EP3573733A1 - Cruise control system for a model vehicle - Google Patents
Cruise control system for a model vehicleInfo
- Publication number
- EP3573733A1 EP3573733A1 EP18745262.8A EP18745262A EP3573733A1 EP 3573733 A1 EP3573733 A1 EP 3573733A1 EP 18745262 A EP18745262 A EP 18745262A EP 3573733 A1 EP3573733 A1 EP 3573733A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cruise control
- throttle
- command
- input
- control system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 15
- 230000003213 activating effect Effects 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000008713 feedback mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63H—TOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
- A63H30/00—Remote-control arrangements specially adapted for toys, e.g. for toy vehicles
- A63H30/02—Electrical arrangements
- A63H30/04—Electrical arrangements using wireless transmission
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63H—TOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
- A63H17/00—Toy vehicles, e.g. with self-drive; ; Cranes, winches or the like; Accessories therefor
- A63H17/26—Details; Accessories
- A63H17/32—Acoustical or optical signalling devices
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63H—TOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
- A63H17/00—Toy vehicles, e.g. with self-drive; ; Cranes, winches or the like; Accessories therefor
- A63H17/26—Details; Accessories
- A63H17/36—Steering-mechanisms for toy vehicles
Definitions
- a cruise control system for a model vehicle including a transmitter.
- the transmitter includes a throttle input to produce a throttle command and a cruise control set input.
- the cruise control system further includes a receiver for receiving the throttle command and a speed controller for providing a motor command corresponding to the throttle command to a motor of a model vehicle. Wherein the throttle command and the cruise control set input are sent to the receiver and the speed controller provides a motor command based upon the throttle command at a point when the cruise control set input is activated.
- a cruise control system for a model vehicle including a transmitter.
- the transmitter includes a throttle input to produce a throttle command and a cruise control set input.
- the cruise control system may further include a receiver for receiving the throttle command and a speed controller for providing a motor command corresponding to the throttle command to a motor of a model vehicle.
- the cruise control system may include a vehicle speed sensor to measure actual vehicle speed. Wherein the throttle command and the cruise control set input are sent to the receiver and the speed controller provides a motor command based upon the throttle command at a point when the cruise control set input is activated. In addition, the motor command is adjusted based upon the actual vehicle speed.
- Still in accordance with another embodiment is a method for providing cruise control for a model vehicle including receiving a throttle command from a throttle input and activating a cruise control set input.
- the method may further include recording the throttle command as a cruise control throttle input at a point when the cruise control set input is activated and sending a motor command to a motor based upon the cruise control throttle input while the cruise control set input is activated.
- FIG. 1 illustrates a block diagram of a cruise control system in a model vehicle for maintaining a constant speed
- FIG. 2 illustrates a block diagram of the cruise control system in the model vehicle with optional speed/ RPM sensors
- FIG. 3 illustrates a logic chart of a process used by the vehicle controller to compute an output throttle for the model vehicle.
- FIG. 1 is a block diagram 100 illustrating a system for controlling a motor 1 16 in a remote controlled model vehicle to cruise or maintain a constant speed without continuous input from a throttle trigger control.
- a user of a model vehicle may use a transmitter 102 to provide control input to the model vehicle. Accordingly, the user manipulates the transmitter 102 to control speed and braking of the model vehicle.
- the transmitter 102 comprises an antenna 104 for transmitting user input to a receiver 1 10.
- the receiver 1 10 also comprises an antenna 108 for receiving the user input from the transmitter 102.
- the transmitter 102 transmits a radio frequency signal 106 to the receiver 1 10.
- the receiver 1 10 is coupled to a vehicle controller 1 18 and a speed controller 1 12, all which may be located on the model vehicle.
- the vehicle controller 1 12 receives the user input from the receiver 1 10 and computes an output throttle to the speed controller 1 12.
- the speed controller 1 12 in turn translates the output throttle as motor commands to the motor 1 16.
- the battery 1 14 supplies the speed controller 1 12 with power, and the speed controller 1 12 can manage the speed of the model vehicle outputted by the motor 1 16 in response to the user input from the receiver 1 10.
- the cruise control system is implemented as an open loop control comprising of the receiver 1 10, vehicle controller 1 18, the speed controller 1 12, and the motor 1 16.
- Input control data is used by the cruise control system to "set" the cruise speed for the model vehicle and compute the output throttle.
- the model vehicle periodically executes the open control loop where the receiver 1 10 reads available sensor data and control input from the transmitter 102 and sends it to the vehicle controller 1 18.
- the vehicle controller 1 18 in turn combines the sensor and input data to produce an output response to the steering servo and motor 1 16.
- the vehicle controller 1 18 combines user input throttle position sent by the transmitter 102 with throttle trim settings and ranges to compute the output throttle.
- the output throttle may then be sent to the speed controller 1 12 where it is translated to motor commands for motor 1 16.
- the throttle position sent by the transmitter 102 when cruise is "set" is maintained by the logic controller and never changed. If the model vehicle travels up a hill, the maintained throttle position yields the possibility that the speed of the model vehicle may slow.
- the throttle is manually applied and adjusted by the user until the desired speed is achieved.
- the user may then "set" the current speed or throttle position of the model vehicle as the cruise speed to initiate the cruise control system before releasing the throttle.
- the vehicle will maintain the cruise speed until brake is applied. While cruise is set, the driver may apply positive throttle to speed up past the cruise speed and when throttle is released, the vehicle may slow to the cruise speed and resume cruise control.
- the cruise speed of the model vehicle may be limited to a maximum speed to prevent the user from setting cruise at unsafe speeds. If the current speed being "set" for cruise is above the maximum speed, the model vehicle may engage cruise control at the maximum speed and slow the model vehicle to the maximum speed with the user releases the throttle.
- FIG. 2 is a block diagram 200 illustrating an additional embodiment of the cruise control system further comprising throttle handling modifications for the transmitter 102 and an optional speed/ RPM sensors 208.
- the transmitter 102 in addition to the current throttle position of the driver throttle 206 transmitted to the remote controlled model vehicle, the transmitter 102 may be configured to further transmit two additional user inputs to the receiver 102 for the cruise control system.
- the transmitter 102 may transmit additional user inputs comprising of the state of a "set” button 202 and the setting of a multi-function trim knob 204 on the transmitter 102.
- the user may press the "set” button 202 to set the current throttle position as the cruise speed to be implemented by the cruise control system.
- the multi-function trim knob 204 may be used to apply the cruise control trim settings for the transmitter 102.
- the additional user inputs may be implemented on the actual throttle transmitter controller or a separate transmitter control device.
- the transmitter controller may comprise at least one light-emitting diode
- the vehicle controller 1 18 may then combine the three user input data sent by the transmitter 102 to initiate the cruise control system, set the cruise speed of the model vehicle, and produce the output throttle for the model vehicle.
- the output throttle in turn may then be sent to the speed controller 1 12 where it is translated to motor commands for motor 1 16.
- any number of additional user inputs may be transmitted to provide additional trim and settings data for the cruise control system.
- the sensor 208 may provide a negative feedback control mechanism allowing the cruise control system to be implemented as a closed loop control system.
- the cruise control system may "set" the initial throttle position as the cruise speed and then begin monitoring the vehicle's actual speed.
- a speed error may be detected by the speed/ RPM sensors 208.
- the speed error may be used by the cruise control system to output a corrective throttle response to the speed controller 1 12 and motor 1 16 so that additional throttle can be applied.
- FIG. 3 illustrates a logic chart 300 of a process for a program implemented by the vehicle controller 1 18 to initiate the cruise control system and compute the output throttle in one embodiment of the remote controlled model vehicle system.
- the vehicle controller 1 18 process may take into account the "set" button 202 and the setting of the multifunction trim knob 204 on the transmitter 102.
- the model vehicle comprises a system that accomplishes the features shown in the logic chart 300. This system may comprise a microprocessor, microcontroller, or an electronic speed control device.
- FIG. 3 illustrates an example of one embodiment of the claimed invention. Accordingly, the use of this example of the claimed invention does not limit the scope of the present disclosure.
- the user may accelerate the model vehicle to a desired cruise speed by manipulating the throttle control on the transmitter 102.
- the desired cruise speed of the model vehicle may then correspond to a current throttle position held by the user.
- the current throttle position may then be transmitted to the receiver 1 16 for initiating and implementing the cruise control system.
- the receiver begins by periodically reading the current speed of the model vehicle and the transmitted throttle position in step 302 as the user forward throttles the model vehicle towards the desired cruise speed.
- the vehicle logic controller 1 18 first determines in step 304 whether the cruise control system has already been previously engaged and a setpoint recorded.
- the data recorded by the model vehicle when setting the setpoint may depend on whether the model vehicle is utilizing speed/ RPM sensors 208 as shown in FIG. 2 or not.
- the speed/ RPM sensors 208 in the model vehicle may be used provide a feedback mechanism for the cruise control system. If speed/ RPM sensors 208 are not used, the setpoint recorded by the model vehicle may comprise a setpoint throttle matching the current throttle position of the transmitter 102 when the "set" button 202 is pressed by the user. If speed/ RPM sensors 208 are used by the model vehicle to implement a closed loop control system, the step-in recorded by the model vehicle may comprise both a setpoint throttle and a setpoint speed. The setpoint throttle would match the current throttle position of the transmitter 102 when the "set" button 202 is pressed by the user. The setpoint speed would match the current speed of the model vehicle when the "set" button 202 is pressed by the user.
- step 306 determines whether the new throttle position is a result of forward throttle manipulation by the user. If the received throttle position is not a result of forward throttle manipulation by the user, then the output throttle is set to the current throttle as in step 310, and the output throttle is sent by the vehicle controller 1 18 to the speed controller 1 12 in step 320. Since there was no forward throttle, this may indicate at this point that the user is maintaining and holding the throttle position at a constant position. The output throttle sent by the vehicle controller 1 18 should therefore remain the same and the model vehicle maintains a constant speed due to the user physically maintaining the throttle position on the transmitter 102.
- step 308 If the new received throttle position in 306 is different from a previously received throttle position such that it is a result of forward throttle manipulation by the user, then a determination is made as in step 308 whether the "set" button 202 on the transmitter 102 when the current throttle position on the transmitter 102 corresponds to the desired cruise speed of the model vehicle. The user may then press the "set” button 202 to indicate to the model vehicle to initiate the cruise control system using the current throttle position of the transmitter 102.
- model vehicle receives no input control indicating that the "set" button
- the logic controller 1 18 proceeds to set the output throttle to the current throttle in step 310 and then send the output throttle to the speed controller 1 12 in step 320.
- the forward throttle detected in step 306 is just a result of acceleration of the model vehicle by the user and the logic controller 1 18 communicates the increased throttle output to the speed controller 1 12 resulting in increased speed of the model vehicle by the motor 1 16.
- step 312 determines whether the output speed of the model vehicle corresponding to the current throttle position is greater than a pre-set max cruise speed.
- Step 312 may be optional in that the cruise control system may not be programmed to only allow cruise speed at a max speed. Alternatively, the cruise control system may have a feature to allow the user to disable the max cruise speed feature of the model vehicle.
- the model vehicle may pass through steps 312 and 314 and proceed to step 316 to set cruise control ON and record the setpoint for the cruise control system. The model vehicle then proceeds to step 310 to set the output throttle to the current throttle, and then step 320 to send the output throttle to the speed controller 312.
- the model vehicle If the model vehicle is implemented with the max cruise feature and the output speed of the current throttle position is greater than the max cruise speed in step 312, the model vehicle will set the output speed to match the max cruise speed in step 314. The model vehicle would then engage the cruise control system by setting cruise control ON and record the setpoint using the max cruise throttle and correspond max cruise speed for the cruise control system in step 316.
- the model vehicle may then proceeds to step 332 where a speed error between the output speed (set to the max cruise speed in step 314) and the current speed (speed > max cruise) would be detected.
- the model vehicle in step 332 may then compute an adjusted throttle response necessary to correct the difference between the output speed and current speed, set the output throttle to the computed adjusted throttle response, and then send the output throttle to the speed controller 312 in step 320.
- step 316 If the output speed of the current throttle position in step 312 is not greater than the max cruise speed, the model vehicle proceeds to step 316 to engage the cruise control system by setting cruise control ON and recording the setpoint for the cruise control system. The model vehicle then proceeds to step 332 to set the output throttle to the current throttle. Since no speed errors would be detected in step 332, the adjusted throttle response would be the same as the current throttle, and the output throttle would therefore be set to the current throttle in step 332. In step 320, the output throttle would then be sent to the speed controller 312.
- step 304 the logic controller 1 18 will proceed from step 304 to step 322.
- the user can disengage the cruise control system on the model vehicle by applying the brakes on the transmitter controller 102.
- the transmitter 102 may be configured with another button or switch to signal the model vehicle to disengage the cruise control system.
- the logic controller 1 18 will determine whether the user has applied the brakes control on the transmitter 102.
- the model vehicle will then set the read output throttle to the current throttle in step 310, and proceed to send the output throttle to the speed controller in step 320.
- the output throttle in this case may be the completely released position, in which case, the output throttle sent to the speed controller would be 0% throttle and the model vehicle would begin to operate with the motor off in a neutral setting.
- the throttle may just be at a less forward or more forward position. In this case, the cruise control would be disengaged, and the model vehicle would return to operating according to the manipulated throttle position by the user.
- step 322 the model vehicle determines that the user did not apply the brakes to disengage the cruise control system, the model vehicle will proceed to step 326 to determine whether the current throttle position is more forward than the corresponding throttle position of the setpoint speed. As previously mentioned, when cruise control is engaged, the user may still apply forward throttle to increase the speed of the model vehicle past the cruise speed of the setpoint.
- step 326 if a new setpoint is not recorded with regards to the additional forward throttle position currently manipulated by the user, when the throttle is released, the model vehicle will slow and return to the cruise speed of the setpoint and resume cruise control.
- step 326 if the current throttle is determined to be additional forward throttle applied by the user in relation to the setpoint previously recorded, the model vehicle proceeds to step 310 and 320 to set the output throttle to the current throttle determined to be more forward than the setpoint, and send the new output throttle to the speed controller 1 12 to increase the speed of the model vehicle.
- step 326 determines whether the current throttle has made any adjustments to the cruise control setpoint via the transmitter 102.
- the user may also use the multi-function trim knob 204 to adjust the cruise speed of the model vehicle by directly adjusting the setpoint.
- the knob 204 may be used to increase or decrease the setpoint thereby increasing or decreasing the corresponding cruise speed, respectively.
- the cruise control throttle may be increased by turning the knob clockwise decreased by turning the knob counter-clockwise.
- the transmitter 102 may be configured with a user interface indicating to the user the corresponding adjustments being made to the cruise speed relative to the adjustments being made to the setpoint.
- the model vehicle may then proceed to step 330 and set the output throttle to either the original or adjusted setpoint.
- the cruise control system on the model vehicle may be optionally configured with additional speed/ RPM sensors 208 to provide a feedback mechanism for the cruise control system.
- the cruise control system When the cruise control system is engaged, the model vehicle is maintained at a constant setpoint speed and setpoint throttle. Despite the constant setpoint throttle being applied, the speed of the model vehicle may be noticeably altered due to external stimuli such as additional friction on the road or traversing over hills.
- the speed/ RPM sensors 208 may provide speed error negative feedback data to the vehicle controller 1 18 indicating that despite the constant setpoint throttle currently being applied, the current speed of the model vehicle is actually slower than the setpoint speed.
- the model vehicle may proceed from step 330 to 332 to adjust any speed errors or differences between the current speed and setpoint speed detected.
- the model vehicle in step 332 may use the speed error data received from the sensors 208 to compute an adjusted throttle response necessary for the model vehicle so the current speed of the model vehicle would also match the setpoint speed.
- the output throttle would then be set to the adjusted throttle response before being transmitted to the speed controller 1 12.
- the operation of the motor 1 16 in accordance to the adjusted throttle response should bring the current speed of the model vehicle closer to the setpoint speed of the model vehicle previously set by the user. If no speed errors are detected, the speed error would be 0 and the output throttle would remain unchanged. If speed/ RPM sensors 208 are not used on the model vehicle at all, after setting the output throttle to either the setpoint throttle or adjusted setpoint throttle in step 330, the model vehicle instead proceeds straight to step 320 and sends the output throttle to the speed controller 1 12.
- the cruise control system may be advantageous for users controlling model vehicles such that the cruise control system may also be utilized while navigating obstacles that require low speeds and precise/ technical steering.
- the drive may engage the cruise control system to maintaining the throttle at a low speed and focus on steering the model vehicle through the obstacles.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Toys (AREA)
- Controls For Constant Speed Travelling (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762451646P | 2017-01-27 | 2017-01-27 | |
PCT/US2018/015792 WO2018140898A1 (en) | 2017-01-27 | 2018-01-29 | Cruise control system for a model vehicle |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3573733A1 true EP3573733A1 (en) | 2019-12-04 |
EP3573733A4 EP3573733A4 (en) | 2020-11-04 |
EP3573733B1 EP3573733B1 (en) | 2022-04-27 |
Family
ID=62978917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18745262.8A Active EP3573733B1 (en) | 2017-01-27 | 2018-01-29 | Cruise control system for a model vehicle |
Country Status (3)
Country | Link |
---|---|
US (1) | US20190358556A1 (en) |
EP (1) | EP3573733B1 (en) |
WO (1) | WO2018140898A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7213777B2 (en) * | 2019-09-09 | 2023-01-27 | 双葉電子工業株式会社 | radio control transmitter |
US11148065B2 (en) * | 2020-01-10 | 2021-10-19 | Locksley A. Christian | Manual transmission emulator module for radio controlled electric vehicles |
US11634130B2 (en) * | 2020-03-26 | 2023-04-25 | Robert Bosch Gmbh | Adapting an advanced driver assistance system of a vehicle |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS631122A (en) * | 1986-06-19 | 1988-01-06 | Sanwa Denshi Kiki Kk | Transmitter for radio control |
JPH0683080B2 (en) * | 1987-10-02 | 1994-10-19 | 三和電子機器株式会社 | Radio control transmitter |
US5833025A (en) * | 1995-09-13 | 1998-11-10 | Bhandari; Gurubaksh | Wireless automobile cruise control system |
US6167979B1 (en) * | 1998-05-20 | 2001-01-02 | Cummins Engine Company, Inc. | Dynamic speed governing of a vehicle |
JP3573625B2 (en) * | 1998-08-10 | 2004-10-06 | 近藤科学株式会社 | Drive circuit of the model body |
JP2004007959A (en) * | 2003-03-12 | 2004-01-08 | Seiko Epson Corp | Electronic control instrument |
US8154227B1 (en) * | 2003-11-26 | 2012-04-10 | Liontech Trains Llc | Model train control system |
US8108092B2 (en) * | 2006-07-14 | 2012-01-31 | Irobot Corporation | Autonomous behaviors for a remote vehicle |
US8282440B2 (en) * | 2006-06-20 | 2012-10-09 | Traxxas Lp | Low power electronic speed control for a model vehicle |
US9043047B2 (en) * | 2011-06-24 | 2015-05-26 | Castle Creations, Inc. | Data link for use with components of remote control vehicles |
DE112014000932B4 (en) * | 2013-02-21 | 2019-03-14 | Traxxas Lp | Hybrid braking system for a model vehicle |
JP6411773B2 (en) * | 2013-09-30 | 2018-10-24 | 双葉電子工業株式会社 | Radio control transmitter |
US10212929B2 (en) * | 2015-01-15 | 2019-02-26 | Xxtreme Waterfowl R/C Llc | Remote controlled battery powered duck decoy |
-
2018
- 2018-01-29 US US16/481,442 patent/US20190358556A1/en active Pending
- 2018-01-29 EP EP18745262.8A patent/EP3573733B1/en active Active
- 2018-01-29 WO PCT/US2018/015792 patent/WO2018140898A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
US20190358556A1 (en) | 2019-11-28 |
EP3573733A4 (en) | 2020-11-04 |
EP3573733B1 (en) | 2022-04-27 |
WO2018140898A1 (en) | 2018-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3573733B1 (en) | Cruise control system for a model vehicle | |
US9862379B2 (en) | Parking assist apparatus and method for controlling vehicle speed | |
JP6702120B2 (en) | Parking assistance device | |
US6055467A (en) | Apparatus for automatic transverse vehicle guidance along a traffic lane | |
US10272926B2 (en) | Vehicle traveling control apparatus | |
EP3299239B1 (en) | Vehicle traveling control apparatus | |
WO2006075533B1 (en) | Remote control method and system, vehicle with remote controllable function, and control server | |
US20140095057A1 (en) | Remote control device for vehicle | |
US9165459B2 (en) | Radio control transmitter | |
US11136061B2 (en) | Control device for vehicle | |
JP3448054B2 (en) | Control system for operating a marine drive engine | |
JP6721573B2 (en) | Manual auxiliary drive and braking torque control | |
US20090068925A1 (en) | Smart remote control system | |
JP2010052468A (en) | Device for canceling automatic travel | |
US20160311364A1 (en) | Automatic control of a direction of travel indicator of a vehicle | |
EP3573868B1 (en) | Drag braking electronic speed control for a model vehicle | |
JP5836655B2 (en) | Servo device and remote control device equipped with the device | |
US20230108802A1 (en) | Remote moving application software and remote moving system | |
EP1413468A3 (en) | Differential limiting control apparatus for vehicle | |
EP1614923A3 (en) | Method for adjusting the clutch torque in a clutch-by-wire system | |
US20230286475A1 (en) | Driving assistance system and method | |
JPH01254439A (en) | Radio operation device for concrete mixer truck | |
US12043249B2 (en) | Remote parking apparatus | |
US11565667B1 (en) | Automatic brake pedal control | |
US20220288500A1 (en) | Transbraking system for a model vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190809 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20201006 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A63H 30/04 20060101AFI20201001BHEP Ipc: A63H 17/39 20060101ALI20201001BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211124 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SPILLMAN, DARYL, GENE Inventor name: POTEET, KENT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018034549 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1486470 Country of ref document: AT Kind code of ref document: T Effective date: 20220515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220427 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1486470 Country of ref document: AT Kind code of ref document: T Effective date: 20220427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220829 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220728 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220827 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018034549 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 |
|
26N | No opposition filed |
Effective date: 20230130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230129 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230129 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230129 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231212 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231205 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 |