EP3569953A1 - Coolant circuit running device and method for operating a coolant circuit running device with a hybrid evaporator - Google Patents
Coolant circuit running device and method for operating a coolant circuit running device with a hybrid evaporator Download PDFInfo
- Publication number
- EP3569953A1 EP3569953A1 EP19174389.7A EP19174389A EP3569953A1 EP 3569953 A1 EP3569953 A1 EP 3569953A1 EP 19174389 A EP19174389 A EP 19174389A EP 3569953 A1 EP3569953 A1 EP 3569953A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- tube
- evaporator
- inner tube
- refrigeration cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002826 coolant Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims description 13
- 239000003507 refrigerant Substances 0.000 claims abstract description 66
- 238000005057 refrigeration Methods 0.000 claims abstract description 55
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 18
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 9
- 239000003990 capacitor Substances 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 238000012546 transfer Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
Definitions
- the invention relates to a refrigeration cycle device with a refrigerant circuit through which refrigerant flows with at least one evaporator, a condenser, an expansion agent and at least one evaporator.
- the invention relates to such a refrigeration cycle device in which the refrigeration cycle thus formed is thermally coupled to a coolant circuit.
- the invention relates more particularly to a CO 2 -driven refrigeration cycle and a corresponding refrigeration cycle device, the invention particularly relates to the design and operation of the evaporator as a so-called hybrid evaporator.
- the invention also relates to a method of operating such a refrigeration cycle device with a CO 2 -based refrigerant and a glycol-based refrigerant in a refrigerant circuit coupled thereto.
- a refrigeration cycle device is provided with a refrigerant circuit K through which at least one compressor, a condenser, an expansion medium and at least one evaporator and a refrigerant circuit thermally coupled to the refrigeration circuit K from a water-based coolant, for example glycol, or a coolant mixture, wherein the evaporator and / or the condenser is provided with at least one refrigerant passage and at least one coolant passage extending parallel thereto, wherein the evaporator and / or condenser is a coupled tube-in-tube system having an inner tube and an outer tube surrounding it, wherein between Inner tube and outer tube a narrow annular gap is formed.
- a water-based coolant for example glycol, or a coolant mixture
- a narrow annular gap between the inner tube and outer tube according to the invention is such an annular gap which has a small dimension in relation to the diameters of the outer tube and the inner tube, for example of the order of less than 10% of the diameter of the inner tube.
- the narrow annular gap is adapted in its dimension to the specific volume of the refrigerant, which is preferably a CO 2 -based refrigerant. This means that the specific volume and the size of the annular gap are coordinated so that the performance of the evaporator or condenser is optimized and can be ensured.
- the invention provides an evaporator and / or condenser formed as a double tube, in which a refrigerant channel in the form of a narrow annular gap is present between an outer tube and an inner tube, while a water-based coolant or the like is present in the inner tube.
- the arrangement of the CO 2 refrigerant in the annular gap between the outer tube and the inner tube can also be reversed, namely in the sense that the evaporator or the condenser at least partially provides a change between the outer tube and the inner tube, as will be described below.
- a preferably stationary coolant for example a glycol-based coolant
- a CO 2 refrigerant flows in the annular gap.
- the coolant in the relatively large inner diameter tube in relation to the diameter of the outer tube gives even in a significant amount of heat to the refrigerant from.
- the outer shell of the outer tube for the refrigeration effect is usable, but also the outer surface of the inner tube, in which the glycol is filled or allowed to flow as a coolant.
- the inner tube and the outer tube of the evaporator are provided with a closely spaced diameter ratio of D 1 / D 2 of at least 4/5.
- the outer tube is formed as a tube jacket which surrounds the inner tube of the evaporator at least in sections.
- the region of the refrigerant channel (outer tube) formed as a pipe jacket has the corresponding inlets and outlets for a flow of the refrigerant in the refrigeration cycle K.
- the evaporator can be realized as a compact, tubular evaporator. The design effort for the production of the tube-in-tube system of the evaporator according to the invention is relatively low.
- a narrow annular gap of less than 10% of the diameter D 1 of the inner tube is provided between the inner tube and the outer tube of the evaporator. Due to the comparatively narrow annular gap in which the refrigerant of the refrigeration cycle flows, an optimal speed of the CO 2 refrigerant is achieved.
- the size of the annular gap is matched to the specific volume of CO 2 used as the refrigerant.
- an annular gap for refrigerant of the refrigeration circuit K is formed in the evaporator of the refrigeration cycle device, which is at least partially provided with thermal bridges between the inner tube and the outer tube.
- thermal bridges which can be realized for example in the form of a metal spiral, an even better heat transfer to the evaporator is achieved. The heat absorption is increased, and a higher efficiency can thus be achieved with relatively little effort become.
- thermal bridges in the form of webs between pipe walls can be provided.
- a refrigeration cycle device is provided with an evaporator and / or a condenser with a tube-in-tube system, wherein the tube-in-tube system is constructed with an integrated change between inner tube and outer tube.
- the inner tube and the outer tube are thus combined at least once alternately in a single component of the refrigeration cycle device.
- several changes are provided between the inner tube and the outer tube within the evaporator or the condenser.
- a change between the inner tube and the outer tube means that the refrigerant and the coolant, which are present in their respective channels in the inner tube and the outer tube, are alternately outside or inside.
- the annular gap is formed as a refrigerant passage, which over the longitudinal extent of the evaporator or the Condenser alternately outside and inside.
- the structural design of such a change between inside and outside annular gap can be realized with the skilled person known means.
- the inner tube and the outer tube can be realized for example via a tapered point and a line system.
- the structural design of the exchange between inner tube and outer tube can also be realized by the course of the channels, in particular the outer annular gap.
- the invention also relates to a method according to claim 9 for operating a refrigeration cycle device according to one of claims 1 to 8 with at least one evaporator for a CO 2 refrigerant for heat absorption of a refrigeration system or the like, the method being characterized by an evaporator serving as a hybrid evaporator in the form of a pipe-in-pipe system with an internally flowing or stationary coolant, in particular a glycol-based coolant, and a CO 2 refrigerant flowing past it outside is operated.
- an evaporator serving as a hybrid evaporator in the form of a pipe-in-pipe system with an internally flowing or stationary coolant, in particular a glycol-based coolant, and a CO 2 refrigerant flowing past it outside is operated.
- the method can be implemented both continuously and in clock mode. With the method thus operated, the refrigeration cycle device is also operated with surprisingly high efficiencies that set, although the coolant is located in an inner inner tube and the refrigerant flows outside in an annular gap of the outer tube over. Due to the coolant in the inner tube results in a dampening effect in clock mode.
- the Fig. 1 shows a schematic perspective view of a first embodiment of an evaporator according to the invention for a refrigeration cycle device.
- the evaporator 1 is a double tube type evaporator, ie with a coupled tube-in-tube system and an inner tube 2 and an outer tube 3.
- the evaporator 1 is operated with a coolant circuit of a water-based coolant or coolant mixture and with a refrigerant is a CO 2 -based refrigerant.
- the evaporator 1 has a refrigerant channel in an annular gap 4 between the inner tube 2 and the outer tube 3 for the CO 2 refrigerant.
- the coolant in turn flows or is provided in the inner tube 2.
- the ratio of the diameter D 1 / D 2 of the inner tube (D 1 ) to the outer tube (D 2 ) is chosen so that a comparatively narrow annular gap 4 in the double tube of the evaporator 1 is formed.
- the annular gap 4 is provided in this embodiment to contain the flowing CO 2 as a refrigerant. With the arrows in Fig. 1 and in Fig. 2 are the respective refrigerant flow in the annular gap 4 and the coolant flow in the inner tube 2 indicated by arrows.
- the flows of refrigerant and coolant may also be provided in opposite directions. Due to the comparatively narrow annular gap 4, the refrigerant flowing outside in this exemplary embodiment is conducted through an annular gap 4 adapted to the specific volume of CO 2 .
- the externally flowing refrigerant in the annular gap 4 virtually surrounds the coolant present in the inner tube 2, which may be, for example, a glycol or another water-based coolant.
- this form of evaporator 1 has shown high efficiency in performance.
- a refrigeration cycle device operated thereby is characterized by a stable and quiet operation. Unwanted shocks in the refrigeration cycle device, in particular in front of the compressor, are thus avoided.
- Fig. 2 is shown in a partial perspective schematic view of a second embodiment of an evaporator 1 according to the invention.
- an additional heat transfer medium is here installed in the annular gap 4 between the inner tube 2 and the outer tube 3, namely in the form of a corrugated thermal bridge 5.
- the thermal bridge 5 can be used as a corrugated metal sheet between the outer tube 3 and the inner tube. 2 be introduced. In this way, the heat transfer is further improved.
- this second embodiment corresponds to the Fig. 2 essentially that of those previously described Fig.
- the pipe diameter D 1 of the inner tube 2 and the pipe diameter D 2 of the outer tube 3 are provided such that a comparatively narrow annular gap 4 is formed, in which preferably a CO 2 flows as a refrigerant.
- a coolant flows or a coolant is included, which does not flow.
- the Fig. 3 shows in a perspective schematic view of a third embodiment of an evaporator 1 according to the invention or capacitor.
- the relevant Fig. 4 shows this embodiment in a partial longitudinal sectional view to illustrate the principle of a change between inner tube / outer tube according to the present invention.
- a change between the inner tube 2 and the outer tube 3 is provided according to the invention.
- the lying in the outer annular gap 4 refrigerant passage is diverted at a change point in the interior of the evaporator 1, and the previously inner coolant passage in the inner tube 2 is passed to the outside.
- an evaporator 1 With such a periodic change between inner tube and outer tube, an evaporator 1 can be provided, which has an improved balance in the operation. Because of the poorer heat transfer of the inner tube to the outer tube, the latter quasi insulating the inner tube, so at least partially an exchange between inner tube and outer tube in the evaporator 1 can be realized.
- the double tube of the evaporator 1 changes at least once, but preferably several times, between the inner and outer annular gap 2, in which preferably the CO 2 flows as a refrigerant.
- the annular gap 4 is provided as a comparatively narrow annular gap in relation to the diameters D 1 and D 2 of the inner tube and the outer tube, as has been explained to the embodiment described above.
- the order of magnitude is in the range of 10% or less of the diameter D 1 of the inner tube.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Kältekreislaufvorrichtung mit einem von Kältemittel durchströmten Kältekreis K aus mindestens einem Verdichter, einem Kondensator, einem Expansionsmittel und mindestens einem Verdampfer (1) sowie einem thermisch mit dem Kältekreis K gekoppelten Kühlmittelkreislauf aus einem wasserbasierten Kühlmittel oder Kühlmittelgemisch, wobei der Verdampfer (1) und/oder der Kondensator mit mindestens einem Kältemittelkanal und mindestens einem parallel dazu verlaufenden Kühlmittelkanal versehen ist, wobei das Kältemittel CO<sub>2</sub>ist und der Verdampfer (1) und/oder der Kondensator ein gekoppeltes Rohr-in-Rohr-System sind/ist mit einem Innenrohr (2) und einem dieses außen umgebenden Außenrohr (3), wobei zwischen Innenrohr (2) und Außenrohr (3) ein im Verhältnis zu den Durchmessern von Innenrohr (2) und Außenrohr (3) enger Ringspalt (4) gebildet ist, und wobei das spezifische Volumen des Kältemittels auf die Größe des Ringspalts (4) abgestimmt ist.Refrigeration circuit device with a refrigerant circuit K through which refrigerant flows, comprising at least one compressor, a condenser, an expansion medium and at least one evaporator (1) and a coolant circuit thermally coupled to the refrigeration circuit K made of a water-based coolant or coolant mixture, the evaporator (1) and / or the condenser is provided with at least one refrigerant channel and at least one coolant channel running parallel to it, the refrigerant being CO <sub> 2 </sub> and the evaporator (1) and / or the condenser being a coupled tube-in-tube system / has an inner tube (2) and an outer tube (3) surrounding it on the outside, with an annular gap (4) which is narrow in relation to the diameters of the inner tube (2) and outer tube (3) between the inner tube (2) and the outer tube (3) is formed, and wherein the specific volume of the refrigerant is matched to the size of the annular gap (4).
Description
Die Erfindung betrifft eine Kältekreislaufvorrichtung mit einem von Kältemittel durchströmten Kältekreis mit mindestens einem Verdampfer, einem Verflüssiger, einem Expansionsmittel sowie mindestens einem Verdampfer. Die Erfindung betrifft insbesondere solch eine Kältekreislaufvorrichtung, bei welcher der so gebildete Kältekreislauf mit einem Kühlmittelkreislauf thermisch gekoppelt ist. Die Erfindung bezieht sich noch genauer auf einen CO2-betriebenen Kältekreislauf und eine entsprechende Kältekreislaufvorrichtung, wobei die Erfindung insbesondere die Ausgestaltung und den Betrieb des Verdampfers als ein sogenannter Hybridverdampfer betrifft. Die Erfindung bezieht sich ebenso auf ein Verfahren zum Betrieb einer solchen Kältekreislaufvorrichtung mit einem CO2-basierten Kältemittel und einem glykolbasierten Kühlmittel in einem damit gekoppelten Kühlmittelkreislauf.The invention relates to a refrigeration cycle device with a refrigerant circuit through which refrigerant flows with at least one evaporator, a condenser, an expansion agent and at least one evaporator. In particular, the invention relates to such a refrigeration cycle device in which the refrigeration cycle thus formed is thermally coupled to a coolant circuit. The invention relates more particularly to a CO 2 -driven refrigeration cycle and a corresponding refrigeration cycle device, the invention particularly relates to the design and operation of the evaporator as a so-called hybrid evaporator. The invention also relates to a method of operating such a refrigeration cycle device with a CO 2 -based refrigerant and a glycol-based refrigerant in a refrigerant circuit coupled thereto.
Bei den im Stand der Technik bekannten derartigen Kältekreislaufvorrichtungen und entsprechenden Betriebsverfahren für Kältekreislaufvorrichtungen mit CO2-Kältemittel besteht ein Problem dahingehend, dass nur vergleichsweise geringe Wirkungsgrade erzielt werden können. Ferner weisen die im Stand der Technik bekannten derartigen Vorrichtungen den Nachteil auf, dass es zu unerwünschten Flüssigkeitsschlägen in einem Verdichter des Kältekreislaufs durch das nicht vollständig verdampfte Kältemittel kommen kann. Die bisher bekannten derartigen Kältekreislaufvorrichtungen hatten außerdem den Nachteil, dass ein ungleichmäßiges Betriebsverhalten gegeben war. Die Temperaturbereiche und die Betriebsbereiche derartiger Kältekreislaufvorrichtungen waren zudem bisher vergleichsweise beschränkt.In the known in the art such refrigeration cycle devices and corresponding operating method for refrigeration cycle devices with CO 2 refrigerant is a problem in that only relatively low efficiencies can be achieved. Furthermore, the known in the prior art such devices have the disadvantage that it may lead to unwanted liquid hammer in a compressor of the refrigeration cycle by the not completely evaporated refrigerant. The previously known such refrigeration cycle devices also had the disadvantage that an uneven operating behavior was given. The temperature ranges and the operating ranges of such refrigeration cycle devices were also comparatively limited.
Demgegenüber ist es die Aufgabe der vorliegenden Erfindung, eine Kältekreislaufvorrichtung mit einem CO2-basierten Kältemittel und mindestens einem Verdampfer sowie ein Verfahren zum Betrieb einer derartigen Kältekreislaufvorrichtung vorzuschlagen, bei welchen eine höhere Effizienz erzielt wird bei einem gleichmäßigeren Betriebsverhalten und einer größeren Betriebssicherheit über eine langfristige Betriebsdauer.In contrast, it is the object of the present invention to provide a refrigeration cycle device with a CO 2 -based refrigerant and at least one evaporator and a method for operating such a refrigeration cycle device, in which a higher efficiency is achieved with a smoother operating behavior and greater operational reliability over a long-term service life.
Diese Aufgabe wird mit einer Kältekreislaufvorrichtung mit den Merkmalen des Anspruchs 1 sowie mit einem Verfahren mit den Schritten nach Anspruch 9 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.This object is achieved with a refrigeration cycle device with the features of
Erfindungsgemäß wird eine Kältekreislaufvorrichtung mit einem von Kältemittel durchströmten Kältekreis K aus mindestens einem Verdichter, einem Kondensator, einem Expansionsmittel und mindestens einem Verdampfer vorgesehen sowie einem thermisch mit dem Kältekreis K gekoppelten Kühlmittelkreislauf aus einem wasserbasierten Kühlmittel, beispielsweise Glykol, oder einem Kühlmittelgemisch, wobei der Verdampfer und/oder der Kondensator mit mindestens einem Kältemittelkanal und mindestens einem parallel dazu verlaufenden Kühlmittelkanal versehen ist, wobei der Verdampfer und/oder Kondensator ein gekoppeltes Rohr-in-Rohr-System sind/ist mit einem Innenrohr und einem dieses außen umgebenden Außenrohr, wobei zwischen Innenrohr und Außenrohr ein enger Ringspalt gebildet ist.According to the invention, a refrigeration cycle device is provided with a refrigerant circuit K through which at least one compressor, a condenser, an expansion medium and at least one evaporator and a refrigerant circuit thermally coupled to the refrigeration circuit K from a water-based coolant, for example glycol, or a coolant mixture, wherein the evaporator and / or the condenser is provided with at least one refrigerant passage and at least one coolant passage extending parallel thereto, wherein the evaporator and / or condenser is a coupled tube-in-tube system having an inner tube and an outer tube surrounding it, wherein between Inner tube and outer tube a narrow annular gap is formed.
Ein enger Ringspalt zwischen dem Innenrohr und Außenrohr im Sinne der Erfindung ist ein solcher Ringspalt, der im Verhältnis zu den Durchmessern des Außenrohrs und des Innenrohrs eine geringe Abmessung aufweist, beispielsweise in der Größenordnung von weniger als 10 % des Durchmessers des Innenrohrs. Gemäß der Erfindung ist der enge Ringspalt in seiner Abmessung auf das spezifische Volumen des Kältemittels angepasst, welches vorzugsweise ein CO2-basiertes Kältemittel ist. Dies bedeutet, dass das spezifische Volumen und die Größe des Ringspalts aufeinander abgestimmt sind, so dass die Leistung des Verdampfers bzw. Kondensators optimiert ist und gewährleistet werden kann. Mit der Erfindung wird somit ein als Doppelrohr gebildeter Verdampfer und/oder Kondensator bereitgestellt, in welchem ein Kältemittelkanal in Form eines engen Ringspalts zwischen einem Außenrohr und einem Innenrohr vorhanden ist, während in dem Innenrohr ein wasserbasiertes Kühlmittel oder ähnliches vorhanden ist.A narrow annular gap between the inner tube and outer tube according to the invention is such an annular gap which has a small dimension in relation to the diameters of the outer tube and the inner tube, for example of the order of less than 10% of the diameter of the inner tube. According to the invention, the narrow annular gap is adapted in its dimension to the specific volume of the refrigerant, which is preferably a CO 2 -based refrigerant. This means that the specific volume and the size of the annular gap are coordinated so that the performance of the evaporator or condenser is optimized and can be ensured. Thus, the invention provides an evaporator and / or condenser formed as a double tube, in which a refrigerant channel in the form of a narrow annular gap is present between an outer tube and an inner tube, while a water-based coolant or the like is present in the inner tube.
Dieses kann strömend oder stehend in dem Innenrohr vorhanden sein. Die Anordnung des CO2-Kältemittels in dem Ringspalt zwischen Außenrohr und Innenrohr kann auch umgekehrt werden, nämlich in dem Sinne, dass der Verdampfer oder der Kondensator zumindest bereichsweise einen Wechsel zwischen dem Außenrohr und dem Innenrohr vorsieht, wie es weiter unten beschrieben werden wird.This may be present in the inner tube flowing or standing. The arrangement of the CO 2 refrigerant in the annular gap between the outer tube and the inner tube can also be reversed, namely in the sense that the evaporator or the condenser at least partially provides a change between the outer tube and the inner tube, as will be described below.
Die Vorteile eines so gebildeten Hybridverdampfers für eine Kältekreislaufvorrichtung haben sich insbesondere bei Kältekreislaufvorrichtungen auf Basis eines CO2 als Kältemittel gezeigt: Mit kleineren Temperaturdifferenzen werden ein stabilerer Betrieb und eine höhere Effizienz erreicht. Durch den so vorgesehenen Verdampfer mit einem Innenrohr für das Kühlmittel (z. B. Glykol) und einem außen von dem Innenrohr vorgesehenen vorbeiströmenden Kältemittel haben sich überraschenderweise auch bessere Betriebsbedingungen eingestellt. Insbesondere lassen sich so die schädlichen Flüssigkeitsschläge am Verdichter vermeiden, wenn, wie häufig im Stand der Technik, noch nicht verdampftes Kältemittel in dem Verdichter komprimiert wird und so zu Schäden an dem Verdichter oder gar zu einer Zerstörung des Verdichters führen kann. Durch die erfindungsgemäße Ausgestaltung der Kältekreislaufvorrichtung wurde überraschenderweise trotz der geringeren Temperaturdifferenzen eine relativ hohe Effizienz in der Leistungsfähigkeit erzielt. Überraschenderweise wurde trotz der geringen Temperaturdifferenzen zwischen dem innenliegenden Kühlmittel und dem außen vorbeiströmenden Kältemittel ein hoher Wirkungsgrad erreicht. Die größere Wärmeübertragungsfläche aufgrund des innenliegenden Kühlmittels in dem Innenrohr des Hybridverdampfers führt bei solch einem Rohr-in-Rohr-System zu dem Ergebnis, dass mit CO2 betriebene Kältekreislaufvorrichtungen sehr stabil und ruhig betrieben werden können ohne die sonst vorhandenen Turbulenzen in dem CO2-Kältemittelkreis.The advantages of a so-formed hybrid evaporator for a refrigeration cycle device have been found in particular in refrigeration cycle devices based on a CO 2 as refrigerant: With smaller temperature differences, a more stable operation and a higher efficiency can be achieved. By virtue of the evaporator provided with an inner tube for the coolant (eg, glycol) and a coolant flowing past the inner tube, surprisingly, better operating conditions have also been established. In particular, the harmful liquid blows on the compressor can thus be avoided if, as is often the case in the state of the art, not yet vaporized refrigerant is compressed in the compressor and can thus lead to damage to the compressor or even to destruction of the compressor. Due to the inventive design of the refrigeration cycle device, a relatively high efficiency in the performance was surprisingly achieved despite the lower temperature differences. Surprisingly, despite the low temperature differences between the internal coolant and the outside passing refrigerant, a high efficiency has been achieved. The larger heat transfer surface due to the internal coolant in the inner tube of the hybrid evaporator results in such a tube-in-pipe system, that CO 2 operated refrigeration cycle devices can be operated very stable and quiet without the otherwise existing turbulence in the CO 2 - refrigerant circuit.
Gemäß einem vorteilhaften Aspekt der Erfindung ist in dem Innenrohr des Verdampfers ein vorzugsweise stehendes Kühlmittel, beispielsweise ein glykolbasiertes Kühlmittel, vorhanden und strömt in dem Ringspalt ein CO2-Kältemittel. Das Kühlmittel in dem im Durchmesser vergleichsweise großen Innenrohr im Verhältnis zu dem Durchmesser des Außenrohrs gibt auch in nicht unerheblicher Menge selbst Wärme an das Kältemittel ab. Auf diese Weise ist nicht nur der Außenmantel des Außenrohrs für die Kälteerzeugungswirkung verwendbar, sondern auch die Mantelfläche des Innenrohrs, in welchem das Glykol als Kühlmittel eingefüllt oder strömen gelassen wird.According to an advantageous aspect of the invention, a preferably stationary coolant, for example a glycol-based coolant, is present in the inner tube of the evaporator and a CO 2 refrigerant flows in the annular gap. The coolant in the relatively large inner diameter tube in relation to the diameter of the outer tube gives even in a significant amount of heat to the refrigerant from. In this way, not only the outer shell of the outer tube for the refrigeration effect is usable, but also the outer surface of the inner tube, in which the glycol is filled or allowed to flow as a coolant.
Gemäß einem weiteren vorteilhaften Aspekt der Erfindung sind das Innenrohr und das Außenrohr des Verdampfers mit einem nahe beieinander liegenden Durchmesserverhältnis von D1/D2 von mindestens 4/5 vorgesehen.According to a further advantageous aspect of the invention, the inner tube and the outer tube of the evaporator are provided with a closely spaced diameter ratio of D 1 / D 2 of at least 4/5.
Gemäß einem weiteren vorteilhaften Aspekt der Erfindung ist das Außenrohr als ein Rohrmantel gebildet, welcher das Innenrohr des Verdampfers mindestens abschnittsweise umschließt. Der als Rohrmantel gebildete Bereich des Kältemittelkanals (Außenrohr) weist die entsprechenden Einlässe und Auslässe für ein Strömenlassen des Kältemittels in dem Kältekreislauf K auf. Der Verdampfer kann so als ein kompakter, rohrförmiger Verdampfer realisiert werden. Der konstruktive Aufwand zur Herstellung des Rohr-in-Rohr-Systems des erfindungsgemäßen Verdampfers ist vergleichsweise gering.According to a further advantageous aspect of the invention, the outer tube is formed as a tube jacket which surrounds the inner tube of the evaporator at least in sections. The region of the refrigerant channel (outer tube) formed as a pipe jacket has the corresponding inlets and outlets for a flow of the refrigerant in the refrigeration cycle K. The evaporator can be realized as a compact, tubular evaporator. The design effort for the production of the tube-in-tube system of the evaporator according to the invention is relatively low.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung ist zwischen dem Innenrohr und dem Außenrohr des Verdampfers ein enger Ringspalt von weniger als 10 % des Durchmessers D1 des Innenrohrs vorgesehen. Durch den vergleichsweise engen Ringspalt, in welchem das Kältemittel des Kältekreislaufs strömt, wird eine optimale Geschwindigkeit des CO2-Kältemittels erreicht. Die Größe des Ringspalts ist auf das spezifische Volumen des als Kältemittel verwendeten CO2 abgestimmt.According to a further advantageous embodiment of the invention, a narrow annular gap of less than 10% of the diameter D 1 of the inner tube is provided between the inner tube and the outer tube of the evaporator. Due to the comparatively narrow annular gap in which the refrigerant of the refrigeration cycle flows, an optimal speed of the CO 2 refrigerant is achieved. The size of the annular gap is matched to the specific volume of CO 2 used as the refrigerant.
Gemäß einem weiteren vorteilhaften Aspekt der Erfindung ist in dem Verdampfer der Kältekreislaufvorrichtung ein Ringspalt für Kältemittel des Kältekreises K gebildet, welcher mindestens abschnittsweise mit Wärmebrücken zwischen dem Innenrohr und dem Außenrohr versehen ist. Mittels solcher Wärmebrücken, die beispielsweise in Form von einer Metallspirale verwirklicht sein können, wird eine noch bessere Wärmeübertragung an dem Verdampfer erreicht. Die Wärmeaufnahme wird erhöht, und ein höherer Wirkungsgrad kann somit mit vergleichsweise geringem Aufwand erzielt werden. Alternativ können auch Wärmebrücken in Form von Stegen zwischen Rohrwänden vorgesehen sein.According to a further advantageous aspect of the invention, an annular gap for refrigerant of the refrigeration circuit K is formed in the evaporator of the refrigeration cycle device, which is at least partially provided with thermal bridges between the inner tube and the outer tube. By means of such thermal bridges, which can be realized for example in the form of a metal spiral, an even better heat transfer to the evaporator is achieved. The heat absorption is increased, and a higher efficiency can thus be achieved with relatively little effort become. Alternatively, thermal bridges in the form of webs between pipe walls can be provided.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung ist eine Kältekreislaufvorrichtung mit einem Verdampfer und/oder einem Kondensator mit einem Rohr-in-Rohr-System vorgesehen, wobei das Rohr-in-Rohr-System mit einem integrierten Wechsel zwischen Innenrohr und Außenrohr aufgebaut ist. Das Innenrohr und das Außenrohr sind somit mindestens einmal abwechselnd in einer einzigen Komponente der Kältekreislaufvorrichtung kombiniert. Vorzugsweise sind mehrere Wechsel zwischen dem Innenrohr und dem Außenrohr innerhalb des Verdampfers oder des Kondensators vorgesehen. Ein Wechsel zwischen dem Innenrohr und dem Außenrohr bedeutet, dass das Kältemittel und das Kühlmittel, welche in ihren entsprechenden Kanälen in dem Innenrohr und dem Außenrohr vorhanden sind, wechselweise außen oder innen sind. Durch solch ein wechselweises Tauschen von Innenrohr/Außenrohr in ein und dergleichen Komponente kann ein besseres Gleichgewicht in der Leistung und im Betrieb erreicht werden. Auf diese Weise wird der schlechtere Wärmeübergang von dem inneren Rohr zur Außenseite hin, welches quasi durch das äußere Rohr, das es umgibt, isoliert wird, ausgeglichen. Auch kann mit einem solchen spezifischen Wechsel der Innenseite/Außenseite und damit einem Umtausch von außenliegendem Kältemittel zu innenliegendem Kältemittel ein besonderer Betrieb der Kältekreislaufvorrichtung erreicht werden. Es ist auch denkbar, dass eine solche Kältekreislaufvorrichtung für einen Heizbetrieb im Winter, beispielsweise zum Abtauen, verwendet wird und in umgekehrter Schaltung für einen Kühlbetrieb im Sommer in einer Klimaanlage verwendet wird. Mit der erfindungsgemäßen Lösung eines wechselweisen Tausches von Innenrohr zu Außenrohr kann somit mit dem gleichen Kreislauf eine größere Variantenvielfalt an Betriebsweisen erzielt werden. Auch lässt sich so weiter die Effizienz des Verdampfers und/oder des Kondensators erhöhen.According to a further advantageous embodiment of the invention, a refrigeration cycle device is provided with an evaporator and / or a condenser with a tube-in-tube system, wherein the tube-in-tube system is constructed with an integrated change between inner tube and outer tube. The inner tube and the outer tube are thus combined at least once alternately in a single component of the refrigeration cycle device. Preferably, several changes are provided between the inner tube and the outer tube within the evaporator or the condenser. A change between the inner tube and the outer tube means that the refrigerant and the coolant, which are present in their respective channels in the inner tube and the outer tube, are alternately outside or inside. By such alternate exchange of inner tube / outer tube in one and the same component, a better balance in performance and operation can be achieved. In this way, the poorer heat transfer from the inner tube to the outside, which is quasi insulated by the outer tube surrounding it, is compensated. Also, with such a specific change of the inside / outside and thus an exchange of external refrigerant to internal refrigerant, a special operation of the refrigeration cycle device can be achieved. It is also conceivable that such a refrigeration cycle device for a heating operation in winter, for example, to defrost, is used and is used in reverse circuit for a cooling operation in summer in an air conditioner. With the inventive solution of an alternate exchange of inner tube to outer tube can thus be achieved with the same circuit a larger variety of modes of operation. Also can be further increase the efficiency of the evaporator and / or the capacitor.
Gemäß einem weiteren diesbezüglichen Aspekt der Erfindung ist der Ringspalt als ein Kältemittelkanal gebildet, welcher über die Längserstreckung des Verdampfers oder des Kondensators abwechselnd außen und innen liegt. Die konstruktive Ausgestaltung eines solchen Wechsels zwischen innen und außen liegendem Ringspalt kann mit dem Fachmann bekannten Mitteln realisiert werden. Das Innenrohr und das Außenrohr können beispielsweise über eine verjüngte Stelle und ein Leitungssystem realisiert werden. Die konstruktive Ausgestaltung des Tausches zwischen Innenrohr und Außenrohr kann auch durch den Verlauf der Kanäle, insbesondere des äußeren Ringspalts, realisiert werden.According to a further related aspect of the invention, the annular gap is formed as a refrigerant passage, which over the longitudinal extent of the evaporator or the Condenser alternately outside and inside. The structural design of such a change between inside and outside annular gap can be realized with the skilled person known means. The inner tube and the outer tube can be realized for example via a tapered point and a line system. The structural design of the exchange between inner tube and outer tube can also be realized by the course of the channels, in particular the outer annular gap.
Die Erfindung betrifft ebenso ein Verfahren nach Anspruch 9 zum Betrieb einer Kältekreislaufvorrichtung nach einem der Ansprüche 1 bis 8 mit mindestens einem Verdampfer für ein CO2-Kältemittel zur Wärmeaufnahme einer Kälteanlage oder dergleichen, wobei das Verfahren gekennzeichnet ist durch einen Verdampfer, der als ein Hybridverdampfer in Form eines Rohr-in-Rohr-Systems mit einem innen strömenden oder stehenden Kühlmittel, insbesondere einem auf Glykol basierenden Kühlmittel, und einem davon außen vorbeiströmenden CO2-Kältemittel betrieben wird. Mit einem so durchgeführten Verfahren lässt sich ein CO2-basierter Kältekreislauf in stabilerer Art und Weise betreiben. Es entstehen keine unerwünschten Druckspitzen, und eine Flüssigkeitskomprimierung in dem Verdichter wird so ebenfalls effektiv vermieden. Nicht zuletzt lassen sich mit vergleichsweise geringen Temperaturdifferenzen in solch einem CO2-basierten Kältekreislauf dennoch hohe Wirkungsgrade erzielen.The invention also relates to a method according to claim 9 for operating a refrigeration cycle device according to one of
Das Verfahren kann sowohl kontinuierlich als auch im Taktbetrieb umgesetzt werden. Mit dem so betriebenen Verfahren wird die Kältekreislaufvorrichtung zudem mit überraschend hohen Wirkungsgraden betrieben, die sich einstellen, obwohl sich das Kühlmittel in einem innenliegenden Innenrohr befindet und das Kältemittel außen in einem Ringspalt des Außenrohrs vorbei strömt. Durch das Kühlmittel im Innenrohr ergibt sich eine dämpfende Wirkung im Taktbetrieb.The method can be implemented both continuously and in clock mode. With the method thus operated, the refrigeration cycle device is also operated with surprisingly high efficiencies that set, although the coolant is located in an inner inner tube and the refrigerant flows outside in an annular gap of the outer tube over. Due to the coolant in the inner tube results in a dampening effect in clock mode.
Weitere Vorteile, Merkmale und Ausführungsbeispiele der Erfindung werden im Folgenden mehr im Detail anhand der beigefügten Zeichnungen erläutert werden. In den Zeichnungen zeigen:
- Fig. 1
- eine schematische perspektivische Ansicht eines erfindungsgemäßen Verdampfers für eine Kältekreislaufvorrichtung gemäß einem ersten Ausführungsbeispiel;
- Fig. 2
- eine schematische perspektivische Ansicht eines erfindungsgemäßen Verdampfers für eine Kältekreislaufvorrichtung gemäß einem zweiten Ausführungsbeispiel;
- Fig. 3
- eine schematische perspektivische Ansicht eines dritten Ausführungsbeispiels eines erfindungsgemäßen Verdampfers oder Kondensators für eine Kältekreislaufvorrichtung gemäß einem dritten Ausführungsbeispiel; und
- Fig. 4
- eine ausschnittsweise Längsschnittansicht des erfindungsgemäßen Verdampfers oder Kondensators gemäß dem dritten Ausführungsbeispiel.
- Fig. 1
- a schematic perspective view of an evaporator according to the invention for a refrigeration cycle device according to a first embodiment;
- Fig. 2
- a schematic perspective view of an evaporator according to the invention for a refrigeration cycle device according to a second embodiment;
- Fig. 3
- a schematic perspective view of a third embodiment of an evaporator or condenser according to the invention for a refrigeration cycle device according to a third embodiment; and
- Fig. 4
- a partial longitudinal sectional view of the evaporator or capacitor according to the invention according to the third embodiment.
Die
Die Ströme von Kältemittel und Kühlmittel können auch in gegenläufiger Art und Weise vorgesehen werden. Durch den vergleichsweise engen Ringspalt 4 wird das in diesem Ausführungsbeispiel außen strömende Kältemittel durch einen auf das spezifische Volumen von CO2 angepassten Ringspalt 4 geleitet. Das außen strömende Kältemittel in dem Ringspalt 4 umgibt quasi das innen vorhandene Kühlmittel in dem Innenrohr 2, das beispielsweise ein Glykol oder ein anderes wasserbasiertes Kühlmittel sein kann. Überraschenderweise hat sich mit dieser Form eines Verdampfers 1 eine hohe Effizienz in der Leistungsfähigkeit gezeigt. Eine damit betriebene Kältekreislaufvorrichtung ist durch einen stabilen und ruhigen Betrieb gekennzeichnet. Unerwünschte Stöße in der Kältekreislaufvorrichtung, insbesondere vor dem Verdichter, werden somit vermieden.The flows of refrigerant and coolant may also be provided in opposite directions. Due to the comparatively narrow
In der
Die
Claims (12)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018111542.3A DE102018111542A1 (en) | 2018-05-15 | 2018-05-15 | Refrigeration cycle device and method for operating a refrigeration cycle device with a hybrid evaporator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3569953A1 true EP3569953A1 (en) | 2019-11-20 |
EP3569953B1 EP3569953B1 (en) | 2022-03-30 |
Family
ID=66542125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19174389.7A Active EP3569953B1 (en) | 2018-05-15 | 2019-05-14 | Coolant circuit running device and method for operating a coolant circuit running device with a hybrid evaporator |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3569953B1 (en) |
DE (1) | DE102018111542A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220235982A1 (en) * | 2019-08-07 | 2022-07-28 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3545063A (en) * | 1968-12-17 | 1970-12-08 | John E Mitchell Co Inc | Method of assembling an evaporator having a helical channel |
JPS6048496A (en) * | 1983-08-25 | 1985-03-16 | Kobe Steel Ltd | Heat transfer pipe for double-pipe type condenser |
DE3408626A1 (en) * | 1984-03-09 | 1985-09-12 | Wieland-Werke Ag, 7900 Ulm | Wound heat exchanger, in particular for heat pumps or refrigerating plants |
DE102004004027A1 (en) * | 2003-01-28 | 2004-10-14 | Denso Corp., Kariya | Double connector structure for connecting duplex tubes used in e.g. vehicle air conditioner, has coupling member which elastically deforms so that duplex tubes can be connected, when any one duplex tube approaches the other duplex tube |
DE102005056651A1 (en) * | 2005-11-25 | 2007-05-31 | Behr Gmbh & Co. Kg | Coaxial tube or tube-in-tube arrangement, in particular for a heat exchanger |
DE102008062486A1 (en) * | 2007-12-28 | 2009-07-02 | Showa Denko K.K. | Double-wall tube heat exchanger |
-
2018
- 2018-05-15 DE DE102018111542.3A patent/DE102018111542A1/en not_active Withdrawn
-
2019
- 2019-05-14 EP EP19174389.7A patent/EP3569953B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3545063A (en) * | 1968-12-17 | 1970-12-08 | John E Mitchell Co Inc | Method of assembling an evaporator having a helical channel |
JPS6048496A (en) * | 1983-08-25 | 1985-03-16 | Kobe Steel Ltd | Heat transfer pipe for double-pipe type condenser |
DE3408626A1 (en) * | 1984-03-09 | 1985-09-12 | Wieland-Werke Ag, 7900 Ulm | Wound heat exchanger, in particular for heat pumps or refrigerating plants |
DE102004004027A1 (en) * | 2003-01-28 | 2004-10-14 | Denso Corp., Kariya | Double connector structure for connecting duplex tubes used in e.g. vehicle air conditioner, has coupling member which elastically deforms so that duplex tubes can be connected, when any one duplex tube approaches the other duplex tube |
DE102005056651A1 (en) * | 2005-11-25 | 2007-05-31 | Behr Gmbh & Co. Kg | Coaxial tube or tube-in-tube arrangement, in particular for a heat exchanger |
DE102008062486A1 (en) * | 2007-12-28 | 2009-07-02 | Showa Denko K.K. | Double-wall tube heat exchanger |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220235982A1 (en) * | 2019-08-07 | 2022-07-28 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
Also Published As
Publication number | Publication date |
---|---|
EP3569953B1 (en) | 2022-03-30 |
DE102018111542A1 (en) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3650648T2 (en) | Condenser with a small hydraulic diameter flow path. | |
DE69219107T2 (en) | Evaporator | |
DE60011327T2 (en) | Highly effective cooling system | |
EP1724536B1 (en) | Heat exchanger with accumulator | |
DE602005002995T2 (en) | Device combining an internal heat exchanger and accumulator for a cycle of an air conditioner | |
DE19903833A1 (en) | Integrated collector heat exchanger assembly | |
DE60012256T2 (en) | Capacitor with a means of relaxation | |
DE3419442A1 (en) | HEAT EXCHANGER | |
EP1790931A2 (en) | Coaxial or pipe in pipe assembly, in particular for a heat exchanger | |
DE2617351A1 (en) | METHOD AND APPARATUS FOR MAKING REFRIGERATION | |
EP0190319A1 (en) | Refrigerator or heat pump and jet pump therefor. | |
DE19802008C2 (en) | Freezing process and heat exchanger for condensation | |
EP3569953B1 (en) | Coolant circuit running device and method for operating a coolant circuit running device with a hybrid evaporator | |
EP2926073B1 (en) | Heat exchanger | |
EP1272804A2 (en) | Heat exchanger for a co2 vehicle air conditioner | |
DE102006061440A1 (en) | Heat exchanger e.g. cooling liquid heat exchanger for use in motor vehicle, has tubes interacting with openings of collecting tank and header tank such that end of each tube has contour | |
EP3009780B1 (en) | Heat exchanger | |
DE2316051A1 (en) | PROCEDURE FOR CONDENSING REFRIGERANT AND CONDENSER TO CARRY OUT THE PROCEDURE | |
DE102014207660A1 (en) | Internal heat exchanger | |
DE202014004155U1 (en) | Circular heat exchanger with molded dryer and refrigeration circuit with this heat exchanger | |
DE102019217368A1 (en) | Tubular body for a heat exchanger and heat exchanger | |
DE3132641A1 (en) | Heat exchanger | |
DE830804C (en) | Heat exchanger | |
DE202004008737U1 (en) | Oil cooling heat exchanger has outer pipe with helical rectangular section wire flute defining flow chamber with inner pipe | |
DE2629285B2 (en) | Heat exchanger with an annular space that carries a viscous medium and is axially limited by an end wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200520 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211021 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1479543 Country of ref document: AT Kind code of ref document: T Effective date: 20220415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019003839 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220630 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220630 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220701 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220801 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220730 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019003839 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220514 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20190514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230514 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240517 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240522 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240529 Year of fee payment: 6 |