EP3581788B1 - Control of glow plugs of an internal combustion engine - Google Patents

Control of glow plugs of an internal combustion engine Download PDF

Info

Publication number
EP3581788B1
EP3581788B1 EP19179345.4A EP19179345A EP3581788B1 EP 3581788 B1 EP3581788 B1 EP 3581788B1 EP 19179345 A EP19179345 A EP 19179345A EP 3581788 B1 EP3581788 B1 EP 3581788B1
Authority
EP
European Patent Office
Prior art keywords
temperature
cylinder
value
ivc
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19179345.4A
Other languages
German (de)
French (fr)
Other versions
EP3581788A1 (en
Inventor
Cédric LEFEVRE
Xavier DELAYE
Benoit Verbeke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3581788A1 publication Critical patent/EP3581788A1/en
Application granted granted Critical
Publication of EP3581788B1 publication Critical patent/EP3581788B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/025Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs with means for determining glow plug temperature or glow plug resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D2041/0067Determining the EGR temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • F02P19/022Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls using intermittent current supply

Definitions

  • the present invention relates to the field of glow plugs for internal combustion engines, in particular diesel type engines.
  • the present invention relates to the field of estimating the temperature of such glow plugs.
  • the temperature of the air-fuel mixture In order to start a diesel engine when the outside temperature is below a threshold value, the temperature of the air-fuel mixture must be raised to a certain temperature to improve the self-ignition of the mixture. For this, glow plugs installed in the combustion chamber of the engine and controlled via a preheating unit are used.
  • the coefficient of exchange by convection h 0 is likely to be variable with the pressure and the speed of the gases in the combustion chamber (Nusselt and Planck number). This coefficient may depend on the gas flow admitted by the engine.
  • the temperature of the gases inside the combustion chamber T gas is not measured and is difficult to estimate precisely. It can be approximated at an average temperature, either fixed corresponding to the equilibrium temperature of the spark plug, for example during measurements on test benches, or characterized by maps integrated into the computer.
  • the temperature of the gases inside the combustion chamber T gas depends in particular on the engine operating point, the temperature of the admitted gases, the gas flow rate passing through the engine, the combustion regulation, etc.
  • the aim of the present invention is therefore to allow a precise and robust estimation of the temperature of the glow plugs and thus to allow the best use of the potential of said plugs to efficiently heat the combustion chamber and improve the starting of the engine, as well as engine stability after starting.
  • the subject of the invention is a method for controlling the glow plugs according to claim 1 and a control unit for an internal combustion engine according to claim 5.
  • the method comprises estimating the temperature of the rod of the glow plugs. implanted in a combustion chamber of an internal combustion engine, in particular of the Diesel type, comprising at least one cylinder pressure sensor, by measuring the cylinder pressure, for each crankshaft position, for example every crankshaft degree 1 ° crk, in knowing the driving voltage of the spark plug, by initializing the temperature of the spark plug at the first cold engine calculation step, at the temperature of the cylinder head, that is to say at the temperature of the coolant, or at the temperature previous in the event of a hot start, an average temperature value in the cylinder is estimated over a combustion cycle and by iterative calculation steps, the temperature of the spark plug rod is estimated.
  • the temperature of the glow plug rods is estimated accurately, using only the physical and geometric parameters of the engine.
  • a temperature value in the cylinder is calculated for each angular position of the engine as a function of a value of the temperature at the closing of the intake valves, a value of the volume of the combustion chamber at the closing of the intake valves , calculated as a function of the crankshaft angle, the stroke, the bore and the dead volume of the cylinder, a volume value of the combustion chamber, for each angular position of the cylinder, a value of cylinder pressure) on closing intake valves, measured by a cylinder sensor and a cylinder pressure value, for each angular position of the cylinder, measured by the cylinder sensor.
  • the temperature at the closing of the intake valves is calculated by assimilating this phase to a polytropic, as a function of a temperature value at the opening of the valves intake calculated as a function of temperature, exhaust gas recirculation temperature and fresh air and recirculated gas flow rates measured by sensors, the volume of the combustion chamber at the time (ivo (valve opening intake), ivc (closing the intake valves), evo (opening the exhaust valves) and evc (closing the exhaust valves), and a polytropic coefficient of compression depending on the composition of the gases allowed (EGR exhaust gas recirculation rate).
  • the temperature at the opening of the intake valves can be measured by a sensor.
  • An estimate of the average temperature of the gases in the cylinder to which the spark plug rod is subjected during an engine cycle is calculated as a function of the temperature value in the cylinder for each angular position of the engine calculated.
  • the estimate of the average gas temperature is, for example, calculated as a function of the angular opening time of the intake valves, the angular duration with all valves closed, the angular opening time of the exhaust valves, the average temperature in the cylinder during the intake and expansion phases, assimilated to the average temperature [T ivo ; T ivc ]; [T evo ; T evc ] and the temperature when the exhaust valves are closed.
  • the temperature at the closing of the exhaust valves is calculated by assimilating this phase to a polytropic as a function of a polytropic coefficient of the expansion, depending on the composition of the exhaust gases (richness), and on the temperature at the opening of the exhaust valves.
  • An estimate of the temperature of the spark plug rod is calculated as a function of the average temperature of the gases over a combustion cycle, this temperature being calculated from the temperature values in the cylinder for each angular position of the engine, these values being calculated thanks in particular to the measurements of the cylinder pressure sensor.
  • the calculation of the estimate of the temperature of the glow plug rod is robust at the engine operating point (speed and torque, or speed and quantity of fuel injected), at ambient temperature or pressure. , the flow admitted by the engine and the combustion settings.
  • the engine control unit comprises a system for estimating the temperature of the rod of the glow plugs installed in a combustion chamber of an internal combustion engine, in particular of the Diesel type, comprising at least one cylinder pressure sensor , in which as a function of the cylinder pressure measured by the sensor, for each crankshaft position, for example all crankshaft degrees 1 ° crk, by knowing the pilot voltage of the spark plug, by initializing the temperature of the spark plug at the first step when the engine is cold, at the temperature of the cylinder head, i.e. at the temperature of the coolant, or at the previous temperature in the event of a hot start.
  • the system comprises a module for estimating an average temperature value in the cylinder over a combustion cycle and in steps of iterative calculations, and a module for estimating the temperature of the spark plug rod.
  • the temperature of the glow plug rods is estimated accurately, using only the physical and geometric parameters of the engine.
  • the system comprises a module for calculating a temperature value in the cylinder for each angular position of the engine for which the intake and exhaust valves are closed, as a function of a value of the temperature when the valves are closed.
  • intake a volume value of the combustion chamber when the valves are closed intake, calculated as a function of the crankshaft angle, the stroke, the bore and the dead volume of the cylinder, a volume value of the combustion chamber, for each angular position of the cylinder, a value of cylinder pressure at the closing of the intake valves, measured by a cylinder sensor and a cylinder pressure value, for each angular position of the cylinder, measured by the cylinder sensor.
  • the inlet valve closing temperature is calculated by assimilating this phase to a polytropic, as a function of a temperature value at the opening of the inlet valves calculated as a function of the temperature, of the recirculation temperature of the exhaust gas and fresh air and recirculated gas flow rates measured by sensors, the volume of the combustion chamber at time X (ivo (opening of the intake valves), ivc (closing of the intake valves), evo (opening of the exhaust valves) and evc (closing of the exhaust valves), and a polytropic compression coefficient depending on the composition of the gases admitted (EGR exhaust gas recirculation rate).
  • the temperature at the opening of the intake valves can be measured by a sensor.
  • the module for calculating an estimate of the average temperature of the gases in the cylinder to which the spark plug rod is subjected during an engine cycle is configured to calculate said estimate as a function of the temperature value in the cylinder for each angular position of the motor calculated.
  • the estimate of the average gas temperature is calculated as a function of the angular opening time of the intake valves, the 9 angular duration with all valves closed, the angular opening duration of the exhaust valves, the average temperature in the cylinder during the intake and expansion phases assimilated to the average temperature [T ivo ; T ivc ]; [T evo ; T evc ] and the temperature when the exhaust valves are closed.
  • the temperature at the closing of the exhaust valves is calculated by assimilating this phase to a polytropic according to a polytropic coefficient of the expansion, depending on the composition of the exhaust gases (richness), and the temperature at the opening exhaust valves.
  • the module for calculating an estimate of the temperature of the spark plug rod is configured to calculate said estimate as a function of the temperature in the cylinder for each angular position of the engine calculated and of the average temperature of the gases over a cycle of calculated combustion.
  • the calculation of the estimate of the temperature of the glow plug rod is robust at the engine operating point (speed and torque, or speed and quantity of fuel injected), at ambient temperature or pressure. , the flow admitted by the engine and the combustion settings.
  • a system for estimating the temperature of the glow plugs, referenced 10 as a whole, is intended to be integrated into a control unit of an internal combustion engine of Diesel type (not shown), comprising a combustion chamber in the pistons of the engine, glow plugs located in said combustion chamber and at least one pressure sensor of cylinder P.
  • T ivc T ivo . Flight ivo Flight ivc ⁇ ivc
  • the system 10 for estimating the temperature of the glow plugs further comprises a module 14 for calculating an estimate of the average temperature of the gases Tgas in the cylinder to which the spark plug rod is subjected during a cycle. engine.
  • T gas cycle ⁇ ad min . T ivo + T ivc 2 + 720 ° - ⁇ ad min + ⁇ exh .. avg Tcyl angle ⁇ ivc ⁇ ⁇ evo + ⁇ exh .. T evo + T evc 2
  • T gas cycle ⁇ ad min . T ivo . 1 + Flight ivo Flight ivc ⁇ ivc 2 + 1 ⁇ ivc ⁇ evo . ⁇ ⁇ ivc ⁇ evo Tcyl . d ⁇ + ⁇ exh .. Tcyl evo . 1 + Flight evo Flight evc ⁇ evc 2
  • the system 10 for estimating the temperature of the glow plugs further comprises a module 16 for calculating an estimate of the temperature of the rod of the spark plug T (t) as a function of the temperature in the cylinder T cyl (angle) for each angular position of the engine calculated in equation Eq.1 and for the average gas temperature Tgas (cycle) over a combustion cycle calculated in equation Eq.7.
  • the calculation of the estimate of the temperature of the glow plug rod is robust at the engine operating point (speed and torque, or speed and quantity of fuel injected), at ambient temperature or pressure. , the flow admitted by the engine and the combustion settings.
  • the organization chart shown on the figure 2 illustrates an example of a method 20 implemented by the system shown in figure 1 .
  • V T is a constant between a point considered and the point of closing of the inlet valves (ivc).
  • step 22 an estimate is calculated of the average temperature of the gases T gases in the cylinder to which the spark plug rod is subjected during an engine cycle.
  • T gas cycle ⁇ ad min . T ivo + T ivc 2 + 720 - ⁇ ad min + ⁇ exh .. avg Tcyl angle ⁇ ivc ⁇ ⁇ evo + ⁇ exh .. T evo + T evc 2
  • T gas cycle ⁇ ad min . T ivo .
  • an estimate of the temperature of the spark plug rod T (t) is calculated as a function of the temperature in the cylinder T cyl (angle) for each angular position of the engine calculated in equation Eq.1 and the average gas temperature T gas (cycle) over a combustion cycle calculated using equation Eq.7.
  • the calculation of the estimate of the temperature of the glow plug rod is robust at the engine operating point (speed and torque, or speed and quantity of fuel injected), at ambient temperature or pressure. , the flow admitted by the engine and the combustion settings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

La présente invention concerne le domaine des bougies de préchauffage des moteurs à combustion interne, notamment des moteurs de type Diesel.The present invention relates to the field of glow plugs for internal combustion engines, in particular diesel type engines.

Plus particulièrement, la présente invention concerne le domaine de l'estimation de la température de telles bougies de préchauffage.More particularly, the present invention relates to the field of estimating the temperature of such glow plugs.

Afin de démarrer un moteur Diesel lorsque la température extérieure est inférieure à une valeur seuil, la température du mélange air-carburant doit être portée à une certaine température pour améliorer l'auto-inflammation du mélange. On utilise pour cela des bougies de préchauffage implantées dans la chambre de combustion du moteur et pilotées via un boitier de préchauffage.In order to start a diesel engine when the outside temperature is below a threshold value, the temperature of the air-fuel mixture must be raised to a certain temperature to improve the self-ignition of the mixture. For this, glow plugs installed in the combustion chamber of the engine and controlled via a preheating unit are used.

Il existe des bougies dites « à allumage rapide », pilotées notamment par une commande de type Rapport Cyclique d'Ouverture, d'acronyme « RCO ». L'utilisation de telles bougies nécessite de connaitre la température de l'élément chauffage des bougies, afin de ne pas dépasser leur température maximale admissible, qui conduirait à l'endommagement de l'élément chauffant desdites bougies.There are so-called “quick-ignition” spark plugs, controlled in particular by a control of the Opening Cyclic Ratio type, acronym “RCO”. The use of such candles requires knowing the temperature of the heating element of the candles, so as not to exceed their maximum allowable temperature, which would lead to damage to the heating element of said candles.

Le document US 2011/0220073 A1 divulgue un pilotage de l'élément chauffage selon une pression régnant dans la chambre de combustion.The document US 2011/0220073 A1 discloses a control of the heating element according to a pressure prevailing in the combustion chamber.

On peut se référer au document FR 2 891 868 - B1 qui décrit un procédé d'estimation de la température d'échappement sur une sortie d'un cylindre d'un moteur à combustion interne, à partir de la pression de cylindre mesurée.We can refer to the document FR 2 891 868 - B1 which describes a method for estimating the exhaust temperature on an outlet of a cylinder of an internal combustion engine, from the measured cylinder pressure.

Toutefois, ce document prévoit seulement le calcul d'une température dans la chambre de combustion lors de l'ouverture de la soupape d'échappement.However, this document only provides for the calculation of a temperature in the combustion chamber when the exhaust valve is opened.

On connait les modèles théoriques d'estimation de la température des bougies de préchauffage dans lesquels on réalise un bilan énergétique au niveau de l'élément chauffant, ici le crayon de la bougie.We know the theoretical models for estimating the temperature of glow plugs in which an energy balance is carried out at the level of the heating element, here the spark plug rod.

La variation d'énergie interne dE du crayon de la bougie s'écrit selon l'équation suivante : dE = m . Cv . dT bougie

Figure imgb0001
Avec :

  • m, la masse du crayon, exprimée en Kg ;
  • Cv, la capacité calorifique massique du matériau du crayon, exprimée J.K-1.kg-1 ; et
  • Tbougie, la température du crayon de la bougie, exprimée en K.
The variation of internal energy dE of the spark plug is written according to the following equation: of = m . CV . dT candle
Figure imgb0001
With:
  • m, the mass of the pencil, expressed in Kg;
  • Cv, the specific heat capacity of the rod material, expressed JK-1.kg-1; and
  • T candle , the temperature of the pencil of the candle, expressed in K.

L'énergie perdue Eperdue s'écrit selon l'équation suivante et correspond au refroidissement par échanges convectifs avec les gaz internes à la chambre de combustion, et par conduction entre la bougie et sa fixation sur la culasse du moteur. E perdue = h T gaz . S . T bougie T gaz . dt + λ . s . T bougie T culasse . dt

Figure imgb0002
Avec :

  • h, un coefficient d'échanges thermiques variant de façon linéaire en fonction de la température des gaz dans la chambre de combustion : h(TgaZ) = h 0. (1 + KTgaz ), exprimée en W/(m2.K) ;
  • S, la surface du crayon en contact avec les gaz dans le cylindre, exprimée en m 2 ;
  • Tgaz, la température des gaz internes à la chambre de combustion, exprimée en K;
  • t, le temps, exprimé en s ;
  • λ, la conductivité thermique exprimée en W/(m2.K) ;
  • s, la surface d'échange entre la bougie et la culasse, exprimée en m2 ; et
  • Tculasse, la température de la culasse, approximable à la température du liquide de refroidissement Teau mesurée par un capteur, exprimée en K.
The lost energy E lost is written according to the following equation and corresponds to cooling by convective exchanges with the gases internal to the combustion chamber, and by conduction between the spark plug and its attachment to the cylinder head of the engine. E lost = h T gas . S . T candle - T gas . dt + λ . s . T candle - T cylinder head . dt
Figure imgb0002
With:
  • h, a heat exchange coefficient varying linearly as a function of the temperature of the gases in the combustion chamber: h (T gaZ ) = h 0 . (1 + KT gas ) , expressed in W / (m 2 .K);
  • S, the area of the rod in contact with the gases in the cylinder, expressed in m 2 ;
  • T gas , the temperature of the gases internal to the combustion chamber, expressed in K;
  • t, the time, expressed in s ;
  • λ, the thermal conductivity expressed in W / ( m 2 .K ) ;
  • s, the exchange surface between the spark plug and the cylinder head, expressed in m 2 ; and
  • T cylinder head , the temperature of the cylinder head, approximate to the temperature of the coolant T water measured by a sensor, expressed in K.

L'énergie gagnée Egagnée s'écrit selon l'équation suivante et correspond à la puissance électrique appliquée à la bougie. E gagnée = U . I . dt = U 2 R T bougie . dt

Figure imgb0003
Avec :

  • U, la tension appliquée à la bougie, exprimée en V;
  • I, l'intensité parcourant la bougie, exprimée en A; et
  • R, la résistance de la bougie variant de façon linéaire en fonction de la température de la bougie : R(Tbougie )=R0.(1+a.Tbougie ), exprimée en W, avec a, un coefficient d'évolution de la résistance électrique du crayon de la bougie avec sa température.
The energy gained E gained is written according to the following equation and corresponds to the electric power applied to the spark plug. E won = U . I . dt = U 2 R T candle . dt
Figure imgb0003
With:
  • U, the voltage applied to the spark plug, expressed in V;
  • I, the intensity traversing the candle, expressed in A; and
  • R, the resistance of the spark plug varying linearly as a function of the temperature of the spark plug: R ( T spark plug ) = R 0. (1 + aT spark plug ) , expressed in W, with a, an evolution coefficient of the electrical resistance of the spark plug pencil with its temperature.

La variation d'énergie interne dE du crayon de la bougie peut ainsi s'écrire selon l'équation suivante : dE = m . Cv . dT bougie = E gagnée E perdue = U 2 R T bougie . dt h T gaz . S . T bougie T gaz . dt + λ . s . T bougie T culasse . dt

Figure imgb0004
The variation in internal energy dE of the spark plug can thus be written according to the following equation: of = m . CV . dT candle = E won - E lost = U 2 R T candle . dt - h T gas . S . T candle - T gas . dt + λ . s . T candle - T cylinder head . dt
Figure imgb0004

Ce qui conduit aux équations suivantes : dT bougie dt = U 2 m . Cv . R 0 . 1 1 + a . T bougie h 0 . S m . Cv . R 0 . 1 + K . T bougie . T bougie T gaz . + λ . s . T bougie T eau . dt

Figure imgb0005
dT bougie dt = 1 τ chauffe . U U ref 2 . 1 a T bougie 1 τ refr . 1 + K . T bougie . T bougie T gaz + λ . s . T bougie T eau . dt
Figure imgb0006
Avec :

  • Uref, la tension de référence d'alimentation du réseau de bord, généralement 12V, exprimée en V; 1 τ chauffe = a . U ref 2 m . Cv . R 0 ,
    Figure imgb0007
    une valeur constante, exprimée à s-1 ; et
  • 1 τ refr = h 0 . S m . Cv . R 0 ,
    Figure imgb0008
    une valeur constante, exprimée à s-1 .
Which leads to the following equations: dT candle dt = U 2 m . CV . R 0 . 1 1 + at . T candle - h 0 . S m . CV . R 0 . 1 + K . T candle . T candle - T gas . + λ . s . T candle - T water . dt
Figure imgb0005
dT candle dt = 1 τ heated . U U ref 2 . 1 at - T candle - 1 τ refr . 1 + K . T candle . T candle - T gas + λ . s . T candle - T water . dt
Figure imgb0006
With:
  • Uref, the onboard network supply reference voltage, generally 12V, expressed in V; 1 τ heated = at . U ref 2 m . CV . R 0 ,
    Figure imgb0007
    a constant value, expressed at s -1 ; and
  • 1 τ refr = h 0 . S m . CV . R 0 ,
    Figure imgb0008
    a constant value, expressed at s -1 .

On notera que le coefficient d'échange par convection h0 est susceptible d'être variable avec la pression et la vitesse des gaz dans la chambre de combustion (nombre de Nusselt et Planck). Ce coefficient peut dépendre du débit des gaz admis par le moteur.It will be noted that the coefficient of exchange by convection h 0 is likely to be variable with the pressure and the speed of the gases in the combustion chamber (Nusselt and Planck number). This coefficient may depend on the gas flow admitted by the engine.

La température de la bougie T(t) en fonction du temps est calculée en discrétisant l'équation Eq.i.5 à une récurrence temporelle dans un calculateur embarqué, selon l'équation suivante : T t = T t 1 + 1 τ chauffe . U t U ref 2 . 1 a T t 1 1 τ ref r . 1 + K . T t 1 . T t 1 T gaz + k . T t 1 T eau

Figure imgb0009
The temperature of the candle T (t) as a function of time is calculated by discretizing the equation Eq.i.5 at a temporal recurrence in an on-board computer, according to the following equation: T t = T t - 1 + 1 τ heated . U t U ref 2 . 1 at - T t - 1 - 1 τ ref r . 1 + K . T t - 1 . T t - 1 - T gas + k . T t - 1 - T water
Figure imgb0009

Dans cette équation, la température des gaz interne à la chambre de combustion Tgaz n'est pas mesurée et est difficilement estimable de manière précise. On peut l'approximer à une température moyenne, soit fixe correspondant à la température d'équilibre de la bougie, par exemple lors de mesures sur bancs d'essais, soit caractérisée par des cartographies intégrées au calculateur.In this equation, the temperature of the gases inside the combustion chamber T gas is not measured and is difficult to estimate precisely. It can be approximated at an average temperature, either fixed corresponding to the equilibrium temperature of the spark plug, for example during measurements on test benches, or characterized by maps integrated into the computer.

Toutefois, la température des gaz interne à la chambre de combustion Tgaz dépend notamment du point de fonctionnement moteur, de la température des gaz admis, du débit de gaz traversant le moteur, du réglage de la combustion, etc...However, the temperature of the gases inside the combustion chamber T gas depends in particular on the engine operating point, the temperature of the admitted gases, the gas flow rate passing through the engine, the combustion regulation, etc.

Il est ainsi difficile d'obtenir une estimation fiable de la température de la bougie T(t) en l'absence d'une détermination de la température des gaz interne à la chambre de combustion Tgaz.It is thus difficult to obtain a reliable estimate of the temperature of the spark plug T (t) in the absence of a determination of the temperature of the gases inside the combustion chamber T gas .

Il existe un besoin d'améliorer les procédés et systèmes d'estimation de la température des bougies de préchauffage.There is a need to improve methods and systems for estimating the temperature of glow plugs.

Le but de la présente invention est donc de permettre une estimation précise et robuste de la température des bougies de préchauffage et ainsi permettre d'exploiter au mieux le potentiel desdites bougies pour chauffer efficacement la chambre de combustion et améliorer le démarrage du moteur, aussi que la stabilité du moteur après démarrage.The aim of the present invention is therefore to allow a precise and robust estimation of the temperature of the glow plugs and thus to allow the best use of the potential of said plugs to efficiently heat the combustion chamber and improve the starting of the engine, as well as engine stability after starting.

L'invention a pour objet un procédé de contrôle des bougies de préchauffage selon la revendication 1 et une unité de commande d'un moteur à combustion interne selon la revendication 5. Le procédé comprend l'estimation de la température du crayon des bougies de préchauffage implantées dans une chambre de combustion d'un moteur à combustion interne, notamment de type Diesel, comprenant au moins un capteur de pression de cylindre, en mesurant la pression cylindre, pour chaque position vilebrequin, par exemple tous les degrés de vilebrequin 1° crk, en connaissant la tension de pilotage de la bougie, en initialisant la température de la bougie au premier pas de calcul moteur froid, à la température de la culasse, c'est-à-dire à la température du liquide de refroidissement, ou à la température précédente en cas de démarrage à chaud, on estime une valeur de température moyenne dans le cylindre sur un cycle de combustion et par pas de calculs itératifs, on estime la température du crayon des bougies.The subject of the invention is a method for controlling the glow plugs according to claim 1 and a control unit for an internal combustion engine according to claim 5. The method comprises estimating the temperature of the rod of the glow plugs. implanted in a combustion chamber of an internal combustion engine, in particular of the Diesel type, comprising at least one cylinder pressure sensor, by measuring the cylinder pressure, for each crankshaft position, for example every crankshaft degree 1 ° crk, in knowing the driving voltage of the spark plug, by initializing the temperature of the spark plug at the first cold engine calculation step, at the temperature of the cylinder head, that is to say at the temperature of the coolant, or at the temperature previous in the event of a hot start, an average temperature value in the cylinder is estimated over a combustion cycle and by iterative calculation steps, the temperature of the spark plug rod is estimated.

Ainsi, la température des crayons des bougies de préchauffage est estimée de manière précise, en n'utilisant que les paramètres physiques et géométriques du moteur.Thus, the temperature of the glow plug rods is estimated accurately, using only the physical and geometric parameters of the engine.

On calcule une valeur de température dans le cylindre pour chaque position angulaire du moteur en fonction d'une valeur de la température à la fermeture des soupapes d'admission, une valeur de volume de la chambre de combustion à la fermeture des soupapes d'admission, calculé en fonction de l'angle vilebrequin, la course, l'alésage et le volume mort du cylindre, une valeur de volume de la chambre de combustion, pour chaque position angulaire du cylindre, une valeur de pression du cylindre) à la fermeture des soupapes d'admission, mesurée par un capteur cylindre et une valeur de pression du cylindre, pour chaque position angulaire du cylindre, mesurée par le capteur cylindre.A temperature value in the cylinder is calculated for each angular position of the engine as a function of a value of the temperature at the closing of the intake valves, a value of the volume of the combustion chamber at the closing of the intake valves , calculated as a function of the crankshaft angle, the stroke, the bore and the dead volume of the cylinder, a volume value of the combustion chamber, for each angular position of the cylinder, a value of cylinder pressure) on closing intake valves, measured by a cylinder sensor and a cylinder pressure value, for each angular position of the cylinder, measured by the cylinder sensor.

Ainsi, la température dans le cylindre pour chaque position angulaire du moteur pour laquelle les soupapes d'admission et d'échappement sont fermées, est calculable d'après l'équation des gaz parfaits (P.V=n.R.T), où P . V T

Figure imgb0010
est une constante entre un point considéré et le point de fermeture des soupapes d'admission.Thus, the temperature in the cylinder for each angular position of the engine for which the intake and exhaust valves are closed, can be calculated from the ideal gas equation (PV = nRT), where P . V T
Figure imgb0010
is a constant between a point considered and the point of closing of the inlet valves.

Par exemple, la température à la fermeture des soupapes d'admission est calculée en assimilant cette phase à une polytropique, en fonction d'une valeur de température à l'ouverture des soupapes d'admission calculée en fonction de la température, de la température de recirculation des gaz d'échappement et des débits d'air frais et de gaz recirculés mesurés par capteurs, du volume de la chambre de combustion au moment (ivo (ouverture des soupapes d'admission), ivc (fermeture des soupapes d'admission), evo (ouverture des soupapes d'échappement) et evc (fermeture des soupapes d'échappement), et d'un coefficient polytropique de la compression dépendant de la composition des gaz admis (taux de recirculation des gaz d'échappement EGR).For example, the temperature at the closing of the intake valves is calculated by assimilating this phase to a polytropic, as a function of a temperature value at the opening of the valves intake calculated as a function of temperature, exhaust gas recirculation temperature and fresh air and recirculated gas flow rates measured by sensors, the volume of the combustion chamber at the time (ivo (valve opening intake), ivc (closing the intake valves), evo (opening the exhaust valves) and evc (closing the exhaust valves), and a polytropic coefficient of compression depending on the composition of the gases allowed (EGR exhaust gas recirculation rate).

En variante, la température à l'ouverture des soupapes d'admission peut être mesurée par un capteur.Alternatively, the temperature at the opening of the intake valves can be measured by a sensor.

On calcule une estimation de la température moyenne des gaz dans le cylindre à laquelle est soumis le crayon de la bougie au cours d'un cycle moteur en fonction de la valeur de température dans le cylindre pour chaque position angulaire du moteur calculée.An estimate of the average temperature of the gases in the cylinder to which the spark plug rod is subjected during an engine cycle is calculated as a function of the temperature value in the cylinder for each angular position of the engine calculated.

L'estimation de la température moyenne des gaz est, par exemple, calculée en fonction de la durée d'ouverture angulaire des soupapes admission, de la durée angulaire toutes soupapes fermées, de la durée d'ouverture angulaire des soupapes d'échappement, de la température moyenne dans le cylindre pendant les phases d'admission et de détente assimilée à la moyenne des températures [Tivo ; Tivc] ; [Tevo ; Tevc] et de la température à la fermeture des soupapes d'échappement.The estimate of the average gas temperature is, for example, calculated as a function of the angular opening time of the intake valves, the angular duration with all valves closed, the angular opening time of the exhaust valves, the average temperature in the cylinder during the intake and expansion phases, assimilated to the average temperature [T ivo ; T ivc ]; [T evo ; T evc ] and the temperature when the exhaust valves are closed.

Par exemple, la température à la fermeture des soupapes d'échappement est calculée en assimilant cette phase à une polytropique en fonction d'un coefficient polytropique de la détente, dépendant la composition des gaz d'échappement (richesse), et de la température à l'ouverture des soupapes d'échappement.For example, the temperature at the closing of the exhaust valves is calculated by assimilating this phase to a polytropic as a function of a polytropic coefficient of the expansion, depending on the composition of the exhaust gases (richness), and on the temperature at the opening of the exhaust valves.

On calcule une estimation de la température du crayon de la bougie en fonction de la température moyenne des gaz sur un cycle de combustion, cette température étant calculée à partir des valeurs de température dans le cylindre pour chaque position angulaire du moteur, ces valeurs étant calculées grâce notamment aux mesures du capteur de pression de cylindre.An estimate of the temperature of the spark plug rod is calculated as a function of the average temperature of the gases over a combustion cycle, this temperature being calculated from the temperature values in the cylinder for each angular position of the engine, these values being calculated thanks in particular to the measurements of the cylinder pressure sensor.

On s'affranchit ainsi de l'imprécision de la caractérisation de la température des gaz par tables ou cartographies dans l'équation de calcul de la température des bougies de préchauffage.This eliminates the imprecision of the characterization of the temperature of the gases by tables or maps in the equation for calculating the temperature of the glow plugs.

Grace à l'invention, le calcul de l'estimation de la température du crayon de la bougie de préchauffage est robuste au point de fonctionnement moteur (régime et couple, ou régime et quantité de carburant injecté), à la température ou la pression ambiante, au débit admis par le moteur et aux réglages de combustion.Thanks to the invention, the calculation of the estimate of the temperature of the glow plug rod is robust at the engine operating point (speed and torque, or speed and quantity of fuel injected), at ambient temperature or pressure. , the flow admitted by the engine and the combustion settings.

L'unité de commande du moteur comprend un système d'estimation de la température du crayon des bougies de préchauffage implantées dans une chambre de combustion d'un moteur à combustion interne, notamment de type Diesel, comprenant au moins un capteur de pression de cylindre, dans lequel en fonction de la pression cylindre mesurée par le capteur, pour chaque position vilebrequin, par exemple tous les degrés de vilebrequin 1°crk, en connaissant la tension de pilotage de la bougie, en initialisant la température de la bougie au premier pas de calcul moteur froid, à la température de la culasse, c'est-à-dire à la température du liquide de refroidissement, ou à la température précédente en cas de démarrage à chaud.The engine control unit comprises a system for estimating the temperature of the rod of the glow plugs installed in a combustion chamber of an internal combustion engine, in particular of the Diesel type, comprising at least one cylinder pressure sensor , in which as a function of the cylinder pressure measured by the sensor, for each crankshaft position, for example all crankshaft degrees 1 ° crk, by knowing the pilot voltage of the spark plug, by initializing the temperature of the spark plug at the first step when the engine is cold, at the temperature of the cylinder head, i.e. at the temperature of the coolant, or at the previous temperature in the event of a hot start.

Le système comprend un module d'estimation d'une valeur de température moyenne dans le cylindre sur un cycle de combustion et par pas de calculs itératifs, et un module d'estimation de la température du crayon des bougies.The system comprises a module for estimating an average temperature value in the cylinder over a combustion cycle and in steps of iterative calculations, and a module for estimating the temperature of the spark plug rod.

Ainsi, la température des crayons des bougies de préchauffage est estimée de manière précise, en n'utilisant que les paramètres physiques et géométriques du moteur.Thus, the temperature of the glow plug rods is estimated accurately, using only the physical and geometric parameters of the engine.

Le système comprend un module de calcul d'une valeur de température dans le cylindre pour chaque position angulaire du moteur pour laquelle les soupapes d'admission et d'échappement sont fermées, en fonction d'une valeur de la température à la fermeture des soupapes d'admission, une valeur de volume de la chambre de combustion à la fermeture des soupapes d'admission, calculé en fonction de l'angle vilebrequin, la course, l'alésage et le volume mort du cylindre, une valeur de volume de la chambre de combustion, pour chaque position angulaire du cylindre, une valeur de pression du cylindre à la fermeture des soupapes d'admission, mesurée par un capteur cylindre et une valeur de pression du cylindre, pour chaque position angulaire du cylindre, mesurée par le capteur cylindre.The system comprises a module for calculating a temperature value in the cylinder for each angular position of the engine for which the intake and exhaust valves are closed, as a function of a value of the temperature when the valves are closed. intake, a volume value of the combustion chamber when the valves are closed intake, calculated as a function of the crankshaft angle, the stroke, the bore and the dead volume of the cylinder, a volume value of the combustion chamber, for each angular position of the cylinder, a value of cylinder pressure at the closing of the intake valves, measured by a cylinder sensor and a cylinder pressure value, for each angular position of the cylinder, measured by the cylinder sensor.

Ainsi, la température dans le cylindre pour chaque position angulaire du moteur pour laquelle les soupapes d'admission et d'échappement sont fermées est calculable d'après l'équation des gaz parfaits (P.V=n.R.T), où P . V T

Figure imgb0011
est une constante entre un point considéré et le point de fermeture des soupapes d'admission.Thus, the temperature in the cylinder for each angular position of the engine for which the intake and exhaust valves are closed can be calculated from the ideal gas equation (PV = nRT), where P . V T
Figure imgb0011
is a constant between a point considered and the point of closing of the inlet valves.

La température à la fermeture des soupapes d'admission est calculée en assimilant cette phase à une polytropique, en fonction d'une valeur de température à l'ouverture des soupapes d'admission calculée en fonction de la température, de la température de recirculation des gaz d'échappement et des débits d'air frais et de gaz recirculés mesurés par capteurs, du volume de la chambre de combustion au moment X (ivo (ouverture des soupapes d'admission), ivc (fermeture des soupapes d'admission), evo (ouverture des soupapes d'échappement) et evc (fermeture des soupapes d'échappement), et d'un coefficient polytropique de la compression dépendant de la composition des gaz admis (taux de recirculation des gaz d'échappement EGR).The inlet valve closing temperature is calculated by assimilating this phase to a polytropic, as a function of a temperature value at the opening of the inlet valves calculated as a function of the temperature, of the recirculation temperature of the exhaust gas and fresh air and recirculated gas flow rates measured by sensors, the volume of the combustion chamber at time X (ivo (opening of the intake valves), ivc (closing of the intake valves), evo (opening of the exhaust valves) and evc (closing of the exhaust valves), and a polytropic compression coefficient depending on the composition of the gases admitted (EGR exhaust gas recirculation rate).

En variante, la température à l'ouverture des soupapes d'admission peut être mesurée par un capteur.Alternatively, the temperature at the opening of the intake valves can be measured by a sensor.

Le module de calcul d'une estimation de la température moyenne des gaz dans le cylindre à laquelle est soumis le crayon de la bougie au cours d'un cycle moteur est configuré pour calculer ladite estimation en fonction de la valeur de température dans le cylindre pour chaque position angulaire du moteur calculée.The module for calculating an estimate of the average temperature of the gases in the cylinder to which the spark plug rod is subjected during an engine cycle is configured to calculate said estimate as a function of the temperature value in the cylinder for each angular position of the motor calculated.

L'estimation de la température moyenne des gaz est calculée en fonction, la durée d'ouverture angulaire des soupapes admission, la 9 durée angulaire toutes soupapes fermées, la durée d'ouverture angulaire des soupapes d'échappement, la température moyenne dans le cylindre pendant les phases d'admission et de détente assimilée à la moyenne des températures [Tivo ; Tivc] ; [Tevo ; Tevc] et la température à la fermeture des soupapes d'échappement.The estimate of the average gas temperature is calculated as a function of the angular opening time of the intake valves, the 9 angular duration with all valves closed, the angular opening duration of the exhaust valves, the average temperature in the cylinder during the intake and expansion phases assimilated to the average temperature [T ivo ; T ivc ]; [T evo ; T evc ] and the temperature when the exhaust valves are closed.

La température à la fermeture des soupapes d'échappement est calculée en assimilant cette phase à une polytropique en fonction d'un coefficient polytropique de la détente, dépendant la composition des gaz d'échappement (richesse), et de la température à l'ouverture des soupapes d'échappement.The temperature at the closing of the exhaust valves is calculated by assimilating this phase to a polytropic according to a polytropic coefficient of the expansion, depending on the composition of the exhaust gases (richness), and the temperature at the opening exhaust valves.

Ainsi, le module de calcul d'une estimation de la température du crayon de la bougie est configuré pour calculer ladite estimation en fonction de la température dans le cylindre pour chaque position angulaire du moteur calculée et de la température moyenne des gaz sur un cycle de combustion calculée.Thus, the module for calculating an estimate of the temperature of the spark plug rod is configured to calculate said estimate as a function of the temperature in the cylinder for each angular position of the engine calculated and of the average temperature of the gases over a cycle of calculated combustion.

On s'affranchit ainsi de l'imprécision de la caractérisation de la température des gaz par tables ou cartographies dans l'équation de calcul de la température des bougies de préchauffage.This eliminates the imprecision of the characterization of the temperature of the gases by tables or maps in the equation for calculating the temperature of the glow plugs.

Grace à l'invention, le calcul de l'estimation de la température du crayon de la bougie de préchauffage est robuste au point de fonctionnement moteur (régime et couple, ou régime et quantité de carburant injecté), à la température ou la pression ambiante, au débit admis par le moteur et aux réglages de combustion.Thanks to the invention, the calculation of the estimate of the temperature of the glow plug rod is robust at the engine operating point (speed and torque, or speed and quantity of fuel injected), at ambient temperature or pressure. , the flow admitted by the engine and the combustion settings.

D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :

  • la figure 1 illustre un système d'estimation de la température des bougies de préchauffage selon l'invention ; et
  • la figure 2 illustre les étapes d'un procédé d'estimation de la température des bougies de préchauffage selon l'invention mis en œuvre par le système de la figure 1.
Other objects, characteristics and advantages of the invention will become apparent on reading the following description, given solely by way of non-limiting example, and made with reference to the appended drawings in which:
  • the figure 1 illustrates a system for estimating the temperature of the glow plugs according to the invention; and
  • the figure 2 illustrates the steps of a method for estimating the temperature of the glow plugs according to the invention implemented by the system of the figure 1 .

Un système d'estimation de la température des bougies de préchauffage, référencé 10 dans son ensemble, est destiné à être intégré dans une unité de commande d'un moteur à combustion interne de type Diesel (non représenté), comprenant une chambre de combustion dans les pistons du moteur, des bougies de préchauffage implantées dans ladite chambre de combustion et au moins un capteur de pression de cylindre P.A system for estimating the temperature of the glow plugs, referenced 10 as a whole, is intended to be integrated into a control unit of an internal combustion engine of Diesel type (not shown), comprising a combustion chamber in the pistons of the engine, glow plugs located in said combustion chamber and at least one pressure sensor of cylinder P.

Le système 10 d'estimation de la température des bougies de préchauffage comprend un module 12 de calcul d'une valeur de température dans le cylindre Tcyl(angle) pour chaque position angulaire du moteur pour laquelle les soupapes d'admission et d'échappement associées à la chambre de combustion sont fermées, selon l'équation suivante : T cyl angle = T ivc Vol ivc . Pcyl ivc . Vol angle . Pcyl angle

Figure imgb0012
Avec :

  • Tivc, la température à la fermeture des soupapes d'admission « intake valve closing temperature » en termes anglo-saxons, calculées selon l'équation Eq.2 ci-dessous, exprimée en K ;
  • Volivc, le volume de la chambre de combustion à la fermeture des soupapes d'admission calculé en fonction de l'angle vilebrequin, la course, l'alésage et le volume mort du cylindre, exprimé en m3 ;
  • Vol(angle), le volume de la chambre de combustion, pour chaque position angulaire du cylindre, calculé en fonction de l'angle vilebrequin, la course, l'alésage et le volume mort du cylindre, exprimé en m3 ;
  • Pcyl(ivc), la pression du cylindre à la fermeture des soupapes d'admission, mesurée par un capteur cylindre, exprimée en bar ; et
  • Pcyl(angle), la pression du cylindre, pour chaque position angulaire du cylindre, mesurée par un capteur cylindre, exprimée en bar.
The system 10 for estimating the temperature of the glow plugs comprises a module 12 for calculating a temperature value in the cylinder T cyl (angle) for each angular position of the engine for which the intake and exhaust valves associated with the combustion chamber are closed, according to the following equation: T cyl angle = T ivc Flight ivc . Pcyl ivc . Flight angle . Pcyl angle
Figure imgb0012
With:
  • T ivc , the temperature at the closing of the intake valves “intake valve closing temperature” in Anglo-Saxon terms, calculated according to the equation Eq.2 below, expressed in K;
  • Vol ivc , the volume of the combustion chamber when the intake valves are closed calculated as a function of the crankshaft angle, the stroke, the bore and the dead volume of the cylinder, expressed in m 3 ;
  • Flight (angle) , the volume of the combustion chamber, for each angular position of the cylinder, calculated according to the crankshaft angle, stroke, bore and dead volume of the cylinder, expressed in m 3 ;
  • Pcyl (ivc) , the cylinder pressure when the intake valves are closed, measured by a cylinder sensor, expressed in bar; and
  • Pcyl (angle) , the cylinder pressure, for each angular position of the cylinder, measured by a cylinder sensor, expressed in bar.

Ainsi, la température dans le cylindre Tcyl(angle) pour chaque position angulaire du moteur pour laquelle les soupapes d'admission et d'échappement sont fermées, est calculable d'après l'équation des gaz parfaits (P.V=n.R.T), où P . V T

Figure imgb0013
est une constante entre un point considéré et le point de fermeture des soupapes d'admission (ivc).Thus, the temperature in the cylinder T cyl (angle) for each angular position of the engine for which the intake and exhaust valves are closed, can be calculated from the gas equation perfect (PV = nRT), where P . V T
Figure imgb0013
is a constant between a point considered and the point of closing of the inlet valves (ivc).

La température à la fermeture des soupapes d'admission Tivc est calculée selon l'équation ci-dessous en assimilant cette phase à une polytropique : T ivc = T ivo . Vol ivo Vol ivc γ ivc

Figure imgb0014
The temperature at closing of the intake valves T ivc is calculated according to the equation below by assimilating this phase to a polytropic: T ivc = T ivo . Flight ivo Flight ivc γ ivc
Figure imgb0014

Avec : T ivo = T air . Q air + T EGR . Q EGR Q air + Q EGR

Figure imgb0015
Avec :

  • Tivo, la température à l'ouverture des soupapes d'admission « intake valve opening temperature » en termes anglo-saxons, calculée selon l'équation Eq.3 ci-dessus en fonction de la température Tair, de la température de recirculation des gaz d'échappement TEGR, et des débits d'air frais Qair et de gaz recirculés QEGR, mesurés par capteurs ; en variante, la température à l'ouverture des soupapes d'admission Tivo peut être mesurée par un capteur, exprimée en K;
  • VolX, le volume de la chambre de combustion au moment X (ivo (ouverture des soupapes d'admission), ivc (fermeture des soupapes d'admission), evo (ouverture des soupapes d'échappement) et evc (fermeture des soupapes d'échappement), exprimé en m3 ; et
  • yivc, un coefficient polytropique de la compression dépendant de la composition des gaz admis (taux de recirculation des gaz d'échappement EGR).
With: T ivo = T air . Q air + T EGR . Q EGR Q air + Q EGR
Figure imgb0015
With:
  • T ivo , the temperature at the opening of the intake valves "intake valve opening temperature" in English terms, calculated according to the equation Eq.3 above as a function of the air temperature T, of the recirculation temperature exhaust gases T EGR , and flow rates of fresh air Q air and recirculated gases Q EGR , measured by sensors; as a variant, the temperature at the opening of the intake valves T ivo can be measured by a sensor, expressed in K;
  • Vol X , the volume of the combustion chamber at time X (ivo (opening of the intake valves), ivc (closing of the intake valves), evo (opening of the exhaust valves) and evc (closing of the valves of 'exhaust), expressed in m 3 ; and
  • y ivc , a polytropic coefficient of compression depending on the composition of the gases admitted (EGR exhaust gas recirculation rate).

Le système 10 d'estimation de la température des bougies de préchauffage comprend en outre un module 14 de calcul d'une estimation de la température moyenne des gaz Tgaz dans le cylindre à laquelle est soumis le crayon de la bougie au cours d'un cycle moteur.The system 10 for estimating the temperature of the glow plugs further comprises a module 14 for calculating an estimate of the average temperature of the gases Tgas in the cylinder to which the spark plug rod is subjected during a cycle. engine.

Considérant l'inertie thermique du crayon de bougie, de l'ordre du 1/10è de secondes, nettement supérieur au temps caractéristique d'évolution de la température (ou pression) cylindre, de l'ordre du millième de secondes, la température moyenne des gaz Tgaz(cycle) peut être estimée comme une valeur de température des gaz internes au cylindre moyennée sur un cycle de combustion, et calculée par le module 14 selon l'équation suivante : T gaz cycle _ n = α ivo α ivo 720 ° T ivo + T ivc 2 + α ivc evo 720 ° . moy Tcyl angle α ivc α evo + α evo α evc 720 ° . T evo + T evc 2

Figure imgb0016
Avec:

  • αivo → αivo, la durée d'ouverture angulaire des soupapes admission αadmin, exprimée en [°crk] ;
  • αivc → evo, la durée angulaire toutes soupapes fermées, exprimée en [°crk];
  • αevo → αevc, la durée d'ouverture angulaire des soupapes d'échappement aexh, exprimée en [°crk] ;
  • moy{Tcyl (angle)} αivc→αevo , la température moyenne dans le cylindre pendant les phases d'admission et de détente assimilée à la moyenne des températures respectivement [Tivo; Tivc] et [Tevo ; Tevc], exprimée en K ; et
  • Tevc, la température à la fermeture des soupapes d'échappement « exhaust valve closing temperature » en termes anglo-saxons, calculées selon l'équation Eq.5 ci-dessous, exprimée en K.
Considering the thermal inertia of the spark plug rod, of the order of 1 / 10th of a second, clearly greater than the characteristic time of evolution of the cylinder temperature (or pressure), of the order of a thousandth of a second, the average temperature Tgas (cycle) can be estimated as a temperature value of the gases inside the cylinder averaged over a combustion cycle, and calculated by the module 14 according to the following equation: T gas cycle _ not = α ivo α ivo 720 ° T ivo + T ivc 2 + α ivc evo 720 ° . avg Tcyl angle α ivc α evo + α evo α evc 720 ° . T evo + T evc 2
Figure imgb0016
With:
  • α ivo → α ivo , the angular opening time of the inlet valves α admin , expressed in [° crk];
  • α ivc → evo , the angular duration with all valves closed, expressed in [° crk];
  • α evo → α evc , the angular opening time of the exhaust valves at exh , expressed in [° crk];
  • moy { Tcyl ( angle ) } αivc → α evo , the average temperature in the cylinder during the intake and expansion phases assimilated to the average temperature respectively [T ivo ; Ti vc ] and [T evo ; T evc ], expressed in K; and
  • T evc , the temperature at the closing of the exhaust valve closing temperature in Anglo-Saxon terms, calculated according to the equation Eq.5 below, expressed in K.

La température à la fermeture des soupapes d'échappement Tevc est calculée selon l'équation ci-dessous en assimilant cette phase à une polytropique : T evc = T evo . Vol evo Vol evc γ iec

Figure imgb0017
Avec :

  • γevc, un coefficient polytropique de la détente, dépendant la composition des gaz d'échappement (richesse) ; et
  • Tevo, la température cylindre à l'ouverture des soupapes d'échappement, exprimée en K, avec Tevo = Tcyl(evo)
The temperature at closing of the exhaust valves T evc is calculated according to the equation below by assimilating this phase to a polytropic: T evc = T evo . Flight evo Flight evc γ iec
Figure imgb0017
With:
  • γ evc , a polytropic coefficient of expansion, depending on the composition of the exhaust gases (richness); and
  • Tevo, the cylinder temperature at the opening of the exhaust valves, expressed in K, with T evo = Tcyl (evo)

En incorporant les équations Eq.2 et Eq.3 dans l'équation Eq.4, la température moyenne des gaz Tgaz(cycle) sur un cycle de combustion s'écrit selon les équations suivantes : T gaz cycle = α ad min . T ivo + T ivc 2 + 720 ° α ad min + α exh .. moy Tcyl angle α ivc α evo + α exh .. T evo + T evc 2

Figure imgb0018
T gaz cycle = α ad min . T ivo . 1 + Vol ivo Vol ivc γ ivc 2 + 1 α ivc evo . α ivc α evo Tcyl . + α exh .. Tcyl evo . 1 + Vol evo Vol evc γ evc 2
Figure imgb0019
By incorporating the equations Eq.2 and Eq.3 into the equation Eq.4, the average temperature of the Tgas (cycle) over a combustion cycle is written according to the following equations: T gas cycle = α ad min . T ivo + T ivc 2 + 720 ° - α ad min + α exh .. avg Tcyl angle α ivc α evo + α exh .. T evo + T evc 2
Figure imgb0018
T gas cycle = α ad min . T ivo . 1 + Flight ivo Flight ivc γ ivc 2 + 1 α ivc evo . α ivc α evo Tcyl . + α exh .. Tcyl evo . 1 + Flight evo Flight evc γ evc 2
Figure imgb0019

Le système 10 d'estimation de la température des bougies de préchauffage comprend en outre un module 16 de calcul d'une estimation de la température du crayon de la bougie T(t) en fonction de la température dans le cylindre Tcyl(angle) pour chaque position angulaire du moteur calculée à l'équation Eq.1 et de la température moyenne des gaz Tgaz(cycle) sur un cycle de combustion calculée à l'équation Eq.7.The system 10 for estimating the temperature of the glow plugs further comprises a module 16 for calculating an estimate of the temperature of the rod of the spark plug T (t) as a function of the temperature in the cylinder T cyl (angle) for each angular position of the engine calculated in equation Eq.1 and for the average gas temperature Tgas (cycle) over a combustion cycle calculated in equation Eq.7.

L'estimation de la température du crayon de la bougie T(t) s'écrit selon l'équation suivante : T t = T t 1 + 1 τ chauffe . U t U ref 2 . 1 a T t 1 1 τ ref r . 1 + K . T t 1 . T t 1 T gaz cycle + k . T t 1 T eau

Figure imgb0020
Avec :

  • Tchauffe, le temps caractéristique de chauffe du crayon de la bougie, exprimé en s ;
  • Trefr, le temps caractéristique de refroidissement du crayon de la bougie, exprimé en s, dépendant du débit d'air aspiré par le moteur, exprimé en kg/s ;
  • a, un coefficient d'évolution de la résistance électrique du crayon de la bougie avec sa température ;
  • K, un coefficient d'évolution des facteurs thermiques avec la température des gaz ;
  • k, un facteur d'échanges conductifs via la culasse égal à λ.s, avec λ, la conductivité thermique exprimée en W/(m2.K) et s, la surface d'échange entre la bougie et la culasse, exprimée en m2 ;
  • Uref, la tension de référence, exprimée en V ; et
  • Teau, la température de l'eau, exprimée en K.
The estimate of the temperature of the spark plug rod T (t) is written according to the following equation: T t = T t - 1 + 1 τ heated . U t U ref 2 . 1 at - T t - 1 - 1 τ ref r . 1 + K . T t - 1 . T t - 1 - T gas cycle + k . T t - 1 - T water
Figure imgb0020
With:
  • T heats up , the characteristic heating time of the candle rod, expressed in s;
  • Trefr , the characteristic cooling time of the spark plug rod, expressed in s, depending on the air flow sucked by the engine, expressed in kg / s;
  • a, a coefficient of variation of the electrical resistance of the spark plug rod with its temperature;
  • K, a coefficient of evolution of the thermal factors with the temperature of the gases;
  • k, a conductive exchange factor via the cylinder head equal to λ.s, with λ, the thermal conductivity expressed in W / ( m 2 .K ) and s, the exchange surface between the spark plug and the cylinder head, expressed in m 2 ;
  • U ref , the reference voltage, expressed in V; and
  • T water , the temperature of the water, expressed in K.

Ainsi, en mesurant la pression cylindre Pcyl, pour chaque position vilebrequin, par exemple tous les degrés de vilebrequin en connaissant la tension de pilotage de la bougie, en initialisant la température de la bougie T(t) au premier pas de calcul moteur froid, à la température de la culasse, c'est-à-dire à la température du liquide de refroidissement, ou à la température précédente en cas de démarrage à chaud, il est possible d'estimer une valeur de température moyenne dans le cylindre sur un cycle de combustion Tgaz(cycle). Par pas de calculs itératifs, on peut ensuite estimer la température du crayon de la bougie de préchauffage T(t), de manière précise, en n'utilisant que les paramètres physiques et géométriques du moteur.Thus, by measuring the cylinder pressure P cyl , for each crankshaft position, for example all the crankshaft degrees by knowing the piloting voltage of the spark plug, by initializing the temperature of the spark plug T (t) at the first cold engine calculation step , at the temperature of the cylinder head, that is to say at the temperature of the coolant, or at the previous temperature in the event of a hot start, it is possible to estimate an average temperature value in the cylinder on a T gas combustion cycle (cycle) . By steps of iterative calculations, the temperature of the glow plug rod T (t) can then be estimated precisely, using only the physical and geometric parameters of the engine.

On s'affranchit ainsi de l'imprécision de la caractérisation de la température des gaz Tgaz par tables ou cartographies dans l'équation Eq.8 qui est dans l'état de la technique simplifiée.This avoids the imprecision of the characterization of the temperature of the Tgas gases by tables or maps in the equation Eq.8 which is in the state of the simplified technique.

Grace à l'invention, le calcul de l'estimation de la température du crayon de la bougie de préchauffage est robuste au point de fonctionnement moteur (régime et couple, ou régime et quantité de carburant injecté), à la température ou la pression ambiante, au débit admis par le moteur et aux réglages de combustion.Thanks to the invention, the calculation of the estimate of the temperature of the glow plug rod is robust at the engine operating point (speed and torque, or speed and quantity of fuel injected), at ambient temperature or pressure. , the flow admitted by the engine and the combustion settings.

L'organigramme représenté sur la figure 2 illustre un exemple de procédé 20 mis en œuvre par le système représenté sur la figure 1.The organization chart shown on the figure 2 illustrates an example of a method 20 implemented by the system shown in figure 1 .

Lors d'une première étape 21, on calcule une valeur de température dans le cylindre Tcyl(angle) pour chaque position angulaire du moteur pour laquelle les soupapes d'admission et d'échappement sont fermées selon l'équation suivante : T cyl angle = T ivc Vol ivc . Pcyl ivc . Vol angle . Pcyl angle

Figure imgb0021
Avec :

  • Tivc, la température à la fermeture des soupapes d'admission « intake valve closing temperature » en termes anglo-saxons, calculée selon l'équation Eq.2 ci-dessous, exprimée en K ;
  • Volivc, le volume de la chambre de combustion à la fermeture des soupapes d'admission calculé en fonction de l'angle vilebrequin, la course, l'alésage et le volume mort du cylindre, exprimé en m3 ;
  • Vol(angle), le volume de la chambre de combustion, pour chaque position angulaire du cylindre, calculé en fonction de l'angle vilebrequin, la course, l'alésage et le volume mort du cylindre, exprimé en m3 ;
  • Pcyl(ivc), la pression du cylindre à la fermeture des soupapes d'admission, mesurée par un capteur cylindre, exprimée en bar ; et
  • Pcyl(angle), la pression du cylindre, pour chaque position angulaire du cylindre, mesurée par un capteur cylindre, exprimée en bar.
In a first step 21, a temperature value is calculated in the cylinder T cyl (angle) for each angular position engine for which the intake and exhaust valves are closed according to the following equation: T cyl angle = T ivc Flight ivc . Pcyl ivc . Flight angle . Pcyl angle
Figure imgb0021
With:
  • T ivc , the temperature at the closing of the intake valves “intake valve closing temperature” in Anglo-Saxon terms, calculated according to the equation Eq.2 below, expressed in K;
  • Vol ivc , the volume of the combustion chamber when the intake valves are closed calculated as a function of the crankshaft angle, the stroke, the bore and the dead volume of the cylinder, expressed in m 3 ;
  • Flight (angle) , the volume of the combustion chamber, for each angular position of the cylinder, calculated according to the crankshaft angle, stroke, bore and dead volume of the cylinder, expressed in m 3 ;
  • Pcyl (ivc) , the cylinder pressure when the intake valves are closed, measured by a cylinder sensor, expressed in bar; and
  • Pcyl (angle) , the cylinder pressure, for each angular position of the cylinder, measured by a cylinder sensor, expressed in bar.

Ainsi, la température dans le cylindre Tcyl(angle) pour chaque position angulaire du moteur, pour laquelle les soupapes d'admission et d'échappement sont femrées, est calculable d'après l'équation des gaz parfaits (P.V=n.R.T), où P . V T

Figure imgb0022
est une constante entre un point considéré et le point de fermeture des soupapes d'admission (ivc).Thus, the temperature in the cylinder T cyl (angle) for each angular position of the engine, for which the intake and exhaust valves are closed, can be calculated from the ideal gas equation (PV = nRT), or P . V T
Figure imgb0022
is a constant between a point considered and the point of closing of the inlet valves (ivc).

La température à la fermeture des soupapes d'admission Tivc est calculée selon l'équation ci-dessous en assimilant cette phase à une polytropique : T ivc = T ivo . Vol ivo Vol ivc γ ivc

Figure imgb0023
Avec : T ivo = T air . Q air + T EGR . Q EGR Q air + Q EGR
Figure imgb0024
Avec :

  • Tivo, la température à l'ouverture des soupapes d'admission « intake valve opening temperature » en termes anglo-saxons, calculée selon l'équation Eq.3 ci-dessus en fonction de la température Tair, de la température de recirculation des gaz d'échappement TEGR, et des débits d'air frais Qair et de gaz recirculés QEGR, mesurés par capteurs ; en variante, la température à l'ouverture des soupapes d'admission Tivo peut être mesurée par un capteur, exprimée en K;
  • Volx, le volume de la chambre de combustion au moment X (ivo (ouverture des soupapes d'admission), ivc (fermeture des soupapes d'admission), evo (ouverture des soupapes d'échappement) et evc (fermeture des soupapes d'échappement), exprimé en m3 ; et
  • yivc, un coefficient polytropique de la compression dépendant de la composition des gaz admis (taux de recirculation des gaz d'échappement EGR).
The temperature at closing of the intake valves T ivc is calculated according to the equation below by assimilating this phase to a polytropic: T ivc = T ivo . Flight ivo Flight ivc γ ivc
Figure imgb0023
With: T ivo = T air . Q air + T EGR . Q EGR Q air + Q EGR
Figure imgb0024
With:
  • T ivo , the temperature at the opening of the intake valves "intake valve opening temperature" in English terms, calculated according to the equation Eq.3 above as a function of the air temperature T, of the recirculation temperature exhaust gases T EGR , and flow rates of fresh air Q air and recirculated gases Q EGR , measured by sensors; as a variant, the temperature at the opening of the intake valves T ivo can be measured by a sensor, expressed in K;
  • Vol x , the volume of the combustion chamber at time X (ivo (opening of the intake valves), ivc (closing of the intake valves), evo (opening of the exhaust valves) and evc (closing of the intake valves) 'exhaust), expressed in m 3 ; and
  • y ivc , a polytropic coefficient of compression depending on the composition of the gases admitted (EGR exhaust gas recirculation rate).

Lors de l'étape 22, on calcule une estimation de la température moyenne des gaz Tgaz dans le cylindre à laquelle est soumis le crayon de la bougie au cours d'un cycle moteur.During step 22, an estimate is calculated of the average temperature of the gases T gases in the cylinder to which the spark plug rod is subjected during an engine cycle.

Considérant l'inertie thermique du crayon de bougie, de l'ordre du 1/10è de secondes, nettement supérieur au temps caractéristique d'évolution de la température (ou pression) cylindre, de l'ordre du millième de secondes, la température moyenne des gaz Tgaz(cycle) sur un cycle de combustion est calculée par le module 14 selon l'équation suivante : T gaz cycle _ n = α ivo α ivo 720 ° . T ivo + T ivc 2 + α ivc evo 720 ° . moy Tcyl angle α ivc α evo + α evo α evc 720 ° . T evo + T evc 2

Figure imgb0025
Avec :

  • αivo → αivo, la durée d'ouverture angulaire des soupapes admission αadmin, exprimée en [°crk] ;
  • αivc →evo, la durée angulaire toutes soupapes fermées, exprimée en [°crk] ;
  • αevo → αevc, la durée d'ouverture angulaire des soupapes d'échappement aexh, exprimée en [°crk] ;
  • moy{Tcyl (angle)]αivc αevo , la température moyenne dans le cylindre pendant les phases d'admission et de détente assimilée à la moyenne des températures respectivement [Tivo; Tivc] et [Tevo ; Tevc], exprimée en K ; et
  • Tevc, la température à la fermeture des soupapes d'échappement « exhaust valve closing temperature » en termes anglo-saxons, calculées selon l'équation Eq.5 ci-dessous, exprimée en K.
Considering the thermal inertia of the spark plug rod, of the order of 1 / 10th of a second, clearly greater than the characteristic time of evolution of the cylinder temperature (or pressure), of the order of a thousandth of a second, the average temperature gas T gas (cycle) over a combustion cycle is calculated by the module 14 according to the following equation: T gas cycle _ not = α ivo α ivo 720 ° . T ivo + T ivc 2 + α ivc evo 720 ° . avg Tcyl angle α ivc α evo + α evo α evc 720 ° . T evo + T evc 2
Figure imgb0025
With:
  • α ivo → α ivo , the angular opening time of the inlet valves α admin , expressed in [° crk];
  • α ivc → evo , the angular duration with all valves closed, expressed in [° crk];
  • α evo → α evc , the angular opening time of the exhaust valves at exh , expressed in [° crk];
  • moy { Tcyl ( angle ) ] α ivc α evo , the average temperature in the cylinder during the intake and expansion phases assimilated to the average temperature respectively [T ivo ; T ivc ] and [T evo ; T evc ], expressed in K; and
  • T evc , the temperature at the closing of the exhaust valve closing temperature in Anglo-Saxon terms, calculated according to the equation Eq.5 below, expressed in K.

La température à la fermeture des soupapes d'échappement Tevc est calculée selon l'équation ci-dessous en assimilant cette phase à une polytropique : T evc = T evo . Vol evo Vol evc γ iec

Figure imgb0026
Avec :

  • γevc , un coefficient polytropique de la détente, dépendant la composition des gaz d'échappement (richesse) ; et
  • Tevo, la température à l'ouverture des soupapes d'échappement, exprimée en K, avec Tevo = Tcyl(angle).
The temperature at closing of the exhaust valves T evc is calculated according to the equation below by assimilating this phase to a polytropic: T evc = T evo . Flight evo Flight evc γ iec
Figure imgb0026
With:
  • γ evc , a polytropic coefficient of expansion, depending on the composition of the exhaust gases (richness); and
  • Tevo, the temperature at the opening of the exhaust valves, expressed in K, with T evo = Tcyl (angle) .

En incorporant les équations Eq.2 et Eq.3 dans l'équation Eq.4, la température moyenne des gaz Tgaz(cycle) sur un cycle de combustion s'écrit selon les équations suivantes : T gaz cycle = α ad min . T ivo + T ivc 2 + 720 α ad min + α exh .. moy Tcyl angle α ivc α evo + α exh .. T evo + T evc 2

Figure imgb0027
T gaz cycle = α ad min . T ivo . 1 + Vol ivo Vol ivc γ ivc 2 + 1 α ivc evo α ivc α evo Tcyl . + α exh .. Tcyl evo . 1 + Vol evo Vol evc γ evc 2
Figure imgb0028
By incorporating the equations Eq.2 and Eq.3 into the equation Eq.4, the average temperature of the Tgas (cycle) over a combustion cycle is written according to the following equations: T gas cycle = α ad min . T ivo + T ivc 2 + 720 - α ad min + α exh .. avg Tcyl angle α ivc α evo + α exh .. T evo + T evc 2
Figure imgb0027
T gas cycle = α ad min . T ivo . 1 + Flight ivo Flight ivc γ ivc 2 + 1 α ivc evo α ivc α evo Tcyl . + α exh .. Tcyl evo . 1 + Flight evo Flight evc γ evc 2
Figure imgb0028

Lors de l'étape 23, on calcule une estimation de la température du crayon de la bougie T(t) en fonction de la température dans le cylindre Tcyl(angle) pour chaque position angulaire du moteur calculée à l'équation Eq.1 et de la température moyenne des gaz Tgaz(cycle) sur un cycle de combustion calculée à l'équation Eq.7.During step 23, an estimate of the temperature of the spark plug rod T (t) is calculated as a function of the temperature in the cylinder T cyl (angle) for each angular position of the engine calculated in equation Eq.1 and the average gas temperature T gas (cycle) over a combustion cycle calculated using equation Eq.7.

L'estimation de la température du crayon de la bougie T(t) s'écrit selon l'équation suivante : T t = T t 1 + 1 τ chauffe . U t U ref 2 . 1 a T t 1 1 τ ref r . 1 + K . T t 1 . T t 1 T gaz cycle + k . T t 1 T eau

Figure imgb0029
Avec :

  • Tchauffe, le temps caractéristique de chauffe du crayon de la bougie, exprimé en s ;
  • τrefroidissement , le temps caractéristique de refroidissement du crayon de la bougie, exprimé en s, dépendant du débit d'air aspiré par le moteur, exprimé en kg/s ;
  • a, un coefficient d'évolution de la résistance électrique du crayon de la bougie avec sa température ;
  • K, un coefficient d'évolution des facteurs thermiques avec la température des gaz ;
  • k, un facteur d'échanges conductifs via la culasse égal à λ.s, avec λ, la conductivité thermique exprimée en W/(m2.K) et s, la surface d'échange entre la bougie et la culasse, exprimée en m2 ;
  • Uref, la tension de référence, exprimée en V ; et
  • Teau, la température de l'eau, exprimée en K.
The estimate of the temperature of the spark plug rod T (t) is written according to the following equation: T t = T t - 1 + 1 τ heated . U t U ref 2 . 1 at - T t - 1 - 1 τ ref r . 1 + K . T t - 1 . T t - 1 - T gas cycle + k . T t - 1 - T water
Figure imgb0029
With:
  • T heats up, the characteristic heating time of the candle rod, expressed in s;
  • τ cooling , the characteristic cooling time of the spark plug rod, expressed in s, depending on the air flow sucked by the engine, expressed in kg / s;
  • a, a coefficient of variation of the electrical resistance of the spark plug rod with its temperature;
  • K, a coefficient of evolution of the thermal factors with the temperature of the gases;
  • k, a conductive exchange factor via the cylinder head equal to λ.s, with λ, the thermal conductivity expressed in W / ( m 2 .K ) and s, the exchange surface between the spark plug and the cylinder head, expressed in m 2 ;
  • U ref , the reference voltage, expressed in V; and
  • T water , the temperature of the water, expressed in K.

Ainsi, en mesurant la pression cylindre Pcyl, pour chaque position vilebrequin, par exemple tous un degré vilebrequin en connaissant la tension de pilotage de la bougie, en initialisant la température de la bougie T(t) au premier pas de calcul moteur froid, à la température de la culasse, c'est-à-dire à la température du liquide de refroidissement, ou à la température précédente en cas de démarrage à chaud, il est possible d'estimer une valeur de température moyenne dans le cylindre sur un cycle de combustion Tgaz(cycle). Par pas de calculs itératifs, on peut ensuite estimer la température du crayon de la bougie de préchauffage T(t), de manière précise, en n'utilisant que les paramètres physiques et géométriques du moteur.Thus, by measuring the cylinder pressure P cyl , for each crankshaft position, for example all one crankshaft degree knowing the spark plug control voltage, by initializing the temperature of the spark plug T (t) at the first cold engine calculation step, at the cylinder head temperature, i.e. at the temperature of the coolant, or at the previous temperature in the event of a hot start, it is possible to estimate an average temperature value in the cylinder on a T gas combustion cycle (cycle) . By steps of iterative calculations, it is then possible to estimate the temperature of the glow plug rod T (t) , precisely, using only the physical and geometric parameters of the engine.

On s'affranchit ainsi de l'imprécision de la caractérisation de la température des gaz Tgaz par tables ou cartographies dans l'équation Eq.8 qui est dans l'état de la technique simplifiée.This avoids the imprecision of the characterization of the temperature of the Tgas gases by tables or maps in the equation Eq.8 which is in the state of the simplified technique.

Grace à l'invention, le calcul de l'estimation de la température du crayon de la bougie de préchauffage est robuste au point de fonctionnement moteur (régime et couple, ou régime et quantité de carburant injecté), à la température ou la pression ambiante, au débit admis par le moteur et aux réglages de combustion.Thanks to the invention, the calculation of the estimate of the temperature of the glow plug rod is robust at the engine operating point (speed and torque, or speed and quantity of fuel injected), at ambient temperature or pressure. , the flow admitted by the engine and the combustion settings.

Claims (5)

  1. Method for controlling glow plugs installed in a combustion chamber of an internal combustion engine, notably of diesel type, comprising at least one cylinder pressure sensor, in which said plugs are controlled as a function of an estimation of a temperature (T(t)) of the rod of the glow plugs in which:
    - a cylinder pressure (Pcyl) is measured for each crankshaft position,
    - a temperature value in the cylinder (Tcyl(angle)) is calculated for each angular position of the engine as a function of a value of a temperature (Tivc) on closure of the intake valves, of a volume value (Volivc) of the combustion chamber on closure of the intake valves calculated as a function of a crankshaft angle, of a stroke, of a bore and of a dead volume of the cylinder, of a volume value (Vol(angle)) of the combustion chamber for each angular position of the cylinder, of a cylinder pressure value (Pcyl(ivc)) on closure of the intake valves measured by the cylinder pressure sensor and of a cylinder pressure value (Pcyl(angle)) for each angular position of the cylinder, measured by the cylinder pressure sensor,
    - an average temperature value in the cylinder over a combustion cycle (Tgaz(cycle)) is estimated as a function of the temperature value in the cylinder (Tcyl(angle)) for each angular position of the engine, and
    - the estimation of the temperature (T(t)) of the rod of a plug is calculated by iterative calculation steps as a function of the temperature value in the cylinder (Tcyl(angle)) for each angular position of the engine, of the average temperature value in the cylinder over a combustion cycle (Tgaz(cycle)) and of a plug control voltage value, by initializing the temperature of the rod of the plug (T(t)) on the first calculation step with the engine cold, at a value of a temperature of the cylinder head, or at a preceding value of the estimated temperature of the rod of the plug in the case of a hot start.
  2. Method according to Claim 1, wherein the temperature on closure of the intake valves (Tivc) is calculated by likening this phase to a polytropic, as a function of a temperature value (Tivo) upon opening of the intake valves calculated as a function of a temperature Tair (Tair), of an exhaust gas recirculation temperature (TEGR) and of the cool air (Qair) and recirculated gas (QEGR) flow rates measured by sensors, of a volume (Volx) of the combustion chamber at a given moment (X) and of a polytropic coefficient (Yivc) of the compression dependent on the composition of the gases taken in.
  3. Method according to Claim 1 or 2, wherein the estimation of the average gas temperature (Tgaz) is calculated as a function of a duration of angular opening of the intake valves (αivo→αivo ), of an angular duration with all valves closed (αivcevo ), of a duration of angular opening of the exhaust valves (αevo→αevc ), of an average temperature (moy{Tcyl (angle) } αivc→evo ) in the cylinder during the intake and expansion phases likened to the average of the temperatures upon opening of the intake valves, upon closing of the intake valves, upon opening of the exhaust valves and upon closing of the exhaust valves ([Tivo; Tivc] ; [Tevo; Tevc]) and of the temperature (Tevc) upon closing of the exhaust valves.
  4. Method according to Claim 3, wherein the temperature on closure of the exhaust valves (Tevc) is calculated by likening this phase to a polytropic as a function of a polytropic coefficient (γevc) of the expansion, dependent on a composition of the exhaust gases (richness), and of the temperature (Tevo) upon opening of the exhaust valves.
  5. Control unit of an internal combustion engine, notably of diesel type, comprising a combustion chamber, glow plugs installed in said chamber and at least one cylinder pressure sensor configured to measure a cylinder pressure (Pcyl) for each crankshaft position, said unit comprising a system (10) for estimating the temperature (T(t)) of the rod of the glow plugs and a system for controlling the glow plugs as a function of said estimation of temperature of the rod of the glow plugs, the estimation system (10) comprising:
    - a module (12) for calculating a temperature value in the cylinder (Tcyl(angle)) for each angular position of the engine as a function of a value of a temperature (Tivc) upon closure of the intake valves, of a volume value (Volivc) of the combustion chamber upon closure of the intake valves calculated as a function of a crankshaft angle, of a stroke, of a bore and of a dead volume of the cylinder, of a volume value (Vol(angle)) of the combustion chamber for each angular position of the cylinder, of a cylinder pressure value (Pcyl(ivc)) upon closing of the intake valves measured by the cylinder pressure sensor and of a cylinder pressure value (Pcyl (angle)) for each angular position of the cylinder, measured by the cylinder pressure sensor,
    - a module (14) for estimating an average temperature value in the cylinder over a combustion cycle (Tgaz(cycle)) as a function of the temperature value in the cylinder (Tcyl(angle)) for each angular position of the engine, and
    - a module (16) for estimating the temperature (T(t)) of the rod of a plug by iterative calculation steps as a function of the temperature value in the cylinder (Tcyl(angle)) for each angular position of the engine, of the average temperature value in the cylinder over a combustion cycle (Tgaz(cycle)) and of a plug control voltage value, by initializing the temperature of the rod of the plug (T(t)) on the first calculation step with the engine cold, to a value of a temperature of the cylinder head, or to a preceding value of the estimated temperature of the rod of the plug in case of a hot start.
EP19179345.4A 2018-06-13 2019-06-11 Control of glow plugs of an internal combustion engine Active EP3581788B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1855162A FR3082557B1 (en) 2018-06-13 2018-06-13 METHOD AND SYSTEM FOR ESTIMATING THE TEMPERATURE OF THE GLOW PLUGS OF AN INTERNAL COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
EP3581788A1 EP3581788A1 (en) 2019-12-18
EP3581788B1 true EP3581788B1 (en) 2021-03-17

Family

ID=63557627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19179345.4A Active EP3581788B1 (en) 2018-06-13 2019-06-11 Control of glow plugs of an internal combustion engine

Country Status (2)

Country Link
EP (1) EP3581788B1 (en)
FR (1) FR3082557B1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20050326A1 (en) * 2005-05-06 2006-11-07 Magneti Marelli Powertrain Spa INTERNAL COMBUSTION ENGINE PROVIDED WITH A HEATING DEVICE IN A COMBUSTION CHAMBER AND METHOD OF CHECKING THE HEATING DEVICE
FR2891868B1 (en) 2005-10-07 2007-12-21 Renault Sas METHOD OF ESTIMATING THE EXHAUST TEMPERATURE OF AN ENGINE, AND METHOD OF DIAGNOSING A CYLINDER PRESSURE SENSOR USING EXHAUST TEMPERATURE ESTIMATION.
DE102006048225A1 (en) * 2006-10-11 2008-04-17 Siemens Ag Method for determining a glow plug temperature
GB2472811B (en) * 2009-08-19 2017-03-01 Gm Global Tech Operations Llc Glowplug temperature estimation method and device
DE102010011044B4 (en) * 2010-03-11 2012-12-27 Borgwarner Beru Systems Gmbh Method for controlling a glow plug
DE102011085435A1 (en) * 2011-10-28 2013-05-02 Robert Bosch Gmbh Method and device for determining a surface temperature of a glow plug in an internal combustion engine
DE102012102013B3 (en) * 2012-03-09 2013-06-13 Borgwarner Beru Systems Gmbh Method for controlling surface temperature of glow plug in internal combustion engine of motor car, involves changing effective voltage acting on plug based on deviation in plug temperature with respect to target temperature of plug surface
DE102012211641A1 (en) * 2012-07-04 2014-01-09 Robert Bosch Gmbh Method and device for determining a temperature-resistance correlation of a glow plug

Also Published As

Publication number Publication date
FR3082557A1 (en) 2019-12-20
EP3581788A1 (en) 2019-12-18
FR3082557B1 (en) 2021-07-23

Similar Documents

Publication Publication Date Title
Moskwa et al. Modeling and validation of automotive engines for control algorithm development
US7269495B2 (en) Engine output calculation method and engine output calculation apparatus
US7367318B2 (en) Control system and control method of internal combustion engine
US7628145B2 (en) Control method of compression self ignition internal combustion engine
CN100529382C (en) Ignition timing control for internal combustion engine
EP1571331A1 (en) Ignition timing control system for an internal combustion engine
CN102439280B (en) Control device for internal combustion engine
US10557431B2 (en) Indirect measurement of relative air humidity
RU2704909C2 (en) System and method for adjusting exhaust valve timing
Payri et al. Study of the potential of intake air heating in automotive DI diesel engines
JP4600308B2 (en) Control device for internal combustion engine
Khameneian et al. Model-based dynamic in-cylinder air charge, residual gas and temperature estimation for a GDI spark ignition engine using cylinder, intake and exhaust pressures
Castaing et al. Fuel metering effects on hydrocarbon emissions and engine stability during cranking and start-up in a port fuel injected spark ignition engine
JP2009275573A (en) Control device of internal combustion engine
Tunka et al. Effect of various ignition timings on combustion process and performance of gasoline engine
EP3581788B1 (en) Control of glow plugs of an internal combustion engine
JP3636047B2 (en) Power control device for sensor temperature rise
JP6551317B2 (en) Exhaust temperature estimation device for internal combustion engine
WO2007060349A1 (en) Method for estimating the enclosed mass of gases during each operating cycle in the combustion chamber of an internal combustion engine cylinder
US10563598B2 (en) Engine operating system and method
FR2904660A1 (en) Fuel combustion rate determining method for e.g. direct injection oil engine, involves storing rotation angle of crankshaft as angular value of combustion rate if threshold values respectively exceed and does not exceed angle
Minchev et al. Effect of thermal inertia on diesel engines transient performance
JP5375979B2 (en) Combustion control device for internal combustion engine
WO2014095047A1 (en) Method for determining the amount of fuel injected into an engine, in particular a diesel engine
FR2909413A1 (en) Combustion starting instant determining and adjusting method for e.g. oil engine of motor vehicle, involves shifting actual combustion starting instant towards set point starting instant when actual and set point instants are different

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200519

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200724

RIC1 Information provided on ipc code assigned before grant

Ipc: F02P 19/02 20060101AFI20200907BHEP

Ipc: F02D 41/18 20060101ALN20200907BHEP

Ipc: F02D 41/00 20060101ALN20200907BHEP

Ipc: F02D 21/08 20060101ALN20200907BHEP

Ipc: F02D 35/02 20060101ALN20200907BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201016

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019003205

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1372462

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210618

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1372462

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210317

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019003205

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

26N No opposition filed

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240621

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240628

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317