EP3565276B1 - Method for operating a hearing aid and hearing aid - Google Patents

Method for operating a hearing aid and hearing aid Download PDF

Info

Publication number
EP3565276B1
EP3565276B1 EP19171367.6A EP19171367A EP3565276B1 EP 3565276 B1 EP3565276 B1 EP 3565276B1 EP 19171367 A EP19171367 A EP 19171367A EP 3565276 B1 EP3565276 B1 EP 3565276B1
Authority
EP
European Patent Office
Prior art keywords
acceleration
movement
head
yaw
hearing aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP19171367.6A
Other languages
German (de)
French (fr)
Other versions
EP3565276A1 (en
Inventor
Tobias Wurzbacher
Thomas Kübert
Dirk Mauler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP3565276A1 publication Critical patent/EP3565276A1/en
Application granted granted Critical
Publication of EP3565276B1 publication Critical patent/EP3565276B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/402Arrangements for obtaining a desired directivity characteristic using contructional means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/41Detection or adaptation of hearing aid parameters or programs to listening situation, e.g. pub, forest
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/59Arrangements for selective connection between one or more amplifiers and one or more receivers within one hearing aid

Definitions

  • the invention relates to a method for operating a hearing aid and a hearing aid which is set up in particular to carry out the method.
  • Hearing aids in particular in the form of hearing aids, are used by people with a hearing loss to at least partially compensate for the hearing loss.
  • conventional hearing aids regularly include at least one microphone for capturing noises from the environment and a signal processing processor, which is used to process the captured noises and, in particular, to amplify and / or attenuate them as a function of the individual hearing impairment (particularly frequency-specific).
  • the processed microphone signals are forwarded by the signal processing processor to an output converter - usually in the form of a loudspeaker - for output to the hearing of the respective hearing aid wearer.
  • so-called bone conduction headphones or cochlear implants are also used as output transducers for mechanical or electrical stimulation of the hearing.
  • hearing aid also includes other devices such as headphones, so-called tinnitus maskers or headsets.
  • Hearing aids in particular often have what is known as a classifier, which is used to infer certain, predefined “hearing situations”, in particular on the basis of the recorded noises.
  • the signal processing is then changed as a function of the recognized hearing situation. Since the hearing aid wearer's speech understanding is frequently impaired due to the hearing impairment present, the (signal processing) algorithms stored in the signal processing processor are usually adapted to the utterances of third parties to work out in the recorded microphone signals and to reproduce them for the respective hearing aid wearer in a form that is as understandable as possible. To recognize a conversation situation, a speech recognition algorithm is often processed in the classifier.
  • the end EP 3 154 277 A1 a method for operating a hearing device is known in which the hearing device has two acceleration sensors which each provide a sensor signal and by means of which an orientation of the user's head is determined. The sensor signals from both acceleration sensors are used in combination to determine the orientation. An operating parameter of the hearing device is then set as a function of the orientation.
  • a binaural hearing aid system which comprises left and right hearing aid devices and a user interface, as well as its use and an operating method therefor.
  • the left and right hearing aids include at least two input units for providing a time-frequency representation of an input signal in a number of frequency bands and a number of time instances, and a multiple input unit noise suppression system that includes a multi-channel beamformer filter unit that is operable with the at least two input units is coupled and configured to provide a beam-shaped signal.
  • the binaural hearing assistance system is configured in such a way that a user can indicate a direction to or the location of a target signal source relative to the user via the user interface.
  • a method for physically adapting a hearing aid to a hearing aid wearer is known.
  • a characteristic measure for a current actual wearing position of the hearing aid is determined by means of a position sensor of the hearing aid.
  • Using the characteristic measure for the actual wearing position is then determined a deviation of the actual wearing position from a predetermined target wearing position.
  • an instruction is issued to the hearing aid wearer to adapt the receiver connection means as a function of the determined deviation.
  • KESHNER EA et al . "Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects", Gait & Posture, Elsevier, Amsterdam, NL, Vol. 28, No. 1, July 1 2008, pages 127-134, XP022686191, ISSN: 0966-6362, DOI: 10.10l6 / j.gaitpost.2007.11.003 describes an investigation into whether multiplanar movements in the environment lead to head instability, especially when the visual environment moves in planes that are orthogonal to a physical disturbance. For this purpose, the displacement of surfaces in the sagittal plane was combined with visual field disturbances in 12 healthy (29-31 years) and 3 visually sensitive (27-57 years) adults.
  • COP Center of Pressure
  • tip head angle and RMS values of head movement were calculated and a three-dimensional model of joint movement was developed to study gross head movement in three planes. It was found that subjects who stood quietly in front of a visual scene that was translating in the sagittal plane produced a significantly greater (p ⁇ 0.003) head movement when yawing than on a translational platform. However, if the platform was moved in the dark or with a visual scene rotating in a rolling motion, head movement orthogonal to the plane of platform movement was significantly increased (p ⁇ 0.02). Visually sensitive subjects with no history of vestibular disorder produced large, delayed compensatory head movements.
  • the invention is based on the object of enabling improved operation of a hearing aid.
  • the method according to the invention is used to operate a hearing aid which (preferably only) has one acceleration sensor.
  • This acceleration sensor is positioned on the head of a hearing aid wearer when it is worn as intended. Furthermore, the acceleration sensor is set up for measurement in at least two measurement axes that are perpendicular to one another (also referred to as “measurement directions”).
  • at least one main feature is derived from an acceleration signal of the acceleration sensor, which is related to an acceleration directed tangentially (and preferably approximately horizontally) to the head of the hearing aid wearer.
  • the presence of a yaw movement of the head is then determined on the basis of the respective main feature (s), taking into account at least one predetermined criterion which can be derived from the acceleration signal itself and which goes beyond the presence of an acceleration value of the tangentially directed acceleration indicative of a movement.
  • “Related to the acceleration directed tangentially to the head of the hearing aid wearer” is understood here and below to mean that the main feature directly reproduces this tangentially directed acceleration, or that the main feature contains at least information about this.
  • “yaw movement” is understood to mean, in particular, a rotational movement of the head about a vertical axis (which preferably coincides at least approximately with the vertical).
  • “nodding” or “nodding movement” for an up and down movement directed up and down around a “nodding axis” that is preferably horizontal and in particular connecting the ears of the hearing aid wearer, as well as “rolling” or “ Rolling motion “for a sideways inclination or tilting of the head around a "roll axis” which is preferably horizontal and in particular is oriented in the neutral viewing direction (also referred to as "zero-degree viewing direction”).
  • Acceleration sensor is understood here and in the following in particular to mean a sensor in which sensor elements for measurement in the at least two measurement axes (ie for two-dimensional measurement), preferably in three measurement axes perpendicular to one another (three-dimensional measurement), are integrated. Such an acceleration sensor therefore preferably represents a self-contained component that is set up for connection to an evaluation unit.
  • a yaw movement is preferably not concluded when an acceleration directed tangentially to the head can be read from the acceleration signal, but only when it is concluded that the yaw movement is present, taking into account the at least one additional criterion.
  • the probability that there is actually a yaw movement is increased. Misinterpretations of the acceleration signal can thus be avoided or at least reduced.
  • the recognized yaw movement is used to support the analysis of hearing situations.
  • a time profile of the tangentially directed acceleration (also referred to as “tangential acceleration” for short in the following) is used as the main feature.
  • the predefined criterion used, and thus considered is whether the temporal course of the tangential acceleration is within a predefined movement time window has two oppositely directed local extrema consecutively (that is, for example, a local maximum and a local minimum). In particular, it is considered whether in the course of time the tangential acceleration assumes values with opposite signs at these two extremes.
  • the tangential acceleration initially indicates an "actual” acceleration and then a “negative” acceleration (namely when the head is braked) with a respective associated deflection (the respective extreme) over time.
  • the tangential acceleration thus initially assumes positive values, for example, and "changes" to negative values when the head is braked.
  • the values of the tangential acceleration change accordingly from negative to positive.
  • the movement time window is preferably adapted to the duration of a normal head turning movement, especially in a group conversation, and preferably has values between 0.25 and 2 or 1.5 seconds, in particular from 0.5 to 1 second.
  • the movement time window is preferably "opened” (ie its monitoring is started) when a sufficiently significant change in the values of the tangential acceleration is detected.
  • the movement time window advantageously limits the consideration of the main feature, in particular the temporal course of the tangential acceleration, so that "acceleration events" which, due to their comparatively long duration, are very likely not to be assigned to a head rotation (i.e. no yawing) , are not taken into account.
  • an extremum of the temporal course is only inferred if the underlying change in the temporal course differs from a usual measured value fluctuation, e.g. noise, or from minor movements (which regularly do not cause sufficiently significant changes in the temporal course) can distinguish.
  • a threshold value comparison is carried out for this purpose.
  • an additional feature derived from the acceleration signal is a time curve of an acceleration directed radially (and in particular also horizontally) in particular with respect to a yaw axis of the head of the hearing aid wearer (which regularly at least approximately coincides with the vertical).
  • the predefined criterion used is, in particular, whether the time profile of the radially directed acceleration (hereinafter referred to as “radial acceleration”) assumes a local extreme within the predefined (and above-described) movement time window.
  • radial acceleration the time profile of the radially directed acceleration
  • two criteria are considered, namely whether the tangential acceleration indicates the acceleration described above and the braking, and whether the radial acceleration also indicates an acceleration.
  • a movement intensity is determined on the basis of the temporal course of the tangential and possibly also the radial acceleration.
  • a strength of the movement intensity - preferably the size of the determined value of the movement intensity - is used as a predetermined criterion.
  • a threshold value comparison is carried out for this purpose in order to compare the determined value of the movement intensity with a predetermined threshold value.
  • the existence of the yaw movement is inferred in particular if the movement intensity has a specific, in particular predetermined, strength.
  • the presence of the yaw movement is not inferred if the movement intensity clearly exceeds and / or exceeds the specified (expected) strength falls below.
  • a probability for the presence of the yaw movement is determined, the probability value of which decreases the further the movement intensity deviates from the expected strength (in particular it exceeds or falls below it).
  • a duration of movement and / or a total energy or mean energy contained in the tangential and radial acceleration - in particular in the respective measured value curve - is preferably determined as a measure of the movement intensity.
  • a correlation coefficient between a time derivative of the tangential acceleration and the radial acceleration is determined as the main feature.
  • the tangential acceleration (preferably its time profile) is thus first derived from time and then correlated with the radial acceleration (preferably with its time profile).
  • the strength - ie in particular the magnitude of the value - of the correlation coefficient is used as the predetermined criterion.
  • a threshold value comparison of the correlation coefficient with an in particular predetermined threshold value also takes place here. This approach is based on the knowledge that with a yaw movement of the head, the change in the tangential acceleration (i.e.
  • This correlation coefficient thus advantageously represents an indicator that is comparatively easy to check for the presence of a yaw movement.
  • a high magnitude value of the correlation coefficient can thus advantageously be used to infer a high probability of the presence of the yaw movement.
  • a comparatively low strength of the correlation coefficient (for example less than 0.5 or less than 0.3), on the other hand, indicates comparatively uncoordinated or aimless head movements or an immobile head.
  • a yaw direction is determined on the basis of the correlation coefficient, preferably on the basis of the sign.
  • the sign of the determined correlation coefficient is used as an indicator for the direction in which the hearing aid wearer turns his head. This is due in particular to the fact that the acceleration sensor used has a positive and a negative measuring direction for each measuring axis.
  • the acceleration sensor is arranged on the left ear of the hearing aid wearer when the hearing aid is worn as intended and the measurement axis assigned to the tangential acceleration points with its positive direction in the viewing direction of the hearing aid wearer
  • the temporal course of the tangential acceleration in the case of a yaw movement to the left initially show negative values.
  • the time course will initially assume positive values in the case of a yaw movement to the right.
  • the main feature used is a curve of a diagram in which the tangential acceleration is plotted against the radial acceleration. I. E. this curve is first determined.
  • the geometric shape of this curve in particular is used as the specified criterion.
  • Such a curve advantageously already contains the information from the two measurement axes relevant for a yaw movement. As an option, there is no need to determine additional features.
  • the curve described above will have other shapes, for example a zigzag-like course (that is to say with alternating directions of curvature).
  • ellipsoid is understood to mean in particular that the curve has a shape that is curved and approximately closed in one direction of rotation (i.e., in particular with a slight offset compared to the curve length) or is at least composed of several curve sections that are curved in this way and optionally connect straight sections .
  • the direction of rotation of the curve described above - which can in particular be read from the time sequence of the individual measured values - is used to determine the direction of yaw.
  • only one main feature is sufficient to ensure that the yaw movement and its yaw direction are present in a particularly robust manner, ie. H. with a comparatively low susceptibility to errors.
  • the respective main feature or the respective main feature as well as the possibly additionally determined additional feature are ascertained slidingly over a time window which overlaps with a subsequent, in particular similar, time window.
  • the length of the respective time window is about 0.25 to 2 seconds, especially about 0.5 to 1.5 seconds.
  • an overlap of the subsequent time window with the preceding time window of approximately 0.25-1, in particular up to 0.75 seconds, is preferably used.
  • the length of the (respective) time window results from the knowledge that a usual, conscious yaw movement of the head lasts about 0.5 seconds to one second.
  • two or three measured values assigned to the two or three measuring axes are output by the acceleration sensor at a frequency of approximately 10-60 Hertz, preferably approximately 15-20 Hertz.
  • These groups of measured values ie the respective two or three measured values
  • a so-called "update rate" of the buffer memory is preferably about two Hertz.
  • a value of a yaw angle is determined from the acceleration signal only when the presence of the yaw movement is detected in particular according to one or more of the method variants described above.
  • this is useful to save computational effort.
  • stationary influences or slowly changing disturbance variables for example the earth's gravitational field, an inclined head posture or the like
  • the tangential acceleration in particular its temporal course, is preferably integrated (twice), it being recognized that the above-described influences or disturbance variables have a particularly strong effect due to the integration, especially in the case of comparatively long integration periods.
  • the time length of the section of the time profile of the tangential acceleration to be integrated can be determined can be kept particularly short, so that the influences described above have only a slight effect and a drifting of the result can be avoided particularly effectively.
  • constant and / or linear measured value components are filtered from the acceleration signal, in particular from the tangential and radial acceleration - optionally also from the integrated tangential acceleration (in particular its temporal progression), i.e. H. removed.
  • a high-pass filter is used in a simple but expedient variant.
  • a temporal (in particular sliding) mean value of the measured values assigned to the respective measuring axis is subtracted from the individual measured values. In this way, stationary influences (for example gravitation) or influences which change only comparatively slowly and which are detected by the acceleration sensor can be removed or at least reduced.
  • linear trends are removed from the measured values, in particular from the respective time courses or optionally from the integrated tangential acceleration, in that what is known as “detrending” is used in particular.
  • compensation in particular for gravity is preferably carried out, preferably in the "bare" acceleration signal, in particular in that the acceleration signal is fed to the high-pass filter.
  • the influence of gravity can be reduced at least to a significant extent.
  • the pitch and roll angles of the head are determined in relation to the gravitational field. Using this angle, a so-called “direction cosine matrix" is then determined, by means of which the present measurement data contained in the acceleration signal (ie the measurement values assigned to the respective measurement axes) are transformed from a hearing aid wearer-specific coordinate system to the "global" earth-related coordinate system , especially rotated.
  • the measurement data are cleared of the influence of the gravitational field - or at least the remnants of it remaining after the high-pass filtering - and then the measurement data are transferred to the original coordinate system (ie coordinate system related to the hearing aid wearer) transformed back.
  • the original coordinate system ie coordinate system related to the hearing aid wearer
  • the integrated tangential acceleration is optionally also cleared of such (stationary or slowly changing) influences, for example by means of "detrending".
  • This variant is based on the consideration that, due to the comparatively short duration of a yaw movement, the remaining drift is comparatively low or is at least contained as an approximately constant or linear influence within the time window to be considered (which is mapped in particular in the buffer described above). In this way, the integrated tangential acceleration can be cleared of these (optionally remaining) constant and / or linear measured value components in a simple manner.
  • a classification algorithm is applied to the respective main feature or features and possibly the additional feature in order to determine the presence or at least a probability of the presence of the yaw movement.
  • the respective main feature or the respective main feature and, if applicable, the additional feature are fed to a classification algorithm which serves to carry out the consideration described above with regard to the fulfillment of the criteria assigned to the respective main feature (and possibly the additional feature).
  • the classification algorithm is also set up to determine not only the presence of the yaw movement but also the yaw direction (ie the direction of rotation or rotation when yawing the head), the duration and / or the strength of the yaw movement or at least the head movement.
  • a “Gaussian mixed mode model”, a neural network, a “support vector machine” or the like is used as the classification algorithm.
  • a classifier that is often already present in a hearing aid (in which, in addition to the usual classification algorithms, the corresponding classification algorithm described above is preferably implemented) is used.
  • the classifier and thus also the classification algorithm are preferably on trains the respective expression of the respective main or additional feature (ie the respective criterion) indicative of the presence of the yaw movement.
  • the classifier is also modeled in a self-learning manner.
  • a spatial area of interest of the hearing aid wearer is determined on the basis of the yaw movement itself, but preferably on the basis of the determined values of the yaw angle covered during the yaw movement.
  • I. E. It is observed over a predetermined period of time - which is again preferably a sliding period of time with a duration of, for example, 20 seconds to two minutes, in particular about 30 seconds to one minute - in which viewing directions, in particular starting from a zero degree line of sight the hearing aid wearer turns his head.
  • This area of interest is preferably determined by statistically evaluating the yaw angles determined within the predetermined period of time (i.e. specifically the individual values) and, in particular, by creating a histogram.
  • an area can be read from the statistical evaluation, for example the histogram of past yaw movements, by comparing a great interest of the hearing aid wearer is or at least was.
  • the information about the yaw movement of the head of the hearing aid wearer is used to adapt a signal processing algorithm for a conversation situation. For example, it is possible to derive from the yaw movement, in particular from the histogram created therefrom, in which spatial viewing area the current main interest of the hearing aid wearer lies and thus also where potential conversation partners are.
  • This information is particularly expediently used together with the information of an acoustic classifier, ie the information from the movement analysis described above (ie the determination of the presence the yaw movement) are combined with those of an acoustic analysis (ie the acoustic classifier), which is also referred to as "fusion".
  • the acoustic classifier is used to fundamentally determine the existence of a conversation situation and, if necessary, also to determine from which spatial directions relevant acoustic signals (usually speech signals emanating from third parties) hit the hearing aid and thus the hearing aid wearer.
  • the information about the yaw movement of the head is preferably used in this case to further delimit the spatial area in which the interlocutors of the hearing aid wearer are most likely to be. This is particularly useful, for example, in the event that the hearing aid wearer is in an acoustically ambiguous conversation situation in which at least two conversations take place in parallel, but the hearing aid wearer only takes part in one of the two conversations.
  • the above-described zero-degree viewing direction of the hearing aid wearer is referenced in particular using a nodding movement of the head, a vertical movement of the hearing aid wearer and / or a forward movement of the hearing aid wearer (optionally detected by means of a separate "movement classifier").
  • Such movements that can be derived from the acceleration signal are used in particular to detect movements such as nodding, drinking, standing up, activities such as tying shoes, walking, jogging, driving a car, cycling and the like.
  • This variant of the method which also represents an independent invention, is based on the knowledge that, in particular, movements such as nodding and drinking are also possible during a group conversation or a lecture situation in which the hearing aid wearer If you look at a blackboard or a canvas for comparatively long periods of time, it is very likely that this will be done regularly with your head aligned in a zero-degree line of sight.
  • the referencing serves to avoid or at least compensate for a drift, in particular when creating the above-described histogram, which may be caused, for example, by incorrect non-detection of a yaw movement.
  • a "movement classifier” is used to detect the movements described here, in particular activities such as walking, jogging, driving, cycling, tying shoes, in which the entire body of the hearing aid wearer is in particular in motion.
  • This is preferably formed by a corresponding classification algorithm, which in turn is expediently directed to movements of the entire body of the hearing aid wearer.
  • an output of the above-described movement classifier in particular aimed at the movement of the entire body of the hearing aid wearer, is used as an additional criterion for determining the yaw movement (in particular whether it is present). For example, it is assumed that in the case of activities recognized by means of the movement classifier, such as cycling, driving and jogging, the probability that the hearing aid wearer will take part in a group conversation is comparatively low. It is recognized that these activities each take place in comparatively “fast” movement situations in which the hearing aid wearer is likely to direct his (in particular visual) attention largely forwards with a comparatively high degree of probability.
  • the evaluation of the main features and, if applicable, the additional feature can be blocked or at least verified. If the hearing aid wearer is at rest, there will be multiple yaw movements of the head - especially in the case of a acoustically classified conversation situation - indicate with a high probability that the hearing aid wearer will participate in the conversation with several people.
  • the information of the movement classifier can thus also be included, for example, in the classification algorithm described above (directed at the yaw movement) and / or in the amalgamation of the movement and acoustic information.
  • such an arrangement of the acceleration sensor in or on the hearing aid is used that at least one of the measurement axes of the acceleration sensor is at least approximately tangential to the head, preferably parallel to the natural zero-degree viewing direction of the hearing aid wearer.
  • This measuring axis is preferably also aligned horizontally.
  • the two other measuring axes are preferably arranged (with an upright posture) vertically or horizontally and along the above-described pitch axis.
  • the above-described method for detecting the yaw movement and, if necessary, for determining the yaw angle is used separately in each of the two hearing aids. H. monaural - carried out and the two monaural decisions then "binaurally" synchronized.
  • the two monaural acceleration signals are combined to form a binaural signal - for example the difference is formed from the two acceleration signals - and the method described above is applied to the binaural sensor signal.
  • the hearing aid according to the invention comprises the (in particular single) acceleration sensor which, when the hearing aid is worn as intended, is arranged on the head of the hearing aid wearer and is set up for measurement in the at least two, optionally three, measuring axes.
  • the hearing aid also includes a (signal processing) processor which - in terms of program and / or circuitry - is set up to carry out the above-described method according to the invention, in particular automatically.
  • the processor is therefore set up to derive the at least one main feature linked to the tangential acceleration from the acceleration signal of the acceleration sensor and to determine the presence of the yaw movement of the head on the basis of the respective main feature, taking into account the at least one predetermined criterion.
  • the hearing aid thus has all the advantages and features that result from the method features described above in equal measure.
  • the processor is at least essentially formed by a microcontroller with a microprocessor and a data memory in which the functionality for performing the method according to the invention is implemented in the form of operating software (firmware) so that the method - possibly in interaction with the Hearing aid wearer - is carried out automatically when the operating software is executed.
  • the processor is alternatively a non-programmable electronic component, e.g. B. an ASIC, in which the functionality for performing the method according to the invention is implemented with circuitry means.
  • a hearing aid 1 specifically a so-called behind-the-ear hearing aid, is shown.
  • the hearing aid 1 comprises a (hearing aid) housing 2 in which several electronic components are arranged.
  • the hearing aid 1 comprises two microphones 3 as electronic components, which are set up to detect noises from the surroundings of the hearing aid 1.
  • the hearing aid 1 comprises a signal processor 4 as an electronic component, which is set up to process the noises detected by the microphones 3 and to output them to a loudspeaker 5 for output to the hearing of a hearing aid wearer.
  • an acceleration sensor 6 which is connected to the signal processor 4.
  • a battery 7 is also arranged in the housing 2, which in the present exemplary embodiment is specifically formed by an accumulator.
  • a sound tube 8 is connected to the housing 2 which, when worn as intended, is attached to the head 9, specifically to the ear of the hearing aid wearer (cf. Figure 2 ) is inserted with an ear mold 10 into the ear canal of the hearing aid wearer.
  • the acceleration sensor 6 is set up for three-dimensional measurement and has three measurement axes x, y and z that are perpendicular to one another (see Fig. Figure 2 ) on.
  • the acceleration sensor 6 is arranged in the housing 2 of the hearing aid 1 in such a way that the measurement axis z coincides with the vertical direction when the head 9 is worn as intended and when the hearing aid wearer is in an upright posture.
  • the measuring axis x is tangential to the head 9 and oriented to the front - that is, along a zero-degree viewing direction 12.
  • the measurement axis y is directed radially away from the head 9.
  • the two measuring axes x and y also lie in a horizontal plane when the hearing aid wearer is in an upright posture.
  • the measured values assigned to the measuring axis x reproduce an acceleration directed tangentially to the head 9 (hereinafter referred to as “tangential acceleration at”).
  • the measured values assigned to the measuring axis y correspondingly reproduce an acceleration directed radially to the head 9 (hereinafter referred to as “radial acceleration ar”).
  • the signal processor 4 is set up to use an acoustic classifier, which is implemented as an algorithm in the signal processor 4, to infer a conversation situation (i.e. a conversation between at least two people) based on the noises recorded by the microphones 3 and then the signal processing accordingly adapt.
  • an opening angle of a directional microphone formed by means of the two microphones 3 is set in such a way that all speech components from the environment that hit the microphones 3, specifically the source locations of these speech components, are within the opening range of the directional microphone.
  • the signal processor 4 carried out a method explained in more detail below.
  • a first method step 20 the measured values determined by the acceleration sensor 6 - which are output in groups of three measured values, each of which is assigned to one of the measuring axes x, y and z - are output in a buffer memory (the one in the signal processor 4 is integrated) filed.
  • the buffer memory is designed for the floating intermediate storage of eight such groups of measured values.
  • several features are derived (also: "extracted") from the measured values assigned to the respective measuring axes x, y and z.
  • these features are fed to a classifier in which a classification algorithm - in the present exemplary embodiment in the form of a Gaussian mixed mode model - is implemented.
  • this classifier determines whether the hearing aid wearer rotates his head 9, ie at least approximately rotates about the measurement axis z. Such a “sideways rotation” of the head 9 is referred to here and in the following as a “yaw movement”.
  • the measurement axis z represents a so-called yaw axis in the arrangement and alignment of the acceleration sensor 6 shown in the present exemplary embodiment which the hearing aid wearer tilts his head 9 downwards or upwards ("nod”; analogous to the English-language terms “yaw”, “roll” and “pitch”).
  • a method step 50 the measured values of the acceleration sensor 6 stored in the buffer memory are cleared of stationary influences that change only slowly compared to the duration of a head movement.
  • the influence of gravity which can be assumed to be stationary, is removed by means of a high-pass filter.
  • Further influences that lead to an offset of the measured values for example an anatomically-related deviation of the actual yaw axis from the vertical and / or the actual alignment of the measuring axis z, are in one embodiment by subtracting the time average of the buffered measured values from the respective "individual measured value " removed. Influences that have a linear effect (ie linear trends) are removed by means of so-called "detrending".
  • a value of a yaw angle W is determined from the determined measured values, specifically from the tangential acceleration at. I. E. it is determined how far the hearing aid wearer has turned his head 9 (cf. Figure 8 ).
  • a statistical analysis is carried out in a method step 70. It is determined how often the hearing aid wearer turns his head 9 within a predetermined time window.
  • the values of the yaw angle W assigned to the individual yaw movements are used to create a histogram from which it can be read off in which directions - based on the zero-degree viewing direction 12 - the hearing aid wearer has turned his head 9 in the specified time window (see Fig. Figure 9 ).
  • a spatial distribution of the area of interest of the hearing aid wearer can also be read from this histogram.
  • a further method step 80 the information generated in method steps 60 and 70 is used by the signal processor 4 in order to additionally adapt the signal processing.
  • the information from the acoustic classifier described above and the “movement analysis” described above are merged by means of the acceleration sensor 6 in order to enable the signal processing to be more precisely adapted to a conversation situation.
  • the opening angle of the directional microphone, the alignment of the directional cone of the directional microphone and the position of a so-called "notch" are specifically determined as a function of the information determined by the acceleration sensor 6 - namely the yaw angle W and the histogram - further adapted, possibly further limited with respect to a setting proposed solely by the acoustic classifier.
  • a time profile at (t) of the tangential acceleration at is determined as a main feature.
  • a time curve ar (t) of the radial acceleration ar is determined.
  • it is considered as a criterion for the presence of the yaw movement whether the temporal course at (t) of the tangential acceleration at within a predetermined time segment, hereinafter referred to as "movement time window Zb", of a duration of one second, two local extremes Assumes Mt with opposite signs, indicating two opposite accelerations, namely an actual acceleration and a deceleration.
  • time profile ar (t) of the radial acceleration ar assumes a local extreme Mr within the movement time window Zb, which indicates a head movement with an acceleration component directed radially towards the head 9.
  • the time courses at (t) and ar (t) are shown by way of example for a yaw movement of the head 9 to the right (cf. seconds 0.5-1.5) and to the left (cf. seconds 2-3).
  • the time course at (t) therefore runs through first the "positive" extremum Mt, which indicates the beginning of the yaw movement, and then the "negative" extremum Mt, which shows the Decelerating the head 9 indicates the end of the yaw movement.
  • the time course ar (t) - due to the alignment of the measurement axis y outwards - also shows a positive extreme Mr within the movement time window Zb due to the centrifugal force.
  • the opposite is true for the yaw movement to the left, as from the right half of Figure 4 can be taken.
  • the classifier outputs in method step 55 that a yaw movement is present.
  • a yaw movement is present.
  • the main feature in method step 30 is a correlation coefficient K between a time derivative of the tangential acceleration at, specifically its time profile at (t), and the Radial acceleration ar, specifically its time course ar (t) is determined.
  • This is in Figure 5 shown in more detail.
  • the change in the tangential acceleration at which can be taken from the time derivative of the tangential acceleration at, specifically a temporal extreme Md of this change, turns out to be as follows Figure 5 it can be seen - in the case of a yaw movement of the head 9, at least approximately temporally together with the extreme Mr of the radial acceleration ar. It can thus be inferred from the value of the correlation coefficient K - specifically from its magnitude - whether there is any yaw movement at all.
  • the direction of the yaw movement can also be read from the sign of the correlation coefficient K.
  • the value of the correlation coefficient K is approximately -0.75.
  • the correlation coefficient K is approximately 0.8.
  • a curve D of a diagram is created as the main feature in which the radial acceleration ar is plotted against the tangential acceleration at.
  • the shape of this curve D is used as the criterion. Specifically, it is considered whether the curve D can be approximated to the shape of an ellipse.
  • Figure 6 are also the previous ones Figures 4 or 5 underlying measured values for the yaw movement to the right and in Figure 7 applied to the left.
  • the offset shown between the respective starting point and the end point (the latter marked by a triangle on its apex) is caused by an inclined posture of the head.
  • curve D also deviates from the ideal circular shape and rather corresponds to an oval or an ellipse. If the curve D has such a shape, the classifier concludes in method step 40 that the yaw movement is present and outputs a corresponding result in method step 55.
  • a movement intensity I is determined as the main feature in method step 30. This is contained in the tangential and radial acceleration Energy mapped.
  • the movement intensity I is estimated on the basis of the averaged vector norms of the respective vector of the tangential and radial acceleration at or ar. For example, the energy is estimated by a temporally discrete sum of the vector length of the resulting vector of the tangential and radial acceleration at or ar.
  • the histogram determined in method step 70 is shown as an example in the form of a polar diagram. From this it is possible to read in concrete terms on the basis of the radial length of the hatched areas how often or for how long the hearing aid wearer has turned his head 9 into a specific angular range. From this, in turn, a spatial area of interest can be derived, which is used in method step 80 to set the aperture angle of the directional microphone accordingly. In this specific example, the hearing aid wearer is talking to two people, one directly opposite and one offset to the left by about 20-25 degrees.
  • a so-called movement classifier is used in order to infer a movement situation of the hearing aid wearer, ie a movement state of the entire body or an activity comprising this, on the basis of the features determined in method step 30.
  • a movement situation of the hearing aid wearer ie a movement state of the entire body or an activity comprising this, on the basis of the features determined in method step 30.
  • the determination of the yaw movement in method step 40 and the subsequent method steps 60-80 are optionally omitted.
  • the classifier in method step 55, also outputs the (temporal) duration of the yaw movement and optionally also the strength of the yaw movement, specifically the movement intensity I.
  • a “reset” takes place in a further method step; H. referencing the zero-degree viewing direction 12 whenever an almost pure nodding movement, which is indicative of drinking, for example.
  • H referencing the zero-degree viewing direction 12 whenever an almost pure nodding movement, which is indicative of drinking, for example.
  • the histogram can be created particularly precisely and robustly, since - even if yaw movements are not recognized - the zero-degree viewing direction 12 can be "found” again and again, thus preventing the individual values of the yaw angle W from adding up and thus erroneously it is assumed that the zero-degree line of sight 12 changes.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • User Interface Of Digital Computer (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betrieb eines Hörgeräts sowie ein Hörgerät, das insbesondere zur Durchführung des Verfahrens eingerichtet ist.The invention relates to a method for operating a hearing aid and a hearing aid which is set up in particular to carry out the method.

Hörgeräte dienen insbesondere in Form von Hörhilfegeräten Personen mit einer Hörminderung dazu, die Hörminderung zumindest teilweise auszugleichen. Dazu umfassen übliche Hörgeräte regelmäßig wenigstens ein Mikrofon zur Erfassung von Geräuschen aus der Umgebung sowie einen Signalverarbeitungs-Prozessor, der dazu dient, die erfassten Geräusche zu verarbeiten und insbesondere in Abhängigkeit von der individuellen Hörminderung (insbesondere frequenzspezifisch) zu verstärken und/oder zu dämpfen. Die verarbeiteten Mikrofonsignale werden von dem Signalverarbeitungs-Prozessor an einem Ausgabewandler - meist in Form eines Lautsprechers - zur Ausgabe an das Gehör des jeweiligen Hörgeräteträgers weitergeleitet. Je nach Art der Hörminderung kommen als Ausgabewandler auch sogenannte Knochenleitungshörer oder Cochlea-Implantate zur mechanischen bzw. elektrischen Stimulation des Gehörs zum Einsatz. Unter den Begriff Hörgerät werden aber auch andere Geräte wie beispielsweise Kopfhörer, sogenannte Tinnitus-Masker oder Headsets zusammengefasst.Hearing aids, in particular in the form of hearing aids, are used by people with a hearing loss to at least partially compensate for the hearing loss. For this purpose, conventional hearing aids regularly include at least one microphone for capturing noises from the environment and a signal processing processor, which is used to process the captured noises and, in particular, to amplify and / or attenuate them as a function of the individual hearing impairment (particularly frequency-specific). The processed microphone signals are forwarded by the signal processing processor to an output converter - usually in the form of a loudspeaker - for output to the hearing of the respective hearing aid wearer. Depending on the type of hearing loss, so-called bone conduction headphones or cochlear implants are also used as output transducers for mechanical or electrical stimulation of the hearing. The term hearing aid also includes other devices such as headphones, so-called tinnitus maskers or headsets.

Insbesondere Hörhilfegeräte weisen häufig einen sogenannten Klassifikator auf, der dazu dient, insbesondere anhand der erfassten Geräusche auf bestimmte, vordefinierte "Hörsituationen" zu schließen. In Abhängigkeit von der erkannten Hörsituation wird dann die Signalverarbeitung verändert. Da häufig aufgrund der vorliegenden Hörminderung das Sprachverstehen des Hörgeräteträgers beeinträchtigt ist, sind die in dem Signalverarbeitungs-Prozessor hinterlegten (Signalverarbeitung-) Algorithmen meist darauf abgestimmt, die Sprachäußerungen Dritter in den erfassten Mikrofonsignalen herauszuarbeiten und für den jeweiligen Hörgeräteträger in einer möglichst verständlichen Form wiederzugeben. Zur Erkennung einer Gesprächssituation wird in dem Klassifikator häufig ein Spracherkennungsalgorithmus abgearbeitet. Ein solcher Algorithmus wird jedoch in Situationen ungenau, in denen in der näheren Umgebung des Hörgeräteträgers mehrere Personen sprechen, aber nicht alle an dem gleichen Gespräch teilnehmen. In diesem Fall ist eine akustische Identifikation der am selben Gespräch teilnehmenden Personen regelmäßig erschwert.Hearing aids in particular often have what is known as a classifier, which is used to infer certain, predefined “hearing situations”, in particular on the basis of the recorded noises. The signal processing is then changed as a function of the recognized hearing situation. Since the hearing aid wearer's speech understanding is frequently impaired due to the hearing impairment present, the (signal processing) algorithms stored in the signal processing processor are usually adapted to the utterances of third parties to work out in the recorded microphone signals and to reproduce them for the respective hearing aid wearer in a form that is as understandable as possible. To recognize a conversation situation, a speech recognition algorithm is often processed in the classifier. However, such an algorithm becomes imprecise in situations in which several people are speaking in the immediate vicinity of the hearing aid wearer, but not all of them are participating in the same conversation. In this case, acoustic identification of the people participating in the same conversation is regularly made more difficult.

Aus EP 3 154 277 A1 ist ein Verfahren zum Betrieb einer Hörvorrichtung bekannt, bei dem die Hörvorrichtung zwei Beschleunigungssensoren aufweist, die jeweils ein Sensorsignal bereitstellen und mittels derer eine Orientierung des Kopfes des Anwenders ermittelt wird. Zur Ermittlung der Orientierung werden die Sensorsignale beider Beschleunigungssensoren kombiniert verwendet. In Abhängigkeit der Orientierung wird dann ein Betriebsparameter der Hörvorrichtung eingestellt.the end EP 3 154 277 A1 a method for operating a hearing device is known in which the hearing device has two acceleration sensors which each provide a sensor signal and by means of which an orientation of the user's head is determined. The sensor signals from both acceleration sensors are used in combination to determine the orientation. An operating parameter of the hearing device is then set as a function of the orientation.

Aus EP 2 928 210 A1 ist ein binaurales Hörhilfesystem bekannt, das linke und rechte Hörhilfegeräte und eine Benutzerschnittstelle umfasst, sowie dessen Verwendung und auf ein Betriebsverfahren hierfür. Die linken und rechten Hörhilfegeräte umfassen mindestens zwei Eingangseinheiten zur Bereitstellung einer Zeit-Frequenz-Darstellung eines Eingangssignals in einer Anzahl von Frequenzbändern und einer Anzahl von Zeitinstanzen, und ein Rauschunterdrückungssystem mit mehreren Eingangseinheiten, das eine mehrkanalige Beamformer-Filtereinheit umfasst, die betriebsmäßig mit den mindestens zwei Eingangseinheiten gekoppelt und so konfiguriert ist, dass sie ein beamgeformtes Signal bereitstellt. Das binaurale Hörunterstützungssystem ist so konfiguriert, dass ein Benutzer über die Benutzerschnittstelle eine Richtung zu oder den Ort einer Zielsignalquelle relativ zum Benutzer angeben kann.the end EP 2 928 210 A1 a binaural hearing aid system is known which comprises left and right hearing aid devices and a user interface, as well as its use and an operating method therefor. The left and right hearing aids include at least two input units for providing a time-frequency representation of an input signal in a number of frequency bands and a number of time instances, and a multiple input unit noise suppression system that includes a multi-channel beamformer filter unit that is operable with the at least two input units is coupled and configured to provide a beam-shaped signal. The binaural hearing assistance system is configured in such a way that a user can indicate a direction to or the location of a target signal source relative to the user via the user interface.

Aus DE 10 2016 205 728 B3 ist ein Verfahren zur physischen Anpassung eines Hörgeräts an einen Hörgeräteträger bekannt. Verfahrensgemäß wird dabei mittels eines Lagesensors des Hörgeräts ein charakteristisches Maß für eine aktuelle Ist-Trageposition des Hörgeräts ermittelt. Anhand des charakteristischen Maßes für die Ist-Trageposition wird daraufhin eine Abweichung der Ist-Trageposition von einer vorgegebenen Soll-Trageposition ermittelt. In Abhängigkeit dieser Abweichung wird eine Anweisung an den Hörgeräteträger ausgegeben, das Hörerverbindungsmittel in Abhängigkeit von der ermittelten Abweichung anzupassen.the end DE 10 2016 205 728 B3 a method for physically adapting a hearing aid to a hearing aid wearer is known. According to the method, a characteristic measure for a current actual wearing position of the hearing aid is determined by means of a position sensor of the hearing aid. Using the characteristic measure for the actual wearing position is then determined a deviation of the actual wearing position from a predetermined target wearing position. As a function of this deviation, an instruction is issued to the hearing aid wearer to adapt the receiver connection means as a function of the determined deviation.

NESTI, ALESSANDRO et al.: "Human discrimination of head-centred visualinertial yaw rotations", EXPEERIMENTAL BRAIN RESEARCH, Springer International, DE, Bd. 233, Nr. 12, 30. August 2015, Seiten 3553-3564, XP035868321, ISSN: 0014-4819, DOI 10.1007/S00221-015-4426-2 beschreibt eine Untersuchung zu kopfzentrierten Gierrotationen (0,5 Hz), die entweder im Dunkeln oder in Kombination mit visuellen Hinweisen (optische Anzeige von Punkten begrenzter Anzeigedauer) präsentiert werden. Die Teilnehmer unterschieden eine Referenzbewegung, die für jeden Versuch unverändert wiederholt wurde, von einer Vergleichsbewegung, deren Spitzengeschwindigkeit iterativ angepasst wurde, um die Differenzschwelle der Teilnehmer zu messen, d.h. die kleinste wahrnehmbare Veränderung der Stimulusintensität. NESTI, ALESSANDRO et al .: "Human discrimination of head-centered visualinertial yaw rotations", EXPEERIMENTAL BRAIN RESEARCH, Springer International, DE, Vol. 233, No. 12, August 30, 2015, pages 3553-3564, XP035868321, ISSN: 0014-4819, DOI 10.1007 / S00221-015-4426-2 describes an investigation into head-centered yaw rotations (0.5 Hz), which are presented either in the dark or in combination with visual cues (visual display of points of limited display duration). The participants differentiated a reference movement, which was repeated unchanged for each experiment, from a comparison movement, the top speed of which was iteratively adjusted in order to measure the participants' difference threshold, ie the smallest perceptible change in the stimulus intensity.

KESHNER E A et al.: "Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects", Gait & Posture, Elsevier, Amsterdam, NL, Bd. 28, Nr. 1, 1. Juli 2008, Seiten 127-134, XP022686191, ISSN: 0966-6362, DOI: 10.10l6/j.gaitpost.2007.11.003 beschreibt eine Untersuchung, ob multiplanare Bewegungen in der Umgebung zu Kopfinstabilität führen, insbesondere wenn sich die visuelle Umgebung in Ebenen bewegt, die orthogonal zu einer physischen Störung liegen. Dazu wurde bei 12 gesunden (29- 31 Jahre) und 3 visuell sensiblen (27- 57 Jahre) Erwachsenen die Verschiebung von Oberflächen in der Sagittalebene mit Gesichtsfeldstörungen kombiniert. Druckzentrum (COP), Spitzen-Kopfwinkel und RMS-Werte der Kopfbewegung wurden berechnet und ein dreidimensionales Modell der gemeinsamen Bewegung wurde entwickelt, um die grobe Kopfbewegung in drei Ebenen zu untersuchen. Es wurde festgestellt, dass Probanden, die ruhig vor einer visuellen Szene standen, die sich in der Sagittalebene translatorisch bewegte, eine signifikant größere (p < 0,003) Kopfbewegung beim Gieren erzeugten als auf einer translatorischen Plattform. Wenn die Plattform jedoch im Dunkeln oder mit einer visuellen Szene, die sich in einer Rollbewegung dreht, bewegt wurde, war die Kopfbewegung orthogonal zur Ebene der Plattformbewegung signifikant erhöht (p < 0,02). Visuell empfindliche Probanden ohne Vorgeschichte einer vestibulären Störung erzeugten große, verzögerte kompensatorische Kopfbewegungen. Die orthogonalen Kopfbewegungen waren bei visuell empfindlichen Personen im Dunkeln (p < 0,05) und in der Dunkelheit (p < 0,01) signifikant größer als bei gesunden Personen mit einer stationären Szene. Aguilar M et al.: "Prediction of Pitch and Yaw Head Movements via Recurrent Neural Networks", IJCNN 2003, PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, Portland, OR, July 20-24, 2003; [JOINT CONFERENCE ON NEURAL NETWORKS], New York, NY: IEEE, US, Bd. 4, 20. Juli 2003, Seiten 2813-2818, XP010652922, DOI: 10.1109/IJCNN.2003.1224017, ISBN: 978-0-780,-7898-8 beschreibt, dass bei Virtual-Environment (VE)-Anwendungen, bei denen virtuelle Objekte in einem kopfmontierten Display präsentiert werden, die virtuellen Bilder kontinuierlich im Raum gegen die Kopfbewegung des Benutzers stabilisiert werden müssen. Latenzen bei der Kopfbewegungskompensation führen dabei dazu, dass virtuelle Objekte herumschwimmen, anstatt im Raum stabil zu sein. Dies führt zu einem unnatürlichen Gefühl, Desorientierung und Simulationsübelkeit sowie zu Fehlern bei der Anpassung von virtuellen und realen Objekten. Verzögerungen bei der visuellen Aktualisierung sind ein kritisches technisches Hindernis für die Implementierung von kopfmontierten Displays in einer Vielzahl von Anwendungen. Um dieses Problem anzugehen, wird vorgeschlagen, Techniken des maschinellen Lernens zu verwenden, um ein Vorwärtsmodell der Kopfbewegung auf der Grundlage von Winkelgeschwindigkeitsinformationen zu definieren. Insbesondere wird ein rekurrierendes neuronales Netz verwendet, um das zeitliche Muster der Nick- und Gierbewegung zu erfassen. Die Ergebnisse zeigen die Fähigkeit, die Kopfbewegung bis zu 40 ms. KESHNER EA et al .: "Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects", Gait & Posture, Elsevier, Amsterdam, NL, Vol. 28, No. 1, July 1 2008, pages 127-134, XP022686191, ISSN: 0966-6362, DOI: 10.10l6 / j.gaitpost.2007.11.003 describes an investigation into whether multiplanar movements in the environment lead to head instability, especially when the visual environment moves in planes that are orthogonal to a physical disturbance. For this purpose, the displacement of surfaces in the sagittal plane was combined with visual field disturbances in 12 healthy (29-31 years) and 3 visually sensitive (27-57 years) adults. Center of Pressure (COP), tip head angle, and RMS values of head movement were calculated and a three-dimensional model of joint movement was developed to study gross head movement in three planes. It was found that subjects who stood quietly in front of a visual scene that was translating in the sagittal plane produced a significantly greater (p <0.003) head movement when yawing than on a translational platform. However, if the platform was moved in the dark or with a visual scene rotating in a rolling motion, head movement orthogonal to the plane of platform movement was significantly increased (p <0.02). Visually sensitive subjects with no history of vestibular disorder produced large, delayed compensatory head movements. The orthogonal head movements were significantly greater in visually sensitive persons in the dark (p <0.05) and in the dark (p <0.01) than in healthy persons with a stationary scene. Aguilar M et al .: "Prediction of Pitch and Yaw Head Movements via Recurrent Neural Networks", IJCNN 2003, PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, Portland, OR, July 20-24, 2003; [JOINT CONFERENCE ON NEURAL NETWORKS], New York, NY: IEEE, US, Vol. 4, July 20, 2003, pages 2813-2818, XP010652922, DOI: 10.1109 / IJCNN.2003.1224017, ISBN: 978-0-780, - 7898-8 describes that in virtual environment (VE) applications, in which virtual objects are presented in a head-mounted display, the virtual images must be continuously stabilized in space against the user's head movement. Latencies in head movement compensation lead to virtual objects floating around instead of being stable in space. This leads to an unnatural feeling, disorientation and simulation nausea, as well as errors in the adaptation of virtual and real objects. Visual update delays are a critical technical barrier to the implementation of head-mounted displays in a wide variety of applications. To address this problem, it is proposed to use machine learning techniques to define a forward model of head movement based on angular velocity information. In particular, a recurrent neural network is used to record the temporal pattern of the pitch and yaw movement. The results show the ability to move the head up to 40 ms.

Der Erfindung liegt die Aufgabe zugrunde, einen verbesserten Betrieb eines Hörgeräts zu ermöglichen.The invention is based on the object of enabling improved operation of a hearing aid.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Des Weiteren wird diese Aufgabe erfindungsgemäß gelöst durch ein Hörgerät mit den Merkmalen des Anspruchs 16. Vorteilhafte und teils für sich erfinderische Ausführungsformen und Weiterbildungen der Erfindung sind in den Unteransprüchen und der nachfolgenden Beschreibung dargelegt.This object is achieved according to the invention by a method with the features of claim 1. Furthermore, this object is achieved according to the invention by a hearing aid with the features of claim 16. Advantageous and in part inventive embodiments and developments of the invention are in the subclaims and the following Description set out.

Das erfindungsgemäße Verfahren dient zum Betrieb eines Hörgeräts, das (vorzugsweise nur) einen Beschleunigungssensor aufweist. Dieser Beschleunigungssensor ist dabei im bestimmungsgemäßen Tragezustand am Kopf eines Hörgeräteträgers positioniert. Ferner ist der Beschleunigungssensor zur Messung in wenigstens zwei senkrecht aufeinander stehenden Messachsen (auch als "Messrichtungen" bezeichnet) eingerichtet. Verfahrensgemäß wird aus einem Beschleunigungssignal des Beschleunigungssensors wenigstens ein Hauptmerkmal abgeleitet, das mit einer tangential (sowie vorzugsweise näherungsweise horizontal) zum Kopf des Hörgeräteträgers gerichteten Beschleunigung in Zusammenhang steht. Anhand des oder des jeweiligen Hauptmerkmals wird anschließend unter Berücksichtigung wenigstens eines aus dem Beschleunigungssignal selbst ableitbaren, vorgegebenen und über das Vorliegen eines für eine Bewegung indikativen Beschleunigungswerts der tangential gerichteten Beschleunigung hinausgehenden Kriteriums ein Vorliegen einer Gierbewegung des Kopfs ermittelt.The method according to the invention is used to operate a hearing aid which (preferably only) has one acceleration sensor. This acceleration sensor is positioned on the head of a hearing aid wearer when it is worn as intended. Furthermore, the acceleration sensor is set up for measurement in at least two measurement axes that are perpendicular to one another (also referred to as “measurement directions”). According to the method, at least one main feature is derived from an acceleration signal of the acceleration sensor, which is related to an acceleration directed tangentially (and preferably approximately horizontally) to the head of the hearing aid wearer. The presence of a yaw movement of the head is then determined on the basis of the respective main feature (s), taking into account at least one predetermined criterion which can be derived from the acceleration signal itself and which goes beyond the presence of an acceleration value of the tangentially directed acceleration indicative of a movement.

Unter "mit der tangential zum Kopf des Hörgeräteträgers gerichteten Beschleunigung in Zusammenhang stehen" wird hier und im Folgenden verstanden, dass das Hauptmerkmal direkt diese tangential gerichtete Beschleunigung wiedergibt, oder dass das Hauptmerkmal zumindest eine Information über diese enthält.“Related to the acceleration directed tangentially to the head of the hearing aid wearer” is understood here and below to mean that the main feature directly reproduces this tangentially directed acceleration, or that the main feature contains at least information about this.

Unter "Gierbewegung" wird dabei hier und im Folgenden insbesondere eine Drehbewegung des Kopfs um eine Hochachse (die vorzugsweise zumindest näherungsweise mit der Vertikalen zusammenfällt) verstanden. Als weitere Begriffe für grundlegende Bewegungen des Kopfs werden hier und im Folgenden insbesondere "Nicken" oder "Nickbewegung" für eine auf und ab um eine vorzugsweise horizontal liegende und insbesondere die Ohren des Hörgeräteträgers verbindende "Nickachse" gerichtete Bewegung, sowie "Rollen" oder "Rollbewegung" für eine seitwärts gerichtete Neigung oder Verkippung des Kopfs um eine vorzugsweise horizontal liegende und insbesondere in Neutral-Blickrichtung (auch als "Null-Grad-Blickrichtung" bezeichnet) ausgerichtete "Rollachse" verwendet.Here and in the following, “yaw movement” is understood to mean, in particular, a rotational movement of the head about a vertical axis (which preferably coincides at least approximately with the vertical). Further terms for fundamental movements of the head are used here and in the following in particular "nodding" or "nodding movement" for an up and down movement directed up and down around a "nodding axis" that is preferably horizontal and in particular connecting the ears of the hearing aid wearer, as well as "rolling" or " Rolling motion "for a sideways inclination or tilting of the head around a "roll axis" which is preferably horizontal and in particular is oriented in the neutral viewing direction (also referred to as "zero-degree viewing direction").

Unter "Beschleunigungssensor" wird hier und im Folgenden insbesondere ein Sensor verstanden, in den Sensorelemente zur Messung in den wenigstens zwei Messachsen (also zur zweidimensionalen Messung), vorzugsweise in drei senkrecht aufeinander stehenden Messachsen (dreidimensionale Messung) integriert sind. Mithin stellt ein solcher Beschleunigungsensor vorzugsweise ein in sich abgeschlossenes und zum Anschluss an eine Auswerteeinheit eingerichtetes Bauteil dar."Acceleration sensor" is understood here and in the following in particular to mean a sensor in which sensor elements for measurement in the at least two measurement axes (ie for two-dimensional measurement), preferably in three measurement axes perpendicular to one another (three-dimensional measurement), are integrated. Such an acceleration sensor therefore preferably represents a self-contained component that is set up for connection to an evaluation unit.

Erfindungsgemäß wird also vorzugsweise nicht bereits dann auf eine Gierbewegung geschlossen, wenn sich aus dem Beschleunigungssignal eine tangential zum Kopf gerichtete Beschleunigung ablesen lässt, sondern erst dann, wenn unter Berücksichtigung des wenigstens einen zusätzlichen Kriteriums auf das Vorliegen der Gierbewegung geschlossen wird. In diesem Fall ist somit die Wahrscheinlichkeit, dass tatsächlich eine Gierbewegung vorliegt, erhöht. Fehlinterpretationen des Beschleunigungssignals können somit vermieden oder zumindest verringert werden. Des Weiteren wird vorteilhaft ermöglicht, nur einen (einzigen) Beschleunigungssensor zur Detektion der Gierbewegung heranzuziehen, sodass der Einsatz von herkömmlicherweise verwendeten Messsystemen, die mehrere Sensoren, beispielsweise eine Kombination von Beschleunigungssensoren mit Gyroskopen und/oder Magnetfeldsensoren (auch als "inertiale Messeinheiten" bekannt) verwenden, und der damit verbundene vergleichsweise hohe Energieverbrauch entfallen kann. Des Weiteren wird erfindungsgemäß die erkannte Gierbewegung genutzt, um die Analyse von Hörsituationen zu unterstützen.According to the invention, a yaw movement is preferably not concluded when an acceleration directed tangentially to the head can be read from the acceleration signal, but only when it is concluded that the yaw movement is present, taking into account the at least one additional criterion. In this case, the probability that there is actually a yaw movement is increased. Misinterpretations of the acceleration signal can thus be avoided or at least reduced. Furthermore, it is advantageously made possible to use only one (single) acceleration sensor to detect the yaw movement, so that the use of conventionally used measuring systems that have multiple sensors, for example a combination of acceleration sensors with gyroscopes and / or magnetic field sensors (also known as "inertial measuring units") use, and the associated comparatively high energy consumption can be dispensed with. Furthermore, according to the invention, the recognized yaw movement is used to support the analysis of hearing situations.

In einer zweckmäßigen Verfahrensvariante wird als Hauptmerkmal ein zeitlicher Verlauf der tangential gerichteten Beschleunigung (im Folgenden auch kurz als "Tangential-Beschleunigung" bezeichnet) herangezogen. Als vorgegebenes Kriterium wird in diesem Fall herangezogen und somit betrachtet, ob der zeitliche Verlauf der Tangential-Beschleunigung innerhalb eines vorgegebenen Bewegungszeitfensters aufeinanderfolgend zwei entgegengesetzt gerichtete lokale Extrema (also bspw. ein lokales Maximum und ein lokales Minimum) aufweist. Insbesondere wird dabei betrachtet, ob im zeitlichen Verlauf die Tangential-Beschleunigung bei diesen beiden Extrema Werte mit entgegengesetzten Vorzeichen annimmt. Dies beruht auf der Erkenntnis, dass beim Gieren des Kopfs die Tangential-Beschleunigung zunächst eine "tatsächliche" Beschleunigung und anschließend eine "negative" Beschleunigung (nämlich beim Abbremsen des Kopfs) mit einem jeweils zugeordneten Ausschlag (dem jeweiligen Extremum) im zeitlichen Verlauf anzeigt. Insbesondere in Abhängigkeit von der Ausrichtung der der TangentialRichtung zugeordneten Messachse relativ zur tatsächlichen Bewegungsrichtung nimmt die Tangential-Beschleunigung somit beispielsweise zunächst positive Werte an und "wechselt" beim Abbremsen des Kopfs zu negativen Werten. Beim Gieren des Kopfs in die entgegengesetzte Richtung wechseln die Werte der Tangential-Beschleunigung entsprechend von negativ zu positiv. Das Bewegungszeitfenster ist in dieser Verfahrensvariante vorzugsweise an die Dauer einer - insbesondere bei einem Gruppengespräch - üblichen Kopf-Drehbewegung angepasst und weist vorzugsweise Werte zwischen 0,25 und 2 oder 1,5 Sekunden, insbesondere von 0,5 bis zu 1 Sekunde auf. Vorzugsweise wird das Bewegungszeitfenster "geöffnet" (d. h. dessen Überwachung gestartet), wenn eine hinreichend signifikante Änderung der Werte der Tangential-Beschleunigung erkannt wird. Durch das Bewegungszeitfenster wird vorteilhafterweise eine (zeitliche) Begrenzung einer Betrachtung des Hauptmerkmals, insbesondere des zeitlichen Verlaufs der Tangential-Beschleunigung erreicht, sodass "Beschleunigungs-Ereignisse", die aufgrund ihrer vergleichsweise langen Dauer mit hoher Wahrscheinlichkeit keiner Kopfdrehung (also keinem Gieren) zuzuordnen sind, nicht berücksichtigt werden.In an expedient variant of the method, a time profile of the tangentially directed acceleration (also referred to as “tangential acceleration” for short in the following) is used as the main feature. In this case, the predefined criterion used, and thus considered, is whether the temporal course of the tangential acceleration is within a predefined movement time window has two oppositely directed local extrema consecutively (that is, for example, a local maximum and a local minimum). In particular, it is considered whether in the course of time the tangential acceleration assumes values with opposite signs at these two extremes. This is based on the knowledge that when the head is yawing, the tangential acceleration initially indicates an "actual" acceleration and then a "negative" acceleration (namely when the head is braked) with a respective associated deflection (the respective extreme) over time. In particular, depending on the alignment of the measuring axis assigned to the tangential direction relative to the actual direction of movement, the tangential acceleration thus initially assumes positive values, for example, and "changes" to negative values when the head is braked. When yawing the head in the opposite direction, the values of the tangential acceleration change accordingly from negative to positive. In this variant of the method, the movement time window is preferably adapted to the duration of a normal head turning movement, especially in a group conversation, and preferably has values between 0.25 and 2 or 1.5 seconds, in particular from 0.5 to 1 second. The movement time window is preferably "opened" (ie its monitoring is started) when a sufficiently significant change in the values of the tangential acceleration is detected. The movement time window advantageously limits the consideration of the main feature, in particular the temporal course of the tangential acceleration, so that "acceleration events" which, due to their comparatively long duration, are very likely not to be assigned to a head rotation (i.e. no yawing) , are not taken into account.

Auf ein Extremum des zeitlichen Verlaufs wird hier und im Folgenden insbesondere nur dann geschlossen, wenn die zugrundeliegende Änderung des zeitlichen Verlaufs sich von einer üblichen Messwertfluktuation, bspw. einem Rauschen, oder von geringfügigen Bewegungen (die regelmäßig keine hinreichend signifikanten Änderungen des zeitlichen Verlaufs hervorrufen) unterscheiden lässt. Bspw. wird hierzu ein Schwellwertvergleich durchgeführt.Here and in the following, an extremum of the temporal course is only inferred if the underlying change in the temporal course differs from a usual measured value fluctuation, e.g. noise, or from minor movements (which regularly do not cause sufficiently significant changes in the temporal course) can distinguish. For example, a threshold value comparison is carried out for this purpose.

In einer zweckmäßigen Weiterbildung der vorstehend beschriebenen Verfahrensvariante wird als ein Zusatzmerkmal aus dem Beschleunigungssignal ein zeitlicher Verlauf einer insbesondere bezüglich einer Gierachse des Kopfs des Hörgeräteträgers (die regelmäßig zumindest näherungsweise mit der Vertikalen zusammenfällt) radial (und insbesondere auch horizontal) gerichteten Beschleunigung abgeleitet. Als vorgegebenes Kriterium wird in diesem Fall insbesondere herangezogen, ob innerhalb des vorgegebenen (und vorstehend beschriebenen) Bewegungszeitfensters der zeitliche Verlauf der radial gerichteten Beschleunigung (im Folgenden kurz: "Radial-Beschleunigung") ein lokales Extremum annimmt. D. h. in dieser Verfahrensvariante werden zwei Kriterien betrachtet, nämlich ob die Tangential-Beschleunigung die vorstehend beschriebene Beschleunigung und das Abbremsen, und ob die Radial-Beschleunigung ebenfalls eine Beschleunigung anzeigen. Aus einer solchen, tatsächlich auftretenden Radial-Beschleunigung, die insbesondere mit der bei einer Gierbewegung zwangsläufig auftretenden Zentrifugalkraft verknüpft ist, lässt sich - insbesondere in Verbindung mit den beiden lokalen Extrema der Tangential-Beschleunigung - vorteilhafterweise eine vergleichsweise hohe Wahrscheinlichkeit ableiten, dass nicht nur eine geradlinige Bewegung entlang einer der Messachsen vorliegt, sondern tatsächlich eine Gierbewegung des Kopfs.In an expedient development of the method variant described above, an additional feature derived from the acceleration signal is a time curve of an acceleration directed radially (and in particular also horizontally) in particular with respect to a yaw axis of the head of the hearing aid wearer (which regularly at least approximately coincides with the vertical). In this case, the predefined criterion used is, in particular, whether the time profile of the radially directed acceleration (hereinafter referred to as “radial acceleration”) assumes a local extreme within the predefined (and above-described) movement time window. I. E. In this variant of the method, two criteria are considered, namely whether the tangential acceleration indicates the acceleration described above and the braking, and whether the radial acceleration also indicates an acceleration. From such an actually occurring radial acceleration, which is linked in particular to the centrifugal force which inevitably occurs during a yaw movement, a comparatively high probability can advantageously be derived - in particular in connection with the two local extremes of the tangential acceleration - that not just one straight-line movement is present along one of the measuring axes, but actually a yaw movement of the head.

In einer erfindungsgemäßen Verfahrensvariante wird - optional zusätzlich zu den vorstehend beschriebenen Verfahrensvarianten - anhand des zeitlichen Verlaufs der Tangential- sowie gegebenenfalls auch der Radial-Beschleunigung eine Bewegungsintensität ermittelt. Als vorgegebenes Kriterium wird in diesem Fall eine Stärke der Bewegungsintensität - vorzugsweise die Größe des ermittelten Werts der Bewegungsintensität - herangezogen. Beispielsweise wird hierfür ein Schwellwertvergleich durchgeführt, um den ermittelten Wert der Bewegungsintensität mit einem vorgegebenen Schwellwert zu vergleichen. Auf das Vorliegen der Gierbewegung wird in diesem Fall somit insbesondere dann geschlossen, wenn die Bewegungsintensität eine spezifische, insbesondere vorgegebene Stärke aufweist. Optional wird dabei nicht auf das Vorliegen der Gierbewegung geschlossen, wenn die Bewegungsintensität die vorgegebene (erwartete) Stärke deutlich über-und/oder unterschreitet. Insbesondere wird in dieser Verfahrensvariante eine Wahrscheinlichkeit für das Vorliegen der Gierbewegung ermittelt, deren Wahrscheinlichkeitswert abnimmt, je weiter die Bewegungsintensität von der erwarteten Stärke abweicht (insbesondere diese über- oder unterschreitet).In a method variant according to the invention - optionally in addition to the method variants described above - a movement intensity is determined on the basis of the temporal course of the tangential and possibly also the radial acceleration. In this case, a strength of the movement intensity - preferably the size of the determined value of the movement intensity - is used as a predetermined criterion. For example, a threshold value comparison is carried out for this purpose in order to compare the determined value of the movement intensity with a predetermined threshold value. In this case, the existence of the yaw movement is inferred in particular if the movement intensity has a specific, in particular predetermined, strength. Optionally, the presence of the yaw movement is not inferred if the movement intensity clearly exceeds and / or exceeds the specified (expected) strength falls below. In particular, in this variant of the method, a probability for the presence of the yaw movement is determined, the probability value of which decreases the further the movement intensity deviates from the expected strength (in particular it exceeds or falls below it).

Vorzugsweise wird dabei als Maß für die Bewegungsintensität eine Bewegungsdauer und/oder eine in der Tangential- und Radial-Beschleunigung - insbesondere in dem jeweiligen Messwertverlauf - enthaltene Gesamtenergie oder Mittelenergie ermittelt.A duration of movement and / or a total energy or mean energy contained in the tangential and radial acceleration - in particular in the respective measured value curve - is preferably determined as a measure of the movement intensity.

In einer weiteren erfindungsgemäßen Verfahrensvariante wird als Hauptmerkmal ein Korrelationskoeffizient zwischen einer zeitlichen Ableitung der Tangential-Beschleunigung und der Radial-Beschleunigung ermittelt. Insbesondere wird also zunächst die Tangential-Beschleunigung (vorzugsweise deren zeitlicher Verlauf) nach der Zeit abgeleitet und anschließend mit der Radial-Beschleunigung (vorzugsweise mit deren zeitlichem Verlauf) korreliert. Als vorgegebenes Kriterium wird in diesem Fall die Stärke - d. h. insbesondere die Betragsgröße des Werts - des Korrelationskoeffizienten herangezogen. Beispielsweise erfolgt auch hier ein Schwellwertvergleich des Korrelationskoeffizienten mit einem insbesondere vorgegebenen Schwellwert. Dieser Ansatz beruht auf der Erkenntnis, dass bei einer Gierbewegung des Kopfs die Änderung der Tangential-Beschleunigung (also die zeitliche Ableitung) - regelmäßig - ein lokales Extremum annimmt, das zeitlich eng mit dem lokalen Extremum der Radial-Beschleunigung zusammenfällt oder sich sogar mit diesem überdeckt. Somit stellt dieser Korrelationskoeffizient vorteilhafterweise ein vergleichsweise einfach zu überprüfendes Indiz für das Vorliegen einer Gierbewegung dar. Aus einem hohen Betragswert des Korrelationskoeffizienten lässt sich somit vorteilhafterweise einfach auf eine hohe Wahrscheinlichkeit für das Vorliegen der Gierbewegung schließen. Eine vergleichsweise geringe Stärke des Korrelationskoeffizienten (beispielsweise weniger als 0,5 oder weniger als 0,3) deutet dagegen auf vergleichsweise unkoordinierte oder ziellose Kopfbewegungen oder auf einen unbewegten Kopf hin.In a further variant of the method according to the invention, a correlation coefficient between a time derivative of the tangential acceleration and the radial acceleration is determined as the main feature. In particular, the tangential acceleration (preferably its time profile) is thus first derived from time and then correlated with the radial acceleration (preferably with its time profile). In this case, the strength - ie in particular the magnitude of the value - of the correlation coefficient is used as the predetermined criterion. For example, a threshold value comparison of the correlation coefficient with an in particular predetermined threshold value also takes place here. This approach is based on the knowledge that with a yaw movement of the head, the change in the tangential acceleration (i.e. the time derivative) - regularly - assumes a local extreme that closely coincides in time with the local extreme of the radial acceleration or even with it covered. This correlation coefficient thus advantageously represents an indicator that is comparatively easy to check for the presence of a yaw movement. A high magnitude value of the correlation coefficient can thus advantageously be used to infer a high probability of the presence of the yaw movement. A comparatively low strength of the correlation coefficient (for example less than 0.5 or less than 0.3), on the other hand, indicates comparatively uncoordinated or aimless head movements or an immobile head.

In einer vorteilhaften Weiterbildung der vorstehend beschriebenen Verfahrensvariante wird anhand des Korrelationskoeffizienten, bevorzugt anhand des Vorzeichens eine Gierrichtung ermittelt. D. h. das Vorzeichen des ermittelten Korrelationskoeffizienten wird als Indikator für die Richtung, in die der Hörgeräteträger seinen Kopf dreht, herangezogen. Dies ist insbesondere darin begründet, dass der eingesetzte Beschleunigungssensor für jede Messachse eine positive sowie eine negative Messrichtung aufweist. Ist beispielsweise der Beschleunigungssensor im bestimmungsgemäßen Tragezustand des Hörgeräts am linken Ohr des Hörgeräteträgers angeordnet und die der Tangential-Beschleunigung zugeordnete Messachse weist mit ihrer positiven Richtung in Blickrichtung des Hörgerätträgers, wird der zeitliche Verlauf der Tangential-Beschleunigung bei einer Gierbewegung nach links (trotz der tatsächlichen Beschleunigung) zunächst negative Werte anzeigen. Entsprechend umgekehrt wird der zeitliche Verlauf bei einer Gierbewegung nach rechts zunächst positive Werte annehmen. Somit ist in einer optionalen Verfahrensvariante lediglich ein Hauptmerkmal ausreichend, um auf das Vorliegen der Gierbewegung sowie deren Gierrichtung insbesondere auf robuste Weise, d. h. mit vergleichsweise geringer Fehleranfälligkeit, schließen zu können.In an advantageous development of the method variant described above, a yaw direction is determined on the basis of the correlation coefficient, preferably on the basis of the sign. I. E. the sign of the determined correlation coefficient is used as an indicator for the direction in which the hearing aid wearer turns his head. This is due in particular to the fact that the acceleration sensor used has a positive and a negative measuring direction for each measuring axis. If, for example, the acceleration sensor is arranged on the left ear of the hearing aid wearer when the hearing aid is worn as intended and the measurement axis assigned to the tangential acceleration points with its positive direction in the viewing direction of the hearing aid wearer, the temporal course of the tangential acceleration in the case of a yaw movement to the left (despite the actual Acceleration) initially show negative values. Conversely, the time course will initially assume positive values in the case of a yaw movement to the right. Thus, in an optional variant of the method, only one main feature is sufficient to respond to the presence of the yaw movement and its yaw direction, in particular in a robust manner, i. H. with a comparatively low susceptibility to errors to be able to close.

In einer weiteren erfindungsgemäßen Verfahrensvariante wird - zusätzlich oder alternativ zu den vorstehend beschriebenen Verfahrensvarianten - als Hauptmerkmal eine Kurve eines Diagramms herangezogen, bei dem die Tangential-Beschleunigung gegen die Radial-Beschleunigung angetragen ist. D. h. es wird zunächst diese Kurve bestimmt. Als vorgegebenes Kriterium wird in diesem Fall insbesondere die geometrische Form dieser Kurve herangezogen. In einer solchen Kurve sind vorteilhafterweise bereits die Informationen der beiden für eine Gierbewegung relevanten Messachsen enthalten. Optional kann somit eine Ermittlung zusätzlicher Merkmale entfallen.In a further method variant according to the invention - in addition or as an alternative to the method variants described above - the main feature used is a curve of a diagram in which the tangential acceleration is plotted against the radial acceleration. I. E. this curve is first determined. In this case, the geometric shape of this curve in particular is used as the specified criterion. Such a curve advantageously already contains the information from the two measurement axes relevant for a yaw movement. As an option, there is no need to determine additional features.

Besonders bevorzugt wird als vorgegebenes Kriterium im vorstehend beschriebenen Fall überprüft, ob die vorstehend beschriebene Kurve des Diagramms einer ellipsoiden Form angenähert ist. Da, wie vorstehend beschrieben, bei einer Gierbewegung sowohl für die Tangential- als auch für die Radial-Beschleunigung sich zeitlich ändernden Messwerte zu erfassen sind, liegen die zeitlich aufeinanderfolgenden Messwerte des Beschleunigungssensors in dem vorstehend beschriebenen Diagramm auf einer in einer Richtung gekrümmten Bahn. Bei einer bewussten und "idealen" Gierbewegung des Kopfs - d. h. einer exakt in einer von den beiden, der Tangential- und der Radial-Beschleunigung zugeordneten Messachsen aufgespannten, insbesondere horizontal angeordneten Ebene verlaufenden, gleichmäßigen Bewegung - würden die Messwerte des Beschleunigungssensors eine abgerundete, halbmondartige Form beschreiben. Aufgrund einer meist vorhandenen, anatomisch bedingten "Schrägstellung" der Gierebene des Kopfs und anderen Einflüssen, die zu einem meist stationären Versatz führen (beispielsweise Gravitation), weist die Kurve bei einer bewussten Gierbewegung aber häufig zumindest eine ovale, gegebenenfalls "offene" (d. h. Start- und Endpunkt fallen nicht zusammen) Form auf. Bei einer ungerichteten Kopfbewegung wird die vorstehend beschriebene Kurve hingegen andere Formen, beispielsweise einen zickzack-artigen Verlauf (also mit wechselnden Krümmungsrichtungen) aufweisen. Unter Ellipsoid wird somit hier und im Folgenden insbesondere verstanden, dass die Kurve eine in einer Drehrichtung gekrümmte und näherungsweise geschlossene (d. h. insbesondere mit im Vergleich zur Kurvenlänge geringfügigem Versatz offenstehende) Form aufweist oder zumindest aus mehreren derartig gekrümmten und gegebenenfalls geradlinige Abschnitte verbindenden Kurvenabschnitten zusammengesetzt ist.In the case described above, it is particularly preferred to check as a predetermined criterion whether the curve of the diagram described above approximates an ellipsoidal shape. Since, as described above, in the case of a yaw movement, measured values that change over time are to be recorded for both the tangential and the radial acceleration, the temporally consecutive values are Measured values of the acceleration sensor in the diagram described above on a path curved in one direction. In the case of a conscious and "ideal" yaw movement of the head - that is, a uniform movement extending exactly in one of the two measuring axes assigned to the tangential and radial acceleration, in particular a horizontally arranged plane - the measured values of the acceleration sensor would be rounded, crescent-like Describe shape. Due to the mostly existing, anatomically determined "inclination" of the yaw plane of the head and other influences that lead to a mostly stationary offset (e.g. gravitation), the curve often has at least an oval, possibly "open" (ie start - and end point do not coincide) shape. In the case of an undirected head movement, on the other hand, the curve described above will have other shapes, for example a zigzag-like course (that is to say with alternating directions of curvature). Here and in the following, ellipsoid is understood to mean in particular that the curve has a shape that is curved and approximately closed in one direction of rotation (i.e., in particular with a slight offset compared to the curve length) or is at least composed of several curve sections that are curved in this way and optionally connect straight sections .

In einer bevorzugten Weiterbildung wird anhand der Drehrichtung der vorstehend beschriebenen Kurve - die insbesondere aus der zeitlichen Abfolge der einzelnen Messwerte abgelesen werden kann - die Gierrichtung ermittelt. Somit ist auch in diesem Fall in einer optionalen Verfahrensvariante lediglich ein Hauptmerkmal ausreichend, um das Vorliegen der Gierbewegung sowie deren Gierrichtung auf insbesondere robuste Weise, d. h. mit vergleichsweise geringer Fehleranfälligkeit, zu bestimmen.In a preferred development, the direction of rotation of the curve described above - which can in particular be read from the time sequence of the individual measured values - is used to determine the direction of yaw. Thus, in this case, too, in an optional variant of the method, only one main feature is sufficient to ensure that the yaw movement and its yaw direction are present in a particularly robust manner, ie. H. with a comparatively low susceptibility to errors.

In einer bevorzugten Verfahrensvariante werden das oder das jeweilige Hauptmerkmal sowie das gegebenenfalls zusätzlich ermittelte Zusatzmerkmal gleitend über ein Zeitfenster ermittelt, das mit einem nachfolgenden insbesondere gleichartigen Zeitfenster überlappt. Die Länge des jeweiligen Zeitfensters beträgt dabei etwa 0,25 bis 2 Sekunden, insbesondere etwa 0,5 bis 1,5 Sekunden. Vorzugsweise wird dabei eine Überlappung des nachfolgenden Zeitfensters mit dem vorangegangenen Zeitfenster von etwa 0,25-1, insbesondere bis 0,75 Sekunden angewendet. Die Länge des (jeweiligen) Zeitfensters ergibt sich dabei aus der Erkenntnis, dass eine übliche, bewusste Gierbewegung des Kopfs etwa 0,5 Sekunden bis zu einer Sekunde andauert. Insbesondere werden in dieser Verfahrensvariante von dem Beschleunigungssensor mit einer Frequenz von etwa 10-60 Hertz vorzugsweise von etwa 15-20 Hertz jeweils zwei oder drei Messwerte, die den zwei zw. drei Messachsen zugeordnet sind, ausgegeben. Diese Messwertgruppen (d. h. die jeweiligen zwei bzw. drei Messwerte) werden insbesondere in einem Pufferspeicher, der acht dieser Messwertgruppen fassen kann, zwischengespeichert. Eine sogenannte "Update-Rate" des Pufferspeichers beträgt dabei vorzugsweise etwa zwei Hertz. Dadurch kann eine zeitlich durchgängige Bestimmung des oder des jeweiligen Hauptmerkmals entfallen. Beispielsweise kann, sofern innerhalb dieses Zeitfensters keine Änderung eines der Messwerte detektiert wird, eine Bestimmung des oder des jeweiligen Hauptmerkmals unterbleiben. Dadurch kann vorteilhafterweise Rechenaufwand eingespart werden.In a preferred variant of the method, the respective main feature or the respective main feature as well as the possibly additionally determined additional feature are ascertained slidingly over a time window which overlaps with a subsequent, in particular similar, time window. The length of the respective time window is about 0.25 to 2 seconds, especially about 0.5 to 1.5 seconds. In this case, an overlap of the subsequent time window with the preceding time window of approximately 0.25-1, in particular up to 0.75 seconds, is preferably used. The length of the (respective) time window results from the knowledge that a usual, conscious yaw movement of the head lasts about 0.5 seconds to one second. In particular, in this variant of the method, two or three measured values assigned to the two or three measuring axes are output by the acceleration sensor at a frequency of approximately 10-60 Hertz, preferably approximately 15-20 Hertz. These groups of measured values (ie the respective two or three measured values) are in particular temporarily stored in a buffer memory which can hold eight of these groups of measured values. A so-called "update rate" of the buffer memory is preferably about two Hertz. This means that a continuous determination of the respective main feature or features can be dispensed with. For example, if no change in one of the measured values is detected within this time window, a determination of the respective main feature or features can be omitted. Computational effort can advantageously be saved as a result.

In einer weiteren bevorzugten Verfahrensvariante wird aus dem Beschleunigungssignal nur dann ein Wert eines Gierwinkels ermittelt, wenn das Vorliegen der Gierbewegung insbesondere gemäß einer oder mehrerer der vorstehend beschriebenen Verfahrensvarianten detektiert wird. Dies ist einerseits zur Einsparung von Rechenaufwand zweckmäßig. Andererseits kann dadurch in vorteilhafter Weise vermieden werden, dass insbesondere stationäre Einflüsse oder sich langsam ändernde Störgrößen (beispielsweise das Gravitationsfeld der Erde, eine schräge Kopfhaltung oder dergleichen) auf die Ermittlung des Gierwinkels auswirken. Vorzugsweise wird nämlich zur Bestimmung des Gierwinkels die Tangential-Beschleunigung, insbesondere deren zeitlicher Verlauf (zweifach) integriert, wobei sich erkanntermaßen die vorstehend beschriebenen Einflüsse oder Störgrößen aufgrund der Integration besonders stark auswirken, insbesondere bei vergleichsweise langen Integrationszeiträumen. Dadurch, dass nur dann, wenn tatsächlich eine Gierbewegung vorliegt, der Gierwinkel bestimmt wird, kann die zeitliche Länge des zu integrierenden Abschnitts des zeitlichen Verlaufs der Tangential-Beschleunigung besonders kurz gehalten werden, sodass sich die vorstehend beschriebenen Einflüsse nur gering auswirken und ein Driften des Ergebnisses besonders effektiv vermieden werden kann.In a further preferred variant of the method, a value of a yaw angle is determined from the acceleration signal only when the presence of the yaw movement is detected in particular according to one or more of the method variants described above. On the one hand, this is useful to save computational effort. On the other hand, it can advantageously be avoided that in particular stationary influences or slowly changing disturbance variables (for example the earth's gravitational field, an inclined head posture or the like) affect the determination of the yaw angle. In order to determine the yaw angle, the tangential acceleration, in particular its temporal course, is preferably integrated (twice), it being recognized that the above-described influences or disturbance variables have a particularly strong effect due to the integration, especially in the case of comparatively long integration periods. Because the yaw angle is only determined when there is actually a yaw movement, the time length of the section of the time profile of the tangential acceleration to be integrated can be determined can be kept particularly short, so that the influences described above have only a slight effect and a drifting of the result can be avoided particularly effectively.

In einer bevorzugten Verfahrensvariante werden konstante und/oder lineare Messwertanteile aus dem Beschleunigungssignal, insbesondere aus der Tangential- und der Radial-Beschleunigung - optional auch erst aus der integrierten Tangential-Beschleunigung (insbesondere deren zeitlichen Verlauf) - gefiltert, d. h. entfernt. Beispielsweise wird in einer einfachen, aber zweckmäßigen Variante ein Hochpassfilter angewendet. In einer weiteren einfachen Variante wird ein zeitlicher (insbesondere gleitender) Mittelwert der der jeweiligen Messachse zugeordneten Messwerte von den einzelnen Messwerten subtrahiert. Dadurch können auf einfache Weise stationäre (bspw. die Gravitation) oder sich nur vergleichsweise langsam ändernde Einflüsse, die durch den Beschleunigungssensor erfasst werden, entfernt oder zumindest reduziert werden. Zusätzlich oder alternativ werden aus den Messwerten, insbesondere aus den jeweiligen zeitlichen Verläufen oder optional aus der integrierten Tangential-Beschleunigung lineare Trends entfernt, indem insbesondere ein sogenanntes "Detrending" zum Einsatz kommt.In a preferred variant of the method, constant and / or linear measured value components are filtered from the acceleration signal, in particular from the tangential and radial acceleration - optionally also from the integrated tangential acceleration (in particular its temporal progression), i.e. H. removed. For example, a high-pass filter is used in a simple but expedient variant. In a further simple variant, a temporal (in particular sliding) mean value of the measured values assigned to the respective measuring axis is subtracted from the individual measured values. In this way, stationary influences (for example gravitation) or influences which change only comparatively slowly and which are detected by the acceleration sensor can be removed or at least reduced. Additionally or alternatively, linear trends are removed from the measured values, in particular from the respective time courses or optionally from the integrated tangential acceleration, in that what is known as “detrending” is used in particular.

Vorzugsweise erfolgt grundsätzlich eine Kompensation insbesondere der Gravitation vorzugsweise im "blanken" Beschleunigungssignal, insbesondere indem das Beschleunigungssignal dem Hochpassfilter zugeführt wird. Dadurch kann der Einfluss der Gravitation zumindest zu wesentlichen Teilen verringert werden. Zusätzlich oder alternativ zu der Hochpassfilterung werden Nick- und Roll-Winkel des Kopfs in Bezug auf das Gravitationsfeld bestimmt. Anhand dieser Winkel wird anschließend eine sogenannte "Richtungs-Kosinus-Matrix" bestimmt, mittels derer die vorliegenden, in dem Beschleunigungssignal enthaltenen Messdaten (d. h. die den jeweiligen Messachsen zugeordneten Messwerte) von einem hörgeräteträgerspezifischen Koordinatensystem auf das "globale" auf die Erde bezogene Koordinatensystem transformiert, insbesondere rotiert werden. Nach dieser Koordinatentransformation werden die Messdaten um den Einfluss des Gravitationsfelds - oder zumindest die nach der Hochpassfilterung verbliebenen Reste hiervon - bereinigt und anschließend die Messdaten in das ursprüngliche Koordinatensystem (d. h. auf den Hörgeräteträger bezogene Koordinatensystem) zurück transformiert. Hierdurch lässt sich vorteilhafterweise der Einfluss des Gravitationsfelds zumindest zu großen Teilen entfernen.In principle, compensation in particular for gravity is preferably carried out, preferably in the "bare" acceleration signal, in particular in that the acceleration signal is fed to the high-pass filter. As a result, the influence of gravity can be reduced at least to a significant extent. In addition or as an alternative to the high-pass filtering, the pitch and roll angles of the head are determined in relation to the gravitational field. Using this angle, a so-called "direction cosine matrix" is then determined, by means of which the present measurement data contained in the acceleration signal (ie the measurement values assigned to the respective measurement axes) are transformed from a hearing aid wearer-specific coordinate system to the "global" earth-related coordinate system , especially rotated. After this coordinate transformation, the measurement data are cleared of the influence of the gravitational field - or at least the remnants of it remaining after the high-pass filtering - and then the measurement data are transferred to the original coordinate system (ie coordinate system related to the hearing aid wearer) transformed back. In this way, the influence of the gravitational field can advantageously be removed at least to a large extent.

Zusätzlich oder alternativ wird optional auch die integrierte Tangential-Beschleunigung von derartigen (stationären oder sich langsam ändernden) Einflüssen bereinigt, bspw. mittels "Detrending". Dieser Variante liegt die Überlegung zugrunde, dass aufgrund der vergleichsweise kurzen Dauer einer Gierbewegung die verbleibende Drift vergleichsweise gering ist oder zumindest als näherungsweise konstanter oder linearer Einfluss innerhalb des zu betrachtenden Zeitfensters (das insbesondere in dem vorstehend beschriebenen Puffer abgebildet ist) enthalten ist. Somit kann die integrierte Tangential-Beschleunigung auf einfache Weise von diesen (optional verbliebenen) konstanten und/oder linearen Messwertanteilen bereinigt werden.Additionally or alternatively, the integrated tangential acceleration is optionally also cleared of such (stationary or slowly changing) influences, for example by means of "detrending". This variant is based on the consideration that, due to the comparatively short duration of a yaw movement, the remaining drift is comparatively low or is at least contained as an approximately constant or linear influence within the time window to be considered (which is mapped in particular in the buffer described above). In this way, the integrated tangential acceleration can be cleared of these (optionally remaining) constant and / or linear measured value components in a simple manner.

In einer zweckmäßigen Verfahrensvariante wird ein Klassifikationsalgorithmus auf das oder das jeweilige Hauptmerkmal und gegebenenfalls das Zusatzmerkmal angewendet, um das Vorliegen oder zumindest eine Wahrscheinlichkeit für das Vorliegen der Gierbewegung zu bestimmen. D. h. das oder das jeweilige Hauptmerkmal sowie gegebenenfalls das Zusatzmerkmal werden einem Klassifikationsalgorithmus zugeführt, der dazu dient, die vorstehend beschriebene Betrachtung hinsichtlich der Erfüllung der dem jeweiligen Hauptmerkmal (sowie gegebenenfalls dem Zusatzmerkmal) zugeordneten Kriterien durchzuführen. Optional ist der Klassifikationsalgorithmus auch dazu eingerichtet, neben dem Vorliegen der Gierbewegung auch die Gierrichtung (d. h. die Rotations- oder Drehrichtung beim Gieren des Kopfs), die Dauer und/oder die Stärke der Gierbewegung oder zumindest der Kopfbewegung zu bestimmen. Als Klassifikationsalgorithmus kommt dabei beispielsweise ein "Gausssches Misch-Moden-Modell", ein neuronales Netz, eine "support vector maschine" oder dergleichen zum Einsatz. Optional wird dabei auf einen häufig in einem Hörgerät ohnehin vorhandenen Klassifikator (in dem neben üblichen Klassifikationsalgorithmen vorzugsweise der entsprechende, vorstehend beschriebene Klassifikationsalgorithmus implementiert ist) zurückgegriffen. Vorzugsweise ist der Klassifkator und somit auch der Klassifikationsalgorithmus auf die jeweilige, für das Vorliegen der Gierbewegung indikative Ausprägung des jeweiligen Haupt- oder Zusatzmerkmals (d. h. das jeweilige Kriterium) trainiert. Optional, insbesondere im Fall des neuronalen Netzes, ist der Klassifikator auch selbstlernend modelliert.In an expedient variant of the method, a classification algorithm is applied to the respective main feature or features and possibly the additional feature in order to determine the presence or at least a probability of the presence of the yaw movement. I. E. the respective main feature or the respective main feature and, if applicable, the additional feature are fed to a classification algorithm which serves to carry out the consideration described above with regard to the fulfillment of the criteria assigned to the respective main feature (and possibly the additional feature). Optionally, the classification algorithm is also set up to determine not only the presence of the yaw movement but also the yaw direction (ie the direction of rotation or rotation when yawing the head), the duration and / or the strength of the yaw movement or at least the head movement. A “Gaussian mixed mode model”, a neural network, a “support vector machine” or the like is used as the classification algorithm. Optionally, a classifier that is often already present in a hearing aid (in which, in addition to the usual classification algorithms, the corresponding classification algorithm described above is preferably implemented) is used. The classifier and thus also the classification algorithm are preferably on trains the respective expression of the respective main or additional feature (ie the respective criterion) indicative of the presence of the yaw movement. Optionally, especially in the case of the neural network, the classifier is also modeled in a self-learning manner.

In einer weiteren zweckmäßigen Verfahrensvariante wird anhand der Gierbewegung selbst, vorzugsweise aber anhand der ermittelten Werte des bei der Gierbewegung abgedeckten Gierwinkels ein räumlicher Interessensbereich des Hörgeräteträgers ermittelt. D. h. es wird über einen vorgegebenen Zeitraum hinweg - bei dem es sich vorzugsweise wiederum um einen gleitenden Zeitraum mit einer Dauer von beispielsweise 20 Sekunden bis zu zwei Minuten, insbesondere etwa von 30 Sekunden bis zur einer Minute handelt - beobachtet, in welche Blickrichtungen, insbesondere ausgehend von einer Null-Grad-Blickrichtung der Hörgeräteträger seinen Kopf wendet. Vorzugsweise wird dieser Interessensbereich ermittelt, indem die innerhalb des vorgegebenen Zeitraums ermittelten Gierwinkel (d. h. konkret die einzelnen Werte) statistisch ausgewertet und insbesondere ein Histogramm erstellt werden. Da Personen - und somit auch der Hörgeräteträger - üblicherweise ihre Blickrichtung über eine Kopfdrehung (d. h. ein Gieren des Kopfs) dem aktuellen Interessensbereich zuwenden, kann somit aus der statistischen Auswertung, beispielsweise dem Histogramm über die vergangenen Gierbewegungen, ein Bereich abgelesen werden, indem ein vergleichsweise großes Interesse des Hörgeräteträgers liegt oder zumindest lag.In a further expedient variant of the method, a spatial area of interest of the hearing aid wearer is determined on the basis of the yaw movement itself, but preferably on the basis of the determined values of the yaw angle covered during the yaw movement. I. E. It is observed over a predetermined period of time - which is again preferably a sliding period of time with a duration of, for example, 20 seconds to two minutes, in particular about 30 seconds to one minute - in which viewing directions, in particular starting from a zero degree line of sight the hearing aid wearer turns his head. This area of interest is preferably determined by statistically evaluating the yaw angles determined within the predetermined period of time (i.e. specifically the individual values) and, in particular, by creating a histogram. Since people - and therefore also the hearing aid wearer - usually turn their head to the current area of interest by turning their head (i.e. yawing the head), an area can be read from the statistical evaluation, for example the histogram of past yaw movements, by comparing a great interest of the hearing aid wearer is or at least was.

Erfindungsgemäß wird die Information über die Gierbewegung des Kopfs des Hörgerätträgers, insbesondere der vorstehend beschriebene räumliche Interessensbereich, zur Anpassung eines Signalverarbeitungsalgorithmus für eine Gesprächssituation herangezogen. Beispielsweise kann aus der Gierbewegung, insbesondere aus dem daraus erstellten Histogramm abgeleitet werden, in welchem räumlichen Blickbereich das aktuelle Hauptinteresse des Hörgeräteträgers liegt und somit auch, wo sich potentielle Gesprächspartner befinden. Besonders zweckmäßig werden diese Information zusammen mit der Information eines akustischen Klassifikators verwendet, d. h. die Informationen der vorstehend beschriebenen Bewegungsanalyse (d. h. die Ermittlung des Vorliegens der Gierbewegung) werden mit denen einer akustischen Analyse (d. h. des akustischen Klassifikators) vereint, was auch als "Fusionierung" bezeichnet wird. Beispielsweise wird der akustische Klassifikator herangezogen, um das Vorliegen einer Gesprächssituation grundsätzlich zu ermitteln und gegebenenfalls zusätzlich zu ermitteln, aus welchen Raumrichtungen relevante akustische Signale (üblicherweise Sprachsignale, die von Dritten ausgehen) auf das Hörgerät und somit auf den Hörgeräteträger treffen. Die Information über die Gierbewegung des Kopfs wird in diesem Fall vorzugsweise genutzt, um den räumlichen Bereich, in dem sich die Gesprächspartner des Hörgeräteträgers mit hoher Wahrscheinlichkeit befinden weiter einzugrenzen. Dies ist beispielsweise für den Fall besonders zweckmäßig, dass sich der Hörgeräteträger in einer akustisch nicht eindeutigen Gesprächssituation befindet, in der wenigstens zwei Gespräche parallel erfolgen, der Hörgeräteträger aber nur an einem der beiden Gesprächen teilnimmt. Dies tritt beispielsweise in Restaurants, Bars oder dergleichen auf, insbesondere wenn sich Personen auf einer Seite des Hörgerätträgers untereinander unterhalten, der Hörgeräteträger aber nur mit Personen vor sich oder auf seiner anderen Seite spricht. In diesem Fall kann es regelmäßig dazu kommen, dass der akustische Klassifikator alle eintreffenden Sprachsignale als zum Gespräch gehörig auffasst. Über die Gierbewegung des Kopfs kann somit ermittelt werden, wohin der Hörgeräteträger tatsächlich blickt, und daraus geschlossen werden, welche Sprachsignale mit vergleichsweise hoher Wahrscheinlichkeit nicht zum Gespräch gehören.According to the invention, the information about the yaw movement of the head of the hearing aid wearer, in particular the spatial area of interest described above, is used to adapt a signal processing algorithm for a conversation situation. For example, it is possible to derive from the yaw movement, in particular from the histogram created therefrom, in which spatial viewing area the current main interest of the hearing aid wearer lies and thus also where potential conversation partners are. This information is particularly expediently used together with the information of an acoustic classifier, ie the information from the movement analysis described above (ie the determination of the presence the yaw movement) are combined with those of an acoustic analysis (ie the acoustic classifier), which is also referred to as "fusion". For example, the acoustic classifier is used to fundamentally determine the existence of a conversation situation and, if necessary, also to determine from which spatial directions relevant acoustic signals (usually speech signals emanating from third parties) hit the hearing aid and thus the hearing aid wearer. The information about the yaw movement of the head is preferably used in this case to further delimit the spatial area in which the interlocutors of the hearing aid wearer are most likely to be. This is particularly useful, for example, in the event that the hearing aid wearer is in an acoustically ambiguous conversation situation in which at least two conversations take place in parallel, but the hearing aid wearer only takes part in one of the two conversations. This occurs, for example, in restaurants, bars or the like, in particular when people on one side of the hearing aid wearer are talking to one another, but the hearing aid wearer only speaks to people in front of him or on his other side. In this case it can regularly happen that the acoustic classifier interprets all incoming speech signals as belonging to the conversation. The yaw movement of the head can thus be used to determine where the hearing aid wearer is actually looking, and from this it can be concluded which speech signals do not belong to the conversation with a comparatively high degree of probability.

In einer vorteilhaften Verfahrensvariante wird die vorstehend beschriebene Null-Grad-Blickrichtung des Hörgeräteträgers insbesondere anhand einer Nickbewegung des Kopfs, einer Vertikalbewegung des Hörgeräteträgers und/oder anhand einer (optional mittels eines gesonderten "Bewegungs-Klassifikators" erkannten) Vorwärtsbewegung des Hörgeräteträgers referenziert. Solche aus dem Beschleunigungssignal ableitbaren Bewegungen dienen insbesondere zur Erkennung von Bewegungen wie beispielsweise Nicken, Trinken, Aufstehen, Tätigkeiten wie Schuhe binden, Gehen, Joggen, Autofahren, Radfahren und dergleichen. Diese - auch eine eigenständige Erfindung darstellende - Verfahrensvariante beruht dabei auf der Erkenntnis, dass insbesondere Bewegungen wie Nicken und Trinken auch bei einem Gruppengespräch oder einer Vortragssituation, in der der Hörgeräteträger für vergleichsweise lange Zeiträume auf eine Tafel oder eine Leinwand blickt, mit hoher Wahrscheinlichkeit regelmäßig mit in Null-Grad-Blickrichtung ausgerichtetem Kopf erfolgen. Die Referenzierung dient dabei dazu, eine Drift insbesondere bei der Erstellung des vorstehend beschriebenen Histogramms, die beispielsweise durch ein fehlerhaftes Nicht-Erkennen einer Gierbewegung bedingt sein kann, zu vermeiden oder zumindest auszugleichen. Des Weiteren ist mit hoher Wahrscheinlichkeit anzunehmen, dass Tätigkeiten wie Aufstehen und Schuhe binden mit gerade ausgerichtetem Kopf durchgeführt werden. Gleiches gilt für die Tätigkeiten wie Gehen, Joggen, Autofahren, Radfahren und dergleichen, bei denen der Hörgeräteträger mit hoher Wahrscheinlichkeit nur relativ selten seinen Kopf zur Seite drehen wird. Optional wird zur Detektion der hier beschriebenen Bewegungen, insbesondere der Tätigkeiten wie Gehen, Joggen, Autofahren, Radfahren, Schuhe binden, bei denen insbesondere der ganze Körper des Hörgeräteträgers in Bewegung ist, ein "Bewegungsklassifikator" herangezogen. Dieser ist vorzugsweise durch einen entsprechenden Klassifikationsalgorithmus gebildet, der wiederum zweckmäßigerweise auf Bewegungen des ganzen Körpers des Hörgeräteträgers gerichtet ist.In an advantageous variant of the method, the above-described zero-degree viewing direction of the hearing aid wearer is referenced in particular using a nodding movement of the head, a vertical movement of the hearing aid wearer and / or a forward movement of the hearing aid wearer (optionally detected by means of a separate "movement classifier"). Such movements that can be derived from the acceleration signal are used in particular to detect movements such as nodding, drinking, standing up, activities such as tying shoes, walking, jogging, driving a car, cycling and the like. This variant of the method, which also represents an independent invention, is based on the knowledge that, in particular, movements such as nodding and drinking are also possible during a group conversation or a lecture situation in which the hearing aid wearer If you look at a blackboard or a canvas for comparatively long periods of time, it is very likely that this will be done regularly with your head aligned in a zero-degree line of sight. The referencing serves to avoid or at least compensate for a drift, in particular when creating the above-described histogram, which may be caused, for example, by incorrect non-detection of a yaw movement. Furthermore, it can be assumed with a high probability that activities such as standing up and tying shoes are carried out with the head straight. The same applies to activities such as walking, jogging, driving a car, cycling and the like, in which the hearing aid wearer is very likely to turn his head to one side only relatively rarely. Optionally, a "movement classifier" is used to detect the movements described here, in particular activities such as walking, jogging, driving, cycling, tying shoes, in which the entire body of the hearing aid wearer is in particular in motion. This is preferably formed by a corresponding classification algorithm, which in turn is expediently directed to movements of the entire body of the hearing aid wearer.

In einer weiteren zweckmäßigen Verfahrensvariante wird als zusätzliches Kriterium zur Ermittlung der Gierbewegung (insbesondere ob eine solche vorliegt) eine Ausgabe des vorstehend beschriebenen, insbesondere auf die Bewegung des ganzen Körpers der Hörgeräteträgers gerichteten Bewegungsklassifikators herangezogen. So wird beispielsweise angenommen, dass bei mittels des Bewegungs-klassifikators erkannten Tätigkeiten wie beispielsweise Radfahren, Autofahren und Joggen die Wahrscheinlichkeit dafür, dass der Hörgeräteträger an einem Gruppengespräch teilnimmt, vergleichsweise niedrig ist. Diese Tätigkeiten erfolgen erkanntermaßen jeweils in vergleichsweise "schnellen" Bewegungssituationen, in denen der Hörgeräteträger mit vergleichsweise hoher Wahrscheinlichkeit seine (insbesondere visuelle) Aufmerksamkeit größtenteils nach vorne richten dürfte. Unter Hinzuziehung der Information (Ausgabe) des Bewegungsklassifikators kann dabei die Auswertung der Hauptmerkmale und gegebenenfalls des Zusatzmerkmals geblockt oder zumindest verifiziert werden. Befindet sich der Hörgeräteträger in Ruhe wird eine mehrfache Gierbewegung des Kopfs - insbesondere bei einer akustisch klassifizierten Gesprächssituation - mit hoher Wahrscheinlichkeit auf eine Teilnahme des Hörgeräteträgers an dem Gespräch mit mehreren Personen hindeuten. Die Information des Bewegungsklassifikators kann dabei also beispielsweise ebenfalls in den vorstehend beschriebenen (auf die Gierbewegung gerichteten) Klassifikationsalgorithmus und/oder in die Fusionierung der Bewegungs- und Akustikinformation einbezogen werden.In a further expedient variant of the method, an output of the above-described movement classifier, in particular aimed at the movement of the entire body of the hearing aid wearer, is used as an additional criterion for determining the yaw movement (in particular whether it is present). For example, it is assumed that in the case of activities recognized by means of the movement classifier, such as cycling, driving and jogging, the probability that the hearing aid wearer will take part in a group conversation is comparatively low. It is recognized that these activities each take place in comparatively “fast” movement situations in which the hearing aid wearer is likely to direct his (in particular visual) attention largely forwards with a comparatively high degree of probability. Using the information (output) of the movement classifier, the evaluation of the main features and, if applicable, the additional feature can be blocked or at least verified. If the hearing aid wearer is at rest, there will be multiple yaw movements of the head - especially in the case of a acoustically classified conversation situation - indicate with a high probability that the hearing aid wearer will participate in the conversation with several people. The information of the movement classifier can thus also be included, for example, in the classification algorithm described above (directed at the yaw movement) and / or in the amalgamation of the movement and acoustic information.

In einer bevorzugten Verfahrensvariante wird eine derartige Anordnung des Beschleunigungssensors im oder am Hörgerät herangezogen, dass zumindest eine der Messachsen des Beschleunigungssensors zumindest näherungsweise tangential zum Kopf, vorzugsweise parallel zur natürlichen Null-Grad-Blickrichtung des Hörgeräteträgers ausgerichtet ist. Vorzugsweise ist diese Messachse dabei auch horizontal ausgerichtet. Die beiden anderen Messachsen sind dabei vorzugsweise (bei aufrechter Körperhaltung) vertikal bzw. horizontal und entlang der vorstehend beschriebenen Nickachse angeordnet. Durch diese Anordnung sind die einzelnen, den Messachsen zugeordneten Messwerte vorteilhafterweise bereits den Tangential- und Radial-Beschleunigungen zugeordnet.In a preferred variant of the method, such an arrangement of the acceleration sensor in or on the hearing aid is used that at least one of the measurement axes of the acceleration sensor is at least approximately tangential to the head, preferably parallel to the natural zero-degree viewing direction of the hearing aid wearer. This measuring axis is preferably also aligned horizontally. The two other measuring axes are preferably arranged (with an upright posture) vertically or horizontally and along the above-described pitch axis. As a result of this arrangement, the individual measured values assigned to the measuring axes are advantageously already assigned to the tangential and radial accelerations.

Insbesondere für den Fall, dass das vorstehend beschriebene Hörgerät Teil eines binauralen Systems ist, wird das vorstehend beschriebene Verfahren zur Detektion der Gierbewegung sowie gegebenenfalls zur Bestimmung des Gierwinkels jeweils in jedem der beiden Hörgeräte separat - d. h. monaural - durchgeführt und die beiden monauralen Entscheidungen anschließend "binaural" synchronisiert.In particular in the event that the hearing aid described above is part of a binaural system, the above-described method for detecting the yaw movement and, if necessary, for determining the yaw angle is used separately in each of the two hearing aids. H. monaural - carried out and the two monaural decisions then "binaurally" synchronized.

In einer optionalen Verfahrensvariante werden die beiden monauralen Beschleunigungssignale zu einem binauralen Signal kombiniert - beispielsweise wird die Differenz aus beiden Beschleunigungssignalen gebildet - und das vorstehend beschriebene Verfahren auf das binaurale Sensorsignal angewendet.In an optional variant of the method, the two monaural acceleration signals are combined to form a binaural signal - for example the difference is formed from the two acceleration signals - and the method described above is applied to the binaural sensor signal.

Das erfindungsgemäße Hörgerät umfasst den (insbesondere einzigen) Beschleunigungssensor, der im bestimmungsgemäßen Tragezustand des Hörgeräts am Kopf des Hörgeräteträgers angeordnet und zur Messung in den wenigstens zwei, optional drei Messachsen eingerichtet ist. Des Weiteren umfasst das Hörgerät einen (Signalverarbeitungs-) Prozessor, der - programm- und/oder schaltungstechnisch - dazu eingerichtet ist, das vorstehend beschriebene, erfindungsgemäße Verfahren insbesondere automatisch durchzuführen. Mithin ist der Prozessor dazu eingerichtet, aus dem Beschleunigungssignal des Beschleunigungssensors das wenigstens eine mit der Tangential-Beschleunigung verknüpfte Hauptmerkmal abzuleiten und anhand des oder des jeweiligen Hauptmerkmals unter Berücksichtigung des wenigstens einen vorgegebenen Kriteriums das Vorliegen der Gierbewegung des Kopfs zu ermitteln. Somit weist das Hörgerät alle Vorteile und Merkmale, die sich aus den vorstehend beschriebenen Verfahrensmerkmalen ergeben gleichermaßen auf.The hearing aid according to the invention comprises the (in particular single) acceleration sensor which, when the hearing aid is worn as intended, is arranged on the head of the hearing aid wearer and is set up for measurement in the at least two, optionally three, measuring axes. The hearing aid also includes a (signal processing) processor which - in terms of program and / or circuitry - is set up to carry out the above-described method according to the invention, in particular automatically. The processor is therefore set up to derive the at least one main feature linked to the tangential acceleration from the acceleration signal of the acceleration sensor and to determine the presence of the yaw movement of the head on the basis of the respective main feature, taking into account the at least one predetermined criterion. The hearing aid thus has all the advantages and features that result from the method features described above in equal measure.

In bevorzugter Ausgestaltung ist der Prozessor zumindest im Kern durch einen Mikrocontroller mit einem Mikroprozessor und einem Datenspeicher gebildet, in dem die Funktionalität zur Durchführung des erfindungsgemäßen Verfahrens in Form einer Betriebssoftware (Firmware) programmtechnisch implementiert ist, so dass das Verfahren - gegebenenfalls in Interaktion mit dem Hörgeräteträger - bei Ausführung der Betriebssoftware automatisch durchgeführt wird. Der Prozessor ist alternativ durch ein nicht-programmierbares elektronisches Bauteil, z. B. einen ASIC, gebildet sein, in dem die Funktionalität zur Durchführung des erfindungsgemäßen Verfahrens mit schaltungstechnischen Mitteln implementiert ist.In a preferred embodiment, the processor is at least essentially formed by a microcontroller with a microprocessor and a data memory in which the functionality for performing the method according to the invention is implemented in the form of operating software (firmware) so that the method - possibly in interaction with the Hearing aid wearer - is carried out automatically when the operating software is executed. The processor is alternatively a non-programmable electronic component, e.g. B. an ASIC, in which the functionality for performing the method according to the invention is implemented with circuitry means.

Die Konjunktion "und/oder" ist hier und im Folgenden insbesondere derart zu verstehen, dass die mittels dieser Konjunktion verknüpften Merkmale sowohl gemeinsam als auch als Alternativen zueinander ausgebildet sein können.The conjunction “and / or” is to be understood here and in the following in particular in such a way that the features linked by means of this conjunction can be designed both together and as alternatives to one another.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Darin zeigen:

Fig. 1
in einem schematischen Schaltbild ein Hörgerät,
Fig. 2
in einer Ansicht von oben einen Kopf eines Hörgeräteträgers mit dem bestimmungsgemäß am Ohr getragenen Hörgerät,
Fig. 3
in einem schematischen Ablaufdiagramm ein von einem Prozessor des Hörgeräts durchgeführtes Verfahren zum Betrieb des Hörgeräts,
Fig. 4, 5
jeweils in einem schematischen Diagramm aus einem Beschleunigungssignal abgeleitete Merkmale angetragen gegen die Zeit,
Fig. 6, 7
jeweils in einem schematischen Diagramm, in dem eine Radial- gegen eine Tangential-Beschleunigung angetragen ist, einen Verlauf der Beschleunigung,
Fig. 8
in einem schematischen Diagramm den zeitlichen Verlauf eines Gierwinkels des Kopfs des Hörgeräteträgers, und
Fig. 9
in einem schematischen Polardiagramm ein Histogramm des Gierwinkels.
The invention is explained in more detail below on the basis of exemplary embodiments. Show in it:
Fig. 1
a hearing aid in a schematic circuit diagram,
Fig. 2
in a view from above a head of a hearing aid wearer with the hearing aid intended to be worn on the ear,
Fig. 3
in a schematic flowchart a method for operating the hearing aid carried out by a processor of the hearing aid,
Fig. 4, 5
Characteristics derived from an acceleration signal plotted against time in a schematic diagram,
Fig. 6, 7
each in a schematic diagram in which a radial versus a tangential acceleration is plotted, a course of the acceleration,
Fig. 8
in a schematic diagram the time course of a yaw angle of the head of the hearing aid wearer, and
Fig. 9
in a schematic polar diagram, a histogram of the yaw angle.

Einander entsprechende Teile und Größen sind in allen Figuren stets mit gleichen Bezugszeichen versehen.Corresponding parts and sizes are always provided with the same reference symbols in all figures.

In Figur 1 ist ein Hörgerät 1, konkret ein sogenanntes Hinter-dem-Ohr-Hörgerät dargestellt. Das Hörgerät 1 umfasst ein (Hörgeräte-) Gehäuse 2, in dem mehrere elektronische Komponenten angeordnet sind. Als elektronische Komponenten umfasst das Hörgerät 1 zwei Mikrofone 3, die zur Detektion von Geräuschen aus der Umgebung des Hörgeräts 1 eingerichtet sind. Des Weiteren umfasst das Hörgerät 1 als elektronische Komponente einen Signalprozessor 4, der dazu eingerichtet ist, die mittels der Mikrofone 3 erfassten Geräusche zu verarbeiten und zur Ausgabe an das Gehör eines Hörgerätträgers an einen Lautsprecher 5 auszugeben. Zur Erfassung der räumlichen Lage des Hörgeräts 1 umfasst dieses außerdem einen Beschleunigungssensor 6, der mit dem Signalprozessor 4 verschaltet ist. Zur Energieversorgung dieser elektronischen Komponenten ist in dem Gehäuse 2 außerdem eine Batterie 7 angeordnet, die im vorliegenden Ausführungsbeispiel konkret durch einen Akkumulator gebildet ist. Zur Leitung des von dem Lautsprecher 5 erzeugten Schalls zum Gehör des Hörgeräteträgers ist an das Gehäuse 2 ein Schallschlauch 8 angeschlossen, der im bestimmungsgemäßen Tragezustand am Kopf 9, konkret am Ohr des Hörgerätträgers (vergleiche Figur 2) mit einem Ohrpassstück 10 in den Gehörgang des Hörgeräteträgers eingesetzt ist.In Figure 1 a hearing aid 1, specifically a so-called behind-the-ear hearing aid, is shown. The hearing aid 1 comprises a (hearing aid) housing 2 in which several electronic components are arranged. The hearing aid 1 comprises two microphones 3 as electronic components, which are set up to detect noises from the surroundings of the hearing aid 1. Furthermore, the hearing aid 1 comprises a signal processor 4 as an electronic component, which is set up to process the noises detected by the microphones 3 and to output them to a loudspeaker 5 for output to the hearing of a hearing aid wearer. To detect the spatial position of the hearing device 1, it also includes an acceleration sensor 6 which is connected to the signal processor 4. In order to supply these electronic components with energy, a battery 7 is also arranged in the housing 2, which in the present exemplary embodiment is specifically formed by an accumulator. In order to conduct the sound generated by the loudspeaker 5 to the hearing of the hearing aid wearer, a sound tube 8 is connected to the housing 2 which, when worn as intended, is attached to the head 9, specifically to the ear of the hearing aid wearer (cf. Figure 2 ) is inserted with an ear mold 10 into the ear canal of the hearing aid wearer.

Der Beschleunigungssensor 6 ist zur dreidimensionalen Messung eingerichtet, und weist dazu drei senkrecht aufeinander stehende Messachsen x, y und z (s. Figur 2) auf. Der Beschleunigungssensor 6 ist dabei derart im Gehäuse 2 des Hörgeräts 1 angeordnet, dass im bestimmungsgemäßen Tragezustand am Kopf 9 und bei aufrechter Körperhaltung des Hörgeräteträgers die Messachse z mit der Vertikalrichtung zusammenfällt. Die Messachse x ist in diesem Fall tangential zum Kopf 9 und nach vorne - d. h. entlang einer Null-Grad-Blickrichtung 12 - ausgerichtet. Die Messachse y ist dabei radial vom Kopf 9 weg gerichtet. Die beiden Messachsen x und y liegen bei aufrechter Körperhaltung des Hörgeräteträgers auch in einer Horizontalebene. Aufgrund dieser Anordnung geben die der Messachse x zugeordneten Messwerte eine tangential zum Kopf 9 gerichtete Beschleunigung (im Folgenden als "Tangential-Beschleunigung at" bezeichnet) wieder. Die der Messachse y zugeordneten Messwerte geben entsprechend eine radial zum Kopf 9 gerichtete Beschleunigung (im Folgenden als "Radial-Beschleunigung ar" bezeichnet) wieder.The acceleration sensor 6 is set up for three-dimensional measurement and has three measurement axes x, y and z that are perpendicular to one another (see Fig. Figure 2 ) on. The acceleration sensor 6 is arranged in the housing 2 of the hearing aid 1 in such a way that the measurement axis z coincides with the vertical direction when the head 9 is worn as intended and when the hearing aid wearer is in an upright posture. In this case, the measuring axis x is tangential to the head 9 and oriented to the front - that is, along a zero-degree viewing direction 12. The measurement axis y is directed radially away from the head 9. The two measuring axes x and y also lie in a horizontal plane when the hearing aid wearer is in an upright posture. Due to this arrangement, the measured values assigned to the measuring axis x reproduce an acceleration directed tangentially to the head 9 (hereinafter referred to as “tangential acceleration at”). The measured values assigned to the measuring axis y correspondingly reproduce an acceleration directed radially to the head 9 (hereinafter referred to as “radial acceleration ar”).

Der Signalprozessor 4 ist dazu eingerichtet, mittels eines akustischen Klassifikators, der als Algorithmus in dem Signalprozessor 4 implementiert ist, anhand der mittels der Mikrofone 3 erfassten Geräusche auf eine Gesprächssituation (d. h. auf einer Unterhaltung von wenigstens zwei Personen) zu schließen und daraufhin die Signalverarbeitung entsprechend anzupassen. Beispielsweise wird dazu ein Öffnungswinkel eines mittels der beiden Mikrofone 3 gebildeten Richtmikrofons derart eingestellt, dass alle aus der Umgebung auf die Mikrofone 3 treffenden Sprachanteile, konkret die Quellorte dieser Sprachanteile innerhalb des Öffnungsbereichs des Richtmikrofons liegen. Um die Signalverarbeitung in einer solchen Gesprächssituation noch präziser anpassen zu können, konkret den Öffnungswinkel so einstellen zu können, dass nur die tatsächlich am Gespräch beteiligten Personen (die jeweils einen Quellort eines Sprachanteils darstellen) innerhalb des Öffnungsbereichs des Richtmikrofons liegen, wird von dem Signalprozessor 4 ein nachfolgend näher erläutertes Verfahren durchgeführt.The signal processor 4 is set up to use an acoustic classifier, which is implemented as an algorithm in the signal processor 4, to infer a conversation situation (i.e. a conversation between at least two people) based on the noises recorded by the microphones 3 and then the signal processing accordingly adapt. For example, an opening angle of a directional microphone formed by means of the two microphones 3 is set in such a way that all speech components from the environment that hit the microphones 3, specifically the source locations of these speech components, are within the opening range of the directional microphone. In order to be able to adapt the signal processing even more precisely in such a conversation situation, specifically to be able to set the opening angle so that only the people actually involved in the conversation (who each represent a source of a part of the speech) are within the opening range of the directional microphone, the signal processor 4 carried out a method explained in more detail below.

In einem ersten Verfahrensschritt 20 werden die von dem Beschleunigungssensor 6 ermittelten Messwerte - die zu Gruppen von jeweils drei Messwerten, von denen wiederum jeweils einer, einer der Messachsen x, y und z zugeordnet ist, ausgegeben werden - in einem Pufferspeicher (der im Signalprozessor 4 integriert ist) abgelegt. Der Pufferspeicher ist dabei zur gleitenden Zwischenspeicherung von acht solcher Messwertgruppen ausgebildet. In einem nachfolgenden Verfahrensschritt 30 werden aus den, den jeweiligen Messachsen x, y und z zugeordneten Messwerten mehrere Merkmale abgeleitet (auch: "extrahiert"). Diese Merkmale werden in einem weiteren Verfahrensschritt 40 einem Klassifikator zugeführt, in dem ein Klassifikationsalgorithmus - im vorliegenden Ausführungsbeispiel in Form eines Gaussschen Misch-Moden-Modells - implementiert ist. Dieser Klassifikator ermittelt anhand der im Verfahrensschritt 30 abgeleiteten Merkmale, ob der Hörgeräteträger seinen Kopf 9 dreht, d. h. zumindest näherungsweise um die Messachse z rotiert. Eine solche "Seitwärts-Rotation" des Kopfs 9 wird hier und im Folgenden als "Gierbewegung" bezeichnet.In a first method step 20, the measured values determined by the acceleration sensor 6 - which are output in groups of three measured values, each of which is assigned to one of the measuring axes x, y and z - are output in a buffer memory (the one in the signal processor 4 is integrated) filed. The buffer memory is designed for the floating intermediate storage of eight such groups of measured values. In a subsequent method step 30, several features are derived (also: "extracted") from the measured values assigned to the respective measuring axes x, y and z. In a further method step 40, these features are fed to a classifier in which a classification algorithm - in the present exemplary embodiment in the form of a Gaussian mixed mode model - is implemented. Using the features derived in method step 30, this classifier determines whether the hearing aid wearer rotates his head 9, ie at least approximately rotates about the measurement axis z. Such a “sideways rotation” of the head 9 is referred to here and in the following as a “yaw movement”.

Die Messachse z stellt also in der im vorliegenden Ausführungsbeispiel dargestellten Anordnung und Ausrichtung des Beschleunigungssensors 6 eine sogenannte Gierachse dar. Entsprechend stellen die Messachse x eine Rollachse, um die der Hörgeräteträger seinen Kopf 9 zur Seite neigt, und die Messachse y eine Nickachse dar, um die der Hörgeräteträger seinen Kopf 9 nach unten oder oben neigt ("Nicken"; analog zu den englischsprachigen Begriffen "yaw", "roll" und "pitch").The measurement axis z represents a so-called yaw axis in the arrangement and alignment of the acceleration sensor 6 shown in the present exemplary embodiment which the hearing aid wearer tilts his head 9 downwards or upwards ("nod"; analogous to the English-language terms "yaw", "roll" and "pitch").

Parallel zu den vorstehen beschriebenen Verfahrensschritten 30 und 40 werden in einem Verfahrensschritt 50 die in dem Pufferspeicher abgelegten Messwerte des Beschleunigungssensors 6 von stationären und sich im Vergleich zur Dauer einer Kopfbewegung nur langsam ändernden Einflüssen bereinigt. Der als stationär anzunehmende Einfluss der Gravitation wird hierbei mittels eines Hochpass-Filters entfernt. Weitere Einflüsse, die zu einem Versatz der Messwerte führen, beispielsweise eine anatomisch bedingte Abweichung der tatsächlichen Gierachse von der Vertikalen und/oder der tatsächlichen Ausrichtung der Messachse z werden in einem Ausführungsbeispiel durch Subtraktion des zeitlichen Mittelwerts der gepufferten Messwerte von dem jeweiligen "Einzel-Messwert" entfernt. Sich linear auswirkende Einflüsse (d. h. lineare Trends) werden mittels eines sogenannten "Detrendings" entfernt.In parallel to the method steps 30 and 40 described above, in a method step 50 the measured values of the acceleration sensor 6 stored in the buffer memory are cleared of stationary influences that change only slowly compared to the duration of a head movement. The influence of gravity, which can be assumed to be stationary, is removed by means of a high-pass filter. Further influences that lead to an offset of the measured values, for example an anatomically-related deviation of the actual yaw axis from the vertical and / or the actual alignment of the measuring axis z, are in one embodiment by subtracting the time average of the buffered measured values from the respective "individual measured value " removed. Influences that have a linear effect (ie linear trends) are removed by means of so-called "detrending".

Für den Fall, dass in einem Verfahrensschritt 55 der Klassifikator das Ergebnis ausgibt, dass eine Gierbewegung des Kopfs 9 vorliegt, wird in einem weiteren Verfahrensschritt 60 aus den ermittelten Messwerten, konkret aus der Tangential-Beschleunigung at ein Wert eines Gierwinkels W bestimmt. D. h. es wird ermittelt, wie weit der Hörgeräteträger seinen Kopf 9 gedreht hat (vgl. Figur 8).In the event that in a method step 55 the classifier outputs the result that there is a yaw movement of the head 9, in a further method step 60 a value of a yaw angle W is determined from the determined measured values, specifically from the tangential acceleration at. I. E. it is determined how far the hearing aid wearer has turned his head 9 (cf. Figure 8 ).

Anhand der Informationen, ob eine Gierbewegung vorliegt und um welchen Gierwinkel W der Kopf 9 gedreht wird, wird in einem Verfahrensschritt 70 eine statistische Analyse durchgeführt. Dabei wird ermittelt, wie oft innerhalb eines vorgegebenen Zeitfensters der Hörgeräteträger seinen Kopf 9 dreht. Außerdem wird anhand der den einzelnen Gierbewegungen zugeordneten Werte des Gierwinkels W ein Histogramm erstellt, aus dem sich ablesen lässt, in welche Richtungen - bezogen auf die Null-Grad-Blickrichtung 12 - der Hörgeräteträger in dem vorgegebenen Zeitfenster seinen Kopf 9 gedreht hat (s. Figur 9). Anhand der Häufigkeitsverteilung der einzelnen Richtungen lässt sich aus diesem Histogramm auch eine räumliche Verteilung des Interessensbereichs des Hörgeräteträgers ablesen.On the basis of the information as to whether there is a yaw movement and the yaw angle W by which the head 9 is rotated, a statistical analysis is carried out in a method step 70. It is determined how often the hearing aid wearer turns his head 9 within a predetermined time window. In addition, the values of the yaw angle W assigned to the individual yaw movements are used to create a histogram from which it can be read off in which directions - based on the zero-degree viewing direction 12 - the hearing aid wearer has turned his head 9 in the specified time window (see Fig. Figure 9 ). On the basis of the frequency distribution of the individual directions, a spatial distribution of the area of interest of the hearing aid wearer can also be read from this histogram.

In einem weiteren Verfahrensschritt 80 werden die in den Verfahrensschritten 60 und 70 generierten Informationen von dem Signalprozessor 4 genutzt, um die Signalverarbeitung zusätzlich anzupassen. Konkret werden in diesem Verfahrensschritt 80 die Informationen des vorstehend beschriebenen akustischen Klassifikators und der vorstehend beschriebenen "Bewegungsanalyse" mittels des Beschleunigungssensors 6 fusioniert, um so eine präzisere Anpassung der Signalverarbeitung auf eine Gesprächssituation zu ermöglichen. In einem Ausführungsbeispiel werden konkret der Öffnungswinkel des Richtmikrofons, die Ausrichtung des Richtkegels des Richtmikrofons und die Position einer sogenannten "Kerbe" (auch als "notch" bezeichnet) in Abhängigkeit von den mittels des Beschleunigungssensors 6 ermittelten Informationen - nämlich des Gierwinkels W und des Histogramms - weiter angepasst, gegebenenfalls gegenüber einer allein von dem akustischen Klassifikator vorgeschlagenen Einstellung weiter eingegrenzt.In a further method step 80, the information generated in method steps 60 and 70 is used by the signal processor 4 in order to additionally adapt the signal processing. Specifically, in this method step 80, the information from the acoustic classifier described above and the “movement analysis” described above are merged by means of the acceleration sensor 6 in order to enable the signal processing to be more precisely adapted to a conversation situation. In one embodiment, the opening angle of the directional microphone, the alignment of the directional cone of the directional microphone and the position of a so-called "notch" (also referred to as a "notch") are specifically determined as a function of the information determined by the acceleration sensor 6 - namely the yaw angle W and the histogram - further adapted, possibly further limited with respect to a setting proposed solely by the acoustic classifier.

In einem ersten Ausführungsbeispiel wird in dem Verfahrensschritt 30 als ein Hauptmerkmal ein zeitlicher Verlauf at(t) der Tangential-Beschleunigung at ermittelt. Als Zusatzmerkmal wird ein zeitlicher Verlauf ar(t) der Radial-Beschleunigung ar ermittelt. In dem Verfahrensschritt 40 wird als ein Kriterium für das Vorliegen der Gierbewegung betrachtet, ob der zeitliche Verlauf at(t) der Tangential-Beschleunigung at innerhalb eines vorgegebenen Zeitabschnitts, im Folgenden als "Bewegungszeitfenster Zb" bezeichnet, von der Dauer einer Sekunde zwei lokale Extrema Mt mit entgegengesetzten Vorzeichen annimmt, die zwei entgegengesetzte Beschleunigungen, nämlich eine tatsächliche Beschleunigung und ein Abbremsen anzeigen. Des Weiteren wird im Rahmen des Kriteriums auch betrachtet, ob der zeitliche Verlauf ar(t) der Radial-Beschleunigung ar innerhalb des Bewegungszeitfensters Zb ein lokales Extremum Mr annimmt, das eine Kopfbewegung mit einer radial zum Kopf 9 gerichteten Beschleunigungskomponente anzeigt. In Figur 4 sind beispielhaft die zeitlichen Verläufe at(t) und ar(t) jeweils für eine Gierbewegung des Kopfs 9 nach rechts (vgl. Sekunden 0,5-1,5) und nach links (vgl. Sekunden 2-3) dargestellt. Bei der Gierbewegung nach rechts durchläuft der zeitliche Verlauf at(t) somit - aufgrund der Ausrichtung der Messachse x nach vorne - zunächst das "positive" Extremum Mt, das den Beginn der Gierbewegung anzeigt, und anschließend das "negative" Extremum Mt, das das Abbremsen des Kopfs 9 zum Ende der Gierbewegung anzeigt. Parallel zeigt der zeitliche Verlauf ar(t) - aufgrund der Ausrichtung der Messachse y nach außen - aufgrund der Zentrifugalkraft ebenfalls ein positives Extremum Mr innerhalb des Bewegungszeitfensters Zb. Entsprechend umgekehrt verhält es sich bei der Gierbewegung nach links, wie aus der rechten Hälfte von Figur 4 genommen werden kann. Wird in dem Verfahrensschritt 40 eine derartige Ausprägung des Hauptmerkmals und des Zusatzmerkmals - d. h. wie zwischen den Sekunden 0,5 und 1,5 oder 2 und 3 dargestellt - erkannt, gibt der Klassifikator im Verfahrensschritt 55 aus, dass eine Gierbewegung vorliegt. Ohne das Extremum Mr des zeitlichen Verlauf ar(t), also ohne tatsächlich vorhandene Radial-Beschleunigung ar liegt beispielsweise nur eine gerade nach vorne gerichtete Bewegung des Kopfs 9 oder des Hörgeräteträgers vor.In a first exemplary embodiment, in method step 30, a time profile at (t) of the tangential acceleration at is determined as a main feature. As an additional feature, a time curve ar (t) of the radial acceleration ar is determined. In method step 40 it is considered as a criterion for the presence of the yaw movement whether the temporal course at (t) of the tangential acceleration at within a predetermined time segment, hereinafter referred to as "movement time window Zb", of a duration of one second, two local extremes Assumes Mt with opposite signs, indicating two opposite accelerations, namely an actual acceleration and a deceleration. Furthermore, within the scope of the criterion, it is also considered whether the time profile ar (t) of the radial acceleration ar assumes a local extreme Mr within the movement time window Zb, which indicates a head movement with an acceleration component directed radially towards the head 9. In Figure 4 the time courses at (t) and ar (t) are shown by way of example for a yaw movement of the head 9 to the right (cf. seconds 0.5-1.5) and to the left (cf. seconds 2-3). With the yaw movement to the right, the time course at (t) therefore runs through first the "positive" extremum Mt, which indicates the beginning of the yaw movement, and then the "negative" extremum Mt, which shows the Decelerating the head 9 indicates the end of the yaw movement. At the same time, the time course ar (t) - due to the alignment of the measurement axis y outwards - also shows a positive extreme Mr within the movement time window Zb due to the centrifugal force. Correspondingly, the opposite is true for the yaw movement to the left, as from the right half of Figure 4 can be taken. If such an expression of the main feature and the additional feature - ie as shown between seconds 0.5 and 1.5 or 2 and 3 - is recognized in method step 40, the classifier outputs in method step 55 that a yaw movement is present. Without the extreme Mr of the time profile ar (t), that is to say without any actual radial acceleration ar, there is, for example, only a straight forward movement of the head 9 or of the hearing aid wearer.

In einem weiteren Ausführungsbeispiel wird in dem Verfahrensschritt 30 als Hauptmerkmal ein Korrelationskoeffizient K zwischen einer zeitlichen Ableitung der Tangential-Beschleunigung at, konkret deren zeitlichen Verlaufs at(t), und der Radial-Beschleunigung ar, konkret deren zeitlichen Verlauf ar(t) bestimmt. Dies ist in Figur 5 näher dargestellt. Die aus der zeitlichen Ableitung der Tangential-Beschleunigung at zu entnehmende Änderung der Tangential-Beschleunigung at, konkret ein zeitliches Extremum Md dieser Änderung, fällt - wie aus Figur 5 ersichtlich ist - bei einer Gierbewegung des Kopfs 9 zumindest näherungsweise zeitlich mit dem Extremum Mr der Radial-Beschleunigung ar zusammen. Somit lässt sich aus dem Wert des Korrelationskoeffizienten K - konkret aus dessen Betrags-Höhe - entnehmen, ob überhaupt eine Gierbewegung vorliegt. Aus dem Vorzeichen des Korrelationskoeffizienten K lässt sich außerdem die Richtung der Gierbewegung ablesen. Für die in Figur 5 zwischen den Sekunden 0,5-1,5 dargestellte Gierbewegung nach rechts ist der Wert des Korrelationskoeffizienten K etwa -0,75. Für die zwischen den Sekunden 2-3 dargestellte Gierbewegung nach links beträgt der Korrelationskoeffizient K etwa 0,8.In a further exemplary embodiment, the main feature in method step 30 is a correlation coefficient K between a time derivative of the tangential acceleration at, specifically its time profile at (t), and the Radial acceleration ar, specifically its time course ar (t) is determined. This is in Figure 5 shown in more detail. The change in the tangential acceleration at, which can be taken from the time derivative of the tangential acceleration at, specifically a temporal extreme Md of this change, turns out to be as follows Figure 5 it can be seen - in the case of a yaw movement of the head 9, at least approximately temporally together with the extreme Mr of the radial acceleration ar. It can thus be inferred from the value of the correlation coefficient K - specifically from its magnitude - whether there is any yaw movement at all. The direction of the yaw movement can also be read from the sign of the correlation coefficient K. For the in Figure 5 yaw movement to the right shown between the seconds 0.5-1.5, the value of the correlation coefficient K is approximately -0.75. For the yaw movement to the left shown between seconds 2-3, the correlation coefficient K is approximately 0.8.

In einem weiteren Ausführungsbeispiel, erläutert anhand der Figuren 6 und 7, wird in dem Verfahrensschritt 30 als Hauptmerkmal eine Kurve D eines Diagramms erstellt, in dem die Radial-Beschleunigung ar gegen die Tangential-Beschleunigung at angetragen ist. In dem nachfolgenden Verfahrensschritt 40 wird als Kriterium die Form dieser Kurve D herangezogen. Konkret wird betrachtet, ob die Kurve D der Form einer Ellipse angenähert werden kann. In Figur 6 sind dabei die auch den vorhergehenden Figuren 4 bzw. 5 zugrunde liegenden Messwerte für die Gierbewegung nach rechts und in Figur 7 nach links angetragen. Der dargestellte Versatz zwischen dem jeweiligen Startpunkt und Endpunkt (letzterer markiert durch ein auf die Spitze gestelltes Dreieck) ist hierbei durch eine schiefe Kopfhaltung bedingt. Dadurch weicht auch die Form der Kurve D von der idealen Kreisform ab und entspricht vielmehr einem Oval oder einer Ellipse. Weist die Kurve D eine derartige Form auf, schließt der Klassifikator im Verfahrensschritt 40 auf das Vorliegen der Gierbewegung und gibt dem Verfahrensschritt 55 ein entsprechendes Ergebnis aus.In a further exemplary embodiment, explained with reference to FIG Figures 6 and 7 In method step 30, a curve D of a diagram is created as the main feature in which the radial acceleration ar is plotted against the tangential acceleration at. In the subsequent method step 40, the shape of this curve D is used as the criterion. Specifically, it is considered whether the curve D can be approximated to the shape of an ellipse. In Figure 6 are also the previous ones Figures 4 or 5 underlying measured values for the yaw movement to the right and in Figure 7 applied to the left. The offset shown between the respective starting point and the end point (the latter marked by a triangle on its apex) is caused by an inclined posture of the head. As a result, the shape of curve D also deviates from the ideal circular shape and rather corresponds to an oval or an ellipse. If the curve D has such a shape, the classifier concludes in method step 40 that the yaw movement is present and outputs a corresponding result in method step 55.

In einem wiederum weiteren Ausführungsbeispiel (nicht näher dargestellt) wird in dem Verfahrensschritt 30 als Hauptmerkmal eine Bewegungsintensität I ermittelt. Diese ist hier durch die in der Tangential- und der Radial-Beschleunigung enthaltene Energie abgebildet. Die Bewegungsintensität I wird dabei anhand der gemittelten Vektornormen des jeweiligen Vektors der Tangential- und Radial-Beschleunigung at bzw. ar abgeschätzt. Beispielsweise wird die Energie dabei durch eine zeitlich diskrete Summe der Vektorlänge des resultierenden Vektors der Tangential- und Radial-Beschleunigung at bzw. ar abgeschätzt.In yet another exemplary embodiment (not shown in more detail), a movement intensity I is determined as the main feature in method step 30. This is contained in the tangential and radial acceleration Energy mapped. The movement intensity I is estimated on the basis of the averaged vector norms of the respective vector of the tangential and radial acceleration at or ar. For example, the energy is estimated by a temporally discrete sum of the vector length of the resulting vector of the tangential and radial acceleration at or ar.

In Figur 8 ist beispielhaft der zeitliche Verlauf der Werte des im Verfahrensschritt 60 ermittelten Gierwinkels W dargestellt.In Figure 8 the time course of the values of the yaw angle W determined in method step 60 is shown by way of example.

In Figur 9 ist beispielhaft das im Verfahrensschritt 70 ermittelte Histogramm in Form eines Polardiagramms dargestellt. Aus diesem lässt sich konkret anhand der radialen Länge der schraffierten Bereiche ablesen, wie oft oder für wie lange der Hörgeräteträger seinen Kopf 9 in einen spezifischen Winkelbereich gewendet hat. Daraus lässt sich wiederum ein räumlicher Interessensbereich ableiten, der im Verfahrensschritt 80 dazu genutzt wird, den Öffnungswinkel des Richtmikrofons entsprechend einzustellen. In diesem konkreten Beispiel liegt eine Unterhaltung des Hörgeräteträgers mit zwei Personen vor, einer direkt gegenüber und einer nach links versetzt um etwa 20-25 Grad.In Figure 9 the histogram determined in method step 70 is shown as an example in the form of a polar diagram. From this it is possible to read in concrete terms on the basis of the radial length of the hatched areas how often or for how long the hearing aid wearer has turned his head 9 into a specific angular range. From this, in turn, a spatial area of interest can be derived, which is used in method step 80 to set the aperture angle of the directional microphone accordingly. In this specific example, the hearing aid wearer is talking to two people, one directly opposite and one offset to the left by about 20-25 degrees.

In einem optionalen Ausführungsbeispiel wird in einem Verfahrensschritt 90 (siehe gestrichelte Darstellung in Figur 3) ein sogenannter Bewegungs-Klassifikator eingesetzt, um anhand der im Verfahrensschritt 30 ermittelten Merkmale auf eine Bewegungssituation des Hörgeräteträgers, d. h. auf einen Bewegungszustand des gesamten Körpers oder eine diesen umfassende Tätigkeit zu schließen. Beispielsweise wird in dem Verfahrensschritt 90 ermittelt, ob sich der Hörgeräteträger in Ruhe befindet oder beispielsweise Fahrrad fährt. Für den Fall, dass sich der Hörgeräteträger in Ruhe befindet, ist auch die Wahrscheinlichkeit höher, dass der Hörgeräteträger an einem Gespräch mit mehreren dritten Personen teilnimmt. Für den Fall dass er Fahrrad fährt, ist die Wahrscheinlichkeit vergleichsweise niedrig, dass er an einem solchen Gespräch teilnimmt. In diesem Fall unterbleibt optional die Ermittlung der Gierbewegung im Verfahrensschritt 40 sowie die darauf folgenden Verfahrensschritte 60-80.In an optional exemplary embodiment, in a method step 90 (see dashed illustration in Figure 3 ) a so-called movement classifier is used in order to infer a movement situation of the hearing aid wearer, ie a movement state of the entire body or an activity comprising this, on the basis of the features determined in method step 30. For example, in method step 90 it is determined whether the hearing aid wearer is at rest or, for example, is riding a bicycle. In the event that the hearing aid wearer is at rest, there is also a higher probability that the hearing aid wearer will take part in a conversation with several third parties. In the event that he rides a bicycle, the probability that he will take part in such a conversation is comparatively low. In this case, the determination of the yaw movement in method step 40 and the subsequent method steps 60-80 are optionally omitted.

In einem weiteren optionalen Ausführungsbeispiel wird im Verfahrensschritt 55 vom Klassifikator auch die (zeitliche) Dauer der Gierbewegung sowie optional auch die Stärke der Gierbewegung, konkret die Bewegungsintensität I ausgegeben.In a further optional exemplary embodiment, in method step 55, the classifier also outputs the (temporal) duration of the yaw movement and optionally also the strength of the yaw movement, specifically the movement intensity I.

In einem nicht näher dargestellten weiteren Ausführungsbeispiel erfolgt in einem weiteren Verfahrensschritt ein "Reset", d. h. eine Referenzierung der Null-Grad-Blickrichtung 12 immer dann, wenn eine nahezu reine Nickbewegung, die bspw. für Trinken indikativ ist. Dadurch kann das Histogramm besonders präzise und robust erstellt werden, da - auch bei nicht erkannten Gierbewegungen - die Null-Grad-Blickrichtung 12 immer wieder "gefunden" werden kann und so verhindert wird, dass sich die einzelnen Werte des Gierwinkels W aufsummieren und so fälschlicherweise angenommen wird, dass die Null-Grad-Blickrichtung 12 sich verändert.In a further exemplary embodiment, not shown in more detail, a “reset” takes place in a further method step; H. referencing the zero-degree viewing direction 12 whenever an almost pure nodding movement, which is indicative of drinking, for example. As a result, the histogram can be created particularly precisely and robustly, since - even if yaw movements are not recognized - the zero-degree viewing direction 12 can be "found" again and again, thus preventing the individual values of the yaw angle W from adding up and thus erroneously it is assumed that the zero-degree line of sight 12 changes.

Der Gegenstand der Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt. Vielmehr können weitere Ausführungsformen der Erfindung von dem Fachmann aus der vorstehenden Beschreibung abgeleitet werden. Insbesondere können die anhand der verschiedenen Ausführungsbeispiele beschriebenen Einzelmerkmale der Erfindung und deren Ausgestaltungsvarianten auch in anderer Weise miteinander kombiniert werden. Beispielsweise werden in einem weiteren Ausführungsbeispiel im Verfahrensschritt 40 alle vorstehend beschriebenen Merkmale, konkret die Hauptmerkmale und das Zusatzmerkmal auf das Erfüllen des jeweiligen Kriteriums hin überprüft. Der Gegenstand der Erfindung wird dabei durch den angefügten Anspruchssatz bestimmt.The subject matter of the invention is not limited to the exemplary embodiments described above. Rather, further embodiments of the invention can be derived from the above description by a person skilled in the art. In particular, the individual features of the invention described on the basis of the various exemplary embodiments and their design variants can also be combined with one another in other ways. For example, in a further exemplary embodiment, in method step 40, all of the features described above, specifically the main features and the additional feature, are checked for compliance with the respective criterion. The subject matter of the invention is determined by the attached set of claims.

BezugszeichenlisteList of reference symbols

11
HörgerätHearing aid
22
Gehäusecasing
33
Mikrofonmicrophone
44th
SignalprozessorSignal processor
55
Lautsprecherspeaker
66th
BeschleunigungssensorAccelerometer
77th
Batteriebattery
88th
SchallschlauchSound tube
99
Kopfhead
1010
OhrstückEarpiece
1212th
Null-Grad-BlickrichtungZero degree line of sight
2020th
VerfahrensschrittProcess step
3030th
VerfahrensschrittProcess step
4040
VerfahrensschrittProcess step
5050
VerfahrensschrittProcess step
5555
VerfahrensschrittProcess step
6060
VerfahrensschrittProcess step
7070
VerfahrensschrittProcess step
8080
VerfahrensschrittProcess step
atat
Tangential-BeschleunigungTangential acceleration
arar
Radial-BeschleunigungRadial acceleration
at(t)at (t)
zeitlicher Verlauftemporal course
ar(t)ar (t)
zeitlicher Verlauftemporal course
KK
KorrelationskoeffizientCorrelation coefficient
DD.
KurveCurve
II.
BewegungsintensitätExercise intensity
Mt, Mr, MdMt, Mr, Md
ExtremumExtremum
WW.
GierwinkelYaw angle
ZbE.g.
BewegungszeitfensterMovement time window
x, y, zx, y, z
MessachseMeasuring axis

Claims (16)

  1. Method for operating a hearing device (1) having an acceleration sensor (6), which, in the intended wearing state, is positioned on the head (9) of a hearing device wearer and which is configured for measurement in two measurement axes (x, y, z), which are perpendicular to one another, wherein, according to the method
    - at least one main feature (at(t), I, K, D) is derived from an acceleration signal of the acceleration sensor (6), said feature being related to an acceleration (at) directed tangentially to the head (9),
    - the presence of a yaw movement of the head (9) is determined on the basis of the or the respective main feature (at(t), I, K, D), taking into account at least one predetermined criterion, which can be derived from the acceleration signal itself and which goes beyond the presence of an acceleration value of the tangentially directed acceleration (at) indicative for a movement,
    and wherein the detected yaw movement of the head (9) of the hearing device wearer is used to support an analysis of listening situations and/or is used to adapt a signal processing algorithm for a conversation situation,
    characterized in that
    as a main feature, a movement intensity (I) is determined on the basis of the time course of the tangentially and, optionally, the radially directed acceleration (at,ar), and wherein a strength of the movement intensity (I) is used as a predetermined criterion,
    and/or
    a correlation coefficient (K) between a time derivative of the tangentially directed acceleration (at) and the radially directed acceleration (ar) is determined as a main feature, and wherein a strength of the correlation coefficient (K) is used as a predetermined criterion,
    and/or
    a curve (D) of a diagram is used as the main feature, in which diagram the tangential acceleration (at) is plotted against the radial acceleration (ar), and the geometric shape of the curve (D) is used as a predetermined criterion.
  2. Method according to claim 1,
    a time characteristic (at(t)) of the tangentially directed acceleration (at) is used as the main feature, and wherein it is used as a predetermined criterion whether the time characteristic (at(t)) of the tangentially directed acceleration (at) successively has two oppositely directed local extremes (Mt) within a predetermined movement time window (Zb).
  3. Method according to claim 1,
    wherein a time characteristic (ar(t)) of an acceleration (ar) directed radially to the head (9) is derived as an additional feature from the acceleration signal, and wherein it is used as a predetermined criterion whether the time characteristic (ar(t)) of the radially directed acceleration (ar) assumes a local extreme (Mr) within a predetermined movement time window (Zb).
  4. Method according to claim 1,
    wherein a movement duration and/or a total energy or mean energy contained in the tangentially and radially directed acceleration (at,ar) is determined as movement intensity (I).
  5. Method according to claim 1,
    wherein a yaw direction is determined on the basis of the correlation coefficient (K), in particular on the basis of its arithmetic sign.
  6. Method according to claim 1,
    where, as a predetermined criterion, it is checked whether the curve (D) of the diagram approximates an ellipsoidal shape.
  7. Method according to claim 1 or 6,
    wherein the yaw direction is determined on the basis of the direction of rotation of the curve (D).
  8. Method according to one of claims 1 to 7,
    wherein the or the respective main feature (at(t), I, K, D) and, optionally, the additional feature (ar(t)) are determined on a sliding basis over a time window overlapping with a subsequent time window.
  9. Method according to one of claims 1 to 8,
    wherein a value of a yaw angle (W) is determined from the acceleration signal only when the presence of the yaw movement is detected.
  10. Method according to one of claims 1 to 9,
    wherein constant and/or linear measured value components are filtered out of the acceleration signal.
  11. Method according to one of claims 1 to 10,
    wherein a classification algorithm is applied to the or the respective main feature (at(t), I, K, D) and, optionally, the additional feature (ar(t)) to determine the presence or at least a probability of the presence of the yaw movement.
  12. Method according to one of claims 1 to 11,
    wherein a spatial area of interest of the hearing device wearer is determined over a predetermined period of time based on the yaw movement.
  13. Method according to one of claims 1 to 12,
    wherein the information about the yaw movement of the head (9) of the hearing device user is used to adapt a signal processing algorithm for a group conversation situation.
  14. Method according to one of claims 1 to 13,
    wherein a zero degree viewing direction (12) of the hearing device wearer is referenced based on a nodding movement of the head (9), based on a vertical movement of the hearing device wearer and/or based on a forward movement of the hearing device wearer.
  15. Method according to one of claims 1 to 14,
    wherein such an arrangement of the acceleration sensor (6) in or on the hearing device (1) is used that one of the measuring axes (x,y,z) of the acceleration sensor (6) is aligned at least approximately tangentially to the head (9).
  16. Hearing device (1),
    with an acceleration sensor (6) which is positioned on the head (9) of a hearing device wearer in the intended wearing state and which is configured for measurement in two measurement axes (x,y,z) which are perpendicular to one another, and having a processor (4) which is configured to carry out the method according to one of claims 1 to 15.
EP19171367.6A 2018-05-04 2019-04-26 Method for operating a hearing aid and hearing aid Revoked EP3565276B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018206979.4A DE102018206979A1 (en) 2018-05-04 2018-05-04 Method for operating a hearing aid and hearing aid

Publications (2)

Publication Number Publication Date
EP3565276A1 EP3565276A1 (en) 2019-11-06
EP3565276B1 true EP3565276B1 (en) 2021-08-25

Family

ID=66290306

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19171367.6A Revoked EP3565276B1 (en) 2018-05-04 2019-04-26 Method for operating a hearing aid and hearing aid

Country Status (5)

Country Link
US (1) US10959028B2 (en)
EP (1) EP3565276B1 (en)
CN (1) CN110446149B (en)
DE (1) DE102018206979A1 (en)
DK (1) DK3565276T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3886461B1 (en) * 2020-03-24 2023-11-08 Sonova AG Hearing device for identifying a sequence of movement features, and method of its operation
DE102020209939A1 (en) 2020-08-06 2022-02-10 Robert Bosch Gesellschaft mit beschränkter Haftung Device and method for recognizing head gestures
CN111741419B (en) * 2020-08-21 2020-12-04 瑶芯微电子科技(上海)有限公司 Bone conduction sound processing system, bone conduction microphone and signal processing method thereof
AU2022217895A1 (en) * 2021-02-05 2023-09-07 Jonathan Siegel A system and method for an electronic signature device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078372A1 (en) 2008-12-30 2010-07-08 Sennheiser Electronic Gmbh & Co. Kg Control system, earphone and control method
US20120176865A1 (en) 2009-04-29 2012-07-12 Jan-Philip Schwarz Apparatus and Method for the Binaural Reproduction of Audio Sonar Signals
US20130329923A1 (en) 2012-06-06 2013-12-12 Siemens Medical Instruments Pte. Ltd. Method of focusing a hearing instrument beamformer
US20150109200A1 (en) 2013-10-21 2015-04-23 Samsung Electronics Co., Ltd. Identifying gestures corresponding to functions
US9516429B2 (en) 2013-07-02 2016-12-06 Samsung Electronics Co., Ltd. Hearing aid and method for controlling hearing aid
EP3154277A1 (en) 2015-10-09 2017-04-12 Sivantos Pte. Ltd. Method for operating a hearing aid and hearing aid
EP3264798A1 (en) 2016-06-27 2018-01-03 Oticon A/s Control of a hearing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110317858A1 (en) * 2008-05-28 2011-12-29 Yat Yiu Cheung Hearing aid apparatus
DE102011075006B3 (en) * 2011-04-29 2012-10-31 Siemens Medical Instruments Pte. Ltd. A method of operating a hearing aid with reduced comb filter perception and hearing aid with reduced comb filter perception
KR102192361B1 (en) * 2013-07-01 2020-12-17 삼성전자주식회사 Method and apparatus for user interface by sensing head movement
EP2908549A1 (en) * 2014-02-13 2015-08-19 Oticon A/s A hearing aid device comprising a sensor member
EP2928210A1 (en) 2014-04-03 2015-10-07 Oticon A/s A binaural hearing assistance system comprising binaural noise reduction
DE102016205728B3 (en) * 2016-04-06 2017-07-27 Sivantos Pte. Ltd. Method for physically adapting a hearing aid, hearing aid and hearing aid system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078372A1 (en) 2008-12-30 2010-07-08 Sennheiser Electronic Gmbh & Co. Kg Control system, earphone and control method
US20120176865A1 (en) 2009-04-29 2012-07-12 Jan-Philip Schwarz Apparatus and Method for the Binaural Reproduction of Audio Sonar Signals
US20130329923A1 (en) 2012-06-06 2013-12-12 Siemens Medical Instruments Pte. Ltd. Method of focusing a hearing instrument beamformer
US9516429B2 (en) 2013-07-02 2016-12-06 Samsung Electronics Co., Ltd. Hearing aid and method for controlling hearing aid
US20150109200A1 (en) 2013-10-21 2015-04-23 Samsung Electronics Co., Ltd. Identifying gestures corresponding to functions
EP3154277A1 (en) 2015-10-09 2017-04-12 Sivantos Pte. Ltd. Method for operating a hearing aid and hearing aid
EP3264798A1 (en) 2016-06-27 2018-01-03 Oticon A/s Control of a hearing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI HAOLIN; SCANLON PATRICIA; LI YINGBO; MONAGHAN DAVID S.; O'CONNOR NOEL E.: "Real-time head nod and shake detection for continuous human affect recognition", 2013 14TH INTERNATIONAL WORKSHOP ON IMAGE ANALYSIS FOR MULTIMEDIA INTERACTIVE SERVICES (WIAMIS), IEEE, 3 July 2013 (2013-07-03), pages 1 - 4, XP032492798, ISSN: 2158-5873, DOI: 10.1109/WIAMIS.2013.6616148

Also Published As

Publication number Publication date
CN110446149A (en) 2019-11-12
EP3565276A1 (en) 2019-11-06
US10959028B2 (en) 2021-03-23
DE102018206979A1 (en) 2019-11-07
DK3565276T3 (en) 2021-11-22
US20190342676A1 (en) 2019-11-07
CN110446149B (en) 2021-11-02

Similar Documents

Publication Publication Date Title
EP3565276B1 (en) Method for operating a hearing aid and hearing aid
EP2956920B1 (en) Orientation aid for the blind and visually impaired comprising a device for detecting surroundings
JP6448596B2 (en) Hearing aid system and method of operating a hearing aid system
EP2603018B1 (en) Hearing aid with speaking activity recognition and method for operating a hearing aid
EP1530402B1 (en) Method for adapting a hearing aid considering the position of head and corresponding hearing aid
EP3788802B1 (en) Method for operating a hearing aid, and hearing aid
EP2519033B1 (en) Method for operating a hearing aid with reduced comb filter perceptio and hearing aid with reduced comb filter perception
DE102018102431A1 (en) Driver state detection system
EP3873108A1 (en) Hearing system with at least one hearing instrument worn in or on the ear of the user and method for operating such a hearing system
EP3962099A1 (en) Hearing devicve adapted for orientation
DE112016003273T5 (en) INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING PROCESS AND PROGRAM
WO2022128082A1 (en) Method for operating a hearing system, and hearing system
DE102020208720B4 (en) Method for operating a hearing system depending on the environment
EP3926981B1 (en) Hearing system with at least one hearing instrument worn in or on the ear of the user and method for operating such a hearing system
DE102019219908B4 (en) Method for photographically recording an ear
WO2022128083A1 (en) Method for determining the hearing effort of a hearing aid wearer and corresponding adjustment of hearing aid parameters
DE102014215487A1 (en) A method and apparatus for assisting a person&#39;s movement with a movement disorder and signaling system for a person with a movement disorder
WO2011036288A1 (en) Device and method for assisting visually impaired individuals, using three-dimensionally resolved object identification
DE102018204260B4 (en) Evaluation device, apparatus, method and computer program product for a hearing-impaired person for the environmental perception of a sound event
EP4273877A1 (en) Portable system and computer-implemented method for supporting a person with impaired vision
EP3833053A1 (en) Procedure for environmentally dependent operation of a hearing aid
EP4327566A1 (en) Method for determining the head related transfer function
Andersen Ordinal models of audiovisual speech perception
DE112018008012T5 (en) INFORMATION PROCESSING DEVICE AND INFORMATION PROCESSING METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200505

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200728

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210322

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAULER, DIRK

Inventor name: KUEBERT, THOMAS

Inventor name: WURZBACHER, TOBIAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019002106

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1425068

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20211117

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502019002106

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: OTICON A/S

Effective date: 20220525

R26 Opposition filed (corrected)

Opponent name: OTICON A/S

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 5

Ref country code: DK

Payment date: 20230419

Year of fee payment: 5

Ref country code: DE

Payment date: 20230418

Year of fee payment: 5

Ref country code: CH

Payment date: 20230502

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502019002106

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502019002106

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 5

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20231010

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20231010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 1425068

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231010