EP3561236B1 - Aube de guidage pour une turbine d'une turbomachine, module de turbine et méthode d'utilisation du module de turbine - Google Patents

Aube de guidage pour une turbine d'une turbomachine, module de turbine et méthode d'utilisation du module de turbine Download PDF

Info

Publication number
EP3561236B1
EP3561236B1 EP19169137.7A EP19169137A EP3561236B1 EP 3561236 B1 EP3561236 B1 EP 3561236B1 EP 19169137 A EP19169137 A EP 19169137A EP 3561236 B1 EP3561236 B1 EP 3561236B1
Authority
EP
European Patent Office
Prior art keywords
guide vane
gas
annular space
rotor blade
turbine module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19169137.7A
Other languages
German (de)
English (en)
Other versions
EP3561236A1 (fr
Inventor
Hermann Klingels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP3561236A1 publication Critical patent/EP3561236A1/fr
Application granted granted Critical
Publication of EP3561236B1 publication Critical patent/EP3561236B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • F01D11/06Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/125Fluid guiding means, e.g. vanes related to the tip of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the present invention relates to a guide vane for a turbine of an axial flow machine.
  • the turbomachine can, for example, be a jet engine, e.g. B. a turbofan engine. Functionally, the turbomachine is divided into compressor, combustion chamber and turbine. In the case of the jet engine, for example, the air drawn in is compressed by the compressor and burned in the downstream combustion chamber with added kerosene. The resulting hot gas, a mixture of combustion gas and air, flows through the downstream turbine and is expanded in the process.
  • the hot gas which is also referred to as working gas, flows through a volume on a path from the combustion chamber via the turbine to the nozzle Annulus is referred to.
  • the subject vane has a vane airfoil extending between an inner shroud and an outer shroud.
  • the shrouds delimit the annular space in the radial direction, in which the working gas flowing around the guide vane blade is guided.
  • a guide vane which is then part of a guide vane ring, which has a plurality of guide vanes, which are generally identical in construction, all around.
  • the turbomachine can also be a stationary gas turbine, for example.
  • the document GB 744 548 A discloses a ducted vane.
  • the present invention is based on the technical problem of specifying a particularly advantageous guide vane and an advantageous turbine module with such a guide vane.
  • the guide vane is designed as a hollow vane, namely its interior is traversed by a guide vane blade channel, which extends radially on the inside between an inlet and an outlet radially on the outside. Hollow blades are known per se, namely as components through which a cooling fluid flows for cooling purposes.
  • a special feature here is the positioning of the inlet in such a way that the gas that flows through the guide blade channel during operation is at least partially formed by the working gas conducted in the annular space. This is thus redistributed through the airfoil channel from radially inside to radially outside.
  • This redistribution can initially be advantageous in terms of the temperature balance.
  • the temperatures in the housing area (radially outside) are usually significantly higher than in the hub area (radially inside).
  • running gaps can increase radially on the outside with increasing service life, which means that the work turnover there continues to decrease, the running gaps also cause flow losses (gap flow).
  • cooler working gas is brought from radially inside to radially outside through the guide vane channel.
  • hot working gas flows around the outer shroud of the moving blade arranged downstream of the guide blade, causing it to heat up considerably, which can lead to mechanical problems.
  • the high centrifugal stress in combination with high temperatures lead to high creep stress.
  • An advantage can result from the reduction in temperature on the outer shroud of the moving blade; in general, a reduction in the temperature level in the housing area is advantageous.
  • the redistributed gas may also proportionately contain a barrier fluid that is injected radially inward of the inner shroud to shield the rotor disks from the high temperatures in the annulus.
  • a barrier fluid that is injected radially inward of the inner shroud to shield the rotor disks from the high temperatures in the annulus.
  • This can be advantageous insofar as Barrier fluid is usually significantly cooler than the working gas, e.g. compressor air, so not only is the working gas redistributed, but an overall cooler gas is conveyed radially outward.
  • the suction of the barrier fluid where it flows radially inwards into the annular space can also be advantageous in terms of flow technology and thus in terms of efficiency.
  • the inflowing barrier fluid has a significantly different speed and direction than the working gas in the annular space, which would significantly disrupt the main flow without suction.
  • a boundary layer that is problematic in terms of flow is sucked off radially inside the annular space (usually together with a barrier fluid, see below), which can reduce the disruption to the main flow. Accordingly, with the arrangement according to the invention, a drop in efficiency in the hub area can be prevented.
  • axial refers to the longitudinal axis of the turbine module, ie the longitudinal axis of the turbomachine, which, for example, coincides with an axis of rotation of the rotors.
  • Rotary refers to the radial directions perpendicular thereto and pointing away therefrom, and “orbit” or “circumferentially” or the “direction of orbit” refers to the rotation about the longitudinal axis.
  • a and “an” are to be read as indefinite articles and thus always also as “at least one” or “at least one” unless expressly stated otherwise.
  • the guide vane ring with the guide vane blade according to the invention has a plurality of such blades, which are arranged rotationally symmetrically to one another, for example, about the longitudinal axis.
  • several guide vanes can also be provided integrally with one another, that is to say combined to form a guide vane segment which can then have, for example, 2, 3, 4, 5 or 6 vanes.
  • the guide vane blade has a leading and a trailing edge as well as two connecting the leading and trailing edges to each other Side surfaces, one of which forms the suction side and the other the pressure side.
  • the airfoil duct is located inside the airfoil.
  • the guide vane blade channel is preferably free of loops in its extension between the inlet and outlet, so there is exactly one channel from the inside to the outside that directly connects the inlet and outlet to one another.
  • the outlet of the airfoil passage is located radially outward of the outer shroud.
  • the gas guided from radially inside to outside is thus at least not blown directly into the annular space, which is advantageous in terms of flow technology. Nevertheless, cooling of the housing area can be achieved.
  • the outlet is offset downstream toward the trailing edge of the vane airfoil.
  • downstream and upstream generally relate to the flow of the working gas in the annular space, unless expressly stated otherwise. With the outlet offset to the rear, it is possible, in particular, for the gas that is guided radially outward to flow over the outer shroud of the downstream moving blade(s), see below in detail.
  • the inlet of the airfoil passage is located at an upstream leading edge of the vane.
  • An inflow of working gas from the annular space could generally also be achieved with an inlet arranged in the shroud itself, but the arrangement at the leading edge can be advantageous, for example with regard to the proportionate inflow of the barrier fluid.
  • the invention also relates to a turbine module with a guide vane disclosed here, which is preferably a low-pressure turbine module.
  • a moving blade is arranged upstream of the guide vane (which, like the guide vane, is usually part of a ring with a plurality of structurally identical and rotationally symmetrical blades).
  • An inner shroud of the upstream rotor blade then forms a labyrinth seal together with the inner shroud of the guide vane, to which a barrier fluid is supplied from radially inward (the labyrinth seal is referred to as a "seal" because it serves to shield the rotor disks in the hub area, see above).
  • the labyrinth seal formed by a downstream trailing edge of the inner shroud of the blade having an axial overlap with an upstream leading edge of the inner shroud of the vane, the trailing edge of the inner shroud of the blade preferably being radially inward of the leading edge of the inner shroud of the vane.
  • a sealing web is provided as part of the labyrinth seal radially inside the inner shroud of the guide vane. This typically extends axially forward away from a seal carrier wall and preferably has an axial overlap with the trailing edge of the inner shroud of the rotor blade. Said trailing edge is thus bordered radially between the leading edge of the inner shroud of the vane and the sealing web, which is why this arrangement is also referred to as a "fish-mouth seal". Viewed in an axial section, the barrier fluid then flows through the labyrinth seal from radially inside to radially outside with an S-shaped course.
  • an advantage of the subject matter of the invention can then be that this sealing fluid introduced to shield the rotor hub is at least partially sucked off through the inlet, so that the main flow in the annular space is not significantly disturbed. Despite this suction, the barrier fluid flows through the overlapping areas described, so the hub area is blocked against the working gas. If one looks at the blade ring or vane ring as a whole, the overlaps mentioned ideally exist independently of the axial position of the rotor relative to the stator.
  • the gas flowing through the guide vane blade channel during operation is, in a preferred embodiment, a proportion of the sealing fluid that is also sucked off at the inlet. Nevertheless, the greater part of the gas guided radially outwards in the annular space is preferably sucked off working gas.
  • a preferred embodiment relates to a turbine module with a rotor blade or a corresponding rotor blade ring arranged downstream of the guide vane.
  • the downstream blade has an airfoil extending between an inner (radially inward) shroud and an outer (radially outward) shroud.
  • the outlet of the guide vane blade channel is then advantageously arranged in such a way that the gas that is routed to the outside is routed downstream of the outlet radially outside the outer shroud of the rotor blade or flows around the outer shroud (of course, it does not have to be that all of the gas that is led to the outside flows outside the outer shroud).
  • the gas is thus at least not predominantly blown out into the annular space, but outside the main flow channel into the area outside the shrouds. In this way, on the one hand, cooling of this area can already be achieved.
  • the quantity of gas is dimensioned in such a way that the moving blade outer shroud only flows over the gas guided radially outward.
  • a local improvement in efficiency can also be achieved.
  • the outlet of the guide blade channel is provided in such a way that the exiting gas fans out in the direction of circulation, that is to say is divergent. Accordingly, the effects just described can then be achieved, for example, not only axially aligned with the vane blade or blades, but ideally over essentially the entire circumference.
  • the outlet of the guide vane channel is provided in such a way that the exiting gas differs in its speed and/or direction from the working gas guided in the annular space, i.e. the speed and/or direction of the working gas in this radially outer area of the annular space.
  • the flow properties of the gas that is guided radially outward can be set independently of the working gas; for example, a circulation component can be smaller than the circulation speed of the downstream rotor shroud.
  • the flow through the guide vane channel i.e. suction radially on the inside and blowing out radially on the outside, results from a pressure difference across the guide vane.
  • the speed can be adjusted via the size (the cross-section of the outlet), the orientation determines the direction of the exiting fluid flow. This opens up the design options described to the effect that flow losses in the annular space and thus efficiency losses can be reduced. Friction losses and thus local heating, e.g. B. the outer shroud can be minimized.
  • the turbine module preferably has a plurality of stages, each with guide and downstream blade rings.
  • the guide vanes are then preferably provided in all stages of the turbine with corresponding guide vane blade channels, so that a lower overall temperature is set in the housing area. The need for cooling air in the housing is reduced, and gap maintenance can also be improved.
  • a moving blade made of a forged material for example made of Udimet720, Nimonic90 or Nimonic 115, is provided downstream of the guide blade with guide blade channel.
  • the entire moving blade is preferably made of a forged material.
  • a forged material can be of interest, e.g. due to better strength properties compared to a cast material, e.g. in terms of tensile strength, yield point, HCF, LCF, notched impact strength, elongation at break, etc
  • Forged material can be interesting, but in the case of state-of-the-art turbines, the temperatures for this are usually still too high, which is why temperature-resistant cast materials are used. With the approach according to the invention, the temperatures can be reduced, in particular in the radially outer area, which can be an advantage in itself with regard to an increased service life, but also enables the use of other materials. Forged materials are preferably used.
  • Another preferred embodiment also relates to the use of a forged material, from which the entire turbine blisk is then provided.
  • the rotor disk, together with the blade blades provided integrally thereon, is therefore made of the forged material.
  • the invention also relates to the use of a turbine module described here, in particular for an axial flow machine, preferably a jet engine.
  • the working gas flows through the annular space and, on the other hand, gas becomes gas through the guide blade channel from radially inside to radially outside redistributed, which is at least partially formed by working gas, preferably also partially by barrier fluid.
  • FIG. 2 shows a detail of a turbine module 1 according to the invention in an axial section.
  • working gas flows through an annular space 2 formed by the turbine module 1, which spreads from the combustion chamber (to the left of the turbine module 1) to the nozzle (to the right of it), see also figure 5 for illustration.
  • a guide vane 3 is arranged, which has an inner shroud 3a, an outer shroud 3b and between them a guide vane blade 3c.
  • a rotor blade 4 is arranged upstream of the guide vane 3, and a rotor blade 5 downstream thereof.
  • the guide vane 3 is shown in section;
  • the inlet 6 into the guide blade channel 3d is located on the inner shroud 3a of the guide blade 3, specifically on its upstream leading edge.
  • the outlet 7 of the airfoil passage 3d is located radially outward of the outer shroud 3b and offset axially downstream relative to the trailing edge 3ca of the airfoil 3c.
  • suction takes place radially on the inside, at the inlet 6 , and blows out radially on the outside, at the outlet 7 .
  • the inlet 6 is arranged in such a way that the gas 8 which flows through the guide vane blade channel 3d is formed proportionately by the working gas conducted in the annular space 2 .
  • a sidewall boundary layer 10 sucked off the main flow.
  • a blocking fluid 11 is also sucked in proportionately through the inlet 6 , which is introduced radially on the inside to shield the hub area and flows through a labyrinth seal 12 .
  • the latter is formed by the axial overlap of a sealing web 13, the inner shroud 4a of the moving blade 4, specifically the trailing edge thereof, and the inner shroud 3a of the guide vane 3, specifically the leading edge thereof.
  • This barrier fluid 11 is significantly cooler compressor air, the redistribution of which radially outward through the guide vane blade channel 3d is advantageous in terms of avoiding disproportionate temperature gradients.
  • 1 shows for comparison a turbine module 1 from the prior art with a similarly constructed labyrinth seal 12, wherein the vane blade 3 in contrast to 2 is not provided with a vane duct 3d. Accordingly, the barrier fluid 11 flows into the annular space 2, which disturbs the main flow there.
  • the side wall boundary layers 10 are usually subjected to aerodynamic loads anyway, so overall flow losses and losses in efficiency are to be expected (compared to the variant according to 2).
  • 1 further illustrates that there is also a leakage flow 20 radially on the outside, which flows over the outer shrouds 4b, 5b of the rotor blades 4, 5. This also causes a disturbance in the main flow.
  • outlet 7 of the guide vane blade channel 3d is arranged in such a way that the gas 8 guided radially outward flows over the outer shroud 5b of the rotor blade 5 .
  • the amount is measured in such a way that no working gas from the annular space 2 flows over the outer shroud 5b. This counts as out 1 can be seen, analogously also for the upstream turbine stage, but for the sake of clarity the description refers to the interaction of the guide vane 3 with the moving vane 5.
  • FIG. 3 illustrates a radial temperature curve, as in a turbine module 1 according to 1 sets, so without redistribution through the guide vane channel 3d.
  • the temperature T is plotted, and the radius R taken away from the inner shroud is plotted on the y-axis.
  • the solid line represents the temperature of the working gas, which is primarily determined by the temperature profile at the combustion chamber outlet. The temperature increases radially outwards, see also the introduction to the description.
  • the cooler barrier fluid 11 and also the cooler working gas are redistributed from radially inside to radially outside, so that the temperature gradients can be reduced. Due to the reduced disturbance of the main flow radially on the inside and radially on the outside, an improved efficiency profile can also be achieved.
  • FIG 5 shows a turbomachine 50 in an axial section, specifically a jet engine.
  • the turbomachine 50 is divided into compressor 50a, combustion chamber 50b and turbine 50c.
  • Both the compressor 50a and the turbine 50c are each constructed from a plurality of components or stages, each stage is composed of a guide blade ring and a moving blade ring.
  • the rotor blade rings rotate about the longitudinal axis 52 of the turbomachine 50.
  • the turbine module 1 described above is part of the turbine 50c, specifically forms the low-pressure turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (15)

  1. Aube directrice (3) pour une turbine (50c) d'une turbomachine (50), comportant
    une pale d'aube directrice (3c), un carénage d'extrémité intérieur (3a) et un carénage d'extrémité extérieur (3b), dans lequel le carénage d'extrémité intérieur (3a) et le carénage d'extrémité extérieur (3b) délimitent, par rapport à un axe longitudinal (52) de la turbomachine (50), un espace annulaire (2), dans la direction radiale, dans lequel, lors du fonctionnement, du gaz de travail (51) est acheminé,
    et dans lequel la pale d'aube directrice (3c), dans son intérieur, est traversée par un canal de pale d'aube directrice (3d), lequel s'étend entre une entrée (6) radialement de l'intérieur et une sortie (7) radialement vers l'extérieur,
    caractérisée en ce que
    l'entrée (6) est disposée de telle manière qu'un gaz (8) s'écoulant à travers le canal de pale d'aube directrice (3d) lors du fonctionnement est au moins partiellement formé par le gaz de travail (51) acheminé dans l'espace annulaire (2), celui-ci étant également redistribué radialement de l'intérieur vers radialement vers l'extérieur dans une zone de boîtier.
  2. Aube directrice (3) selon la revendication 1, dans laquelle la sortie (7) du canal de pale d'aube directrice (3d) est située radialement à l'extérieur du carénage d'extrémité extérieur (3b) de l'aube directrice (3).
  3. Aube directrice (3) selon la revendication 2, dans laquelle la sortie (7) du canal de pale d'aube directrice (3d) est décalée en aval d'un bord de fuite (3ca) de la pale d'aube directrice (3c) par rapport à l'écoulement du gaz de travail (51) à travers l'espace annulaire (2).
  4. Aube directrice (3) selon l'une quelconque des revendications précédentes, dans laquelle l'entrée (6) du canal de pale d'aube directrice (3d) est disposée au niveau d'un bord d'attaque du carénage d'extrémité intérieur (3a) de l'aube directrice (3) orienté en amont par rapport à l'écoulement du gaz de travail (51) à travers l'espace annulaire (2).
  5. Module de turbine (1) comportant une aube directrice (3) selon l'une quelconque des revendications précédentes.
  6. Module de turbine (1) selon la revendication 5, comportant une aube mobile (4), disposée en amont de l'aube directrice (3) par rapport à l'écoulement du gaz de travail (51) à travers l'espace annulaire (2), laquelle comporte un carénage d'extrémité intérieur (4a) et une pale d'aube mobile (4c), dans lequel un bord de fuite orienté en aval du carénage d'extrémité intérieur (4a) de l'aube mobile (4) comporte un chevauchement axial avec un bord d'attaque orienté en amont du carénage d'extrémité intérieur (3a) de l'aube mobile (3) pour former un joint d'étanchéité labyrinthe (12).
  7. Module de turbine (1) selon la revendication 6, dans lequel une nervure d'étanchéité (13) est disposée radialement vers l'intérieur du carénage d'extrémité intérieur (3a) de l'aube directrice (3), laquelle est conçue radialement vers l'intérieur du bord de fuite du carénage d'extrémité intérieur (4a) de l'aube mobile (4) sous la forme de partie du joint d'étanchéité labyrinthe (12) et laquelle comporte un chevauchement axial avec ledit bord de fuite.
  8. Module de turbine (1) selon la revendication 6 ou 7, lequel est conçu de telle sorte qu'un fluide de blocage (11), lequel s'écoule lors du fonctionnement à travers le joint d'étanchéité labyrinthe (12) radialement de l'intérieur vers radialement vers l'extérieur, est au moins partiellement aspiré à travers l'entrée (6) du canal de pale d'aube directrice (3d) et s'écoule à travers le canal de pale d'aube directrice en tant que partie du gaz (8).
  9. Module de turbine (1) selon l'une quelconque des revendications 5 à 8, comportant une aube mobile (5), disposée, par rapport à l'écoulement du gaz de travail (51) à travers l'espace annulaire (2), en aval de l'aube directrice (3), laquelle comporte une pale d'aube mobile (5c) ainsi qu'un carénage d'extrémité intérieur (5a) et un carénage d'extrémité extérieur (5b), dans lequel la sortie (7) du canal de pale d'aube directrice (3d) est disposée de telle sorte que le gaz (8) s'écoulant à travers le canal de pale d'aube directrice (3d) est guidé au moins partiellement radialement vers l'extérieur du carénage d'extrémité extérieur (5b) de l'aube mobile (5).
  10. Module de turbine (1) selon la revendication 9, dans lequel le gaz, lequel est guidé radialement vers l'extérieur du carénage d'extrémité extérieur (5b) de l'aube mobile (5), est mesuré en quantité de telle sorte qu'un débordement du carénage d'extrémité extérieur (5b) de l'aube mobile (5) avec du gaz de travail (51) sortant directement de l'espace annulaire (2) est bloqué.
  11. Module de turbine (1) selon la revendication 9 ou 10, dans lequel la sortie (7) du canal de pale d'aube directrice (3d) est fournie de telle sorte que le gaz (8) s'écoulant à travers le canal de pale d'aube directrice (3d) sort de manière divergente dans la direction de circulation.
  12. Module de turbine (1) selon l'une quelconque des revendications 9 à 11, dans lequel la sortie (7) du canal de pale d'aube directrice (3d) est fournie de telle sorte que le gaz (8) s'écoulant à travers le canal de pale d'aube directrice (3d) sort à une vitesse et/ou dans une direction différentes de celles du gaz de travail (51) acheminé dans l'espace annulaire (2) dans ladite zone.
  13. Module de turbine (1) selon l'une quelconque des revendications 5 à 12, dans lequel l'au moins une aube mobile (5) disposée en aval de l'aube directrice (3) comporte une pale d'aube mobile (5c) conçue à partir d'un matériau de forgeage.
  14. Module de turbine (1) selon l'une quelconque des revendications 5 à 12, dans lequel l'au moins une aube mobile (5) disposée en aval de l'aube directrice (3) fait partie d'un disque comportant des pales d'aube intégrales, lesquelles sont conçues à partir d'un matériau de forgeage.
  15. Utilisation d'un module de turbine (1) selon l'une quelconque des revendications 5 à 14, dans laquelle utilisation du gaz de travail (51) est acheminé dans l'espace annulaire (2) et du gaz (8) s'écoule à travers le canal de pale d'aube directrice (3d) radialement de l'intérieur vers radialement vers l'extérieur, lequel gaz est formé au moins partiellement par le gaz de travail (51) acheminé dans l'espace annulaire (2) de telle sorte que celui-ci est redistribué radialement de l'intérieur vers radialement vers l'extérieur.
EP19169137.7A 2018-04-24 2019-04-15 Aube de guidage pour une turbine d'une turbomachine, module de turbine et méthode d'utilisation du module de turbine Active EP3561236B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018206259.5A DE102018206259A1 (de) 2018-04-24 2018-04-24 Leitschaufel für eine turbine einer strömungsmaschine

Publications (2)

Publication Number Publication Date
EP3561236A1 EP3561236A1 (fr) 2019-10-30
EP3561236B1 true EP3561236B1 (fr) 2022-11-23

Family

ID=66182355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19169137.7A Active EP3561236B1 (fr) 2018-04-24 2019-04-15 Aube de guidage pour une turbine d'une turbomachine, module de turbine et méthode d'utilisation du module de turbine

Country Status (4)

Country Link
US (1) US11215073B2 (fr)
EP (1) EP3561236B1 (fr)
DE (1) DE102018206259A1 (fr)
ES (1) ES2934210T3 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3121167B1 (fr) * 2021-03-25 2024-05-31 Safran Helicopter Engines Turbine de turbomachine
EP4123124A1 (fr) * 2021-07-21 2023-01-25 MTU Aero Engines AG Module de turbine pour une turbomachine et utilisation d´un tel module

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB744548A (en) * 1953-07-29 1956-02-08 Havilland Engine Co Ltd Improvements in or relating to gas turbines
JPS501646B1 (fr) * 1970-07-11 1975-01-20
US5316437A (en) 1993-02-19 1994-05-31 General Electric Company Gas turbine engine structural frame assembly having a thermally actuated valve for modulating a flow of hot gases through the frame hub
WO1995004225A1 (fr) 1993-08-02 1995-02-09 Siemens Aktiengesellschaft Procede et dispositif permettant de prelever un courant partiel dans un courant de gaz comprime
US6722138B2 (en) * 2000-12-13 2004-04-20 United Technologies Corporation Vane platform trailing edge cooling
GB0813839D0 (en) 2008-07-30 2008-09-03 Rolls Royce Plc An aerofoil and method for making an aerofoil
US8092153B2 (en) 2008-12-16 2012-01-10 Pratt & Whitney Canada Corp. Bypass air scoop for gas turbine engine
EP2518278A1 (fr) 2011-04-28 2012-10-31 Siemens Aktiengesellschaft Canal de refroidissement de carter de turbine comprenant un fluide de refroidissement s'écoulant vers l'amont
EP2573325A1 (fr) * 2011-09-23 2013-03-27 Siemens Aktiengesellschaft Refroidissement par projection d'aubes ou pales de turbine
JP6039059B2 (ja) 2012-05-02 2016-12-07 ゲーコーエヌ エアロスペース スウェーデン アーベー ガスタービンエンジンの支持構造
US9670797B2 (en) 2012-09-28 2017-06-06 United Technologies Corporation Modulated turbine vane cooling
EP2971674B1 (fr) 2013-03-14 2022-10-19 Raytheon Technologies Corporation Refroidissement de plateforme d'ailette statorique de moteur à turbine à gaz
EP2990607A1 (fr) 2014-08-28 2016-03-02 Siemens Aktiengesellschaft Concept de refroidissement pour aubes ou pales de turbine
US10400627B2 (en) 2015-03-31 2019-09-03 General Electric Company System for cooling a turbine engine
US20170002662A1 (en) 2015-07-01 2017-01-05 United Technologies Corporation Gas turbine engine airfoil with bi-axial skin core
DE102015111843A1 (de) 2015-07-21 2017-01-26 Rolls-Royce Deutschland Ltd & Co Kg Turbine mit gekühlten Turbinenleitschaufeln
US10012092B2 (en) * 2015-08-12 2018-07-03 United Technologies Corporation Low turn loss baffle flow diverter
US11230935B2 (en) 2015-09-18 2022-01-25 General Electric Company Stator component cooling
US10781715B2 (en) 2015-12-21 2020-09-22 Raytheon Technologies Corporation Impingement cooling baffle
US10619499B2 (en) * 2017-01-23 2020-04-14 General Electric Company Component and method for forming a component

Also Published As

Publication number Publication date
ES2934210T3 (es) 2023-02-20
US11215073B2 (en) 2022-01-04
DE102018206259A1 (de) 2019-10-24
US20190331000A1 (en) 2019-10-31
EP3561236A1 (fr) 2019-10-30

Similar Documents

Publication Publication Date Title
EP0170938B1 (fr) Dispositif d'optimisation de l'interstice de l'étanchéité et de l'interstice des aubes pour compresseurs de propulseurs à turbine à gaz, en particulier moteurs à réaction à turbine à gaz
EP2044293B1 (fr) Turbine à gaz dotée d'un segment annulaire comprenant un canal de recirculation
DE112011104298B4 (de) Gasturbinenmotor mit Sekundärluftstromkreis
DE102015120127A1 (de) Axialverdichterendwandeinrichtung zur steuerung der leckage in dieser
EP2881541A1 (fr) Refroidissement de pointe d'aube d'un aube de rotor de turbine à gaz
EP2639411B1 (fr) Boîtier de turbomachine avec un système de recirculation de fluide
DE102015122928A1 (de) Gasturbinendichtung
EP3699398A1 (fr) Aube sans bandage pour un étage de turbine à haute vitesse
DE112015003934T5 (de) Gasturbine
EP3561236B1 (fr) Aube de guidage pour une turbine d'une turbomachine, module de turbine et méthode d'utilisation du module de turbine
EP3093447A1 (fr) Rotor d'une turbine a gaz ayant un guidage d'air de refroidissement ameliore
EP3290644A1 (fr) Turbine a gaz
CH709266A2 (de) Turbinenschaufel und Verfahren zum Auswuchten eines Spitzendeckbandes einer Turbinenschaufel und Gasturbine.
EP3495639B1 (fr) Module de compresseur pour une turbomachine réduisant la couche limite dans un carter intermédiaire de compresseur
WO2016087214A1 (fr) Aube mobile de turbine, rotor associé et turbomachine
DE102012001777A1 (de) Gasturbinenringbrennkammer
CH701151B1 (de) Turbomaschine mit einem Verdichterradelement.
EP2808492B1 (fr) Palier de turbine doté d'un système de purge et procédé de purge d'un flux de gaz d'arrêt
EP3699399B1 (fr) Aube pour un étage de turbine à grande vitesse dotée d'un élément d'étanchéité unique
DE102016124147A1 (de) Innenkühlkonfigurationen in Turbinenrotorschaufeln
DE19735172A1 (de) Verbessertes Turbinenscheiben-Eintrittsverhinderungsverfahren und -vorrichtung
EP3159487A1 (fr) Stator d'une turbine a gaz ayant un guidage d'air de refroidissement ameliore
EP3498972A1 (fr) Module de turbine pour une turbomachine
DE102011051477A1 (de) Verfahren und Vorrichtung zum Zusammenbau von Rotationsmaschinen
DE102019218911A1 (de) Leitschaufelanordnung für eine strömungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200427

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200908

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 11/10 20060101ALN20220105BHEP

Ipc: F01D 11/06 20060101ALI20220105BHEP

Ipc: F01D 11/00 20060101ALI20220105BHEP

Ipc: F01D 9/06 20060101AFI20220105BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220215

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 11/10 20060101ALN20220527BHEP

Ipc: F01D 11/06 20060101ALI20220527BHEP

Ipc: F01D 11/00 20060101ALI20220527BHEP

Ipc: F01D 9/06 20060101AFI20220527BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220707

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019006329

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1533251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2934210

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019006329

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240517

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240423

Year of fee payment: 6