EP3576943A1 - Method for establishing an integrally bonded connection - Google Patents

Method for establishing an integrally bonded connection

Info

Publication number
EP3576943A1
EP3576943A1 EP18706196.5A EP18706196A EP3576943A1 EP 3576943 A1 EP3576943 A1 EP 3576943A1 EP 18706196 A EP18706196 A EP 18706196A EP 3576943 A1 EP3576943 A1 EP 3576943A1
Authority
EP
European Patent Office
Prior art keywords
layer
steel alloy
semifinished product
material thickness
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18706196.5A
Other languages
German (de)
French (fr)
Inventor
David Pieronek
Dr. Stefan MYSLOWICKI
Marco Queller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3576943A1 publication Critical patent/EP3576943A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels

Definitions

  • the invention relates to a method for producing a cohesive connection between a first semifinished product and a second semifinished product.
  • Lightweight construction is an essential element in reducing vehicle weight. This can be achieved, inter alia, by the use of materials with increased strength. As the strength increases, its bending capacity tends to decrease. In order to ensure the occupant protection required for crash-relevant components in spite of increased strength to realize lightweight construction, it must be ensured that the materials used can convert the energy introduced by a crash by deformation. This requires a high degree of formability, especially in the crash-relevant components of a vehicle structure.
  • One way to save weight for example, the body, frame and / or the chassis of a vehicle even easier to design and build by lightweight and innovative materials compared to the conventionally used materials. For example, component-specific conventional materials can be replaced by lighter materials with comparable properties.
  • hybrid materials or composites are finding their way into the automotive industry, which are composed of two or more different materials, each individual material having certain properties, but in combination substantially opposing properties are combined to improved properties in the composite material compared to the individual to provide monolithic materials.
  • Composite materials, in particular of different steel alloys are known in the prior art, see for example DE 10 2008 022 709 AI and DE 10 2015 114 989 B3.
  • steel alloys having a structure which has a certain austenite content such as high manganese steel alloys with high (tensile) strengths (R m ) and high (fracture) strains (A 8 o), which for example components with complex geometry or components Crash-relevant areas for absorption of energy in the event of a crash can be made.
  • Such steel alloys are known for example from WO 2006/048034 AI and can at Consistent properties are designed to be thinner than conventional steel alloys, whereby by reducing the material thickness positive influence on the total weight of the component or the vehicle can be taken. Such steel alloys are therefore ideal for the automotive industry.
  • steel alloys with a certain austenite content in the microstructure are only conditionally coatable, in particular with a zinc-based corrosion protection coating, owing to their chemical and physical properties.
  • An example of the coating of high manganese steel alloys is known from DE 10 2009 018 577 B3.
  • zinc-based hot dip coated high manganese steel alloys may tend to cause hydrogen induced cracking after molding.
  • steel alloys with a certain austenite content in the microstructure are also only conditionally thermally available, in particular solderable, since they lead to severe solder rupture and inadmissible solder joints according to DVS Merkblatt 0938-2, as investigations within the framework of the AiF research project no.
  • Soldering is understood as meaning a thermal process for materially bonding materials / materials with the aid of a material (solder) that is particularly low in comparison to the connecting materials / materials, wherein a liquid phase is called by heat melting a solder, also called soldering, or by diffusion A solder at the interfaces, also called diffusion soldering, is formed and, after cooling of the liquid phase, a material bond is formed between the bonded materials.
  • Object of the present invention is to provide a method for producing a material connection.
  • the invention relates to a method for producing a material-locking connection between a first semifinished product comprising at least one first layer of a steel alloy having a structure which has an austenite content of at least 15% by volume and at least one second layer of a soft steel alloy, which is connected to the first layer on one or both sides over the entire surface and in a materially bonded manner, in particular after shaping as a part or component, with at least one second semifinished product, in particular dere as a part or component of a steel alloy, in particular a monolithic steel alloy, wherein the second semifinished product is connected to the second layer of the first semifinished product by means of a soldering process.
  • the second layer of the first semifinished product is particularly suitable for soldering and the second semifinished product preferably consists of a readily solderable steel alloy, for example of a microalloyed steel alloy, a process-reliable and stable solder connection can be produced between the two semifinished products or parts or components.
  • the inventors have found that by providing at least one second layer of a soft steel alloy, which on one or both sides over the entire surface and cohesively with the first layer of a steel alloy with a structure which Austenitanteil of at least 15 vol .-%, in particular at least 20 vol .-%, preferably at least 25 vol .-%, particularly preferably at least 30 vol .-%, is connected, it can be ensured that at least one side, preferably on both sides no direct or direct contact with the first layer is possible, so that the second layer of a soft steel alloy acts as a functional layer.
  • soft steel alloys have (tensile) strengths of not more than 580 MPa, in particular not more than 500 MPa, preferably not more than 450 MPa, particularly preferably not more than 400 MPa.
  • the second layer or the soft steel alloy has properties that are particularly positive in terms of thermal brazing.
  • the first semi-finished product can thus be integrated into existing standard processes without having to make any changes in the process chain.
  • the solderability is significantly determined by the properties of the surface of the semifinished product, which are provided by the second layer as a functional layer.
  • the steel alloy having an austenite content of at least 15% by volume, especially at least 20% by volume, preferably at least 25% by volume, more preferably at least 30% by volume, is not limited to carbon-steel alloys, but is also stainless Steel alloys conceivable, in particular Cr-Ni steel alloys.
  • the first layer preferably consists of a manganese-containing steel alloy, in particular of a TRIP, TWIP or FeMn steel alloy.
  • Manganese is an austenite former and stabilizer and has a positive influence on the strength, in particular with a content of at least 2% by weight. At high contents, it leads to the formation of hardening structures ( ⁇ '- and ⁇ -martensite) as well as to TRIP or TRIP. TWIP-capable austenite and particularly good strength-formability relations. Above, for example, 35.0% by weight, these induced mechanisms are reduced Plasticity and another cost-relevant alloy is useless.
  • Manganese can be alloyed in particular up to a maximum of 30.0% by weight and, for example, with at least 6.0% by weight, in particular with at least 10.0% by weight.
  • the first layer may alternatively consist of a Q & P steel alloy (quenching / partitioning) with a residual austenite content of at least 15% by volume in the microstructure.
  • the second layer for forming the one-sided or two-sided functional layer on the first layer preferably consists of a microalloyed steel alloy, IF steel alloy or deep-drawn steel alloy, which can be soldered simply and conventionally without effort.
  • the second layer of the soft steel alloy has a material thickness between 0.2% and 15%, in particular between 0.5% and 10%, based on the total material thickness of the semifinished product.
  • the intended as a functional layer soft steel alloy should be sized in the material thickness, on the one hand, the positive properties of the first layer are not adversely affected substantially, the material thickness of the second layer (per side) a maximum of 15%, preferably at most 10%, preferably 7% based on the total material thickness of the semi-finished product, and on the other to ensure that the first layer is not negatively influenced in particular by diffusion processes due to a cohesive joint, the material thickness of the second layer (per side) at least 0.2%, in particular at least 0.5%, preferably at least 1% based on the total material thickness of the semifinished product.
  • a first layer is provided with a second layer connected on one side.
  • the free surface of the second layer is preferably coated with a zinc-based corrosion protection layer.
  • the semifinished product comprises two second layers, which are arranged on both sides of the first layer and connected to the latter over the entire surface and by material engagement, so that a sandwich material can be provided which, depending on the application, can have a symmetrical or asymmetrical structure. Both free surfaces of the second layers may be coated with a corrosion protection layer, preferably based on zinc.
  • the semifinished product is produced by means of plating, in particular roll cladding or by casting.
  • the first semi-finished product is preferably by means of hot-roll cladding, as described, for example, in the German patent specification DE 10 2005 006 606 B3. Reference is made to this patent, the contents of which are hereby incorporated by reference.
  • the first semi-finished product may be produced by casting, and a possibility for its production is disclosed in Japanese Patent Laid-Open Publication JP-A 03 133 630.
  • Metallic composite fabrication is generally known in the art.
  • the first semi-finished product is used, in particular after shaping into a part or component, for a load-bearing construction.
  • a supporting structure frame for example, in vehicle construction (cars, commercial vehicles with trailers) or railway, shipbuilding or aerospace, but also in the construction sector, such as pillars in question.
  • Figure 1 is a schematic sectional view through a material connection between a first semifinished product and a second semifinished product.
  • the semifinished product (1) comprises a first layer (1.1) of a steel alloy having a structure which has an austenite content of at least 15% by volume, in particular at least 20% by volume, preferably at least 25% by volume, particularly preferably at least 30 Vol .-%, and in particular consists of a manganese-containing steel alloy, for example of the type TWIP or TRIP, more preferably with a manganese content between 10 and 30 wt .-%, and at least one second layer (1.2) of a soft steel alloy, which on one side full surface and cohesively with the first layer (1.1) is connected.
  • the first layer can also consist of a Q & P steel alloy with a residual austenite content of at least 15% by volume.
  • the second layer (1.2, 1.2 ') made of a soft steel alloy has a maximum strength of 500 MPa, wherein it can consist in particular of a microalloyed steel alloy, for example of the HX340LAD type.
  • the Material thickness of the second layer (1.2, 1.2 ') is in particular per side dimensioned such that the positive properties of the first layer (1.1) are not adversely affected substantially, the material thickness of the second layer (per side) at least 0.2% and a maximum of 15% based on the total material thickness of the semifinished product (1), wherein the semifinished product (1), for example, may have a total material thickness between 0.5 and 4 mm. Since the second layer (1.2, 1.2 ') of the semifinished product is suitable for coating and soldering, the free surface of the second layer (1.2) has a zinc-based corrosion protection layer.
  • the semifinished product (1) is connected via the second layer (1.2) to the second semifinished product (2) via a solder fillet weld (3).
  • the zinc-based corrosion protection layer can contribute to better wetting or a better wetting angle of the solder joint.
  • the first semi-finished product can also be formed from a tailored product, for example a tailored blank and / or tailored rolled blank.
  • the second semifinished product which is thermally joined to the first semifinished product by means of a soldering process, can also be designed as a material composite, in particular the first semifinished product, and cumulatively or alternatively as a tailored product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Arc Welding In General (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Metal Rolling (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a method for establishing an integrally bonded connection (3) between a first semi-finished part (1) and a second semi-finished part (2).

Description

Verfahren zur Herstellung einer stoffschlüssigen Verbindung  Process for producing a cohesive connection
Technisches Gebiet Technical area
Die Erfindung betrifft ein Verfahren zur Herstellung einer stoffschlüssigen Verbindung zwischen einem ersten Halbzeug und einem zweiten Halbzeug.  The invention relates to a method for producing a cohesive connection between a first semifinished product and a second semifinished product.
Technischer Hintergrund Technical background
In der Automobilindustrie wird nach neuen Lösungen zur Reduzierung des Kraftstoffverbrauchs gesucht. Leichtbau ist dabei ein wesentlicher Baustein, um das Fahrzeuggewicht senken zu können. Dies kann unter anderem durch den Einsatz von Werkstoffen mit gesteigerter Festigkeit erzielt werden. Mit dem Anstieg der Festigkeit nimmt in der Regel dessen Biegevermögen ab. Um trotz gesteigerter Festigkeit zur Realisierung von Leichtbau auch den bei crashrelevanten Bauteilen erforderlichen Insassenschutz zu gewährleisten, ist zu gewährleisten, dass die eingesetzten Werkstoffe die durch einen Crash eingeleitete Energie durch Deformation umwandeln können. Dies bedingt ein hohes Maß an Umformvermögen insbesondere in den crashrelevanten Bauteilen einer Fahrzeugstruktur. Eine Möglichkeit, Gewicht einzusparen, ist beispielsweise die Karosserie, Rahmen und/oder das Fahrwerk eines Fahrzeugs noch leichter, durch leichte und innovative Werkstoffe im Vergleich zu den konventionell eingesetzten Werkstoffen zu gestalten bzw. zu bauen. So können beispielsweise bauteilspezifisch konventionelle Werkstoffe durch leichtere Werkstoffe mit vergleichbaren Eigenschaften ersetzt werden. Beispielsweise finden immer mehr Hybridwerkstoffe oder Werkstoffverbunde Einzug in der Automobilindustrie, die aus zwei oder mehreren unterschiedlichen Materialien zusammengesetzt sind, wobei jedes einzelne Material bestimmte Eigenschaften aufweist, im Verbund aber im Wesentlichen gegensätzliche Eigenschaften vereint werden, um verbesserte Eigenschaften im Werkstoffverbund im Vergleich zu den einzelnen, monolithischen Materialien bereit zu stellen. Werkstoffverbunde, insbesondere aus unterschiedlichen Stahllegierungen sind im Stand der Technik bekannt, siehe beispielsweise DE 10 2008 022 709 AI und DE 10 2015 114 989 B3.  The automotive industry is looking for new solutions to reduce fuel consumption. Lightweight construction is an essential element in reducing vehicle weight. This can be achieved, inter alia, by the use of materials with increased strength. As the strength increases, its bending capacity tends to decrease. In order to ensure the occupant protection required for crash-relevant components in spite of increased strength to realize lightweight construction, it must be ensured that the materials used can convert the energy introduced by a crash by deformation. This requires a high degree of formability, especially in the crash-relevant components of a vehicle structure. One way to save weight, for example, the body, frame and / or the chassis of a vehicle even easier to design and build by lightweight and innovative materials compared to the conventionally used materials. For example, component-specific conventional materials can be replaced by lighter materials with comparable properties. For example, more and more hybrid materials or composites are finding their way into the automotive industry, which are composed of two or more different materials, each individual material having certain properties, but in combination substantially opposing properties are combined to improved properties in the composite material compared to the individual to provide monolithic materials. Composite materials, in particular of different steel alloys are known in the prior art, see for example DE 10 2008 022 709 AI and DE 10 2015 114 989 B3.
Vorteilhafte Eigenschaften haben insbesondere Stahllegierungen mit einem Gefüge, welches einen bestimmten Austenitanteil aufweist, beispielsweise hochmanganhaltige Stahllegierungen mit hohen (Zug-)Festigkeiten (Rm) und hohen (Bruch-) Dehnungen (A8o), wodurch beispielsweise Bauteile mit komplexer Geometrie oder Bauteile für Crash relevante Bereiche zur Absorption der Energie im Falle eines Crashs hergestellt werden können. Derartige Stahllegierungen sind beispielsweise aus der WO 2006/048034 AI bekannt und können bei gleichbleibenden Eigenschaften dünner ausgelegt werden als konventionelle Stahllegierungen, wobei durch die Reduzierung der Materialdicke positiv Einfluss auf das Gesamtgewicht des Bauteils respektive des Fahrzeugs genommen werden kann. Derartige Stahllegierungen eignen sich daher hervorragend für die Automobilindustrie. Advantageous properties in particular steel alloys having a structure which has a certain austenite content, such as high manganese steel alloys with high (tensile) strengths (R m ) and high (fracture) strains (A 8 o), which for example components with complex geometry or components Crash-relevant areas for absorption of energy in the event of a crash can be made. Such steel alloys are known for example from WO 2006/048034 AI and can at Consistent properties are designed to be thinner than conventional steel alloys, whereby by reducing the material thickness positive influence on the total weight of the component or the vehicle can be taken. Such steel alloys are therefore ideal for the automotive industry.
Stahllegierungen mit einem bestimmten Austenitanteil im Gefüge, insbesondere hoch- manganhaltige Stahllegierungen sind aufgrund ihrer chemischen und physikalischen Eigenschaften jedoch nur bedingt, insbesondere mit einer Korrosionsschutzschicht auf Zinkbasis beschichtbar. Ein Beispiel zur Beschichtung von hochmanganhaltigen Stahllegierungen ist aus der DE 10 2009 018 577 B3 bekannt. Beispielsweise können auf Zinkbasis schmelztauch- beschichtete hochmanganhaltige Stahllegierungen zu einer wasserstoffinduzierten Rissbildung nach der Formgebung neigen. Des Weiteren sind Stahllegierungen mit einem bestimmten Austenitanteil im Gefüge auch nur bedingt thermisch fügbar, insbesondere lötbar, da sie zu starker Lotrissigkeit und unzulässigen Lötverbindungen nach DVS-Merkblatt 0938-2 führen, wie Untersuchungen im Rahmen des AiF-Forschungsvorhaben-Nr. 15.201 B / DVS- Nr. 1.058 gezeigt haben. Unter Löten wird ein thermisches Verfahren zum stoffschlüssigen Verbinden von Materialien/ Werkstoffen unter Zuhilfenahme eines insbesondere im Vergleich zu den verbindenden Materialien/Werkstoffen niedrigschmelzenden Werkstoffes (Lot) verstanden, wobei unter Wärme eine flüssige Phase durch Schmelzen eines Lotes, auch Schmelzlöten genannt, oder durch Diffusion eines Lotes an den Grenzflächen, auch Diffusionslöten genannt, entsteht und nach Erkalten der flüssigen Phase sich ein Stoffschluss zwischen den verbundenen Materialien/Werkstoffen ausbildet. However, steel alloys with a certain austenite content in the microstructure, in particular high-manganese steel alloys, are only conditionally coatable, in particular with a zinc-based corrosion protection coating, owing to their chemical and physical properties. An example of the coating of high manganese steel alloys is known from DE 10 2009 018 577 B3. For example, zinc-based hot dip coated high manganese steel alloys may tend to cause hydrogen induced cracking after molding. Furthermore, steel alloys with a certain austenite content in the microstructure are also only conditionally thermally available, in particular solderable, since they lead to severe solder rupture and inadmissible solder joints according to DVS Merkblatt 0938-2, as investigations within the framework of the AiF research project no. 15,201 B / DVS No. 1,058. Soldering is understood as meaning a thermal process for materially bonding materials / materials with the aid of a material (solder) that is particularly low in comparison to the connecting materials / materials, wherein a liquid phase is called by heat melting a solder, also called soldering, or by diffusion A solder at the interfaces, also called diffusion soldering, is formed and, after cooling of the liquid phase, a material bond is formed between the bonded materials.
Zusammenfassung der Erfindung Summary of the invention
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung einer stoffschlüssigen Verbindung anzugeben.  Object of the present invention is to provide a method for producing a material connection.
Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Patentanspruchs l. This object is achieved by a method having the features of patent claim 1.
Erfindungsgemäß betrifft die Erfindung ein Verfahren zur Herstellung einer stoffschlüssigen Verbindung zwischen einem ersten Halbzeug, umfassend mindestens eine erste Lage aus einer Stahllegierung mit einem Gefüge, welches einen Austenitanteil von mindestens 15 Vol.- % aufweist, und mindestens einer zweiten Lage aus einer weichen Stahllegierung, welche ein- oder beidseitig vollflächig und stoffschlüssig mit der ersten Lage verbunden ist, insbesondere nach Formgebung als Teil oder Bauteil, mit mindestens einem zweiten Halbzeug, insbeson- dere als Teil oder Bauteil aus einer Stahllegierung, insbesondere einer monolithischen Stahllegierung, wobei mittels eines Lötverfahrens das zweite Halbzeug mit der zweiten Lage des ersten Halbzeugs verbunden wird. Da die zweite Lage des ersten Halbzeugs besonders lötgeeignet ist und das zweite Halbzeug vorzugsweise aus einer gut lötbaren Stahllegierung, beispielsweise aus einer mikrolegierten Stahllegierung besteht, kann eine prozesssichere und stabile Lötverbindung zwischen den beiden Halbzeugen respektive Teilen oder Bauteilen erzeugt werden. According to the invention, the invention relates to a method for producing a material-locking connection between a first semifinished product comprising at least one first layer of a steel alloy having a structure which has an austenite content of at least 15% by volume and at least one second layer of a soft steel alloy, which is connected to the first layer on one or both sides over the entire surface and in a materially bonded manner, in particular after shaping as a part or component, with at least one second semifinished product, in particular dere as a part or component of a steel alloy, in particular a monolithic steel alloy, wherein the second semifinished product is connected to the second layer of the first semifinished product by means of a soldering process. Since the second layer of the first semifinished product is particularly suitable for soldering and the second semifinished product preferably consists of a readily solderable steel alloy, for example of a microalloyed steel alloy, a process-reliable and stable solder connection can be produced between the two semifinished products or parts or components.
Die Erfinder haben festgestellt, dass durch das Vorsehen mindestens einer zweiten Lage aus einer weichen Stahllegierung, welche ein- oder beidseitig vollflächig und stoffschlüssig mit der ersten Lage aus einer Stahllegierung mit einem Gefüge, welches einen Austenitanteil von mindestens 15 Vol.-%, insbesondere mindestens 20 Vol.-%, vorzugsweise mindestens 25 Vol.-%, besonders bevorzugt mindestens 30 Vol.-% aufweist, verbunden ist, sichergestellt werden kann, dass zumindest einseitig, vorzugsweise beidseitig kein direkter respektive unmittelbarer Kontakt mit der ersten Lage möglich ist, so dass die zweite Lage aus einer weichen Stahllegierung als Funktionsschicht fungiert. Im Sinne der Erfindung weisen weiche Stahllegierungen (Zug-) Festigkeiten von maximal 580 MPa, insbesondere maximal 500 MPa, vorzugsweise maximal 450 MPa, besonders bevorzugt maximal 400 MPa auf. Die zweite Lage respektive die weiche Stahllegierung weist Eigenschaften auf, die sich besonders positiv hinsichtlich eines thermischen Lötens auszeichnen. Das erste Halbzeug kann somit in bestehende Standard-Prozesse integriert werden, ohne Änderungen in der Prozesskette vornehmen zu müssen. Die Löteignung wird maßgeblich durch die Eigenschaften an der Oberfläche des Halbzeugs bestimmt, die durch die zweite Lage als Funktionsschicht bereitgestellt werden. Die Stahllegierung mit einem Austenitgehalt von mindestens 15 Vol.-%, insbesondere mindestens 20 Vol.-%, vorzugsweise mindestens 25 Vol.-%, besonders bevorzugt mindestens 30 Vol.-% ist nicht auf Kohlenstoff-Stahllegierungen beschränkt, es sind auch nicht rostende Stahllegierungen denkbar, insbesondere Cr-Ni-Stahllegierungen. The inventors have found that by providing at least one second layer of a soft steel alloy, which on one or both sides over the entire surface and cohesively with the first layer of a steel alloy with a structure which Austenitanteil of at least 15 vol .-%, in particular at least 20 vol .-%, preferably at least 25 vol .-%, particularly preferably at least 30 vol .-%, is connected, it can be ensured that at least one side, preferably on both sides no direct or direct contact with the first layer is possible, so that the second layer of a soft steel alloy acts as a functional layer. For the purposes of the invention, soft steel alloys have (tensile) strengths of not more than 580 MPa, in particular not more than 500 MPa, preferably not more than 450 MPa, particularly preferably not more than 400 MPa. The second layer or the soft steel alloy has properties that are particularly positive in terms of thermal brazing. The first semi-finished product can thus be integrated into existing standard processes without having to make any changes in the process chain. The solderability is significantly determined by the properties of the surface of the semifinished product, which are provided by the second layer as a functional layer. The steel alloy having an austenite content of at least 15% by volume, especially at least 20% by volume, preferably at least 25% by volume, more preferably at least 30% by volume, is not limited to carbon-steel alloys, but is also stainless Steel alloys conceivable, in particular Cr-Ni steel alloys.
Gemäß einer ersten Ausgestaltung des Verfahrens besteht die erste Lage vorzugsweise aus einer manganhaltigen Stahllegierung, insbesondere aus einer TRIP-, TWIP- oder FeMn-Stahl- legierung. Mangan ist ein Austenitbildner und -stabilisierer und hat insbesondere mit einem Gehalt von mindestens 2 Gew.-% positiven Einfluss auf die Festigkeit. Es führt bei hohen Gehalten zur Ausbildung von Härtungsgefügen (α'- und ε-Martensit) sowie zu TRIP-bzw. TWIP-fähigem Austenit und zu besonders guten Festigkeits-Umformbarkeits-Relationen. Oberhalb von beispielsweise 35,0 Gew.-% reduzieren sich diese Mechanismen der induzierten Plastizität und eine weitere kostenrelevante Zulegierung ist nutzlos. Mangan kann insbesondere bis maximal 30,0 Gew-% und beispielsweise mit mindestens 6,0 Gew.-%, insbesondere mit mindestens 10,0 Gew.-% zulegiert werden. Die erste Lage kann alternativ auch aus einer Q&P-Stahllegierung (quenching/partitioning) mit einem Restaustenitanteil von mindestens 15 Vol.-% im Gefüge bestehen. Die zweite Lage zur Bildung der einseitigen oder beidseitigen Funktionsschicht auf der ersten Lage besteht vorzugsweise aus einer mikrolegierten Stahllegierung, IF-Stahllegierung oder Tiefzieh-Stahllegierung, die ohne Aufwand einfach und konventionell gelötet werden können. According to a first embodiment of the method, the first layer preferably consists of a manganese-containing steel alloy, in particular of a TRIP, TWIP or FeMn steel alloy. Manganese is an austenite former and stabilizer and has a positive influence on the strength, in particular with a content of at least 2% by weight. At high contents, it leads to the formation of hardening structures (α'- and ε-martensite) as well as to TRIP or TRIP. TWIP-capable austenite and particularly good strength-formability relations. Above, for example, 35.0% by weight, these induced mechanisms are reduced Plasticity and another cost-relevant alloy is useless. Manganese can be alloyed in particular up to a maximum of 30.0% by weight and, for example, with at least 6.0% by weight, in particular with at least 10.0% by weight. The first layer may alternatively consist of a Q & P steel alloy (quenching / partitioning) with a residual austenite content of at least 15% by volume in the microstructure. The second layer for forming the one-sided or two-sided functional layer on the first layer preferably consists of a microalloyed steel alloy, IF steel alloy or deep-drawn steel alloy, which can be soldered simply and conventionally without effort.
Gemäß einer weiteren Ausgestaltung des Verfahrens weist die zweite Lage aus der weichen Stahllegierung eine Materialdicke zwischen 0,2 % und 15 %, insbesondere zwischen 0,5 % und 10 % bezogen auf die Gesamtmaterialdicke des Halbzeugs auf. Die als Funktionsschicht vorgesehene weiche Stahllegierung sollte in der Materialdicke derart bemessen sein, das zum Einen die positiven Eigenschaften der ersten Lage im Wesentlichen nicht negativ beeinflusst werden, wobei die Materialdicke der zweiten Lage (pro Seite) maximal 15 %, insbesondere maximal 10 %, vorzugsweise maximal 7 % bezogen auf die Gesamtmaterialdicke des Halbzeugs beträgt, und zum Anderen zu gewährleisten, dass die erste Lage nicht negativ insbesondere durch Diffusionsvorgänge infolge einer stoffschlüssigen Fügeverbindung beeinflusst wird, wobei die Materialdicke der zweiten Lage (pro Seite) mindestens 0,2 %, insbesondere mindestens 0,5 %, vorzugsweise mindestens 1 % bezogen auf die Gesamtmaterialdicke des Halbzeugs beträgt. According to a further embodiment of the method, the second layer of the soft steel alloy has a material thickness between 0.2% and 15%, in particular between 0.5% and 10%, based on the total material thickness of the semifinished product. The intended as a functional layer soft steel alloy should be sized in the material thickness, on the one hand, the positive properties of the first layer are not adversely affected substantially, the material thickness of the second layer (per side) a maximum of 15%, preferably at most 10%, preferably 7% based on the total material thickness of the semi-finished product, and on the other to ensure that the first layer is not negatively influenced in particular by diffusion processes due to a cohesive joint, the material thickness of the second layer (per side) at least 0.2%, in particular at least 0.5%, preferably at least 1% based on the total material thickness of the semifinished product.
Gemäß einer weiteren Ausgestaltung des Verfahrens ist in der einfachsten Ausführung nur eine erste Lage mit einer einseitig verbunden zweiten Lage vorgesehen. Die freie Oberfläche der zweiten Lage ist vorzugsweise mit einer Korrosionsschutzschicht auf Zinkbasis beschichtet. Vorzugsweise umfasst das Halbzeug zwei zweite Lagen, die auf beiden Seiten der ersten Lage angeordnet und mit dieser vollflächig und stoffschlüssig verbunden sind, so dass ein Sandwichmaterial bereitgestellt werden kann, welches je nach Anwendung einen symmetrischen oder asymmetrischen Aufbau aufweisen kann. Beide freien Oberflächen der zweiten Lagen können mit einer Korrosionsschutzschicht, vorzugsweise auf Zinkbasis beschichtet sein. According to a further embodiment of the method, in the simplest embodiment, only a first layer is provided with a second layer connected on one side. The free surface of the second layer is preferably coated with a zinc-based corrosion protection layer. Preferably, the semifinished product comprises two second layers, which are arranged on both sides of the first layer and connected to the latter over the entire surface and by material engagement, so that a sandwich material can be provided which, depending on the application, can have a symmetrical or asymmetrical structure. Both free surfaces of the second layers may be coated with a corrosion protection layer, preferably based on zinc.
Gemäß einer weiteren Ausgestaltung des Verfahrens ist das Halbzeug mittels Plattieren, insbesondere Walzplattieren oder mittels Gießen hergestellt. Bevorzugt ist das erste Halbzeug mittels Warmwalzplattieren, wie es beispielsweise in der deutschen Patentschrift DE 10 2005 006 606 B3 offenbart ist, hergestellt. Es wird Bezug auf diese Patentschrift genommen, deren Inhalt hiermit in diese Anmeldung aufgenommen wird. Alternativ kann das erste Halbzeug mittels Gießen hergestellt werden, wobei eine Möglichkeit zu seiner Herstellung in der japanischen Offenlegungsschrift JP-A 03 133 630 offenbart ist. Die metallische Verbundherstellung ist im allgemeinen Stand der Technik. According to a further embodiment of the method, the semifinished product is produced by means of plating, in particular roll cladding or by casting. The first semi-finished product is preferably by means of hot-roll cladding, as described, for example, in the German patent specification DE 10 2005 006 606 B3. Reference is made to this patent, the contents of which are hereby incorporated by reference. Alternatively, the first semi-finished product may be produced by casting, and a possibility for its production is disclosed in Japanese Patent Laid-Open Publication JP-A 03 133 630. Metallic composite fabrication is generally known in the art.
Das erste Halbzeug wird, insbesondere nach einer Formgebung zu einem Teil oder Bauteil, für eine tragende Konstruktion verwendet. Als tragende Konstruktion kommen Rahmen, Hilfsrahmen beispielsweise im Fahrzeugbau (PKW, NFZ nebst Trailer) oder Eisenbahnbau, Schiffbau oder Luft- und Raumfahrt, aber auch im Baubereich, beispielsweise Pfeiler in Frage. The first semi-finished product is used, in particular after shaping into a part or component, for a load-bearing construction. As a supporting structure frame, subframe, for example, in vehicle construction (cars, commercial vehicles with trailers) or railway, shipbuilding or aerospace, but also in the construction sector, such as pillars in question.
Kurze Beschreibung der Zeichnung Short description of the drawing
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels darstellenden Zeichnung näher erläutert. Es zeigt  In the following the invention will be explained in more detail with reference to an embodiment illustrative drawing. It shows
Figur 1) eine schematische Schnittdarstellung durch eine stoffschlüssige Verbindung zwischen einem ersten Halbzeug und einem zweiten Halbzeug. Figure 1) is a schematic sectional view through a material connection between a first semifinished product and a second semifinished product.
Beschreibung der bevorzugten Ausführungsform Description of the preferred embodiment
In der einzigen Figur ist eine schematische Schnittdarstellung durch eine stoffschlüssige Verbindung (3) zwischen einem ersten Halbzeug (1) respektive Teil oder Bauteil und einem zweiten Halbzeug (2) respektive Teil oder Bauteil, die als Kehlnaht ausgebildet ist und mittels eines Lötverfahrens erzeugt wurde. Das Halbzeug (1) umfasst eine erste Lage (1.1) aus einer Stahllegierung mit einem Gefüge, welches einen Austenitanteil von mindestens 15 Vol.-%, insbesondere mindestens 20 Vol.-%, vorzugsweise mindestens 25 Vol.-%, besonders bevorzugt mindestens 30 Vol.-% aufweist, und insbesondere aus einer manganhaltigen Stahllegierung besteht, beispielsweise des Typs TWIP oder TRIP, besonders bevorzugt mit einem Mangangehalt zwischen 10 und 30 Gew.-%, und mindestens eine zweiten Lage (1.2) aus einer weichen Stahllegierung, welche einseitig vollflächig und stoffschlüssig mit der ersten Lage (1.1) verbunden ist. Alternativ kann die erste Lage auch aus einer Q&P-Stahllegierung mit einem Restaustenitanteil von mindestens 15 Vol.-%, bestehen. Strichliniert ist ein weitere zweite Lage (1.2') dargestellt, welche mit der zweiten Lage (1.2) die erste Lage (1.1) zwischen sich vollflächig und stoffschlüssig aufnehmen. Die zweite Lage (1.2, 1.2') aus einer weichen Stahllegierung weist eine Festigkeit von maximal 500 MPa auf, wobei sie insbesondere aus einer mikrolegierten Stahllegierung bestehen kann, beispielsweise des Typs HX340LAD. Die Materialdicke der zweiten Lage (1.2, 1.2') ist insbesondere pro Seite derart bemessen, dass die positiven Eigenschaften der ersten Lage (1.1) im Wesentlichen nicht negativ beeinflusst werden, wobei die Materialdicke der zweiten Lage (pro Seite) mindestens 0,2 % und maximal 15 % bezogen auf die Gesamtmaterialdicke des Halbzeugs (1) beträgt, wobei das Halbzeug (1) beispielsweise eine Gesamtmaterialdicke zwischen 0,5 und 4 mm aufweisen kann. Da die zweite Lage (1.2, 1.2') des Halbzeugs beschicht- und lötgeeignet ist, weist die freie Oberfläche der zweiten Lage (1.2) eine Korrosionsschutzschicht auf Zinkbasis auf. Das Halbzeug (1) ist über die zweite Lage (1.2) mit dem zweiten Halbzeug (2) über eine Löt-Kehlnaht (3) verbunden. Die Korrosionsschutzschicht auf Zinkbasis kann zur besseren Benetzung bzw. zu einem besseren Benetzungswinkel der Lötverbindung beitragen. In the single figure is a schematic sectional view through a cohesive connection (3) between a first semifinished product (1) or part or component and a second semifinished product (2) respectively part or component, which is formed as a fillet weld and was produced by means of a soldering process. The semifinished product (1) comprises a first layer (1.1) of a steel alloy having a structure which has an austenite content of at least 15% by volume, in particular at least 20% by volume, preferably at least 25% by volume, particularly preferably at least 30 Vol .-%, and in particular consists of a manganese-containing steel alloy, for example of the type TWIP or TRIP, more preferably with a manganese content between 10 and 30 wt .-%, and at least one second layer (1.2) of a soft steel alloy, which on one side full surface and cohesively with the first layer (1.1) is connected. Alternatively, the first layer can also consist of a Q & P steel alloy with a residual austenite content of at least 15% by volume. Dash-line a further second layer (1.2 ') is shown, which record the first layer (1.1) with the second layer (1.2) between them over the entire surface and cohesively. The second layer (1.2, 1.2 ') made of a soft steel alloy has a maximum strength of 500 MPa, wherein it can consist in particular of a microalloyed steel alloy, for example of the HX340LAD type. The Material thickness of the second layer (1.2, 1.2 ') is in particular per side dimensioned such that the positive properties of the first layer (1.1) are not adversely affected substantially, the material thickness of the second layer (per side) at least 0.2% and a maximum of 15% based on the total material thickness of the semifinished product (1), wherein the semifinished product (1), for example, may have a total material thickness between 0.5 and 4 mm. Since the second layer (1.2, 1.2 ') of the semifinished product is suitable for coating and soldering, the free surface of the second layer (1.2) has a zinc-based corrosion protection layer. The semifinished product (1) is connected via the second layer (1.2) to the second semifinished product (2) via a solder fillet weld (3). The zinc-based corrosion protection layer can contribute to better wetting or a better wetting angle of the solder joint.
Die Erfindung ist nicht auf das in der Zeichnung dargestellte Ausführungsbeispiel sowie auf die Ausführungen in der allgemeinen Beschreibung beschränkt, vielmehr kann das erste Halbzeug auch aus einem Tailored Product, beispielsweise einem Tailored Blank und/oder Tailored Rolled Blank gebildet sein. Auch das zweite Halbzeug, welches mit dem ersten Halbzeug mittels eines Lötverfahrens thermisch gefügt wird, kann auch als Werkstoffverbund, insbesondere dem ersten Halbzeug entsprechen, und kumulativ oder alternativ als Tailored Product ausgebildet sein. The invention is not limited to the embodiment shown in the drawing and to the statements in the general description, but rather, the first semi-finished product can also be formed from a tailored product, for example a tailored blank and / or tailored rolled blank. The second semifinished product, which is thermally joined to the first semifinished product by means of a soldering process, can also be designed as a material composite, in particular the first semifinished product, and cumulatively or alternatively as a tailored product.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung einer stoffschlüssigen Verbindung (3) zwischen einem ersten Halbzeug (1), umfassend mindestens eine erste Lage (1.1) aus einer Stahllegierung mit einem Gefüge, welches einen Austenitanteil von mindestens 15 Vol.-% aufweist, und mindestens einer zweiten Lage (1.2, 1.2') aus einer Stahllegierung, welche ein- oder beidseitig vollflächig und stoffschlüssig mit der ersten Lage (1.1) verbunden ist, wobei die zweite Lage (1.2, 1.2') aus einer weichen Stahllegierung mit einer Zugfestigkeit von maximal 580 MPa besteht, als Teil oder Bauteil mit mindestens einem zweiten Halbzeug (2) als Teil oder Bauteil aus einer Stahllegierung, wobei mittels eines Lötverfahrens das zweite Halbzeug (2) mit der zweiten Lage (1.2) des ersten Halbzeugs (1) verbunden wird. 1. A method for producing a material connection (3) between a first semi-finished product (1), comprising at least a first layer (1.1) of a steel alloy having a structure which has an austenite content of at least 15 vol .-%, and at least a second Layer (1.2, 1.2 ') of a steel alloy, which on one or both sides of the entire surface and materially bonded to the first layer (1.1), wherein the second layer (1.2, 1.2') of a soft steel alloy with a tensile strength of 580 MPa maximum consists as a part or component with at least one second semifinished product (2) as a part or component of a steel alloy, wherein by means of a soldering process, the second semifinished product (2) with the second layer (1.2) of the first semifinished product (1) is connected.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erste Lage (1.1) aus einer manganhaltigen Stahllegierung, insbesondere einer TRIP-, TWIP- oder FeMn- Stahllegierung und die zweite (1.2, 1.2') Lage aus einer mikrolegierten Stahllegierung, aus einer IF-Stahllegierung oder aus einer Tiefzieh-Stahllegierung bestehen. 2. The method according to claim 1, characterized in that the first layer (1.1) of a manganese-containing steel alloy, in particular a TRIP, TWIP or FeMn steel alloy and the second (1.2, 1.2 ') layer of a microalloyed steel alloy, from a IF steel alloy or consist of a deep-drawn steel alloy.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zweite Lage (1.2, 1.2') eine Materialdicke zwischen 0,2 % und 15 %, insbesondere zwischen 0,5 % und 10 % bezogen auf die Gesamtmaterialdicke des Halbzeugs aufweist. 3. The method according to claim 1 or 2, characterized in that the second layer (1.2, 1.2 ') has a material thickness between 0.2% and 15%, in particular between 0.5% and 10% based on the total material thickness of the semifinished product.
4. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Halbzeug (1) zwei zweite Lagen (1.2, 1.2'), die auf beiden Seiten der ersten Lage (1.1) angeordnet und mit dieser vollflächig und stoffschlüssig verbunden sind, umfasst. 4. The method according to any one of the preceding claims, characterized in that the semifinished product (1) two second layers (1.2, 1.2 '), which are arranged on both sides of the first layer (1.1) and connected to this over the entire surface and cohesively includes.
5. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Halbzeug (1) mittels Plattieren oder mittels Gießen hergestellt ist. 5. The method according to any one of the preceding claims, characterized in that the semifinished product (1) is produced by means of plating or by casting.
EP18706196.5A 2017-02-02 2018-01-31 Method for establishing an integrally bonded connection Withdrawn EP3576943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017201697.3A DE102017201697A1 (en) 2017-02-02 2017-02-02 Semi-finished product, use and method for producing a cohesive connection
PCT/EP2018/052366 WO2018141777A1 (en) 2017-02-02 2018-01-31 Method for establishing an integrally bonded connection

Publications (1)

Publication Number Publication Date
EP3576943A1 true EP3576943A1 (en) 2019-12-11

Family

ID=61249604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18706196.5A Withdrawn EP3576943A1 (en) 2017-02-02 2018-01-31 Method for establishing an integrally bonded connection

Country Status (6)

Country Link
US (1) US20190381610A1 (en)
EP (1) EP3576943A1 (en)
JP (1) JP2020512207A (en)
CN (1) CN110248803A (en)
DE (1) DE102017201697A1 (en)
WO (1) WO2018141777A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133630A (en) 1989-10-20 1991-06-06 Nippon Steel Corp Clad steel sheet having good formability excellent in dent resistance and surface strain resistance
AU4894699A (en) * 1999-07-20 2001-02-05 Qinglian Meng Composite metal coil or sheet and manufacturing method for same
CN101065503A (en) 2004-11-03 2007-10-31 蒂森克虏伯钢铁股份公司 High-strength steel strip or sheet exhibiting twip properties and method for producing said strip by direct strip casting
DE102005006606B3 (en) 2005-02-11 2006-03-16 Thyssenkrupp Steel Ag Production of roll-plated hot roll strip, involves having rectangular plates produced from steel and placed on top of each other with surfaces of plates treated before being placed on top of each other
DE102006047582A1 (en) * 2006-10-05 2008-04-10 GM Global Technology Operations, Inc., Detroit Structural member e.g. B-column for passenger car, has flange formed from spot welding together three sheet metals, with one of sheet metals made from hardened steel and having edges raised out from between spot welds
DE102008022709A1 (en) * 2008-05-07 2009-11-19 Thyssenkrupp Steel Ag Use of a metallic composite material in a vehicle structure
DE102009018577B3 (en) 2009-04-23 2010-07-29 Thyssenkrupp Steel Europe Ag A process for hot dip coating a 2-35 wt.% Mn-containing flat steel product and flat steel product
CN101831594B (en) * 2010-04-12 2011-07-20 首钢总公司 Method for manufacturing high-strength steel plate used in low-temperature environment
US8481170B2 (en) * 2011-03-03 2013-07-09 GM Global Technology Operations LLC Composite manufacture
JP2015200012A (en) * 2014-03-31 2015-11-12 株式会社神戸製鋼所 High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength alloy galvanized steel sheet having excellent ductility, stretch-flangeability, and weldability
DE102014008718B3 (en) * 2014-06-18 2015-02-19 Thyssenkrupp Ag Tailored semi-finished product and motor vehicle component
DE102014116695A1 (en) * 2014-11-14 2016-05-19 Benteler Automobiltechnik Gmbh Bodywork or chassis component of a motor vehicle with corrosion protection and method for its production
DE102015114989B3 (en) 2015-09-07 2016-09-29 Thyssenkrupp Ag Method for producing a component structure with improved joining properties and component structure
CN106216817B (en) * 2016-08-19 2018-08-03 东北大学 The welding method that postwelding is not heat-treated is not preheated before the weldering of V-N microalloying Q550D cut deals

Also Published As

Publication number Publication date
CN110248803A (en) 2019-09-17
JP2020512207A (en) 2020-04-23
US20190381610A1 (en) 2019-12-19
DE102017201697A1 (en) 2018-08-02
WO2018141777A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
EP2271541B1 (en) Use of a metal composite material in a vehicle structure
DE102015114989B3 (en) Method for producing a component structure with improved joining properties and component structure
DE102009013322A1 (en) bumper assembly
DE102014114365A1 (en) Multilayered flat steel product and component made from it
EP3589487A1 (en) Flat steel semi-finished product, method for producing a component, and use thereof
EP2599650A1 (en) Motor vehicle undercarriage component
WO2016074666A1 (en) Body- or chassis component of a motor vehicle with corrosion protection and production method therefor
DE102013015421A1 (en) Bumper system and method of making a bumper system
DE102016115036A1 (en) Suspension component with high durability
EP3625044B1 (en) Hot-working material, component and use
EP2302087B1 (en) Undercarriage section made of AL compound material
DE102011052110A1 (en) Construction structure for e.g. rail vehicle, has connecting element that includes connecting portions which are firmly bonded to metal layer on one side of panel, and connected to metallic element, respectively
DE102014003378A1 (en) Vehicle pillar for a body of a passenger car
EP1636083A1 (en) Support for a vehicle body
EP2302086B1 (en) Corrosion-resistant clad aluminium sheet for a vehicle bodywork
EP3576943A1 (en) Method for establishing an integrally bonded connection
WO2017050558A1 (en) Semifinished part and method for producing a vehicle component, use of a semifinished part, and vehicle component
EP3625048A1 (en) Hot-working material, component and use
EP2332721A1 (en) Compound material
EP3544807B1 (en) Adapter component, method for producing an adapter component and connection assembly having an adapter component
DE102010018602A1 (en) Use of high manganese-containing lightweight steel produced from the main constituents of iron and manganese, and noble elements, for structural components e.g. backrest-head sheet, of a seat structure of vehicle seats
DE102016223266A1 (en) Multilayer sheet and method for its production
EP3691889A1 (en) Hot-forming composite material, production thereof, component, and use thereof
DE102017206173A1 (en) Body structure of a motor vehicle and method for its production
DE102016223262A1 (en) Motor vehicle structural component with adapter component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20190701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

INTG Intention to grant announced

Effective date: 20201030

18W Application withdrawn

Effective date: 20201111