EP3575925B1 - Network device modifications via augmented reality user interfaces - Google Patents
Network device modifications via augmented reality user interfaces Download PDFInfo
- Publication number
- EP3575925B1 EP3575925B1 EP18183801.2A EP18183801A EP3575925B1 EP 3575925 B1 EP3575925 B1 EP 3575925B1 EP 18183801 A EP18183801 A EP 18183801A EP 3575925 B1 EP3575925 B1 EP 3575925B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- network device
- modification
- image
- nms
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004048 modification Effects 0.000 title claims description 38
- 238000012986 modification Methods 0.000 title claims description 38
- 230000003190 augmentative effect Effects 0.000 title claims description 11
- 238000000034 method Methods 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 5
- 238000007726 management method Methods 0.000 description 4
- 238000010801 machine learning Methods 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012015 optical character recognition Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000013024 troubleshooting Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/02—Standardisation; Integration
- H04L41/0246—Exchanging or transporting network management information using the Internet; Embedding network management web servers in network elements; Web-services-based protocols
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/20—Scenes; Scene-specific elements in augmented reality scenes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0654—Management of faults, events, alarms or notifications using network fault recovery
- H04L41/0659—Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities
- H04L41/0661—Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities by reconfiguring faulty entities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0686—Additional information in the notification, e.g. enhancement of specific meta-data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0876—Aspects of the degree of configuration automation
- H04L41/0883—Semiautomatic configuration, e.g. proposals from system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/22—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks comprising specially adapted graphical user interfaces [GUI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
- H04L41/5061—Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the interaction between service providers and their network customers, e.g. customer relationship management
- H04L41/5074—Handling of user complaints or trouble tickets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/131—Protocols for games, networked simulations or virtual reality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/60—Editing figures and text; Combining figures or text
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/24—Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
- H04L12/4641—Virtual LANs, VLANs, e.g. virtual private networks [VPN]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0654—Management of faults, events, alarms or notifications using network fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/24—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using dedicated network management hardware
Definitions
- Networks of enterprises or large corporations can span several different buildings, campuses, and/or geographic locations. These large networks can deploy hundreds to thousands of different network devices that are all interconnected to maintain a network of the enterprise.
- the network devices may have several different physical connections with Ethernet cables to various different ports.
- Examples described herein provide an augmented reality (AR) user interface (Ul) to modify network devices and an apparatus for providing the same.
- the AR UI may provide an efficient interface for troubleshooting malfunctioning network devices that are managed by a network management system (NMS).
- NMS network management system
- a technician may be overwhelmed when walking into a server room to try and connect a malfunctioning network device.
- the server room may include racks and racks of servers with hundreds of different physical connections between different ports of different servers. Some of the physical connections may run to servers that are at different physical locations.
- the AR UI may also provide images to the NMS.
- the images may provide information that can be logged by the NMS related to why a network device is malfunctioning. For example, the image of the server rack may show a cable has been disconnected from a particular port on a server.
- the NMS may determine the cause of the malfunction based on the received image. Further, the NMS may not know what the cause of the malfunction is without the image.
- the AR UI may provide images to the NMS to improve troubleshooting.
- the AR UI may provide an overlay view.
- the technician may receive a notification from an NMS that a particular virtual local area network (VLAN) is malfunctioning (e.g., misconfigured).
- VLAN virtual local area network
- the AR UI may be used to identify each port and cable within a server room that is configured to the particular VLAN that is misconfigured. Thus, the technician may quickly check the appropriate ports and connections associated with the particular VLAN that is misconfigured.
- FIG. 1 illustrates an example system 100 of the present disclosure.
- the system 100 may include an Internet protocol (IP) network 102.
- IP Internet protocol
- the IP network 102 has been simplified for ease of explanation.
- the IP network 102 may include additional devices that are not shown.
- the IP network 102 may include switches, firewalls, access points, access networks, and the like.
- the IP network 102 may include a NMS server 104 and an NMS database (DB) 106 that are communicatively coupled to each other.
- the NMS server 104 may be in communication with an endpoint 108 and network devices 114 1 - 114 m (hereinafter also referred to individually as a network device 114 or collectively as network devices 114) at a location 110 and network devices 116 1 - 116 n (hereinafter also referred to individually as a network device 116 or collectively as network devices 116) at a location 112.
- the locations 110 and 112 may be different locations within a building, different buildings, different geographic locations, and the like. In one example, locations 110 and 112 may correspond to different branches of an enterprise network.
- location 110 may correspond to a central campus, whereas location 112 may correspond to a branch location. Although two different locations 110 and 112 are illustrated in FIG. 1 , it should be noted that any number of locations may be in communication with the NMS server 104.
- the network devices 114 and 116 may be any type of network device.
- the network devices may be access points, routers, switches, servers, sensors, beacons, and the like.
- the network devices 114 and 116 may be network switches or blade servers having a plurality of ports.
- the network devices 114 and 116 may be connected to other network devices 114 and 116 via connections of the ports.
- the network devices 114 and 116 may be managed and monitored by the NMS server 104.
- the NMS server 104 may manage the network devices 114 and 116 by remotely making configuration changes and may monitor the network devices 114 and 116 by detecting when a network device is malfunctioning, misconfigured, or underperforming.
- the NMS server 104 may include a processor and memory storing instructions executed by the processor to execute the functions described herein.
- the NMS server 104 may include an AR UI generator.
- the NMS server 104 may add graphical representations of network device information on an actual image captured and displayed by the endpoint device 108, as discussed in further details below.
- information associated with each one of the network devices 114 and 116 may be stored in the NMS DB 106.
- the information may include an identification of the network device (e.g., a media access control (MAC) identification (ID) number, a name, an identification number, and the like), a location, port information (e.g., connected port numbers, active port numbers, port connection information, identification information of which ports on other network devices that the ports are connected to, and the like), configuration parameters associated with the network device, activity logs, and the like.
- MAC media access control
- the endpoint 108 may be any type of portable endpoint with a display.
- the endpoint 108 may be a smartphone, a tablet computer, a virtual reality (VR) system, and the like.
- VR virtual reality
- FIG. 2 illustrates a block diagram of an example endpoint 108.
- the endpoint 108 may include a processor 202, a camera 204, a display 206, and a communication interface 208.
- the processor 202 may be communicatively coupled to the camera 204, the display 206, and the communication interface 208.
- the camera 204 may be used to capture an image 210.
- the image 210 may be a video image of the network devices 114 or 116.
- the image 210 may be shown on the display 206 as part of the augmented reality (AR) user interface (Ul) 212 that is generated and displayed.
- AR augmented reality
- additional graphical images, or a graphical overlay, transmitted by the NMS server 104 may be displayed over the image 210 captured by the camera 204. Examples of the AR UI 212 are illustrated in FIG. 3 , and discussed below.
- the AR UI 212 of the endpoint 108 may be used to troubleshoot network devices 114 and/or 116.
- the AR UI 212 of the endpoint 108 may be used to make a modification to the network devices 114 and/or 116.
- the modification may be a change to a value of a configuration parameter (e.g., port settings, security settings, control parameters, and the like), a control signal to initiate an operation (e.g., a power cycle, a test procedure, and the like), a reset operation, and the like.
- the communication interface 208 may establish a wired or wireless communication session with the NMS server 104 via the IP network 102.
- the endpoint 108 may transmit the image 210 to the NMS server 104 to identify the network device 114 or 116 in the image 210 via the communication interface 208.
- the NMS server 104 may transmit the graphical overlays for the AR UI 212 via the communication interface 208.
- FIG. 3 illustrates example screenshots 302, 304, and 306 of the AR UI 212.
- the AR UI 212 may be used to diagnose and troubleshoot malfunctioning network devices 114 and 116.
- the image 310 may be a real image of an actual network device (e.g., the network device 114 1 at location 110).
- the images 312, 314, 316, and 318 may be graphical overlays that are generated and transmitted to the endpoint 108 from the NMS server 104.
- the images 312 and 314 may be connection graphics.
- the images 316 and 318 may be graphical representations of other network devices 114 and/or 116 that are connected to ports of the actual network device of the image 310.
- a user may get a notification that the network device of the image 310 is malfunctioning.
- the network device may be a switch or server with ports and the malfunction may be a misconfiguration of a VLAN for certain ports and/or connections.
- malfunctioning network devices or particular connections can be shown in the AR UI via a color coding. For example, malfunctioning connections may be shown in red and properly operating connections can be shown in green.
- the user may take the endpoint 108 to a location where the network device of the image 310 is located.
- the user may capture an image of the network device and transmit the image to the NMS server 104.
- the NMS server 104 may identify the network device in the image based on optical character recognition analysis of the image containing the identification information of the network device.
- a bar code 330 may be scanned and transmitted to the NMS server 104.
- the bar code 330 may contain identification information of the network device in the image 310.
- the bar code 330 may be a quick response code, a standard bar code, and the like.
- the NMS server 104 may access the NMS DB 106 to determine which ports are active and the connection information associated with each active port. Based on the connection information, the NMS server 104 may generate the graphical overlay based on the connection information and transmit the graphical overlay to the endpoint 108 for the AR UI 212.
- the NMS server 104 may include a graphical processor unit (GPU) that can execute machine learning artificial intelligence (Al) to identify the connections.
- the image of network devices may be sent to the NMS server 104.
- the GPU of the NMS server 104 may compare the image to previously stored images of the network device and the associated connections.
- the NMS server 104 may determine if any new connections or activated ports on the network device are detected based on the comparison. If new connections are detected, the NMS server 104 may communicate with the network device over the IP network 102 to obtain the current connection information and configuration information associated with the new connections.
- the NMS server 104 may still be able to identify the connections in real-time using the GPU machine learning AI to analyze the received images and generate the current graphical overlay for the image of the network device 310 that is received.
- the images 312, 314, 316, and 318 may be graphical representations of the connections to other network devices identified by the NMS server 104.
- the network devices of the images 316 and 318 may be in the same cabinet, a different cabinet in the same location, in a different building at the same location, at a different geographic location, and the like.
- each active port may display graphical representations of each connection to each of the other network devices.
- each connection of an active port may be shown in the AR UI 212 until an endpoint is reached in the series of connections.
- a drop down menu 320 may also be displayed in the AR UI 212 as illustrated in the screenshot 302.
- the drop down menu 320 may allow the user to select a particular group of network devices or a subset of ports based on a particular grouping. For example, the user may know that a particular virtual local area network (VLAN) is misconfigured or producing excessive errors.
- the drop down menu 320 may allow the user to select the particular VLAN.
- VLAN virtual local area network
- the screenshot 304 illustrates when a particular VLAN is selected in the drop down menu 320.
- VLAN_10 may be selected.
- the AR UI 212 may then show those active ports associated with the VLAN_10 (e.g., the graphical images 312 and 318).
- the other connections e.g., the graphical images 314 and 316
- the other connections e.g., the graphical images 314 and 316
- the other connections e.g., the graphical images 314 and 316
- the other connections e.g., the graphical images 314 and 316
- the other connections e.g., the graphical images 314 and 316
- that are not associated with the selected VLAN may be greyed out or have a different color.
- the screenshot 304 may automatically display connection information 322.
- the AR UI 212 may obtain the connection information 322 from the NMS server 104 that is retrieved from the NMS DB 106.
- the connection information 322 and the graphical overlay images 312 and 318 of the connection and network devices, respectively the user may diagnose and troubleshoot the misconfigured network device in the image 310.
- the user may have believed that the connection 314 should also have been associated with the VLAN_10. Thus, the user may determine that the connection 314 has been misconfigured. The user may use the AR UI 212 to modify the network device in the image 310 to correctly configure the connection 314 to be part of the VLAN_10.
- the user may call up a drop down menu 324.
- the drop down menu 324 may provide options for modifying the network device.
- the options 326 may include an simple network management protocol (SNMP) poll option, a disable interface option, a configure VLAN option, and the like.
- SNMP simple network management protocol
- the user may be provided with an interface that allows the user to prove specific values for various configuration parameters.
- the modifications to the network devices may be transmitted to the NMS server 104.
- the modifications transmitted to the NMS server 104 may cause the NMS server 104 to implement the modifications to the network devices. For example, if the image 310 was of the network device 114 1 , the NMS server 104 may modify the network device 114 1 in accordance with the modifications received from the endpoint 108.
- the screenshot 304 may be updated to also show the connection 314.
- the connection 314 may correctly appear when the VLAN_10 ports are selected in the drop down menu 320.
- FIG. 3 illustrates screenshots 302, 304, and 306 of the AR UI 212 showing one network device
- the AR UI 212 may display multiple network devices.
- the network devices 114 may be blade servers in a server rack.
- the user may want to know which ports are associated with a particular VLAN.
- the user may point the camera 204 at an entire server rack of network devices 114 and capture an image of all of the network devices 114.
- the image may be transmitted to the NMS server 104 and the NMS server 104 may identify each network device 114 and the ports of each network device 114 associated with the desired VLAN.
- the graphical overlays may simply be a color coded image over the particular ports.
- the AR UI 212 may then display the color coded image over the ports of each network device 114 that are associated with the desired VLAN.
- the connection information 322 may be displayed as shown in the screenshot 304, and discussed above.
- the AR UI 212 provides an efficient interface to troubleshoot network devices.
- the AR UI 212 may be used to make modifications to the network devices to correct or remediate any malfunctioning network devices.
- the network devices being viewed in the AR UI 212 may be modified via the AR UI 212, as described above. As a result, the user does not need to access the NMS server 104 directly to modify the malfunctioning network devices.
- FIG. 4 illustrates a flow diagram of an example method 400 for modifying a network device via an augmented reality user interface.
- the method 400 may be performed by the endpoint device 108 or the apparatus 500 illustrated in FIG. 5 and described below.
- the method 400 begins.
- the method 400 captures an image of a network device.
- a camera of the endpoint device may be pointed at a network device to capture an image of the network device.
- the image may be a video image that is displayed on the display of the endpoint device.
- the method 400 transmits the image to a network management system (NMS).
- NMS network management system
- the image may be used by the NMS to identify the network device in the image.
- the NMS may use an optical character recognition process to read identification information written on the network device and shown in the image.
- a bar code that contains information associated with the network device may be contained in the image and read by the NMS.
- the NMS may use a GPU to execute machine learning AI to analyze the image.
- the NMS may identify the connections and connection information in real-time by comparing the image with previously stored images of the network device. Based on a comparison of the images, the NMS may detect new connections and communicate with the network device to obtain the connection information.
- the method 400 receives connection information associated with the network device.
- the NMS may obtain connection information associated with the network device that is identified in the image form an NMS DB.
- the connection information may include port numbers, a port number of a connected network device, data associated with the connection, and the like.
- the method 400 displays an augmented reality (AR) user interface (UI) comprising the image of the network device with a graphical representation of the connection information overlaid on the image.
- AR augmented reality
- the NMS may generate the graphical representations associated with the connection information.
- the graphical representations may be an image of the connected network devices, an image of the cable creating the connection, a color coding of the cable (e.g., showing whether the connection is detected or down), and the like.
- the graphical representations may be overlaid on the image of the actual network device captured by the endpoint to create the AR UI.
- the graphical representation of the connection information may comprise an image of additional network devices connected to the network device and an image of physical cables connected to labeled ports in the network device to labeled ports in the additional network devices.
- the method 400 receives a modification to the network device. For example, based on the connection information and the graphical representations displayed on the AR UI, a user or technician may diagnose a malfunctioning network device. Based on the diagnosis, the user or technician may implement corrective actions or modifications to the network device. The modifications may be entered in the AR UI displayed by the endpoint via drop down menus with predefined modifications based on the entered diagnosis, an interface where values for configuration changes can be entered in a field, and the like.
- the method 400 transmits the modification to the NMS to cause the NMS to implement the modification on the network device.
- the NMS may connect to the malfunctioning network device via an IP network and implement the modifications.
- the modifications may include different recovery procedures, changes to certain configuration parameters, and the like.
- the NMS may execute the recovery procedures or change the values of certain configuration parameters in accordance with the modifications received by the AR UI.
- the AR UI may be updated.
- the AR UI may change the color coding for previously malfunctioning network devices and/or ports.
- a graphical representation of all of the connected network devices may be shown in the AR UI to show how the modifications have affected all other connected network devices and/or ports.
- FIG. 5 illustrates an example of an apparatus 500.
- the apparatus 500 may be the NMS server 104 illustrated in FIG. 1 .
- the apparatus 500 may include a processor 502 and a non-transitory computer readable storage medium 504.
- the non-transitory computer readable storage medium 504 may include instructions 506, 508, 510, 512, and 514 that, when executed by the processor 502, cause the processor 502 to perform various functions.
- the instructions 506 may include instructions to receive an indication of an error associated with a group of network devices.
- the instructions 508 may include instructions to capture an image of a plurality of network devices.
- the instructions 510 may include instructions to transmit the image to a network management system (NMS).
- the instructions 512 may include instructions to receive identification of the group of network devices in the image of the plurality of network devices.
- the instructions 514 may include instructions to display an augmented reality (AR) user interface (Ul) comprising the image of the plurality of network devices and an identification of the group of network devices image.
- the group of network devices are part of a virtual local area network (VLAN).
- VLAN virtual local area network
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Human Computer Interaction (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Computer And Data Communications (AREA)
- User Interface Of Digital Computer (AREA)
Description
- Networks of enterprises or large corporations can span several different buildings, campuses, and/or geographic locations. These large networks can deploy hundreds to thousands of different network devices that are all interconnected to maintain a network of the enterprise. The network devices may have several different physical connections with Ethernet cables to various different ports.
- Some further background information can be found in
WO2018/059934A1 ,US2016/330295A1 andUS2017/310542A1 . - The objectives of the present invention are achieved through the subject-matter of the
independent claims -
-
FIG. 1 is a block diagram of an example system of the present disclosure; -
FIG. 2 is a block diagram of an apparatus with an augmented reality user interface to modify a network device of the present disclosure; -
FIG. 3 is a series of screen shots of the augmented reality user interface of the present disclosure; -
FIG. 4 is a flow chart of an example method for modifying a network device via an augmented reality user interface; and -
FIG. 5 is a block diagram of an example non-transitory computer readable storage medium storing instructions executed by a processor. - Examples described herein provide an augmented reality (AR) user interface (Ul) to modify network devices and an apparatus for providing the same. The AR UI may provide an efficient interface for troubleshooting malfunctioning network devices that are managed by a network management system (NMS). A technician may be overwhelmed when walking into a server room to try and connect a malfunctioning network device. The server room may include racks and racks of servers with hundreds of different physical connections between different ports of different servers. Some of the physical connections may run to servers that are at different physical locations.
- The AR UI may also provide images to the NMS. The images may provide information that can be logged by the NMS related to why a network device is malfunctioning. For example, the image of the server rack may show a cable has been disconnected from a particular port on a server. The NMS may determine the cause of the malfunction based on the received image. Further, the NMS may not know what the cause of the malfunction is without the image. Thus, the AR UI may provide images to the NMS to improve troubleshooting.
- In addition, the AR UI may provide an overlay view. For example, the technician may receive a notification from an NMS that a particular virtual local area network (VLAN) is malfunctioning (e.g., misconfigured). The AR UI may be used to identify each port and cable within a server room that is configured to the particular VLAN that is misconfigured. Thus, the technician may quickly check the appropriate ports and connections associated with the particular VLAN that is misconfigured.
-
FIG. 1 illustrates anexample system 100 of the present disclosure. In one example, thesystem 100 may include an Internet protocol (IP)network 102. It should be noted that theIP network 102 has been simplified for ease of explanation. TheIP network 102 may include additional devices that are not shown. For example, theIP network 102 may include switches, firewalls, access points, access networks, and the like. - The
IP network 102 may include aNMS server 104 and an NMS database (DB) 106 that are communicatively coupled to each other. TheNMS server 104 may be in communication with anendpoint 108 and network devices 1141 - 114m (hereinafter also referred to individually as a network device 114 or collectively as network devices 114) at alocation 110 and network devices 1161 - 116n (hereinafter also referred to individually as a network device 116 or collectively as network devices 116) at alocation 112. Thelocations locations location 110 may correspond to a central campus, whereaslocation 112 may correspond to a branch location. Although twodifferent locations FIG. 1 , it should be noted that any number of locations may be in communication with theNMS server 104. - The network devices 114 and 116 may be any type of network device. For example, the network devices may be access points, routers, switches, servers, sensors, beacons, and the like. In one example, the network devices 114 and 116 may be network switches or blade servers having a plurality of ports. The network devices 114 and 116 may be connected to other network devices 114 and 116 via connections of the ports.
- In one example, the network devices 114 and 116 may be managed and monitored by the
NMS server 104. TheNMS server 104 may manage the network devices 114 and 116 by remotely making configuration changes and may monitor the network devices 114 and 116 by detecting when a network device is malfunctioning, misconfigured, or underperforming. - The
NMS server 104 may include a processor and memory storing instructions executed by the processor to execute the functions described herein. In one example, theNMS server 104 may include an AR UI generator. For example, theNMS server 104 may add graphical representations of network device information on an actual image captured and displayed by theendpoint device 108, as discussed in further details below. - In one example, information associated with each one of the network devices 114 and 116 may be stored in the NMS DB 106. The information may include an identification of the network device (e.g., a media access control (MAC) identification (ID) number, a name, an identification number, and the like), a location, port information (e.g., connected port numbers, active port numbers, port connection information, identification information of which ports on other network devices that the ports are connected to, and the like), configuration parameters associated with the network device, activity logs, and the like.
- The
endpoint 108 may be any type of portable endpoint with a display. For example, theendpoint 108 may be a smartphone, a tablet computer, a virtual reality (VR) system, and the like. -
FIG. 2 illustrates a block diagram of anexample endpoint 108. In one example, theendpoint 108 may include aprocessor 202, acamera 204, adisplay 206, and acommunication interface 208. Theprocessor 202 may be communicatively coupled to thecamera 204, thedisplay 206, and thecommunication interface 208. - In one example, the
camera 204 may be used to capture animage 210. Theimage 210 may be a video image of the network devices 114 or 116. Theimage 210 may be shown on thedisplay 206 as part of the augmented reality (AR) user interface (Ul) 212 that is generated and displayed. For example, additional graphical images, or a graphical overlay, transmitted by theNMS server 104 may be displayed over theimage 210 captured by thecamera 204. Examples of the AR UI 212 are illustrated inFIG. 3 , and discussed below. - In one example, the AR UI 212 of the
endpoint 108 may be used to troubleshoot network devices 114 and/or 116. In addition, the AR UI 212 of theendpoint 108 may be used to make a modification to the network devices 114 and/or 116. The modification may be a change to a value of a configuration parameter (e.g., port settings, security settings, control parameters, and the like), a control signal to initiate an operation (e.g., a power cycle, a test procedure, and the like), a reset operation, and the like. - In one example, the
communication interface 208 may establish a wired or wireless communication session with theNMS server 104 via theIP network 102. Theendpoint 108 may transmit theimage 210 to theNMS server 104 to identify the network device 114 or 116 in theimage 210 via thecommunication interface 208. TheNMS server 104 may transmit the graphical overlays for the AR UI 212 via thecommunication interface 208. -
FIG. 3 illustratesexample screenshots image 310 may be a real image of an actual network device (e.g., the network device 1141 at location 110). Theimages endpoint 108 from theNMS server 104. Theimages images image 310. - For example, a user may get a notification that the network device of the
image 310 is malfunctioning. In the example illustrated inFIG. 3 , the network device may be a switch or server with ports and the malfunction may be a misconfiguration of a VLAN for certain ports and/or connections. In another example, malfunctioning network devices or particular connections can be shown in the AR UI via a color coding. For example, malfunctioning connections may be shown in red and properly operating connections can be shown in green. - The user may take the
endpoint 108 to a location where the network device of theimage 310 is located. The user may capture an image of the network device and transmit the image to theNMS server 104. TheNMS server 104 may identify the network device in the image based on optical character recognition analysis of the image containing the identification information of the network device. - In another example, a
bar code 330 may be scanned and transmitted to theNMS server 104. Thebar code 330 may contain identification information of the network device in theimage 310. Thebar code 330 may be a quick response code, a standard bar code, and the like. - Based on the identification of the network device in the
image 310, theNMS server 104 may access theNMS DB 106 to determine which ports are active and the connection information associated with each active port. Based on the connection information, theNMS server 104 may generate the graphical overlay based on the connection information and transmit the graphical overlay to theendpoint 108 for the AR UI 212. - In one example, the
NMS server 104 may include a graphical processor unit (GPU) that can execute machine learning artificial intelligence (Al) to identify the connections. For example, the image of network devices may be sent to theNMS server 104. The GPU of theNMS server 104 may compare the image to previously stored images of the network device and the associated connections. TheNMS server 104 may determine if any new connections or activated ports on the network device are detected based on the comparison. If new connections are detected, theNMS server 104 may communicate with the network device over theIP network 102 to obtain the current connection information and configuration information associated with the new connections. - For example, a technician may have tried to create additional connections recently. However, the connections may have not been configured correctly. Thus, the
NMS DB 106 may not have images or information associated with the recently added connections. However, theNMS server 104 may still be able to identify the connections in real-time using the GPU machine learning AI to analyze the received images and generate the current graphical overlay for the image of thenetwork device 310 that is received. - The
images NMS server 104. The network devices of theimages - Although a single network device is represented for each active port in screenshot 302, it should be noted that any number of connections and network devices can be displayed for each active port. For example, if an active port has a chain or a series of three connections to other network devices, the screenshot 302 may display graphical representations of each connection to each of the other network devices. In other words, each connection of an active port may be shown in the AR UI 212 until an endpoint is reached in the series of connections.
- In one example, a drop down
menu 320 may also be displayed in the AR UI 212 as illustrated in the screenshot 302. The drop downmenu 320 may allow the user to select a particular group of network devices or a subset of ports based on a particular grouping. For example, the user may know that a particular virtual local area network (VLAN) is misconfigured or producing excessive errors. The drop downmenu 320 may allow the user to select the particular VLAN. - The
screenshot 304 illustrates when a particular VLAN is selected in the drop downmenu 320. For example, VLAN_10 may be selected. The AR UI 212 may then show those active ports associated with the VLAN_10 (e.g., thegraphical images 312 and 318). In one example, the other connections (e.g., thegraphical images 314 and 316) may be removed. In one example, the other connections (e.g., thegraphical images 314 and 316) that are not associated with the selected VLAN may be greyed out or have a different color. - In addition, the
screenshot 304 may automatically displayconnection information 322. For example, the AR UI 212 may obtain theconnection information 322 from theNMS server 104 that is retrieved from theNMS DB 106. With theconnection information 322 and thegraphical overlay images image 310. - In one example, the user may have believed that the
connection 314 should also have been associated with the VLAN_10. Thus, the user may determine that theconnection 314 has been misconfigured. The user may use the AR UI 212 to modify the network device in theimage 310 to correctly configure theconnection 314 to be part of the VLAN_10. - In one example, after the user has determined how to remediate or correct the misconfigured network device in the
image 310, the user may call up a drop downmenu 324. The drop downmenu 324 may provide options for modifying the network device. In one example, the options 326 may include an simple network management protocol (SNMP) poll option, a disable interface option, a configure VLAN option, and the like. In another example, the user may be provided with an interface that allows the user to prove specific values for various configuration parameters. - The modifications to the network devices (either selected from the drop down
menu 324, or a user interface that allows specific values to be entered for different configuration parameters, may be transmitted to theNMS server 104. The modifications transmitted to theNMS server 104 may cause theNMS server 104 to implement the modifications to the network devices. For example, if theimage 310 was of the network device 1141, theNMS server 104 may modify the network device 1141 in accordance with the modifications received from theendpoint 108. - In one example, after the modifications are implemented by the
NMS server 104, thescreenshot 304 may be updated to also show theconnection 314. In other words, after theconnection 314 is correctly configured through the AR UI 212, theconnection 314 may correctly appear when the VLAN_10 ports are selected in the drop downmenu 320. - Although
FIG. 3 illustratesscreenshots camera 204 at an entire server rack of network devices 114 and capture an image of all of the network devices 114. - The image may be transmitted to the
NMS server 104 and theNMS server 104 may identify each network device 114 and the ports of each network device 114 associated with the desired VLAN. The graphical overlays may simply be a color coded image over the particular ports. The AR UI 212 may then display the color coded image over the ports of each network device 114 that are associated with the desired VLAN. In one example, as the user moves closer to a particular network device 114, theconnection information 322 may be displayed as shown in thescreenshot 304, and discussed above. - Thus, the AR UI 212 provides an efficient interface to troubleshoot network devices. In addition, the AR UI 212 may be used to make modifications to the network devices to correct or remediate any malfunctioning network devices. For example, the network devices being viewed in the AR UI 212 may be modified via the AR UI 212, as described above. As a result, the user does not need to access the
NMS server 104 directly to modify the malfunctioning network devices. -
FIG. 4 illustrates a flow diagram of anexample method 400 for modifying a network device via an augmented reality user interface. In an example, themethod 400 may be performed by theendpoint device 108 or theapparatus 500 illustrated inFIG. 5 and described below. - At
block 402, themethod 400 begins. Atblock 404, themethod 400 captures an image of a network device. For example, a camera of the endpoint device may be pointed at a network device to capture an image of the network device. The image may be a video image that is displayed on the display of the endpoint device. - At
block 406, themethod 400 transmits the image to a network management system (NMS). The image may be used by the NMS to identify the network device in the image. In one example, the NMS may use an optical character recognition process to read identification information written on the network device and shown in the image. In another example, a bar code that contains information associated with the network device may be contained in the image and read by the NMS. - In another example, the NMS may use a GPU to execute machine learning AI to analyze the image. As discussed above, the NMS may identify the connections and connection information in real-time by comparing the image with previously stored images of the network device. Based on a comparison of the images, the NMS may detect new connections and communicate with the network device to obtain the connection information.
- At
block 408, themethod 400 receives connection information associated with the network device. In one example, the NMS may obtain connection information associated with the network device that is identified in the image form an NMS DB. The connection information may include port numbers, a port number of a connected network device, data associated with the connection, and the like. - At
block 410, themethod 400 displays an augmented reality (AR) user interface (UI) comprising the image of the network device with a graphical representation of the connection information overlaid on the image. In one example, the NMS may generate the graphical representations associated with the connection information. The graphical representations may be an image of the connected network devices, an image of the cable creating the connection, a color coding of the cable (e.g., showing whether the connection is detected or down), and the like. The graphical representations may be overlaid on the image of the actual network device captured by the endpoint to create the AR UI. The graphical representation of the connection information may comprise an image of additional network devices connected to the network device and an image of physical cables connected to labeled ports in the network device to labeled ports in the additional network devices. - At
block 412, themethod 400 receives a modification to the network device. For example, based on the connection information and the graphical representations displayed on the AR UI, a user or technician may diagnose a malfunctioning network device. Based on the diagnosis, the user or technician may implement corrective actions or modifications to the network device. The modifications may be entered in the AR UI displayed by the endpoint via drop down menus with predefined modifications based on the entered diagnosis, an interface where values for configuration changes can be entered in a field, and the like. - At
block 414, themethod 400 transmits the modification to the NMS to cause the NMS to implement the modification on the network device. For example, the NMS may connect to the malfunctioning network device via an IP network and implement the modifications. For example, the modifications may include different recovery procedures, changes to certain configuration parameters, and the like. The NMS may execute the recovery procedures or change the values of certain configuration parameters in accordance with the modifications received by the AR UI. - In one example, after the modifications are implemented by the NMS, the AR UI may be updated. The AR UI may change the color coding for previously malfunctioning network devices and/or ports. In one example, a graphical representation of all of the connected network devices may be shown in the AR UI to show how the modifications have affected all other connected network devices and/or ports. At block 416, the
method 400 ends. -
FIG. 5 illustrates an example of anapparatus 500. In an example, theapparatus 500 may be theNMS server 104 illustrated inFIG. 1 . In an example, theapparatus 500 may include aprocessor 502 and a non-transitory computerreadable storage medium 504. The non-transitory computerreadable storage medium 504 may includeinstructions processor 502, cause theprocessor 502 to perform various functions. - In an example, the
instructions 506 may include instructions to receive an indication of an error associated with a group of network devices. Theinstructions 508 may include instructions to capture an image of a plurality of network devices. Theinstructions 510 may include instructions to transmit the image to a network management system (NMS). Theinstructions 512 may include instructions to receive identification of the group of network devices in the image of the plurality of network devices. Theinstructions 514 may include instructions to display an augmented reality (AR) user interface (Ul) comprising the image of the plurality of network devices and an identification of the group of network devices image. In some examples, the group of network devices are part of a virtual local area network (VLAN).
Claims (10)
- An apparatus (100), comprising:a camera to capture an image of a network device;a communication interface to transmit the image of the network device to a network management system, NMS, and receive information associated with the network device, wherein the information comprises connection information comprising additional network devices that are connected to the network device;a display to present an augmented reality, AR, user interface, UI, that includes a graphical overlay of the information on the image of the network device that is captured; anda processor communicatively coupled to the camera, the communication interface, and the display, the processor is adapted to receive a modification of the network device and transmit the modification to the NMS over the communication interface to cause the NMS to implement the modification in the network device;wherein the processor is further adapted to receive a modification to one of the additional network devices that are in a different location than the network device in the image that is captured, and transmit the modification to the additional network device to the NMS over the communication interface, to cause the NMS to implement the modification in the additional network device.
- The apparatus of claim 1, wherein the image comprises a barcode that contains identification information of the network device.
- The apparatus of claim 1, wherein the AR UI automatically updates displayed information associated with the network device in the AR UI as the camera moves to capture different images of different network devices.
- The apparatus of claim 1, wherein the modification comprises a change in value of a parameter of the network device and/or the modification comprises a control signal to initiate an operation on the network device.
- The apparatus of claim 1, wherein the modification comprises a control signal to initiate an operation on the network device and the operation comprises a reset operation.
- A method (400), comprising:capturing, by a processor, an image of a network device;transmitting, by the processor, the image to a network management system, NMS;receiving, by the processor, connection information associated with the network device, wherein the connection information comprising additional network devices that are connected to the network device;displaying, by the processor, an augmented reality, AR, user interface, UI, comprising the image of the network device with a graphical representation of the connection information overlaid on the image;receiving, by the processor, a modification to the network device; andtransmitting, by the processor, the modification to the NMS to cause the NMS to connect to the malfunctioning network device via an IP network and implement the modification on the network device;receiving, by the processor, a modification to one of the additional network devices, that are in a different location than the network device in the image that is captured; andtransmitting, by the processor the modification to the NMS to cause the NMS to connect to the malfunctioning network device via an IP network and implement the modification on the one of the additional network devices.
- The method of claim 6, wherein the network device is a malfunctioning network device and the modification is to correct the malfunctioning network device.
- The method of claim 6, wherein the modification comprises changing a value of a parameter of the network device and/or the modification comprises a control signal to initiate an operation on the network device.
- The method of claim 6, wherein the one of the additional network devices is in a different physical location than the network device.
- A non-transitory computer readable storage medium encoded with instructions executable by a processor, to cause the processor to perform the method of any of claims 6 to 9, when executed by the processor.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201841020695 | 2018-06-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3575925A1 EP3575925A1 (en) | 2019-12-04 |
EP3575925B1 true EP3575925B1 (en) | 2020-12-30 |
Family
ID=63108403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18183801.2A Active EP3575925B1 (en) | 2018-06-01 | 2018-07-16 | Network device modifications via augmented reality user interfaces |
Country Status (3)
Country | Link |
---|---|
US (1) | US20190372861A1 (en) |
EP (1) | EP3575925B1 (en) |
CN (1) | CN110557274A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11646807B2 (en) * | 2019-08-21 | 2023-05-09 | Commscope Technologies Llc | Methods including detecting cables connected to ports of communications network equipment and related systems |
US11526976B2 (en) * | 2020-02-11 | 2022-12-13 | Honeywell International Inc. | Using augmented reality to assist in device installation |
US11798156B2 (en) | 2020-03-26 | 2023-10-24 | International Business Machines Corporation | Hyperconverged configuration troubleshooting |
CN111625091B (en) * | 2020-05-14 | 2021-07-20 | 佳都科技集团股份有限公司 | Label overlapping method and device based on AR glasses |
US11575584B2 (en) * | 2021-06-24 | 2023-02-07 | Charter Communications Operating, Llc | Automatic network device identification and presentation of network information via augmented reality |
EP4427419A1 (en) * | 2021-11-05 | 2024-09-11 | Telefonaktiebolaget LM Ericsson (publ) | Method and device for supporting a multiport connection |
CN116346750A (en) * | 2021-12-23 | 2023-06-27 | 戴尔产品有限公司 | Network topology planning and verification |
US20240179043A1 (en) * | 2022-11-29 | 2024-05-30 | Sophos Limited | Misconfigured mirror port detection |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005061211B4 (en) * | 2004-12-22 | 2023-04-06 | Abb Schweiz Ag | Method for creating a human-machine user interface |
US9726498B2 (en) * | 2012-11-29 | 2017-08-08 | Sensor Platforms, Inc. | Combining monitoring sensor measurements and system signals to determine device context |
US9547939B2 (en) * | 2013-07-25 | 2017-01-17 | Fluke Corporation | Detecting and visualizing wireless network devices in communication networks |
US10037821B2 (en) * | 2013-12-27 | 2018-07-31 | General Electric Company | System for integrated protocol and decision support |
US10171628B2 (en) * | 2013-12-30 | 2019-01-01 | Telecom Italia S.P.A. | Augmented reality for supporting intervention of a network apparatus by a human operator |
US10007413B2 (en) * | 2015-04-27 | 2018-06-26 | Microsoft Technology Licensing, Llc | Mixed environment display of attached control elements |
EP3377961B1 (en) * | 2015-11-17 | 2021-07-21 | PCMS Holdings, Inc. | System and method for using augmented reality to visualize network service quality |
US20170310542A1 (en) * | 2016-04-22 | 2017-10-26 | Netsights360 | Integrated digital network management platform |
US10178130B2 (en) * | 2016-09-14 | 2019-01-08 | Fortinet, Inc. | Augmented reality visualization device for network security |
DE102016118647B4 (en) * | 2016-09-30 | 2018-12-06 | Deutsche Telekom Ag | Augmented reality communication system and augmented reality interaction device |
-
2018
- 2018-07-16 EP EP18183801.2A patent/EP3575925B1/en active Active
- 2018-07-17 CN CN201810783233.1A patent/CN110557274A/en active Pending
- 2018-08-07 US US16/056,900 patent/US20190372861A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3575925A1 (en) | 2019-12-04 |
US20190372861A1 (en) | 2019-12-05 |
CN110557274A (en) | 2019-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3575925B1 (en) | Network device modifications via augmented reality user interfaces | |
US7620848B1 (en) | Method of diagnosing and repairing network devices based on scenarios | |
US6269398B1 (en) | Method and system for monitoring remote routers in networks for available protocols and providing a graphical representation of information received from the routers | |
US9674037B2 (en) | Centralized management of access points | |
CN110535710A (en) | Remote diagnosis method and system, the network equipment and Cloud Server of the network equipment | |
CN108039015A (en) | A kind of nuclear power plant's fire alarm cooperative video monitoring system | |
CN108306748A (en) | Network failure locating method, device and interactive device | |
US9917924B2 (en) | Methods, systems, and computer readable media for simplistic visual representation of complex interdependent network protocol fields for network protocol fuzzing and graphical framework for reporting instantaneous system level progress | |
CN106791223B (en) | Method and system for detecting reason of disconnection of monitoring terminal | |
JP2005160069A (en) | Apparatus with graphical user interface | |
CN103152601A (en) | Intelligent failure-reporting camera and network management client system thereof | |
US20210091852A1 (en) | Enhanced led signaling status for network device onboarding | |
CN112437463B (en) | Terminal Wi-Fi compatibility automatic test method, device, system, equipment and medium | |
CN104394010A (en) | Network state detection method, router, network state display method and network state display terminal | |
CN104022905B (en) | Meshed network monitoring method and device | |
CN111800624A (en) | Integrated testing method for multi-video-protocol communication of intelligent video monitoring platform | |
CN106303429A (en) | Remote configuring method and device | |
CN114579005A (en) | Method, system, and computer readable medium for performing routing tasks using augmented reality | |
US11290571B2 (en) | Many-to-many state identification system of equipment names that are broadcasted from Internet-of-Things | |
US20190132261A1 (en) | Link locking in ethernet networks | |
US20190369850A1 (en) | Virtual reality user interfaces for network devices | |
WO2007029690A1 (en) | Monitoring system and control device for the same | |
WO2013131059A1 (en) | Systems and methods for diagnostic, performance and fault management of a network | |
CN106130787B (en) | Service processing system based on software defined network | |
KR102029855B1 (en) | Video surveillance apparatus supporting optimization for operating environment of camera and operating method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200602 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201006 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1350588 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018011249 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210331 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1350588 Country of ref document: AT Kind code of ref document: T Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018011249 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210622 Year of fee payment: 4 |
|
26N | No opposition filed |
Effective date: 20211001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210716 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210716 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602018011249 Country of ref document: DE Representative=s name: PROCK, THOMAS, DR., GB |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602018011249 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220716 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201230 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |