EP3560299B1 - Dbd plasma reactor - Google Patents

Dbd plasma reactor Download PDF

Info

Publication number
EP3560299B1
EP3560299B1 EP17832277.2A EP17832277A EP3560299B1 EP 3560299 B1 EP3560299 B1 EP 3560299B1 EP 17832277 A EP17832277 A EP 17832277A EP 3560299 B1 EP3560299 B1 EP 3560299B1
Authority
EP
European Patent Office
Prior art keywords
outer tube
reactor according
dielectric material
electrode
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17832277.2A
Other languages
German (de)
French (fr)
Other versions
EP3560299A1 (en
Inventor
Franck Jean Louis CLEMENT
Laurent Christian Noël MARLIN
Michel Patrick Sylvestre MANGIN
Bernard Held
Fanny GIRARD-SAHUN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Pau et des Pays de lAdour
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Pau et des Pays de lAdour
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Pau et des Pays de lAdour filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3560299A1 publication Critical patent/EP3560299A1/en
Application granted granted Critical
Publication of EP3560299B1 publication Critical patent/EP3560299B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/246Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated using external electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes

Definitions

  • the present invention relates to a dielectric barrier discharge plasma reactor for the production of cold plasma at atmospheric pressure.
  • the invention finds application in particular in the following fields: biomedical, sterilization, medicine, dermatology, cosmetics, treatment of materials, surface or deposit functionalization, depollution, agro-food, germination , lighting, fast switching, flow modification, detection or metrology of nanoparticles.
  • DBD Dielectric barrier discharges
  • reactors for the generation of dielectric barrier discharges are disclosed in documents CN105491774A , WO2005/125286 A2 , WO2007/105428 A1 , US2014/0162338 A1 and US2002/0187066 A1 .
  • DBDs are often characterized by inhomogeneous filament-like plasma structures.
  • the inhomogeneous and filamentary nature of the plasma can be inadequate for certain applications, for example in the case of certain surface treatments where it is important that the surface be treated uniformly.
  • the invention aims to solve these problems by proposing a dielectric barrier discharge plasma reactor capable of generating a cold plasma at atmospheric pressure without requiring drastic conditions surrounding the generation of the discharge.
  • the invention therefore proposes a dielectric barrier discharge plasma reactor according to claim 1.
  • the lower end of the inner tube and the lower end of the outer tube extend outside the enclosure via the cold plasma outlet orifice at atmospheric pressure.
  • the enclosure further comprises at least one surrounding fluid inlet orifice coupled to at least one passage extending through the wall of the outer tube.
  • the passage extends substantially perpendicular to the longitudinal axis of the outer tube.
  • the passage extends substantially obliquely to the longitudinal axis of the outer tube.
  • the passage is disposed at a level located between the first dielectric material and the ground electrode.
  • the upper end of the outer tube is located between the first dielectric material and the ground electrode.
  • the high voltage electrode, the first material dielectric and the ground electrode are each in the form of a plate circular, oval or polygonal.
  • the length of the plate of the first dielectric material is longer than that of the plates of the high voltage and ground electrodes.
  • the first dielectric material, the internal tube and the external tube are made of quartz glass and the second dielectric material is made of plastic material, of the PTFE, PFA or FEP type.
  • the high voltage electrode and the ground electrode are made of brass.
  • the reactor comprises a second high voltage electrode fixed around all or part of the outer surface of the wall of the outer tube.
  • the second high voltage electrode is capable of being coupled to a second high voltage power supply and to a ground different from the ground electrode so as to allow the generation of an electric discharge in the outer tube, in a direction perpendicular to the median longitudinal axis of the outer tube.
  • the example of the figure 1 illustrates a dielectric barrier discharge plasma reactor 100 for treating a target.
  • the target may include physical matter such as solid material, living tissue, or a volume of fluid.
  • the reactor 100 comprises a hermetic enclosure 110 subjected to atmospheric pressure.
  • the hermetic enclosure 110 comprises a plasma gas inlet 111 and a cold plasma at atmospheric pressure outlet 112.
  • the plasma gas inlet 111 is intended to be coupled to a source of plasma gas 120.
  • the coupling is made using a straight stitching.
  • the source of plasma gas 120 can comprise a rare gas, a mixture of rare gases (typically helium He, argon Ar, etc.) or a mixture of one or more rare gases with one or more molecular gases (typically oxygen O2, hydrogen H2, carbon tetrafluoride CF4, sulfur hexafluoride SF6, nitrogen N2 and/or water vapor H2O, etc.) that is to say present in low concentration compared to the concentration of rare gas (s).
  • a rare gas typically helium He, argon Ar, etc.
  • molecular gases typically oxygen O2, hydrogen H2, carbon tetrafluoride CF4, sulfur hexafluoride SF6, nitrogen N2 and/or water vapor H2O, etc.
  • a carrier gas coming from the plasma gas source 120 is injected into the plasma gas inlet orifice 111.
  • the incoming flow rate of the carrier gas is of the order of one liter per minute.
  • the cold plasma outlet at atmospheric pressure 112 is designed to lead a cold plasma at atmospheric pressure produced by the reactor 100 to the outside of the hermetic enclosure 110.
  • the hermetic enclosure 110 further comprises an inner tube 113 and an outer tube 114.
  • the inner tube 113 and the outer tube 114 are made of an electrically insulating material with a resistivity greater than 10 15 ⁇ .m, such as , for example, a ceramic, quartz, alumina, silica (SiC) or boron nitride.
  • Each of the inner 113 and outer 114 tubes has a length and a wall thickness. The length of the inner 113 and outer 114 tubes is determined between an upper tube end and a lower tube end, while the wall thickness is determined between an inner wall surface and an outer wall surface.
  • the inner tube 113 has a length to thickness ratio not exceeding 30, preferably between 20 and 27 and advantageously between 24 and 26, while the outer tube 114 has a length to thickness ratio not exceeding 30 , preferably between 20 and 27 and advantageously between 24 and 26.
  • the length of the outer tube 114 is greater than that of the inner tube 113.
  • the inner 113 and outer 114 tubes are arranged so that at least a portion of the inner tube 113 extends inside the outer tube 114 coaxially to the longitudinal axis of the outer tube 114 and so to define a diffusion space ED and an annular space EA.
  • the diffusion space ED is formed inside the outer tube 114 between the lower end of the inner tube 113 and the lower end of the outer tube 114 while the annular space EA is formed between the outer surface of the wall of the inner tube 113 and the inner surface of the wall of the outer tube 114.
  • the diameter of the outer tube 114 is large enough to accommodate the inner tube 113 therein.
  • the diameter ratio between the outer diameter of the inner tube 113 and the inner diameter of the outer tube 114 exceeds 30%, preferably between 35 and 65%.
  • the inner 113 and outer 114 tubes are arranged entirely in the hermetic enclosure 110.
  • FIG 2 it can be considered an implementation of the reactor 100 of the figure 1 wherein the lower end of the inner tube 113 and the lower end of the outer tube 114 extend outside the hermetic enclosure 110 via the cold atmospheric pressure plasma outlet 112.
  • This has the effect of allowing to bring the cold plasma at diffuse atmospheric pressure generated by the reactor 100 as close as possible to the target to be treated.
  • a cap covering the target (not shown).
  • the cap can be totally hermetic or partially hermetic in order to avoid too much confinement. This arrangement can be advantageously used when the target to be treated is small and not bulky.
  • the reactor 100 is arranged so as to generate an electric discharge necessary for the production of a cold plasma at atmospheric pressure in the inner tube 113.
  • the reactor 100 is arranged in a plane-plane configuration comprising a high voltage electrode 115 and a ground electrode 116, spaced by an inter-electrode space in which at least a first dielectric material 117 is placed.
  • the electrodes 115 and 116 consist of an electrically conductive material having a resistivity of the order of 10 -8 ⁇ .m to 10 -9 ⁇ .m, for example, consisting of a metal or a metal alloy.
  • electrodes 115 and 116 are made of tungsten, 316L stainless steel, copper, aluminum, brass, or a conductive catalytic material.
  • the first dielectric material 117 consists of an electrical insulating material similar to that used, above, for the inner 113 and outer 114 tubes.
  • the inner tube 113 is disposed closest to the high voltage electrode 115.
  • the inner tube 13 extends through the first dielectric material 117 and the ground electrode 116.
  • at least one portion of outer tube 114 extends through ground electrode 116.
  • a hole is made in high voltage electrode 115, first dielectric material 117 and ground electrode accommodate the particular arrangement of the inner 113 and outer 114 tubes.
  • the passage leading to the outer tube 114 is arranged at a level located between the first dielectric material 117 and the ground electrode 116. Nevertheless, the passage leading to the outer tube 114 can be arranged at any other level of the outer tube 114, preferably at a level which is above the lower end of the inner tube 113.
  • reactor 100 also includes a high voltage power supply input port 1111 coupled to high voltage electrode 115 ( picture 3a ) and a grounding port 1112 coupled to the ground electrode 116 ( figure 3b ).
  • the coupling with the high voltage electrode 115 and with the ground electrode 116 is achieved by soldering, in particular by tin soldering.
  • the high voltage electrode 115 is able to be coupled to a high voltage HT power supply so as to allow the generation of an electric discharge in the inter-electrode space in order to produce a cold plasma at atmospheric pressure by ionizing the vector gas which circulates in the internal tube 113.
  • the high voltage power supply HT delivers a voltage of several kV, for example between 1 kV and 20 kV from a signal from the sinusoidal, pulsed or chopped type.
  • the high voltage electrode 115, the first dielectric material 117 and the ground electrode 116 are each in the form of a circular, oval or polygonal plate.
  • the length of the plate of the first dielectric material 117 is longer than that of the plates of the high voltage and ground electrodes 116. This has the effect of avoiding the formation of an electric arc between the electrodes 115 and 116 by limiting the peak effects.
  • the hermetic enclosure 110 comprises a surrounding fluid inlet 118 coupled to a passage 119 extending through the wall of the outer tube 114.
  • Surrounding fluid inlet 118 is intended to be coupled to a source of surrounding fluid 130.
  • the coupling is made using a straight stitching.
  • the source of surrounding fluid 118 can consist of a pure gas, a mixture of pure gases (typically nitrogen N, oxygen O, methane CH4, carbonaceous gases, hydrogen H2, fluorinated gases, monomer gases, etc.), an atomized liquid (for example loaded with target treatment particles) or a mixture of one or more pure gases with one or more atomized liquids.
  • surrounding fluid from surrounding fluid source 130 is injected into surrounding fluid inlet 118.
  • the incoming flow rate of surrounding fluid is on the order of a few tens of cubic centimeters per minute.
  • the surrounding fluid injected into the surrounding fluid inlet 118 circulates in the annular space EA to then emerge in the diffusion space ED in order to mix with the cold plasma at atmospheric pressure generated in the inner tube 113.
  • This has the effect of allowing control of the environment for generating the cold plasma at atmospheric pressure and therefore of its chemical reactivity with respect to a given target.
  • the upper end of the outer tube 114 is located between the first dielectric material 117 and the ground electrode 116.
  • the upper end of the outer tube 114 can also be located outside the interspace. electrodes.
  • the passage extends substantially perpendicular to the longitudinal axis of the outer tube 114. In another example, the passage extends substantially obliquely to the longitudinal axis of the outer tube 114.
  • the hermetic enclosure 110 further comprises an enclosure body C molded in a second dielectric material.
  • the enclosure body makes it possible to maintain the various elements constituting the reactor 100 in the hermetic enclosure 110.
  • the second dielectric material is made of plastic material, of the fluoropolymer type (PTFE, PFA or FEP).
  • the three parts can be machined separately before being assembled.
  • the three parts can be assembled to form the enclosure body C, using fastening means such as screws.
  • the reactor 100 has been described as comprising a plasma gas inlet 111 and a surrounding fluid inlet 118. However, other configurations are possible.
  • the hermetic enclosure 110 can comprise a plurality of reactors 100.
  • the hermetic enclosure 110 comprises an enclosure body C consisting of three parts P1, P2 and P3 in which are arranged two reactors 100.
  • the reactor 100 comprises an enclosure body C consisting of three parts P1, P2 and P3 in which are arranged six reactors 100.
  • the arrangement of a plurality of reactors 100 according to the invention is particularly advantageous because a single high power supply HT voltage makes it possible to supply all of the reactors 100. It is therefore not necessary to use as many high voltage power supplies as there are reactors 100.
  • the use of the second insulating material in the constitution of the body of enclosure C makes it possible to guarantee the independent generation of several cold plasmas at atmospheric pressure.
  • FIG. 6a shows a top view of such a configuration in which four passageways may be coupled to one or more surrounding fluid inlets 118.
  • the plurality of passages leading to the outer tube 114 are disposed at different levels of the outer tube 114.
  • the work consists of acting on the reactivity of the target to be treated by allowing control of the production of reactive species produced in the gas phase.
  • the electrical potential difference is due to the high potential of the central axis of cold plasma propagation at atmospheric pressure and the potential imposed on the inner surface of the outer tube 114.
  • the central axis of propagation of the cold plasma at atmospheric pressure corresponds to the median longitudinal axis of the outer tube 114 passing substantially through the middle of the outer tube 114.
  • the high voltage metal electrode is attached to at least a portion of the outer surface of the outer tube wall 114.
  • the high voltage metal electrode is formed in a metal ring that covers all or part of the outer surface of the wall of the outer tube 114.
  • the high voltage metal electrode is formed in a metallic tape which covers all or part of the outer surface of the wall of the outer tube 114. Then , when the reactor 100 is in operation, the high voltage metal electrode is electrically biased with a high voltage power supply (not shown) which is decoupled from the high voltage HT power supply of the reactor 100.
  • different masses are used for grounding the high voltage metal electrode and for grounding the ground electrode 116.
  • the high voltage metal electrode is biased with a positive or negative high voltage power supply.
  • the high-voltage power supply supplies direct or alternating voltage.
  • the high voltage power supply delivers a voltage from a signal of the sinusoidal, pulsed or chopped type.
  • a high voltage source was used delivering a DC voltage of 100V to 500V DC.

Description

Domaine techniqueTechnical area

La présente invention concerne un réacteur plasma de décharge à barrière diélectrique pour la production de plasma froid à pression atmosphérique.The present invention relates to a dielectric barrier discharge plasma reactor for the production of cold plasma at atmospheric pressure.

L'invention trouve notamment application dans les domaines suivants : le biomédical, la stérilisation, la médecine, la dermatologie, la cosmétique, le traitement de matériaux, la fonctionnalisation de surface ou de dépôt, la dépollution, l'agro-alimentaire, la germination, l'éclairage, la commutation rapide, la modification d'écoulement, la détection ou encore la métrologie de nanoparticules.The invention finds application in particular in the following fields: biomedical, sterilization, medicine, dermatology, cosmetics, treatment of materials, surface or deposit functionalization, depollution, agro-food, germination , lighting, fast switching, flow modification, detection or metrology of nanoparticles.

Technique antérieurePrior technique

Les décharges à barrière diélectrique (DBD) sont connues depuis longtemps, notamment pour leur capacité à générer des plasmas froids hors équilibre à des pressions élevées en évitant la transition vers un régime d'arc.Dielectric barrier discharges (DBD) have been known for a long time, in particular for their ability to generate out-of-equilibrium cold plasmas at high pressures by avoiding the transition to an arcing regime.

Des exemples de réacteurs pour la génération de décharges à barrière diélectrique sont divulgués dans les documents CN105491774 A , WO2005/125286 A2 , WO2007/105428 A1 , US2014/0162338 A1 et US2002/0187066 A1 .Examples of reactors for the generation of dielectric barrier discharges are disclosed in documents CN105491774A , WO2005/125286 A2 , WO2007/105428 A1 , US2014/0162338 A1 and US2002/0187066 A1 .

Les DBD sont souvent caractérisées par des structures de plasma non homogènes de type filamentaire. Cependant, la nature non homogène et filamentaire du plasma peut être inadéquate pour certaines applications, par exemple dans le cas de certains traitements de surface où il est important que la surface soit traitée de manière uniforme.DBDs are often characterized by inhomogeneous filament-like plasma structures. However, the inhomogeneous and filamentary nature of the plasma can be inadequate for certain applications, for example in the case of certain surface treatments where it is important that the surface be treated uniformly.

De nombreux travaux ont été consacrés à la recherche de conditions de DBD dans lesquelles le plasma pouvait rester homogène à pression atmosphérique. Toutefois, ces conditions sont assez drastiques, car elles nécessitent l'utilisation de gaz rares comme l'hélium en plus du respect de certaines restrictions au niveau de la distance inter-électrodes, de la pression, de la tension appliquée ainsi que de la fréquence à utiliser. Par exemple, on peut obtenir une DBD homogène dans l'hélium à pression atmosphérique pour une distance entre deux diélectriques de 5 mm et une tension d'amplitude 1 kV et de fréquence 10 kHz. Toutefois, si la fréquence est diminuée à 1 kHz, la décharge devient inhomogène et on observe la présence de filaments.Many works have been devoted to the search for DBD conditions in which the plasma could remain homogeneous at atmospheric pressure. However, these conditions are quite drastic, because they require the use of rare gases such as helium in addition to compliance with certain restrictions in terms of the inter-electrode distance, the pressure, the voltage applied as well as the frequency. use. For example, it is possible to obtain a homogeneous DBD in helium at atmospheric pressure for a distance between two dielectrics of 5 mm and a voltage of amplitude 1 kV and frequency 10 kHz. However, if the frequency is reduced to 1 kHz, the discharge becomes inhomogeneous and the presence of filaments is observed.

Cette situation n'est pas satisfaisante, car les conditions requises sont si délicates à respecter qu'elles constituent un frein sérieux au développement de projets dans le domaine des plasmas homogènes.This situation is not satisfactory, because the required conditions are so delicate to respect that they constitute a serious obstacle to the development of projects in the field of homogeneous plasmas.

Résumé de l'inventionSummary of the invention

L'invention vise à résoudre ces problèmes en proposant un réacteur plasma de décharge à barrière diélectrique capable de générer un plasma froid à pression atmosphérique sans nécessiter de conditions draconiennes entourant la génération de la décharge.The invention aims to solve these problems by proposing a dielectric barrier discharge plasma reactor capable of generating a cold plasma at atmospheric pressure without requiring drastic conditions surrounding the generation of the discharge.

L'invention propose donc un réacteur plasma de décharge à barrière diélectrique selon la revendication 1.The invention therefore proposes a dielectric barrier discharge plasma reactor according to claim 1.

Des modes de réalisation préférés de l'invention sont définis dans les revendications dépendantes.Preferred embodiments of the invention are defined in the dependent claims.

À cet effet, il est proposé un réacteur plasma de décharge à barrière diélectrique comprenant une enceinte soumise à la pression atmosphérique et ayant au moins un orifice d'entrée de gaz plasmagène et au moins un orifice de sortie de plasma froid à pression atmosphérique. L'enceinte comprend en outre un tube interne et un tube externe. Le tube interne et le tube externe sont du type diélectrique, chacun comprenant une extrémité supérieure, une extrémité inférieure et une paroi avec une surface intérieure et une surface extérieure, l'extrémité supérieure du tube interne étant couplée à l'orifice d'entrée de gaz plasmagène, l'extrémité supérieure du tube externe étant fermée hermétiquement et étant traversée par le tube interne, l'extrémité inférieure du tube interne étant ouverte et l'extrémité inférieure du tube externe étant couplée à l'orifice de sortie de plasma froid à pression atmosphérique. En outre, le tube interne et le tube externe sont agencés de sorte qu'au moins une portion du tube interne s'étend à l'intérieur du tube externe de manière parallèle à l'axe longitudinal du tube externe et de façon à définir un espace de diffusion et un espace annulaire. L'espace de diffusion est formé à l'intérieur du tube externe entre l'extrémité inférieure du tube interne et l'extrémité inférieure du tube externe, et l'espace annulaire est formé entre la surface externe de la paroi du tube interne et la surface interne de la paroi du tube externe. l'enceinte comprend en outre,

  • une première électrode haute tension et une électrode de masse, espacées par un espace inter-électrodes dans lequel au moins un premier matériau diélectrique est disposé,
  • un orifice d'entrée d'alimentation électrique haute tension couplé à l'électrode haute tension, et apte à être couplé à une première alimentation haute tension de façon à permettre la génération d'une décharge électrique dans l'espace inter-électrodes, et dans laquelle,
  • au moins une portion du tube interne est disposée au plus près de l'électrode haute tension, et s'étend à travers le premier matériau diélectrique et l'électrode de masse, et
  • au moins une portion du tube externe s'étend à travers l'électrode de masse.
To this end, a dielectric barrier discharge plasma reactor is proposed comprising an enclosure subjected to atmospheric pressure and having at least one plasma gas inlet orifice and at least one cold plasma outlet orifice at atmospheric pressure. The enclosure further includes an inner tube and an outer tube. The inner tube and the outer tube are of the dielectric type, each comprising an upper end, a lower end and a wall with an inner surface and an outer surface, the upper end of the inner tube being coupled to the inlet of plasma gas, the upper end of the outer tube being hermetically sealed and the inner tube passing through it, the lower end of the inner tube being open and the lower end of the outer tube being coupled to the cold plasma outlet port at atmospheric pressure. In addition, the inner tube and the outer tube are arranged so that at least a portion of the inner tube extends inside the outer tube parallel to the longitudinal axis of the outer tube and so as to define a diffusion space and an annular space. The diffusion space is formed inside the outer tube between the lower end of the inner tube and the lower end of the outer tube, and the annular space is formed between the outer surface of the wall of the inner tube and the inner surface of the outer tube wall. the enclosure further comprises,
  • a first high voltage electrode and a ground electrode, spaced apart by an inter-electrode space in which at least a first dielectric material is arranged,
  • a high voltage power supply input port coupled to the high voltage electrode, and adapted to be coupled to a first high voltage power supply so as to allow the generation of an electric discharge in the inter-electrode space, and in which,
  • at least a portion of the inner tube is disposed closest to the high voltage electrode, and extends through the first dielectric material and the ground electrode, and
  • at least a portion of the outer tube extends through the ground electrode.

Selon une première caractéristique possible, l'extrémité inférieure du tube interne et l'extrémité inférieure du tube externe s'étendent en dehors de l'enceinte via l'orifice de sortie de plasma froid à pression atmosphérique.According to a first possible characteristic, the lower end of the inner tube and the lower end of the outer tube extend outside the enclosure via the cold plasma outlet orifice at atmospheric pressure.

Selon une deuxième caractéristique possible, l'enceinte comprend en outre au moins un orifice d'entrée de fluide environnant couplé à au moins un passage s'étendant à travers la paroi du tube externe. Dans un exemple, le passage s'étend de manière sensiblement perpendiculaire à l'axe longitudinal du tube externe. Dans un autre exemple, le passage s'étend de manière sensiblement oblique à l'axe longitudinal du tube externe. De préférence, le passage est disposé à un niveau situé entre le premier matériau diélectrique et l'électrode de masse.According to a second possible characteristic, the enclosure further comprises at least one surrounding fluid inlet orifice coupled to at least one passage extending through the wall of the outer tube. In one example, the passage extends substantially perpendicular to the longitudinal axis of the outer tube. In another example, the passage extends substantially obliquely to the longitudinal axis of the outer tube. Preferably, the passage is disposed at a level located between the first dielectric material and the ground electrode.

Dans un exemple de la deuxième caractéristique possible, l'extrémité supérieure du tube externe est située entre le premier matériau diélectrique et l'électrode de masse.In an example of the second possible characteristic, the upper end of the outer tube is located between the first dielectric material and the ground electrode.

Selon une troisième caractéristique possible, l'électrode haute tension, le premier matériau diélectrique et l'électrode de masse se présentent chacun sous la forme d'une plaque circulaire, ovale ou polygonale. Dans un exemple, la longueur de la plaque du premier matériau diélectrique est plus longue que celle des plaques des électrodes haute tension et de masse.According to a third possible characteristic, the high voltage electrode, the first material dielectric and the ground electrode are each in the form of a plate circular, oval or polygonal. In one example, the length of the plate of the first dielectric material is longer than that of the plates of the high voltage and ground electrodes.

De préférence, l'enceinte comprend en outre un corps d'enceinte moulé dans un deuxième matériau diélectrique. Dans un premier exemple, le corps d'enceinte est constitué d'une seule pièce. Dans un deuxième exemple, le corps d'enceinte est constitué de trois pièces,

  • la première pièce comprenant l'orifice d'entrée de gaz plasmagène, l'électrode haute tension et le premier matériau diélectrique,
  • la deuxième pièce comprenant l'orifice d'entrée de fluide environnant et le passage s'étendant à travers la paroi du tube externe, et
  • la troisième pièce comprenant l'électrode de masse et l'orifice de sortie de plasma froid à pression atmosphérique.
Preferably, the enclosure further comprises an enclosure body molded in a second dielectric material. In a first example, the enclosure body consists of a single piece. In a second example, the enclosure body consists of three parts,
  • the first part comprising the plasma gas inlet orifice, the high voltage electrode and the first dielectric material,
  • the second piece comprising the surrounding fluid inlet port and the passage extending through the wall of the outer tube, and
  • the third part comprising the ground electrode and the atmospheric pressure cold plasma outlet orifice.

De préférence, le premier matériau diélectrique, le tube interne et le tube externe sont en verre de quartz et le deuxième matériau diélectrique est en matière plastique, du type PTFE, PFA ou FEP.Preferably, the first dielectric material, the internal tube and the external tube are made of quartz glass and the second dielectric material is made of plastic material, of the PTFE, PFA or FEP type.

De préférence, l'électrode haute tension et l'électrode de masse sont en laiton.Preferably, the high voltage electrode and the ground electrode are made of brass.

Selon une quatrième caractéristique possible, le réacteur comprend une deuxième électrode haute tension fixée autour de tout ou partie de la surface externe de la paroi du tube externe. La deuxième électrode haute tension est apte à être couplée à une deuxième alimentation haute tension et à une masse différente de l'électrode de masse de façon à permettre la génération d'une décharge électrique dans le tube externe, selon une direction perpendiculaire à l'axe longitudinal médian du tube externe.According to a fourth possible characteristic, the reactor comprises a second high voltage electrode fixed around all or part of the outer surface of the wall of the outer tube. The second high voltage electrode is capable of being coupled to a second high voltage power supply and to a ground different from the ground electrode so as to allow the generation of an electric discharge in the outer tube, in a direction perpendicular to the median longitudinal axis of the outer tube.

Brève description des dessinsBrief description of the drawings

Les caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre et en référence aux dessins annexés, donnés à titre illustratif et nullement limitatif.

  • La figure 1 représente un réacteur selon une première mise en œuvre de l'invention.
  • La figure 2 représente le réacteur de la figure 1 selon une autre mise en œuvre de l'invention.
  • Les figures 3A et 3B représentent une vue en coupe transversale détaillant l'alimentation haute tension et la mise à la masse.
  • La figure 4 représente une deuxième mise en œuvre de l'invention.
  • La figure 5 représente une troisième mise en œuvre de l'invention.
  • Les figures 6A et 6B représentent des agencements particuliers des tubes internes et externes de l'invention.
The characteristics and advantages of the invention will be better understood on reading the description which follows and with reference to the appended drawings, given by way of illustration and in no way limiting.
  • The figure 1 represents a reactor according to a first implementation of the invention.
  • The picture 2 represents the reactor of the figure 1 according to another implementation of the invention.
  • The figures 3A and 3B show a cross-sectional view detailing the high voltage supply and ground.
  • The figure 4 represents a second implementation of the invention.
  • The figure 5 represents a third implementation of the invention.
  • The figures 6A and 6B represent particular arrangements of the inner and outer tubes of the invention.

Dans ces figures, des références identiques ou analogues d'une figure à une autre désignent des éléments identiques ou analogues. Pour des raisons de clarté, les éléments représentés ne sont pas à l'échelle les uns par rapport aux autres, sauf mention contraire.In these figures, identical or similar references from one figure to another designate identical or similar elements. For clarity, items shown are not to scale relative to each other unless otherwise noted.

Description des modes de réalisationDescription of embodiments

L'exemple de la figure 1 illustre un réacteur plasma de décharge à barrière diélectrique 100 permettant de traiter une cible. Par exemple, la cible peut comprendre une matière physique tel un matériau solide, un tissu vivant ou un volume de fluide.The example of the figure 1 illustrates a dielectric barrier discharge plasma reactor 100 for treating a target. For example, the target may include physical matter such as solid material, living tissue, or a volume of fluid.

Le réacteur 100 comprend une enceinte hermétique 110 soumise à la pression atmosphérique. L'enceinte hermétique 110 comprend un orifice d'entrée de gaz plasmagène 111 et un orifice de sortie de plasma froid à pression atmosphérique 112.The reactor 100 comprises a hermetic enclosure 110 subjected to atmospheric pressure. The hermetic enclosure 110 comprises a plasma gas inlet 111 and a cold plasma at atmospheric pressure outlet 112.

L'orifice d'entrée de gaz plasmagène 111 est destiné à être couplé à une source de gaz plasmagène 120. Dans l'exemple de la figure 1, le couplage est réalisé grâce à un piquage droit. Toutefois, d'autres types courants de piquage et de raccordement peuvent être utilisés. La source de gaz plasmagène 120 peut comprendre un gaz rare, un mélange de gaz rares (typiquement de l'hélium He, de l'argon Ar, etc.) ou un mélange d'un ou plusieurs gaz rares avec un ou plusieurs gaz moléculaires (typiquement de l'oxygène O2, de l'hydrogène H2, du Tétrafluorure de carbone CF4, de l'hexafluorure de soufre SF6, de l'azote N2 et/ou de la vapeur d'eau H2O, etc..) minoritaires, c'est-à-dire présents en faible concentration par rapport à la concentration de gaz rare(s).The plasma gas inlet 111 is intended to be coupled to a source of plasma gas 120. In the example of the figure 1 , the coupling is made using a straight stitching. However, other common types of tapping and connection can be used. The source of plasma gas 120 can comprise a rare gas, a mixture of rare gases (typically helium He, argon Ar, etc.) or a mixture of one or more rare gases with one or more molecular gases (typically oxygen O2, hydrogen H2, carbon tetrafluoride CF4, sulfur hexafluoride SF6, nitrogen N2 and/or water vapor H2O, etc.) that is to say present in low concentration compared to the concentration of rare gas (s).

Ainsi, lorsque le réacteur 100 est en opération, un gaz vecteur provenant de la source de gaz plasmagène 120 est injecté dans l'orifice d'entrée de gaz plasmagène 111. De préférence, le débit entrant du gaz vecteur est de l'ordre d'un litre par minute.Thus, when the reactor 100 is in operation, a carrier gas coming from the plasma gas source 120 is injected into the plasma gas inlet orifice 111. Preferably, the incoming flow rate of the carrier gas is of the order of one liter per minute.

L'orifice de sortie de plasma froid à pression atmosphérique 112 est prévu pour mener un plasma froid à pression atmosphérique produit par le réacteur 100 vers l'extérieur de l'enceinte hermétique 110.The cold plasma outlet at atmospheric pressure 112 is designed to lead a cold plasma at atmospheric pressure produced by the reactor 100 to the outside of the hermetic enclosure 110.

Dans la figure 1, l'enceinte hermétique 110 comprend en outre, un tube interne 113 et un tube externe 114. Le tube interne 113 et le tube externe 114 sont constitués d'un matériau isolant électrique d'une résistivité supérieure à 1015 Ω.m, comme, par exemple, une céramique, du quartz, de l'alumine, de la silice (SiC) ou du nitrure de bore. Chacun des tubes interne 113 et externe 114 présente une longueur et une épaisseur de paroi. La longueur des tubes interne 113 et externe 114 est déterminée entre une extrémité supérieure de tube et une extrémité inférieure de tube, tandis que l'épaisseur de paroi est déterminée entre une surface intérieure de paroi et une surface extérieure de paroi.In the figure 1 , the hermetic enclosure 110 further comprises an inner tube 113 and an outer tube 114. The inner tube 113 and the outer tube 114 are made of an electrically insulating material with a resistivity greater than 10 15 Ω.m, such as , for example, a ceramic, quartz, alumina, silica (SiC) or boron nitride. Each of the inner 113 and outer 114 tubes has a length and a wall thickness. The length of the inner 113 and outer 114 tubes is determined between an upper tube end and a lower tube end, while the wall thickness is determined between an inner wall surface and an outer wall surface.

Selon l'invention, le tube interne 113 présente un rapport longueur sur épaisseur ne dépassant pas 30, de préférence compris entre 20 et 27 et avantageusement compris entre 24 et 26 tandis que le tube externe 114 présente un rapport longueur sur épaisseur ne dépassant pas 30, de préférence compris entre 20 et 27 et avantageusement compris entre 24 et 26. En outre, de préférence, la longueur du tube externe 114 est plus grande que celle du tube interne 113.According to the invention, the inner tube 113 has a length to thickness ratio not exceeding 30, preferably between 20 and 27 and advantageously between 24 and 26, while the outer tube 114 has a length to thickness ratio not exceeding 30 , preferably between 20 and 27 and advantageously between 24 and 26. In addition, preferably, the length of the outer tube 114 is greater than that of the inner tube 113.

Comme on peut le voir dans la figure 1 :

  • l'extrémité supérieure du tube interne 113 est couplée à l'orifice d'entrée de gaz plasmagène 111,
  • l'extrémité supérieure du tube externe 114 est fermée hermétiquement,
  • les extrémités inférieures des tubes internes 113 et externes 114 sont ouvertes, et
  • l'extrémité inférieure du tube externe 114 est couplée à l'orifice de sortie de plasma froid à pression atmosphérique 112.
As can be seen in the figure 1 :
  • the upper end of the inner tube 113 is coupled to the plasma gas inlet 111,
  • the upper end of the outer tube 114 is hermetically sealed,
  • the lower ends of the inner 113 and outer 114 tubes are open, and
  • the lower end of the outer tube 114 is coupled to the cold atmospheric pressure plasma outlet 112.

En outre, les tubes interne 113 et externe 114 sont agencés de sorte qu'au moins une portion du tube interne 113 s'étend à l'intérieur du tube externe 114 de manière coaxiale à l'axe longitudinal du tube externe 114 et de façon à définir un espace de diffusion ED et un espace annulaire EA. L'espace de diffusion ED est formé à l'intérieur du tube externe 114 entre l'extrémité inférieure du tube interne 113 et l'extrémité inférieure du tube externe 114 tandis que l'espace annulaire EA est formé entre la surface externe de la paroi du tube interne 113 et la surface interne de la paroi du tube externe 114. En d'autres termes, le diamètre du tube externe 114 est suffisamment grand pour pouvoir y loger le tube interne 113 à l'intérieur. Selon l'invention, le rapport de diamètre entre le diamètre extérieur du tube interne 113 et le diamètre interne du tube externe 114 dépassant 30%, de préférence compris entre 35 et 65 %.In addition, the inner 113 and outer 114 tubes are arranged so that at least a portion of the inner tube 113 extends inside the outer tube 114 coaxially to the longitudinal axis of the outer tube 114 and so to define a diffusion space ED and an annular space EA. The diffusion space ED is formed inside the outer tube 114 between the lower end of the inner tube 113 and the lower end of the outer tube 114 while the annular space EA is formed between the outer surface of the wall of the inner tube 113 and the inner surface of the wall of the outer tube 114. In other words, the diameter of the outer tube 114 is large enough to accommodate the inner tube 113 therein. According to the invention, the diameter ratio between the outer diameter of the inner tube 113 and the inner diameter of the outer tube 114 exceeds 30%, preferably between 35 and 65%.

Avec cet agencement particulier, il a été trouvé qu'un plasma froid à pression atmosphérique généré dans le tube interne 113 devient diffus dans l'espace de diffusion ED. En pratique, un tel plasma prend la forme d'une plume à l'intérieur du tube externe 114 et également à l'extérieur du réacteur 100, dans l'air ambiant. Cet agencement a donc pour effet de transformer le caractère filamentaire d'un plasma froid à pression atmosphérique en un plasma froid à pression atmosphérique présentant un caractère plus diffus.With this particular arrangement, it has been found that a cold plasma at atmospheric pressure generated in the inner tube 113 becomes diffuse in the diffusion space ED. In practice, such a plasma takes the form of a feather inside the outer tube 114 and also outside the reactor 100, in the ambient air. This arrangement therefore has the effect of transforming the filamentary character of a cold plasma at atmospheric pressure into a cold plasma at atmospheric pressure having a more diffuse character.

Dans l'exemple de la figure 1, on note que les tubes interne 113 et externe 114 sont disposés entièrement dans l'enceinte hermétique 110. Toutefois, d'autres variantes de mise en œuvre peuvent être envisagées. Par exemple, comme l'illustre la figure 2, il peut être envisagé une mise en œuvre du réacteur 100 de la figure 1 dans lequel l'extrémité inférieure du tube interne 113 et l'extrémité inférieure du tube externe 114 s'étendent en dehors de l'enceinte hermétique 110 via l'orifice de sortie de plasma froid à pression atmosphérique 112. Ceci a pour effet de permettre de rapprocher le plus possible le plasma froid à pression atmosphérique diffus généré par le réacteur 100, de la cible à traiter. Dans une mise en œuvre particulière permettant d'exposer le plasma encore plus près de la cible à traiter, il est possible d'adjoindre à l'extrémité inférieure du tube externe 114, un bouchon recouvrant la cible (non représenté). Par exemple, le bouchon peut être totalement hermétique ou partiellement hermétique afin d'éviter un trop grand confinement. Cet agencement peut être avantageusement utilisée lorsque la cible à traiter est de petite taille et peu volumineuse.In the example of the figure 1 , it is noted that the inner 113 and outer 114 tubes are arranged entirely in the hermetic enclosure 110. However, other implementation variants can be envisaged. For example, as illustrated by figure 2 , it can be considered an implementation of the reactor 100 of the figure 1 wherein the lower end of the inner tube 113 and the lower end of the outer tube 114 extend outside the hermetic enclosure 110 via the cold atmospheric pressure plasma outlet 112. This has the effect of allowing to bring the cold plasma at diffuse atmospheric pressure generated by the reactor 100 as close as possible to the target to be treated. In a particular implementation making it possible to expose the plasma even closer to the target to be treated, it is possible to add to the lower end of the outer tube 114, a cap covering the target (not shown). For example, the cap can be totally hermetic or partially hermetic in order to avoid too much confinement. This arrangement can be advantageously used when the target to be treated is small and not bulky.

De retour à la figure 1, le réacteur 100 est agencé de manière à générer une décharge électrique nécessaire à la production d'un plasma froid à pression atmosphérique dans le tube interne 113. Pour cela, le réacteur 100 est agencé selon une configuration plan-plan comprenant une électrode haute tension 115 et une électrode de masse 116, espacées par un espace inter-électrodes dans lequel au moins un premier matériau diélectrique 117 est disposé.Back to the figure 1 , the reactor 100 is arranged so as to generate an electric discharge necessary for the production of a cold plasma at atmospheric pressure in the inner tube 113. For this, the reactor 100 is arranged in a plane-plane configuration comprising a high voltage electrode 115 and a ground electrode 116, spaced by an inter-electrode space in which at least a first dielectric material 117 is placed.

Les électrodes 115 et 116 sont constituées d'un matériau conducteur électrique ayant une résistivité de l'ordre 10-8 Ω.m à 10-9 Ω.m, par exemple, constitué d'un métal ou d'un alliage de métaux. Par exemple, les électrodes 115 et 116 sont constituées de tungstène, d'acier inoxydable 316L, de cuivre, d'aluminium, de laiton ou d'un matériau catalytique conducteur.The electrodes 115 and 116 consist of an electrically conductive material having a resistivity of the order of 10 -8 Ω.m to 10 -9 Ω.m, for example, consisting of a metal or a metal alloy. For example, electrodes 115 and 116 are made of tungsten, 316L stainless steel, copper, aluminum, brass, or a conductive catalytic material.

Le premier matériau diélectrique 117 est constitué d'un matériau isolant électrique similaire à celui utilisé, ci-dessus, pour les tubes interne 113 et externe 114.The first dielectric material 117 consists of an electrical insulating material similar to that used, above, for the inner 113 and outer 114 tubes.

En outre, dans la figure 1, au moins une portion du tube interne 113 est disposée au plus près de l'électrode haute tension 115. Le tube interne 13 s'étend à travers le premier matériau diélectrique 117 et l'électrode de masse 116. En outre, au moins une portion du tube externe 114 s'étend à travers l'électrode de masse 116. En d'autres termes, un trou est ménagé dans l'électrode haute tension 115, le premier matériau diélectrique 117 et l'électrode de masse 116, afin d'y loger l'agencement particulier des tubes interne 113 et externe 114.Furthermore, in the figure 1 , at least a portion of the inner tube 113 is disposed closest to the high voltage electrode 115. The inner tube 13 extends through the first dielectric material 117 and the ground electrode 116. In addition, at least one portion of outer tube 114 extends through ground electrode 116. In other words, a hole is made in high voltage electrode 115, first dielectric material 117 and ground electrode accommodate the particular arrangement of the inner 113 and outer 114 tubes.

Dans l'exemple de la figure 1, le passage menant au tube externe 114 est disposé à un niveau situé entre le premier matériau diélectrique 117 et l'électrode de masse 116. Néanmoins, le passage menant au tube externe 114 peut être disposé à tout autre niveau du tube externe 114, de préférence à un niveau qui se situe au-dessus de l'extrémité inférieure du tube interne 113.In the example of the figure 1 , the passage leading to the outer tube 114 is arranged at a level located between the first dielectric material 117 and the ground electrode 116. Nevertheless, the passage leading to the outer tube 114 can be arranged at any other level of the outer tube 114, preferably at a level which is above the lower end of the inner tube 113.

Enfin, en liaison avec la figure 3, le réacteur 100 comprend également un orifice d'entrée d'alimentation électrique haute tension 1111 couplé à l'électrode haute tension 115 (figure 3a) et un orifice de mise à la masse 1112 couplé à l'électrode de masse 116 (figure 3b). Dans l'exemple de la figure 3, le couplage avec l'électrode haute tension 115 et avec l'électrode de masse 116 est réalisé par soudure, en particulier par soudure à l'étain.Finally, in conjunction with the picture 3 , reactor 100 also includes a high voltage power supply input port 1111 coupled to high voltage electrode 115 ( picture 3a ) and a grounding port 1112 coupled to the ground electrode 116 ( figure 3b ). In the example of the figure 3 , the coupling with the high voltage electrode 115 and with the ground electrode 116 is achieved by soldering, in particular by tin soldering.

Avec cet agencement, lorsque le réacteur 100 est en opération, l'électrode haute tension 115 est apte à être couplée à une alimentation haute tension HT de façon à permettre la génération d'une décharge électrique dans l'espace inter-électrodes afin de produire un plasma froid à pression atmosphérique en ionisant le gaz vecteur qui circule dans le tube interne 113. De préférence, l'alimentation haute tension HT délivre une tension de plusieurs kV, par exemple entre 1 kV et 20 kV à partir d'un signal du type sinusoïdal, pulsé ou haché.With this arrangement, when the reactor 100 is in operation, the high voltage electrode 115 is able to be coupled to a high voltage HT power supply so as to allow the generation of an electric discharge in the inter-electrode space in order to produce a cold plasma at atmospheric pressure by ionizing the vector gas which circulates in the internal tube 113. Preferably, the high voltage power supply HT delivers a voltage of several kV, for example between 1 kV and 20 kV from a signal from the sinusoidal, pulsed or chopped type.

Dans une mise en œuvre particulière, l'électrode haute tension 115, le premier matériau diélectrique 117 et l'électrode de masse 116 se présentent chacun sous la forme d'une plaque circulaire, ovale ou polygonale. Dans un exemple de cette mise en œuvre, comme illustré dans la figure 1, la longueur de la plaque du premier matériau diélectrique 117 est plus longue que celle des plaques des électrodes haute tension et de masse 116. Ceci a pour effet d'éviter la formation d'un arc électrique entre les électrodes 115 et 116 en limitant les effets de pointe.In a particular implementation, the high voltage electrode 115, the first dielectric material 117 and the ground electrode 116 are each in the form of a circular, oval or polygonal plate. In an example of this implementation, as shown in the figure 1 , the length of the plate of the first dielectric material 117 is longer than that of the plates of the high voltage and ground electrodes 116. This has the effect of avoiding the formation of an electric arc between the electrodes 115 and 116 by limiting the peak effects.

Il a été remarqué que l'environnement gazeux de l'air ambiant, dans lequel se propage un plasma froid à pression atmosphérique tel que celui généré par le réacteur 100, peut avoir un impact important sur la variabilité des effets obtenus sur une cible à traiter. Il se pose alors le problème de la reproductibilité des plasmas froids à pression atmosphérique. À ce titre, il est important de pouvoir contrôler l'environnement gazeux régnant autour d'un tel plasma afin de réguler la réactivité chimique en phase gazeuse.It has been observed that the gaseous environment of the ambient air, in which propagates a cold plasma at atmospheric pressure such as that generated by the reactor 100, can have a significant impact on the variability of the effects obtained on a target to be treated. . This raises the problem of the reproducibility of cold plasmas at atmospheric pressure. As such, it is important to be able to control the gaseous environment prevailing around such a plasma in order to regulate the chemical reactivity in the gaseous phase.

Pour cela, dans une mise en œuvre particulière de l'invention, l'enceinte hermétique 110 comprend un orifice d'entrée de fluide environnant 118 couplé à un passage 119 s'étendant à travers la paroi du tube externe 114.For this, in a particular implementation of the invention, the hermetic enclosure 110 comprises a surrounding fluid inlet 118 coupled to a passage 119 extending through the wall of the outer tube 114.

L'orifice d'entrée de fluide environnant 118 est destiné à être couplé à une source de fluide environnant 130. Dans l'exemple de la figure 1, le couplage est réalisé grâce à un piquage droit. Toutefois, d'autres types courants de piquage et de raccordement peuvent être utilisés. La source de fluide environnant 118 peut être constituée d'un gaz pur, d'un mélange de gaz purs (typiquement de l'azote N, de l'oxygène O, du méthane CH4, des gaz carbonés, de l'hydrogène H2, des gaz fluorés, des gaz de monomères etc.), d'un liquide pulvérisé (par exemple chargé en particules de traitement de la cible) ou d'un mélange d'un ou plusieurs gaz purs avec un ou plusieurs liquides pulvérisés.Surrounding fluid inlet 118 is intended to be coupled to a source of surrounding fluid 130. In the example of figure 1 , the coupling is made using a straight stitching. However, other common types of tapping and connection can be used. The source of surrounding fluid 118 can consist of a pure gas, a mixture of pure gases (typically nitrogen N, oxygen O, methane CH4, carbonaceous gases, hydrogen H2, fluorinated gases, monomer gases, etc.), an atomized liquid (for example loaded with target treatment particles) or a mixture of one or more pure gases with one or more atomized liquids.

Ainsi, lorsque le réacteur 100 est en opération, un fluide environnant provenant de la source de fluide environnant 130 est injecté dans l'orifice d'entrée de fluide environnant 118. De préférence, le débit entrant du fluide environnant est de l'ordre de quelques dizaines de centimètres cubes par minute.Thus, when reactor 100 is in operation, surrounding fluid from surrounding fluid source 130 is injected into surrounding fluid inlet 118. Preferably, the incoming flow rate of surrounding fluid is on the order of a few tens of cubic centimeters per minute.

De cette manière, vu l'agencement particulier des tubes interne 113 et externe 114, le fluide environnant injecté dans l'orifice d'entrée de fluide environnant 118, circule dans l'espace annulaire EA pour ensuite déboucher dans l'espace de diffusion ED afin de se mélanger avec le plasma froid à pression atmosphérique généré dans le tube interne 113. Ceci a pour effet de permettre le contrôle de l'environnement de génération du plasma froid à pression atmosphérique et donc de sa réactivité chimique vis-à-vis d'une cible donnée.In this way, given the particular arrangement of the internal 113 and external 114 tubes, the surrounding fluid injected into the surrounding fluid inlet 118 circulates in the annular space EA to then emerge in the diffusion space ED in order to mix with the cold plasma at atmospheric pressure generated in the inner tube 113. This has the effect of allowing control of the environment for generating the cold plasma at atmospheric pressure and therefore of its chemical reactivity with respect to a given target.

Dans la figure 1, on note que l'extrémité supérieure du tube externe 114 est située entre le premier matériau diélectrique 117 et l'électrode de masse 116. Toutefois, l'extrémité supérieure du tube externe 114 peut également être située en dehors de l'espace inter-électrodes.In the figure 1 , it is noted that the upper end of the outer tube 114 is located between the first dielectric material 117 and the ground electrode 116. However, the upper end of the outer tube 114 can also be located outside the interspace. electrodes.

Dans ce même exemple, le passage s'étend de manière sensiblement perpendiculaire à l'axe longitudinal du tube externe 114. Dans un autre exemple, le passage s'étend de manière sensiblement oblique à l'axe longitudinal du tube externe 114.In this same example, the passage extends substantially perpendicular to the longitudinal axis of the outer tube 114. In another example, the passage extends substantially obliquely to the longitudinal axis of the outer tube 114.

De retour à la figure 1 en liaison avec la figure 4, l'enceinte hermétique 110 comprend en outre un corps d'enceinte C moulé dans un deuxième matériau diélectrique. Le corps d'enceinte permet de maintenir les différentes éléments constituant le réacteur 100 dans l'enceinte hermétique 110. De préférence, le deuxième matériau diélectrique est en matière plastique, du type de fluoropolymères (PTFE, PFA ou FEP).Back to the figure 1 in connection with the figure 4 , the hermetic enclosure 110 further comprises an enclosure body C molded in a second dielectric material. The enclosure body makes it possible to maintain the various elements constituting the reactor 100 in the hermetic enclosure 110. Preferably, the second dielectric material is made of plastic material, of the fluoropolymer type (PTFE, PFA or FEP).

Dans un exemple, le corps d'enceinte C est constitué d'une seule pièce. Dans un autre exemple, le corps d'enceinte C est constitué de trois pièces. Dans ce cas,

  • la première pièce comprend l'orifice d'entrée de gaz plasmagène 111, l'électrode haute tension 115 et le premier matériau diélectrique 117,
  • la deuxième pièce comprend l'orifice d'entrée de fluide environnant 118 et le passage 119 s'étendant à travers la paroi du tube externe 114, et
  • la troisième pièce comprend l'électrode de masse 116 et l'orifice de sortie de plasma froid à pression atmosphérique.
In one example, the enclosure body C consists of a single piece. In another example, the enclosure body C is made up of three pieces. In this case,
  • the first part comprises the plasma gas inlet 111, the high voltage electrode 115 and the first dielectric material 117,
  • the second piece includes the surrounding fluid inlet 118 and the passage 119 extending through the wall of the outer tube 114, and
  • the third piece includes the ground electrode 116 and the atmospheric pressure cold plasma outlet.

Ceci a pour effet de faciliter la fabrication du réacteur 100, car les trois pièces peuvent être usinées séparément avant d'être assemblées. Par exemple, les trois pièces peuvent être assemblées pour former le corps d'enceinte C, grâce à des moyens de fixation tels des vis.This has the effect of facilitating the manufacture of the reactor 100, since the three parts can be machined separately before being assembled. For example, the three parts can be assembled to form the enclosure body C, using fastening means such as screws.

Dans la description, le réacteur 100 a été décrit comme comprenant un orifice d'entrée de gaz plasmagène 111 et un orifice d'entrée de fluide environnant 118. Toutefois, d'autres configurations sont envisageables.In the description, the reactor 100 has been described as comprising a plasma gas inlet 111 and a surrounding fluid inlet 118. However, other configurations are possible.

Par exemple, comme illustré dans la figure 4, l'enceinte hermétique 110 peut comprendre une pluralité de réacteurs 100. En effet, dans la figure 4, l'enceinte hermétique 110 comprend un corps d'enceinte C constitué de trois pièces P1, P2 et P3 dans lequel sont disposés deux réacteurs 100. Dans un autre exemple, tel qu'illustré dans la figure 5, le réacteur 100 comprend un corps d'enceinte C constitué de trois pièces P1, P2 et P3 dans lequel sont disposés six réacteurs 100. L'agencement d'une pluralité de réacteurs 100 selon l'invention est particulièrement avantageux car une seule alimentation haute tension HT permet d'alimenter l'ensemble des réacteurs 100. Il n'est donc pas nécessaire d'utiliser autant d'alimentations haute tension que de réacteurs 100. Entre outre, l'utilisation de la deuxième matière isolante dans la constitution du corps d'enceinte C permet de garantir la génération indépendante de plusieurs plasmas froids à pression atmosphérique.For example, as illustrated in the figure 4 , the hermetic enclosure 110 can comprise a plurality of reactors 100. Indeed, in the figure 4 , the hermetic enclosure 110 comprises an enclosure body C consisting of three parts P1, P2 and P3 in which are arranged two reactors 100. In another example, as illustrated in the figure 5 , the reactor 100 comprises an enclosure body C consisting of three parts P1, P2 and P3 in which are arranged six reactors 100. The arrangement of a plurality of reactors 100 according to the invention is particularly advantageous because a single high power supply HT voltage makes it possible to supply all of the reactors 100. It is therefore not necessary to use as many high voltage power supplies as there are reactors 100. Among other things, the use of the second insulating material in the constitution of the body of enclosure C makes it possible to guarantee the independent generation of several cold plasmas at atmospheric pressure.

Par ailleurs, lorsque plusieurs réacteurs 100 sont compris dans l'enceinte hermétique 110, il peut également être envisagé de positionner une pluralité de passages menant au tube externe 114. Par exemple, la figure 6a montre une vue du dessus d'une telle configuration dans laquelle quatre passages pouvant être couplés à un ou plusieurs orifices d'entrée de fluide environnant 118. Dans une variante illustrée dans la figure 6b, la pluralité de passages menant au tube externe 114 est disposée à des niveaux différents du tube externe 114.Furthermore, when several reactors 100 are included in the hermetic enclosure 110, it can also be envisaged to position a plurality of passages leading to the outer tube 114. For example, the figure 6a shows a top view of such a configuration in which four passageways may be coupled to one or more surrounding fluid inlets 118. In a variation illustrated in figure 6b , the plurality of passages leading to the outer tube 114 are disposed at different levels of the outer tube 114.

La présente invention a été décrite et illustrée dans la présente description détaillée et dans des dessins annexés. La présente invention ne se limite pas, toutefois, aux formes de réalisation ainsi présentées. D'autres variantes et modes de réalisation peuvent être déduits et mis en œuvre par la personne du métier à la lecture de la présente description et des dessins annexés.The present invention has been described and illustrated in this detailed description and in accompanying drawings. The present invention is not limited, however, to the embodiments thus presented. Other variants and embodiments can be deduced and implemented by those skilled in the art on reading this description and the appended drawings.

Dans une mise en œuvre particulière de l'invention, il est envisagé de moduler l'énergie transmise dans le plasma froid à pression atmosphérique. L'objectif d'une telle mise en œuvre consiste à agir sur la réactivité de la cible à traiter en permettant le contrôle de la production des espèces réactives produites en phase gazeuse.In a particular implementation of the invention, it is envisaged to modulate the energy transmitted in the cold plasma at atmospheric pressure. The objective of such implementation The work consists of acting on the reactivity of the target to be treated by allowing control of the production of reactive species produced in the gas phase.

Pour cela, il est proposé de moduler l'énergie transmise dans le plasma froid à pression atmosphérique généré par le réacteur 100 en polarisant une électrode métallique haute tension (non représentée) qui induit une différence de potentiel électrique sensiblement perpendiculaire à un axe central de propagation du plasma froid à pression atmosphérique. En pratique, la différence de potentiel électrique est due au potentiel élevé de l'axe central de propagation du plasma froid à pression atmosphérique et le potentiel imposé à la surface interne du tube externe 114. Dans une mise en œuvre particulière, l'axe central de propagation du plasma froid à pression atmosphérique correspond à l'axe longitudinal médian du tube externe 114 passant sensiblement au milieu du tube externe 114.For this, it is proposed to modulate the energy transmitted in the cold plasma at atmospheric pressure generated by the reactor 100 by biasing a high voltage metal electrode (not shown) which induces a difference in electrical potential substantially perpendicular to a central axis of propagation cold plasma at atmospheric pressure. In practice, the electrical potential difference is due to the high potential of the central axis of cold plasma propagation at atmospheric pressure and the potential imposed on the inner surface of the outer tube 114. In a particular implementation, the central axis of propagation of the cold plasma at atmospheric pressure corresponds to the median longitudinal axis of the outer tube 114 passing substantially through the middle of the outer tube 114.

Dit autrement, il s'agit de former une décharge à barrière diélectrique radiale, c'est-à-dire perpendiculaire à l'axe longitudinal médian du tube externe 114, en même temps que le réacteur 100 forme le plasma froid à pression atmosphérique.In other words, it is a question of forming a discharge with a radial dielectric barrier, that is to say perpendicular to the median longitudinal axis of the outer tube 114, at the same time as the reactor 100 forms the cold plasma at atmospheric pressure.

Dans cette mise en œuvre particulière, on fixe l'électrode métallique haute tension sur au moins une portion de la surface externe de la paroi du tube externe 114. Dans un exemple, l'électrode métallique haute tension est formée dans une bague métallique qui couvre tout ou partie de la surface externe de la paroi du tube externe 114. Dans un autre exemple, l'électrode métallique haute tension est formée dans un scotch métallique qui couvre tout ou partie de la surface externe de la paroi du tube externe 114. Ensuite, lorsque le réacteur 100 est en opération, on polarise électriquement l'électrode métallique haute tension avec une alimentation haute tension (non représentée) qui est découplée de l'alimentation haute tension HT du réacteur 100. En outre, des masses différentes sont utilisées pour la mise à la masse de l'électrode métallique haute tension et pour la mise à la masse de l'électrode de masse 116.In this particular implementation, the high voltage metal electrode is attached to at least a portion of the outer surface of the outer tube wall 114. In one example, the high voltage metal electrode is formed in a metal ring that covers all or part of the outer surface of the wall of the outer tube 114. In another example, the high voltage metal electrode is formed in a metallic tape which covers all or part of the outer surface of the wall of the outer tube 114. Then , when the reactor 100 is in operation, the high voltage metal electrode is electrically biased with a high voltage power supply (not shown) which is decoupled from the high voltage HT power supply of the reactor 100. In addition, different masses are used for grounding the high voltage metal electrode and for grounding the ground electrode 116.

Dans un exemple, on polarise l'électrode métallique haute tension avec une alimentation haute tension de tension positive ou négative. Selon les besoins, l'alimentation haute tension délivre une tension continue ou alternative. De préférence, l'alimentation haute tension délivre une tension à partir d'un signal du type sinusoïdal, pulsé ou haché. Par exemple, dans le cadre d'essais de laboratoire, on a utilisé une source de haute tension délivrant une tension continue de 100V à 500V continu.In one example, the high voltage metal electrode is biased with a positive or negative high voltage power supply. Depending on requirements, the high-voltage power supply supplies direct or alternating voltage. Preferably, the high voltage power supply delivers a voltage from a signal of the sinusoidal, pulsed or chopped type. For example, in the context of laboratory tests, a high voltage source was used delivering a DC voltage of 100V to 500V DC.

Dans ces essais, avec une tension continue positive, il a été remarqué une réduction de la différence de potentiel électrique entre l'axe longitudinal médian du tube externe 114 et la surface interne du tube externe 114. Ceci a pour effet que le plasma froid à pression atmosphérique diffus généré par le réacteur 100 est moins énergétique. Cet effet se traduit visuellement par une luminosité moins importante du plasma froid à pression atmosphérique diffus généré par le réacteur 100 par rapport aux mises en œuvre dans lesquelles la polarisation du plasma froid à pression atmosphérique diffus n'est pas appliquée.In these tests, with a positive DC voltage, a reduction in the electrical potential difference between the median longitudinal axis of the outer tube 114 and the inner surface of the outer tube 114 was observed. This has the effect that the cold plasma at diffuse atmospheric pressure generated by the reactor 100 is less energetic. This effect is reflected visually by a lower luminosity of the cold diffuse atmospheric pressure plasma generated by the reactor 100 compared to implementations in which the polarization of the cold diffuse atmospheric pressure plasma is not applied.

Au contraire, avec une tension continue négative, il a été remarqué une augmentation de la différence de potentiel électrique entre l'axe longitudinal médian du tube externe 114 et la surface interne du tube externe 114. Ceci a pour effet que le plasma froid à pression atmosphérique diffus généré par le réacteur 100 est plus énergétique. Cet effet se traduit visuellement par une luminosité plus importante du plasma froid à pression atmosphérique diffus généré par le réacteur 100 par rapport aux mises en œuvre dans lesquelles la polarisation du plasma froid à pression atmosphérique diffus n'est pas appliquée.On the contrary, with a negative DC voltage, an increase in the electrical potential difference between the median longitudinal axis of the outer tube 114 and the inner surface of the outer tube 114 has been observed. This has the effect that the cold plasma at pressure diffuse atmospheric generated by the reactor 100 is more energetic. This effect translates visually into a greater luminosity of the cold diffuse atmospheric pressure plasma generated by the reactor 100 compared to implementations in which the polarization of the cold diffuse atmospheric pressure plasma is not applied.

Dans les revendications, le terme "comporter" n'exclut pas d'autres éléments ou d'autres étapes. Les différentes caractéristiques présentées et/ou revendiquées peuvent être avantageusement combinées sans sortir du cadre des revendications.In the claims, the term "comprising" does not exclude other elements or other steps. The various features presented and/or claimed can be advantageously combined without departing from the scope of the claims.

L'étendue de l'invention est déterminée par les revendications.The scope of the invention is determined by the claims.

Claims (15)

  1. A dielectric barrier discharge plasma reactor (100) comprising:
    - a chamber (110) subjected to atmospheric pressure and having at least one plasma gas inlet port (111) and at least one outlet port (112) for cold plasma at atmospheric pressure,
    wherein the chamber (110) further comprises:
    - an inner tube (113) and an outer tube (114), with the inner tube (113) and the outer tube (114) being made of dielectric material, each comprising an upper end, a lower end and a wall with an inner surface and an outer surface, the upper end of the inner tube (113) being coupled to the plasma gas inlet port, the upper end of the outer tube (114) being hermetically sealed and being traversed by the inner tube (113), the lower end of the inner tube (113) being open and the lower end of the outer tube (114) being coupled to the outlet port for cold plasma at atmospheric pressure,
    and wherein the inner tube (113) and the outer tube (114) are arranged so that at least a portion of the inner tube (113) extends inside the outer tube (114) parallel to the longitudinal axis of the outer tube (114) and so as to define:
    - a diffusion space (ED), formed inside the outer tube (114) between the lower end of the inner tube (113) and the lower end of the outer tube (114); and
    - an annular space (EA), formed between the outer surface of the wall of the inner tube (113) and the inner surface of the wall of the outer tube (114);
    wherein the chamber (110) further comprises:
    - a first high-voltage electrode (115) and a ground electrode (116), spaced apart by an inter-electrode gap, in which at least a first dielectric material (117) is disposed;
    - a high-voltage electric power supply input port (1111) coupled to the high-voltage electrode, and adapted to be coupled to a first high-voltage power supply (HT) so as to allow an electric discharge to be generated in the inter-electrode space;
    and wherein:
    - at least a portion of the inner tube (113) is disposed as close as possible to the high-voltage electrode and extends through the first dielectric material and the ground electrode; and
    - at least a portion of the outer tube (114) extends through the ground electrode.
  2. The reactor according to claim 1, wherein the lower end of the inner tube (113) and the lower end of the outer tube (114) extend outside the chamber (110) via the outlet port for cold plasma at atmospheric pressure.
  3. The reactor according to any one of claims 1 or 2, wherein the chamber (110) further comprises at least one inlet port (118) for surrounding fluid coupled to at least one passage (119) extending through the wall of the outer tube (114).
  4. The reactor according to claim 3, wherein the passage (119) extends substantially perpendicular to the longitudinal axis of the outer tube (114).
  5. The reactor according to claim 3, wherein the passage (119) extends substantially obliquely to the longitudinal axis of the outer tube (114).
  6. The reactor according to any one of claims 3, 4 or 5, wherein the passage (119) is disposed at a level located between the first dielectric material (117) and the ground electrode.
  7. The reactor according to any one of claims 1, 2, 3, 4, 5 or 6, wherein the upper end of the outer tube (114) is located between the first dielectric material (117) and the ground electrode (116).
  8. The reactor according to any one of claims 1, 2, 3, 4, 5, 6 or 7, wherein the high-voltage electrode (115), the first dielectric material (117) and the ground electrode (116) are each in the form of a circular, oval or polygonal plate.
  9. The reactor according to claim 8, wherein the length of the plate of the first dielectric material (117) is longer than that of the plates of the high-voltage and ground electrodes (115, 116).
  10. The reactor according to any one of the preceding claims, wherein the chamber (110) further comprises a chamber body (C) moulded in a second dielectric material.
  11. The reactor according to claim 10, wherein the chamber body (C) is formed by a single part.
  12. The reactor according to claim 10, wherein the chamber body (C) is formed by three parts:
    - the first part (P1) comprising the plasma gas inlet orifice, the high-voltage electrode (115) and the first dielectric material (117);
    - the second part (P2) comprising the inlet port for surrounding fluid and the passage (119) extending through the wall of the outer tube (114); and
    - the third part (P3) comprising the ground electrode (116) and the outlet port for cold plasma at atmospheric pressure.
  13. The reactor according to claim 9, wherein the first dielectric material (117), the inner tube (113) and the outer tube (114) are made of quartz glass and the second dielectric material is made of plastic material, of the PTFE, PFA or FEP type.
  14. The reactor according to any one of the preceding claims, wherein the high-voltage electrode and the ground electrode (115, 116) are made of brass.
  15. The reactor according to any one of the preceding claims, further comprising a second high-voltage electrode fixed around all or part of the outer surface of the wall of the outer tube (114), the second high-voltage electrode being able to be coupled to a second high-voltage power supply and to a different ground from the ground electrode so as to allow an electric discharge to be generated in the outer tube (114) in a direction perpendicular to a median longitudinal axis of the outer tube (114).
EP17832277.2A 2016-12-22 2017-12-21 Dbd plasma reactor Active EP3560299B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1663220A FR3061402B1 (en) 2016-12-22 2016-12-22 DIELECTRIC BARRIER DISCHARGE PLASMA REACTOR
PCT/FR2017/053791 WO2018115774A1 (en) 2016-12-22 2017-12-21 Dielectric barrier discharge plasma reactor

Publications (2)

Publication Number Publication Date
EP3560299A1 EP3560299A1 (en) 2019-10-30
EP3560299B1 true EP3560299B1 (en) 2022-08-17

Family

ID=58547611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17832277.2A Active EP3560299B1 (en) 2016-12-22 2017-12-21 Dbd plasma reactor

Country Status (3)

Country Link
EP (1) EP3560299B1 (en)
FR (1) FR3061402B1 (en)
WO (1) WO2018115774A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111494774A (en) * 2020-04-14 2020-08-07 西安交通大学 Plasma active gas humidifier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187066A1 (en) * 2001-06-07 2002-12-12 Skion Corporation Apparatus and method using capillary discharge plasma shower for sterilizing and disinfecting articles
DE102004029081A1 (en) * 2004-06-16 2006-01-05 Je Plasmaconsult Gmbh Device for processing a substrate by means of at least one plasma jet
WO2007105428A1 (en) * 2006-02-13 2007-09-20 National University Corporation Gunma University Plasma generation device nozzle, plasma generation device, plasma surface treatment device, plasma generation method, and plasma surface treatment method
TWI432228B (en) * 2010-09-07 2014-04-01 Univ Nat Cheng Kung Microplasma source and sterilization system including the same
DE102011076806A1 (en) * 2011-05-31 2012-12-06 Leibniz-Institut für Plasmaforschung und Technologie e.V. Apparatus and method for producing a cold, homogeneous plasma under atmospheric pressure conditions
CN105491774A (en) * 2016-01-18 2016-04-13 大连民族大学 Array type microplasma generating device based on conductive coating

Also Published As

Publication number Publication date
EP3560299A1 (en) 2019-10-30
WO2018115774A1 (en) 2018-06-28
FR3061402B1 (en) 2023-02-10
FR3061402A1 (en) 2018-06-29

Similar Documents

Publication Publication Date Title
EP0575260B1 (en) Apparatus for the formation of excited or instable gaseous molecules and use of said apparatus
FR2480552A1 (en) PLASMA GENERATOR
EP1332511B1 (en) Device for treating gas with plasma
EP0781921B1 (en) Ion source with closed electron drift
RU2366757C2 (en) Interior electrode designed for forming shielding film and installation for forming this film
CA2370479C (en) Plasma torch cartridge and plasma torch equipped therewith
EP2374753A1 (en) Device for producing a chemical species from a fluid by implementing a microwave resonant structure
EP3560299B1 (en) Dbd plasma reactor
EP0914241B1 (en) Method for treating a surface by dry process and device for implementing same
WO2020148487A1 (en) Treatment method and device for depositing a barrier-effect coating
EP0346168B1 (en) Plasma reactor
EP0343038A1 (en) Surface cleaning method with a transported plasma
EP2449861A1 (en) Device for emitting a plasma jet from the atmospheric air at ambient temperature and pressure, and use of said device
WO2011161251A1 (en) Device for generating a plasma jet
EP2652766A1 (en) Electron cyclotron resonance ion source device
EP2502468B1 (en) Plasma torch and method for stabilizing a plasma torch
EP0538736B1 (en) Device for surface treatment by corona discharge
WO2023232640A1 (en) Electron beam device for surface treatment
WO2022229515A1 (en) Tool for a plasma medical treatment device, and corresponding device
CA2677227C (en) Device for generating cold plasma in a vacuum chamber and use of said device for thermo-chemical processing
FR2775156A1 (en) Generation and projection of pulsed jets of plasma for treatment of surfaces
BE515841A (en)
CH561287A5 (en) Cathode sputtering appts. - with twin treatment chambers producing uniform deposits

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201021

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220331

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017060818

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1513013

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220817

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221209

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1513013

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017060818

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

26N No opposition filed

Effective date: 20230519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231227

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171221