EP3592953A1 - Sealing system for a rotor blade and housing - Google Patents

Sealing system for a rotor blade and housing

Info

Publication number
EP3592953A1
EP3592953A1 EP18716910.7A EP18716910A EP3592953A1 EP 3592953 A1 EP3592953 A1 EP 3592953A1 EP 18716910 A EP18716910 A EP 18716910A EP 3592953 A1 EP3592953 A1 EP 3592953A1
Authority
EP
European Patent Office
Prior art keywords
layer
ceramic
sealing system
porosity
zirconium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18716910.7A
Other languages
German (de)
French (fr)
Inventor
Francis Ladru
Thorsten Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3592953A1 publication Critical patent/EP3592953A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00525Coating or impregnation materials for metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00551Refractory coatings, e.g. for tamping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/514Porosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/6111Properties or characteristics given to material by treatment or manufacturing functionally graded coating

Definitions

  • the invention relates to ceramic sealing systems of turbine blades and housings.
  • Abradable Coatings abradable layers
  • cBN cubic boron nitride
  • cBN cubic boron nitride
  • cBN is a very hard material, which is well suited ceramic layers demolish ⁇ ben.
  • it is not very temperature resistant (cerium ⁇ reduction with oxygen already 1273K), so that it is not suitable strip for stationary gas turbines with unknown times of arrival, since it burns before.
  • FIG. 1 shows a first exemplary embodiment in which the
  • Turbine blade 120 as a component for a rotor 120 to the stator, a housing 1 ⁇ (Fig. 1), 1 ⁇ ⁇ , 1 ⁇ ⁇ ⁇ (Fig. 2, 3) opposite.
  • the turbine blade 120 as part of a rotor 120 typically comprises a nickel- or cobalt-based superalloy in the substrate and has corresponding protective layers on the blade platform and the airfoil 25 (FIGS. 2, 3).
  • These are metallic adhesion promoter layers and / or corrosion protection layers based on NiCoCrAlY, aluminides or platinum aluminides, in each case with an overlying ceramic layer or ceramic layer system (FIGS. 1, 2, 3), in particular with a layer thickness of the ceramic layer of at least 300 ⁇ m.
  • two-layer ceramic coating system on the blade 25, as an underlying partially stabilized zirconium oxide layer with an overlying vollstabili ⁇ overbased zirconium oxide layer as the outer layer may be present with or without segmentation or a pyrochlore with a ceramic bonding layer, in particular based on zirconium oxide.
  • the invention takes a different direction by there a partially stabilized zirconium oxide layer 11 is applied with a lower porosity, total ⁇ 8%, insbeson ⁇ particular ⁇ 6%, with an advantageous layer ⁇ thickness between 50ym and 150ym (Fig. 1, 2, 3).
  • the zirconium oxide layer 11 differs from the ceramic layer seen on the blade, in particular by
  • the opposite layer system 4 ⁇ on the housing 1 ⁇ also has a substrate 7 with a metallic bonding coat 10, preferably based on NiCoCrAlY.
  • NiCoCrAlY layer preferably has a layer thickness of 180ym to 300ym.
  • a thick, partially stabilized zirconium oxide layer 13 is applied to the metallic adhesion promoter layer 10.
  • This ceramic layer 13 on the layer system 4 ⁇ is a partially stabilized zirconium oxide layer having a porosity> 8%, in particular greater than 10% and layer thicknesses of at least 1300ym.
  • the porosity of this ceramic layer 13 is significantly higher and is 18% ⁇ 4%.
  • the partial stabilization (Fig. 1, 2, 3) is achieved preference ⁇ as yttria, but can also be other Stabili ⁇ catalysts such as calcium oxide, magnesium oxide, Yb 2 Ü3 or Gd 2 ⁇ 0 3 he ⁇ ranges, the proportion of yttria ⁇ advantageous way legally is 8%.
  • the layer thickness of the ceramic layer 13 is preferably ⁇ at 1400ym ⁇ 10%.
  • FIG 2 another embodiment is shown in which the turbine blade 120 the same protective coating on the airfoil 25, the blade platform and the
  • Zirconia coating 11 on the top 99 has.
  • the housing 1 ⁇ ⁇ as a layer housing 4 ⁇ ⁇ a two-layer ceramic coating 15 15 ⁇ ⁇ , also on a substrate 7 and a metallic adhesive layer 10, as described in Figure 1.
  • the ceramic bonding layer 15 18 ⁇ (Fig. 3), which has a porosity of preferably 18% ⁇ 4%, but only a maximum thickness of 500ym, particularly 300ym to 500ym.
  • the ceramic layer 15 Anthetics ⁇ ⁇ 18 (Fig. 3) is a layer of oxide partially stabilized zirconia.
  • the stabilization is preferably yttria he ⁇ ranges, but can also be achieved by other stabilizers (Fig. 1, 2, 3).
  • the proportion of yttria stabilizer is 20% to 48%.
  • the layer thickness of the thick outer ceramic layer 15 ⁇ ⁇ , 18 ⁇ ⁇ ( Figure 2, 3) is preferably at lOOym.
  • FIG. 3 shows a further exemplary embodiment of the invention.
  • the ceramic layer system 4 ⁇ ⁇ ⁇ on the ceramic layers 18 18 ⁇ ⁇ is also double-layered and also has a ceramic bonding layer 18 as in ⁇ 2 written ⁇ written on.
  • the thick, outer, ceramic layer 18 ⁇ ⁇ is partially stabilized, in particular with yttrium oxide, in particular with 8%. Stabilization can also be achieved by other stabilizer ⁇ lisa factors.
  • the porosity of the outer ceramic layer 18 ⁇ ⁇ is preferably 24% ⁇ 3%.
  • the innovation is, on the one hand, the reinforcement of the blade tips 99 with a high-temperature-capable and phase-stable material.
  • the ceramic layers are so-called highly homogeneous porous layers.
  • FIG. 4 shows a perspective view of a rotor blade 120 or guide vane show ⁇ 130 of a turbomachine, which extends along a longitudinal axis of the 121st
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
  • the vane 130 having at its blade tip 415 have a further platform (not Darge ⁇ asserted).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is, for example, as a hammerhead out staltet ⁇ . Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a medium felblatt to the Schau- 406 flows past, a leading edge 409 and a trailing edge 412th
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof. Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place, for example. by directed solidification from the melt. These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar crystalline
  • Grain structure (columnar, ie grains which run the entire length of the workpiece and here, in common usage, are referred to as directionally solidified) or a monocrystalline structure, ie the entire workpiece consists of a single crystal.
  • directionally solidified ie grains which run the entire length of the workpiece and here, in common usage, are referred to as directionally solidified
  • a monocrystalline structure ie the entire workpiece consists of a single crystal.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX, M is at least one element of the group iron (Fe), cobalt (Co),
  • Nickel (Ni) is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • the density is preferably 95% of the theoretical
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
  • a thermal barrier coating which is preferably the outermost layer, and consists for example of Zr0 2 , Y2Ü3-Zr02, ie it is not, partially wise or completely stabilized by yttrium oxide
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the heat insulating layer can ⁇ ner to have better thermal shock resistance porous, micro- or macro-cracked pERSonal.
  • the thermal barrier coating is therefore preferably more porous than the
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 5 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has a rotatably mounted about a rotational axis 102 ⁇ rotor 103 having a shaft 101, which is also referred to as the turbine rotor.
  • a compressor 105 for example, a torus-like
  • Combustion chamber 110 in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed, for example, from two blade rings ⁇ .
  • the hot gas channel 111 of a row of vanes 115 is followed by a series 125 formed of rotor blades 120.
  • the vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the rotor blades 120 of a row 125 are mounted on the rotor 103 by means of a turbine disk 133, for example are attached.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • Iron, nickel or cobalt-based superalloys are used as material for the components, in particular for the turbine blades 120, 130 and components of the combustion chamber 110.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium.
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • MCrAlX may still be present a thermal barrier coating, and consists for example of Zr02, Y203-Zr02, ie it is not, partially or completely stabilized by Ytt ⁇ riumoxid and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the guide blade 130 has a guide blade root facing the inner housing 138 of the turbine 108 (not shown here) and a guide blade foot opposite
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The invention relates to a ceramic sealing system between a rotor blade (120) and a housing (1''). By means of the combination of a small porous zirconium oxide layer (11) on a turbine rotor blade, which zirconium oxide layer faces a ceramic layer system (15', 15'') of higher porosity, durable sealing systems are achieved. The housing (1'') has a metal substrate (7), a metal adhesion-promoting layer (10), and a thick, outer, ceramic layer (15', 15'') based on zirconium oxide, in particular having a porosity ≥ 14%.

Description

Dichtungssystem für Laufschaufel und Gehäuse  Sealing system for blade and housing
Die Erfindung betrifft keramische Dichtsysteme von Turbinen- laufschaufein und Gehäusen. The invention relates to ceramic sealing systems of turbine blades and housings.
Zur Optimierung von Radialspalten innerhalb stationärer Gasturbinen werden sogenannte "Abradable Coatings" (abriebfähige Schichten) eingesetzt, die dem mechanischen Widerstand von Turbinenlaufschaufelspitzen in ihrer thermischen Ausdehnung nachgeben sollen und abgerieben werden, so dass ein Graben innerhalb einer keramischen Beschichtung entsteht. To optimize radial gaps within stationary gas turbines so-called "Abradable Coatings" (abradable layers) are used, which should give the mechanical resistance of turbine blade tips in their thermal expansion and are abraded, so that a trench formed within a ceramic coating.
Oft hat dessen Laufschaufelmaterial auf der Keramik abgerie- ben. Often, its blade material rubbed off on the ceramic.
In Flugzeugtriebwerken wird die Schaufelspitze mitunter mit cBN (kubisches Bornitrid) beschichtet, um eine Abrasivwirkung auf die Einlaufschichten zu erzielen. cBN ist ein sehr hartes Material, was gut geeignet ist, keramische Schichten abzurei¬ ben. Allerdings ist es nicht sehr temperaturbeständig (Zer¬ setzung mit Sauerstoff bereits unter 1273K) , so dass es für stationäre Gasturbinen mit unbekannten Zeitpunkten des An- streifens nicht geeignet ist, da es vorher verbrennt. In aircraft engines, the blade tip is sometimes coated with cBN (cubic boron nitride) to provide an abrasive action on the run-in layers. cBN is a very hard material, which is well suited ceramic layers demolish ¬ ben. However, it is not very temperature resistant (cerium ¬ reduction with oxygen already 1273K), so that it is not suitable strip for stationary gas turbines with unknown times of arrival, since it burns before.
Andere Hersteller von stationären Gasturbinen verwenden sogenannte "engineered surfaces". Diese Schichten weisen schräg zur Strömungsrichtung in die Einlaufschichten eingebrachte Vertiefungsrillen auf, die das Eingraben erleichtern sollen. Dies hat jedoch zur Folge, dass Verwirbelungen bzw. Druckverluste an den Vertiefungskanten zu einem negativen Einfluss auf die Maschinenperformance führen. Other manufacturers of stationary gas turbines use so-called "engineered surfaces". These layers have recessed grooves introduced obliquely to the flow direction into the inlet layers, which are intended to facilitate burial. However, this has the consequence that turbulences or pressure losses at the recessed edges lead to a negative influence on the machine performance.
Es ist daher Aufgabe der Erfindung oben genanntes Problem zu lösen. Die Aufgabe wird gelöst durch ein Dichtungssystem gemäß Anspruch 1. It is therefore an object of the invention to solve the above-mentioned problem. The object is achieved by a sealing system according to claim 1.
In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden kön¬ nen, um weitere Vorteile zu erzielen. In the dependent claims further advantageous measures are listed, which are combined with each other Kings ¬ nen to obtain further advantages.
Es zeigen die Figuren 1, 2 und 3 Ausführungsbeispiele der Er¬ findung, die Figuren 4 und 5 eine Turbinenschaufel und eine Gasturbine. 1, 2 and 3 embodiments of He ¬ invention, Figures 4 and 5, a turbine blade and a gas turbine.
Die Figuren und die Beschreibung stellen nur Ausführungsbeispiele der Erfindung dar. Figur 1 zeigt ein erstes Ausführungsbeispiel, bei dem dieThe figures and the description represent only exemplary embodiments of the invention. FIG. 1 shows a first exemplary embodiment in which the
Turbinenlaufschaufel 120 als Bauteil für einen Rotor 120 dem Stator, einem Gehäuse 1λ (Fig. 1), 1λ λ, 1λ λ λ (Fig. 2, 3) gegenüberliegt . Die Turbinenschaufel 120 als Teil eines Rotors 120 weist in der Regel eine nickel- oder kobaltbasierte Superlegierung im Substrat auf und weist entsprechende Schutzschichten auf der Schaufelplattform und dem Schaufelblatt 25 auf (Fig. 2, 3) . Dies sind metallische Haftvermittlerschichten und/oder Korro- sionsschutzschichten auf der Basis NiCoCrAlY, Aluminide oder Platinaluminide, jeweils mit einer darüber liegenden keramischen Schicht oder keramischen Schichtsystem (Fig. 1, 2, 3), insbesondere mit einer Schichtdicke der keramischen Schicht von mindestens 300ym. Turbine blade 120 as a component for a rotor 120 to the stator, a housing 1 λ (Fig. 1), 1 λ λ , 1 λ λ λ (Fig. 2, 3) opposite. The turbine blade 120 as part of a rotor 120 typically comprises a nickel- or cobalt-based superalloy in the substrate and has corresponding protective layers on the blade platform and the airfoil 25 (FIGS. 2, 3). These are metallic adhesion promoter layers and / or corrosion protection layers based on NiCoCrAlY, aluminides or platinum aluminides, in each case with an overlying ceramic layer or ceramic layer system (FIGS. 1, 2, 3), in particular with a layer thickness of the ceramic layer of at least 300 μm.
Ebenso können zweilagige keramische Schichtsysteme auf dem Schaufelblatt 25, wie eine unterliegende teilstabilisierte Zirkonoxidschicht mit einer darüber liegenden vollstabili¬ sierten Zirkonoxidschicht als äußere Schicht mit oder ohne Segmentierung vorhanden sein oder eine Pyrochlorschicht mit einer keramischen Bindungsschicht, insbesondere auf der Basis von Zirkonoxid. Eine Turbinenschaufelspitze 99, die dem Stator 1λ (Fig. 1), 1λ λ, ΐλ λ λ (Fig. 2, 3) direkt gegenüberliegt, wird nicht mit einer Panzerung versehen. Hier geht die Erfindung eine andere Richtung, indem dort eine teilstabilisierte Zirkonoxidschicht 11 mit einer geringeren Porosität, insgesamt < 8%, insbeson¬ dere < 6% aufgebracht wird, mit einer vorteilhaften Schicht¬ dicke zwischen 50ym und 150ym (Fig. 1, 2, 3) . Similarly, two-layer ceramic coating system on the blade 25, as an underlying partially stabilized zirconium oxide layer with an overlying vollstabili ¬ overbased zirconium oxide layer as the outer layer may be present with or without segmentation or a pyrochlore with a ceramic bonding layer, in particular based on zirconium oxide. A turbine blade tip 99, the stator 1 λ (Fig. 1), and 1 λ λ, ΐ λ λ λ (Fig. 2, 3) is directly opposite, is not provided with an armor. Here the invention takes a different direction by there a partially stabilized zirconium oxide layer 11 is applied with a lower porosity, total <8%, insbeson ¬ particular <6%, with an advantageous layer ¬ thickness between 50ym and 150ym (Fig. 1, 2, 3).
Die Zirkonoxidschicht 11 unterscheidet sich von der kerami- sehen Schicht auf dem Schaufelblatt, insbesondere durch The zirconium oxide layer 11 differs from the ceramic layer seen on the blade, in particular by
Lagigkeit, Porosität (mindestens 10% Unterschied) oder Zusam¬ mensetzung (mindestens 10% oder anderer Stabilisator) . Lagigkeit, porosity (at least 10% difference) or together ¬ mensetzung (at least 10%, or other stabilizer).
Das gegenüberliegende Schichtsystem 4 λ auf dem Gehäuse 1 λ weist ebenfalls ein Substrat 7 mit einem metallischen Bond- coat 10, vorzugsweise auf der Basis NiCoCrAlY auf. Die The opposite layer system 4 λ on the housing 1 λ also has a substrate 7 with a metallic bonding coat 10, preferably based on NiCoCrAlY. The
NiCoCrAlY-Schicht weist vorzugsweise eine Schichtdicke von 180ym bis 300ym auf. Auf die metallische Haftvermittlerschicht 10 wird eine dicke, äußere teilstabilisierte Zirkonoxidschicht 13 aufgebracht. NiCoCrAlY layer preferably has a layer thickness of 180ym to 300ym. A thick, partially stabilized zirconium oxide layer 13 is applied to the metallic adhesion promoter layer 10.
Diese keramische Schicht 13 auf dem Schichtsystem 4 λ ist eine teilstabilisierte Zirkonoxidschicht mit einer Porosität > 8%, insbesondere größer 10% und Schichtdicken von mindestens 1300ym. This ceramic layer 13 on the layer system 4 λ is a partially stabilized zirconium oxide layer having a porosity> 8%, in particular greater than 10% and layer thicknesses of at least 1300ym.
Die Porosität dieser keramischen Schicht 13 ist deutlich höher und liegt bei 18% ± 4%. Die Teilstabilisierung (Fig. 1, 2, 3) wird erreicht vorzugs¬ weise durch Yttriumoxid, kann aber auch durch andere Stabili¬ satoren wie Kalziumoxid, Magnesiumoxid, Yb2Ü3 oder Gd2<03 er¬ reicht werden, wobei der Anteil von Yttriumoxid vorteil¬ hafterweise bei 8% liegt. The porosity of this ceramic layer 13 is significantly higher and is 18% ± 4%. The partial stabilization (Fig. 1, 2, 3) is achieved preference ¬ as yttria, but can also be other Stabili ¬ catalysts such as calcium oxide, magnesium oxide, Yb 2 Ü3 or Gd 2 <0 3 he ¬ ranges, the proportion of yttria ¬ advantageous way legally is 8%.
Die Schichtdicke der keramischen Schicht 13 liegt vorzugs¬ weise bei 1400ym ± 10%. In Figur 2 ist ein weiteres Ausführungsbeispiel gezeigt, bei dem die Turbinenlaufschaufel 120 dieselbe Schutzbeschichtung auf dem Schaufelblatt 25, der Schaufelplattform und der The layer thickness of the ceramic layer 13 is preferably ¬ at 1400ym ± 10%. In Figure 2, another embodiment is shown in which the turbine blade 120 the same protective coating on the airfoil 25, the blade platform and the
Zirkonoxidbeschichtung 11 auf der Spitze 99 aufweist. Zirconia coating 11 on the top 99 has.
Hingegen weist das Gehäuse 1 λ λ als Schichtgehäuse 4 λ λ eine zweilagige keramische Beschichtung 15 15 λ λ auf, ebenfalls auf einem Substrat 7 und einer metallischen Haftvermittler- schicht 10, wie in Figur 1 beschrieben. On the other hand, the housing 1 λ λ as a layer housing 4 λ λ a two-layer ceramic coating 15 15 λ λ , also on a substrate 7 and a metallic adhesive layer 10, as described in Figure 1.
Es wird jedoch eine keramische Anbindungsschicht 15 18 λ (Fig. 3) verwendet, die eine Porosität von vorzugsweise 18% ± 4% aufweist, aber nur eine Schichtdicke von maximal 500ym, insbesondere 300ym bis 500ym. Die keramische Anbindungs¬ schicht 15 18 λ (Fig. 3) ist eine teilstabilisierte Zirkon- oxidschicht . However, it is a ceramic bonding layer 15 18 λ (Fig. 3), which has a porosity of preferably 18% ± 4%, but only a maximum thickness of 500ym, particularly 300ym to 500ym. The ceramic layer 15 Anbindungs ¬ λ 18 (Fig. 3) is a layer of oxide partially stabilized zirconia.
Als dickere, mindestens doppelt so dicke äußere keramische Schicht 15 λ λ wird eine vollstabilisierte Zirkonoxidschicht 15 λ λ verwendet . Than thicker, at least twice as thick outer ceramic layer 15 λ λ a fully stabilized zirconium oxide is used 15 λ λ.
Die Stabilisierung wird vorzugsweise durch Yttriumoxid er¬ reicht, kann aber auch durch andere Stabilisatoren erreicht werden (Fig. 1, 2, 3) . The stabilization is preferably yttria he ¬ ranges, but can also be achieved by other stabilizers (Fig. 1, 2, 3).
Der Anteil an dem Stabilisator von Yttriumoxid liegt bei 20% bis 48%. Die Schichtdicke der dicken äußeren keramischen Schicht 15 λ λ, 18 λ λ (Figur 2, 3) liegt vorzugsweise bei lOOOym. The proportion of yttria stabilizer is 20% to 48%. The layer thickness of the thick outer ceramic layer 15 λ λ , 18 λ λ (Figure 2, 3) is preferably at lOOym.
In Figur 3 ist ein weiteres Ausführungsbeispiel der Erfindung gezeigt. FIG. 3 shows a further exemplary embodiment of the invention.
Das keramische Schichtsystem 4 λ λ λ auf den keramischen Schichten 18 18 λ λ ist ebenfalls zweilagig und weist ebenfalls eine keramische Anbindungsschicht 18 wie in Figur 2 be¬ schrieben, auf. The ceramic layer system 4 λ λ λ on the ceramic layers 18 18 λ λ is also double-layered and also has a ceramic bonding layer 18 as in ¬ 2 written ¬ written on.
Hingegen ist die dicke, äußere, keramische Schicht 18 λ λ aber teilstabilisiert, insbesondere mit Yttriumoxid, insbesondere mit 8%. Die Stabilisierung kann ebenfalls durch andere Stabi¬ lisatoren erreicht werden. By contrast, the thick, outer, ceramic layer 18 λ λ is partially stabilized, in particular with yttrium oxide, in particular with 8%. Stabilization can also be achieved by other stabilizer ¬ lisa factors.
Jedoch liegt die Porosität der äußeren, keramischen Schicht 18 λ λ vorzugsweise bei 24% ± 3%. However, the porosity of the outer ceramic layer 18 λ λ is preferably 24% ± 3%.
Die Neuerung ist einerseits die Verstärkung der Laufschaufel¬ spitzen 99 mit einem hochtemperaturfähigen und phasenstabilen Material . The innovation is, on the one hand, the reinforcement of the blade tips 99 with a high-temperature-capable and phase-stable material.
Die keramischen Schichten sind sogenannte hochhomogene poröse Schichten . The ceramic layers are so-called highly homogeneous porous layers.
Die Figur 4 zeigt in perspektivischer Ansicht eine Laufschau¬ fel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt. 4 shows a perspective view of a rotor blade 120 or guide vane show ¬ 130 of a turbomachine, which extends along a longitudinal axis of the 121st
Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein. The turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
Die Schaufel 120, 130 weist entlang der Längsachse 121 auf¬ einander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf. The blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufel¬ spitze 415 eine weitere Plattform aufweisen (nicht darge¬ stellt) . As a guide vane 130, the vane 130 having at its blade tip 415 have a further platform (not Darge ¬ asserted).
Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt) . Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausge¬ staltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich. In the mounting region 400, a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown). The blade root 183 is, for example, as a hammerhead out staltet ¬. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
Die Schaufel 120, 130 weist für ein Medium, das an dem Schau- felblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Ab¬ strömkante 412 auf. The blade 120, 130 has a medium felblatt to the Schau- 406 flows past, a leading edge 409 and a trailing edge 412th
Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise mas- sive metallische Werkstoffe, insbesondere Superlegierungen verwendet . In conventional blades 120, 130, in all regions 400, 403, 406 of the blade 120, 130, for example, massive metallic materials, in particular superalloys, are used.
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 AI, WO 99/67435 oder WO 00/44949 bekannt.  Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein. Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind. The blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof. Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
Die Fertigung von derartigen einkristallinen Werkstücken er- folgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.  The production of such monocrystalline workpieces takes place, for example. by directed solidification from the melt. These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristallineHere, dendritic crystals are aligned along the heat flow and form either a columnar crystalline
Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück be- steht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbil- den, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichtemachen. Grain structure (columnar, ie grains which run the entire length of the workpiece and here, in common usage, are referred to as directionally solidified) or a monocrystalline structure, ie the entire workpiece consists of a single crystal. In these processes, one must avoid the transition to globulitic (polycrystalline) solidification, since undirected growth necessarily involves transverse and longitudinal grain boundaries. those which negate the good properties of the directionally solidified or monocrystalline component.
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures) . The term generally refers to directionally solidified microstructures, which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 AI bekannt.  Such methods are known from US Pat. No. 6,024,792 and EP 0 892 090 A1.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Likewise, the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX, M is at least one element of the group iron (Fe), cobalt (Co),
Nickel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf) ) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 AI. Nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)). Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
Die Dichte liegt vorzugsweise bei 95% der theoretischen  The density is preferably 95% of the theoretical
Dichte . Density.
Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer) .  A protective aluminum oxide layer (TGO = thermal grown oxide layer) is formed on the MCrAlX layer (as an intermediate layer or as the outermost layer).
Vorzugsweise weist die SchichtZusammensetzung Co-30Ni-28Cr- 8A1-0, 6Y-0, 7Si oder Co-28Ni-24Cr-10Al-0, 6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al- 0,6Y-3Re oder Ni-12Co-21Cr-llAl-0, 4Y-2Re oder Ni-25Co-17Cr- 10A1-0, 4Y-1, 5Re . Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus Zr02, Y2Ü3-Zr02, d.h. sie ist nicht, teil- weise oder vollständig stabilisiert durch Yttriumoxid Preferably, the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y. Besides these cobalt-based protective coatings, nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re. On the MCrAlX may still be present a thermal barrier coating, which is preferably the outermost layer, and consists for example of Zr0 2 , Y2Ü3-Zr02, ie it is not, partially wise or completely stabilized by yttrium oxide
und/oder Kalziumoxid und/oder Magnesiumoxid. and / or calcium oxide and / or magnesium oxide.
Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht . The thermal barrier coating covers the entire MCrAlX layer.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt. By suitable coating methods, e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärme¬ dämmschicht kann poröse, mikro- oder makrorissbehaftete Kör- ner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die Other coating methods are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD. The heat insulating layer can ¬ ner to have better thermal shock resistance porous, micro- or macro-cracked pERSonal. The thermal barrier coating is therefore preferably more porous than the
MCrAlX-Schicht . MCrAlX layer.
Wiederaufarbeitung (Refurbishment ) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen) . Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidations- schichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wie- derbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130. Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeu¬ tet) auf. The blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.
Die Figur 5 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt. FIG. 5 shows by way of example a gas turbine 100 in a longitudinal partial section.
Die Gasturbine 100 weist im Inneren einen um eine Rotations¬ achse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird. The gas turbine 100 has a rotatably mounted about a rotational axis 102 ¬ rotor 103 having a shaft 101, which is also referred to as the turbine rotor.
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Along the rotor 103 successively follow an intake housing 104, a compressor 105, for example, a torus-like
Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109. Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108. Combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th The annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example. There, for example, four turbine stages 112 connected in series form the turbine 108.
Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufel¬ ringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125. Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind. Each turbine stage 112 is formed, for example, from two blade rings ¬. In the direction of flow of a working medium 113, the hot gas channel 111 of a row of vanes 115 is followed by a series 125 formed of rotor blades 120. The vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the rotor blades 120 of a row 125 are mounted on the rotor 103 by means of a turbine disk 133, for example are attached.
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt) .  Coupled to the rotor 103 is a generator or work machine (not shown).
Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und ver¬ dichtet. Die am turbinenseitigen Ende des Verdichters 105 be- reitgestellte verdichtete Luft wird zu den Brennern 107 ge¬ führt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine. Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet . During operation of the gas turbine 100 104 air 135 is sucked by the compressor 105 through the intake housing and ver ¬ seals. The loading 105 compressed air provided at the turbine end of the compressor is ge ¬ leads to the burners 107, where it is mixed with a fuel. The mixture is then burned to form the working fluid 113 in the combustion chamber 110. From there, the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120. On the rotor blades 120, the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it. The components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100. The guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden. Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin ( SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur) . To withstand the prevailing temperatures, they can be cooled by means of a coolant. Likewise, substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
Als Material für die Bauteile, insbesondere für die Turbinen- schaufei 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Super- legierungen verwendet. Iron, nickel or cobalt-based superalloys are used as material for the components, in particular for the turbine blades 120, 130 and components of the combustion chamber 110.
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 AI, WO 99/67435 oder WO 00/44949 bekannt.  Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Nickel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium, Scandium (Sc) und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 AI. Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, und besteht beispielsweise aus Zr02, Y203-Zr02, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Ytt¬ riumoxid und/oder Kalziumoxid und/oder Magnesiumoxid. Also, the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium). Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1. On the MCrAlX may still be present a thermal barrier coating, and consists for example of Zr02, Y203-Zr02, ie it is not, partially or completely stabilized by Ytt ¬ riumoxid and / or calcium oxide and / or magnesium oxide.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt. By suitable coating methods, e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht darge- stellt) und einen dem Leitschaufelfuß gegenüberliegendenThe guide blade 130 has a guide blade root facing the inner housing 138 of the turbine 108 (not shown here) and a guide blade foot opposite
Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt . Guide vane head on. The vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Claims

Patentansprüche claims
1. Keramisches Dichtungssystem zwischen einem Stator (1 1. Ceramic sealing system between a stator (1
1λ λ, 1λ λ λ) und einem Rotor (120), 1 λ λ , 1 λ λ λ ) and a rotor (120),
insbesondere für eine Laufschaufel (120) und ein Gehäuse (Γ, 1λ\ 1λ λ λ) als Stator, in particular for a moving blade (120) and a housing (Γ, 1 λ \ 1 λ λ λ ) as a stator,
wobei die Turbinenlaufschaufel (120) einen Teil des Rotors darstellt,  wherein the turbine blade (120) forms part of the rotor,
die (120) eine erste Beschichtung auf dem Rotor (120), insbesondere auf dem Schaufelblatt (25) der Turbinenschau¬ fel (120) aufweist, the (120) having a first coating on the rotor (120), and in particular the airfoil (25) of the turbine show ¬ fel (120)
wobei diese Beschichtung ein teilstabilisiertes Zirkonoxid mit einer Porosität von größer 8% aufweist,  this coating has a partially stabilized zirconium oxide with a porosity of more than 8%,
oder verschieden ist von einer Beschichtung (11) auf einer or different from a coating (11) on one
Spitze (99) des Rotors oder der Turbinenschaufel (120), wobei auf der Spitze (99) des Rotors (120) oder der Turbi¬ nenschaufel (120) eine Zirkonoxidschicht (11) mit einer Porosität kle insbesondere kleiner 6%, aufgebracht ist, Tip (99) of the rotor or the turbine blade (120), wherein on the tip (99) of the rotor (120) or the turbine blade ¬ (120) a zirconium oxide layer (11) with a porosity kle in particular less than 6%, is applied,
wohingegen der Stator (1λ, 1λ λ, 1λ λ λ) ein metallisches Sub¬ strat ( 7 ) , whereas the stator (1 λ 1 λ λ 1 λ λ λ) a metal sub strate ¬ (7)
eine metallische Haftvermittlerschicht (10),  a metallic adhesion promoter layer (10),
insbesondere auf der Basis NiCoCrAlY,  especially based on NiCoCrAlY,
insbesondere mit einer Schichtdicke von 180ym bis 300ym und eine dicke, äußere,  especially with a layer thickness of 180ym to 300ym and a thick, outer,
insbesondere größer lOOOym,  especially greater than 1000,
keramische Schicht (13; 15 15 λ λ; 18 18 λ λ) auf der Basis Zirkonoxid aufweist, ceramic layer (13; 15 15 λ λ ; 18 18 λ λ ) based on zirconium oxide,
insbesondere mit einer Porosität ^ 14%.  in particular with a porosity ^ 14%.
2. Keramisches Dichtungssystem nach Anspruch 1, 2. Ceramic sealing system according to claim 1,
bei dem die dicke, äußere keramische Schicht (13) eine teilstabilisierte, einlagige Schicht darstellt,  wherein the thick, outer ceramic layer (13) is a partially stabilized, single layer,
insbesondere mit einer Porosität von 18% ± 4%. in particular with a porosity of 18% ± 4%.
3. Keramisches Dichtungssystem nach Anspruch 1, bei dem die keramische Schicht (15 15 λ λ; 18 18 λ λ) zwei- lagig ausgebildet ist. 3. A ceramic sealing system according to claim 1, wherein the ceramic layer (15 15 λ λ, 18 λ λ 18) is formed in two layers.
4. Keramisches Dichtungssystem nach Anspruch 1 oder 3, bei dem eine innere keramische Anbindungsschicht (15 18 λ) vorhanden ist, 4. A ceramic sealing system according to claim 1 or 3, wherein an inner ceramic bonding layer (15 18 λ ) is present,
die insbesondere teilstabilisiertes Zirkonoxid aufweist, insbesondere mit einer Porosität von 18% ± 4%.  which in particular has partially stabilized zirconium oxide, in particular with a porosity of 18% ± 4%.
5. Keramisches Dichtungssystem nach Anspruch 3 oder 4, mit einer äußeren, mindestens doppelt so dicken Zirkonoxid- schicht (15 λ \ 18 λ λ) . 5. Ceramic sealing system according to claim 3 or 4, with an outer, at least twice as thick zirconium oxide layer (15 λ \ 18 λ λ ).
6. Keramisches Dichtungssystem nach einem oder mehreren der Ansprüche 3, 4 oder 5, 6. Ceramic sealing system according to one or more of claims 3, 4 or 5,
bei dem die äußere, keramische Schicht (15 λ λ, 18 λ λ) mindes¬ tens lOOOym dick ist, wherein the outer ceramic layer (15 λ λ, 18 λ λ) is Minim ¬ least lOOOym thick,
insbesondere lOOOym ± 10%.  in particular 100% ± 10%.
7. Keramisches Dichtungssystem nach einem oder mehreren der Ansprüche 1, 3, 4, 5 oder 6, 7. Ceramic sealing system according to one or more of claims 1, 3, 4, 5 or 6,
mit einer keramischen Anbindungsschicht (18 λ), with a ceramic bonding layer (18 λ),
insbesondere auf der Basis einer teilstabilisierten Yttriumoxidschicht mit einer Porosität von 18% ± 4% und einer äußeren, hochporösen, mindestens doppelt so dicken teilstabilisierten Zirkonoxidschicht (18 λ λ), in particular on the basis of a partially stabilized yttrium oxide layer having a porosity of 18% ± 4% and an outer, highly porous, at least twice as thick partially stabilized zirconium oxide layer (18 λ λ ),
insbesondere mit einer Porosität von 24% ± 3%. in particular with a porosity of 24% ± 3%.
8. Keramisches Dichtungssystem nach einem oder mehreren der Ansprüche 1, 3, 4, 5 oder 6, 8. Ceramic sealing system according to one or more of claims 1, 3, 4, 5 or 6,
mit einer keramischen Anbindungsschicht (15 λ), with a ceramic bonding layer (15 λ ),
insbesondere auf der Basis einer teilstabilisierten  in particular based on a partially stabilized
Yttriumoxidschicht mit einer Porosität von 18% ± 4% und einer äußeren, porösen, mindestens doppelt so dicken vollstabilisierten Zirkonoxidschicht (15 λ λ), Yttrium oxide layer with a porosity of 18% ± 4% and an outer, porous, at least twice as thick fully stabilized zirconium oxide layer (15 λ λ ),
insbesondere mit einer Porosität von 18% ± 4%.  in particular with a porosity of 18% ± 4%.
9. Keramisches Dichtungssystem nach Anspruch 3, 4, 5, 6 oder 8, 9. A ceramic sealing system according to claim 3, 4, 5, 6 or 8,
bei dem die Vollstabilisierung durch Yttriumoxid,  in which the full stabilization by yttrium oxide,
insbesondere mit einem Anteil von 48 ~6  especially with a share of 48 ~ 6
erfolgt.  he follows.
10. Keramisches Dichtungssystem nach einem oder mehreren der Ansprüche 2, 3, 4, 5, 6, 7 oder 8, 10. Ceramic sealing system according to one or more of claims 2, 3, 4, 5, 6, 7 or 8,
bei dem die Teilstabilisierung durch Yttriumoxid mit einem in which the partial stabilization by yttria with a
Anteil 8% erfolgt. 8% share takes place.
11. Keramisches Dichtungssystem nach einem oder mehreren der Ansprüche 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10, 11. A ceramic sealing system according to one or more of claims 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10,
bei dem die Stabilisierung von Zirkonoxid nur durch Yttriumoxid erfolgt.  in which the stabilization of zirconium oxide is effected only by yttrium oxide.
12. Keramisches Dichtungssystem nach einem oder mehreren der Ansprüche 3, 4, 5, 6, 7, 8, 10 oder 11, 12. Ceramic sealing system according to one or more of claims 3, 4, 5, 6, 7, 8, 10 or 11,
bei dem die Dicke der keramischen Anbindungsschicht (15 18 λ) zwischen 300ym und 500ym, in which the thickness of the ceramic bonding layer (15 18 λ ) is between 300ym and 500ym,
insbesondere bei 400ym liegt. especially at 400ym.
13. Keramisches Dichtungssystem nach einem oder mehreren der vorherigen Ansprüche, 13. Ceramic sealing system according to one or more of the preceding claims,
bei dem die Schichtdicke der keramischen Schichten (13; 15\ 15λ\· 18\ 18λ λ) auf dem Gehäuse (1\ 1λ\ 1λ λ λ) bei 1300ym bis 1500ym liegt, in which the layer thickness of the ceramic layers (13; 15 \ 15 λ \ · 18 \ 18 λ λ ) lies on the housing (1 \ 1 λ \ 1 λ λ λ ) at 1300ym to 1500ym,
insbesondere bei 1400ym.  especially at 1400ym.
14. Keramisches Dichtungssystem nach einem oder mehreren der vorherigen Ansprüche, 14. Ceramic sealing system according to one or more of the preceding claims,
bei dem die keramische Schicht (11) auf der Schaufelspitze (99) zwischen 50ym und 150ym dick ist.  in which the ceramic layer (11) on the blade tip (99) is between 50 μm and 150 μm thick.
15. Keramisches Dichtungssystem nach einem oder mehreren der vorherigen Ansprüche, 15. Ceramic sealing system according to one or more of the preceding claims,
bei dem eine keramische Schicht auf dem Schaufelblatt (25) eine Schichtdicke von mindestens 300ym aufweist.  in which a ceramic layer on the blade (25) has a layer thickness of at least 300 μm.
EP18716910.7A 2017-04-28 2018-03-21 Sealing system for a rotor blade and housing Pending EP3592953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017207238.5A DE102017207238A1 (en) 2017-04-28 2017-04-28 Sealing system for blade and housing
PCT/EP2018/057165 WO2018197114A1 (en) 2017-04-28 2018-03-21 Sealing system for a rotor blade and housing

Publications (1)

Publication Number Publication Date
EP3592953A1 true EP3592953A1 (en) 2020-01-15

Family

ID=61952628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18716910.7A Pending EP3592953A1 (en) 2017-04-28 2018-03-21 Sealing system for a rotor blade and housing

Country Status (5)

Country Link
US (1) US11274560B2 (en)
EP (1) EP3592953A1 (en)
CN (1) CN110573696B (en)
DE (1) DE102017207238A1 (en)
WO (1) WO2018197114A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712379A1 (en) * 2019-03-22 2020-09-23 Siemens Aktiengesellschaft Fully stabilized zirconia in a seal system
FR3108365B1 (en) * 2020-03-18 2022-09-09 Safran Helicopter Engines BLADE FOR TURBOMACHINE COMPRISING AN ANTI-CORROSION COATING, TURBOMACHINE COMPRISING THE BLADE AND METHOD FOR DEPOSITING THE COATING ON THE BLADE

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825364A (en) * 1972-06-09 1974-07-23 Gen Electric Porous abradable turbine shroud
US4289446A (en) * 1979-06-27 1981-09-15 United Technologies Corporation Ceramic faced outer air seal for gas turbine engines
US4269903A (en) 1979-09-06 1981-05-26 General Motors Corporation Abradable ceramic seal and method of making same
US4936745A (en) * 1988-12-16 1990-06-26 United Technologies Corporation Thin abradable ceramic air seal
DE3926479A1 (en) 1989-08-10 1991-02-14 Siemens Ag RHENIUM-PROTECTIVE COATING, WITH GREAT CORROSION AND / OR OXIDATION RESISTANCE
JP2773050B2 (en) 1989-08-10 1998-07-09 シーメンス アクチエンゲゼルシヤフト Heat-resistant and corrosion-resistant protective coating layer
WO1993024672A1 (en) * 1992-05-29 1993-12-09 United Technologies Corporation Ceramic thermal barrier coating for rapid thermal cycling applications
DE69418045T2 (en) 1993-08-06 1999-10-07 Smithkline Beecham Plc AMID DERIVATIVES AS 5HT1D RECEPTOR ANTAGONISTS
US5603603A (en) * 1993-12-08 1997-02-18 United Technologies Corporation Abrasive blade tip
US5520516A (en) * 1994-09-16 1996-05-28 Praxair S.T. Technology, Inc. Zirconia-based tipped blades having macrocracked structure
EP0705911B1 (en) * 1994-10-04 2001-12-05 General Electric Company Thermal barrier coating
WO1996012049A1 (en) 1994-10-14 1996-04-25 Siemens Aktiengesellschaft Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same
US5645399A (en) * 1995-03-15 1997-07-08 United Technologies Corporation Gas turbine engine case coated with thermal barrier coating to control axial airfoil clearance
US6102656A (en) * 1995-09-26 2000-08-15 United Technologies Corporation Segmented abradable ceramic coating
EP0892090B1 (en) 1997-02-24 2008-04-23 Sulzer Innotec Ag Method for manufacturing single crystal structures
EP0861927A1 (en) 1997-02-24 1998-09-02 Sulzer Innotec Ag Method for manufacturing single crystal structures
US5912087A (en) * 1997-08-04 1999-06-15 General Electric Company Graded bond coat for a thermal barrier coating system
US6190124B1 (en) * 1997-11-26 2001-02-20 United Technologies Corporation Columnar zirconium oxide abrasive coating for a gas turbine engine seal system
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
WO2001009403A1 (en) 1999-07-29 2001-02-08 Siemens Aktiengesellschaft High-temperature part and method for producing the same
JP3551883B2 (en) * 2000-03-02 2004-08-11 株式会社日立製作所 Gas turbine blades
US20030203224A1 (en) * 2001-07-30 2003-10-30 Diconza Paul Josesh Thermal barrier coating of intermediate density
DE50104022D1 (en) 2001-10-24 2004-11-11 Siemens Ag Protective layer containing rhenium to protect a component against corrosion and oxidation at high temperatures
EP1319729B1 (en) 2001-12-13 2007-04-11 Siemens Aktiengesellschaft High temperature resistant part, made of single-crystal or polycrystalline nickel-base superalloy
DE10225532C1 (en) 2002-06-10 2003-12-04 Mtu Aero Engines Gmbh Gap sealing system for turbine blade tips, includes ceramic layers with metallic adherent layer and no other intermediates
EP1541810A1 (en) 2003-12-11 2005-06-15 Siemens Aktiengesellschaft Use of a thermal barrier coating for a part of a steam turbine and a steam turbine
DE102004002943B4 (en) * 2004-01-21 2007-07-19 Mtu Aero Engines Gmbh Layer system for a rotor / stator seal of a turbomachine
US7510370B2 (en) 2005-02-01 2009-03-31 Honeywell International Inc. Turbine blade tip and shroud clearance control coating system
US7597966B2 (en) * 2005-06-10 2009-10-06 General Electric Company Thermal barrier coating and process therefor
EP1783248A1 (en) 2005-11-04 2007-05-09 Siemens Aktiengesellschaft Two-layer thermal barrier coating system containing a pyrochlore phase
WO2007112783A1 (en) * 2006-04-06 2007-10-11 Siemens Aktiengesellschaft Layered thermal barrier coating with a high porosity, and a component
US20070274837A1 (en) 2006-05-26 2007-11-29 Thomas Alan Taylor Blade tip coatings
EP1967615A1 (en) * 2007-03-07 2008-09-10 Siemens Aktiengesellschaft Method for applying a heat insulation coating and turbine components with a heat insulation coating
CH699312A1 (en) * 2008-08-15 2010-02-15 Alstom Technology Ltd Blade arrangement for a gas turbine.
JP2010151267A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Seal structure and gas turbine using the same
US20110164963A1 (en) 2009-07-14 2011-07-07 Thomas Alan Taylor Coating system for clearance control in rotating machinery
DE102009060570A1 (en) * 2009-12-23 2011-07-28 Lufthansa Technik AG, 22335 Method for producing a rotor / stator seal of a gas turbine
EP2365106A1 (en) * 2010-03-03 2011-09-14 Siemens Aktiengesellschaft Ceramic thermal insulating layer system with modified adhesive layer
EP2407579A1 (en) 2010-07-14 2012-01-18 Siemens Aktiengesellschaft Porous ceramic coating system
US8727712B2 (en) 2010-09-14 2014-05-20 United Technologies Corporation Abradable coating with safety fuse
DE102010048147B4 (en) 2010-10-11 2016-04-21 MTU Aero Engines AG Layer system for rotor / stator seal of a turbomachine and method for producing such a layer system
EP2450465A1 (en) 2010-11-09 2012-05-09 Siemens Aktiengesellschaft Porous coating system with porous internal coating
US20130071235A1 (en) * 2011-09-20 2013-03-21 Christopher W. Strock Light weight abradable air seal
EP2644824A1 (en) * 2012-03-28 2013-10-02 Siemens Aktiengesellschaft Method for producing and restoring of ceramic thermal barrier coatings in gas turbines and related gas turbine
KR20150060960A (en) 2012-10-05 2015-06-03 지멘스 악티엔게젤샤프트 Method for treating a gas turbine blade and gas turbine having said blade
FR2996874B1 (en) 2012-10-11 2014-12-19 Turbomeca ROTOR-STATOR ASSEMBLY FOR GAS TURBINE ENGINE
EP2754733A1 (en) 2013-01-14 2014-07-16 Siemens Aktiengesellschaft Anti-corrosion and anti-erosion protective coating
WO2015130528A1 (en) 2014-02-25 2015-09-03 Siemens Aktiengesellschaft Turbine component thermal barrier coating with crack isolating engineered surface features

Also Published As

Publication number Publication date
US20200123911A1 (en) 2020-04-23
US11274560B2 (en) 2022-03-15
DE102017207238A1 (en) 2018-10-31
CN110573696A (en) 2019-12-13
CN110573696B (en) 2022-06-24
WO2018197114A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
EP1707653B1 (en) Coating system
EP2436798B1 (en) Masking material, masking device and method for masking a substrate
EP2612949B1 (en) Alloy, protective layer and component
EP2593582B1 (en) Porous ceramic coating system
EP1783248A1 (en) Two-layer thermal barrier coating system containing a pyrochlore phase
EP1925687A1 (en) NICoCrAl-layer and metallic layer system
EP2230329A1 (en) Dual layer porous coating system with pyrochlorine phase
EP2450465A1 (en) Porous coating system with porous internal coating
EP2279282A1 (en) Method for the production of an optimized bonding agent layer by means of partial evaporation of the bonding agent layer, and a layer system
EP3068921A1 (en) Compressor blade having an erosion-resistant hard material coating
EP2904211A1 (en) Modified surface around a hole
EP1793008A1 (en) Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
EP1798299B1 (en) Alloy, protective coating and component
EP2742171B1 (en) Ceramic double layer on a zirconium oxide basis
EP3592953A1 (en) Sealing system for a rotor blade and housing
EP2365106A1 (en) Ceramic thermal insulating layer system with modified adhesive layer
EP2584067A1 (en) Component with graphene and method for producing components with graphene
EP2845924A1 (en) Porous ceramic coating system
EP2733236A1 (en) Two-layer ceramic coating system having an outer porous layer and depressions therein
DE202005020695U1 (en) Multi-layer material for gas turbine vanes and heat shields, has a metallic bonding layer between the substrate and an inner ceramic layer supporting an outer ceramic layer
EP2354275A1 (en) Multiple layer system consisting of metallic layer and ceramic layer
EP2589681A1 (en) Combination of columnar and globular structures
EP1932935A1 (en) Method for the manufacture of a turbine blade with an oxide layer on a metallic coating, a turbine blade and its use, and a method for the operation of a turbine.
EP2130945A1 (en) Layer system with TBC and noble metal protective layer

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200901

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG