EP3559613B1 - Temperature-resistant fill level measurement device - Google Patents

Temperature-resistant fill level measurement device Download PDF

Info

Publication number
EP3559613B1
EP3559613B1 EP17804526.6A EP17804526A EP3559613B1 EP 3559613 B1 EP3559613 B1 EP 3559613B1 EP 17804526 A EP17804526 A EP 17804526A EP 3559613 B1 EP3559613 B1 EP 3559613B1
Authority
EP
European Patent Office
Prior art keywords
housing
housing neck
level transmitter
neck
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17804526.6A
Other languages
German (de)
French (fr)
Other versions
EP3559613A1 (en
Inventor
Klaus Feisst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP3559613A1 publication Critical patent/EP3559613A1/en
Application granted granted Critical
Publication of EP3559613B1 publication Critical patent/EP3559613B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness

Definitions

  • a temperature T B of up to more than 200 ° C. can prevail in the interior of the container 2, for example due to a chemical reaction which the filling material 3 is currently undergoing.
  • the electronic components 111, 131 of the field device 1 are generally only designed up to a temperature T E of up to approx. 80 ° C., the field device 1 comprises a housing neck 13, which is located between the antenna 12, to protect it from the thermal load and the housing 11 is arranged.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

Die Erfindung betrifft ein Radar-basiertes Füllstandsmessgerät zur Messung eines Füllstandes eines in einem Behälter befindlichen Füllgutes, wobei das Füllstandsmessgerät auch bei hohen im Behälter herrschenden Temperaturen eingesetzt werden kann.The invention relates to a radar-based fill level measuring device for measuring a fill level of a product located in a container, wherein the fill level measuring device can also be used at high temperatures prevailing in the container.

In der Automatisierungstechnik, insbesondere in der Prozessautomatisierungstechnik, werden vielfach Feldgeräte eingesetzt, die zur Erfassung und/oder zur Beeinflussung von Prozessvariablen dienen. Zur Erfassung von Prozessvariablen werden Sensoren eingesetzt, die beispielsweise in Füllstandsmessgeräten, Durchflussmessgeräten, Druck- und Temperaturmessgeräten, pH-Redoxpotential-Messgeräten, Leitfähigkeitsmessgeräten, usw. zum Einsatz kommen. Sie erfassen die entsprechenden Prozessvariablen, wie Füllstand, Durchfluss, Druck, Temperatur, pH-Wert, Redoxpotential oder Leitfähigkeit. Eine Vielzahl dieser Feldgeräte wird von der Firma Endress + Hauser hergestellt und vertrieben.In automation technology, in particular in process automation technology, field devices are often used that are used to record and / or influence process variables. To record process variables, sensors are used that are used, for example, in level measuring devices, flow measuring devices, pressure and temperature measuring devices, pH redox potential measuring devices, conductivity measuring devices, etc. They record the corresponding process variables, such as level, flow, pressure, temperature, pH value, redox potential or conductivity. A large number of these field devices are manufactured and sold by Endress + Hauser.

Zur Füllstandsmessung bei Füllgütern in Behältern haben sich berührungslose Messverfahren etabliert, da sie robust und wartungsarm sind. Ein weiterer Vorteil berührungsloser Messverfahren besteht in ihrer Fähigkeit, den Füllstand quasi kontinuierlich, also mit einer hohen Auflösung messen zu können. Aus diesem Grund werden hierzu vorwiegend Radar-basierte Messverfahren eingesetzt. Etablierte Messprinzipien bilden hierbei das FMCW-Messprinzip ("Frequency Modulated Continuos Wave") oder auch das so genannte Puls-Laufzeit-Verfahren. In beiden Fällen wird das hochfrequente elektromagnetische Signal über eine Antenne, die am Behälter befestigt ist und in das Innere des Behälters gerichtet ist, in Richtung des Füllgutes gesendet. Dabei liegen die Frequenzen der ausgesendeten elektromagnetischen Wellen im Bereich einer standardisierten Mittenfrequenz. Bedingt durch behördliche Zulassungsvorschriften werden hier in der Regel Frequenzen bei 6 GHz, 26 GHz, oder 79 GHz verwendet. Das Funktionsprinzip des Puls-Laufzeit-Verfahrens wird beispielsweise in der Veröffentlichungsschrift DE 10 2010 063 430 A1 genannt. Zum Funktionsprinzip des FMCW-Messprinzips sei exemplarisch auf die Veröffentlichungsschrift WO 2012/139852 A1 hingewiesen. Unabhängig vom Messprinzip sind jedoch höhere Frequenzen vorteilhaft, da mit steigender Frequenz potentiell auch die Auflösung der Füllstandsmessung steigt.For level measurement of products in containers, non-contact measuring methods have become established because they are robust and require little maintenance. Another advantage of non-contact measuring methods is their ability to measure the level quasi continuously, i.e. with a high resolution. For this reason, primarily radar-based measurement methods are used for this. Established measuring principles form the FMCW measuring principle ("Frequency Modulated Continuos Wave") or the so-called pulse transit time method. In both cases, the high-frequency electromagnetic signal is sent in the direction of the product via an antenna which is attached to the container and which is directed into the interior of the container. The frequencies of the emitted electromagnetic waves are in the range of a standardized center frequency. Due to official approval regulations, frequencies at 6 GHz, 26 GHz, or 79 GHz are usually used here. The functional principle of the pulse transit time method is for example in the publication DE 10 2010 063 430 A1 called. For the functional principle of the FMCW measuring principle, refer to the Publication font WO 2012/139852 A1 pointed out. Regardless of the measuring principle, however, higher frequencies are advantageous because the resolution of the level measurement potentially also increases with increasing frequency.

Je nach Einsatzgebiet des Behälters können im Behälter-Inneren Temperaturen von bis zu 200 °C vorherrschen. In diesem Fall besteht eine besondere Herausforderung darin, das Füllstandsmessgerät thermisch vom Behälter-Inneren zu isolieren, da die elektronischen Komponenten des Feldgerätes üblicherweise lediglich bis zu ungefähr einer Temperatur von 80 °C ausgelegt sind. Die thermische Isolation der elektronischen Komponenten erfolgt daher oftmals über einen thermisch isolierenden Gehäusehals mit hohem thermischem Widerstand, der zwischen der Antenne und dem Gehäuse, welches sich außerhalb des Behälters befindet, angeordnet ist. Ein entsprechendes Füllstandsmessgerät ist beispielsweise in der Veröffentlichungsschrift DE102009028620 A1 offenbart. Dabei befinden sich die elektronischen Komponenten in dem Gehäuse. Entsprechend diesem Zweck ist der Gehäusehals mit einer gewissen Mindestlänge sowie einer entsprechend geringen Querschnittsfläche bemessen, damit sich ein möglichst hoher thermischer Widerstand zwischen der Antenne und dem Gehäuse einstellt. Als weitere Maßnahmen zur Erhöhung des thermischen Widerstandes ist außerdem bekannt, ein thermisch isolierendes Element, beispielsweise einen Keramik-Körper in das Innere des Gehäusehalses einzusetzen.Depending on the area in which the container is used, temperatures of up to 200 ° C can prevail inside the container. In this case, there is a particular challenge in thermally isolating the level measuring device from the inside of the container, since the electronic components of the field device are usually only designed up to a temperature of approximately 80 ° C. The thermal insulation of the electronic components therefore often takes place via a thermally insulating housing neck with high thermal resistance, which is arranged between the antenna and the housing, which is located outside the container. A corresponding level measuring device is for example in the publication DE102009028620 A1 disclosed. The electronic components are located in the housing. Corresponding to this purpose, the housing neck is dimensioned with a certain minimum length and a correspondingly small cross-sectional area, so that the highest possible thermal resistance is established between the antenna and the housing. As further measures for increasing the thermal resistance, it is also known to use a thermally insulating element, for example a ceramic body, in the interior of the housing neck.

Hin zu hohen Radar-Frequenzen (wobei unter hoch im Sinne der Erfindung bereits Frequenzen unterhalb von 79 GHz zu verstehen sind) ist es aus Gründen einer ausreichenden Signalübertragung zur Antenne hin jedoch nicht mehr möglich, die elektronischen Baugruppen für die Hochfrequenz-Signalerzeugung entfernt von der Antenne anzuordnen: Daher muss in diesen Fällen von einem (langen) Gehäusehals abgesehen werden.Towards high radar frequencies (where high in the context of the invention already means frequencies below 79 GHz), however, for reasons of sufficient signal transmission to the antenna, it is no longer possible to remove the electronic assemblies for high-frequency signal generation from the To arrange antenna: Therefore, in these cases, a (long) housing neck must be avoided.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Füllstandsmessgerät bereitzustellen, welches bei hohen im Behälter herrschenden Temperaturen eingesetzt werden kann.The invention is therefore based on the object of providing a level measuring device which can be used at high temperatures prevailing in the container.

Die Erfindung löst diese Aufgabe durch ein Radar-basiertes Füllstandsmessgerät zur Messung eines Füllstandes (L) eines in einem Behälter befindlichen Füllgutes. Hierzu umfasst es:

  • Ein Gehäuse,
  • eine Antenne, die derart ausgestaltet und am Behälter angeordnet ist, um elektromagnetische Wellen (SHF) in Richtung des Füllgutes auszusenden und/oder um im Behälter reflektierte elektromagnetische Wellen (EHF) zu empfangen,
  • einen Gehäusehals, der zwischen dem Gehäuse und der Antenne angeordnet ist, wobei der Gehäusehals zwischen dem Gehäuse und der Antenne einen vordefinierten thermischen Widerstand (Rth,G) aufweist,
  • zumindest eine teilweise im Gehäusehals angeordnete Elektronik-Baugruppe.
The invention solves this problem by means of a radar-based fill level measuring device for measuring a fill level (L) of a product located in a container. It includes:
  • A housing
  • an antenna which is designed and arranged on the container in order to emit electromagnetic waves (S HF ) in the direction of the filling material and / or to receive electromagnetic waves (EHF) reflected in the container,
  • a housing neck which is arranged between the housing and the antenna, the housing neck having a predefined thermal resistance (R th, G ) between the housing and the antenna,
  • at least one electronics assembly partially arranged in the housing neck.

Der Gehäusehals zeichnet sich erfindungsgemäß dadurch aus, dass der thermische Widerstand (Rth,G) des Gehäusehalses so bemessen ist, um bei einer Temperatur (TB) nahe der Antenne im Behälter (bzw.) von mindestens 200° C die Temperatur (TE) an der Elektronik-Baugruppe auf höchstens 80° C zu begrenzen. Dementsprechend ist der thermische Widerstand (Rth,G) mit kleiner als 15 Kelvin pro Watt, insbesondere kleiner als 10 Kelvin pro Watt zu bemessen. Hierzu ist der Gehäusehals vorzugsweise aus einem thermisch leitfähigen Material, insbesondere aus Edelstahl, Aluminium oder Kupfer gefertigt. Von diesen Materialien weist Kupfer den größten Wärmeleitkoeffizient auf. Dadurch kann eine sehr kompakte Ausgestaltung des erfindungsgemäßen Gehäusehalses erreicht werden. Edelstahl hingegen weist unter den genannten Materialien die höchste mechanische und chemische Beständigkeit auf und kann daher vorzugsweise verwendet werden, wenn das Füllstandsmessgerät aggressiven Umgebungsbedingungen ausgesetzt ist.According to the invention, the housing neck is characterized in that the thermal resistance (R th, G ) of the housing neck is dimensioned in such a way that at a temperature (T B ) near the antenna in the container (or) of at least 200 ° C the temperature (T E ) on the electronic assembly to a maximum of 80 ° C. Accordingly, the thermal resistance (R th, G ) is to be dimensioned to be less than 15 Kelvin per watt, in particular less than 10 Kelvin per watt. For this purpose, the housing neck is preferably made from a thermally conductive material, in particular from stainless steel, aluminum or copper. Of these materials, copper has the greatest coefficient of thermal conductivity. As a result, a very compact design of the housing neck according to the invention can be achieved. Stainless steel, on the other hand, has the highest mechanical and chemical resistance of the materials mentioned and can therefore be used preferably when the level measuring device is exposed to aggressive ambient conditions.

Im Rahmen der Erfindung ist der thermische Widerstand (Rth,G) definiert als: R th , G = 1 λ G l G A G .

Figure imgb0001
In the context of the invention, the thermal resistance (R th, G ) is defined as: R. th , G = 1 λ G l G A. G .
Figure imgb0001

Dabei ist IG die Länge des Gehäusehalses und AG dessen Querschnittsfläche. λG ist der Wärmeleitkoeffizient des verwendeten Gehäusematerials mit der Einheit W mK .

Figure imgb0002
I G is the length of the housing neck and A G is its cross-sectional area. λ G is the coefficient of thermal conductivity of the housing material used with the unit W. mK .
Figure imgb0002

Durch die erfindungsgemäße Anordnung der Elektronik-Baugruppe im Gehäusehals wird somit ein temperaturbeständiges Füllstandsmessgerät bereitgestellt, welches auch im Bereich hoher Radar-Frequenzen eingesetzt werden kann. Dadurch kann eine verbesserte Genauigkeit bei der Füllstandsmessung erzielt werden, als es mit vergleichbaren Füllstandsmessgeräten nach dem Stand der Technik möglich ist. Die Temperatur-Beständigkeit des Füllstandsmessgerätes wird erfindungsgemäß bewirkt, indem entgegen dem allgemeinen Fachwissen der Gehäusehals mit einem verringerten thermischen Widerstand (Rth,G) ausgelegt wird und dadurch die Temperatur (TE) an der Elektronik-Baugruppe auf deutlich unter 80 °C reduziert werden kann. Durch die erhöhte Wärmeleitfähigkeit im Gehäusehals werden die unterhalb der Elektronik-Baugruppe befindlichen Gehäusehals- und Antennen-Komponenten thermisch gut an das als Kühlkörper wirkende eigentliche Gehäuse angekoppelt und dadurch die Konvektionsströme von der gegebenenfalls heißen Antenne über die Elektronik-Baugruppe zum Gehäuse minimiert. Eine geringe Erhöhung der Temperatur im eigentlichen Gehäuse ist hierbei unkritisch.The inventive arrangement of the electronic assembly in the housing neck thus provides a temperature-resistant fill level measuring device which can also be used in the range of high radar frequencies. As a result, better accuracy can be achieved in the fill level measurement than is possible with comparable fill level measuring devices according to the prior art. The temperature resistance of the level measuring device is achieved according to the invention by designing the housing neck with a reduced thermal resistance (R th, G ), contrary to general technical knowledge, and thereby reducing the temperature (T E ) on the electronics assembly to well below 80 ° C can be. Due to the increased thermal conductivity in the housing neck, the housing neck and antenna components located below the electronics assembly are thermally well coupled to the actual housing, which acts as a heat sink, thereby minimizing the convection currents from the antenna, which may be hot, via the electronics assembly to the housing. A slight increase in the temperature in the actual housing is not critical here.

Neben dem verwendeten Gehäusematerial kann der thermische Widerstand des Gehäusehalses entsprechend der oben genannten Formel durch seine geometrische Auslegung, insbesondere die Querschnittsgeometrie, die Länge (IG), den mittleren Außendurchmesser (DG) und die mittlere Wandstärke (dG) beeinflusst werden. In einer vorteilhaften Form der Erfindung weist der Gehäusehals daher vorzugsweise einen in etwa runden Querschnitt mit einem entsprechenden Außendurchmesser (DG) und einer Wandstärke (dG) auf. Die Querschnittsfläche AG bemisst sich in diesem Fall zu A G = π D G d G d G 2 .

Figure imgb0003
In addition to the housing material used, the thermal resistance of the housing neck can be influenced according to the above formula by its geometric design, in particular the cross-sectional geometry, the length (I G ), the mean outside diameter (D G ) and the mean wall thickness (d G ). In an advantageous form of the invention, the housing neck therefore preferably has an approximately round cross section with a corresponding outer diameter (D G ) and a wall thickness (d G ). The cross-sectional area A G is measured in this case A. G = π D. G d G - d G 2 .
Figure imgb0003

Hierbei sieht eine Weiterbildung des erfindungsgemäßen Füllstandsmessgerätes vor, dass der Gehäusehals für den Fall, dass dieser aus Edelstahl λ G = 15 W mK

Figure imgb0004
gefertigt ist, eine mittlere minimale Wandstärke (dG) von 4 mm aufweist. Des Weiteren ist es bezüglich des Außendurchmessers (DG) vorteilhaft, wenn der Gehäusehals im Fall von Edelstahl einen maximalen mittleren Außendurchmesser (DG) von 80 mm aufweist. Darüber hinaus ist es möglich, einen erfindungsgemäß geringen thermischen Widerstand (Rth,G) zu erreichen, indem der Gehäusehals für den Fall, dass der Gehäusehals aus Edelstahl gefertigt ist, eine maximale Länge (IG) von 140 mm aufweist. Im Falle solch einer Auslegung (dG = 4 mm, DG = 80 mm, IG = 140 mm, λG = 15 W mK ,
Figure imgb0005
bei runder Querschnittsfläche AG) resultiert nach den zuvor genannten Formeln ein thermischer Widerstand (Rth,G) von ca. 9.78 Kelvin pro Watt.In this case, a further development of the fill level measuring device according to the invention provides that the housing neck, in the event that it is made of stainless steel λ G = 15th W. mK
Figure imgb0004
is made, has an average minimum wall thickness (d G ) of 4 mm. Furthermore, with regard to the outside diameter (D G ), it is advantageous if the housing neck in the case of stainless steel has a maximum mean outside diameter (D G ) of 80 mm. In addition, it is possible to achieve a low thermal resistance (R th, G ) according to the invention in that the housing neck has a maximum length (I G ) of 140 mm in the event that the housing neck is made of stainless steel. In the case of such a design (d G = 4 mm, D G = 80 mm, I G = 140 mm, λ G = 15 W. mK ,
Figure imgb0005
with a round cross-sectional area A G ), according to the aforementioned formulas, a thermal resistance (R th, G ) of approx. 9.78 Kelvin per watt results.

Dieses Dimensionierungsbeispiel verdeutlicht einen zusätzlichen Vorteil: Durch die erfindungsgemäße Idee kann der Gehäusehals, und somit das gesamte Füllstandsmessgerät, wesentlich kompakter realisiert werden, als es nach dem Stand der Technik möglich ist.This dimensioning example illustrates an additional advantage: the inventive idea allows the housing neck, and thus the entire fill level measuring device, to be made much more compact than is possible according to the state of the art.

Zu einer weiterhin verbesserten thermischen Entkopplung der elektronischen Baugruppe vom Gehäusehals und einer damit verbundenen weiteren Temperatursenkung an der elektronischen Baugruppe weist der Gehäusehals in einer Weiterbildung der Erfindung eine Innenwand mit einer thermisch isolierenden Schicht auf. Hierbei kann es sich um eine Wand-Beschichtung handeln. Möglich ist jedoch auch die Verwendung eines Kunststoff- oder Keramik-Einsatzes. Im Falle von Kunststoff kann insbesondere PPS (Polyphenylensulfid) verwendet werden. Zum gleichen Zweck ist es außerdem von Vorteil, wenn im Gehäusehals zwischen der Elektronik-Baugruppe und der Antenne ein thermisches Isolationselement angeordnet ist.For a further improved thermal decoupling of the electronic assembly from the housing neck and an associated further temperature reduction on the electronic assembly, the housing neck in a development of the invention has an inner wall with a thermally insulating layer. This can be a wall coating. However, it is also possible to use a plastic or ceramic insert. In the case of plastic, in particular PPS (polyphenylene sulfide) can be used. For the same purpose, it is also advantageous if a thermal insulation element is arranged in the housing neck between the electronics assembly and the antenna.

Die Verbindung des Gehäusehalses zur Antenne bzw. zum Gehäuse ist im einfachsten Fall unlösbar und dementsprechend einteilig ausgestaltet. Alternativ ist es jedoch vorzugsweise möglich, dass die Antenne und/oder das Gehäuse über zumindest eine lösbare Verbindung mit dem Gehäusehals verbunden sind/ist. In diesem Fall ist es zwecks weiterer Verringerung des thermischen Widerstandes (Rth,G) von Vorteil, eine Wärmeleitpaste an der zumindest einen lösbaren Verbindung vorzusehen.In the simplest case, the connection of the housing neck to the antenna or to the housing is inseparable and is accordingly designed in one piece. Alternatively, however, it is preferably possible that the antenna and / or the housing are / is connected to the housing neck via at least one detachable connection. In this case it is for the purpose of further reducing the thermal resistance (R th, G ) advantageous to provide a thermal paste on the at least one detachable connection.

Anhand der nachfolgenden Figuren wird die Erfindung näher erläutert. Es zeigt:

  • Fig. 1: Eine schematische Darstellung eines erfindungsgemäßen Füllstandsmessgerätes an einem Behälter,
  • Fig. 2: eine detaillierte Darstellung eines erfindungsgemäßen Füllstandsmessgerätes, und
  • Fig. 3: ein Diagramm der Temperatur der elektronischen Komponente in Abhängigkeit der Temperatur im Behälter.
The invention is explained in more detail using the following figures. It shows:
  • Fig. 1 : A schematic representation of a fill level measuring device according to the invention on a container,
  • Fig. 2 : a detailed representation of a level measuring device according to the invention, and
  • Fig. 3 : a diagram of the temperature of the electronic component as a function of the temperature in the container.

Zu einem verbesserten Verständnis der Erfindung ist in Fig. 1 eine Anordnung eines erfindungsgemäßen Radar-basierten Füllstandsmessgerätes 1 an einem Behälter 2 gezeigt. Im Inneren des Behälters 2 befindet sich ein Füllgut 3, dessen Füllstand L zu bestimmen ist.For an improved understanding of the invention is in Fig. 1 an arrangement of a radar-based fill level measuring device 1 according to the invention on a container 2 is shown. Inside the container 2 there is a filling material 3, the filling level L of which is to be determined.

Zur Bestimmung des Füllstands L ist das Füllstandsmessgerät 1 in Bezug zum Behälterboden in einer vorbekannten Einbauhöhe h, die je nach Behältergröße bis zu mehr als 30 m hoch sein kann, oberhalb des Füllgutes 5 am Behälter 2 angebracht. Hierzu ist das Füllstandsmessgerät 1 derart mittels einer Flanschverbindung an der Oberseite des Behälters 2 angeordnet, dass es elektromagnetische Wellen SHF, die durch eine elektronische Baugruppe 131 erzeugt werden, über eine Antenne 12 in Richtung des Füllgutes 3 aussendet. Dies kann gemäß dem FMCW- oder auch dem Puls-Laufzeit-Verfahren, beispielsweise bei einer Frequenz von 79 GHz oder höher, erfolgen.To determine the level L, the level measuring device 1 is attached to the container 2 above the product 5 at a previously known installation height h, which can be up to more than 30 m high depending on the size of the container. For this purpose, the level measuring device 1 is arranged by means of a flange connection on the top of the container 2 in such a way that it transmits electromagnetic waves S HF , which are generated by an electronic assembly 131, via an antenna 12 in the direction of the product 3. This can be done according to the FMCW or also the pulse transit time method, for example at a frequency of 79 GHz or higher.

Nach Reflektion an der Füllgut-Oberfläche empfängt das Füllstandsmessgerät 1 die reflektierten elektromagnetischen Wellen EHF wieder über die Antenne 12. Dabei ist die vom Füllstandsmessgerät 1 gemessene Laufzeit zwischen Aussenden und Empfangen der hochfrequenten Elektromagnetischen Wellen SHF, EHF abhängig von der Entfernung a zur Füllgut-Oberfläche. Die anschließende Berechnung des Füllstandes L aus der Laufzeit bzw. der Entfernung a zur Füllgut-Oberfläche erfolgt durch das Füllstandsmessgerät 3 unter Kenntnis von dessen Einbauhöhe h: L = h - a. Die Berechnung erfolgt durch eine entsprechende Geräte-Elektronik 111 des Feldgerätes 1, die durch ein Gehäuse 11 gekapselt ist.After reflection on the product surface, the level measuring device 1 receives the reflected electromagnetic waves E HF again via the antenna 12. The transit time measured by the level measuring device 1 is between the transmission and reception of the high-frequency electromagnetic waves S HF , E HF depending on the distance a to the product surface. The subsequent calculation of the filling level L from the transit time or the distance a to the filling material surface is carried out by the filling level measuring device 3 with knowledge of its installation height h: L = h - a. The calculation is carried out by a corresponding device electronics 111 of the field device 1, which is encapsulated by a housing 11.

Das erfindungsgemäße Füllstandsmessgerät 3 kann, wie in Fig. 1 dargestellt, über die Geräte-Elektronik 111 mittels eines Bussystems, etwa "PROFIBUS", "HART" oder "Wireless HART" mit einer übergeordneten Einheit 4, beispielsweise einem Prozessleitsystem, verbunden sein. Hierüber können zum einen Informationen über den Füllstand L übermittelt werden, um gegebenenfalls am Behälter 2 vorhandene Zu- oder Abflüsse zu steuern. Es können aber auch etwaige Informationen über den Betriebszustand des Füllstandsmessgerätes 1 kommuniziert werden.The fill level measuring device 3 according to the invention can, as in FIG Fig. 1 shown, be connected to a higher-level unit 4, for example a process control system, via the device electronics 111 by means of a bus system, for example “PROFIBUS”, “HART” or “Wireless HART”. On the one hand, this can be used to transmit information about the level L in order to control inflows or outflows that may be present on the container 2. However, any information about the operating state of the fill level measuring device 1 can also be communicated.

Innerhalb der Antenne 12 ist eine Prozessdichtung 121, beispielsweise aus einem chemisch inerten Kunststoff, angeordnet, um das Füllstandsmessgerät 1 fluiddicht gegenüber dem Inneren des Behälters 2 abzudichten. Neben der Notwendigkeit einer fluidischen Abdichtung ist es jedoch zudem nötig, das Füllstandsmessgerät 1 vor Temperatureinflüssen aus dem Inneren des Behälters 2 zu schützen:A process seal 121, for example made of a chemically inert plastic, is arranged inside the antenna 12 in order to seal the fill level measuring device 1 in a fluid-tight manner with respect to the interior of the container 2. In addition to the need for a fluidic seal, however, it is also necessary to protect the level measuring device 1 from temperature influences from the interior of the container 2:

Je nach Einsatzzweck kann im Inneren des Behälters 2 eine Temperatur TB von bis zu mehr als 200 °C vorherrschen, beispielsweise aufgrund einer chemischen Reaktion, die das Füllgut 3 momentan durchläuft. Da die elektronischen Komponenten 111, 131 des Feldgerätes 1 in der Regel jedoch nur bis zu einer Temperatur TE bis ca. 80 ° C ausgelegt sind, umfasst das Feldgerät 1 zu ihrem Schutz vor der thermischen Belastung einen Gehäusehals 13, der zwischen der Antenne 12 und dem Gehäuse 11 angeordnet ist.Depending on the intended use, a temperature T B of up to more than 200 ° C. can prevail in the interior of the container 2, for example due to a chemical reaction which the filling material 3 is currently undergoing. Since the electronic components 111, 131 of the field device 1 are generally only designed up to a temperature T E of up to approx. 80 ° C., the field device 1 comprises a housing neck 13, which is located between the antenna 12, to protect it from the thermal load and the housing 11 is arranged.

Zur Erzielung einer möglichst hohen Auflösung bei der Füllstandsmessung muss die Elektronik-Baugruppe 131 für die Hochfrequenz-Signalerzeugung nahe der Antenne 12 angeordnet sein. Der Grund dafür ist, dass die Einkopplung der elektromagnetischen Wellen SHF im Falle von hohen Sende-/Empfangs-Frequenzen, bspw. bei 79 GHz, die Einkopplung in die Antenne 12 bei einer weiten Entfernung sehr verlustbehaftet ist. Daher ist die Elektronik-Baugruppe 131 nicht im weiter entfernten Gehäuse 11, sondern im näher an der Antenne 12 befindlichen Gehäusehals 13 angeordnet. Um die Elektronik-Baugruppe 131 dennoch vor etwaiger thermischen Belastung aus dem Inneren des Behälters 2 zu schützen, weist der Gehäusehals 13 daher erfindungsgemäß einen derart geringen thermischen Widerstand Rth,G auf, dass bei einer Temperatur von mindestens 200 °C im Behälter 2 (bzw. am Ort der Antenne 12) die Temperatur TE der elektronischen Komponente 131 auf höchstens 80 °C ansteigt.In order to achieve the highest possible resolution in the fill level measurement, the electronic assembly 131 for generating high-frequency signals must be arranged close to the antenna 12. The reason for this is that the Coupling of the electromagnetic waves S HF in the case of high transmit / receive frequencies, for example at 79 GHz, the coupling into the antenna 12 is very lossy at a great distance. The electronics assembly 131 is therefore not arranged in the housing 11 that is further away, but rather in the housing neck 13 located closer to the antenna 12. In order to protect the electronic assembly 131 from any thermal load from the interior of the container 2, the housing neck 13 according to the invention has such a low thermal resistance R th, G that at a temperature of at least 200 ° C in the container 2 ( or at the location of the antenna 12) the temperature T E of the electronic component 131 rises to a maximum of 80.degree.

Eine detaillierte Querschnittsansicht des erfindungsgemäßen Füllstandsmessgerätes 1 ist in Fig. 2 gezeigt. In dieser Darstellung werden die Einflussgrößen des thermischen Widerstandes Rth,G genauer ersichtlich: Neben dem Material, aus dem der Gehäusehals 13 gefertigt ist, sind dies vor allem die geometrischen Bemessungen des Gehäusehalses 13: Die Länge IG, der Außendurchmesser DG sowie die Wandstärke dG des Gehäusehalses 13 (in der gezeigten Darstellung weist der Gehäusehals 13 einen in etwa runden Querschnitt auf).A detailed cross-sectional view of the fill level measuring device 1 according to the invention is shown in FIG Fig. 2 shown. In this illustration, the influencing variables of the thermal resistance R th, G can be seen in more detail: In addition to the material from which the housing neck 13 is made, these are above all the geometric dimensions of the housing neck 13: the length I G , the outer diameter D G and the Wall thickness d G of the housing neck 13 (in the illustration shown, the housing neck 13 has an approximately round cross section).

Wie sich beispielsweise eine Änderung der Wandstärke dG auf den thermischen Widerstand Rth,G des Gehäusehalses 13 auswirkt, wird aus dem in Fig. 3 dargestellten Diagramm ersichtlich: Im Falle einer Temperatur von 200 °C im Behälter 2 und einer Erhöhung der Wandstärke dG von 2 mm auf 5.6 mm (dies entspricht einer Reduktion des thermischen Widerstandes Rth,G von ca. 19.04 Kelvin/Watt auf ungefähr 7.13 Kelvin/Watt, die sonstigen Bemessungen bleiben unverändert bei DG = 80 mm, IG = 140 mm, λ G = 15 W mK )

Figure imgb0006
λG verringert sich die Temperatur TE an der Elektronik-Baugruppe 131 von ca. 83 °C auf ungefähr 63 °C, welches nunmehr eine unkritische Temperatur für die Elektronik-Baugruppe 131 darstellt. Diesen Simulationswerten liegt die Annahme zugrunde, dass der Gehäusehals 13 bei einer Wandstärke dG von 5.6 mm zur thermischen Entkopplung der elektronischen Baugruppe 131 zusätzlichen einen 1 mm dicken thermisch isolierenden Einsatz 132 aus PPS an der Innenwand des Gehäusehalses 13 aufweist (siehe Fig. 2). Wie in Fig. 2 dargestellt, wäre es zu diesem Zweck außerdem möglich, im Gehäusehals 13 ein thermisches Isolationselement 135 (bspw. eine entsprechend ausgestaltete Keramik mit einem hohen thermischem Widerstand) zwischen der elektronischen Komponente 131 und der Antenne 12 anzuordnen.For example, how a change in the wall thickness d G affects the thermal resistance R th, G of the housing neck 13 is shown in FIG Fig. 3 In the case of a temperature of 200 ° C in container 2 and an increase in wall thickness d G from 2 mm to 5.6 mm (this corresponds to a reduction in thermal resistance R th, G from approx. 19.04 Kelvin / watt to approx. 7.13 Kelvin / watt, the other measurements remain unchanged at D G = 80 mm, I G = 140 mm, λ G = 15th W. mK )
Figure imgb0006
λ G , the temperature T E at the electronics assembly 131 decreases from approximately 83 ° C. to approximately 63 ° C., which now represents a non-critical temperature for the electronics assembly 131. These simulation values are based on the assumption that the housing neck 13 with a wall thickness d G of 5.6 mm for thermal decoupling of the electronic assembly 131 also has a 1 mm thick thermally insulating insert 132 made of PPS on the inner wall of the housing neck 13 (see Fig. 2 ). As in Fig. 2 For this purpose, it would also be possible to arrange a thermal insulation element 135 (for example a correspondingly configured ceramic with a high thermal resistance) in the housing neck 13 between the electronic component 131 and the antenna 12.

Aus dem Diagramm, das in Fig. 3 dargestellt ist, geht zudem hervor, dass mit der Verringerung des thermischen Widerstandes Rth,G eine leichte Erhöhung der Temperatur an der Geräte-Elektronik 111 im Gehäuse 11 einhergeht. Im Sinne der Erfindung kann dies allerdings in Kauf genommen werden, da die Temperatur der Geräte-Elektronik 111 weiterhin deutlich unterhalb von 80 °C verbleibt. Vielmehr wird erfindungsgemäß bewirkt, dass auch die im Gehäusehals 13 befindliche Elektronik-Komponente 131 thermisch vom Behälter derart vom Behälter 2 entkoppelt wird, dass auch bei einer Temperatur von 200 °C im Behälter 2 die Temperatur TE an der elektronischen Komponente 131 im Gehäusehals 13 unterhalb von 80 ° C verbleibt.From the diagram in Fig. 3 is shown, it can also be seen that a slight increase in the temperature of the device electronics 111 in the housing 11 is associated with the reduction in the thermal resistance R th, G. In the context of the invention, however, this can be accepted, since the temperature of the device electronics 111 continues to remain well below 80.degree. Rather, the effect of the invention is that the electronic component 131 located in the housing neck 13 is also thermally decoupled from the container 2 from the container in such a way that the temperature T E at the electronic component 131 in the housing neck 13 even at a temperature of 200 ° C. in the container 2 remains below 80 ° C.

BezugszeichenlisteList of reference symbols

11
FüllstandsmessgerätLevel measuring device
22
Behältercontainer
33
FüllgutFilling material
44th
Übergeordnete EinheitParent unit
1111
Gehäusecasing
1212th
Antenneantenna
1313th
GehäusehalsHousing neck
111111
Geräte-ElektronikDevice electronics
121121
ProzessdichtungProcess seal
131131
Elektronik-BaugruppeElectronics assembly
132132
Thermisch isolierende SchichtThermally insulating layer
133133
Lösbare VerbindungDetachable connection
134134
Lösbare VerbindungDetachable connection
135135
Thermisches IsolationselementThermal insulation element
AGAG
Querschnittsfläche des GehäusehalsesCross-sectional area of the housing neck
aa
Abstand zum FüllgutDistance to the product
DGDG
Außendurchmesser des GehäusehalsesOutside diameter of the housing neck
dGdG
Wandstärke des GehäusehalsesWall thickness of the housing neck
EHFEHF
Elektromagnetische WellenElectromagnetic waves
HH
Einbauhöhe des FüllstandsmessgerätesInstallation height of the level measuring device
LL.
FüllstandLevel
IGIG
Länge des GehäusehalsesLength of the case neck
Rth,GRth, G
Thermischer Widerstand des GehäusehalsesThermal resistance of the housing neck
TBTB
Temperatur im BehälterTemperature in the container
TETE
Temperatur an der Elektronik-BaugruppeTemperature on the electronic assembly
λGλG
Wärmeleitkoeffizient des GehäusematerialsThermal conductivity coefficient of the housing material

Claims (11)

  1. Radar-based level transmitter, designed to measure a level (L) of a medium (3) located in a vessel (2), comprising
    - a housing (11),
    - an antenna (12), which is designed and arranged on the vessel (2) in such a way to transmit electromagnetic waves (SHF) in the direction of the medium (3) and/or to receive electromagnetic waves (EHF) reflected in the vessel (2),
    - a housing neck (13), which is arranged between the housing (11) and the antenna (12), wherein the housing neck (13) has a predefined thermal resistance (Rth,G) between the housing (11) and the antenna (12),
    - at least an electronics assembly (131) partially arranged in the housing neck (13),
    characterized in that
    the thermal resistance (Rth,G) of the housing neck (13) is sized in such a way to be less than 15 Kelvin per Watt such that at a temperature (TB) in the vessel (2) of at least 200 °C, the temperature (TE) at the electronics assembly (131) is at maximum 80 °C.
  2. Level transmitter as claimed in Claim 1,
    characterized in that
    the thermal resistance (Rth,G) of the housing neck (13) is sized to be less than 10 Kelvin per Watt.
  3. Level transmitter as claimed in Claim 1 or 2,
    characterized in that
    the housing neck (13) is made from a thermally conductive material, particularly stainless steel, aluminum or copper.
  4. Level transmitter as claimed in at least one of the previous claims,
    characterized in that
    the housing neck (13) has a cross-section that is approximately round.
  5. Level transmitter as claimed in Claim 4,
    characterized in that
    the housing neck (13) has an average minimum wall thickness (dG) of 4 mm in the event that the housing neck (13) is made from stainless steel.
  6. Level transmitter as claimed in Claim 4 or 5,
    characterized in that
    the housing neck (13) has a maximum average outer diameter (DG) of 80 mm in the event that the housing neck (13) is made of stainless steel.
  7. Level transmitter as claimed in one or more of the Claims 4 to 6,
    characterized in that
    the housing neck (13) has a maximum length (IG) of 140 mm in the event that the housing neck (13) is made of stainless steel.
  8. Level transmitter as claimed in at least one of the previous claims,
    characterized in that
    the housing neck (13) has an interior wall with an insulating thermal layer (132), particularly made of polyphenylene sulfide.
  9. Level transmitter as claimed in at least one of the previous claims,
    characterized in that
    the antenna (12) and/or the housing (11) is/are connected to the housing neck (13) via at least a detachable connection (133, 134).
  10. Level transmitter as claimed in Claim 9,
    characterized in that
    a heat transfer paste is provided at the at least one detachable connection (133, 134).
  11. Level transmitter as claimed in at least one of the previous claims,
    characterized in that
    a thermal isolation element (135) is arranged in the housing neck (13) between the electronics assembly (131) and the antenna (12).
EP17804526.6A 2016-12-20 2017-11-22 Temperature-resistant fill level measurement device Active EP3559613B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016124982.3A DE102016124982A1 (en) 2016-12-20 2016-12-20 Temperature-resistant level gauge
PCT/EP2017/080049 WO2018114186A1 (en) 2016-12-20 2017-11-22 Temperature-resistant fill level measurement device

Publications (2)

Publication Number Publication Date
EP3559613A1 EP3559613A1 (en) 2019-10-30
EP3559613B1 true EP3559613B1 (en) 2021-06-30

Family

ID=60473525

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17804526.6A Active EP3559613B1 (en) 2016-12-20 2017-11-22 Temperature-resistant fill level measurement device

Country Status (5)

Country Link
US (1) US11187570B2 (en)
EP (1) EP3559613B1 (en)
CN (1) CN110268232B (en)
DE (1) DE102016124982A1 (en)
WO (1) WO2018114186A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018117164A1 (en) * 2018-07-16 2020-01-16 Endress+Hauser SE+Co. KG level meter
EP4089376A1 (en) 2019-01-22 2022-11-16 VEGA Grieshaber KG Waveguide with high conductivity for high temperatures and high frequencies for fill level meters
CN113383213A (en) * 2019-02-07 2021-09-10 罗斯蒙特储罐雷达股份公司 Radar level gauge system with improved heat dissipation
DE102022131745A1 (en) 2022-11-30 2024-06-06 Vega Grieshaber Kg Field device
DE102022131683A1 (en) 2022-11-30 2024-06-06 Endress+Hauser SE+Co. KG Radar-based level measuring device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560511A (en) * 1995-01-06 1996-10-01 The United States Of America As Represented By The Secretary Of The Army Hermetically sealable reusable container
EP1396710B1 (en) * 1998-03-18 2007-03-14 VEGA Grieshaber KG Microwave level gauge capable of operation at high temperatures and/or high pressures and/or in a chemically agressive environment
US6661389B2 (en) * 2000-11-20 2003-12-09 Vega Grieshaber Kg Horn antenna for a radar device
US6642807B1 (en) * 2002-04-29 2003-11-04 Magnetrol International Incorporated Coaxial probe for high temperature and high pressure applications
DE10308495A1 (en) * 2003-02-26 2004-09-16 Endress + Hauser Gmbh + Co. Kg Device for determining and / or monitoring the level of a medium in a container
US7283086B2 (en) * 2004-05-13 2007-10-16 Endress + Hauser Gmbh + Co. K.G. Fill level measuring device working with microwaves
US7255002B2 (en) * 2005-04-07 2007-08-14 Rosemount, Inc. Tank seal for guided wave radar level measurement
DE102005022493A1 (en) * 2005-05-11 2006-11-16 Endress + Hauser Gmbh + Co. Kg Device for detecting and monitoring the level of a medium in a container
DE102006019191A1 (en) * 2006-04-21 2007-10-25 Endress + Hauser Gmbh + Co. Kg Method for detecting and monitoring the level of a medium in a container
DE102007026389A1 (en) * 2007-06-06 2008-12-18 Vega Grieshaber Kg Antenna for a level radar for high-temperature and / or high-pressure applications
DE102008020034B4 (en) * 2008-04-21 2016-08-11 Krohne Meßtechnik GmbH & Co KG Process connection for a sensor
DE102009028620A1 (en) * 2009-08-18 2011-02-24 Endress + Hauser Gmbh + Co. Kg Process automation technology measuring device for determining and monitoring a chemical or physical process variable in a high-temperature process in a container
DE102010063430A1 (en) 2010-12-17 2012-06-21 Endress + Hauser Gmbh + Co. Kg Method for monitoring the function of a field device
DE102011007372B4 (en) 2011-04-14 2023-05-04 Endress+Hauser SE+Co. KG Calibration and/or monitoring method for FMCW radar level gauges
US9212941B2 (en) * 2013-03-12 2015-12-15 Rosemount Tank Radar Ab High temperature, high pressure (HTHP) radar level gauge
DE102014101410A1 (en) * 2014-02-05 2015-08-06 Endress + Hauser Gmbh + Co. Kg Device for determining or monitoring the level of a product stored in a container
DE102014107781A1 (en) * 2014-06-03 2015-12-03 Endress + Hauser Gmbh + Co. Kg Device for determining or monitoring a physical or chemical process variable
US10539448B2 (en) * 2016-10-21 2020-01-21 Rosemount Tank Radar Ab Radar level gauge with high temperature, high pressure (HTHP) process seal

Also Published As

Publication number Publication date
CN110268232A (en) 2019-09-20
EP3559613A1 (en) 2019-10-30
US20200088562A1 (en) 2020-03-19
CN110268232B (en) 2021-10-15
WO2018114186A1 (en) 2018-06-28
US11187570B2 (en) 2021-11-30
DE102016124982A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
EP3559613B1 (en) Temperature-resistant fill level measurement device
EP2340420B1 (en) Fill-level measuring device
EP2861944B1 (en) Level meter and device for determining a dielectric constant
WO2012079642A1 (en) Measuring device, control device and measuring instrument for level measurement
DE102005042646A1 (en) Device for detecting and monitoring the level of a medium in a container
EP2848902B1 (en) Method for determining a fill level of a medium and device for determining a fill level of a medium
EP2623944B1 (en) Fill level measuring device operating according to the radar principle
EP2687830B1 (en) Method for monitoring the condition of a fill level measuring device operating according to the radar principle and corresponding fill level measuring device
EP3894807A1 (en) Fill-level measuring device
EP3824257B1 (en) Fill level measurement device
WO2022122407A1 (en) Fill-level measuring device
EP3511684A1 (en) Fill level measuring device
WO2019091640A1 (en) Radar-based fill level measurement device
EP3857184B1 (en) Detection of foam formation of a product in a container during a fill level measurement
EP3837509B1 (en) Fill level measuring device
EP3147635B1 (en) Probe holder with spacer
DE102021131499A1 (en) level gauge
DE102021131498A1 (en) level gauge
DE102020133198B4 (en) High-frequency module for a level measuring device and level measuring device
EP4370883A1 (en) Fill level measuring device
EP4196775B1 (en) Temperature-compensated dielectric-constant measuring device
DE102021131503A1 (en) level gauge
DE102016111259B4 (en) Flood-proof level measuring device
WO2023099268A1 (en) Radar-operated level gauge
WO2023020780A1 (en) Modular field device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G01F 23/284 20060101AFI20210129BHEP

Ipc: G01S 13/88 20060101ALI20210129BHEP

Ipc: G01S 7/02 20060101ALI20210129BHEP

INTG Intention to grant announced

Effective date: 20210223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1406751

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010807

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010807

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

26N No opposition filed

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171122

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1406751

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 7

Ref country code: FR

Payment date: 20231120

Year of fee payment: 7

Ref country code: DE

Payment date: 20231121

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630