03-09 Peter Paul Zilla Foam-type vascular prosthesis with well-defined anclio-permissive open porosity
US6294606B1 (en) * 2000-01-19 2001-09-25 Xerox Corporation Nonionic surfactant-free emulsion polymerization process
EP1130045B2 (en) * 2000-02-29 2015-10-28 Nippon Shokubai Co., Ltd. Process for producing a water-absorbent resin powder
JP2003201349A (en) * 2002-01-09 2003-07-18 Daicel Chem Ind Ltd Fiber-reinforced polyurethane resin composition, molding method and molded article
US6934969B2 (en) * 2002-12-27 2005-08-30 Kimberly-Clark Worldwide, Inc. Anti-wicking protective workwear and methods of making and using same
CN1252124C (en) * 2004-07-02 2006-04-19 常州兆隆合成材料有限公司 Nano SiO2 polyester composite materials and industrial yarn preparation process
US20060083694A1 (en) * 2004-08-07 2006-04-20 Cabot Corporation Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same
US7598315B2 (en) * 2005-01-24 2009-10-06 Lubrizol Advanced Materials, Inc. Aqueous dispersions of nanoparticle/polyurethane composites
US20090326128A1 (en) * 2007-05-08 2009-12-31 Javier Macossay-Torres Fibers and methods relating thereto
JP2009244551A (en) * 2008-03-31 2009-10-22 Konica Minolta Business Technologies Inc Display particle for image display apparatus, and image display apparatus
FR2960565B1 (en) * 2010-05-25 2012-07-27 Saint Gobain Technical Fabrics MATERIAL OF POLYMER FIBERS CONTAINING DIHYDRAZIDE AND USE
EP2655467B1 (en) * 2010-12-21 2016-05-11 Lubrizol Advanced Materials, Inc. Elastomer resins, fibers and fabrics thereof, and uses thereof
CN102154844A (en) * 2011-04-02 2011-08-17 江苏国信合成革有限公司 High-wear-resistant artificial leather and preparation method thereof
CN102504525B (en) * 2011-11-10 2013-06-12 浙江七色鹿色母粒有限公司 Polyformaldehyde masterbatch with double-function of toughening and coloring, and preparation method thereof
KR101318135B1 (en) 2011-12-30 2013-10-15 박희대 making method using thermoplastic polyurethane coating yarn
KR101341055B1 (en) * 2012-12-26 2013-12-13 박희대 The method of preparing a thermoplastic polyurethane yarn
CN103897380A (en) * 2012-12-27 2014-07-02 中纺投资发展股份有限公司 Composite enhanced hydrolysis-resistant thermoplastic polyurethane elastomer and its preparation method
KR101341054B1 (en) 2013-05-13 2013-12-13 박희대 Method of making coating yarn
KR20160010610A (en) * 2013-05-22 2016-01-27 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 Articles made from thermoplastic polyurethanes with crystalline chain ends
CN103665828A (en) * 2013-12-10 2014-03-26 中纺投资发展股份有限公司 Halogen-free flame-retardant thermoplastic polyurethane elastomer composition and preparation method thereof
CN104894881A (en) * 2014-03-06 2015-09-09 江苏国信合成革有限公司 High-strength flocking substrate artificial leather and preparation method thereof
KR101530149B1 (en) 2014-03-18 2015-06-19 박희대 compound composition for coating yarn
JP6425410B2 (en) * 2014-04-23 2018-11-21 旭化成株式会社 Polyurethane elastic fiber and method for producing the same
CN104861326A (en) * 2014-12-24 2015-08-26 王玉燕 Nano silicon dioxide-containing polyvinyl chloride plastic wood composite material
CN105155090A (en) * 2015-08-25 2015-12-16 安徽省中日农业环保科技有限公司 Antistatic multicomponent-fiber blended woven fabric and manufacturing method thereof
US9915027B2 (en) * 2016-06-23 2018-03-13 Heedae Park Core-free thermoplastic polyurethane yarn formed with resin and method for producing same
US9915026B2 (en) * 2016-06-23 2018-03-13 Heedae Park Core-free thermoplastic polyurethane yarn formed with masterbatch and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11779071B2 (en) 2012-04-03 2023-10-10 Nike, Inc. Apparel and other products incorporating a thermoplastic polymer material
US11564443B2 (en) 2019-08-02 2023-01-31 Nike, Inc. Textiles and articles and processes for making the same
US11998080B2 (en) 2019-08-02 2024-06-04 Nike, Inc. Textiles and articles and processes for making the same

Also Published As

Publication number Publication date
CN109790373A (en) 2019-05-21
US10450437B2 (en) 2019-10-22
CN109790373B (en) 2021-07-20
US20180100050A1 (en) 2018-04-12
BR112019006550A2 (en) 2019-10-01
WO2018164433A1 (en) 2018-09-13
EP3594287A4 (en) 2020-12-02
KR20180039546A (en) 2018-04-18
BR112019006550B1 (en) 2020-12-29
KR101879981B1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
US10450437B2 (en) Resin for thermoplastic polyurethane yarn using nanosilica and method for-manufacturing thermoplastic polyurethane yarn using the same
US10081909B2 (en) Thermoplastic polyurethane compound composition for coated yarn and method for manufacturing coated yarn using the thermoplastic polyurethane compound
US9914808B2 (en) Masterbatch for thermoplastic polyurethane yarn and method for manufacturing thermoplastic polyurethane yarn using the same
KR101971849B1 (en) Thermoplastic Polyurethane Yarn
KR101341054B1 (en) Method of making coating yarn
CN108084400B (en) Preparation method of high-performance thermoplastic polyurethane elastomer
US9914819B2 (en) Resin for thermoplastic polyurethane yarn comprising silica nanopowder and method for producing thermoplastic polyurethane yarn using the same
CN112029173B (en) Polyethylene breathable film and preparation method thereof
CN109485881B (en) TPU (thermoplastic polyurethane) film material for high-strength electronic protective clothing and preparation method thereof
KR102104174B1 (en) Thermoplastic polyurethane yarn
KR102082090B1 (en) Thermoplastic polyurethane coating yarn comprising hydrophobic nano silica
KR101935206B1 (en) Thermochemical Polyurethan Yarn
KR102057036B1 (en) Thermoplastic hot-melt film with excellent adhesive strength mixed with hydrophobic nano silica
CN111269555B (en) Thermoplastic polyurethane elastomer composition and preparation method thereof
US11268213B2 (en) Core-free thermoplastic polyurethane yarn with added nanosilica
US11286586B2 (en) Core-free thermoplastic polyurethane yarn with added nanosilica
KR102349694B1 (en) A novel thermoplastic polyurethane-silica composite for orthodontic power chain and a method of preparing the same
CN106084746A (en) A kind of transparent high abrasion TPU film and preparation method thereof
KR20240111398A (en) Thermoplastic polyurethane resin coating yarn comprising biomass-base tpu
JPH04332719A (en) Production of thermoplastic polyurethane resin
JPS6018541A (en) Formed article of thermoplastic polyurethane resin and its manufacture
KR20150057616A (en) Fiber-Reinfored Thermoplastic Elastomer Composition and Method for Preparing the Same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20201104

RIC1 Information provided on ipc code assigned before grant

Ipc: D01F 1/10 20060101ALI20201029BHEP

Ipc: D01F 6/70 20060101ALI20201029BHEP

Ipc: C08J 3/22 20060101ALI20201029BHEP

Ipc: C08L 75/04 20060101AFI20201029BHEP

Ipc: B29B 11/10 20060101ALI20201029BHEP

Ipc: C08K 3/36 20060101ALI20201029BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230216