EP3584366B1 - Railway carriage - Google Patents

Railway carriage Download PDF

Info

Publication number
EP3584366B1
EP3584366B1 EP19181315.3A EP19181315A EP3584366B1 EP 3584366 B1 EP3584366 B1 EP 3584366B1 EP 19181315 A EP19181315 A EP 19181315A EP 3584366 B1 EP3584366 B1 EP 3584366B1
Authority
EP
European Patent Office
Prior art keywords
measuring carriage
track
measuring
axis
allocated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19181315.3A
Other languages
German (de)
French (fr)
Other versions
EP3584366A1 (en
Inventor
Bernhard Lichtberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP3 Real GmbH
Original Assignee
HP3 Real GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HP3 Real GmbH filed Critical HP3 Real GmbH
Publication of EP3584366A1 publication Critical patent/EP3584366A1/en
Application granted granted Critical
Publication of EP3584366B1 publication Critical patent/EP3584366B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/06Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D15/00Other railway vehicles, e.g. scaffold cars; Adaptations of vehicles for use on railways
    • B61D15/08Railway inspection trolleys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/06Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction
    • E01B35/08Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction for levelling
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/06Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction
    • E01B35/10Applications of measuring apparatus or devices for track-building purposes for measuring irregularities in longitudinal direction for aligning
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • E01B27/17Sleeper-tamping machines combined with means for lifting, levelling or slewing the track

Definitions

  • the invention relates to a measuring carriage that can be driven on rails for measuring track geometry, with a measuring carriage frame arranged on a chassis, to which an inertial navigation unit is assigned and which can be adjusted in relation to a console that can be fastened to the machine frame of a superstructure machine, with actuators causing lifting and pressing movements, with two wheels are assigned to the chassis on each side of the measuring carriage and the measuring carriage frame has five degrees of freedom, namely a rotation around the vertical axis of the measuring carriage frame, a rotation around the longitudinal axis of the measuring carriage frame, a rotation around the transverse axis of the measuring carriage frame, a linear movement along the z-axis and one Linear movement of the measuring carriage frame along the y-axis, in particular with respect to the chassis.
  • Such a track-driven measuring car for measuring track geometry is from AT 519 003 A4 known.
  • a track maintenance machine such as a tamping machine restores the track geometry that has been degraded by the stress on the trains.
  • the track is lifted into the desired position and straightened using electro-hydraulically controlled lifting and straightening devices.
  • the lateral position of the track (direction) is corrected by lateral displacement of the reference rail of the track with the help of hydraulic cylinders.
  • the rail on the outside of the curve is used as the reference rail for the direction.
  • the rail on the inside of the curve is used as the reference rail for the longitudinal height.
  • the rail on the outside of the curve is corrected in terms of height using the target superelevation in relation to the rail on the inside of the curve.
  • INS inertial navigation systems
  • IMU inertial measurement unit
  • INS systems work with data rates of around 100-1000 Hz and high accuracies and low drift ( ⁇ 0.01° to 0.05°/ hour).
  • the main advantage of an INS is that it can be operated without a reference.
  • the acceleration can be measured by means of vehicle-mounted acceleration sensors ("strapdown").
  • State of the art are also so-called "North"-based INS systems (navigation systems) that provide absolute angular deviations of the roll, yaw and pitch angles in relation to a north-oriented system.
  • the x unit vector points to the north, the z unit vector in the direction of gravity and the y unit vector is then aligned in such a way that an orthonormal system is formed.
  • the absolute angular deviations represent a unit vector that shows the spatial position of the measuring carriage on which the INS system is located.
  • the inertial navigation system is built on a support frame that is attached to the axle bearings of a bogie by stiff spring elements. Since the bogie moves back and forth kinematically on the rails as a result of the track widening, the relative position of the measuring frame on the bogie to the rails must be measured using a gauge gauge. The suspension of the measuring frame and the dynamic vibrations that occur while driving, the indirect, erroneous determination of the lateral position of the measuring frame via track gauges to the track and the inaccuracies in the height as a result of the wheel profile lead to considerable inaccuracies in the measurement.
  • a further disadvantage of this design is that the measuring frame is forcibly twisted and therefore only an average running longitudinal height of the track can be measured. What is interesting, however, is the course of the longitudinal heights of both rails. A mathematical uncertainty (corresponds to twice the standard deviation) of ⁇ 1mm is required for the determination of track geometry errors that are to be corrected by track construction machines. These accuracies are difficult to achieve with the aforementioned arrangement of the measuring frame. State of the art are also high-precision angle encoders and sensors integrated in cylinders (hydraulic or pneumatic) for position measurement.
  • the ratio of the transverse force Y, which presses the wheel against the rail, to the vertical load Q (formed from the weight force and the force component of the cylinder working at an angle) must be less than or equal to 1.2, so that the wheel flange cannot climb up and the wheel cannot derail is avoided.
  • the second criterion is Y ⁇ Q ⁇ ⁇
  • This criterion requires that the effective transverse force must be greater than the frictional force (coefficient of friction ⁇ ) between wheel and rail.
  • the criterion ensures that the measuring carriage can be safely pressed over the rail.
  • the invention is therefore based on the object of creating a measuring carriage that can be attached to a superstructure machine, which carries an inertial navigation system which is constructed in such a way that it can measure the longitudinal height profile of both rails, the directional profile of the reference rail (rail on the outside of the curve) and the superelevation as precisely as possible .
  • the invention also has the task of ensuring that the fulfillment of both the derailment criterion and the compression criterion can be ensured.
  • the invention solves the problem in that the wheels combined into pairs of wheels on each side of the measuring carriage are arranged on a two-armed lever and the levers are mounted such that they can be pivoted about an axis of the chassis that runs through the width of the measuring carriage, that the navigation unit is firmly connected to a pair of wheels and that the axle a rotary encoder is assigned for detecting an angle of rotation between the two levers. So that the longitudinal height profile of the left and right rail can be detected simultaneously, the two wheels on each side are connected to each other via the two-armed lever and these pairs of wheels are designed to be pivotable about the axis.
  • the torsion is measured using a high-resolution rotary encoder (encoder).
  • the navigation unit is permanently connected to a pair of wheels and measures the elevation of this pair of wheels along the rail.
  • the longitudinal height profile of the other rail is determined via the torsion angle.
  • the wheels are cylindrical so that no height error can occur as a result of any wheel profile conicity.
  • the wagon freely follows the track in the vertical direction (z-axis).
  • the direction angle (yaw angle) is recorded by rotating the measuring carriage freely around the z-axis.
  • the wagon In order to record the superelevation angle (roll angle), the wagon is designed to be freely rotatable around the transverse axis of the track (x-axis).
  • the wagon In order to record the longitudinal elevation angle (pitch angle), the wagon can also rotate freely around the track transverse axis (y-axis).
  • the angles or the changes in angles are measured by the inertial navigation system and transferred to a computing unit for calculating the spatial track of the two rails.
  • the carriage itself is pressed against the reference rail (rail on the outside of the curve) during travel and subjected to a vertical force in addition to its own weight.
  • the wagon can be moved freely in the transverse direction of the track.
  • the lifting and pressing movements are effected by actuators such as hydraulic, electric or air cylinders.
  • a rotary encoder (rotary encoder) is integrated into at least one of the running wheels for detecting the approach travel. So that the wheels run as slip-free as possible the running wheel surface is decoupled from the wheel flange via roller bearings. The linear movements.
  • the pressure cylinders are not articulated at an angle, but rather the Y and Q forces are carried out and controlled separately. As a result, the derailment criterion and the pressing criterion can always be reliably met.
  • the cylinders are designed as hydraulic, electric or pneumatic cylinders.
  • the pressures in the cylinders are measured by pressure sensors and controlled and regulated via control valves (proportional or servo valves) in such a way that the optimal forces Y, Q result.
  • Track measuring car 1 assume a defined position in twisted tracks and the wheels 3 on both sides can follow the respective height profile of the rail unhindered.
  • the measuring carriage frame 21 is connected to the axle 13 via two cylinders (shown as double-acting) 10, 6.
  • the measuring carriage frame 21 is also mounted on two continuous, cylindrical guides 4 over the frame width.
  • the entire measuring carriage frame 21 is moved vertically with respect to a console 14 via two cylinders 12 acting vertically.
  • the torsion of the left pair of wheels relative to the right pair of wheels, which are rigidly connected to the measuring frame, about the axis 13 is measured via a rotary encoder (angle encoder) 8 .
  • the measuring frame is guided vertically by a vertical guide 7 .
  • the carriage 1 can be rotated about the axes x, y, z, in particular with respect to the console 14, via a ball joint bearing 11.
  • the ball joint bearing 11 is moved up and down via a sleeve sliding on the guide column 7 .
  • the entire measuring carriage 1 is connected via the console 14 to the machine frame of a track-laying machine, not shown in detail. Via the vertical cylinders 12, which are articulated to the wagon and the console 14, the wagon 1 can be lowered onto a track and lifted off the track (direction V) and, during measurement runs, pressed down against the rails of the track with a specified force Qzli, Qzre.
  • the measuring carriage frame 21 can be moved to the left or right (direction H) on the guides 4 via the double-acting pressure cylinders 6, 10 and pressed against the rail with the desired force FY. In the ball joint 11, the carriage can be rotated about the vertical axis z by the angle GW (yaw angle).
  • the ball joint bearing 11 also allows rotations RW (roll angle) around the longitudinal axis x of the track.
  • the carriage can also be rotated about the transverse axis y NW (pitch angle) via the ball joint 11 . This results in the necessary 5 degrees of freedom of the measuring carriage.
  • the axis 13 of the carriage goes through the measuring carriage width.
  • a bearing 16 of the left-hand pair of wheels is shown in section, which can rotate relative to the right-hand pair of wheels 15 , which is firmly connected to the axis of rotation 13 .
  • the angle of rotation ROT of the two pairs of wheels can be measured relative to one another.
  • the lower part of the measuring carriage which can be moved transversely, slides on the horizontal guides 4.
  • All wheels 3 show the cut BB out Fig.1 by one of the wheels designed as distance measuring wheels. All wheels 3 are designed in two parts and each comprise a wheel part 19 and a freely rotatable wheel flange part 20. So that the wheels do not slip due to the frictional forces between wheel flange and rail, wheel flange part 20 and wheel part 19 are designed to be rotatable separately from one another. In the transition to the wheel tread, the wheel flange has a smaller diameter than the wheel tread, so that no mechanical coupling between the two independently rotatable parts can occur via a rail.
  • the wheel movements 19 are measured via a rotary encoder 18 and output in pulses.
  • the rotary encoder 8 for measuring the torsion between the wheel pairs on the left and right about the axis 13 is in this view to the right of the wheel flange part 20.
  • Z is the vertical (gravity) axis.
  • Y is the transverse axis and x points in the longitudinal direction of the track.
  • the measuring carriage can be moved vertically V along the z-axis and horizontally H along the y-axis.
  • the rotation around the vertical axis z is called the yaw angle GW (direction angle)
  • the rotation around the transverse axis y is the pitch angle NW (inclination angle)
  • the rotation around the longitudinal axis x is the roll angle RW (elevation angle) and is recorded by the inertial navigation system 2.
  • pressure sensors can be assigned to the cylinders 6, 10, 12, with the pressure cylinders 6, 10 and the vertical cylinders 12 preferably being controlled and regulated via proportional valves in such a way that the ratio of the transverse force Y, which presses the wheel in the y-direction against the rail , to the vertical load Q, which presses the wheel against a rail in the z-direction, is less than or equal to 1.2 and the transverse force Y is greater than the frictional force Q ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

Die Erfindung bezieht sich auf einen gleisfahrbaren Messwagen zur Messung von Gleislagegeometrien mit einem auf einem Fahrgestell angeordneten Messwagenrahmen, dem eine inertiale Navigationseinheit zugeordnet und der gegenüber einer, am Maschinenrahmen einer Oberbaumaschine befestigbaren, Konsole verstellbar verlagerbar ist, wobei Aktoren Hub- und Anpressbewegungen bewirken, wobei dem Fahrgestell je Messwagenseite zwei Räder zugeordnet sind und wobei der Meßwagenrahmen fünf Freiheitsgrade aufweist und zwar eine Drehung um die Hochachse des Messwagenrahmens, eine Drehung um die Längsachse des Messwagenrahmens, eine Drehung um die Querachse des Messwagenrahmen, eine Linearbewegung entlang der z-Achse und eine Linearbewegung des Messwagenrahmens entlang der y-Achse, insbesondere bezüglich des Fahrgestelles.The invention relates to a measuring carriage that can be driven on rails for measuring track geometry, with a measuring carriage frame arranged on a chassis, to which an inertial navigation unit is assigned and which can be adjusted in relation to a console that can be fastened to the machine frame of a superstructure machine, with actuators causing lifting and pressing movements, with two wheels are assigned to the chassis on each side of the measuring carriage and the measuring carriage frame has five degrees of freedom, namely a rotation around the vertical axis of the measuring carriage frame, a rotation around the longitudinal axis of the measuring carriage frame, a rotation around the transverse axis of the measuring carriage frame, a linear movement along the z-axis and one Linear movement of the measuring carriage frame along the y-axis, in particular with respect to the chassis.

Ein derartiger, gleisfahrbarer Messwagen zur Messung von Gleislagegeometrien ist aus der AT 519 003 A4 bekannt.Such a track-driven measuring car for measuring track geometry is from AT 519 003 A4 known.

Die meisten Gleise für die Eisenbahn sind als Schotteroberbau ausgeführt. Die Schwellen liegen dabei im Schotter. Durch die wirkenden Radkräfte der darüberfahrenden Züge werden unregelmäßige Setzungen im Schotter und Verschiebungen der seitlichen Lagegeometrie des Gleises hervorgerufen. Durch die Setzungen des Schotterbettes treten Fehler in der Längshöhe, der Überhöhung (im Bogen) und der Richtlage auf. Werden bestimmte Komfortgrenzwerte oder Sicherheitsgrenzwerte dieser geometrischen Größen überschritten, dann werden Instandhaltungsarbeiten durchgeführt.Most railway tracks are designed as ballasted tracks. The sleepers are in the gravel. Irregular settlements in the ballast and shifts in the lateral geometry of the track are caused by the acting wheel forces of the trains running over it. Due to the settlement of the ballast bed, errors in the longitudinal height, the superelevation (in the curve) and the alignment occur. If certain comfort limit values or safety limit values of these geometric variables are exceeded, then maintenance work is carried out.

Die Behebung und Berichtigung dieser geometrischen Gleisfehler wird heute meist mit Gleisbaumaschinen ( AT 519 003 A4 , EP 3009564 A ) durchgeführt. Damit das Gleis nach derartigen Gleisgeometrieverbesserungsarbeiten wieder dem Betrieb frei gegeben werden kann, sind die Gleisbaumaschinen mit so genannten Abnahmemessanlagen und Abnahmeschreiberanlagen ausgestattet. Für die Qualität der Gleislage nach der Verbesserung durch Oberbaumaschinen oder sonstiger Methoden sind Abnahmetoleranzen festgelegt. Diese stellen die Mindestanforderungen der Qualität der erzeugten geometrischen Verbesserungen dar. Nachgewiesen werden diese durch die Abnahmemessanlagen und Abnahmeschreiberanlagen.The removal and correction of these geometric track errors is mostly done today with track construction machines ( AT 519 003 A4 , EP 3009564 A ) carried out. So that the track can be restored after such track geometry improvement work can be released for operation, the track construction machines are equipped with so-called acceptance measuring systems and acceptance recorder systems. Acceptance tolerances are specified for the quality of the track geometry after improvement using superstructure machines or other methods. These represent the minimum requirements for the quality of the generated geometric improvements. These are verified by the acceptance measuring systems and acceptance recorder systems.

Eine Gleisbaumaschine wie eine Gleisstopfmaschine stellt die Gleisgeometrie, die durch die Belastung der Züge verschlechtert wurde, wieder her. Dazu wird das Gleis mittels elektrohydraulisch gesteuerten Hebe- Richteinrichtungen in die Sollposition gehoben und gerichtet. Die Berichtigung der Seitenlage des Gleises (Richtung) geschieht über seitliche Verschiebung der Referenzschiene des Gleises mit Hilfe von Hydraulikzylindern. Als Referenzschiene für die Richtung wird die bogenäußere Schiene verwendet. Als Referenzschiene für die Längshöhe wird die bogeninnere Schiene benutzt. Die bogenäußere Schiene wird über die Sollüberhöhung in Bezug auf die bogeninnere Schiene höhenmäßig berichtigt.A track maintenance machine such as a tamping machine restores the track geometry that has been degraded by the stress on the trains. To do this, the track is lifted into the desired position and straightened using electro-hydraulically controlled lifting and straightening devices. The lateral position of the track (direction) is corrected by lateral displacement of the reference rail of the track with the help of hydraulic cylinders. The rail on the outside of the curve is used as the reference rail for the direction. The rail on the inside of the curve is used as the reference rail for the longitudinal height. The rail on the outside of the curve is corrected in terms of height using the target superelevation in relation to the rail on the inside of the curve.

Stand der Technik sind neben Messsehnen auch Trägheitsnavigationssysteme bzw. inertiale Navigationssysteme (INS) ( AT 519 003 A4 ) die aus einer zentralen Sensoreinheit mit meist drei Beschleunigungs- und drei Drehratensensoren bestehen. Durch Integration der von der IMU (inertiale Messeinheit) gemessenen Beschleunigungen und Drehraten werden in einer INS laufend die räumliche Bewegung des Fahrzeugs und daraus die jeweilige geografische Position bestimmt. INS-Systeme arbeiten mit Datenraten von etwa 100-1000 Hz und hohen Genauigkeiten und geringer Drift (< 0,01° bis 0,05°/ Stunde). Der Hauptvorteil eines INS ist, dass dieses referenzlos betrieben werden kann. Die Beschleunigung kann mittels fahrzeugfester Beschleunigungssensoren ("strapdown") gemessen werden. Vorteile dieser Messsysteme sind unabhängig von der Zentrifugalbeschleunigung messbare Rollwinkel, eine in weiten Fehlerwellenlängenbereichen geltende Übertragungsfunktion des Systems von =1, d.h. es wird die tatsächliche Spur des Fahrzeuges im Raum gemessen ohne Verzerrungen der Form, der Verstärkung bzw. der Phasenlage der Gleisfehler. Aus dieser drei-dimensionalen Spur des Fahrzeuges im Raum und einer äquidistanten Messung über Odometer werden 3D-Koordinaten gewonnen. Stand der Technik sind auch so genannte "Nord"-basierte INS-Systeme (Navigationssysteme) die absolute Winkelabweichungen des Roll-, Gier- und Nickwinkels bezogen auf ein nach Nord ausgerichtetes System liefern. Der x-Einheitsvektor zeigt dabei nach Norden, der z-Einheitsvektor in Richtung der Schwerkraft und der y-Einheitsvektor ist dann so ausgerichtet, dass sich ein Orthonormalsystem ausbildet. Die absoluten Winkelabweichungen stellen einen Einheitsvektor dar der die räumliche Lage des Messwagens auf welchem sich das INS-System befindet zeigt.State of the art are not only measuring tendons but also inertial navigation systems or inertial navigation systems (INS) ( AT 519 003 A4 ) which consist of a central sensor unit with mostly three acceleration and three yaw rate sensors. By integrating the accelerations and yaw rates measured by the IMU (inertial measurement unit), the spatial movement of the vehicle and from this the respective geographic position are continuously determined in an INS. INS systems work with data rates of around 100-1000 Hz and high accuracies and low drift (< 0.01° to 0.05°/ hour). The main advantage of an INS is that it can be operated without a reference. The acceleration can be measured by means of vehicle-mounted acceleration sensors ("strapdown"). Advantages of these measuring systems are roll angles that can be measured independently of the centrifugal acceleration, a transfer function of the system of =1 that applies over a wide range of error wavelengths, ie the actual track of the vehicle in space is measured without distortions the form, the amplification or the phasing of the track errors. 3D coordinates are obtained from this three-dimensional track of the vehicle in space and an equidistant measurement using an odometer. State of the art are also so-called "North"-based INS systems (navigation systems) that provide absolute angular deviations of the roll, yaw and pitch angles in relation to a north-oriented system. The x unit vector points to the north, the z unit vector in the direction of gravity and the y unit vector is then aligned in such a way that an orthonormal system is formed. The absolute angular deviations represent a unit vector that shows the spatial position of the measuring carriage on which the INS system is located.

Stand der Technik ist der Aufbau solcher Trägheitsnavigationssysteme auf elektronischen Gleismesswagen. Dabei wird das Trägheitsnavigationssystem auf einem Trägerrahmen aufgebaut der über steife Federelemente an den Achslagern eines Drehgestells befestigt ist. Da das Drehgestell sich bei der Fahrt in Folge der Spurerweiterungen kinematisch auf den Schienen hin und her bewegt muss die relative Position des Messrahmens am Drehgestell zu den Schienen mittels Spurweitenmesser gemessen werden. Die Federung des Messrahmens und die auftretenden dynamischen Schwingungen während der Fahrt, die indirekte fehlerbehaftete Ermittlung der Seitenlage des Messrahmens über Spurweitenmesser zum Gleis und die Ungenauigkeiten in der Höhenlage in Folge des Radprofiles führen zu erheblichen Ungenauigkeiten der Messung. Ein weiterer Nachteil dieser Ausführung ist, dass der Messrahmen zwangsverwunden wird und daher nur eine mittlere verlaufende Längshöhe des Gleises gemessen werden kann. Interessant ist aber der Verlauf der Längshöhen beider Schienen. Für die Ermittlung von Gleislagefehlern die durch Gleisbaumaschinen berichtigt werden sollen ist eine mathematische Unsicherheit (entspricht der zweifachen Standardabweichung) von ≤ 1mm gefordert. Diese Genauigkeiten sind mit der vorgenannten Anordnung des Messrahmens nur schwer zu erfüllen. Stand der Technik sind auch hoch genaue Winkelencoder und in Zylinder (Hydraulik oder Pneumatik) integrierte Messgeber zur Wegerfassung.State of the art is the construction of such inertial navigation systems on electronic track measuring cars. The inertial navigation system is built on a support frame that is attached to the axle bearings of a bogie by stiff spring elements. Since the bogie moves back and forth kinematically on the rails as a result of the track widening, the relative position of the measuring frame on the bogie to the rails must be measured using a gauge gauge. The suspension of the measuring frame and the dynamic vibrations that occur while driving, the indirect, erroneous determination of the lateral position of the measuring frame via track gauges to the track and the inaccuracies in the height as a result of the wheel profile lead to considerable inaccuracies in the measurement. A further disadvantage of this design is that the measuring frame is forcibly twisted and therefore only an average running longitudinal height of the track can be measured. What is interesting, however, is the course of the longitudinal heights of both rails. A mathematical uncertainty (corresponds to twice the standard deviation) of ≤ 1mm is required for the determination of track geometry errors that are to be corrected by track construction machines. These accuracies are difficult to achieve with the aforementioned arrangement of the measuring frame. State of the art are also high-precision angle encoders and sensors integrated in cylinders (hydraulic or pneumatic) for position measurement.

Stand der Technik der Messwagen für Gleisgeometriemesssysteme die mit Stahlsehnen arbeiten sind über Parallellenker am Wagenkasten von Gleisbaumaschinen befestigte zweirädrige Messwagen. Diese Messwagen werden über zwei schräg außen am Messwagen angreifende Zylinder entweder links oder rechts an der Schiene je nach Bogenrichtung angepresst. Für die Kräfte gelten zwei Kriterien die erfüllt sein müssen. Zum einen das Entgleisungsskriterium Y/Q lim = 1,2 Y/Q

Figure imgb0001
The state of the art of measuring carriages for track geometry measuring systems that work with steel cords are two-wheeled measuring carriages attached to the carriage body of track construction machines via parallel links. These measuring carriages are pressed against the rail either to the left or to the right, depending on the direction of the curve, by means of two cylinders acting diagonally on the outside of the measuring carriage. There are two criteria that must be met for the forces. Firstly, the derailment criterion Y/Q limited = 1.2 Y/Q
Figure imgb0001

Das heißt das Verhältnis der Querkraft Y die das Rad an die Schiene anpresst zur Vertikallast Q (gebildet aus der Gewichtskraft und der Kraftkomponente des schräg arbeitenden Zylinders) muss kleiner gleich 1,2 sein, damit ein Aufklettern des Spurkranzes und damit ein Entgleisen des Rades sicher vermieden wird. Das zweite Kriterium lautet Y Q μ

Figure imgb0002
This means that the ratio of the transverse force Y, which presses the wheel against the rail, to the vertical load Q (formed from the weight force and the force component of the cylinder working at an angle) must be less than or equal to 1.2, so that the wheel flange cannot climb up and the wheel cannot derail is avoided. The second criterion is Y Q µ
Figure imgb0002

Dieses Kriterium fordert, dass die wirkende Querkraft größer sein muss als die Reibungskraft (Reibungskoeffizient µ) zwischen Rad und Schiene. Das Kriterium stellt sicher, dass der Messwagen auf der Schiene sicher umgepresst werden kann. Diese beiden Bedingungen schränken die zulässigen Anlenkwinkel und die Zylinderkräfte erheblich ein. Andererseits werden die Messwagen in Bögen und durch Gleisfehler ausgelenkt, weshalb sich die Anlenkwinkel und damit die Kraftverhältnisse ständig ändern. Es ist daher schwierig für alle auftretenden Fälle gleichzeitig das Entgleisungssicherheitskriterium und das Umpresskriterium zu erfüllen.This criterion requires that the effective transverse force must be greater than the frictional force (coefficient of friction µ) between wheel and rail. The criterion ensures that the measuring carriage can be safely pressed over the rail. These two conditions severely limit the allowable linkage angles and cylinder forces. On the other hand, the measuring carriages are deflected in curves and by track errors, which is why the articulation angle and thus the force ratios are constantly changing. It is therefore difficult to simultaneously meet the derailment safety criterion and the compression criterion for all cases that arise.

Der Erfindung liegt somit die Aufgabe zugrunde einen Messwagen zu schaffen der an einer Oberbaumaschine befestigbar ist, der ein Trägheitsnavigationssystem trägt, welches so gebaut ist, dass es den Längshöhenverlauf beider Schienen, den Richtungsverlauf der Referenzschiene (bogenäußere Schiene) und die Überhöhung möglichst präzise messen kann. Die Erfindung hat aber auch die Aufgabe sicher zu stellen, dass die Erfüllung sowohl des Entgleisungskriteriums als auch des Umpresskriteriums sichergestellt werden können.The invention is therefore based on the object of creating a measuring carriage that can be attached to a superstructure machine, which carries an inertial navigation system which is constructed in such a way that it can measure the longitudinal height profile of both rails, the directional profile of the reference rail (rail on the outside of the curve) and the superelevation as precisely as possible . But the invention also has the task of ensuring that the fulfillment of both the derailment criterion and the compression criterion can be ensured.

Die Erfindung löst die gestellte Aufgabe dadurch, dass die zu Radpaaren zusammengefassten Räder jeder Messwagenseite an einem zweiarmigen Hebel angeordnet und die Hebel um eine über die Messwagenbreite durchgehende Achse des Fahrgestells schwenkverstellbar gelagert sind, dass die Navigationseinheit mit einem Radpaar fest verbunden ist und dass der Achse ein Drehgeber zur Erfassung eines Verdrehwinkels zwischen den beiden Hebeln zugeordnet ist.. Damit der Längshöhenverlauf der linken und rechten Schiene gleichzeitig erfasst werden sind die beiden Räder jeder Seite über den zweiarmigen Hebel miteinander verbunden und diese Räderpaare zueinander um die Achse schwenkverstellbar ausgeführt. Die Verdrehung wird über einen hochauflösenden Drehgeber (Encoder) gemessen. Die Navigationseinheit ist erfindungsgemäß mit einem Radpaar fest verbunden und misst den Verlauf dieses Radpaares höhenmäßig entlang der Schiene. Über den Verdrehwinkel wird der Längshöhenverlauf der anderen Schiene ermittelt. Die Räder sind zylindrisch ausgeführt so dass kein Höhenfehler infolge einer etwaigen Radprofilkonizität auftreten kann. Der Wagen folgt frei in Höhenrichtung (z-Achse) dem Gleis. Der Richtungswinkel (Gier Winkel) wird erfasst indem sich der Messwagen frei um die z-Achse dreht. Zur Erfassung des Überhöhungswinkels (Rollwinkel) wird der Wagen frei um die Gleisquerachse (x-Achse) drehbar ausgeführt. Zur Erfassung des Längshöhenwinkel (Nickwinkel) kann sich der Wagen zudem frei um die Gleisquerachse (y-Achse) drehen. Die Winkel bzw. die Winkeländerungen werden durch das Trägheitsnavigationssystem gemessen und einer Recheneinheit zur Berechnung der räumlichen Spur der beiden Schienen übergeben. Der Wagen selbst wird während der Fahrt an die Referenzschiene (bogenäußere Schiene) angepresst und mit einer Vertikalkraft zusätzlich zum Eigengewicht belastet. Dazu kann der Wagen in Gleisquerrichtung frei bewegt werden. Die Hub- und Anpressbewegungen werden durch Aktoren wie z.B. Hydraulik-, Elektro- oder Luftzylinder bewirkt. In zumindest eines der Laufräder wird gemäß einer Weiterbildung der Erfindung ein Drehgeber (Drehencoder) zur Erfassung des Vorfahrweges integriert. Damit die Laufräder möglichst schlupffrei laufen wird die Laufradfläche vom Spurkranz über Wälzlager entkoppelt ausgeführt. Die Linearbewegungen. (Hübe der Aktoren) des Messwagens werden über Wegsensoren erfasst. Damit ergibt sich die Möglichkeit beim Umpressen die Spurerweiterung zu ermitteln. Über die Erfassung der vertikalen Zylinderhübe und eine entsprechende Steuerelektronik kann der Messwagen leichter zu Arbeitsbeginn eingegleist werden. Gemäß einer Weiterbildung der Erfindung werden die Anpresszylinder nicht schräg angelenkt sondern die Y- und Q-Kräfte werden separiert ausgeführt und angesteuert. Dadurch kann das Entgleisungskriterium und das Umpresskriterium immer sicher erfüllt werden. Gemäß einer Weiterbildung der Erfindung werden die Zylinder dals Hydraulik-, Elektro- oder Pneumatik zylinder ausgeführt. Damit das Entgleisungskriterium und das Umpresskriterium erfüllt werden können, werden die Drücke in den Zylindern durch Drucksensoren gemessen und über Steuerventile (Proportional - oder Servoventile) so angesteuert und geregelt, dass sich die optimalen Kräfte Y, Q ergeben.The invention solves the problem in that the wheels combined into pairs of wheels on each side of the measuring carriage are arranged on a two-armed lever and the levers are mounted such that they can be pivoted about an axis of the chassis that runs through the width of the measuring carriage, that the navigation unit is firmly connected to a pair of wheels and that the axle a rotary encoder is assigned for detecting an angle of rotation between the two levers. So that the longitudinal height profile of the left and right rail can be detected simultaneously, the two wheels on each side are connected to each other via the two-armed lever and these pairs of wheels are designed to be pivotable about the axis. The torsion is measured using a high-resolution rotary encoder (encoder). According to the invention, the navigation unit is permanently connected to a pair of wheels and measures the elevation of this pair of wheels along the rail. The longitudinal height profile of the other rail is determined via the torsion angle. The wheels are cylindrical so that no height error can occur as a result of any wheel profile conicity. The wagon freely follows the track in the vertical direction (z-axis). The direction angle (yaw angle) is recorded by rotating the measuring carriage freely around the z-axis. In order to record the superelevation angle (roll angle), the wagon is designed to be freely rotatable around the transverse axis of the track (x-axis). In order to record the longitudinal elevation angle (pitch angle), the wagon can also rotate freely around the track transverse axis (y-axis). The angles or the changes in angles are measured by the inertial navigation system and transferred to a computing unit for calculating the spatial track of the two rails. The carriage itself is pressed against the reference rail (rail on the outside of the curve) during travel and subjected to a vertical force in addition to its own weight. For this purpose, the wagon can be moved freely in the transverse direction of the track. The lifting and pressing movements are effected by actuators such as hydraulic, electric or air cylinders. According to a further development of the invention, a rotary encoder (rotary encoder) is integrated into at least one of the running wheels for detecting the approach travel. So that the wheels run as slip-free as possible the running wheel surface is decoupled from the wheel flange via roller bearings. The linear movements. (Strokes of the actuators) of the measuring carriage are recorded by displacement sensors. This makes it possible to determine the track widening during compression molding. By recording the vertical cylinder strokes and using appropriate control electronics, the measuring carriage can be more easily set in motion at the start of work. According to a development of the invention, the pressure cylinders are not articulated at an angle, but rather the Y and Q forces are carried out and controlled separately. As a result, the derailment criterion and the pressing criterion can always be reliably met. According to a development of the invention, the cylinders are designed as hydraulic, electric or pneumatic cylinders. So that the derailment criterion and the compression criterion can be met, the pressures in the cylinders are measured by pressure sensors and controlled and regulated via control valves (proportional or servo valves) in such a way that the optimal forces Y, Q result.

In der Zeichnung ist der Erfindungsgegenstand beispielsweise schematisch dargestellt. Es zeigen

  • Fig. 1 eine Ansicht eines IMU-Messwagens von oben,
  • Fig. 2 Schnitt des IMU-Messwagens aus Fig. 1,
  • Fig. 3 einen vergrößerten Schnitt B-B durch ein Messrad mit Drehgeber (Encoder) für die Wegmessung aus Fig. 1 und
  • Fig. 4 eine Übersicht über die Koordinaten und die Freiheitsgrade des Messwagens.
  • Fig. 1 zeigt erfindungsgemäß einen Gleismesswagen 1 mit einem Trägheitsnavigationssystem 2 das auf einem Messwagenrahmen 21 angeordnet ist. Der Messwagen 1 läuft auf vier Rädern 3 auf den Schienen. Die Räder 3 einer Gleismesswagenseite sind jeweils miteinander starr verbunden und dazu auf zweiarmigen Hebeln 5, 9 gelagert. Die zweiarmigen Hebel 5, 9 beider, gegenüberliegenden Radseiten sind über eine Achse 13 miteinander verbunden und um die Achse 13 relativ zueinander verschwenkbar gelagert. Damit kann der
In the drawing, the subject of the invention is shown schematically, for example. Show it
  • 1 a view of an IMU measurement van from above,
  • 2 Cut out of the IMU measuring car 1 ,
  • 3 shows an enlarged section BB through a measuring wheel with rotary encoder (encoder) for distance measurement 1 and
  • 4 an overview of the coordinates and the degrees of freedom of the measuring carriage.
  • 1 1 shows, according to the invention, a track measuring car 1 with an inertial navigation system 2 which is arranged on a measuring car frame 21. The measuring carriage 1 runs on four wheels 3 on the rails. The wheels 3 on one side of the track measuring car are each rigidly connected to one another and are mounted on two-armed levers 5, 9 for this purpose. The two-armed levers 5, 9 on both opposite wheel sides are connected to one another via an axis 13 and are mounted so as to be pivotable about the axis 13 relative to one another. With that he can

Gleismesswagen 1 in Gleisverwindungen eine definierte Lage einnehmen und können die Räder 3 beider Seiten ungehindert dem jeweiligen Höhenverlauf der Schiene folgen.Track measuring car 1 assume a defined position in twisted tracks and the wheels 3 on both sides can follow the respective height profile of the rail unhindered.

Der Messwagenrahmen 21 ist über zwei Zylinder (doppeltwirkend gezeichnet) 10, 6 mit der Achse 13 verbunden. Dazu ist der Messwagenrahmen 21 zudem auf zwei, über die Rahmenbreite durchgehenden, zylindrischen Führungen 4 gelagert. Vertikal gegenüber einer Konsole 14 wird der gesamte Messwagenrahmen 21 über zwei vertikal wirkende Zylinder 12 bewegt. Über einen Drehgeber (Winkelencoder) 8 wird die Verdrehung des linken Radpaares gegenüber dem mit dem Messrahmen starr verbundenen rechten Radpaar um die Achse 13 gemessen. Vertikal wird der Messrahmen durch eine vertikale Führung 7 geführt. Über ein Kugelgelenkslager 11 kann der Wagen 1 um die Achsen x, y, z, insbesondere gegenüber der Konsole 14, gedreht werden. Das Kugelgelenkslager 11 wird über eine auf der Führungssäule 7 gleitende Büchse auf und ab bewegt.The measuring carriage frame 21 is connected to the axle 13 via two cylinders (shown as double-acting) 10, 6. For this purpose, the measuring carriage frame 21 is also mounted on two continuous, cylindrical guides 4 over the frame width. The entire measuring carriage frame 21 is moved vertically with respect to a console 14 via two cylinders 12 acting vertically. The torsion of the left pair of wheels relative to the right pair of wheels, which are rigidly connected to the measuring frame, about the axis 13 is measured via a rotary encoder (angle encoder) 8 . The measuring frame is guided vertically by a vertical guide 7 . The carriage 1 can be rotated about the axes x, y, z, in particular with respect to the console 14, via a ball joint bearing 11. The ball joint bearing 11 is moved up and down via a sleeve sliding on the guide column 7 .

Fig. 2 zeigt einen Schnitt durch den Messwagen 1. Über die Konsole 14 ist der gesamte Messwagen 1 mit dem Maschinenrahmen einer nicht näher dargestellten Gleisbaumaschine verbunden. Über die Vertikalzylinder 12 die gelenkig mit dem Wagen und der Konsole 14 verbunden sind kann der Wagen 1 auf ein Gleis abgesenkt und vom Gleis angehoben werden (Richtung V) und bei Messfahrten mit vorgegebener Kraft Qzli, Qzre nach unten gegen Schienen des Gleises gepresst werden. Über die doppeltwirkenden Anpresszylinder 6, 10 kann der Messwagenrahmen 21 auf den Führungen 4 nach links oder rechts verschoben werden (Richtung H) und mit gewünschter Kraft FY an die Schiene angepresst werden. Im Kugelgelenk 11 kann der Wagen um die Hochachse z um den Winkel GW (Gier Winkel) verdreht werden. Das Kugelgelenklager 11 erlaubt auch Drehungen RW (Rollwinkel) um die Längsachse x des Gleises. Darüber hinaus kann der Wagen über das Kugelgelenk 11 auch um die Querachse y gedreht werden NW (Nickwinkel). Damit ergeben sich die notwendigen 5 Freiheitsgrade des Messwagens. Die Achse 13 des Wagens geht über die Messwagenbreite durch. 2 shows a section through the measuring carriage 1. The entire measuring carriage 1 is connected via the console 14 to the machine frame of a track-laying machine, not shown in detail. Via the vertical cylinders 12, which are articulated to the wagon and the console 14, the wagon 1 can be lowered onto a track and lifted off the track (direction V) and, during measurement runs, pressed down against the rails of the track with a specified force Qzli, Qzre. The measuring carriage frame 21 can be moved to the left or right (direction H) on the guides 4 via the double-acting pressure cylinders 6, 10 and pressed against the rail with the desired force FY. In the ball joint 11, the carriage can be rotated about the vertical axis z by the angle GW (yaw angle). The ball joint bearing 11 also allows rotations RW (roll angle) around the longitudinal axis x of the track. In addition, the carriage can also be rotated about the transverse axis y NW (pitch angle) via the ball joint 11 . This results in the necessary 5 degrees of freedom of the measuring carriage. The axis 13 of the carriage goes through the measuring carriage width.

Auf der linken Seite ist eine Lagerung 16 des linken Radpaares im Schnitt dargestellt, welches sich gegenüber dem mit der Drehachse 13 festverbundenen rechten Radpaare 15 verdrehen kann. Mit Hilfe des Drehgebers 8 kann der Verdrehwinkel ROT der beiden Radpaare zueinander gemessen werden. Der untere, quer verschiebbare Teil des Messwagens gleitet auf den horizontalen Führungen 4.On the left-hand side, a bearing 16 of the left-hand pair of wheels is shown in section, which can rotate relative to the right-hand pair of wheels 15 , which is firmly connected to the axis of rotation 13 . With the help of the rotary encoder 8, the angle of rotation ROT of the two pairs of wheels can be measured relative to one another. The lower part of the measuring carriage, which can be moved transversely, slides on the horizontal guides 4.

Fig. 3 zeigt den Schnitt B-B aus Fig.1 durch eines der als Wegmessräder ausgeführten Räder. Alle Räder 3 sind zweiteilig ausgeführt und umfassen je ein Laufradteil 19 und ein gegenüber frei drehbares Spurkranzteil 20. Damit die Räder durch die Reibungskräfte zwischen Spurkranz und Schiene nicht schlupfen sind Spurkranzteil 20 und Laufradteil 19 getrennt drehbar zueinander gelagert ausgeführt. Der Spurkranz weist im Übergang zur Radlauffläche einen kleineren Durchmesser als die Radlauffläche auf, damit keine mechanische Kopplung zwischen den beiden unabhängig zueinander drehbaren Teilen über eine Schiene auftreten kann. Über einen Drehgeber 18 werden die Radbewegungen 19 gemessen und in Impulsen ausgegeben. Der Drehgeber 8 für die Messung der Verdrehung zwischen den Radpaaren links und rechts um die Achse 13 ist in dieser Ansicht rechts neben dem Spurkranzteil 20. 3 shows the cut BB out Fig.1 by one of the wheels designed as distance measuring wheels. All wheels 3 are designed in two parts and each comprise a wheel part 19 and a freely rotatable wheel flange part 20. So that the wheels do not slip due to the frictional forces between wheel flange and rail, wheel flange part 20 and wheel part 19 are designed to be rotatable separately from one another. In the transition to the wheel tread, the wheel flange has a smaller diameter than the wheel tread, so that no mechanical coupling between the two independently rotatable parts can occur via a rail. The wheel movements 19 are measured via a rotary encoder 18 and output in pulses. The rotary encoder 8 for measuring the torsion between the wheel pairs on the left and right about the axis 13 is in this view to the right of the wheel flange part 20.

Fig. 4 gibt einen Überblick über die Koordinaten und die genutzten Freiheitsgrade des Messwagens. Z ist die Hochachse (Schwerachse). Y ist die Querachse und x zeigt in Längsrichtung des Gleises. Der Messwagen kann vertikal V entlang der z-Achse bewegt werden und horizontal H entlang der y-Achse. Die Drehung um die Hochachse z wird als Gier Winkel GW (Richtungswinkel), die Drehung um die Querachse y wird als Nickwinkel NW (Neigungswinkel) und die Drehung um die Längsachse x wird als Rollwinkel RW (Überhöhungswinkel) bezeichnet und durch das Trägheitsnavigationssystem 2 erfasst. 4 gives an overview of the coordinates and the degrees of freedom used by the measuring carriage. Z is the vertical (gravity) axis. Y is the transverse axis and x points in the longitudinal direction of the track. The measuring carriage can be moved vertically V along the z-axis and horizontally H along the y-axis. The rotation around the vertical axis z is called the yaw angle GW (direction angle), the rotation around the transverse axis y is the pitch angle NW (inclination angle) and the rotation around the longitudinal axis x is the roll angle RW (elevation angle) and is recorded by the inertial navigation system 2.

Insbesondere können den Zylindern 6,10,12 Drucksensoren zugeordnet sein, wobei die Anpresszylinder 6, 10 und die Vertikalzylinder 12 über Proportionalventile vorzugsweise derart angesteuert und geregelt sind, dass das Verhältnis der Querkraft Y, die das Rad in y-Richtung an die Schiene anpresst, zur Vertikallast Q, die das Rad in z-Richtung an eine Schiene anpresst, kleiner gleich 1,2 und die Querkraft Y größer als die Reibkraft Q·µ ist.In particular, pressure sensors can be assigned to the cylinders 6, 10, 12, with the pressure cylinders 6, 10 and the vertical cylinders 12 preferably being controlled and regulated via proportional valves in such a way that the ratio of the transverse force Y, which presses the wheel in the y-direction against the rail , to the vertical load Q, which presses the wheel against a rail in the z-direction, is less than or equal to 1.2 and the transverse force Y is greater than the frictional force Q µ.

Claims (6)

  1. On-track measuring carriage (1) for measuring track position geometries, comprising a measuring carriage frame (21) which is arranged on a chassis and to which an inertial navigation unit (2) is allocated and which can be adjustably displaced with respect to a console (14) which can be fastened to the machine frame of a track superstructure machine, wherein actuators effect lifting and pressing movements of the measuring carriage (1), wherein the chassis is allocated, on each measuring carriage side, two wheels (3) and wherein the measuring carriage frame has five degrees of freedom and in particular a rotation about the vertical axis (z, GW) of the measuring carriage frame (21), a rotation about the longitudinal axis (x, RW) of the measuring carriage frame (21), a rotation about the transverse axis (y, NW) of the measuring carriage frame (21), a linear movement along the z-axis (V) and a linear movement of the measuring carriage frame (21) along the y-axis (H), in particular in relation to the chassis, characterised in that the wheels (3) of each measuring carriage side which are combined to form wheel pairs are each arranged on a two-armed lever (5, 9) and the levers (5, 9) are mounted so as to be pivotably adjustable about an axis (13) of the chassis passing through across the width of the measuring carriage, in that the navigation unit (2) is fixedly connected to a wheel pair in order to measure the course of this wheel pair in terms of height along the rail and in that the axis (13) is allocated a rotary encoder (8) for detecting a torsion angle (ROT) between the two levers (5, 9).
  2. On-track measuring carriage (1) as claimed in claim 1, characterised in that a cylinder (12) in parallel with the vertical axis and allocated to the left measuring carriage side and a cylinder (12) in parallel with the vertical axis and allocated to the right measuring carriage side are provided for transmitting vertical forces (QZli, QZre) between the chassis and the console (14) and in that the measuring carriage frame (21) for transmitting horizontal forces in parallel with the y-axis to the chassis is guided along at least one guide (4) and can be displaced by means of pressing cylinders (6, 10) arranged between the chassis and the measuring carriage frame.
  3. On-track measuring carriage (1) as claimed in claim 1 or 2, characterised in that at least one of the measuring wheels (3) is allocated a rotary encoder (18) for path measurement.
  4. On-track measuring carriage (1) as claimed in any one of claims 1 to 3, characterised in that the wheels (3) each have a running wheel part (19) and a wheel flange part (20) which can be freely rotated with respect to the running wheel part (19).
  5. On-track measuring carriage (1) as claimed in any one of claims 1 to 4, characterised in that, in order to detect linear movements along the vertical (V) and the horizontal (H), path sensors are provided which are integrated into the cylinders (12, 6, 10) or which are allocated to the cylinders (12, 5, 10).
  6. On-track measuring carriage (1) as claimed in any one of claims 1 to 5, characterised in that the cylinders (6, 10, 12) are allocated pressure sensors, wherein the pressing cylinders (6, 10) and the vertical cylinders (12) are activated and regulated via proportional valves.
EP19181315.3A 2018-06-20 2019-06-19 Railway carriage Active EP3584366B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50496/2018A AT521424B1 (en) 2018-06-20 2018-06-20 Measuring car on track

Publications (2)

Publication Number Publication Date
EP3584366A1 EP3584366A1 (en) 2019-12-25
EP3584366B1 true EP3584366B1 (en) 2022-05-25

Family

ID=66999635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19181315.3A Active EP3584366B1 (en) 2018-06-20 2019-06-19 Railway carriage

Country Status (3)

Country Link
EP (1) EP3584366B1 (en)
AT (1) AT521424B1 (en)
PL (1) PL3584366T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484044B (en) * 2021-07-07 2022-11-22 中车唐山机车车辆有限公司 Transverse force measuring system and force measuring wheel set calibration test bed
CN113484043B (en) * 2021-07-07 2022-11-22 中车唐山机车车辆有限公司 Vertical force measuring system and force measuring wheel set calibration test bed
AT525925A1 (en) 2022-02-18 2023-09-15 Hp3 Real Gmbh Track-driven, self-propelled energy supply machine
CN116639154B (en) * 2023-05-12 2024-01-26 济南市勘察测绘研究院 Track traffic rail ground insulation mapping trolley

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316986B (en) * 2014-06-03 2017-05-24 北京星网宇达科技股份有限公司 Track parameter dynamic test car based on combination of inertial sensor and navigational satellite
US10000223B2 (en) * 2015-09-18 2018-06-19 Tech Services Group, LLC Rail track geometry measurement
AT518839B1 (en) * 2016-07-11 2018-12-15 Plasser & Theurer Exp Von Bahnbaumaschinen G M B H System and method for measuring a track
AT519003B1 (en) * 2016-12-19 2018-03-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Measuring device and method for detecting a track geometry
AT519218B1 (en) * 2017-02-06 2018-05-15 Hp3 Real Gmbh Method for optimizing a track position

Also Published As

Publication number Publication date
PL3584366T3 (en) 2022-08-22
AT521424B1 (en) 2024-03-15
AT521424A1 (en) 2020-01-15
EP3584366A1 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
EP3584366B1 (en) Railway carriage
EP3358079B1 (en) Method and device for measuring and computing a track bed
EP2957674B1 (en) Method for operating a movable superstructure machine on a railway track
AT402519B (en) CONTINUOUSLY RIDABLE RAILWAY MACHINE FOR COMPRESSING THE GRAVEL BED OF A TRACK
EP3209832B1 (en) Method for measuring and displaying the track geometry of a track system
DE69510871T2 (en) Control method for steering drives with adjustable wheels of a unit traveling on rails and unit using this method
EP1575816B1 (en) Device for measuring the roundness of a railroad wheel
DE68914828T2 (en) DEVICE AND METHOD FOR DETERMINING THE LOCATION OF A RAIL.
AT520526B1 (en) Rail vehicle and method for measuring a track section
AT519263A4 (en) Track measuring vehicle and method for detecting a track geometry of a track
EP3580393B1 (en) Method and railway vehicle for contactlessly capturing a track geometry
EP3535456B1 (en) Track-laying machine with track-layout-measuring system
EP0479764A1 (en) Machine for the control of catenary wire
EP0652325B1 (en) Railroad maintenance machine for correcting the position of the track
EP4168627B1 (en) Method for gauging a track position
EP0668988A1 (en) Process and device for acquiring profile and railway data
EP1270814A2 (en) Track building machine and method for measuring a track
EP2216441A2 (en) Levelling system for rail technology
EP0292855B1 (en) Controling and adjusting method and device for moving mechanisms of vehicles
DE2324685A1 (en) MOBILE DEVICE FOR DETERMINING THE ALTITUDE OR OF THE CONDITION OF A TRACK
DE2322633A1 (en) MOBILE DEVICE FOR DETERMINING THE ALTITUDE OR OF THE CONDITION OF A TRACK
EP4133129B1 (en) Method for calibrating a machine-integrated measuring system
EP1361136B1 (en) Measuring method for detecting the compliance of a track and vehicle for carrying out said method
DE2130328C2 (en) Mobile device for determining the altitude or the condition of a track
EP3691953B1 (en) Method for operating a rail-guided superstructure machine, and superstructure machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200623

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HP3 REAL GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004437

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1494309

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220926

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220825

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220826

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004437

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220619

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220619

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

26N No opposition filed

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240619

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240627

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240625

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240527

Year of fee payment: 6