EP3561236B1 - Aube de guidage pour une turbine d'une turbomachine, module de turbine et méthode d'utilisation du module de turbine - Google Patents
Aube de guidage pour une turbine d'une turbomachine, module de turbine et méthode d'utilisation du module de turbine Download PDFInfo
- Publication number
- EP3561236B1 EP3561236B1 EP19169137.7A EP19169137A EP3561236B1 EP 3561236 B1 EP3561236 B1 EP 3561236B1 EP 19169137 A EP19169137 A EP 19169137A EP 3561236 B1 EP3561236 B1 EP 3561236B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- guide vane
- gas
- annular space
- rotor blade
- turbine module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title description 3
- 239000012530 fluid Substances 0.000 claims description 21
- 230000004888 barrier function Effects 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 12
- 238000007789 sealing Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 description 51
- 238000002485 combustion reaction Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910001235 nimonic Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/001—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/02—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
- F01D11/04—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
- F01D11/06—Control thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
- F01D9/041—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/06—Fluid supply conduits to nozzles or the like
- F01D9/065—Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/10—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/125—Fluid guiding means, e.g. vanes related to the tip of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
Definitions
- the present invention relates to a guide vane for a turbine of an axial flow machine.
- the turbomachine can, for example, be a jet engine, e.g. B. a turbofan engine. Functionally, the turbomachine is divided into compressor, combustion chamber and turbine. In the case of the jet engine, for example, the air drawn in is compressed by the compressor and burned in the downstream combustion chamber with added kerosene. The resulting hot gas, a mixture of combustion gas and air, flows through the downstream turbine and is expanded in the process.
- the hot gas which is also referred to as working gas, flows through a volume on a path from the combustion chamber via the turbine to the nozzle Annulus is referred to.
- the subject vane has a vane airfoil extending between an inner shroud and an outer shroud.
- the shrouds delimit the annular space in the radial direction, in which the working gas flowing around the guide vane blade is guided.
- a guide vane which is then part of a guide vane ring, which has a plurality of guide vanes, which are generally identical in construction, all around.
- the turbomachine can also be a stationary gas turbine, for example.
- the document GB 744 548 A discloses a ducted vane.
- the present invention is based on the technical problem of specifying a particularly advantageous guide vane and an advantageous turbine module with such a guide vane.
- the guide vane is designed as a hollow vane, namely its interior is traversed by a guide vane blade channel, which extends radially on the inside between an inlet and an outlet radially on the outside. Hollow blades are known per se, namely as components through which a cooling fluid flows for cooling purposes.
- a special feature here is the positioning of the inlet in such a way that the gas that flows through the guide blade channel during operation is at least partially formed by the working gas conducted in the annular space. This is thus redistributed through the airfoil channel from radially inside to radially outside.
- This redistribution can initially be advantageous in terms of the temperature balance.
- the temperatures in the housing area (radially outside) are usually significantly higher than in the hub area (radially inside).
- running gaps can increase radially on the outside with increasing service life, which means that the work turnover there continues to decrease, the running gaps also cause flow losses (gap flow).
- cooler working gas is brought from radially inside to radially outside through the guide vane channel.
- hot working gas flows around the outer shroud of the moving blade arranged downstream of the guide blade, causing it to heat up considerably, which can lead to mechanical problems.
- the high centrifugal stress in combination with high temperatures lead to high creep stress.
- An advantage can result from the reduction in temperature on the outer shroud of the moving blade; in general, a reduction in the temperature level in the housing area is advantageous.
- the redistributed gas may also proportionately contain a barrier fluid that is injected radially inward of the inner shroud to shield the rotor disks from the high temperatures in the annulus.
- a barrier fluid that is injected radially inward of the inner shroud to shield the rotor disks from the high temperatures in the annulus.
- This can be advantageous insofar as Barrier fluid is usually significantly cooler than the working gas, e.g. compressor air, so not only is the working gas redistributed, but an overall cooler gas is conveyed radially outward.
- the suction of the barrier fluid where it flows radially inwards into the annular space can also be advantageous in terms of flow technology and thus in terms of efficiency.
- the inflowing barrier fluid has a significantly different speed and direction than the working gas in the annular space, which would significantly disrupt the main flow without suction.
- a boundary layer that is problematic in terms of flow is sucked off radially inside the annular space (usually together with a barrier fluid, see below), which can reduce the disruption to the main flow. Accordingly, with the arrangement according to the invention, a drop in efficiency in the hub area can be prevented.
- axial refers to the longitudinal axis of the turbine module, ie the longitudinal axis of the turbomachine, which, for example, coincides with an axis of rotation of the rotors.
- Rotary refers to the radial directions perpendicular thereto and pointing away therefrom, and “orbit” or “circumferentially” or the “direction of orbit” refers to the rotation about the longitudinal axis.
- a and “an” are to be read as indefinite articles and thus always also as “at least one” or “at least one” unless expressly stated otherwise.
- the guide vane ring with the guide vane blade according to the invention has a plurality of such blades, which are arranged rotationally symmetrically to one another, for example, about the longitudinal axis.
- several guide vanes can also be provided integrally with one another, that is to say combined to form a guide vane segment which can then have, for example, 2, 3, 4, 5 or 6 vanes.
- the guide vane blade has a leading and a trailing edge as well as two connecting the leading and trailing edges to each other Side surfaces, one of which forms the suction side and the other the pressure side.
- the airfoil duct is located inside the airfoil.
- the guide vane blade channel is preferably free of loops in its extension between the inlet and outlet, so there is exactly one channel from the inside to the outside that directly connects the inlet and outlet to one another.
- the outlet of the airfoil passage is located radially outward of the outer shroud.
- the gas guided from radially inside to outside is thus at least not blown directly into the annular space, which is advantageous in terms of flow technology. Nevertheless, cooling of the housing area can be achieved.
- the outlet is offset downstream toward the trailing edge of the vane airfoil.
- downstream and upstream generally relate to the flow of the working gas in the annular space, unless expressly stated otherwise. With the outlet offset to the rear, it is possible, in particular, for the gas that is guided radially outward to flow over the outer shroud of the downstream moving blade(s), see below in detail.
- the inlet of the airfoil passage is located at an upstream leading edge of the vane.
- An inflow of working gas from the annular space could generally also be achieved with an inlet arranged in the shroud itself, but the arrangement at the leading edge can be advantageous, for example with regard to the proportionate inflow of the barrier fluid.
- the invention also relates to a turbine module with a guide vane disclosed here, which is preferably a low-pressure turbine module.
- a moving blade is arranged upstream of the guide vane (which, like the guide vane, is usually part of a ring with a plurality of structurally identical and rotationally symmetrical blades).
- An inner shroud of the upstream rotor blade then forms a labyrinth seal together with the inner shroud of the guide vane, to which a barrier fluid is supplied from radially inward (the labyrinth seal is referred to as a "seal" because it serves to shield the rotor disks in the hub area, see above).
- the labyrinth seal formed by a downstream trailing edge of the inner shroud of the blade having an axial overlap with an upstream leading edge of the inner shroud of the vane, the trailing edge of the inner shroud of the blade preferably being radially inward of the leading edge of the inner shroud of the vane.
- a sealing web is provided as part of the labyrinth seal radially inside the inner shroud of the guide vane. This typically extends axially forward away from a seal carrier wall and preferably has an axial overlap with the trailing edge of the inner shroud of the rotor blade. Said trailing edge is thus bordered radially between the leading edge of the inner shroud of the vane and the sealing web, which is why this arrangement is also referred to as a "fish-mouth seal". Viewed in an axial section, the barrier fluid then flows through the labyrinth seal from radially inside to radially outside with an S-shaped course.
- an advantage of the subject matter of the invention can then be that this sealing fluid introduced to shield the rotor hub is at least partially sucked off through the inlet, so that the main flow in the annular space is not significantly disturbed. Despite this suction, the barrier fluid flows through the overlapping areas described, so the hub area is blocked against the working gas. If one looks at the blade ring or vane ring as a whole, the overlaps mentioned ideally exist independently of the axial position of the rotor relative to the stator.
- the gas flowing through the guide vane blade channel during operation is, in a preferred embodiment, a proportion of the sealing fluid that is also sucked off at the inlet. Nevertheless, the greater part of the gas guided radially outwards in the annular space is preferably sucked off working gas.
- a preferred embodiment relates to a turbine module with a rotor blade or a corresponding rotor blade ring arranged downstream of the guide vane.
- the downstream blade has an airfoil extending between an inner (radially inward) shroud and an outer (radially outward) shroud.
- the outlet of the guide vane blade channel is then advantageously arranged in such a way that the gas that is routed to the outside is routed downstream of the outlet radially outside the outer shroud of the rotor blade or flows around the outer shroud (of course, it does not have to be that all of the gas that is led to the outside flows outside the outer shroud).
- the gas is thus at least not predominantly blown out into the annular space, but outside the main flow channel into the area outside the shrouds. In this way, on the one hand, cooling of this area can already be achieved.
- the quantity of gas is dimensioned in such a way that the moving blade outer shroud only flows over the gas guided radially outward.
- a local improvement in efficiency can also be achieved.
- the outlet of the guide blade channel is provided in such a way that the exiting gas fans out in the direction of circulation, that is to say is divergent. Accordingly, the effects just described can then be achieved, for example, not only axially aligned with the vane blade or blades, but ideally over essentially the entire circumference.
- the outlet of the guide vane channel is provided in such a way that the exiting gas differs in its speed and/or direction from the working gas guided in the annular space, i.e. the speed and/or direction of the working gas in this radially outer area of the annular space.
- the flow properties of the gas that is guided radially outward can be set independently of the working gas; for example, a circulation component can be smaller than the circulation speed of the downstream rotor shroud.
- the flow through the guide vane channel i.e. suction radially on the inside and blowing out radially on the outside, results from a pressure difference across the guide vane.
- the speed can be adjusted via the size (the cross-section of the outlet), the orientation determines the direction of the exiting fluid flow. This opens up the design options described to the effect that flow losses in the annular space and thus efficiency losses can be reduced. Friction losses and thus local heating, e.g. B. the outer shroud can be minimized.
- the turbine module preferably has a plurality of stages, each with guide and downstream blade rings.
- the guide vanes are then preferably provided in all stages of the turbine with corresponding guide vane blade channels, so that a lower overall temperature is set in the housing area. The need for cooling air in the housing is reduced, and gap maintenance can also be improved.
- a moving blade made of a forged material for example made of Udimet720, Nimonic90 or Nimonic 115, is provided downstream of the guide blade with guide blade channel.
- the entire moving blade is preferably made of a forged material.
- a forged material can be of interest, e.g. due to better strength properties compared to a cast material, e.g. in terms of tensile strength, yield point, HCF, LCF, notched impact strength, elongation at break, etc
- Forged material can be interesting, but in the case of state-of-the-art turbines, the temperatures for this are usually still too high, which is why temperature-resistant cast materials are used. With the approach according to the invention, the temperatures can be reduced, in particular in the radially outer area, which can be an advantage in itself with regard to an increased service life, but also enables the use of other materials. Forged materials are preferably used.
- Another preferred embodiment also relates to the use of a forged material, from which the entire turbine blisk is then provided.
- the rotor disk, together with the blade blades provided integrally thereon, is therefore made of the forged material.
- the invention also relates to the use of a turbine module described here, in particular for an axial flow machine, preferably a jet engine.
- the working gas flows through the annular space and, on the other hand, gas becomes gas through the guide blade channel from radially inside to radially outside redistributed, which is at least partially formed by working gas, preferably also partially by barrier fluid.
- FIG. 2 shows a detail of a turbine module 1 according to the invention in an axial section.
- working gas flows through an annular space 2 formed by the turbine module 1, which spreads from the combustion chamber (to the left of the turbine module 1) to the nozzle (to the right of it), see also figure 5 for illustration.
- a guide vane 3 is arranged, which has an inner shroud 3a, an outer shroud 3b and between them a guide vane blade 3c.
- a rotor blade 4 is arranged upstream of the guide vane 3, and a rotor blade 5 downstream thereof.
- the guide vane 3 is shown in section;
- the inlet 6 into the guide blade channel 3d is located on the inner shroud 3a of the guide blade 3, specifically on its upstream leading edge.
- the outlet 7 of the airfoil passage 3d is located radially outward of the outer shroud 3b and offset axially downstream relative to the trailing edge 3ca of the airfoil 3c.
- suction takes place radially on the inside, at the inlet 6 , and blows out radially on the outside, at the outlet 7 .
- the inlet 6 is arranged in such a way that the gas 8 which flows through the guide vane blade channel 3d is formed proportionately by the working gas conducted in the annular space 2 .
- a sidewall boundary layer 10 sucked off the main flow.
- a blocking fluid 11 is also sucked in proportionately through the inlet 6 , which is introduced radially on the inside to shield the hub area and flows through a labyrinth seal 12 .
- the latter is formed by the axial overlap of a sealing web 13, the inner shroud 4a of the moving blade 4, specifically the trailing edge thereof, and the inner shroud 3a of the guide vane 3, specifically the leading edge thereof.
- This barrier fluid 11 is significantly cooler compressor air, the redistribution of which radially outward through the guide vane blade channel 3d is advantageous in terms of avoiding disproportionate temperature gradients.
- 1 shows for comparison a turbine module 1 from the prior art with a similarly constructed labyrinth seal 12, wherein the vane blade 3 in contrast to 2 is not provided with a vane duct 3d. Accordingly, the barrier fluid 11 flows into the annular space 2, which disturbs the main flow there.
- the side wall boundary layers 10 are usually subjected to aerodynamic loads anyway, so overall flow losses and losses in efficiency are to be expected (compared to the variant according to 2).
- 1 further illustrates that there is also a leakage flow 20 radially on the outside, which flows over the outer shrouds 4b, 5b of the rotor blades 4, 5. This also causes a disturbance in the main flow.
- outlet 7 of the guide vane blade channel 3d is arranged in such a way that the gas 8 guided radially outward flows over the outer shroud 5b of the rotor blade 5 .
- the amount is measured in such a way that no working gas from the annular space 2 flows over the outer shroud 5b. This counts as out 1 can be seen, analogously also for the upstream turbine stage, but for the sake of clarity the description refers to the interaction of the guide vane 3 with the moving vane 5.
- FIG. 3 illustrates a radial temperature curve, as in a turbine module 1 according to 1 sets, so without redistribution through the guide vane channel 3d.
- the temperature T is plotted, and the radius R taken away from the inner shroud is plotted on the y-axis.
- the solid line represents the temperature of the working gas, which is primarily determined by the temperature profile at the combustion chamber outlet. The temperature increases radially outwards, see also the introduction to the description.
- the cooler barrier fluid 11 and also the cooler working gas are redistributed from radially inside to radially outside, so that the temperature gradients can be reduced. Due to the reduced disturbance of the main flow radially on the inside and radially on the outside, an improved efficiency profile can also be achieved.
- FIG 5 shows a turbomachine 50 in an axial section, specifically a jet engine.
- the turbomachine 50 is divided into compressor 50a, combustion chamber 50b and turbine 50c.
- Both the compressor 50a and the turbine 50c are each constructed from a plurality of components or stages, each stage is composed of a guide blade ring and a moving blade ring.
- the rotor blade rings rotate about the longitudinal axis 52 of the turbomachine 50.
- the turbine module 1 described above is part of the turbine 50c, specifically forms the low-pressure turbine.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Claims (15)
- Aube directrice (3) pour une turbine (50c) d'une turbomachine (50), comportantune pale d'aube directrice (3c), un carénage d'extrémité intérieur (3a) et un carénage d'extrémité extérieur (3b), dans lequel le carénage d'extrémité intérieur (3a) et le carénage d'extrémité extérieur (3b) délimitent, par rapport à un axe longitudinal (52) de la turbomachine (50), un espace annulaire (2), dans la direction radiale, dans lequel, lors du fonctionnement, du gaz de travail (51) est acheminé,et dans lequel la pale d'aube directrice (3c), dans son intérieur, est traversée par un canal de pale d'aube directrice (3d), lequel s'étend entre une entrée (6) radialement de l'intérieur et une sortie (7) radialement vers l'extérieur,caractérisée en ce quel'entrée (6) est disposée de telle manière qu'un gaz (8) s'écoulant à travers le canal de pale d'aube directrice (3d) lors du fonctionnement est au moins partiellement formé par le gaz de travail (51) acheminé dans l'espace annulaire (2), celui-ci étant également redistribué radialement de l'intérieur vers radialement vers l'extérieur dans une zone de boîtier.
- Aube directrice (3) selon la revendication 1, dans laquelle la sortie (7) du canal de pale d'aube directrice (3d) est située radialement à l'extérieur du carénage d'extrémité extérieur (3b) de l'aube directrice (3).
- Aube directrice (3) selon la revendication 2, dans laquelle la sortie (7) du canal de pale d'aube directrice (3d) est décalée en aval d'un bord de fuite (3ca) de la pale d'aube directrice (3c) par rapport à l'écoulement du gaz de travail (51) à travers l'espace annulaire (2).
- Aube directrice (3) selon l'une quelconque des revendications précédentes, dans laquelle l'entrée (6) du canal de pale d'aube directrice (3d) est disposée au niveau d'un bord d'attaque du carénage d'extrémité intérieur (3a) de l'aube directrice (3) orienté en amont par rapport à l'écoulement du gaz de travail (51) à travers l'espace annulaire (2).
- Module de turbine (1) comportant une aube directrice (3) selon l'une quelconque des revendications précédentes.
- Module de turbine (1) selon la revendication 5, comportant une aube mobile (4), disposée en amont de l'aube directrice (3) par rapport à l'écoulement du gaz de travail (51) à travers l'espace annulaire (2), laquelle comporte un carénage d'extrémité intérieur (4a) et une pale d'aube mobile (4c), dans lequel un bord de fuite orienté en aval du carénage d'extrémité intérieur (4a) de l'aube mobile (4) comporte un chevauchement axial avec un bord d'attaque orienté en amont du carénage d'extrémité intérieur (3a) de l'aube mobile (3) pour former un joint d'étanchéité labyrinthe (12).
- Module de turbine (1) selon la revendication 6, dans lequel une nervure d'étanchéité (13) est disposée radialement vers l'intérieur du carénage d'extrémité intérieur (3a) de l'aube directrice (3), laquelle est conçue radialement vers l'intérieur du bord de fuite du carénage d'extrémité intérieur (4a) de l'aube mobile (4) sous la forme de partie du joint d'étanchéité labyrinthe (12) et laquelle comporte un chevauchement axial avec ledit bord de fuite.
- Module de turbine (1) selon la revendication 6 ou 7, lequel est conçu de telle sorte qu'un fluide de blocage (11), lequel s'écoule lors du fonctionnement à travers le joint d'étanchéité labyrinthe (12) radialement de l'intérieur vers radialement vers l'extérieur, est au moins partiellement aspiré à travers l'entrée (6) du canal de pale d'aube directrice (3d) et s'écoule à travers le canal de pale d'aube directrice en tant que partie du gaz (8).
- Module de turbine (1) selon l'une quelconque des revendications 5 à 8, comportant une aube mobile (5), disposée, par rapport à l'écoulement du gaz de travail (51) à travers l'espace annulaire (2), en aval de l'aube directrice (3), laquelle comporte une pale d'aube mobile (5c) ainsi qu'un carénage d'extrémité intérieur (5a) et un carénage d'extrémité extérieur (5b), dans lequel la sortie (7) du canal de pale d'aube directrice (3d) est disposée de telle sorte que le gaz (8) s'écoulant à travers le canal de pale d'aube directrice (3d) est guidé au moins partiellement radialement vers l'extérieur du carénage d'extrémité extérieur (5b) de l'aube mobile (5).
- Module de turbine (1) selon la revendication 9, dans lequel le gaz, lequel est guidé radialement vers l'extérieur du carénage d'extrémité extérieur (5b) de l'aube mobile (5), est mesuré en quantité de telle sorte qu'un débordement du carénage d'extrémité extérieur (5b) de l'aube mobile (5) avec du gaz de travail (51) sortant directement de l'espace annulaire (2) est bloqué.
- Module de turbine (1) selon la revendication 9 ou 10, dans lequel la sortie (7) du canal de pale d'aube directrice (3d) est fournie de telle sorte que le gaz (8) s'écoulant à travers le canal de pale d'aube directrice (3d) sort de manière divergente dans la direction de circulation.
- Module de turbine (1) selon l'une quelconque des revendications 9 à 11, dans lequel la sortie (7) du canal de pale d'aube directrice (3d) est fournie de telle sorte que le gaz (8) s'écoulant à travers le canal de pale d'aube directrice (3d) sort à une vitesse et/ou dans une direction différentes de celles du gaz de travail (51) acheminé dans l'espace annulaire (2) dans ladite zone.
- Module de turbine (1) selon l'une quelconque des revendications 5 à 12, dans lequel l'au moins une aube mobile (5) disposée en aval de l'aube directrice (3) comporte une pale d'aube mobile (5c) conçue à partir d'un matériau de forgeage.
- Module de turbine (1) selon l'une quelconque des revendications 5 à 12, dans lequel l'au moins une aube mobile (5) disposée en aval de l'aube directrice (3) fait partie d'un disque comportant des pales d'aube intégrales, lesquelles sont conçues à partir d'un matériau de forgeage.
- Utilisation d'un module de turbine (1) selon l'une quelconque des revendications 5 à 14, dans laquelle utilisation du gaz de travail (51) est acheminé dans l'espace annulaire (2) et du gaz (8) s'écoule à travers le canal de pale d'aube directrice (3d) radialement de l'intérieur vers radialement vers l'extérieur, lequel gaz est formé au moins partiellement par le gaz de travail (51) acheminé dans l'espace annulaire (2) de telle sorte que celui-ci est redistribué radialement de l'intérieur vers radialement vers l'extérieur.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018206259.5A DE102018206259A1 (de) | 2018-04-24 | 2018-04-24 | Leitschaufel für eine turbine einer strömungsmaschine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3561236A1 EP3561236A1 (fr) | 2019-10-30 |
EP3561236B1 true EP3561236B1 (fr) | 2022-11-23 |
Family
ID=66182355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19169137.7A Active EP3561236B1 (fr) | 2018-04-24 | 2019-04-15 | Aube de guidage pour une turbine d'une turbomachine, module de turbine et méthode d'utilisation du module de turbine |
Country Status (4)
Country | Link |
---|---|
US (1) | US11215073B2 (fr) |
EP (1) | EP3561236B1 (fr) |
DE (1) | DE102018206259A1 (fr) |
ES (1) | ES2934210T3 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3121167B1 (fr) * | 2021-03-25 | 2024-05-31 | Safran Helicopter Engines | Turbine de turbomachine |
EP4123124A1 (fr) * | 2021-07-21 | 2023-01-25 | MTU Aero Engines AG | Module de turbine pour une turbomachine et utilisation d´un tel module |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB744548A (en) * | 1953-07-29 | 1956-02-08 | Havilland Engine Co Ltd | Improvements in or relating to gas turbines |
JPS501646B1 (fr) * | 1970-07-11 | 1975-01-20 | ||
US5316437A (en) | 1993-02-19 | 1994-05-31 | General Electric Company | Gas turbine engine structural frame assembly having a thermally actuated valve for modulating a flow of hot gases through the frame hub |
WO1995004225A1 (fr) | 1993-08-02 | 1995-02-09 | Siemens Aktiengesellschaft | Procede et dispositif permettant de prelever un courant partiel dans un courant de gaz comprime |
US6722138B2 (en) * | 2000-12-13 | 2004-04-20 | United Technologies Corporation | Vane platform trailing edge cooling |
GB0813839D0 (en) | 2008-07-30 | 2008-09-03 | Rolls Royce Plc | An aerofoil and method for making an aerofoil |
US8092153B2 (en) | 2008-12-16 | 2012-01-10 | Pratt & Whitney Canada Corp. | Bypass air scoop for gas turbine engine |
EP2518278A1 (fr) | 2011-04-28 | 2012-10-31 | Siemens Aktiengesellschaft | Canal de refroidissement de carter de turbine comprenant un fluide de refroidissement s'écoulant vers l'amont |
EP2573325A1 (fr) * | 2011-09-23 | 2013-03-27 | Siemens Aktiengesellschaft | Refroidissement par projection d'aubes ou pales de turbine |
JP6039059B2 (ja) | 2012-05-02 | 2016-12-07 | ゲーコーエヌ エアロスペース スウェーデン アーベー | ガスタービンエンジンの支持構造 |
US9670797B2 (en) | 2012-09-28 | 2017-06-06 | United Technologies Corporation | Modulated turbine vane cooling |
EP2971674B1 (fr) | 2013-03-14 | 2022-10-19 | Raytheon Technologies Corporation | Refroidissement de plateforme d'ailette statorique de moteur à turbine à gaz |
EP2990607A1 (fr) | 2014-08-28 | 2016-03-02 | Siemens Aktiengesellschaft | Concept de refroidissement pour aubes ou pales de turbine |
US10400627B2 (en) | 2015-03-31 | 2019-09-03 | General Electric Company | System for cooling a turbine engine |
US20170002662A1 (en) | 2015-07-01 | 2017-01-05 | United Technologies Corporation | Gas turbine engine airfoil with bi-axial skin core |
DE102015111843A1 (de) | 2015-07-21 | 2017-01-26 | Rolls-Royce Deutschland Ltd & Co Kg | Turbine mit gekühlten Turbinenleitschaufeln |
US10012092B2 (en) * | 2015-08-12 | 2018-07-03 | United Technologies Corporation | Low turn loss baffle flow diverter |
US11230935B2 (en) | 2015-09-18 | 2022-01-25 | General Electric Company | Stator component cooling |
US10781715B2 (en) | 2015-12-21 | 2020-09-22 | Raytheon Technologies Corporation | Impingement cooling baffle |
US10619499B2 (en) * | 2017-01-23 | 2020-04-14 | General Electric Company | Component and method for forming a component |
-
2018
- 2018-04-24 DE DE102018206259.5A patent/DE102018206259A1/de active Pending
-
2019
- 2019-04-12 US US16/382,471 patent/US11215073B2/en active Active
- 2019-04-15 EP EP19169137.7A patent/EP3561236B1/fr active Active
- 2019-04-15 ES ES19169137T patent/ES2934210T3/es active Active
Also Published As
Publication number | Publication date |
---|---|
ES2934210T3 (es) | 2023-02-20 |
US11215073B2 (en) | 2022-01-04 |
DE102018206259A1 (de) | 2019-10-24 |
US20190331000A1 (en) | 2019-10-31 |
EP3561236A1 (fr) | 2019-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0170938B1 (fr) | Dispositif d'optimisation de l'interstice de l'étanchéité et de l'interstice des aubes pour compresseurs de propulseurs à turbine à gaz, en particulier moteurs à réaction à turbine à gaz | |
EP2044293B1 (fr) | Turbine à gaz dotée d'un segment annulaire comprenant un canal de recirculation | |
DE112011104298B4 (de) | Gasturbinenmotor mit Sekundärluftstromkreis | |
DE102015120127A1 (de) | Axialverdichterendwandeinrichtung zur steuerung der leckage in dieser | |
EP2881541A1 (fr) | Refroidissement de pointe d'aube d'un aube de rotor de turbine à gaz | |
EP2639411B1 (fr) | Boîtier de turbomachine avec un système de recirculation de fluide | |
DE102015122928A1 (de) | Gasturbinendichtung | |
EP3699398A1 (fr) | Aube sans bandage pour un étage de turbine à haute vitesse | |
DE112015003934T5 (de) | Gasturbine | |
EP3561236B1 (fr) | Aube de guidage pour une turbine d'une turbomachine, module de turbine et méthode d'utilisation du module de turbine | |
EP3093447A1 (fr) | Rotor d'une turbine a gaz ayant un guidage d'air de refroidissement ameliore | |
EP3290644A1 (fr) | Turbine a gaz | |
CH709266A2 (de) | Turbinenschaufel und Verfahren zum Auswuchten eines Spitzendeckbandes einer Turbinenschaufel und Gasturbine. | |
EP3495639B1 (fr) | Module de compresseur pour une turbomachine réduisant la couche limite dans un carter intermédiaire de compresseur | |
WO2016087214A1 (fr) | Aube mobile de turbine, rotor associé et turbomachine | |
DE102012001777A1 (de) | Gasturbinenringbrennkammer | |
CH701151B1 (de) | Turbomaschine mit einem Verdichterradelement. | |
EP2808492B1 (fr) | Palier de turbine doté d'un système de purge et procédé de purge d'un flux de gaz d'arrêt | |
EP3699399B1 (fr) | Aube pour un étage de turbine à grande vitesse dotée d'un élément d'étanchéité unique | |
DE102016124147A1 (de) | Innenkühlkonfigurationen in Turbinenrotorschaufeln | |
DE19735172A1 (de) | Verbessertes Turbinenscheiben-Eintrittsverhinderungsverfahren und -vorrichtung | |
EP3159487A1 (fr) | Stator d'une turbine a gaz ayant un guidage d'air de refroidissement ameliore | |
EP3498972A1 (fr) | Module de turbine pour une turbomachine | |
DE102011051477A1 (de) | Verfahren und Vorrichtung zum Zusammenbau von Rotationsmaschinen | |
DE102019218911A1 (de) | Leitschaufelanordnung für eine strömungsmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200427 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200908 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 11/10 20060101ALN20220105BHEP Ipc: F01D 11/06 20060101ALI20220105BHEP Ipc: F01D 11/00 20060101ALI20220105BHEP Ipc: F01D 9/06 20060101AFI20220105BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220215 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 11/10 20060101ALN20220527BHEP Ipc: F01D 11/06 20060101ALI20220527BHEP Ipc: F01D 11/00 20060101ALI20220527BHEP Ipc: F01D 9/06 20060101AFI20220527BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220707 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019006329 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1533251 Country of ref document: AT Kind code of ref document: T Effective date: 20221215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2934210 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230220 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230323 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230223 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230323 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019006329 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230415 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221123 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240517 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240423 Year of fee payment: 6 |