EP3559968A1 - Insulation arrangement for a high or medium voltage assembly - Google Patents

Insulation arrangement for a high or medium voltage assembly

Info

Publication number
EP3559968A1
EP3559968A1 EP18700528.5A EP18700528A EP3559968A1 EP 3559968 A1 EP3559968 A1 EP 3559968A1 EP 18700528 A EP18700528 A EP 18700528A EP 3559968 A1 EP3559968 A1 EP 3559968A1
Authority
EP
European Patent Office
Prior art keywords
arrangement according
insulator arrangement
structural element
insulator
relative permittivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18700528.5A
Other languages
German (de)
French (fr)
Other versions
EP3559968B1 (en
Inventor
Katrin Benkert
Martin Koletzko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3559968A1 publication Critical patent/EP3559968A1/en
Application granted granted Critical
Publication of EP3559968B1 publication Critical patent/EP3559968B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66284Details relating to the electrical field properties of screens in vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66292Details relating to the use of multiple screens in vacuum switches

Definitions

  • Isolator arrangement for a high voltage or medium voltage system
  • the invention relates to an insulator assembly for a high voltage or medium voltage system according to the preamble of claim 1.
  • switchgear is often used as insulating Mate ⁇ rial a ceramic material.
  • the Isoliercopy ⁇ ness of these solids is generally quite high, due to defects in the lattice structure or grain structure of the ceramic materials may see a breakdown at high voltages, in particular higher than 72kV. Ie.
  • the breakdown field strength E bd is achieved in these materials from a critical electrical voltage or a critical potential.
  • the critical breakdown field strength E bd which is influenced by the defects mentioned, can not be increased solely by making the ceramic insulator correspondingly thicker or longer.
  • the object of the invention is to provide an isolato ⁇ ranowski altern for a high voltage or medium voltage system, which ensures over the prior art, an increase in the breakdown field strength of the insulator assembly with constant geometric dimensions.
  • the solution of the problem consists in an insulator arrangement for a high voltage and medium voltage system with the Merkma ⁇ len of claim 1.
  • the insulator arrangement according to the invention for a high-voltage or medium-voltage installation according to claim 1 has at least one structural element, which is designed achsensymmet ⁇ risch.
  • a typical symmetrical configuration of the structural element would be a cylindrical shape, which however may also be conical, and elliptical distortion is fundamentally technically possible from the cross section.
  • the structural element has at least two annular base ⁇ areas that are separated by a likewise annular Sperrbe- rich another.
  • annular is understood a cylindrical shape, which may also be conical or hollow cone-shaped, which has a circular or elliptical cross-section.
  • the invention is characterized in that the permittivity of the material of the stop band is at least twice as high as the Permit ⁇ tivity of the material of the base portion.
  • Blocking range relative to the base region of at least egg ⁇ nem factor 2 the electric field strength of the induced by the high voltage system electric field compared to the base regions is significantly reduced in the stop bands.
  • These field ⁇ attenuation is determined by the ratio of the relative permittivity of the material of the base regions and the relative per- mitttechnik the Sperr Symposiume determined. Characterized the Kera ⁇ mik is internally divided electrically in short axial pieces, which greatly increases ⁇ the electrical strength of the leg as well as the the entire isolator assembly through.
  • the vacuum also has a permittivity, which is also referred to as the electric field constant So.
  • the relative permittivity of the blocking region is at least five times as high as the permittivity of the base region, in particular it is advantageous if it is at least 10 times or particularly advantageously at least 100 times higher , such as the permittivity of the base region.
  • a high permittivity can be achieved in particular by a titanate, ie a salt of titanic acid, in particular barium titanate.
  • An advantageous combination Nati ⁇ on is in this case comprises as a material for the base region, an alumina or a material containing alumina and for the stopband a material based on a titanate, barium titanate or calcium titanate in particular ⁇ sondere.
  • the titanium oxide has a high permittivity and is suitable as a material or as a material component of the blocking region.
  • the relative permittivity of the material of Ba ⁇ sis Switzerlands is normally and preferably 5 to 25
  • the relative permittivity is a dimensionless quantity which, as aforesaid, is tivity from the ratio of Bacpermitti- and the electric field constant So obtained.
  • the rela tive ⁇ permittivity of the material of the stop band is at least twice as high in contrast, as the relative permittivity of the base portion so it has at least an amount 10, and results in a range between 10 and 10,000.
  • the relative permittivity of the control range is in a range between 100 and 10,000, particularly preferably between 1,000 and
  • the longitudinal extent of the base regions in the direction of the axis of symmetry amount to between 5 mm and 50 mm. It has been found that result in a particularly PDO te segmentation of the isolator assembly or of the structural element in the ⁇ sen length portions of the base portions themselves. The same applies to a length extension of the stop bands, which is between 0.1 mm and 5 mm.
  • the ratio of the linear expansion of a respective base portion to a jeweili ⁇ gen longitudinal extension of the corresponding locking portion having a magnitude between 10 and 100. It is expedient that the insulator arrangement described is part of a high-voltage or medium-voltage switchgear ⁇ system, which may be both a vacuum switching ⁇ system as well as a gas-insulated switchgear.
  • screen elements are attached to an inner wall of the isolie ⁇ - generating structural element, which serve to deflect and dissipate the electric field and to a more homogeneous distribution of equipotential lines in the material of the structural element.
  • These screen elements or shielding plates are preferably arranged so that they are fastened in the structural element where a blocking area is present.
  • equipotential lines are meant lines having the same electrical potential. They stand on corresponding field lines of the associated electric field perpendicular and white on a similar density. Narrow-running equipotential lines correspond with narrow field lines, and equally spaced equipotential lines lead to extended field lines.
  • FIG. 2 shows a projected view of an insulating structure ⁇ element with base regions and barrier regions
  • FIG. 3 shows a three-dimensional plan view of the structural element according to FIG. 2,
  • FIG. 4 shows a half-section through a structural element according to FIG. 2 with equipotential lines drawn in
  • Figure 5 is an analogous representation as in Figure 4 but with additional screen elements.
  • 1 shows an illustration of a high-voltage switchgear 3, which has a switching space 26, in which two switching contacts 24 are shown axially movable relative to each other, wherein an electrical contact can be made or separated by an axial movement of at least one of the switching contact.
  • the insulator arrangement 1 has three structural elements 2.
  • the isolator assembly 1 consists, if possible, of only one structural element
  • an insulator arrangement 1 a plurality of structural elements, which consist in particular of an oxide ceramic, for example aluminum oxide ceramic, are generally joined together by means of a corresponding joining process to form the entire insulator arrangement 1.
  • an oxide ceramic for example aluminum oxide ceramic
  • FIG. 2 shows a structural element 2 which has base regions 4 as well as barrier regions 6.
  • the base regions 4 have an axial length extension 8 that is greater than an axial longitudinal extent 12 of the stopper regions 6.
  • two base regions 4 are separated from one another by a blocking region 6.
  • the axial extent is described in each case along the axis of rotation 10.
  • Figure 3 for clarity is the same ⁇ iso-regulating structural element 2 of Figure 2 in a three- given a nal representation.
  • a homogeneous elekt ⁇ innovative field that is beschrie ⁇ ben by the equipotential lines 16, is shown.
  • the homogeneity of the field in the region 18 is indicated by the relatively uniform distance between the equipotential lines 16.
  • the equipotential line profile is very different; here there are regions with a high equipotential line density in which a strong predominates elekt ⁇ innovative field and a range with wide auseinan- der 140en equipotential lines 16 in which a weaker electric field is present.
  • shielding elements 14 which are also referred to as shielding plates 14, which effect a targeted and optimized steering of the equipotential lines 16.
  • shielding plates 14 are also shown correspondingly in FIG.
  • the shielding elements 14 are preferably configured such that they are anchored in blocking regions 6 in the structural element 2.
  • Reducing the equipotential lines 16 or the illustrated as electric field 16 in the barrier regions 6 of the structural element 2 is achieved in that the material of the barrier regions 6 has a relative permittivity that is at least twice as high as the relative Permittivi ⁇ ty of the base regions 4. In this way, the electric field is practically forced out of the blocking regions 6. This in turn causes electrical segmentation of the structural element 2 into the base regions 4. This in turn has a similar effect on the breakdown field strength ⁇ , as the joining of several structural elements, as shown in Figure 1 with the label 2 ⁇ for the structural element. Basically, the joining of structural elements 2 to an insulator assembly 1 is not desirable, since these are costly operations that require quality assurance and high technical complexity to ensure a vacuum tightness or gas tightness.
  • an insulator assembly 1 as possible to comprise only a structural element 2 in high-voltage equipment with a very high voltage, however, two or more structural elements 2 may be an insulator assembly 1 ge ⁇ added, and this then has an overall longitudinal extent, which is significantly smaller than the linear expansion of conventionally equipped structural elements according to the prior art without the described segmentation.
  • Can have a further advantage in the manufacture of the insulator structure is that in the production of the structural element 2 materials for the Basisbe ⁇ rich 4 and materials for the barrier regions 6 can alternately into a mold to be introduced and pressed already in this construction and will ge ⁇ sinters , Ie.
  • a segmented structural element 2 can be produced which has a penetration strength and strength, which can be achieved by conventional means only with structural elements which are produced by complex soldering processes or joining processes connected to each other.
  • the manufacturing cost of the insulator assembly can be significantly reduced and the claimed linear expansion and thus the space of the switchgear and the externa ⁇ ßere dimensioning of the switchgear can be reduced.

Landscapes

  • Insulating Bodies (AREA)
  • Inorganic Insulating Materials (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

The invention relates to an insulation arrangement for a high or medium voltage switchgear assembly, comprising at least one axially symmetrical insulating structural element (2). The invention is distinguished by the fact that the structural element (2) has at least two annular base areas (4), which are separated from each other by an annular blocking area (6), wherein the relative permittivity of the material of the blocking area (6) is at least twice as high as the relative permitticity of the material of the base area.

Description

Beschreibung description
Isolatoranordnung für eine Hochspannungs- oder Mittelspannungsanlage Isolator arrangement for a high voltage or medium voltage system
Die Erfindung betrifft eine Isolatoranordnung für eine Hochspannungs- oder Mittelspannungsanlage nach dem Oberbegriff des Patentanspruchs 1. Als Isolatormaterial in Hoch- bzw. Mittelspannungsanlagen, insbesondere Schaltanlagen wird häufig als isolierendes Mate¬ rial ein keramischer Werkstoff eingesetzt. Die Isolierfähig¬ keit dieser Festkörper ist im Allgemeinen recht hoch, durch Defekte in der Gitterstruktur bzw. Kornstruktur der kerami- sehen Materialien kann es bei hohen Spannungen, insbesondere höhere als 72kV zu einem Durchschlag kommen. D. h. die Durchbruchsfeldstärke Ebd wird bei diesen Materialien ab einer kritischen elektrischen Spannung bzw. eines kritischen Potentials erreicht. Die durch die angesprochenen Defekte beein- flusste kritische Durchbruchsfeldstärke Ebd kann jedoch nicht alleine dadurch erhöht werden, in dem man den keramischen Isolator entsprechend dicker bzw. länger ausgestaltet. Dies liegt daran, da durch eine Vergrößerung der Dicke bzw. Länge des Isolators keine lineare Zunahme der Durchbruchsfeldstärke Ebd stattfindet, sondern dass zwischen der Dicke bzw. Länge eines Isolators und dessen Durchbruchsfeldstärke ein im We¬ sentlichen wurzeiförmiger Zusammenhang besteht. D. h. durch eine hohe Steigerung der Dicke bzw. Länge des Isolators kann eine nur relativ niedrige Steigerung der Durchbruchsfeldstär- ke erzielt werden. Durch diesen wurzeiförmigen Zusammenhang zwischen Dicke und Durchbruchsfeldstärke müsste somit die Ma¬ terialausdehnung des Isolierstoffes bzw. des Isolierelementes überproportional erhöht werden, um eine signifikante Steige¬ rung der Durchbruchsfeldstärke zu erzielen. Dies ist zwar technisch bis zu einem gewissen Grade möglich, jedoch nicht wirtschaftlich realisierbar. Daher besteht die Aufgabe der Erfindung darin, eine Isolato¬ ranordnung für eine Hochspannungs- bzw. Mittelspannungsanlage bereitzustellen, die gegenüber dem Stand der Technik eine Erhöhung der Durchbruchsfeldstärke der Isolatoranordnung bei konstanten geometrischen Ausdehnungen gewährleistet. The invention relates to an insulator assembly for a high voltage or medium voltage system according to the preamble of claim 1. As an insulator material in high and medium voltage installations, in particular switchgear is often used as insulating Mate ¬ rial a ceramic material. The Isolierfähig ¬ ness of these solids is generally quite high, due to defects in the lattice structure or grain structure of the ceramic materials may see a breakdown at high voltages, in particular higher than 72kV. Ie. The breakdown field strength E bd is achieved in these materials from a critical electrical voltage or a critical potential. However, the critical breakdown field strength E bd , which is influenced by the defects mentioned, can not be increased solely by making the ceramic insulator correspondingly thicker or longer. This is because by increasing the thickness or length of the insulator there is no linear increase in the breakdown field strength E bd, but that there is a wurzeiförmiger in We ¬ sentlichen relationship between the thickness or length of an insulator and its breakdown field strength. Ie. By a high increase in the thickness or length of the insulator, only a relatively small increase in the breakdown field strength can be achieved. Due to this wurziförmigen relationship between the thickness and breakdown field strength thus Ma ¬ material extent of the insulating material or the insulating would have to be increased disproportionately in order to achieve a significant increase ¬ tion of the breakdown field strength. Although this is technically possible to a certain extent, it is not economically feasible. Therefore, the object of the invention is to provide an isolato ¬ ranordnung for a high voltage or medium voltage system, which ensures over the prior art, an increase in the breakdown field strength of the insulator assembly with constant geometric dimensions.
Die Lösung der Aufgabe besteht in einer Isolatoranordnung für eine Hochspannungs- und Mittelspannungsanlage mit den Merkma¬ len des Patentanspruchs 1. The solution of the problem consists in an insulator arrangement for a high voltage and medium voltage system with the Merkma ¬ len of claim 1.
Die erfindungsgemäße Isolatoranordnung für eine Hochspannungs- oder Mittelspannungsanlage gemäß Patentanspruch 1 weist mindestens ein Strukturelement auf, das achsensymmet¬ risch ausgestaltet ist. Eine typische symmetrische Ausgestal- tung des Strukturelementes wäre eine Zylinderform, die jedoch auch konisch verlaufen kann, vom Querschnitt ist auch eine elliptische Verzerrung grundsätzlich technisch möglich. Dabei weist das Strukturelement mindestens zwei ringförmige Basis¬ bereiche auf, die durch einen ebenfalls ringförmigen Sperrbe- reich voneinander getrennt sind. Unter ringförmig wird hierbei eine Zylinderform verstanden, die ebenfalls konisch bzw. hohlkegelförmig verlaufen kann, die einen kreisrunden oder elliptischen Querschnitt aufweist. Die Erfindung zeichnet sich dadurch aus, dass die Permittivität des Materials des Sperrbereiches mindestens zweimal so hoch ist wie die Permit¬ tivität des Materials des Basisbereichs. The insulator arrangement according to the invention for a high-voltage or medium-voltage installation according to claim 1 has at least one structural element, which is designed achsensymmet ¬ risch. A typical symmetrical configuration of the structural element would be a cylindrical shape, which however may also be conical, and elliptical distortion is fundamentally technically possible from the cross section. In this case, the structural element has at least two annular base ¬ areas that are separated by a likewise annular Sperrbe- rich another. Under annular here is understood a cylindrical shape, which may also be conical or hollow cone-shaped, which has a circular or elliptical cross-section. The invention is characterized in that the permittivity of the material of the stop band is at least twice as high as the Permit ¬ tivity of the material of the base portion.
Durch die Einfügung von Sperrbereichen bzw. mindestens eines Sperrbereichs zwischen zwei Basisbereiche der Isolatoranord- nung mit einer deutlichen Erhöhung der Permittivität desBy inserting blocking regions or at least one blocking region between two base regions of the insulator arrangement with a clear increase in the permittivity of the insulator arrangement
Sperrbereichs gegenüber des Basisbereichs von mindestens ei¬ nem Faktor 2, wird in den Sperrbereichen die elektrische Feldstärke des durch die Hochspannungsanlage induzierten elektrischen Feldes gegenüber den Basisbereichen deutlich er- niedrigt. Man spricht hierbei von feldschwachen Bereichen, im Idealfall handelt es sich um feldfreie Bereiche. Diese Feld¬ schwächung wird durch das Verhältnis der relativen Permittivität des Materials der Basisbereiche und der relativen Per- mittivität der Sperrbereiche bestimmt. Dadurch wird die Kera¬ mik intern elektrisch in kurze axiale Stücke unterteilt, wo¬ durch sich die elektrische Festigkeit der Teilstrecke wie auch das der gesamten Isolatoranordnung stark erhöht. Blocking range relative to the base region of at least egg ¬ nem factor 2, the electric field strength of the induced by the high voltage system electric field compared to the base regions is significantly reduced in the stop bands. One speaks here of field-weak areas, ideally it concerns field-free areas. These field ¬ attenuation is determined by the ratio of the relative permittivity of the material of the base regions and the relative per- mittivität the Sperrbereiche determined. Characterized the Kera ¬ mik is internally divided electrically in short axial pieces, which greatly increases ¬ the electrical strength of the leg as well as the the entire isolator assembly through.
Unter der Permittivität ε, die auch als die elektrische Leit¬ fähigkeit oder die elektrische Funktion bezeichnet wird, wird dabei die Durchlässigkeit eines Materials für elektrische Felder verstanden. Auch das Vakuum weist eine Permittivität auf, die auch als die elektrische Feldkonstanze So bezeichnet wird. Die relative Permittivität εΓ eines Stoffes ergibt sich dabei aus dem Verhältnis seiner tatsächlichen Permittivität ε zu der elektrischen Feldkonstante Q: εΓ = ε / ο· Gleichung 1. Under the permittivity ε, also known as the electrical conductivity ¬ capacity or the electrical function is called, thereby the permeability of a material for electric fields is understood. The vacuum also has a permittivity, which is also referred to as the electric field constant So. The relative permittivity ε Γ of a substance results from the ratio of its actual permittivity ε to the electrical field constant Q: ε Γ = ε / ο · Equation 1.
Im Weiteren wird hier bei der Permittivität jeweils von der relativen Permittivität εΓ in Gleichung 1 beschrieben, gesprochen . In the following, the permittivity is described in each case by the relative permittivity ε Γ in Equation 1.
Durch einen Unterschied um einen Faktor 2 zwischen den relativen Permittivitäten des Basisbereiches und des Sperrberei¬ ches kann bereits eine signifikante Abschwächung des elektri¬ schen Feldes in den Sperrbereichen beobachtet werden. Grund- sätzlich gilt jedoch, dass die Schwächung des elektrischen Feldes in den Sperrbereichen und somit die daraus bewirkte Segmentierung der Basisbereiche in elektrisch voneinander entkoppelten Bereichen umso stärker wirkt, umso höher die relative Permittivität in den Sperrbereichen ist, also umso hö- her der Faktor zwischen der Permittivität des Sperrbereiches und der Permittivität des Basisbereichs ist. Dabei hat es sich herausgestellt, dass es noch vorteilhafter ist, wenn die relative Permittivität des Sperrbereiches mindestens fünfmal so hoch ist, wie die Permittivität des Basisbereiches, insbe- sondere ist es vorteilhaft, wenn sie mindestens zehnmal bzw. besonders vorteilhaft mindestens lOOmal so hoch ist, wie die Permittivität des Basisbereiches. Eine derartig hohe Permittivität lässt sich insbesondere durch ein Titanat, also einem Salz der Titansäure, insbesondere dem Bariumtitanat erzielen. Eine vorteilhafte Kombinati¬ on ist dabei als Material für den Basisbereich ein Aluminium- oxid bzw. ein Material, das Aluminiumoxid umfasst und für den Sperrbereich ein Material auf Basis eines Titanates, insbe¬ sondere Bariumtitanat oder Calziumtitanat . Auch das Titanoxid weist eine hohe Permittivität auf und ist als Material oder als Materialbestandteil des Sperrbereichs geeignet. By a difference by a factor of two between the relative permittivities of the base region and the blocking preparation ¬ ches a significant weakening of the electrical ¬ rule field can already be observed in the restricted areas. In principle, however, the weakening of the electric field in the stop bands and thus the resulting segmentation of the base regions in regions that are electrically decoupled from one another are stronger, the higher the relative permittivity in the stop bands, ie, the higher the factor between the permittivity of the stopband and the permittivity of the base region. It has been found that it is even more advantageous if the relative permittivity of the blocking region is at least five times as high as the permittivity of the base region, in particular it is advantageous if it is at least 10 times or particularly advantageously at least 100 times higher , such as the permittivity of the base region. Such a high permittivity can be achieved in particular by a titanate, ie a salt of titanic acid, in particular barium titanate. An advantageous combination Nati ¬ on is in this case comprises as a material for the base region, an alumina or a material containing alumina and for the stopband a material based on a titanate, barium titanate or calcium titanate in particular ¬ sondere. Also, the titanium oxide has a high permittivity and is suitable as a material or as a material component of the blocking region.
Dabei liegt die relative Permittivität des Materials des Ba¬ sisbereichs üblicherweise und bevorzugt zwischen 5 und 25. Dabei ist die relative Permittivität eine einheitslose Größe, die, wie besagt, sich aus dem Verhältnis der Gesamtpermitti- vität und der elektrischen Feldkonstante So ergibt. Die rela¬ tive Permittivität des Materials des Sperrbereichs liegt im Gegensatz dazu mindestens zweimal so hoch, wie die relative Permittivität des Basisbereiches also mindestens weist sie einen Betrag 10 auf und ergibt sich in einem Bereich zwischen 10 und 10.000. Besonders bevorzugt ergibt sich die relative Permittivität des Steuerbereichs in einem Bereich zwischen 100 und 10.000, besonders bevorzugt zwischen 1.000 und The relative permittivity of the material of Ba ¬ sisbereichs is normally and preferably 5 to 25 The relative permittivity is a dimensionless quantity which, as aforesaid, is tivity from the ratio of Gesamtpermitti- and the electric field constant So obtained. The rela tive ¬ permittivity of the material of the stop band is at least twice as high in contrast, as the relative permittivity of the base portion so it has at least an amount 10, and results in a range between 10 and 10,000. Particularly preferably, the relative permittivity of the control range is in a range between 100 and 10,000, particularly preferably between 1,000 and
10.000. In einer weiteren Ausgestaltungsform der Erfindung ist es zweckmäßig, dass sich die Längenausdehnung der Basisbereiche in Richtung der Symmetrieachse zwischen einem Wert von 5 mm und 50 mm belaufen. Es hat sich herausgestellt, dass in die¬ sen Längenbereichen der Basisbereiche sich eine besonders gu- te Segmentierung der Isolatoranordnung bzw. des Strukturelementes ergeben. Das gleiche gilt für eine Längenausdehnung der Sperrbereiche, die zwischen 0,1 mm und 5 mm beträgt. 10,000. In a further embodiment of the invention, it is expedient that the longitudinal extent of the base regions in the direction of the axis of symmetry amount to between 5 mm and 50 mm. It has been found that result in a particularly PDO te segmentation of the isolator assembly or of the structural element in the ¬ sen length portions of the base portions themselves. The same applies to a length extension of the stop bands, which is between 0.1 mm and 5 mm.
Es ist ebenfalls zweckmäßig, dass das Verhältnis der Längen- ausdehnung eines jeweiligen Basisbereiches zu einer jeweili¬ gen Längenausdehnung des dazugehörigen Sperrbereiches einen Betrag zwischen 10 und 100 aufweist. Es ist zweckmäßig, dass die beschriebene Isolatoranordnung Bestandteil einer Hochspannungs- oder Mittelspannungsschalt¬ anlage ist, wobei es sich dabei sowohl um eine Vakuumschalt¬ anlage als auch um eine gasisolierter Schaltanlage handeln kann . It is also desirable that the ratio of the linear expansion of a respective base portion to a jeweili ¬ gen longitudinal extension of the corresponding locking portion having a magnitude between 10 and 100. It is expedient that the insulator arrangement described is part of a high-voltage or medium-voltage switchgear ¬ system, which may be both a vacuum switching ¬ system as well as a gas-insulated switchgear.
Ferner ist es zweckmäßig, wenn an einer Innenwand des isolie¬ renden Strukturelementes Schirmelemente angebracht sind, die zur Umlenkung und Ableitung des elektrischen Feldes und zu einer homogeneren Verteilung der Äquipotentiallinien in dem Material des Strukturelementes dienen. Diese Schirmelemente bzw. auch Schirmbleche genannt, sind bevorzugt so angeordnet, dass sie in dem Strukturelement dort befestigt sind, wo ein Sperrbereich vorliegt. Unter Äquipotentiallinien werden dabei Linien mit demselben elektrischen Potential verstanden. Sie stehen auf korrespondierenden Feldlinien des dazu gehörigen elektrischen Feldes senkrecht und weißen eine vergleichbare Dicht auf. Engverlaufende Äquipotentiallinien korrespondieren mit engen Feldlinien, ebenso führen auseinander gezogenen Äquipotentiallinien zu auseinander gezogenen Feldlinien. Furthermore, it is expedient if screen elements are attached to an inner wall of the isolie ¬- generating structural element, which serve to deflect and dissipate the electric field and to a more homogeneous distribution of equipotential lines in the material of the structural element. These screen elements or shielding plates are preferably arranged so that they are fastened in the structural element where a blocking area is present. By equipotential lines are meant lines having the same electrical potential. They stand on corresponding field lines of the associated electric field perpendicular and white on a similar density. Narrow-running equipotential lines correspond with narrow field lines, and equally spaced equipotential lines lead to extended field lines.
Weitere Ausgestaltungsformen und weitere Merkmale der Erfindung werden anhand der folgenden Figuren näher erläutert. Dabei handelt es sich um exemplarische Ausgestaltungsformen, die keine Einschränkung des Schutzbereichs darstellen. Dabei zeigen : Further embodiments and further features of the invention will be explained in more detail with reference to the following figures. These are exemplary embodiments that do not limit the scope of protection. Showing:
Figur 1 eine Hochspannungsschaltanlagen mit einer Isolatoranordnung nach dem Stand der Technik, 1 shows a high-voltage switchgear with an isolator arrangement according to the prior art,
Figur 2 eine projizierte Ansicht eines isolierenden Struktur¬ elementes mit Basisbereichen und Sperrbereichen, 2 shows a projected view of an insulating structure ¬ element with base regions and barrier regions,
Figur 3 eine dreidimensionale Draufsicht auf das Strukturele- ment nach Figur 2, FIG. 3 shows a three-dimensional plan view of the structural element according to FIG. 2,
Figur 4 ein halbierter Querschnitt durch ein Strukturelement gemäß Figur 2 mit eingezeichneten Äquipotentiallinien, Figur 5 eine analoge Darstellung wie in Figur 4 jedoch mit zusätzlichen Schirmelementen. In Figur 1 ist eine Darstellung einer Hochspannungsschaltanlage 3 gegeben, die einen Schaltraum 26 aufweist, in dem zwei Schaltkontakte 24 axial beweglich zueinander dargestellt sind, wobei durch eine axiale Bewegung zumindest eines des Schaltkontaktes ein elektrischer Kontakt hergestellt bzw. ge- trennt werden kann. Ferner weist die Schaltanlage 3 Isolator¬ anordnungen 1 auf, die mindestens ein insolierendes Struktur¬ element 2 umfassen. Bei der hier dargestellten Schaltanlage nach Figur 1 weist die Isolatoranordnung 1 drei Strukturelemente 2 auf. Grundsätzlich und bevorzugt besteht die Isolato- ranordnung 1 jedoch möglichst nur aus einem StrukturelementFIG. 4 shows a half-section through a structural element according to FIG. 2 with equipotential lines drawn in, Figure 5 is an analogous representation as in Figure 4 but with additional screen elements. 1 shows an illustration of a high-voltage switchgear 3, which has a switching space 26, in which two switching contacts 24 are shown axially movable relative to each other, wherein an electrical contact can be made or separated by an axial movement of at least one of the switching contact. Furthermore, the switchgear 3 insulator ¬ arrangements 1, which comprise at least one insolating structure ¬ element 2. In the switchgear shown here according to FIG. 1, the insulator arrangement 1 has three structural elements 2. In principle and preferably, however, the isolator assembly 1 consists, if possible, of only one structural element
2. Im Weiteren wird auf die Möglichkeit, dies zu realisieren, noch näher eingegangen werden. Bei einer Isolatoranordnung 1 gemäß des Standes der Technik werden in der Regel mehrere Strukturelemente, die insbesondere aus einer Oxidkeramik bei- spielsweise Aluminiumoxidkeramik bestehen, durch ein entsprechendes Fügeverfahren zu der gesamten Isolatoranordnung 1 zusammengefügt. Durch das Fügen mehrerer herkömmlicher Strukturelemente ist es möglich, eine Segmentierung zu erzielen, was wiederum zu einer höheren Durchbruchsfeldstärke und somit zu einer starken Spannungssteigerung führt. Dabei wird die2. Furthermore, the possibility of realizing this will be discussed in more detail. In the case of an insulator arrangement 1 according to the prior art, a plurality of structural elements, which consist in particular of an oxide ceramic, for example aluminum oxide ceramic, are generally joined together by means of a corresponding joining process to form the entire insulator arrangement 1. By joining several conventional structural elements, it is possible to achieve a segmentation, which in turn leads to a higher breakdown field strength and thus to a strong increase in voltage. Here is the
Länge der Isolatoranordnung 1 in ihre axiale Richtung insbesondere durch ihre Durchbruchsfeldstärke bzw. ihre maximale isolierbare Spannung bestimmt. In Figur 2 ist ein Strukturelement 2 dargestellt, das sowohl Basisbereiche 4 als auch Sperrbereiche 6 aufweist. Die Basis¬ bereiche 4 weisen dabei eine axiale Längenausdehnung 8 auf, die größer ist als eine axiale Längenausdehnung 12 der Sperrbereiche 6. Es sind jeweils zwei Basisbereiche 4 durch einen Sperrbereich 6 voneinander getrennt. Die axiale Ausdehnung wird jeweils entlang der Rotationsachse 10 beschrieben. In Figur 3 ist zur besseren Übersichtlichkeit das gleiche iso¬ lierende Strukturelement 2 aus Figur 2 in einer dreidimensio- nalen Darstellung gegeben. In den Figuren 4 und 5 ist jeweils der Äquipotentiallinienverlauf von Äquipotentiallinien 16 ei¬ nes elektrischen Feldes, das durch den im Schaltraum 26 vorliegende elektrische Stromfluss induziert wird, gegeben. Da- bei ist nur die rechte Hälfte des Querschnittes des Struktur¬ elementes 2 dargestellt. Am linken äußeren Rand befindet sich die Symmetrieachse 10, in der Mitte der Darstellung gemäß Fi¬ gur 4 und auch gemäß Figur 5 ist ein Schnitt durch die Basis¬ bereiche 4 und durch die Sperrbereiche 6 gegeben. Dabei un- terteilen sich die Figuren 4 und 5 jeweils links im Bild in einen Bereich 18 innerhalb des Strukturelementes und in einen Bereich 22 außerhalb des Strukturelementes sowie in einen Be¬ reich 20, der den Schnitt durch das Material des Strukturele¬ mentes darstellt. Length of the insulator assembly 1 in its axial direction determined in particular by their breakdown field strength or their maximum isolatable voltage. FIG. 2 shows a structural element 2 which has base regions 4 as well as barrier regions 6. In this case, the base regions 4 have an axial length extension 8 that is greater than an axial longitudinal extent 12 of the stopper regions 6. In each case, two base regions 4 are separated from one another by a blocking region 6. The axial extent is described in each case along the axis of rotation 10. In Figure 3, for clarity is the same ¬ iso-regulating structural element 2 of Figure 2 in a three- given a nal representation. In Figures 4 and 5, the equipotential lines 16 of Äquipotentiallinienverlauf ei ¬ nes electric field which is induced by the present electric current in the control room 26, where flux respectively. In this case, only the right half of the cross section of the structural ¬ element 2 is shown. On the left outer edge is the axis of symmetry 10, in the middle of the illustration according to Fi ¬ gur 4 and also according to Figure 5 is a section through the base ¬ areas 4 and given by the stopper areas 6. Thereby un- the figures 4 and 5 subdivide each left of the image in an area 18 within the structural element and in an area 22 outside of the structural element as well as in a loading ¬ rich 20, which represents the section through the material of the Strukturele ¬ mentes.
Ausgehend von der Symmetrieachse 10 wird ein homogenes elekt¬ risches Feld, das durch die Äquipotentiallinien 16 beschrie¬ ben wird, dargestellt. Die Homogenität des Feldes im Bereich 18 zeigt sich durch den relativ gleichmäßigen Abstand zwi- sehen den Äquipotentiallinien 16. Hingegen ist im Bereich 22 außerhalb des Strukturelementes 2 der Äquipotentiallinienver¬ lauf sehr unterschiedlich, hier liegen Bereiche mit einer hohen Äquipotentialliniendichte vor, in dem ein starkes elekt¬ risches Feld vorherrscht und ein Bereich mit weit auseinan- dergezogenen Äquipotentiallinien 16, in dem ein schwächeres elektrisches Feld vorliegt. Auffällig ist, dass in den Sperr¬ bereichen 6 nahezu keine Äquipotentiallinien 16 vorliegen, was bedeutet, dass in den Sperrbereichen 6 ein äußerst schwa¬ ches bzw. im Idealfall nicht vorhandenes elektrisches Feld vorherrscht. Dies wiederum führt dazu, dass eine elektrische Segmentierung des isolierenden Strukturelementes also des ke¬ ramischen Isolators durch die Sperrbereiche 6 erzeugt wird. Die Basisbereiche 4 wirken somit wie weitere untergeordnete isolierende Strukturelemente, die elektrisch von ihrem Nach- barbasisbereich getrennt sind und zwar durch den Sperrbereich 6. Eine analoge Darstellung hierzu ist in Figur 5 gegeben, wobei die Äquipotentiallinien auch hier in den Sperrbereichen 6 nahezu nicht vorkommen und somit die beschriebene Segmentierung zwischen Basisbereichen erzielt wird. Figur 5 zeigt jedoch noch weitere Schirmelemente 14, die auch als Schirmbleche 14 bezeichnet werden, die eine gezielte und optimierte Lenkung der Äquipotentiallinien 16 bewirken. Entsprechende Schirmelemente 14 sind auch in Figur 1 entsprechend dargestellt. Die Schirmelemente 14 sind bevorzugt so ausgestaltet, dass sie in Sperrbereichen 6 im Strukturelement 2 verankert sind. Starting from the axis of symmetry 10 is a homogeneous elekt ¬ innovative field that is beschrie ¬ ben by the equipotential lines 16, is shown. The homogeneity of the field in the region 18 is indicated by the relatively uniform distance between the equipotential lines 16. On the other hand, in the region 22 outside the structural element 2 the equipotential line profile is very different; here there are regions with a high equipotential line density in which a strong predominates elekt ¬ innovative field and a range with wide auseinan- dergezogenen equipotential lines 16 in which a weaker electric field is present. It is remarkable that almost no equipotential lines present in the barrier 6 ¬ areas 16, which means that in the blocking regions 6 prevails an extremely schwa ¬ ches or ideally non-existent electric field. This in turn means that an electrical segmentation of the insulating structural element of the ke ¬ ramischen insulator is thus generated by the blocking regions 6. The base regions 4 thus act like further subordinate insulating structural elements which are electrically separated from their secondary base region and indeed through the blocking region 6. An analogous representation of this is given in FIG. 5, wherein the equipotential lines are virtually absent here as well in the blocking regions 6 and thus the described segmentation between base regions is achieved. However, FIG. 5 also shows further shielding elements 14, which are also referred to as shielding plates 14, which effect a targeted and optimized steering of the equipotential lines 16. Corresponding shielding elements 14 are also shown correspondingly in FIG. The shielding elements 14 are preferably configured such that they are anchored in blocking regions 6 in the structural element 2.
Das Reduzieren der Äquipotentiallinien 16 bzw. des so dargestellte elektrische Feldes 16 in den Sperrbereichen 6 des Strukturelementes 2 wird dadurch erzielt, dass das Material der Sperrbereiche 6 eine relative Permittivität aufweist, die mindestens zweimal so hoch ist, wie die relative Permittivi¬ tät der Basisbereiche 4. Auf diese Weise wird das elektrische Feld praktisch aus den Sperrbereichen 6 herausgedrängt. Dies wiederum bewirkt, dass es zu einer elektrischen Segmentierung des Strukturelementes 2 in die Basisbereiche 4 kommt. Dies wiederum hat eine ähnliche Wirkung auf die Durchbruchsfeld¬ stärke, wie das Aneinanderfügen von mehreren Strukturelementen, wie es in Figur 1 mit der Bezeichnung 2 λ für das Strukturelement dargestellt ist. Grundsätzlich ist das Fügen von Strukturelementen 2 zu einer Isolatoranordnung 1 nicht anzustreben, da es sich hierbei um kostenintensive Arbeitsvorgänge handelt, die eine Qualitätssicherung und einen hohen technischen Aufwand erfordern, um eine Vakuumdichtigkeit bzw. Gasdichtigkeit zu gewährleisten. Somit ist es durch die be- schriebene Anordnung des Strukturelementes 2 und die Segmen¬ tierung in Basisbereiche 4 sowie in Sperrbereiche 6 möglich, die gesamte Isolatoranordnung 1 eine Schaltanlage 3 bzw. all¬ gemein einer Hochspannungs- oder Mittelspannungsanlage 3 durch lediglich ein isolierendes Strukturelement 2 auszuge- stalten. Ob dies technisch ausreichend ist, hängt auch von der geforderten gesamten Durchbruchsfeldstärke bzw. der maximal anliegenden Spannung ab. Beispielsweise können Hochspannungsschaltanlagen von 72kV durch ein Strukturelement 2 mit einer Längenausdehnung in axialer Ausrichtung von 80 mm oder weniger realisiert werden. Durch die herkömmliche beschriebe¬ ne Technologie müssten hierzu zwei bis drei Strukturelemente durch ein Fügeverfahren aneinandergefügt werden. Zusammenfas- send ist zu sagen, dass eine Isolatoranordnung 1 möglichst nur ein Strukturelement 2 umfassen soll, bei Hochspannungsanlagen mit sehr hoher Spannung können jedoch auch zwei oder mehrere Strukturelemente 2 zu einer Isolatoranordnung 1 ge¬ fügt werden, wobei dies dann eine insgesamte Längenausdehnung aufweist, die deutlich geringer ist als die Längenausdehnung von herkömmlich ausgestatteten Strukturelementen nach dem Stand der Technik ohne die beschriebene Segmentierung. Reducing the equipotential lines 16 or the illustrated as electric field 16 in the barrier regions 6 of the structural element 2 is achieved in that the material of the barrier regions 6 has a relative permittivity that is at least twice as high as the relative Permittivi ¬ ty of the base regions 4. In this way, the electric field is practically forced out of the blocking regions 6. This in turn causes electrical segmentation of the structural element 2 into the base regions 4. This in turn has a similar effect on the breakdown field strength ¬, as the joining of several structural elements, as shown in Figure 1 with the label 2 λ for the structural element. Basically, the joining of structural elements 2 to an insulator assembly 1 is not desirable, since these are costly operations that require quality assurance and high technical complexity to ensure a vacuum tightness or gas tightness. Thus, it is possible by the described arrangement of the structural element 2 and the Segmen ¬ tion in base areas 4 and in blocking areas 6, the entire insulator assembly 1, a switchgear 3 or all ¬ a high voltage or medium voltage system 3 by only one insulating structure element. 2 to design. Whether this is technically sufficient also depends on the required total breakdown field strength or the maximum applied voltage. For example, high-voltage switchgear of 72kV by a structural element 2 with a longitudinal expansion in axial alignment of 80 mm or less can be realized. By the conventional-described ¬ ne technology this two to three structural elements would be joined by a joining process. Is summarized send to say that an insulator assembly 1 as possible to comprise only a structural element 2 in high-voltage equipment with a very high voltage, however, two or more structural elements 2 may be an insulator assembly 1 ge ¬ added, and this then has an overall longitudinal extent, which is significantly smaller than the linear expansion of conventionally equipped structural elements according to the prior art without the described segmentation.
Ein weiterer Vorteil bei der Herstellung der Isolatorstruktur besteht darin, dass bei der Herstellung des Strukturelementes 2 alternierend in eine Pressform Materialien für die Basisbe¬ reiche 4 und Materialien für die Sperrbereiche 6 eingebracht werden können und bereits in diesen Aufbau gepresst und ge¬ sintert werden können. D. h. durch einen herkömmlichen Ar- beitsschritt durch Einbringen der Materialien alternierend in die entsprechende Form kann ein segmentiertes Strukturelement 2 erzeugt werden, das eine Durchbruchsfeststellstärke und ei¬ ne Festigkeit aufweist, die nach herkömmlichen Mitteln nur mit Strukturelementen erzielbar ist, die durch aufwendige Lötverfahren bzw. Fügeverfahren miteinander verbunden sind. Auf diese Weise können die Herstellungskosten der Isolatoranordnung deutlich gesenkt werden und die beanspruchte Längenausdehnung und somit der Bauraum der Schaltanlage und die äu¬ ßere Dimensionierung der Schaltanlage verkleinert werden. Can have a further advantage in the manufacture of the insulator structure is that in the production of the structural element 2 materials for the Basisbe ¬ rich 4 and materials for the barrier regions 6 can alternately into a mold to be introduced and pressed already in this construction and will ge ¬ sinters , Ie. By a conventional working step by introducing the materials alternately into the corresponding shape, a segmented structural element 2 can be produced which has a penetration strength and strength, which can be achieved by conventional means only with structural elements which are produced by complex soldering processes or joining processes connected to each other. In this way, the manufacturing cost of the insulator assembly can be significantly reduced and the claimed linear expansion and thus the space of the switchgear and the externa ¬ ßere dimensioning of the switchgear can be reduced.

Claims

Patentansprüche claims
1. Isolatoranordnung für eine Hochspannungs- oder Mittel¬ spannungsanlagen (3) mit mindestens einem achsensymmetrischen isolierenden Strukturelement (2), dadurch gekennzeichnet, dass das Strukturelement (2) mindestens zwei ringförmige Ba¬ sisbereiche (4) aufweist, die durch einen ringförmigen Sperrbereich (6) voneinander getrennt sind, wobei die relative Permittivität des Materials des Sperrbereichs (6) mindestens zweimal so hoch ist, wie die relative Permittivität des Mate¬ rials des Basisbereiches. 1. insulator assembly for a high-voltage or medium ¬ voltage systems (3) with at least one axially symmetrical insulating structural element (2), characterized in that the structural element (2) at least two annular comprising Ba ¬ sisbereiche (4) (by an annular stop band 6) are separated from one another, wherein the relative permittivity of the material of the barrier region (6) is at least twice as high as the relative permittivity of mate rials ¬ the base region.
2. Isolatoranordnung nach Anspruch 1, dadurch gekennzeichnet, dass die relative Permittivität des Materials des Sperr- bereichs (6) mindestens fünfmal, insbesondere zehnmal, insbe¬ sondere 100-mal so hoch ist, wie die relative Permittivität des Basisbereiches (4). 2. Insulator arrangement according to claim 1, characterized in that the relative permittivity of the material of the blocking region (6) is at least five times, in particular ten times, in particular ¬ 100 times as high as the relative permittivity of the base region (4).
3. Isolatoranordnung nach Anspruch 1 oder 2, dadurch ge- kennzeichnet, dass das Material des Sperrbereichs 6 ein Tita- nat, insbesondere Bariumtitanat umfasst. 3. Insulator arrangement according to claim 1 or 2, characterized in that the material of the blocking region 6 comprises a titanate, in particular barium titanate.
4. Isolatoranordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass des Materials des Basisbereichs (4) eine relative Permittivität aufweist, die zwischen 5 und 25 liegt. 4. Insulator arrangement according to one of claims 1 to 3, characterized in that the material of the base region (4) has a relative permittivity which is between 5 and 25.
5. Isolatoranordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die relative Permittivität des Ma- terials des Sperrbereichs (6) zwischen 10 und 10 000, insbe¬ sondere zwischen 100 und 10 000, insbesondere zwischen 1000 und 10 000 beträgt. 5. Insulator arrangement according to one of claims 1 to 3, characterized in that the relative permittivity of the ma- terials of the blocking region (6) between 10 and 10 000, in particular ¬ between 100 and 10 000, in particular between 1000 and 10 000.
6. Isolatoranordnung nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass die Längenausdehnung (8) der Basisbereiche (4) in Richtung der Symmetrieachse (10) zwischen 5 mm und 50 mm beträgt. 6. insulator arrangement according to one of the preceding claims che, characterized in that the longitudinal extent (8) of the base regions (4) in the direction of the axis of symmetry (10) is between 5 mm and 50 mm.
7. Isolatoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Längenausdehnung (12) des Sperrbereichs (6) in Richtung der Symmetrieachse (10) zwischen 0,1 mm und 5 mm beträgt. 7. Insulator arrangement according to one of the preceding claims, characterized in that the longitudinal extent (12) of the blocking region (6) in the direction of the symmetry axis (10) is between 0.1 mm and 5 mm.
8. Isolatoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verhältnis der Längen¬ ausdehnung (8) eines jeweiligen Basisbereichs zur jeweiligen Längenausdehnung (12) des dazwischen angeordneten Sperrbe- reichs (6) zwischen 10 und 100 beträgt. 8. insulator arrangement according to one of the preceding claims, characterized in that the ratio of the length ¬ extension (8) of a respective base region to the respective longitudinal extent (12) of the interposed Sperrbe- rich range (6) between 10 and 100.
9. Isolatoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hochspannungs- oder Mittelspannungsanlagen (3) eine Schaltanlage ist. 9. insulator arrangement according to one of the preceding claims, characterized in that the high-voltage or medium-voltage installations (3) is a switchgear.
10. Isolatoranordnung nach Anspruch 9, dadurch gekennzeichnet, dass an einer Innenwand (28) des Strukturelementes (2) Schirmelemente (14) angebracht sind. 10. Insulator arrangement according to claim 9, characterized in that on an inner wall (28) of the structural element (2) screen elements (14) are mounted.
11. Isolatoranordnung nach Anspruch 10, dadurch gekennzeichnet, dass die Schirmelemente (14) in oder an einem Sperrbe¬ reich (6) angeordnet sind. 11. Insulator arrangement according to claim 10, characterized in that the shield elements (14) are arranged in or on a Sperrbe ¬ rich (6).
EP18700528.5A 2017-01-27 2018-01-04 Insulation arrangement for a high or medium voltage assembly Active EP3559968B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017201326.5A DE102017201326A1 (en) 2017-01-27 2017-01-27 Isolator arrangement for a high voltage or medium voltage system
PCT/EP2018/050166 WO2018137903A1 (en) 2017-01-27 2018-01-04 Insulation arrangement for a high or medium voltage assembly

Publications (2)

Publication Number Publication Date
EP3559968A1 true EP3559968A1 (en) 2019-10-30
EP3559968B1 EP3559968B1 (en) 2023-06-14

Family

ID=60997455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18700528.5A Active EP3559968B1 (en) 2017-01-27 2018-01-04 Insulation arrangement for a high or medium voltage assembly

Country Status (7)

Country Link
US (1) US10930454B2 (en)
EP (1) EP3559968B1 (en)
JP (1) JP6999680B2 (en)
KR (1) KR102258591B1 (en)
CN (1) CN110226211B (en)
DE (1) DE102017201326A1 (en)
WO (1) WO2018137903A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017201326A1 (en) 2017-01-27 2018-08-02 Siemens Aktiengesellschaft Isolator arrangement for a high voltage or medium voltage system
EP4016576A1 (en) * 2020-12-15 2022-06-22 Siemens Aktiengesellschaft Electrical switching device for medium and / or high voltage applications

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE241809C (en)
DD226690A1 (en) * 1984-09-24 1985-08-28 Buchwitz Otto Starkstrom A pole
DD241809A1 (en) * 1985-10-16 1986-12-24 Buchwitz Otto Starkstrom INSULATING HOUSING FOR A VACUUM CHAMBER
JP3344314B2 (en) * 1998-04-08 2002-11-11 株式会社村田製作所 Pulse generation capacitor
DE10029763B4 (en) * 2000-06-16 2009-01-15 Siemens Ag Vacuum interrupter
FR2821479B1 (en) * 2001-02-28 2003-04-11 Alstom INSULATING MATERIAL FOR OVER-MOLDING ON MEDIUM AND HIGH VOLTAGE APPARATUSES, AND MEDIUM AND HIGH VOLTAGE ELECTRICAL APPARATUS USING SUCH MATERIAL
JP4319571B2 (en) 2004-03-29 2009-08-26 株式会社東芝 Resin mold vacuum valve and manufacturing method thereof
DE602005001222T2 (en) * 2004-04-14 2008-01-31 NGK Spark Plug Co., Ltd., Nagoya Switch container for hermetic encapsulation of a switching element and method for its production
JP4612407B2 (en) 2004-12-22 2011-01-12 株式会社東芝 Switchgear
US20070007250A1 (en) * 2005-07-08 2007-01-11 Eaton Corporation Sealing edge cross-sectional profiles to allow brazing of metal parts directly to a metallized ceramic for vacuum interrupter envelope construction
DE102007022875B4 (en) 2007-05-14 2009-04-09 Siemens Ag Housing for a vacuum interrupter and vacuum interrupter
DE102009031598B4 (en) 2009-07-06 2011-06-01 Siemens Aktiengesellschaft Vacuum interrupter
DE102010005466B3 (en) 2010-01-20 2011-05-05 Siemens Aktiengesellschaft Vacuum interrupter
FR2971884B1 (en) 2011-02-17 2014-01-17 Alstom Grid Sas ELECTRIC CURRENT CUT-OFF CHAMBER FOR A HIGH OR MEDIUM VOLTAGE CIRCUIT BREAKER AND CIRCUIT BREAKER COMPRISING SUCH A CHAMBER
JP2014182877A (en) * 2013-03-18 2014-09-29 Toshiba Corp Resin insulation vacuum valve
EP2806432A1 (en) 2013-05-23 2014-11-26 ABB Technology Ltd Insulation body for providing electrical insulation of a conductor and an electrical device comprising such insulation body
DE102016214750A1 (en) * 2016-05-19 2017-11-23 Siemens Aktiengesellschaft Process for producing a ceramic insulator
DE102017201326A1 (en) 2017-01-27 2018-08-02 Siemens Aktiengesellschaft Isolator arrangement for a high voltage or medium voltage system

Also Published As

Publication number Publication date
JP6999680B2 (en) 2022-01-18
CN110226211A (en) 2019-09-10
KR20190104222A (en) 2019-09-06
DE102017201326A1 (en) 2018-08-02
WO2018137903A1 (en) 2018-08-02
JP2020507886A (en) 2020-03-12
US10930454B2 (en) 2021-02-23
KR102258591B1 (en) 2021-05-31
US20200027673A1 (en) 2020-01-23
EP3559968B1 (en) 2023-06-14
CN110226211B (en) 2021-07-30

Similar Documents

Publication Publication Date Title
EP3807920B1 (en) Vacuum interrupter and high-voltage switching assembly
DE2631943A1 (en) SPACER FOR TWO ELECTRIC LADDERS
DE2314675A1 (en) INSULATING BODY
DE1615039B2 (en) Isolation arrangement for high voltage
EP3559968A1 (en) Insulation arrangement for a high or medium voltage assembly
DE19547120A1 (en) Electrode for medium- or high-voltage apparatus
WO2018028946A1 (en) Insulator arrangement for a high or medium voltage switchgear assembly
EP3270403B1 (en) Fuse
WO2017042197A1 (en) Dc voltage high-voltage insulator, high-voltage system for direct current with dc voltage high-voltage insulator, and use thereof
DE2162269C3 (en) Current limiting device
WO2015150005A1 (en) Dry transformer load switch
DE102017202735A1 (en) Electrical switching device
EP3818602A1 (en) Coupling sleeve
DE102010042568A1 (en) Multi-pole gas-insulated busbar section
WO2023138860A1 (en) Gas-insulated electrical energy transmission unit
EP4016576A1 (en) Electrical switching device for medium and / or high voltage applications
DE102021201781A1 (en) Electrical switching device for medium and/or high voltage applications
CH665920A5 (en) X-ray tube WITH THE ANODE AND CATHODE SURROUNDING CYLINDRICAL METAL PART.
DE102016214755A1 (en) Ceramic insulator for vacuum interrupters
DE19916392B4 (en) Connection area to an encapsulated, gas-insulated high-voltage system
DE2849560A1 (en) HV gas encapsulated cable - with conductor in cone-shaped insulator and has funnel-shaped barrier on ribs blocking impurities in electric field
WO2017174271A1 (en) Hollow insulator and high-voltage switch having a hollow insulator
DE19612931A1 (en) Winding arrangement e.g. for power transformer
DE102021128369A1 (en) Electrode arrangement and method for coating flat workpieces with an electrically conductive layer and use of an electrode arrangement
DE19654743A1 (en) Pin or post insulator e.g. for metal-encapsulated gas- insulated switchgear

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210401

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HARTMANN, WERNER

Inventor name: KOLETZKO, MARTIN

Inventor name: BENKERT, KATRIN

INTG Intention to grant announced

Effective date: 20230110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018012465

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1579837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230914

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018012465

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 7

Ref country code: CH

Payment date: 20240202

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

26N No opposition filed

Effective date: 20240315