EP3576872A2 - Method for producing mixed oxide materials containing molybdenum - Google Patents

Method for producing mixed oxide materials containing molybdenum

Info

Publication number
EP3576872A2
EP3576872A2 EP18725401.6A EP18725401A EP3576872A2 EP 3576872 A2 EP3576872 A2 EP 3576872A2 EP 18725401 A EP18725401 A EP 18725401A EP 3576872 A2 EP3576872 A2 EP 3576872A2
Authority
EP
European Patent Office
Prior art keywords
tellurium
particle size
niobium
mixed oxide
starting compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18725401.6A
Other languages
German (de)
French (fr)
Inventor
Gerhard Mestl
Klaus Wanninger
Silvia Neumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant Produkte Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Produkte Deutschland GmbH filed Critical Clariant Produkte Deutschland GmbH
Publication of EP3576872A2 publication Critical patent/EP3576872A2/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/006Compounds containing, besides molybdenum, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/55Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/56Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/64Tellurium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/68Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a method for producing a mixed oxide material.
  • MoVNbTe mixed oxides for the oxidation of propane to acrylic acid or for the oxidative dehydrogenation of ethane to ethene are state of the art. More than 200 patents and numerous scientific publications treat catalysts based on MoVNbTe mixed oxides. The promotion of these mixed oxides with other metals of the periodic table is known. The highest described above acrylic acid yields are about 60% and that of ethene at about 80%.
  • the MoVNbTe base system based on four elements for a catalyst was first proposed by Mitsubishi for the ammoxidation of propane to acrylonitrile (1989, EP 318295 Al) and the oxidation to acrylic acid (1994, EP 608838 A2).
  • JP H07-053414 (Mitsubishi) also describes the oxidative dehydrogenation of ethane to ethylene with this type of catalyst.
  • MoVNbTe mixed oxides consist mainly of two orthorhombic phases called "Ml” and "M2" (T. Ushikubo, K. Oshima, A. Kayou, M. Hatano, Studies in Surface Science and Catalysis 112, (1997), 473).
  • Ml phase seems to play the essential role in the selective oxidation reactions.
  • M2 * MoiVo, 32 eo, 42 bo, os04,6 or M04, 31V1, 3 eTei, siNbo, 33O19, si
  • the two main phases can also occur with a slightly different stoichiometry. Both vanadium and molybdenum are in the center of an octahedron of oxygen atoms and therefore partially interchangeable in structure so that the same structure, e.g. the Ml phase, even with a higher vanadium content is possible.
  • the M2 phase is not active for the oxidative dehydrogenation of ethane (See J. S. Valente et al., ACS Catal.4 (2014), 1292-1301, p1293).
  • a catalyst which consists of a very pure Ml phase is desired. It is therefore attempted to produce these crystal phases cleanly and separately.
  • EP 529853 A2 discloses a catalyst suitable for preparing a nitrile from an alkane, the catalyst having the empirical formula MoVbTe c XxO n , wherein X is at least one of Nb, Ta, W, Ti, Al, Zr, Cr, Mn Fe, Ru, Co, Rh, Ni, Pd, Pt, Sb, Bi, B and Ce, b is 0.01 to 1.0, c is 0.01 to 1.0; x is 0.01 to 1.0; and n is a number satisfying the total metal element content and the catalyst has X-ray diffraction peaks at the following 2 ⁇ angles in its X-ray diffraction pattern: diffraction angle at 2 ⁇ : 22.1 ° +/- 0 , 3 °, 28.2 ° +/- 0.3 °, 36.2 ° +/- 0.3 °, 45.2 ° +/- 0.3 °, 50.0 ° +/- 0.3 °.
  • JP H07-232071 discloses a catalytic process for Preparation of a nitrile, at a relatively low temperature and with a high yield, using an alkane as a raw material and a specific catalyst.
  • the main component of the catalyst is a mixed metal oxide of molybdenum, vanadium, tellurium, oxygen and X (X is one or more elements selected from the group of niobium, tantalum, etc.), wherein the ratio of the main components, ie excluding oxygen, is expressed Formulas I to IV: I) 0.25 ⁇ rMo ⁇ 0.98, II) 0.003 ⁇ rV ⁇ 0.50, III) 0.003 ⁇ rTe ⁇ 0.50, IV) 0 ⁇ rX ⁇ 0.5, (rMo , rV, rTe and rX are respectively the molar parts of molybdenum, vanadium, tellurium and X) and in the XRD, XRD bands of this mixed oxide at the different 29
  • the common synthesis is carried out by oxidation of Tellurium oxide with hydrogen peroxide, which causes safety problems on a large scale, because hydrogen peroxide can disproportionate in self-decomposition to water and oxygen. Therefore, telluric acid is difficult to produce in large quantities.
  • Watanabe (Applied Catal. A General, 194-195 (2000) 479-485) describes inter alia the hydrothermal synthesis from the less soluble precursors M0O3, V2O5 and TeÜ2.
  • the hydrothermal synthesis gives a ammoxidation catalyst precursor which has twice the activity after calcination compared with a catalyst prepared by the known dry method.
  • the mixed oxides produced by the solid-state reaction show rather low activity. It has been suggested that the higher activity of the catalyst prepared by the hydrothermal synthesis has to do mainly with the higher surface area.
  • a synthesis of MoVNbTe mixed oxide without the use of telluric acid has the potential to be significantly cheaper.
  • the Nb component used in the synthesis of MoVNbTe mixed oxides is usually ammonium niobium oxalate.
  • niobium oxide is sparingly soluble and is therefore only suitable to a limited extent as starting compound. What is desired is a synthesis method that provides a clean Ml phase of a MoVNbTe mixed oxide and with inexpensive starting materials, ie, with simple metal oxides, such as molybdenum trioxide, vanadium pentoxide, niobium pentoxide and tellurium dioxide manages.
  • the object of the present invention was therefore to find a simple, scalable, inexpensive and reproducible method, the Ml phase of a MoVNbTe mixed oxide selectively using tellurium dioxide, and otherwise, if possible, using inexpensive metal oxides as starting compounds, in to produce a hydrothermal synthesis.
  • the object is achieved by a method for producing a mixed oxide material containing the elements molybdenum, vanadium, niobium and tellurium (“MoVTeNb mixed oxide”), comprising the following steps:
  • Starting compounds containing molybdenum, vanadium, niobium and a tellurium-containing starting compound in which tellurium is in the +4 oxidation state contains hydrothermal treatment of the mixture of starting compounds at a temperature of from 100 ° C to 300 ° C, to a product suspension
  • the process according to the invention leads to a mixed oxide material which represents a MoVNbTe mixed oxide and which is suitable as a catalyst material.
  • the tellurium-containing starting compound has a particle size with a D 90 ⁇ 100 pm, preferably D 90 ⁇ 75 pm, particularly preferably D 90 ⁇ 50 pm.
  • the tellurium dioxide used may have a particle size D50 ⁇ 50 pm or ⁇ 35 pm.
  • the niobium-containing starting compound which is preferably niobium oxide, likewise has a particle size with a D 90 ⁇ 100 ⁇ m, preferably D 90 ⁇ 75 ⁇ m, particularly preferably D 90 ⁇ 50 ⁇ m.
  • the niobium-containing starting compound used which is preferably niobium oxide, have a particle size D50 ⁇ 50 pm or ⁇ 35 pm.
  • all starting compounds used may have a particle size with a D 90 ⁇ 100 pm, preferably D 90 ⁇ 75 pm, more preferably D 90 ⁇ 50 pm.
  • the Starting compounds have a particle size D50 ⁇ 50 pm or ⁇ 35 pm.
  • the starting compounds e.g. Metal oxides used, such as tellurium dioxide
  • the particle size D90 is defined as the limit of the particle diameter in the particle size distribution below which 90% of all particles are located.
  • the particle size of the meridian, ie the particle size below which half of all particles are in the particle size distribution, is also referred to as particle size D50. It is particularly preferred that the particle size D50 for the tellurium dioxide used as the starting compound is less than 35 ⁇ m.
  • the desired particle size D 90 or D 50 of the starting compound can be obtained by starting from a powder having a coarse-grained particle size distribution and mechanically comminuting the particles. This can be done by grinding, with all suitable and familiar to those skilled means can be used, such as hammer mills, planetary mills, mortars, etc.
  • the starting compounds are the molybdenum, vanadium, niobium and tellurium-containing educts of the hydrothermal synthesis (precursor compounds). These each contain one or more of the elements molybdenum, vanadium, niobium or tellurium.
  • the molybdenum-containing starting compound may be, for example, an ammonium heptamolybdate or molybdenum trioxide
  • the vanadium-containing starting compound may be, for example, ammonium metavanadate, vanadyl sulfate or vanadium pentoxide
  • the niobium-containing starting compound may be, for example, ammonium niobium oxalate, niobium oxalate or niobium oxide.
  • the mixture of starting compounds is preferably present as an aqueous suspension and is treated hydrothermally.
  • hydrothermally refers to reaction conditions for the preparation of a catalyst material in the presence of water and under elevated temperature and / or elevated pressure, for example in an autoclave, where the pressure may be in the range from 5 to 30 bar, preferably from 10 to 27 bar Exemplary pressure ranges are 11 to 15 bar, or about 17 bar and 22 to 25 bar.
  • step b) gives a product suspension which contains the product as a solid.
  • the separation of the solid from the product suspension in step c) can take place in one or more filtration steps, for example by filtering off the mother liquor.
  • the drying can be carried out in one step or in two steps in flowing or static air.
  • the first drying step is preferably at 60 to 150 ° C (more preferably at 80 to 120 ° C) and the second drying step at 200 to 350 ° C (more preferably at 220 ° C to 280 ° C) to perform.
  • step c) of the process of the invention may include one or more of washing, drying, calcining, and / or milling.
  • the calcination can be carried out at 200 to 500 ° C, preferably 250 ° C to 350 ° C in air.
  • the dried mixture is activated, for example, in a flowing or static inert gas atmosphere at about 500 to 700 ° C for at least 1 hour (step d).
  • a flowing or static inert gas atmosphere at about 500 to 700 ° C for at least 1 hour.
  • nitrogen, helium or argon is suitable as the inert gas. It is preferred if the activation takes place in the range of 550 ° C to 650 ° C. For example, activation may be at about 600 ° C for about 2 hours.
  • the obtained MoVNbTe mixed oxide can be used as a catalyst material for the oxidation and / or oxidative dehydrogenation of hydrocarbons, in particular for the selective oxidation of propane to acrylic acid or for the oxidative dehydrogenation of ethane to ethylene. It typically has a BET surface area of 5 to 25 m 2 / g.
  • the resulting catalyst material prepared by the process of the present invention can be used in a variety of ways in a commercial catalyst. For example, for example, it can be processed by tabletting into catalyst tablets which can then be filled into a reactor.
  • the catalyst material may also be processed into an extrudate (tablets, shaped bodies, honeycomb bodies and the like) together with a suitable binder.
  • a suitable binder Any binder known to those skilled in the art and appearing suitable may be used as the binder.
  • preferred Binders include pseudoboehmite and silicate binders such as colloidal silica or silica sol.
  • the catalyst material can also be processed into a washcoat together with other components, preferably with a binder, more preferably with an organic binder, for example an organic adhesive, polymers, resins or waxes, which can be applied to a metallic or ceramic support. If necessary, additional impregnation steps or calcination steps can take place.
  • a binder more preferably with an organic binder, for example an organic adhesive, polymers, resins or waxes, which can be applied to a metallic or ceramic support. If necessary, additional impregnation steps or calcination steps can take place.
  • the X-ray diffractogram of the MoVNbTe mixed oxide according to the invention formed by the method according to the invention has the diffraction reflectances h, i, k and 1 whose
  • Ri Ph / (Ph + P ⁇ )> 0.3, preferably> 0.35 and more preferably> 0.4; and or
  • R2 P ⁇ / (Pi + Pi)> 0.5, preferably> 0.6 and more preferably> 0.63; and or
  • R3 Pi / (Pi + Pk) ⁇ 0.8, preferably ⁇ 0.75, especially
  • the diffraction reflection i may have the second highest intensity and / or the diffraction reflection h have the third highest intensity.
  • the obtained MoVNbTe mixed oxide is used in the examples as a catalyst material and therefore partially referred to in the experimental information as a catalyst.
  • FIG. 2 XRD of the MoVNbTe mixed oxide from Example 1.
  • FIG. 4 XRD of the MoVNbTe mixed oxide from Comparative Example 1.
  • FIG. 5 Particle size distribution of Example 2
  • FIG. 6 XRD of the mixed oxide material from Example 2.
  • FIG. 7 Comparison of the particle size distribution of the b2Ü used in Example 3 before and after the grinding.
  • FIG. 8 XRD of the MoVNbTe mixed oxide from Example 3.
  • FIG. 9 XRD of the MoVNbTe mixed oxide from Comparative Example 3.
  • the determination is made according to the BET method according to DIN 66131; a publication of the BET method can also be found in J. Am. Chem. Soc. 60, 309 (1938).
  • the reactor was then cooled to room temperature, evacuated, and dipped in a Dewar flask with liquid nitrogen. Nitrogen adsorption was performed at 77 K with an RXM 100 sorption system (Advanced Scientific Design, Inc.).
  • the determination of the BET surface area was made with respect to the respective samples of the MoVNbTe mixed oxide on the material dried at 200 ° C in a vacuum.
  • the data in the present description regarding the BET surface areas of the MoVNbTe mixed oxide also refer to the BET surface areas of the particular catalyst material used (dried in vacuo at 200 ° C.).
  • Powder X-ray diffraction The X-ray was created by powder X ⁇ diffractometry (XRD) and evaluation by the Scherrerformel. The XRD spectra were recorded at 600 ° C in
  • Nitrogen activated catalyst materials measured.
  • the phase evaluation was done using the Rietveld method with the software Topas
  • Beakers were each 1.65 L dist. H2O with stirring on a magnetic stirrer with temperature control also heated to 80 ° C. Into these beakers were then each 405.10 g of vanadyl sulfate hydrate (of GfE, V content: 21.2%) and 185.59 g of ammonium niobium oxalate (HC Starck, Nb content: 20.6%) were added and dissolved (V solution and Nb solution).
  • V solution was successively pumped into the AHM solution, then 65.59 g TeÜ2 powder as a solid (TeÜ2 of 5N + particle size distribution see Figure 1) and 1.65 L dist. H2O was added, stirring continued for 1 h at 80 ° C and finally pumped the Nb solution in the AHM solution by means of a peristaltic pump. Pumping time: V solution: 4.5 min at 190 rpm
  • the resulting suspension was at 80 ° C for 10 min
  • Precipitation was 90 rpm. Subsequently, it was overlaid with nitrogen by passing in
  • the hydrothermal synthesis was carried out in a 40 L autoclave at 175 ° C. for 20 h (heating time: 3 h) with an anchor stirrer at a stirrer speed of 90 rpm.
  • the drying was carried out at 80 ° C in a drying oven for 3 days and then was ground in a hammer mill, with a solids yield of 0.8 kg was obtained.
  • the calcination was carried out at 280 ° C for 4 h in the air stream (heating rate 5 ° C / min air: 1 L / min).
  • the activation took place in a retort at 600 ° C. for 2 h in the N 2 flow (heating rate 5 ° C./min 2: 0.5 L / min).
  • the particle size distribution of the TeÜ2 used was:
  • XRD The XRD of the mixed oxide material from Example 1 is shown in FIG. 2 and has the following phase distribution:
  • Beakers were each 3.3 L dist. H2O with stirring on a magnetic stirrer with temperature control also heated to 80 ° C. 810.21 g of vanadyl sulfate hydrate (GfE, V content: 21.2%) and 370.59 g were then added to these beakers Ammonium niobium oxalate (HC Starck, Nb content: 20.6%) was added and dissolved (V solution and Nb solution).
  • Precipitation was 90 rpm.
  • Autoclave was pressurized with N2 (5 min). At the end, the pressure was released via the vent valve, down to 1 bar residual pressure.
  • the hydrothermal synthesis was carried out in a 40 L autoclave at 175 ° C for 20 h (heating time: 3 h) with an anchor stirrer, at a stirrer speed of 90 rpm.
  • the drying was carried out at 80 ° C in a drying oven for 3 days and then was ground in a hammer mill, with a solids yield of 0.5 kg was obtained.
  • Comparative Example 1 is only about half as large as in the example according to the invention.
  • the calcination was carried out at 280 ° C for 4 h in the air stream (heating rate 5 ° C / min air: 1 L / min).
  • the XRD of the MoVNbTe mixed oxide of Comparative Example 1 is shown in FIG. 4 and has the following phase distribution:
  • Vanadyl sulfate hydrate (GfE, V content: 21.2%) and 185.59 g
  • Ammonium niobium oxalate (HC Starck, Nb content: 20.6%) was added and dissolved (V solution and Nb solution).
  • TeÜ2 Alpha Aesar from Comparative Example 1
  • V solution was successively pumped into the AHM solution, then the Te suspension ground the day before was added, stirring was continued for 1 h at 80 ° C. and finally the Nb solution was pumped into the AHM solution by means of a peristaltic pump. Pumping time: V solution: 5 min at 290 rpm
  • Precipitation was 90 rpm.
  • the hydrothermal synthesis in the 40 L autoclave was carried out at 175 ° C. for 20 h (heating time: 3 h) with an anchor stirrer at a stirrer speed of 90 rpm.
  • the calcination was carried out at 280 ° C for 4 h in the air stream (heating rate 5 ° C / min air: 1 L / min). The activation took place in the retort at 600 ° C. for 2 h in the N 2 stream (heating rate 5 ° C./min 2: 0.5 L / min).
  • the XRD of the MoVNbTe mixed oxide from Example 2 is shown in FIG. 6 and has the following phase distribution:
  • TeÜ2 Alfa Aesar from Comparative Example 1 in 200 g of dist. H2O slurried and ground in the ball mill (as in Example 2). Subsequently, the portion with 500 ml of dist. Transferred H2O into a beaker. The b2Üs was distilled in 200 g. H2O slurried and ground in the same ball mill. A comparison of particle size distributions before and after milling is shown in FIG.
  • a hydrothermal synthesis was carried out in a 40 L autoclave at 190 ° C for 48 h. After the synthesis was filtered by means of a vacuum pump with blue band filter and the
  • the drying was carried out at 80 ° C in a drying oven for 3 days and then was ground in a hammer mill, with a solids yield of 0.8 kg was achieved.
  • the calcination was carried out at 280 ° C for 4 h in the air stream (heating rate 5 ° C / min air: 1 L / min).
  • the XRD of the MoVNbTe mixed oxide from Example 3 is shown in FIG. 8 and has the following phase distribution:
  • Comparative Example 2 First, TeÜ2 (Alfa Aesar from Comparative Example 1) in 200 g of dist. H2O slurried and ground in the ball mill (as in Example 2) and then transferred with water into a beaker so that the volume in the beaker was 1650 ml of water.
  • Citric acid 194 g of oxalic acid dihydrate, 19.9 g
  • a hydrothermal synthesis was carried out in a 40 L autoclave at 190 ° C / 48 h. After the synthesis was with the help of a vacuum pump with
  • the drying was carried out at 80 ° C in a drying oven for 3 days and then was ground in a hammer mill, with a solids yield of 0.8 kg was achieved.
  • the calcination was carried out at 280 ° C for 4 h in the air stream (heating rate 5 ° C / min air: 1 L / min). The activation took place in the retort at 600 ° C. for 2 h in the N 2 stream (heating rate 5 ° C./min 2: 0.5 L / min).
  • the XRD of the MoVNbTe mixed oxide from Comparative Example 3 is shown in FIG. 9 and has the following phase distribution:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The invention relates to a method for producing a mixed oxide material containing the elements molybdenum, vanadium, niobium and tellurium, comprising the following steps: a) producing a mixture from starting compounds containing molybdenum, vanadium, niobium and a tellurium-containing starting compound, present in the tellurium in the +4 oxidation state, b) hydrothermal treatment of the mixture from starting compounds at a temperature of between 100°c to 300°C, in order to obtain a product suspension, c) separating off and drying the solid material from the product suspension obtained in step b), d) activating the solid material in inert gas in order to obtain the mixed oxide material. The invention is characterized in that the tellurium-containing starting compound has a particle size D90of less than 100 µm.

Description

Verfahren zur Herstellung molybdänhaltiger  Process for the preparation of molybdenum-containing
Mischoxidmaterialien  mixed oxide
Die Erfindung betrifft ein Verfahren zur Herstellung eines Mischoxidmaterials. The invention relates to a method for producing a mixed oxide material.
MoVNbTe-Mischoxide zur Oxidation von Propan zu Acrylsäure oder zur oxidativen Dehydrierung von Ethan zu Ethen sind Stand der Technik. Mehr als 200 Patente und zahlreiche wissenschaftliche Veröffentlichungen behandeln Katalysatoren auf Basis von MoVNbTe-Mischoxiden . Die Promotierung dieser Mischoxide mit anderen Metallen des Periodensystems ist bekannt. Dabei liegen die höchsten vorbeschriebenen Acrylsäure-Ausbeuten bei ca. 60% und die von Ethen bei ca. 80%. MoVNbTe mixed oxides for the oxidation of propane to acrylic acid or for the oxidative dehydrogenation of ethane to ethene are state of the art. More than 200 patents and numerous scientific publications treat catalysts based on MoVNbTe mixed oxides. The promotion of these mixed oxides with other metals of the periodic table is known. The highest described above acrylic acid yields are about 60% and that of ethene at about 80%.
Das auf vier Elementen beruhende MoVNbTe-Basissystem für einen Katalysator wurde zuerst von Mitsubishi für die Ammoxidation von Propan zu Acrylnitril (1989, EP 318295 AI) und die Oxidation zu Acrylsäure vorgeschlagen (1994, EP 608838 A2) . Durch JP H07-053414 (Mitsubishi) wird auch die oxidative Dehydrierung von Ethan zu Ethylen mit diesem Katalysatortyp beschrieben. The MoVNbTe base system based on four elements for a catalyst was first proposed by Mitsubishi for the ammoxidation of propane to acrylonitrile (1989, EP 318295 Al) and the oxidation to acrylic acid (1994, EP 608838 A2). JP H07-053414 (Mitsubishi) also describes the oxidative dehydrogenation of ethane to ethylene with this type of catalyst.
MoVNbTe-Mischoxide bestehen hauptsächlich aus zwei orthorhombischen Phasen, die „Ml" und ,,M2" genannt werden (T. Ushikubo, K. Oshima, A. Kayou, M. Hatano, Studies in Surface Science and Catalysis 112, (1997), 473) . Die Ml-Phase scheint bei den selektiven Oxidat ionsreakt ionen die wesentliche Rolle zu spielen. MoVNbTe mixed oxides consist mainly of two orthorhombic phases called "Ml" and "M2" (T. Ushikubo, K. Oshima, A. Kayou, M. Hatano, Studies in Surface Science and Catalysis 112, (1997), 473). The Ml phase seems to play the essential role in the selective oxidation reactions.
Gemäß P. De Santo et al . , Z. Kristallogr. 219 (2004) 152 können die Hauptphasen Ml und M2 in MoVNbTe-Mischoxiden für die selektive Oxidation beispielsweise mit folgenden Summenformeln beschrieben werden: According to P. De Santo et al. , Z. Kristallogr. 219 (2004) 152, the main phases Ml and M2 in MoVNbTe mixed oxides for the selective oxidation, for example, with the following empirical formulas to be discribed:
Ml: M01V0, i5 eo, i2Nbo, 128O3, 7 oder M07, sVi, 2Teo, 937 bi028, 9 Ml: M01V0, i5 eo, i2Nbo, 128O3, 7 or M07, sVi, 2 Teo, 937 bi028, 9
M2 : *MoiVo,32 eo,42 bo,os04,6 oder M04, 31V1, 3eTei, siNbo, 33O19, si M2: * MoiVo, 32 eo, 42 bo, os04,6 or M04, 31V1, 3 eTei, siNbo, 33O19, si
Die beiden Hauptphasen können auch mit etwas anderer Stöchiometrie auftreten. Sowohl Vanadium als auch Molybdän sind im Zentrum eines Oktaeders aus Sauerstoffatomen und daher in der Struktur teilweise austauschbar, so dass die gleiche Struktur, z.B. die Ml-Phase, auch mit einem höheren Vanadiumgehalt möglich ist. Eine detaillierte Untersuchung dieser Zusammenhänge findet sich bei P. Botella et al . , Solid State Science 7 (2005) 507-519. Speziell die M2-Phase ist für die oxidative Dehydrierung von Ethan nicht aktiv (Siehe J.S. Valente et al . , ACS Catal. 4(2014), 1292-1301, S. 1293). Für die oxidative Dehydrierung von Ethan ist daher ein Katalysator, der aus einer möglichst reinen Ml-Phase besteht, erwünscht. Es wird daher versucht, diese Kristallphasen sauber und getrennt herzustellen. The two main phases can also occur with a slightly different stoichiometry. Both vanadium and molybdenum are in the center of an octahedron of oxygen atoms and therefore partially interchangeable in structure so that the same structure, e.g. the Ml phase, even with a higher vanadium content is possible. A detailed investigation of these relationships can be found in P. Botella et al. , Solid State Science 7 (2005) 507-519. Specifically, the M2 phase is not active for the oxidative dehydrogenation of ethane (See J. S. Valente et al., ACS Catal.4 (2014), 1292-1301, p1293). For the oxidative dehydrogenation of ethane, therefore, a catalyst which consists of a very pure Ml phase is desired. It is therefore attempted to produce these crystal phases cleanly and separately.
EP 529853 A2 offenbart einen Katalysator, der zur Herstellung eines Nitrils aus einem Alkan geeignet ist, wobei der Katalysator die empirische Formel MoVbTecXxOn hat, worin X mindestens eines von Nb, Ta, W, Ti, AI, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Sb, Bi, B und Ce ist, b 0,01 bis 1,0 ist, c 0,01 bis 1,0 ist; x 0,01 bis 1,0 ist und n eine Zahl ist, gemäß der die Gesamtwertigkeit der Metallelemente erfüllt ist und der Katalysator Röntgenstrahlbeugungspeaks bei den folgenden 2Θ -Winkeln in seinem Röntgenbeugungsmuster aufweist: Beugungswinkel bei 2Θ: 22,1° +/- 0,3°, 28,2° +/- 0,3°, 36,2° +/- 0,3°, 45,2° +/- 0,3°, 50,0° +/- 0,3°. EP 529853 A2 discloses a catalyst suitable for preparing a nitrile from an alkane, the catalyst having the empirical formula MoVbTe c XxO n , wherein X is at least one of Nb, Ta, W, Ti, Al, Zr, Cr, Mn Fe, Ru, Co, Rh, Ni, Pd, Pt, Sb, Bi, B and Ce, b is 0.01 to 1.0, c is 0.01 to 1.0; x is 0.01 to 1.0; and n is a number satisfying the total metal element content and the catalyst has X-ray diffraction peaks at the following 2Θ angles in its X-ray diffraction pattern: diffraction angle at 2Θ: 22.1 ° +/- 0 , 3 °, 28.2 ° +/- 0.3 °, 36.2 ° +/- 0.3 °, 45.2 ° +/- 0.3 °, 50.0 ° +/- 0.3 °.
JP H07-232071 offenbart ein katalytisches Verfahren zur Herstellung eines Nitrils, bei einer relativ niedrigen Temperatur und mit einer hohen Ausbeute, unter Verwendung eines Alkans als Rohmaterial und eines bestimmten Katalysators. Die Hauptkomponente des Katalysators ist ein Mischmetalloxid aus Molybdän, Vanadium, Tellur, Sauerstoff und X (X ist eines oder mehrere Elemente ausgewählt aus der Gruppe aus Niob, Tantal etc.), wobei das Verhältnis der Hauptkomponenten, d.h. ausgenommen Sauerstoff, ausgedrückt wird, durch die Formeln I bis IV: I) 0,25 < rMo < 0,98, II) 0,003 < rV < 0,50, III) 0,003 < rTe < 0,50, IV) 0 < rX < 0,5, (rMo, rV, rTe und rX sind jeweils die molaren Teile an Molybdän, Vanadium, Tellur und X) und sich im XRD, XRD-Banden dieses Mischoxides bei den verschiedenen 29-Winkeln 9.0°±0.3°, 22.1°±0.3°, 27.3°±0.3°, 29.2°±0.3° und 35.4°±0.3° zeigen. Demnach kann ein Nitril hergestellt werden, indem ein Alkan ohne die Anwesenheit einer halogenierten Substanz, z.B. mit Wasser etc., im Reaktionssystem, bei einer tiefen Temperatur mit einer hohen Ausbeute umgesetzt wird. JP H07-232071 discloses a catalytic process for Preparation of a nitrile, at a relatively low temperature and with a high yield, using an alkane as a raw material and a specific catalyst. The main component of the catalyst is a mixed metal oxide of molybdenum, vanadium, tellurium, oxygen and X (X is one or more elements selected from the group of niobium, tantalum, etc.), wherein the ratio of the main components, ie excluding oxygen, is expressed Formulas I to IV: I) 0.25 <rMo <0.98, II) 0.003 <rV <0.50, III) 0.003 <rTe <0.50, IV) 0 <rX <0.5, (rMo , rV, rTe and rX are respectively the molar parts of molybdenum, vanadium, tellurium and X) and in the XRD, XRD bands of this mixed oxide at the different 29 angles 9.0 ° ± 0.3 °, 22.1 ° ± 0.3 °, 27.3 ° ± 0.3 °, 29.2 ° ± 0.3 ° and 35.4 ° ± 0.3 °. Thus, a nitrile can be prepared by reacting an alkane without the presence of a halogenated substance, eg, water, etc. in the reaction system at a low temperature with a high yield.
Andere erfolgreiche Versuche eine reine Ml-Phase herzustellen, basieren darauf, die M2-Phase aus dem Phasengemisch herauszulösen. Diese Versuche sind z.B. in EP 1301457 A2, EP 1558569 AI oder WO 2009/106474 A2 beschrieben. Other successful attempts to produce a pure Ml phase are based on dissolving the M2 phase out of the phase mixture. These experiments are e.g. in EP 1301457 A2, EP 1558569 A1 or WO 2009/106474 A2.
A.C. Sanfiz et al . , Top. Catal. 50 (2008) 19-32, beschreiben Hydrothermalsynthesen von MoVNbTe-Oxid . In diesen Synthesen wird ausschließlich von löslichen Verbindungen ausgegangen. Als lösliche Verbindung des Tellurs wird in der Regel Tellursäure Te (OH) 6 eingesetzt. In der gängigsten oxidischen Tellurverbindung TeÜ2 hat Tellur die Oxidationsstufe +4. Leider ist Tellurdioxid (TeÜ2) schlecht wasserlöslich. In der Tellursäure aber hat das Tellur die Oxidationsstufe +6. Tellur muss also bei der Herstellung der Tellursäure hoch oxidiert werden. Die gängige Synthese erfolgt durch Oxidation von Telluroxid mit Wasserstoffperoxid, was im großen Maßstab Sicherheitsprobleme mit sich bringt, denn Wasserstoffperoxid kann in Selbst Zersetzung zu Wasser und Sauerstoff disproportionieren . Deshalb ist Tellursäure nur schwer in großen Mengen herzustellen. AC Sanfiz et al. , Top. Catal. 50 (2008) 19-32 describe hydrothermal syntheses of MoVNbTe oxide. These syntheses are based exclusively on soluble compounds. As a soluble compound of tellurium usually telluric acid Te (OH) 6 is used. In the most common oxide tellurium compound TeÜ2, tellurium has the oxidation state +4. Unfortunately, tellurium dioxide (TeÜ2) is poorly soluble in water. In telluric acid, however, tellurium has the oxidation state +6. Tellurium must therefore be highly oxidized in the production of telluric acid. The common synthesis is carried out by oxidation of Tellurium oxide with hydrogen peroxide, which causes safety problems on a large scale, because hydrogen peroxide can disproportionate in self-decomposition to water and oxygen. Therefore, telluric acid is difficult to produce in large quantities.
Watanabe (Applied Catal. A General, 194-195 (2000) 479-485) beschreibt unter anderem die hydrothermale Synthese aus den wenig löslichen Vorstufen M0O3, V2O5 und TeÜ2. Die Hydrothermalsynthese ergibt eine Vorstufe für einen Ammoxidations-Katalysator, der im Vergleich zu einem Katalysator, der durch die bekannte trockene Methode hergestellt wird, die doppelt so hohe Aktivität nach der Kalzinierung aufweist. Die Mischoxide, die durch die FestStoffreaktion hergestellt werden, zeigen eine eher geringe Aktivität. Es wurde vorgeschlagen, dass die höhere Aktivität des durch die Hydrothermalsynthese hergestellten Katalysators vor allem mit der höheren Oberfläche zu tun hat. Watanabe (Applied Catal. A General, 194-195 (2000) 479-485) describes inter alia the hydrothermal synthesis from the less soluble precursors M0O3, V2O5 and TeÜ2. The hydrothermal synthesis gives a ammoxidation catalyst precursor which has twice the activity after calcination compared with a catalyst prepared by the known dry method. The mixed oxides produced by the solid-state reaction show rather low activity. It has been suggested that the higher activity of the catalyst prepared by the hydrothermal synthesis has to do mainly with the higher surface area.
Eine Synthese des MoVNbTe-Mischoxids ohne Einsatz von Tellursäure hat das Potential deutlich kostengünstiger zu sein. A synthesis of MoVNbTe mixed oxide without the use of telluric acid has the potential to be significantly cheaper.
Die in der Synthese von MoVNbTe-Mischoxiden eingesetzte Nb- Komponente ist in der Regel Ammoniumnioboxalat . Nioboxid dagegen ist schwerlöslich und eignet sich daher nur bedingt als Ausgangsverbindung. Gewünscht ist eine Synthesemethode, die eine saubere Ml-Phase eines MoVNbTe-Mischoxides liefert und die mit kostengünstigen Ausgangsverbindungen, d.h. mit einfachen Metalloxiden, wie z.B. Molybdäntrioxid, Vanadiumpentoxid, Niobpentoxid und Tellurdioxid auskommt. Aufgabe der vorliegenden Erfindung war es deshalb, eine einfache, skalierbare, kostengünstige und reproduzierbare Methode zu finden, die Ml-Phase eines MoVNbTe-Mischoxides selektiv unter Verwendung von Tellurdioxid, und im Übrigen, wenn möglich, unter Verwendung von kostengünstigen Metalloxiden als Ausgangsverbindungen, in einer hydrothermalen Synthese herzustellen. The Nb component used in the synthesis of MoVNbTe mixed oxides is usually ammonium niobium oxalate. By contrast, niobium oxide is sparingly soluble and is therefore only suitable to a limited extent as starting compound. What is desired is a synthesis method that provides a clean Ml phase of a MoVNbTe mixed oxide and with inexpensive starting materials, ie, with simple metal oxides, such as molybdenum trioxide, vanadium pentoxide, niobium pentoxide and tellurium dioxide manages. The object of the present invention was therefore to find a simple, scalable, inexpensive and reproducible method, the Ml phase of a MoVNbTe mixed oxide selectively using tellurium dioxide, and otherwise, if possible, using inexpensive metal oxides as starting compounds, in to produce a hydrothermal synthesis.
Die Aufgabe wird gelost durch ein Verfahren zur Herstellung eines Mischoxidmaterials, enthaltend die Elemente Molybdän, Vanadium, Niob und Tellur („MoVTeNb-Mischoxid" ) , umfassend die folgenden Schritte: The object is achieved by a method for producing a mixed oxide material containing the elements molybdenum, vanadium, niobium and tellurium ("MoVTeNb mixed oxide"), comprising the following steps:
Herstellen eines Gemisches aus Making a mixture of
Ausgangsverbindungen, das Molybdän, Vanadium, Niob und eine Tellur enthaltende Ausgangsverbindung, in der Tellur in der Oxidationsstufe +4 vorliegt, enthält , hydrothermale Behandlung des Gemisches aus Ausgangsverbindungen bei einer Temperatur von 100 °C bis 300 °C, um eine ProduktSuspension zu  Starting compounds containing molybdenum, vanadium, niobium and a tellurium-containing starting compound in which tellurium is in the +4 oxidation state contains hydrothermal treatment of the mixture of starting compounds at a temperature of from 100 ° C to 300 ° C, to a product suspension
erhalten,  receive,
Abtrennen und Trocknen des Feststoffes der aus Schritt b) resultierenden ProduktSuspension, Separating and drying the solid of the product suspension resulting from step b),
Aktivieren des Feststoffes in inertem Gas, um das Mischoxidmaterial zu erhalten, dadurch gekennzeichnet, dass die Tellur Activating the solid in inert gas to obtain the mixed oxide material, characterized in that the tellurium
enthaltende Ausgangsverbindung eine Partikelgröße D90 kleiner 100 pm aufweist. Das erfindungsgemäße Verfahren führt zu einem Mischoxidmaterial, das ein MoVNbTe-Mischoxid darstellt und das als Katalysatormaterial geeignet ist. containing starting compound has a particle size D90 smaller than 100 pm. The process according to the invention leads to a mixed oxide material which represents a MoVNbTe mixed oxide and which is suitable as a catalyst material.
Es wurde gefunden, dass bei Verwendung von z.B. Tellurdioxid mit größeren Partikeln die Synthese nur unvollständig verläuft, auch wenn die anderen Komponenten lösliche Metallverbindungen sind. Das Produkt lässt sich nicht filtrieren und enthält viele nicht umgesetzte Nanopartikel . Diese stellen vermutlich Molybdän-Vanadium-Oxometallate dar, die als Salze mit sehr großen Anionen nicht mehr gelöst sind, sondern feine Nanopartikel darstellen, die sich nicht filtrieren lassen. It has been found that when using e.g. Tellurdioxid with larger particles, the synthesis is incomplete, even if the other components are soluble metal compounds. The product does not filter and contains many unreacted nanoparticles. These are probably molybdenum-vanadium oxometallates, which are no longer dissolved as salts with very large anions, but represent fine nanoparticles that can not be filtered.
Wird für die Synthese hingegen z.B. Tellurdioxid verwendet, das eine Partikelgröße mit einem D 90 < 100 pm aufweist, gelingt die Bildung der gewünschten Phase fast vollständig. On the other hand, if the synthesis is e.g. Tellurdioxid used, which has a particle size with a D 90 <100 pm, the formation of the desired phase succeeds almost completely.
Erfindungsgemäß weist das eingesetzte Tellur enthaltende Ausgangsverbindung eine Partikelgröße mit einem D 90 < 100 pm, bevorzugt D 90 < 75 pm, besonders bevorzugt D 90 < 50 pm auf. Optional kann das eingesetzte Tellurdioxid eine Partikelgröße D50 < 50 pm oder < 35 pm aufweisen. According to the invention, the tellurium-containing starting compound has a particle size with a D 90 <100 pm, preferably D 90 <75 pm, particularly preferably D 90 <50 pm. Optionally, the tellurium dioxide used may have a particle size D50 <50 pm or <35 pm.
Außerdem kann die Niob enthaltende Ausgangsverbindung, die vorzugsweise Nioboxid ist, ebenfalls eine Partikelgröße mit einem D 90 < 100 pm, bevorzugt D 90 < 75 pm, besonders bevorzugt D 90 < 50 pm aufweisen. Optional kann die eingesetzte Niob enthaltende Ausgangsverbindung, die vorzugsweise Nioboxid ist, eine Partikelgröße D50 < 50 pm oder < 35 pm aufweisen. In addition, the niobium-containing starting compound, which is preferably niobium oxide, likewise has a particle size with a D 90 <100 μm, preferably D 90 <75 μm, particularly preferably D 90 <50 μm. Optionally, the niobium-containing starting compound used, which is preferably niobium oxide, have a particle size D50 <50 pm or <35 pm.
Außerdem können alle eingesetzten Ausgangsverbindungen eine Partikelgröße mit einem D 90 < 100 pm, bevorzugt D 90 < 75 pm, besonders bevorzugt D 90 < 50 pm aufweisen. Optional können die Ausgangsverbindungen eine Partikelgröße D50 < 50 pm oder < 35 pm aufweisen. In addition, all starting compounds used may have a particle size with a D 90 <100 pm, preferably D 90 <75 pm, more preferably D 90 <50 pm. Optionally, the Starting compounds have a particle size D50 <50 pm or <35 pm.
Die Ausgangsverbindungen, so z.B. eingesetzte Metalloxide wie Tellurdioxid, liegen als Pulver vor und weisen eine Partikelgrößenverteilung auf. Die Partikelgröße D90 ist definiert als die Grenze des Partikeldurchmessers in der Partikelgrößenverteilung, unter der 90% aller Partikel liegen. Die Partikelgröße des Meridians, also die Partikelgröße unter der die Hälfte aller Partikel in der Partikelgrößenverteilung liegen, wird auch als Partikelgröße D50 bezeichnet. Als besonders bevorzugt gilt, dass die Partikelgröße D50 für das als Ausgangsverbindung eingesetzte Tellurdioxid unter 35 pm liegt . The starting compounds, e.g. Metal oxides used, such as tellurium dioxide, are present as powders and have a particle size distribution. The particle size D90 is defined as the limit of the particle diameter in the particle size distribution below which 90% of all particles are located. The particle size of the meridian, ie the particle size below which half of all particles are in the particle size distribution, is also referred to as particle size D50. It is particularly preferred that the particle size D50 for the tellurium dioxide used as the starting compound is less than 35 μm.
Die gewünschte Partikelgröße D90 oder D50 der Ausgangsverbindung kann erhalten werden, indem von einem Pulver mit einer grobkörnigeren Partikelgrößenverteilung ausgegangen wird und die Partikel mechanisch zerkleinert werden. Dies kann durch Vermählen erfolgen, wobei alle geeigneten und dem Fachmann geläufigen Mittel Verwendung finden können, so z.B. Schlagmühlen, Planetenmühlen, Mörser etc. The desired particle size D 90 or D 50 of the starting compound can be obtained by starting from a powder having a coarse-grained particle size distribution and mechanically comminuting the particles. This can be done by grinding, with all suitable and familiar to those skilled means can be used, such as hammer mills, planetary mills, mortars, etc.
Die Ausgangsverbindungen sind die Molybdän, Vanadium, Niob und Tellur enthaltenden Edukte der Hydrothermalsynthese (Vorläuferverbindungen) . Diese enthalten jeweils eines oder mehrere der Elemente Molybdän, Vanadium, Niob oder Tellur. Die Molybdän enthaltende Ausgangsverbindung kann z.B. ein Ammoniumheptamolybdat oder Molybdäntrioxid sein, die Vanadium enthaltende Ausgangsverbindung kann z.B. Ammoniummetavanadat , Vanadylsulfat oder Vanadiumpentoxid sein, die Niob enthaltende Ausgangsverbindung kann z.B. Ammoniumnioboxalat , Nioboxalat oder Nioboxid sein. Die Tellur enthaltende Ausgangsverbindung gemäß der Erfindung ist eine, in der Tellur in der Oxidat ionsstufe +4, d.h. als Tellur ( IV) -Kation vorliegt, wie in Tellurdioxid oder einer Verbindung der Formel Mx n+TeC>3 (mit n = 1 oder 2 und x = 2/n), wobei M ein Alkali- oder Erdalkalimetall ist, wie z.B. Na2TeC>3. Besonders bevorzugt ist die Tellur enthaltende Ausgangsverbindung Tellurdioxid, das in einem beliebigen Hydratisierungs-Grad vorliegen kann. The starting compounds are the molybdenum, vanadium, niobium and tellurium-containing educts of the hydrothermal synthesis (precursor compounds). These each contain one or more of the elements molybdenum, vanadium, niobium or tellurium. The molybdenum-containing starting compound may be, for example, an ammonium heptamolybdate or molybdenum trioxide, the vanadium-containing starting compound may be, for example, ammonium metavanadate, vanadyl sulfate or vanadium pentoxide, the niobium-containing starting compound may be, for example, ammonium niobium oxalate, niobium oxalate or niobium oxide. The tellurium-containing starting compound according to the invention is one in ionsstufe of tellurium in the +4 oxidation product, ie as tellurium (IV) cation is present, such as M x n + TeC> 3 (in tellurium dioxide or a compound of the formula with n = 1 or 2 and x = 2 / n), where M is an alkali or alkaline earth metal, such as Na2TeC> 3. More preferably, the tellurium-containing starting compound is tellurium dioxide, which may be in any degree of hydration.
Die mögliche Stöchiometrie der Ml-Phase ist aus der Literatur hinreichend bekannt und lässt sich durch die Formel MoiVaTebNbcOx mit a = 0,2 bis 0,3, b = 0,1 bis 0,25, c = 0,1 bis 0,2 und x abhängig von der Oxidat ionsstufe der Metalle (Mo, V, Te und Nb) eine Größe die zum Ladungsausgleich führt. The possible stoichiometry of the Ml phase is well known from the literature and can be represented by the formula MoiVaTe b NbcOx with a = 0.2 to 0.3, b = 0.1 to 0.25, c = 0.1 to 0 , 2 and x depending on the oxidation state of the metals (Mo, V, Te and Nb) a size which leads to the charge balance.
Das Gemisch aus Ausgangsverbindungen liegt vorzugsweise als wässrige Suspension vor und wird hydrothermal behandelt. Der Begriff „hydrothermal" bezieht sich auf Reaktionsbedingungen zur Herstellung eines Katalysatormaterials in Gegenwart von Wasser und unter erhöhter Temperatur und/oder erhöhtem Druck, beispielsweise im Autoklaven. Dabei kann der Druck im Bereich von 5 bis 30 bar, bevorzugt von 10 bis 27 bar liegen. Beispielhafte Druckbereiche sind 11 bis 15 bar, oder ungefähr 17 bar und 22 bis 25 bar. The mixture of starting compounds is preferably present as an aqueous suspension and is treated hydrothermally. The term "hydrothermal" refers to reaction conditions for the preparation of a catalyst material in the presence of water and under elevated temperature and / or elevated pressure, for example in an autoclave, where the pressure may be in the range from 5 to 30 bar, preferably from 10 to 27 bar Exemplary pressure ranges are 11 to 15 bar, or about 17 bar and 22 to 25 bar.
Durch die hydrothermale Behandlung (Schritt b) ) wird eine Produkt Suspension erhalten, die das Produkt als Feststoff enthält. In dem erfindungsgemäßen Verfahren kann das Abtrennen des Feststoffes der Produkt Suspension in Schritt c) in einen oder mehreren Schritten der Filtration, z.B. durch Abfiltrieren von der Mutterlauge, erfolgen. Das Trocknen kann in einem Schritt durchgeführt werden oder in zwei Schritten in strömender oder statischer Luft. Dabei ist der erste Trocknungsschritt bevorzugt bei 60 bis 150°C (besonders bevorzugt bei 80 bis 120°C) und der zweite Trocknungsschritt bei 200 bis 350°C (besonders bevorzugt bei 220°C bis 280°C) durchzuführen. Zusätzlich kann Schritt c) des erfindungsgemäßen Verfahrens einen oder mehrere Schritte des Waschens, des Trocknens, des Kalzinierens, und/oder des Mahlens beinhalten. Das Kalzinieren kann bei 200 bis 500 °C bevorzugt 250 °C bis 350 °C an Luft erfolgen. The hydrothermal treatment (step b)) gives a product suspension which contains the product as a solid. In the process according to the invention, the separation of the solid from the product suspension in step c) can take place in one or more filtration steps, for example by filtering off the mother liquor. The drying can be carried out in one step or in two steps in flowing or static air. In this case, the first drying step is preferably at 60 to 150 ° C (more preferably at 80 to 120 ° C) and the second drying step at 200 to 350 ° C (more preferably at 220 ° C to 280 ° C) to perform. In addition, step c) of the process of the invention may include one or more of washing, drying, calcining, and / or milling. The calcination can be carried out at 200 to 500 ° C, preferably 250 ° C to 350 ° C in air.
Nach dem Trocknen des Filtrates in Schritt c) wird die getrocknete Mischung z.B. in einer strömenden oder statischen Inertgasatmosphäre bei ungefähr 500 bis 700°C für mindestens 1 Stunde aktiviert werden (Schritt d) . Als Inertgas eignet sich insbesondere Stickstoff, Helium oder Argon. Bevorzugt ist es, wenn das Aktivieren im Bereich von 550 °C bis 650°C erfolgt. Z.B. kann das Aktivieren bei ungefähr 600°C für ungefähr 2 Stunden erfolgen. Das erhaltene MoVNbTe-Mischoxid kann als Katalysatormaterial zur Oxidation und/oder oxidativen Dehydrierung von Kohlenwasserstoffen, insbesondere zur selektiven Oxidation von Propan zu Acrylsäure oder zur oxidativen Dehydrierung von Ethan zu Ethylen eingesetzt werden. Es hat typischerweise eine BET-Oberfläche von 5 bis 25 m2/g. After drying the filtrate in step c), the dried mixture is activated, for example, in a flowing or static inert gas atmosphere at about 500 to 700 ° C for at least 1 hour (step d). In particular, nitrogen, helium or argon is suitable as the inert gas. It is preferred if the activation takes place in the range of 550 ° C to 650 ° C. For example, activation may be at about 600 ° C for about 2 hours. The obtained MoVNbTe mixed oxide can be used as a catalyst material for the oxidation and / or oxidative dehydrogenation of hydrocarbons, in particular for the selective oxidation of propane to acrylic acid or for the oxidative dehydrogenation of ethane to ethylene. It typically has a BET surface area of 5 to 25 m 2 / g.
Das erhaltene Katalysatormaterial, das nach dem erfindungsgemäßen Verfahren hergestellt wird, kann auf verschiedene Art in einem kommerziellen Katalysator eingesetzt werden. Z.B. kann es durch Tablettieren zu Katalysatortabletten verarbeitet werden, die dann in einen Reaktor eingefüllt werden können. The resulting catalyst material prepared by the process of the present invention can be used in a variety of ways in a commercial catalyst. For example, For example, it can be processed by tabletting into catalyst tablets which can then be filled into a reactor.
Das Katalysatormaterial kann auch zusammen mit einem geeigneten Bindemittel zu einem Extrudat (Tabletten, Formkörper, Honigwabenkörper und dergleichen) verarbeitet werden. Als Bindemittel kann jedes dem Fachmann geläufige und geeignet erscheinende Bindemittel verwendet werden. Bevorzugte Bindemittel sind unter anderem Pseudoböhmit sowie silicatische Bindemittel wie kolloidales Siliciumoxid oder Silicasol. The catalyst material may also be processed into an extrudate (tablets, shaped bodies, honeycomb bodies and the like) together with a suitable binder. Any binder known to those skilled in the art and appearing suitable may be used as the binder. preferred Binders include pseudoboehmite and silicate binders such as colloidal silica or silica sol.
Das Katalysatormaterial kann ferner zusammen mit anderen Komponenten, vorzugsweise mit einem Bindemittel, besonders bevorzugt mit einem organischen Bindemittel, beispielsweise einem organischen Kleber, Polymeren, Harzen oder Wachsen, zu einem Washcoat verarbeitet werden, der auf einen metallischen oder keramischen Träger aufgebracht werden kann. Gegebenenfalls können zusätzliche Imprägnierschritte oder Kalzinierschritte erfolgen. The catalyst material can also be processed into a washcoat together with other components, preferably with a binder, more preferably with an organic binder, for example an organic adhesive, polymers, resins or waxes, which can be applied to a metallic or ceramic support. If necessary, additional impregnation steps or calcination steps can take place.
Das erhaltene MoVNbTe-Mischoxid ist durch folgende Analytik gekennzeichnet : The resulting MoVNbTe mixed oxide is characterized by the following analysis:
Das Röntgendiffraktogramm des nach dem erfindungsgemäßen Verfahren gebildeten erfindungsgemäße MoVNbTe-Mischoxids weist die Beugungsreflexe h, i, k und 1 auf, deren The X-ray diffractogram of the MoVNbTe mixed oxide according to the invention formed by the method according to the invention has the diffraction reflectances h, i, k and 1 whose
Scheitelpunkte ungefähr bei den Beugungswinkeln (2Θ) 26,2° ± 0,5° (h) , 27,0° ± 0,5° (i), 7,8° ± 0,5° (k) und 28,0° ± 0,5° (1) liegen, wobei die Intensitäten Ph, Pi, Pk, Pi der  Vertices approximately at the diffraction angles (2Θ) 26.2 ° ± 0.5 ° (h), 27.0 ° ± 0.5 ° (i), 7.8 ° ± 0.5 ° (k) and 28.0 ° ± 0.5 ° (1), the intensities Ph, Pi, Pk, Pi of the
Beugungsreflexe h, i, k und 1 die folgenden Beziehungen erfüllen können, mit Rx (x = 1 bis 3) als das durch die Diffraction reflections h, i, k and 1 can satisfy the following relationships, with R x (x = 1 to 3) than that by the
Beziehungen definierte Intensitätsverhältnis: Relationship defined intensity ratio:
Ri = Ph / (Ph + P±) > 0,3, bevorzugt > 0,35 und besonders bevorzugt > 0,4; und/oder Ri = Ph / (Ph + P ±)> 0.3, preferably> 0.35 and more preferably> 0.4; and or
R2 = P± / (Pi + Pi) > 0,5, bevorzugt > 0,6 und besonders bevorzugt > 0,63; und/oder  R2 = P ± / (Pi + Pi)> 0.5, preferably> 0.6 and more preferably> 0.63; and or
R3 = Pi / (Pi + Pk) < 0,8, bevorzugt < 0,75, besonders  R3 = Pi / (Pi + Pk) <0.8, preferably <0.75, especially
bevorzugt < 0,7. preferably <0.7.
Im Röntgendiffraktogramm von Ausführungsformen des In the X-ray diffractogram of embodiments of the
erhaltenen MoVNbTe-Mischoxids kann der Beugungsreflex i die zweithöchste Intensität besitzen und/oder der Beugungsreflex h die dritthöchste Intensität besitzen. Das erhaltene MoVNbTe-Mischoxid wird in den Beispielen als Katalysatormaterial eingesetzt und bei den experimentellen Angaben daher teilweise als Katalysator bezeichnet. Figur 1: Partikelgrößenverteilung des in Beispiel 1 eingesetzten TeC>2 mit den Partikelgrößenwerten Dio = obtained MoVNbTe mixed oxide, the diffraction reflection i may have the second highest intensity and / or the diffraction reflection h have the third highest intensity. The obtained MoVNbTe mixed oxide is used in the examples as a catalyst material and therefore partially referred to in the experimental information as a catalyst. FIG. 1: Particle size distribution of the TeC> 2 used in Example 1 with the particle size values Dio =
7, 625 pm, D5o = 15,140 pm, D90 = 27, 409 pm. 7, 625 pm, D 5 o = 15.140 pm, D 90 = 27, 409 pm.
Figur 2: XRD des MoVNbTe-Mischoxids aus Beispiel 1. FIG. 2: XRD of the MoVNbTe mixed oxide from Example 1.
Figur 3: Partikelgrößenverteilung des in Vergleichsbeispiel 1 eingesetzten TeÜ2 mit den Partikelgrößenwerten Dio = FIG. 3: Particle size distribution of the TeO 2 used in Comparative Example 1 with the particle size values Dio =
16,45 pm, Dso = 43, 46 pm, D90 = 236, 48 pm. Figur 4: XRD des MoVNbTe-Mischoxids aus Vergleichsbeispiel 1. 16.45 pm, D 50 = 43, 46 pm, D 90 = 236, 48 pm. FIG. 4: XRD of the MoVNbTe mixed oxide from Comparative Example 1.
Figur 5: Partikelgrößenverteilung des in Beispiel 2 FIG. 5: Particle size distribution of Example 2
eingesetzten Te02 . used Te02.
Figur 6: XRD des Mischoxidmaterials aus Beispiel 2. FIG. 6: XRD of the mixed oxide material from Example 2.
Figur 7: Vergleich der Partikelgrößenverteilung des in Beispiel 3 eingesetzten b2Üs vor und nach dem Mahlen. FIG. 7: Comparison of the particle size distribution of the b2Ü used in Example 3 before and after the grinding.
Figur 8: XRD des MoVNbTe-Mischoxids aus Beispiel 3. FIG. 8: XRD of the MoVNbTe mixed oxide from Example 3.
Figur 9: XRD des MoVNbTe-Mischoxids aus Vergleichsbeispiel 3. FIG. 9: XRD of the MoVNbTe mixed oxide from Comparative Example 3.
Charakterisierungsmethoden : Characterization methods:
Zur Bestimmung der Parameter der erhaltenen MoVNbTe- Mischoxide wurden die nachstehenden Methoden eingesetzt: 1. BET-Oberflache The following methods were used to determine the parameters of the MoVNbTe mixed oxides obtained: 1. BET surface
Die Bestimmung erfolgt nach der BET-Methode gemäß DIN 66131; eine Veröffentlichung der BET-Methode findet sich auch in J. Am. Chem. Soc. 60, 309 (1938) . Die zu bestimmende Probe wurde in einem U-förmigen Quarzreaktor bei 200 °C unter Ar- Atmosphäre getrocknet (F = 50 ml (min) für 1,5 h) . Der The determination is made according to the BET method according to DIN 66131; a publication of the BET method can also be found in J. Am. Chem. Soc. 60, 309 (1938). The sample to be determined was dried in a U-shaped quartz reactor at 200 ° C under Ar atmosphere (F = 50 ml (min) for 1.5 h). Of the
Reaktor wurde dann auf Raumtemperatur abgekühlt, evakuiert und in ein Dewar-Gefäß mit flüssigem Stickstoff getaucht. Die Stickstoff-Adsorption wurde bei 77 K mit einem RXM 100 Sorptionssystem (Advanced Scientific Design, Inc.) The reactor was then cooled to room temperature, evacuated, and dipped in a Dewar flask with liquid nitrogen. Nitrogen adsorption was performed at 77 K with an RXM 100 sorption system (Advanced Scientific Design, Inc.).
durchgeführt . Die Bestimmung der BET-Oberfläche erfolgte bezüglich der jeweiligen Proben des MoVNbTe-Mischoxids an dem bei 200 °C im Vakuum getrockneten Material. Auch die Angaben in der vorliegenden Beschreibung bezüglich der BET-Oberflächen des MoVNbTe-Mischoxids beziehen sich auf die BET-Oberflächen des jeweils eingesetzten Katalysatormaterials (getrocknet in Vakuum bei 200 °C) . carried out . The determination of the BET surface area was made with respect to the respective samples of the MoVNbTe mixed oxide on the material dried at 200 ° C in a vacuum. The data in the present description regarding the BET surface areas of the MoVNbTe mixed oxide also refer to the BET surface areas of the particular catalyst material used (dried in vacuo at 200 ° C.).
2. Pulverröntgendiffraktometrie (XRD) Das Röntgendiffraktogramm wurde durch Pulverröntgen¬ diffraktometrie (XRD) und Auswertung nach der Scherrerformel erstellt. Die XRD-Spektren wurden an den bei 600 °C in 2. Powder X-ray diffraction (XRD) The X-ray was created by powder X ¬ diffractometry (XRD) and evaluation by the Scherrerformel. The XRD spectra were recorded at 600 ° C in
Stickstoff aktivierten Katalysatormaterialien gemessen. Nitrogen activated catalyst materials measured.
Gemessen wurde in einem Philips Modell PW 3710-basierenden PW 1050 Bragg-Brentano Parafokussierungs-Goniometer bei 40 kV und 35 mA unter Verwendung der Cu-K -Strahlung Measurements were made in a Philips Model PW 3710-based PW 1050 Bragg Brentano Parafocusing Goniometer at 40 kV and 35 mA using Cu-K radiation
(Wellenlänge = 0.15418 nm) , eines Graphit Monochromators und eines Proportional-Zählers . Die XRD-Scans wurden digital mit einer Schrittweite von 0.04° (2 theta, 2Θ) aufgenommen. Als interner Standard wurden für die Quantifizierung der Phasen SiC zugegeben. Dabei wurde ca. 5% SiC zugegeben, die Menge aber genau abgewogen. Diese Menge ist in den (Wavelength = 0.15418 nm), a graphite monochromator and a proportional counter. The XRD scans were recorded digitally with a step size of 0.04 ° (2 theta, 2Θ). When internal standard were added for the quantification of the SiC phases. About 5% SiC was added, but the amount was weighed exactly. This amount is in the
Phasenauswertungen angegeben. Die Phasenauswertung wurde nach der Rietveldmethode mit der Software Topas Phase evaluations indicated. The phase evaluation was done using the Rietveld method with the software Topas
durchgeführt. Das Ergebnis dieser Phasenauswertung ist in den XRD-Figuren angegeben. Die genaue Menge der gewünschten Ml-Phase konnte berechnet werden, indem der Anteil der Ml- Phase an der gesamten Probe (wie angegeben) auf die Probe ohne SiC bezogen wurde. carried out. The result of this phase evaluation is given in the XRD figures. The exact amount of the desired Ml phase could be calculated by referring the proportion of the Ml phase on the entire sample (as indicated) to the sample without SiC.
3. Partikelgröße Die Partikelgrößenverteilung wurde mit der Methode der 3. Particle size The particle size distribution was determined by the method of
Laserstreuung bestimmt. Hierzu wurde ein Malvern Mastersizer 2000 verwendet. Die Auswertung erfolgte nach der Fraunhofer- Methode .  Laser scattering determined. For this a Malvern Mastersizer 2000 was used. The evaluation was carried out according to the Fraunhofer method.
Die Erfindung soll nun anhand der nachstehenden und nicht als einschränkend zu verstehenden Ausführungsbeispiele näher erläutert werden. The invention will now be explained in more detail with reference to the following and not to be understood as limiting embodiments.
Ausführungsbeispiele : Exemplary embodiments:
Beispiel 1 example 1
Im Autoklaven (40 L) wurden 3,3 L dest. H2O vorgelegt und unter Rühren auf 80 °C erhitzt. Währenddessen wurde 725,58 g Ammoniumheptamolybdat-Tetrahydrat (von HC Starck) In an autoclave (40 L) 3.3 L dist. Submitted H2O and heated to 80 ° C with stirring. Meanwhile, 725.58 g of ammonium heptamolybdate tetrahydrate (from HC Starck) was added.
hineingegeben und gelöst (AHM-Lösung) . In zwei 5 L put in and dissolved (AHM solution). In two 5 L
Bechergläsern wurden jeweils 1,65 L dest. H2O unter Rühren auf einem Magnetrührer mit Temperaturregelung ebenfalls auf 80 °C erhitzt. In diese Bechergläser wurden dann jeweils 405,10 g Vanadylsulfathydrat (von GfE, V-Gehalt : 21,2%) und 185,59 g Ammoniumnioboxalat (HC Starck, Nb-Gehalt : 20,6%) zugegeben und gelöst (V-Lösung und Nb-Lösung) . Beakers were each 1.65 L dist. H2O with stirring on a magnetic stirrer with temperature control also heated to 80 ° C. Into these beakers were then each 405.10 g of vanadyl sulfate hydrate (of GfE, V content: 21.2%) and 185.59 g of ammonium niobium oxalate (HC Starck, Nb content: 20.6%) were added and dissolved (V solution and Nb solution).
Es wurden nacheinander die V-Lösung in die AHM-Lösung gepumpt, dann 65,59 g TeÜ2 Pulver als Feststoff ( TeÜ2 von 5N+ Partikelgrößenverteilung siehe Figur 1) und 1,65 L dest . H2O zugegeben, 1 h bei 80 °C weitergerührt und zum Schluss die Nb-Lösung in die AHM-Lösung mittels einer Schlauchpumpe gepumpt. Pumpzeit: V-Lösung: 4,5 min mit 190 rpm The V solution was successively pumped into the AHM solution, then 65.59 g TeÜ2 powder as a solid (TeÜ2 of 5N + particle size distribution see Figure 1) and 1.65 L dist. H2O was added, stirring continued for 1 h at 80 ° C and finally pumped the Nb solution in the AHM solution by means of a peristaltic pump. Pumping time: V solution: 4.5 min at 190 rpm
(Schlauchdurchmesser: 8x5 mm), Nb-Lösung: 6 min mit 130 rpm (Schlauchdurchmesser: 8x5 mm). (Tube diameter: 8x5 mm), Nb solution: 6 min at 130 rpm (tube diameter: 8x5 mm).
Die entstandene Suspension wurde 10 min bei 80 °C The resulting suspension was at 80 ° C for 10 min
weitergerührt. Die Geschwindigkeit des Rührers bei der further stirred. The speed of the stirrer at the
Fällung betrug 90 rpm. Anschließend wurde mit Stickstoff überlagert, indem im Precipitation was 90 rpm. Subsequently, it was overlaid with nitrogen by passing in
Autoklaven mit Stickstoff ein Druck bis ca. 6 bar aufgebaut und das Ablassventil so weit geöffnet wurde, dass der  Autoclave with nitrogen pressure up to about 6 bar and the drain valve was opened so far that the
Autoklav unter Druck von N2 durchströmt wurde (5 min) . Am Ende wurde der Druck, über das Entlüftungsventil, bis auf 1 bar Restdruck wieder abgelassen. Autoclave was pressurized by N2 (5 min). At the end, the pressure was released via the vent valve, down to 1 bar residual pressure.
Die Hydrothermalsynthese wurde im 40 L Autoklaven bei 175 °C für 20 h (Aufheizzeit: 3 h) mit einem Ankerrührer bei einer, Rührergeschwindigkeit von 90 rpm durchgeführt. The hydrothermal synthesis was carried out in a 40 L autoclave at 175 ° C. for 20 h (heating time: 3 h) with an anchor stirrer at a stirrer speed of 90 rpm.
Nach der Synthese wurde mit Hilfe einer Vakuumpumpe mit Blaubandfilter abfiltriert und der Filterkuchen mit 5 L dest. H2O gewaschen. After the synthesis was filtered off with the aid of a vacuum pump with Blauband filter and the filter cake with 5 L dist. Washed H2O.
Die Trocknung erfolgte bei 80 °C im Trockenschrank für 3 Tage und anschließend wurde in einer Schlagmühle gemahlen, wobei eine Feststoff-Ausbeute von 0,8 kg erhalten wurde. Die Kalzinierung erfolgte bei 280 °C für 4 h im Luftstrom (Heizrate 5 °C/min Luft: 1 L/min) . The drying was carried out at 80 ° C in a drying oven for 3 days and then was ground in a hammer mill, with a solids yield of 0.8 kg was obtained. The calcination was carried out at 280 ° C for 4 h in the air stream (heating rate 5 ° C / min air: 1 L / min).
Die Aktivierung erfolgte in einer Retorte bei 600 °C für 2 h im N2-Durchfluss (Heizrate 5 °C/min 2 : 0,5 L/min) . Die Partikelgrößenverteilung des eingesetzten TeÜ2 betrug: The activation took place in a retort at 600 ° C. for 2 h in the N 2 flow (heating rate 5 ° C./min 2: 0.5 L / min). The particle size distribution of the TeÜ2 used was:
Dio= 7, 625 pm D5o= 15,14 pm D90= 27, 409 pm Dio = 7, 625 pm D 5 o = 15.14 pm D90 = 27, 409 pm
Analytische Charakterisierung des Produkts: Analytical characterization of the product:
BET = 15 m2/g BET = 15 m 2 / g
XRD : Das XRD des Mischoxidmaterials aus Beispiel 1 wird in Figur 2 gezeigt und weist folgende Phasenverteilung auf: XRD: The XRD of the mixed oxide material from Example 1 is shown in FIG. 2 and has the following phase distribution:
Ml = 90,50%,  Ml = 90.50%,
M2 = 2,82% M2 = 2.82%
SiC (Standard) = 5,53% SiC (standard) = 5.53%
Vergleichsbeispiel 1: Comparative Example 1
Im Autoklaven (40 L) wurden 6, 6 L dest. H2O vorgelegt und unter Rühren auf 80 °C erhitzt. Währenddessen wurden 1451,16 g Ammoniumheptamolybdat-Tetrahydrat (HC Starck) In the autoclave (40 L) were 6, 6 L dist. Submitted H2O and heated to 80 ° C with stirring. Meanwhile, 1451.16 g of ammonium heptamolybdate tetrahydrate (HC Starck) were added.
hineingegeben und gelöst (AHM-Lösung) . In zwei 5 L put in and dissolved (AHM solution). In two 5 L
Bechergläsern wurden jeweils 3,3 L dest. H2O unter Rühren auf einem Magnetrührer mit Temperaturregelung ebenfalls auf 80 °C erhitzt. In diese Bechergläser wurden dann jeweils 810,21 g Vanadylsulfathydrat (GfE, V-Gehalt : 21,2 %) und 370,59 g Ammoniumnioboxalat (HC Starck, Nb-Gehalt : 20,6 %) zugegeben und gelöst (V-Lösung und Nb-Lösung) . Beakers were each 3.3 L dist. H2O with stirring on a magnetic stirrer with temperature control also heated to 80 ° C. 810.21 g of vanadyl sulfate hydrate (GfE, V content: 21.2%) and 370.59 g were then added to these beakers Ammonium niobium oxalate (HC Starck, Nb content: 20.6%) was added and dissolved (V solution and Nb solution).
Es wurden nacheinander die V-Lösung in die AHM-Lösung gepumpt, 131,18 g TeÜ2 Pulver (Alfa Aesar The V solution was successively pumped into the AHM solution, 131.18 g TeÜ2 powder (Alfa Aesar
Partikelgrößenverteilung Figur. 3) als Feststoff und 3,3 L dest. H2O zugegeben, 1 h bei 80 °C weitergerührt und zum Schluss die Nb-Lösung in die AHM-Lösung mittels einer Particle size distribution Figure. 3) as a solid and 3.3 L dist. H2O was added, stirring for 1 h at 80 ° C and finally the Nb solution in the AHM solution by means of a
Schlauchpumpe gepumpt. Pumpzeit: V-Lösung: 5 min mit 290 rpm (Schlauchdurchmesser: 8x5 mm), Nb-Lösung: 5 min mit 275 rpm (Schlauchdurchmesser: 8x5 mm) . Pumped peristaltic pump. Pumping time: V solution: 5 min at 290 rpm (hose diameter: 8x5 mm), Nb solution: 5 min at 275 rpm (hose diameter: 8x5 mm).
Die entstandene Suspension wurde nun 10 min bei 80 °C weitergerührt, die Geschwindigkeit des Rührers bei der The resulting suspension was then stirred for 10 min at 80 ° C, the speed of the stirrer in the
Fällung betrug 90 rpm. Precipitation was 90 rpm.
Anschließend wurde mit Stickstoff überlagert, indem im Subsequently, it was overlaid with nitrogen by adding in
Autoklaven mit Stickstoff ein Druck bis ca. 6 bar aufgebaut und das Ablassventil so weit geöffnet wurde, dass der Autoclave with nitrogen pressure up to about 6 bar and the drain valve was opened so far that the
Autoklav unter Druck mit N2 durchströmt wurde (5 min) . Am Ende wurde der Druck, über das Entlüftungsventil, bis auf 1 bar Restdruck wieder abgelassen. Die Hydrothermalsynthese erfolgte im 40 L Autoklaven bei 175 °C für 20 h (Aufheizzeit: 3 h) mit einem Ankerrührer, bei einer Rührergeschwindigkeit von 90 rpm. Autoclave was pressurized with N2 (5 min). At the end, the pressure was released via the vent valve, down to 1 bar residual pressure. The hydrothermal synthesis was carried out in a 40 L autoclave at 175 ° C for 20 h (heating time: 3 h) with an anchor stirrer, at a stirrer speed of 90 rpm.
Nach der Synthese wurde mit Hilfe einer Vakuumpumpe mit Blaubandfilter abfiltriert und der Filterkuchen mit 5 L dest. H2O gewaschen. Die Filtration dauerte mehrere Tage. After the synthesis was filtered off with the aid of a vacuum pump with Blauband filter and the filter cake with 5 L dist. Washed H2O. The filtration took several days.
Die Trocknung erfolgte bei 80 °C im Trockenschrank für 3 Tage und anschließend wurde in einer Schlagmühle gemahlen, wobei eine Feststoff-Ausbeute von 0,5 kg erhalten wurde. The drying was carried out at 80 ° C in a drying oven for 3 days and then was ground in a hammer mill, with a solids yield of 0.5 kg was obtained.
Die Ausbeute des Vergleichsbeispiels 1 ist nur etwa halb so groß wie in dem erfindungsgemäßen Beispiel. Die Kalzinierung erfolgte bei 280 °C für 4 h im Luftstrom (Heizrate 5 °C/min Luft: 1 L/min) . The yield of Comparative Example 1 is only about half as large as in the example according to the invention. The calcination was carried out at 280 ° C for 4 h in the air stream (heating rate 5 ° C / min air: 1 L / min).
Die Aktivierung erfolgte in einer Retorte bei 600 °C für 2 h im N2-Durchfluss (Heizrate 5 °C/min 2 : 0,5 L/min) . Partikelgrößenwerte zum eingesetzten TeÜ2 : The activation took place in a retort at 600 ° C. for 2 h in the N 2 flow (heating rate 5 ° C./min 2: 0.5 L / min). Particle size values for the TeÜ2 used:
D 10 = 16,45 pm D50 = 43, 46 pm D90 = 236, 48 pm  D 10 = 16.45 pm D 50 = 43, 46 pm D 90 = 236, 48 pm
Das XRD von des MoVNbTe-Mischoxids aus Vergleichsbeispiel 1 wird in Figur 4 gezeigt und weist folgende Phasenverteilung auf : The XRD of the MoVNbTe mixed oxide of Comparative Example 1 is shown in FIG. 4 and has the following phase distribution:
Ml = 51,88% Ml = 51.88%
M2 = 8,12% M2 = 8.12%
(Vo,35M04,65) Ol4 = 23,19% (Vo, 3 5 M0 4 , 65) Ol4 = 23.19%
SiC (Standard) = 3,59%  SiC (standard) = 3.59%
Beispiel 2 Example 2
Im Autoklaven (40 L) wurden 3,3 L dest. H2O vorgelegt und unter Rühren auf 80°C erhitzt. Währenddessen wurden 725,58 g Ammoniumheptamolybdat-Tetrahydrat (HC Starck) hineingegeben und gelöst (AHM-Lösung) . In zwei 5 L Bechergläsern wurden jeweils 1,65 L dest. H2O unter Rühren auf einem Magnetrührer mit Temperaturregelung ebenfalls auf 80 °C erhitzt. In diese Bechergläser wurden dann jeweils 405,10 g In an autoclave (40 L) 3.3 L dist. Submitted H2O and heated to 80 ° C with stirring. Meanwhile, 725.58 g of ammonium heptamolybdate tetrahydrate (HC Starck) was added thereto and dissolved (AHM solution). In two 5 L beakers were each 1.65 L dist. H2O with stirring on a magnetic stirrer with temperature control also heated to 80 ° C. Into these beakers were then each 405.10 g
Vanadylsulfathydrat (GfE, V-Gehalt : 21,2%) und 185,59 gVanadyl sulfate hydrate (GfE, V content: 21.2%) and 185.59 g
Ammoniumnioboxalat (HC Starck, Nb-Gehalt : 20,6%) zugegeben und gelöst (V-Lösung und Nb-Lösung) . Ammonium niobium oxalate (HC Starck, Nb content: 20.6%) was added and dissolved (V solution and Nb solution).
65,59 g TeÜ2 (Alpha Aesar aus Vergleichsbeispiel 1) wurden am Vortag 3 h in 200 g dest. H2O gemahlen (Kugelmühle PM100 von Retsch) und mit 1,45 L dest. H2O in ein Becherglas überführt (Partikelgröße nach Mahlung siehe Figur 5) . 65.59 g of TeÜ2 (Alpha Aesar from Comparative Example 1) were distilled on the day before for 3 h in 200 g. H2O ground (ball mill PM100 of Retsch) and with 1.45 L dist. H2O transferred into a beaker (particle size after grinding see Figure 5).
Es wurden nacheinander die V-Lösung in die AHM-Lösung hineingepumpt, dann die am Vortag gemahlene Te-Suspension zugegeben, 1 h bei 80 °C weitergerührt und zum Schluss die Nb-Lösung in die AHM-Lösung mittels einer Schlauchpumpe gepumpt. Pumpzeit: V-Lösung: 5 min mit 290 rpm The V solution was successively pumped into the AHM solution, then the Te suspension ground the day before was added, stirring was continued for 1 h at 80 ° C. and finally the Nb solution was pumped into the AHM solution by means of a peristaltic pump. Pumping time: V solution: 5 min at 290 rpm
(Schlauchdurchmesser: 8x5 mm), Nb-Lösung: 5 min mit 275 rpm (Tube diameter: 8x5 mm), Nb solution: 5 min at 275 rpm
(Schlauchdurchmesser: 8x5 mm). Die entstandene Suspension wurde nun 10 min bei 80 °C weitergerührt, die Geschwindigkeit des Rührers bei der (Hose diameter: 8x5 mm). The resulting suspension was then stirred for 10 min at 80 ° C, the speed of the stirrer in the
Fällung betrug 90 rpm. Precipitation was 90 rpm.
Anschließend wurde mit Stickstoff überlagert, indem im Subsequently, it was overlaid with nitrogen by adding in
Autoklaven mit Stickstoff ein Druck bis ca. 6 bar aufgebaut und das Ablassventil so weit geöffnet wurde, dass der Autoclave with nitrogen pressure up to about 6 bar and the drain valve was opened so far that the
Autoklav unter Druck mit 2 durchströmt wurde (5 min) . Am Ende wurde der Druck, über das Entlüftungsventil, bis auf 1 bar Restdruck wieder abgelassen.  Autoclave under pressure with 2 was flowed through (5 min). At the end, the pressure was released via the vent valve, down to 1 bar residual pressure.
Die Hydrothermalsynthese im 40 L Autoklaven wurde bei 175 °C für 20 h (Aufhei z zeit : 3 h) mit einem Ankerrührer, bei einer Rührergeschwindigkeit von 90 rpm durchgeführt. The hydrothermal synthesis in the 40 L autoclave was carried out at 175 ° C. for 20 h (heating time: 3 h) with an anchor stirrer at a stirrer speed of 90 rpm.
Nach der Synthese wurde mit Hilfe einer Vakuumpumpe mit Blaubandfilter abfiltriert und der Filterkuchen mit 5 L dest. H2O gewaschen. Die Trocknung erfolgte bei 80 °C im Trockenschrank für 3 Tage und anschließend wurde in einer Schlagmühle gemahlen, wobei eine Feststoff-Ausbeute von 0,8 kg erreicht wurde. After the synthesis was filtered off with the aid of a vacuum pump with Blauband filter and the filter cake with 5 L dist. Washed H2O. The drying was carried out at 80 ° C in a drying oven for 3 days and then was ground in a hammer mill, with a solids yield of 0.8 kg was achieved.
Die Kalzinierung erfolgte bei 280 °C für 4 h im Luftstrom (Heizrate 5 °C/min Luft: 1 L/min) . Die Aktivierung erfolgte in der Retorte bei 600 °C für 2 h im N2-Strom (Heizrate 5 °C/min 2 : 0,5 L/min) . The calcination was carried out at 280 ° C for 4 h in the air stream (heating rate 5 ° C / min air: 1 L / min). The activation took place in the retort at 600 ° C. for 2 h in the N 2 stream (heating rate 5 ° C./min 2: 0.5 L / min).
Die Partikelgrößenwerte des für 3 h gemahlenen TeÜ2 betrugen: D 10 = 0, 569 pm D50 = 2, 992 pm D90 = 6, 326 pm Analytische Charakterisierung des Produkts: The particle size values of the TEO2 milled for 3 h were: D 10 = 0, 569 pm D 50 = 2, 992 pm D 90 = 6, 326 pm Analytical characterization of the product:
BET = 12 m2/g BET = 12 m 2 / g
Das XRD des MoVNbTe-Mischoxids aus Beispiel 2 wird in Figur 6 gezeigt und weist folgende Phasenverteilung auf: The XRD of the MoVNbTe mixed oxide from Example 2 is shown in FIG. 6 and has the following phase distribution:
Ml = 86,30% Ml = 86.30%
M2 = 2,78%M2 = 2.78%
(Vo,35M04,65) Ol4 = 3, 75% (Vo, 3 5 M0 4 , 65) Ol4 = 3, 75%
SiC (Standard) = 5,01%  SiC (standard) = 5.01%
Beispiel 3: Example 3:
Zuerst wurden TeÜ2 (Alfa Aesar aus Vergleichsbeispiel 1) in 200 g dest. H2O aufgeschlämmt und in der Kugelmühle (wie in Beispiel 2) gemahlen. Anschließend wurde die Portion mit 500 ml dest. H2O in ein Becherglas überführt. Das b2Üs wurde in 200 g dest. H2O aufgeschlämmt und in der gleichen Kugelmühle gemahlen. Ein Vergleich der Partikelgrößenverteilungen vor und nach dem Mahlen wird in Figur 7 gezeigt. First, TeÜ2 (Alfa Aesar from Comparative Example 1) in 200 g of dist. H2O slurried and ground in the ball mill (as in Example 2). Subsequently, the portion with 500 ml of dist. Transferred H2O into a beaker. The b2Üs was distilled in 200 g. H2O slurried and ground in the same ball mill. A comparison of particle size distributions before and after milling is shown in FIG.
Anschließend wurde die Portion mit 500 ml dest. H2O in ein Becherglas überführt. Am nächsten Morgen wurde auf 80°C aufgeheizt, 107,8 g Oxalsäure-Dihydrat in die b2Ü5-Subsequently, the portion with 500 ml of dist. Transferred H2O into a beaker. The next morning was heated to 80 ° C, 107.8 g of oxalic acid dihydrate in the b2Ü5-
Suspension gegeben und für ca. 1 h gerührt. Im Autoklaven (40 L) wurden 6 L dest. H2O vorgelegt und unter Rühren auf 80 °C erhitzt. Nachdem das Wasser die Temperatur erreicht hatte, wurden nacheinander 61,58 g Zitronensäure, 19,9 g Ethylenglykol, 615,5 g Mo03 (Sigma Aldrich) , 124,5 g V205, das gemahlene TeÜ2 und das gemahlene Nb2Üs in Oxalsäure Added suspension and stirred for about 1 h. In an autoclave (40 L) 6 L dist. Submitted H2O and heated to 80 ° C with stirring. After the water had reached the temperature, were successively 61.58 g of citric acid, 19.9 g of ethylene glycol, 615.5 g Mo0 3 (Sigma Aldrich), 124.5 g V 2 0 5 , the ground TeÜ2 and the ground Nb2Üs in oxalic acid
zugegeben. 850 ml dest. H2O wurden zum Überführen und Spülen der Gefäße verwendet. Die komplette Wassermenge im Autoklav betrug 8,25 L, die Geschwindigkeit des Rührers betrug 90 rpm. Anschließend wurde mit Stickstoff überlagert. Es wurde eine Hydrothermalsynthese im 40 L Autoklaven bei 190 °C für 48 h durchgeführt. Nach der Synthese wurde mit Hilfe einer Vakuumpumpe mit Blaubandfilter abfiltriert und der added. 850 ml dist. H2O was used to transfer and rinse the vessels. The total amount of water in the autoclave was 8.25 L, the speed of the stirrer was 90 rpm. Subsequently, it was overlaid with nitrogen. A hydrothermal synthesis was carried out in a 40 L autoclave at 190 ° C for 48 h. After the synthesis was filtered by means of a vacuum pump with blue band filter and the
Filterkuchen mit 5 L dest. H2O gewaschen. Filter cake with 5 L dist. Washed H2O.
Die Trocknung erfolgte bei 80 °C im Trockenschrank für 3 Tage und anschließend wurde in einer Schlagmühle gemahlen, wobei eine Feststoff-Ausbeute von 0,8 kg erreicht wurde. Die Kalzinierung erfolgte bei 280 °C für 4 h im Luftstrom (Heizrate 5 °C/min Luft: 1 L/min) . The drying was carried out at 80 ° C in a drying oven for 3 days and then was ground in a hammer mill, with a solids yield of 0.8 kg was achieved. The calcination was carried out at 280 ° C for 4 h in the air stream (heating rate 5 ° C / min air: 1 L / min).
Die Aktivierung erfolgte in der Retorte bei 600 °C für 2 h im N2-Strom (Heizrate 5 °C/min 2 : 0,5 L/min) . The activation took place in the retort at 600 ° C. for 2 h in the N 2 stream (heating rate 5 ° C./min 2: 0.5 L / min).
Das XRD des MoVNbTe-Mischoxids aus Beispiel 3 wird in Figur 8 gezeigt und weist folgende Phasenverteilung auf: The XRD of the MoVNbTe mixed oxide from Example 3 is shown in FIG. 8 and has the following phase distribution:
Ml = 85,79% Ml = 85.79%
M2 = 1, 95% M2 = 1, 95%
MoO, 9V1, 1)05 = 1,43% MoO, 9V1, 1) 05 = 1.43%
Mo03 = 3,31% Mo03 = 3.31%
Nb205 = 2,86% Nb205 = 2.86%
SiC (Standard) = 4,66%  SiC (standard) = 4.66%
Vergleichsbeispiel 2: Zuerst wurden TeÜ2 (Alfa Aesar aus Vergleichsbeispiel 1) in 200 g dest. H2O aufgeschlämmt und in der Kugelmühle (wie in Beispiel 2) gemahlen und dann mit Wasser in ein Becherglas überführt, so dass das Volumen im Becherglas 1650 ml Wasser betrug. Comparative Example 2: First, TeÜ2 (Alfa Aesar from Comparative Example 1) in 200 g of dist. H2O slurried and ground in the ball mill (as in Example 2) and then transferred with water into a beaker so that the volume in the beaker was 1650 ml of water.
Im Autoklaven (40 L) wurden 6, 6 L dest. H2O vorgelegt und unter Rühren auf 80 °C erhitzt. Sobald das Wasser die In the autoclave (40 L) were 6, 6 L dist. Submitted H 2 O and heated to 80 ° C with stirring. Once the water the
Temperatur erreicht hatte wurden nacheinander 61,58 g Temperature had been successively 61.58 g
Zitronensäure, 194 g Oxalsäure-Dihydrat , 19,9 g Citric acid, 194 g of oxalic acid dihydrate, 19.9 g
Ethylenglykol, 615,5 g M0O3 (Sigma Aldrich) , 124,5 g V205, das gemahlene TeÜ2 und 56,8 g b2Üs (ungemahlen mit der Ethylene glycol, 615.5 g M0O3 (Sigma Aldrich), 124.5 g V 2 0 5 , the ground TE02 and 56.8 g b2Üs (unground with the
Partikelgrößenverteilung aus Figur 7, die auch Partikel über 100 pm aufweist) zugegeben. Anschließend wurde mit Particle size distribution of Figure 7, which also has particles over 100 pm) added. Subsequently, with
Stickstoff überlagert. Es wurde eine Hydrothermalsynthese im 40 L Autoklaven bei 190 °C / 48 h durchgeführt. Nach der Synthese wurde mit Hilfe einer Vakuumpumpe mit Nitrogen superimposed. A hydrothermal synthesis was carried out in a 40 L autoclave at 190 ° C / 48 h. After the synthesis was with the help of a vacuum pump with
Blaubandfilter abfiltriert und der Filterkuchen mit 5 L dest. H2O gewaschen. Blue filter filtered off and the filter cake with 5 L dist. H 2 O washed.
Die Trocknung erfolgte bei 80 °C im Trockenschrank für 3 Tage und anschließend wurde in einer Schlagmühle gemahlen, wobei eine Feststoff-Ausbeute von 0,8 kg erreicht wurde. The drying was carried out at 80 ° C in a drying oven for 3 days and then was ground in a hammer mill, with a solids yield of 0.8 kg was achieved.
Die Kalzinierung erfolgte bei 280 °C für 4 h im Luftstrom (Heizrate 5 °C/min Luft: 1 L/min) . Die Aktivierung erfolgte in der Retorte bei 600 °C für 2 h im N2-Strom (Heizrate 5 °C / min 2 : 0,5 L / min) . The calcination was carried out at 280 ° C for 4 h in the air stream (heating rate 5 ° C / min air: 1 L / min). The activation took place in the retort at 600 ° C. for 2 h in the N 2 stream (heating rate 5 ° C./min 2: 0.5 L / min).
Das XRD des MoVNbTe-Mischoxids aus Vergleichsbeispiel 3 wird in Figur 9 gezeigt und weist folgende Phasenverteilung auf: The XRD of the MoVNbTe mixed oxide from Comparative Example 3 is shown in FIG. 9 and has the following phase distribution:
Ml = 17,34% Ml = 17.34%
M2 = 1,75% M2 = 1.75%
(Vo,35Mo4,65) O14 = 34, 35%(Vo, 3 5 Mo 4 , 65) O14 = 34, 35%
TeMoeOie = 17, 39% TeMoeOie = 17, 39%
SiC (Standard) = 4,6%  SiC (standard) = 4.6%
Es ist klar zu erkennen, dass mit ungemahlenem Nioboxid, nicht vorher mit Oxalsäure reagieren konnte, nur 17% Ml- Phase erreicht wurden. It can be clearly seen that with unground niobium oxide, not previously able to react with oxalic acid, only 17% Ml phase was reached.

Claims

Patentansprüche : Claims:
Verfahren zur Herstellung eines Mischoxidmaterials, enthaltend die Elemente Molybdän, Vanadium, Niob und Tellur, umfassend die folgenden Schritte: A process for producing a mixed oxide material containing the elements molybdenum, vanadium, niobium and tellurium, comprising the following steps:
a) Herstellen eines Gemisches aus  a) preparing a mixture of
Ausgangsverbindungen, das Molybdän, Vanadium, Niob und eine Tellur enthaltende Ausgangsverbindung, in der Tellur in der Oxidat ionsstufe +4 vorliegt, enthält ,  Starting compounds containing molybdenum, vanadium, niobium and a tellurium-containing starting compound in which tellurium is present in the +4 oxidation state.
b) hydrothermale Behandlung des Gemisches aus  b) hydrothermal treatment of the mixture
Ausgangsverbindungen bei einer Temperatur von 100 °C bis 300 °C, um eine Produkt Suspension zu erhalten,  Starting compounds at a temperature of 100 ° C to 300 ° C to obtain a product suspension,
c) Abtrennen und Trocknen des Feststoffes der aus  c) separating and drying the solid from
Schritt b) resultierenden Produkt Suspension, d) Aktivieren des Feststoffes in inertem Gas, um das Mischoxidmaterial zu erhalten,  D) activating the solid in inert gas to obtain the mixed oxide material,
dadurch gekennzeichnet, dass die Tellur enthaltende Ausgangsverbindung eine Partikelgröße D90 kleiner 100 pm aufweist.  characterized in that the tellurium-containing starting compound has a particle size D90 smaller than 100 pm.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Gemisch aus Ausgangsverbindungen als wässrige 2. The method according to claim 1, characterized in that the mixture of starting compounds as aqueous
Suspension vorliegt.  Suspension is present.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Tellur enthaltende Ausgangsverbindung 3. The method according to claim 1 or 2, characterized in that the tellurium-containing starting compound
Tellurdioxid oder eine Verbindung der Formel Mx n+TeC>3 mit n = 1 oder 2 und x = 2/n ist, wobei M ein Alkali- oder Erdalkalimetall ist. Tellurdioxid or a compound of formula M x n + TeC> 3 with n = 1 or 2 and x = 2 / n, where M is an alkali or alkaline earth metal.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine der Ausgangsverbindungen Ammoniumheptamolybdat oder Molybdäntrioxid ist. 4. The method according to any one of the preceding claims, characterized in that one of the starting compounds Ammonium heptamolybdate or molybdenum trioxide.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine der Ausgangs erbindungen Method according to one of the preceding claims, characterized in that one of the starting compounds
Ammoniummet avanadat , Vanadylsulfat oder Vanadiumpentoxid ist .  Ammoniummet avanadat, vanadyl sulfate or vanadium pentoxide is.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine der Ausgangsverbindungen 6. The method according to any one of the preceding claims, characterized in that one of the starting compounds
Ammoniumnioboxalat , Nioboxalat oder Nioboxid ist.  Ammonium niobium oxalate, niobium oxalate or niobium oxide is.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Partikelgröße D50 des 7. The method according to any one of the preceding claims, characterized in that the particle size D50 of
Tellurdioxids kleiner als 35 pm ist.  Tellurdioxids is less than 35 pm.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Partikelgröße D50 einer Niob enthaltenden Ausgangsverbindung kleiner als 100 pm ist. 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Partikelgröße D50 der verwendeten Ausgangsverbindungen kleiner als 50 pm ist. 8. The method according to any one of the preceding claims, characterized in that the particle size D50 of a niobium-containing starting compound is less than 100 pm. 9. The method according to any one of the preceding claims, characterized in that the particle size D50 of the starting compounds used is less than 50 pm.
EP18725401.6A 2017-01-31 2018-01-26 Method for producing mixed oxide materials containing molybdenum Pending EP3576872A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017000848.5A DE102017000848A1 (en) 2017-01-31 2017-01-31 Process for the preparation of molybdenum-containing mixed oxide materials
PCT/EP2018/052010 WO2018141651A2 (en) 2017-01-31 2018-01-26 Method for producing mixed oxide materials containing molybdenum

Publications (1)

Publication Number Publication Date
EP3576872A2 true EP3576872A2 (en) 2019-12-11

Family

ID=62196504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18725401.6A Pending EP3576872A2 (en) 2017-01-31 2018-01-26 Method for producing mixed oxide materials containing molybdenum

Country Status (7)

Country Link
US (1) US11007509B2 (en)
EP (1) EP3576872A2 (en)
JP (1) JP7229927B2 (en)
KR (1) KR102283634B1 (en)
CN (1) CN110234430B (en)
DE (1) DE102017000848A1 (en)
WO (1) WO2018141651A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017000862A1 (en) * 2017-01-31 2018-08-02 Clariant Produkte (Deutschland) Gmbh Synthesis of a MoVNbTe catalyst with reduced content of niobium and tellurium and higher activity for the oxidative dehydrogenation of ethane
DE102017000848A1 (en) * 2017-01-31 2018-08-02 Clariant Produkte (Deutschland) Gmbh Process for the preparation of molybdenum-containing mixed oxide materials
DE102017000861A1 (en) * 2017-01-31 2018-08-02 Clariant Produkte (Deutschland) Gmbh Synthesis of a MoVTeNb catalyst from inexpensive metal oxides
CN111268726A (en) * 2020-01-29 2020-06-12 桂林理工大学 Preparation method and application of tungsten bronze structure material
EP4297896A1 (en) * 2021-02-26 2024-01-03 Nova Chemicals (International) S.A. Large scale synthesis of oxidative dehydrogenation catalyst
DE102021202492A1 (en) 2021-03-15 2022-09-15 Clariant International Ltd. METHOD AND EQUIPMENT FOR ESTABLISHING A TARGET CONNECTION
DE102021202495A1 (en) 2021-03-15 2022-09-15 Clariant International Ltd. METHOD AND EQUIPMENT FOR ESTABLISHING A TARGET CONNECTION
DE102021005596A1 (en) 2021-11-11 2023-05-11 Alexander Damps Process for the oxidative aromatization of short-chain alkanes
US11890594B2 (en) 2021-12-30 2024-02-06 Uop Llc Chemical homogeneity and catalytic performance of mixed-metal oxide catalysts

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637526A (en) 1970-04-02 1972-01-25 Celanese Corp Preparation of oxidation catalyst
JPS58140308A (en) 1982-02-13 1983-08-20 Nitto Chem Ind Co Ltd Preparation of homogeneous and stable solution containing tellurium
EP0303570A3 (en) * 1987-08-12 1990-11-07 Ciba-Geigy Ag Substituted isothioureas
JP2608768B2 (en) 1987-11-25 1997-05-14 三菱化学株式会社 Nitrile manufacturing method
SG42912A1 (en) 1991-08-08 1997-10-17 Mitsubishi Chem Ind Catalyst and process for producing nitriles
EP0603836B1 (en) * 1992-12-24 1998-05-20 Mitsubishi Chemical Corporation Process for preparing a catalyst useful for producing a nitrile
EP0608838B1 (en) 1993-01-28 1997-04-16 Mitsubishi Chemical Corporation Method for producing an unsaturated carboxylic acid
JP2727287B2 (en) 1993-05-19 1998-03-11 鹿島建設株式会社 Manufacturing method of building materials for humidity control
JP3484729B2 (en) 1993-06-11 2004-01-06 三菱化学株式会社 Method for producing ethylene
JP3500682B2 (en) 1994-02-23 2004-02-23 三菱化学株式会社 Catalyst for the production of nitriles from alkanes
GB9423646D0 (en) * 1994-11-23 1995-01-11 Bp Chem Int Ltd Olefin hydration process
JP3576251B2 (en) 1995-02-17 2004-10-13 井上玩具煙火株式会社 Fireworks
JP2000143244A (en) 1998-07-24 2000-05-23 Mitsubishi Chemicals Corp Production of multiple metal oxide
JP2001058827A (en) 1999-06-17 2001-03-06 Mitsubishi Chemicals Corp Production of compound oxide
DE60030302T2 (en) * 1999-10-18 2007-08-30 Mitsubishi Rayon Co., Ltd. A METHOD FOR THE PRODUCTION OF ACRYLNITRILE, A CATALYST FOR THIS AND A METHOD FOR THE PRODUCTION THEREOF
BR0111702B1 (en) * 2000-06-14 2012-01-10 process for the preparation of acrolein and / or acrylic acid from propane and / or propene.
DE10119933A1 (en) 2001-04-23 2002-10-24 Basf Ag Production of acrolein or acrylic acid involves absorption of propane and propene from a gas mixture followed by desorption and oxidation, with no catalytic dehydrogenation of propane and no added oxygen
WO2001096016A1 (en) * 2000-06-15 2001-12-20 Asahi Kasei Kabushiki Kaisha Catalyst for vapor-phase catalytic oxidation or vapor-phase catalytic ammoxidation of propane or isobutane
US6867328B2 (en) 2000-07-18 2005-03-15 Basf Aktiengesellschaft Method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane
EP1598112A3 (en) 2001-06-14 2005-11-30 Rohm and Haas Company Process for preparing a mixed metal oxide catalyst by vapor deposition
EP1407819A3 (en) * 2002-10-01 2004-06-23 Rohm And Haas Company Hydrothermally synthesized Mo-V-M-Nb-X oxide catalysts for the selective oxidation of hydrocarbons
US7038082B2 (en) 2002-10-17 2006-05-02 Basf Aktiengesellschaft Preparation of a multimetal oxide material
CN100345630C (en) * 2003-03-05 2007-10-31 旭化成化学株式会社 Particulate porous ammoxidation catalyst
JP4155087B2 (en) * 2003-04-16 2008-09-24 東亞合成株式会社 Method for producing metal oxide catalyst
US7009075B2 (en) 2004-06-30 2006-03-07 Saudi Basic Industries Corporation Process for the selective conversion of alkanes to unsaturated carboxylic acids
US20060183626A1 (en) * 2005-02-11 2006-08-17 Cavalcanti Fernando Antonio Pe Process for preparing catalysts and catalysts produced therefrom
US7754910B2 (en) * 2007-02-16 2010-07-13 Ineos Usa Llc Mixed metal oxide catalysts for the ammoxidation of propane and isobutane
US8507626B2 (en) * 2007-06-13 2013-08-13 Nippon Shokubai Co., Ltd. Catalyst for producing of acrylic acid, method for producing acrylic acid using the catalyst and method for producing water-absorbent resin using the acrylic acid
WO2009106474A2 (en) 2008-02-25 2009-09-03 Olaf Timpe Phase-enriched movtenb mixed oxide catalyst and methods for the preparation thereof
US8105971B2 (en) * 2009-04-02 2012-01-31 Lummus Technology Inc. Process for making catalysts useful for the conversion of paraffins to olefins
US8519210B2 (en) * 2009-04-02 2013-08-27 Lummus Technology Inc. Process for producing ethylene via oxidative dehydrogenation (ODH) of ethane
US8105972B2 (en) * 2009-04-02 2012-01-31 Lummus Technology Inc. Catalysts for the conversion of paraffins to olefins and use thereof
CN101703941A (en) * 2009-11-13 2010-05-12 南京大学 Mo-V-Te-Nb-O composite metallic oxide catalyst as well as preparation method and application thereof
DE102011109774B4 (en) 2011-08-09 2017-04-20 Clariant Produkte (Deutschland) Gmbh Catalyst material for the oxidation of hydrocarbons
DE102011109816B4 (en) * 2011-08-09 2017-04-06 Clariant Produkte (Deutschland) Gmbh Catalyst material for the oxidation of hydrocarbons
EA201491975A1 (en) * 2012-05-04 2015-02-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. CATALYST OF OXIDATIVE DEHYDROGENIZATION OF ALKANES AND / OR OXIDATION OF ALKENES
AR095758A1 (en) * 2013-03-28 2015-11-11 Shell Int Research A CATALYST FOR OXIDATIVE DEHYDROGENATION OF ALCANOS AND / OR OXIDATION OF ALKENS
CN104941668B (en) * 2015-06-19 2017-08-11 清华大学 Nano-complex catalyst reacted for oxidative dehydrogenation of ethane and preparation method thereof
JP6321609B2 (en) 2015-11-18 2018-05-09 株式会社三共 Game machine
DE102017000865A1 (en) * 2017-01-31 2018-08-02 Clariant Produkte (Deutschland) Gmbh Synthesis of a MoVNbTe catalyst with increased specific surface area and higher activity for the oxidative dehydrogenation of ethane to ethylene
DE102017000862A1 (en) * 2017-01-31 2018-08-02 Clariant Produkte (Deutschland) Gmbh Synthesis of a MoVNbTe catalyst with reduced content of niobium and tellurium and higher activity for the oxidative dehydrogenation of ethane
DE102017000861A1 (en) * 2017-01-31 2018-08-02 Clariant Produkte (Deutschland) Gmbh Synthesis of a MoVTeNb catalyst from inexpensive metal oxides
DE102017000848A1 (en) * 2017-01-31 2018-08-02 Clariant Produkte (Deutschland) Gmbh Process for the preparation of molybdenum-containing mixed oxide materials
DE102017121709A1 (en) * 2017-09-19 2019-03-21 Clariant International Ltd Synthesis of a MoVNbTe coated catalyst for the oxidative dehydrogenation of ethane to ethylene
CA2993683A1 (en) * 2018-02-02 2019-08-02 Nova Chemicals Corporation Method for in situ high activity odh catalyst

Also Published As

Publication number Publication date
WO2018141651A3 (en) 2018-12-13
JP2020514227A (en) 2020-05-21
US20190366311A1 (en) 2019-12-05
WO2018141651A9 (en) 2018-10-25
KR20190115031A (en) 2019-10-10
WO2018141651A2 (en) 2018-08-09
CN110234430B (en) 2022-10-18
DE102017000848A1 (en) 2018-08-02
JP7229927B2 (en) 2023-02-28
US11007509B2 (en) 2021-05-18
KR102283634B1 (en) 2021-08-02
CN110234430A (en) 2019-09-13

Similar Documents

Publication Publication Date Title
EP3576872A2 (en) Method for producing mixed oxide materials containing molybdenum
EP3576875A1 (en) Synthesis of a movtenb catalyst from low-cost metal oxides
WO2018141652A1 (en) Synthesis of a movnbte catalyst having a reduced niobium and tellurium content and higher activity for the oxidative dehydrogenation of ethane
EP3576874A1 (en) Synthesis of a movnbte catalyst having a increased specific surface and higher activity for the oxidative dehydrogenation of ethane to ethylene
DE69636206T2 (en) Process for the preparation of a catalyst
EP2260004B1 (en) Method for producing a nanocrystalline bismuth-molybdenum mixed oxide
EP1387823B1 (en) Method for the production of acrylic acid by heterogeneously catalyzed partial propane oxidation
DE112018000738T5 (en) New synthesis processes for the preparation of catalysts for propylene ammoxidation
EP1755779A1 (en) Method for the production of multi-metal oxide masses
EP3684505A1 (en) Synthesis of a movnbte shell catalyst for oxidative dehydrogenation of ethane to ethylene
DE112018000736T5 (en) Process for the preparation of catalysts for propylene-ammoxidation
WO2013021034A1 (en) Catalyst material for oxidizing hydrocarbons, consisting of molybdenum, vanadium, niobium, tellurium, manganese, and cobalt
WO2013021020A1 (en) Catalyst material for oxidizing hydrocarbons, consisting of molybdenum, vanadium, niobium, tellurium, nickel, tungsten, and manganese
EP1546080A1 (en) Method for carrying out heterogeneously catalysed gas phase partial oxidation of acrolein to form acrylic acid
DE10248584A1 (en) Heterogeneously catalyzed gas-phase partial oxidation of acrolein to acrylic acid, used to produce polymers for adhesives, involves using active multimetal oxide material containing e.g. molybdenum and vanadium
DE10261186A1 (en) Heterogeneously catalyzed gas-phase partial oxidation of acrolein to acrylic acid, used to produce polymers for adhesives, involves using active multimetal oxide material containing e.g. molybdenum and vanadium
DE10321398A1 (en) Multi-metal oxides, useful as catalysts for gas phase oxidation or ammoxidation, contain molybdenum and vanadium along with other elements and have an i-phase structure
DE102008017309A1 (en) Process for the preparation of molybdenum-containing mixed oxide catalysts
DE102021108191A1 (en) MOLYBDENUM-BISMUT-IRON-NICKEL-MIXED OXIDE MATERIAL AND METHOD OF PRODUCTION
DE10344265A1 (en) (Meth)acrylic acid production in high yield, for use as monomer, by gas-phase oxidation of saturated hydrocarbon precursor(s) over two beds of mixed metal oxide catalysts with specific selectivity properties

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190902

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201209