EP3558106A1 - Equipment for monitoring blood flow and respiratory flow - Google Patents

Equipment for monitoring blood flow and respiratory flow

Info

Publication number
EP3558106A1
EP3558106A1 EP17803903.8A EP17803903A EP3558106A1 EP 3558106 A1 EP3558106 A1 EP 3558106A1 EP 17803903 A EP17803903 A EP 17803903A EP 3558106 A1 EP3558106 A1 EP 3558106A1
Authority
EP
European Patent Office
Prior art keywords
equipment according
length
segment
equipment
elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17803903.8A
Other languages
German (de)
French (fr)
Inventor
Philippe Lange
Giovanni AMOROSO
David Lawrence CAMP
Gabriele BUTTIGNOL
Gerrit De Vries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idahealth Inc
Original Assignee
Idahealth Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idahealth Inc filed Critical Idahealth Inc
Publication of EP3558106A1 publication Critical patent/EP3558106A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6831Straps, bands or harnesses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • A61B5/6833Adhesive patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/05Surgical care
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1072Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring distances on the body, e.g. measuring length, height or thickness

Definitions

  • Plethysmography developed at the beginning of the 20th century, makes it possible to measure changes in volume in an organ or the whole body, whether human or animal, and is, among other things, used to measure peripheral blood flows. or superficial.
  • R. J. Whitney developed, in the late 1940s, a double cord deformation gauge system consisting of a mercury-containing rubber casing (J. Physiol., 121, 1-27, 1953). The technology has since been improved.
  • Various techniques are described using for example a photoelectric sensor illuminating the arteries of the wrist to measure the variation of the arterial volume and allowing the generation of an electrical signal which can then be analyzed by various methods to obtain the hematological information.
  • a review of plethysmography methods is available on the internet (http://levelldiagnostics.com/ research / P / LlD-
  • PulseWaveMonograph. pdf PulseWaveMonograph. pdf.
  • sphygmomanometer better known as a sphygmomanometer
  • the tensiometer is based on the principle of a manometer that records the reaction of the arteries, subjected to both the pressure of the heart and that of the air produced by the device.
  • the tensiometer has become essential for its simplicity of use in medical practices. However, it allows only a rough estimate of the voltage, representative of blood flows, over a short period.
  • electrocardiography has become the cardiologist's exam of choice for representing the electrical activity of the heart.
  • This examination nevertheless requires the installation of several electrodes at various locations of the body, connected to a unit of analysis, monitoring, signals collected.
  • Doppler ultrasound is also used to explore intracardiac and intravascular blood flow.
  • the practitioner moves a probe along the organs to be analyzed to determine the direction and speed of blood flow.
  • this test is not compatible with prolonged use and requires the active presence of a practitioner.
  • Cardiovascular disease is the leading cause of death in the world. Over the last thirty years, research has led to the development of many drug treatments for some of the heart diseases. At the same time, the surgical techniques have been considerably improved, making it possible in particular to avoid open heart surgery as much as possible by, for example, encouraging the placement of arterial support devices, such as stents, by the arterial route, in particular via the radial artery.
  • arterial support devices such as stents
  • breathing cycles that is, the number of breaths and expirations per unit of time, also affect blood flow.
  • the present invention provides an improvement in plethysmography techniques, advantageously taking advantage of technological advances in the field of conductive materials.
  • nonconductive polymers can be "doped” to promote the displacement of electrons along the conjugated double bonds of the polymer and to make this polymer conductive.
  • the document WO2015 / 049067 details a method for doping polymers, and in particular elastomers, with nanomaterials, in particular graphene-type carbon-based nanomaterials, in order to render these polymers conductive.
  • These conductive elastomers have the property of having a resistance varying according to their length, that is to say the stress applied to them. This is detailed in the above patent document which suggests the use of this property to measure subtle physiological movements such as pulse or respiration.
  • the present invention relates to non-invasive plethysmographic equipment including an elastomer variable resistive conductor usable especially in the operating room, not causing any inconvenience to the practitioner or practitioners.
  • the invention of the present application firstly relates to a non-invasive equipment for monitoring the blood flows of a body element comprising a network of channels traversed by said blood flows comprising:
  • variable-resistance conductive elastomer segment arranged to extend around the perimeter of the body element and sensitive to the length of the periphery of said element, means for gripping said length by virtue of said variable resistor and providing a signal representative of said length, and
  • the invention of the present application also relates to a non-invasive equipment for monitoring the breathing cycles of a human or animal body inducing a variation in the length of the periphery of a body element comprising: at least one segment of elastomer variable resistance conductor arranged to extend around the periphery of the body element and sensitive to the length of the periphery of said element,
  • Blood flow is the flow of blood through the blood vessels and the heart.
  • Blood vessels are all conduits that carry blood and include arteries, veins, venules and capillaries.
  • Non-invasive monitoring equipment is equipment that allows one or more parameters to be monitored, without the need for any infringement of the skin. It is generally accepted that a simple blood test and a product injection are also non-invasive. The non-invasive nature of an equipment generally implies an absence of danger.
  • the variable resistance conductive elastomeric segment is arranged to surround the body member and responsive to the tower length of said member.
  • the variable resistance conductive elastomeric segment is secured to an adhesive part. In all cases, the conductive elastomer is, obviously, placed in contact with the skin itself. Placing the elastomer on a fabric covering the skin, such as clothing, would significantly reduce the sensitivity of the device.
  • body element it is in fact understood here any body part likely to be covered or surrounded, in whole or in part, by the elastomer segment. These bodily elements may include bodily limbs, trunk or throat. They can belong to a human or an animal.
  • the perimeter of the body element refers to a line that forms the boundary of the surface of this element.
  • the elastomer segment may for example extend over a portion of the trunk or neck.
  • the length of the periphery may be only a fraction of the length of the perimeter of the body element.
  • “surround the member” does not necessarily mean that the segment is closed around itself around the member, since around the member are arranged the input means and processing means.
  • the terms “tower” and “perimeter” will be used interchangeably later in this document.
  • An adhesive piece here designates a thin layer, made of polymer fabric or any other suitable material, covered on at least one of its faces with an adhesive or sticky substance which allows the piece to adhere in a durable manner to the skin. at the level of the body element where it is placed.
  • Adhesive pieces are especially used in dressings or in what is commonly called a "patch".
  • the gripping means of said length comprise at least one measuring bridge, at least one of the resistors is constituted by the conductive elastomer variable resistance.
  • the electrical signal at the output of the measurement bridge is an image of the said length of periphery.
  • a measuring bridge here designates an electronic assembly, comprising at least one resistor whose value varies as a function of a parameter to be measured, here a length.
  • a well-known example of a bridge is the Wheatstone bridge, but there are also many variants such as AC bridges, Owen Bridge, Schering Bridge, Robinson Bridge, which improve measurement accuracy.
  • the variation in the length of the conductive elastomer that is to say the variation in the length of the perimeter of the body limb to be monitored, induces a variation in the resistance of the conductive elastomer that is evaluated using the measuring bridge and which is an image of the blood flow at the limb around which the conductive elastomer is placed.
  • the principle of the Wheatstone bridge is well known to those skilled in the art.
  • the measuring bridge provides the function electronic amplifier, and may be an operational, differential or instrumentation amplifier.
  • the measuring bridge can also be called measuring circuit, the concept of bridge being related to the presence of the conductive elastomer variable resistance.
  • the processing means are electronic means and the means for extracting blood flow parameters to be monitored comprise an algorithm arranged to receive the information relating to said length in order to extract the parameters of the parameters. blood flow to watch.
  • FIG. 1 represents a schematic view of the blood flow monitoring equipment according to the invention
  • Figure 2 shows the equipment of Figure 1 around the wrist of a patient
  • Figure 3 is a view of the equipment of Figure 1 with, in detail, the capture box and processing;
  • FIG. 4 represents another embodiment of the blood flow monitoring equipment, comprising two segments of conductive elastomer and positioned around the wrist of a patient;
  • Figure 5 illustrates the arrangement of the equipment of Figure 5 on the inside of the wrist, with respect to the arteries of the wrist and an incision made on the radial artery;
  • Figure 6 shows another embodiment of the blood flow monitoring equipment, comprising two segments of conductive elastomer and positioned around the wrist of a patient;
  • Figure 7 is a view of the equipment of Figure 7 with, in detail, the capture box and processing;
  • Fig. 8 shows a conductive elastomeric segment form
  • Figs. 9a and 9b show another embodiment of the blood flow monitoring equipment, including a system for adjusting the length of the variable elastomer segment;
  • Figure 10 shows a particular configuration of the conductive elastomeric segment
  • FIG. 11 illustrates the possible uses of the equipment of the invention
  • Figure 12 shows the equipment of the invention integrated in an adhesive part
  • Figure 13 illustrates an algorithm of the equipment of the invention
  • FIG. 14 illustrates the equipment of the invention comprising an extension member of a conductive elastomer of the equipment of the invention
  • FIG. 15 illustrates the equipment of the invention associated with an automatic compression bracelet
  • Figure 16 schematically illustrates the equipment of the invention integrated into the bracelet of a connected watch.
  • the plethysmographic equipment of the invention comprises a strap 1 for holding a box 2 for capturing and processing signals and, here, housed in a computer system 4, an algorithm 3 whose function combines with those of the processing means of the housing 2.
  • the bracelet 1 is here an elastomer segment intended to partially surround here a wrist 5 and fixed to the housing 2 to hold the latter on the wrist 5.
  • the connection of the elastomer segment and the housing can be carried out in a simple and standard way, for example with the help of an adhesive tape of the protected trademark "Velcro®” or in the manner of a watch strap holding the watch case.
  • the bracelet 1 is made of conductive polymer intended to be pressed against the skin of the wrist 5.
  • the housing 2 contains a Wheatstone bridge 6 powered by a power source 7 and connected at the output to a wireless transmitter 8.
  • the bracelet 1 is integrated in the bridge 6 as unknown resistance to be appreciated, and connected in a 9 of the two ends of the diagonal of the bridge 6 in which is disposed a detector 10 which is connected to the transmitter 8 and one 11 of the two ends of the other diagonal of the bridge 6 connected to the energy source 7.
  • the computer system 4, in which is implanted the algorithm 3, comprises a receiver 12 arranged to be connected to the transmitter 8 of the housing 2.
  • the algorithm 3 thus cooperates with the measurement bridge 6, the wireless transmitter 8 and the wireless receiver 12.
  • the transmitter 8 - receiver 12 link may be a connection "bluetooth”, "wifi”, or any other wireless technology.
  • a computer a touch pad, a smartphone or even a connected watch.
  • Proper positioning and adjustment of the voltage of the conductive elastomer is important to have an optimal quality signal.
  • the length of the elastomer may be adjusted so that the voltage of the conductive elastomer is sufficient for the detection of its variations in length, and therefore of resistance, but not too high, so that the blood circulation is not affected.
  • the adjustment of the length of the bracelet 1 around the wrist can be done manually or automatically.
  • the length of the conductive elastomer varies depending on the venous flow, the arterial flow and the respiratory volume.
  • the Wheatstone bridge 6 comprising the conductive elastomer bracelet 1 will generate an electrical signal which is the image of these physiological parameters. This signal can then be amplified before being transmitted by the transmitter 8 to the receiver 12 of the computer system 4 comprising the algorithm 3, making it possible to extract the various components from the received signal.
  • the algorithm 3 can isolate the electrical signal related to the arterial pulse and the electrical signal related to the venous flow. It can also allow to analyze the difference between these two flows as well as the first or second derivatives of the difference between these two flows. It can, moreover, also include a frequency analysis in order to separate the streams more clearly, for a better quality of signal. This information can then be viewed on the screen 13 of the computer system 4.
  • the information displayed may be diverse and adapted to the context of use of the equipment of the invention.
  • the evolution of the physiological parameters, or their relationship between them, calculated by the algorithm 3, as a function of time, will be displayed in a manner easy to analyze by the practitioner.
  • an incision in the radial artery is made at the level of the forearm. It is then possible to position the bracelet 1 between the hand and the incision. This is made possible by the small size of the bracelet 1, which is not bulky and does not include electrical connections that may hinder the work of the practitioner.
  • the practitioner can then monitor, in real time, during the introduction of the stent, the arterial and venous flows at the wrist and adapt his intervention accordingly.
  • a practitioner will apply pressure to the wound resulting from the incision of the artery, to stop the bleeding.
  • the practitioner By being able to monitor the arterial and venous flows in real time, the practitioner will be able to adapt the pressure applied to the wound.
  • this wound compression phase would be managed by an automatic device 14 for wound compression, such as that presented by Terumo TR Band® (http: // www. Medicalexpo. fr / prod / terumo-medical / product-71204-454828.html), it is conceivable that the pressure applied by the automatic compression device is controlled, wirelessly, by an additional algorithm integrated in the computer system 4 according to the analysis of the data provided by the bracelet 1.
  • the medical compression device can be connected wirelessly to the computer system or, as the case may be, by direct wire connection to the case of the bracelet.
  • Different types of compression can be applied and controlled via the measuring device, in direct and / or wireless connection.
  • the compression can for example be effected by pressing an outer element, such as for example a hard or soft sphere, an air chamber or a chamber containing a compressible fluid or not.
  • the correct positioning and correct adjustment of the elastomer segment 1 voltage is important for the quality of the measured signal and, consequently, the quality of the parameters extracted by the detection and analysis algorithms.
  • the operator easily positions the bracelet on the wrist, near the hand, in a position that does not disturb the surgical procedure.
  • the delicate setting then consists mainly in tightening the bracelet to adjust its pressure or tension.
  • the length of the conductive elastomeric tape is managed by adjusting the length of the conductive elastomeric tape to an optimum stress or tension at which the elastomer remains sufficiently flexible, but not too loose. It is important to note that the absolute stress of the elastomer does not affect the measurement, but its precision. This is related to the physical characteristics of the elastomer such as, for example, its modulus of elasticity, temperature and dimensions. The elastomer can be made in a specific shape so that it is more flexible, which means that it will give greater precision and its length will be easier to adjust.
  • the adjustment of the length of the elastomer can be advantageously facilitated by the use of a locking system cooperating with the conductive elastomer segment.
  • the conductive elastomeric tape 1 may consist of a continuous material 110 having a particular relief, such as for example a repetitive relief 111 as illustrated in FIG. 8.
  • the relief here is a perforation having a shape of rectangle with rounded corners, but it can take any form compatible with the strength, precision, flexibility and resistance required for the bracelet 1.
  • the relief may, for example, be a pattern of seizing as used, for example, on a hose clamp. This embodiment also makes it possible to improve the electrical contact between the conductive elastomer and the mechanical part connected to the electronic parts of the housing 2.
  • the adjustment of the bracelet 1, at the time of its installation on the wrist can also be controlled by yet another algorithm integrated in the computer system 4, according to the analysis of the data provided by the bracelet 1, a drive member for clamping the conductive elastomer to its optimum voltage for monitoring.
  • the skin 311 of the wrist 310 is surrounded by the conductive elastomer segment 313 and a case 312 containing the electronic elements of the equipment and a clamping member 316.
  • the clamping member 316 comprises a motor 315 which, via a clamping ring 314, allows movement of the conductive elastomer segment at its end 313B, thus adjusting its length, the other end 313B being fixed to the housing 312.
  • the motor 315 can be driven by the computer system 4, and will cause the elastomeric segment 313 to be tightened or loosened to its optimum tension.
  • This voltage is proportional to the resistance of the elastomer and can be extracted from the electrical signal generated by the device. It is conceivable that the end of the adjustment operation is signaled to the operator, for example by means of an apparent light signal on the housing 2, a message on the screen 13 of the computer system 4, an audible signal emitted at the level of the housing 2 or the computer system 4, a vibration of an element of the device or a combination of several of these signals.
  • a second bracelet can be placed between the elbow and the shoulder to generate a second electronic signal, which can be analyzed in relation to the first electrical signal and give to the practitioner additional information about blood flow in the arm as a whole.
  • one or more bracelets can be arranged symmetrically on the second arm to obtain a so-called "reference" signal with respect to which the blood flows of the arm undergoing the intervention can be compared.
  • the non-invasive plethysmographic monitoring apparatus of the invention may comprise two segments of a conductive elastomer arranged to surround the body limb.
  • Two segments of conductive elastomer 101a and 101b are each connected at one end to a housing 102a and at their other end to a housing 102b and partially surround the wrist 5.
  • the two housings 102a and 102b are each formed in a manner similar to the previously described equipment.
  • the first housing 102a is placed between the radial artery 15 and the ulnial artery 16 and the second housing 102b is placed on the top of the wrist.
  • the variation of the length of the conductive elastomer segment 101a is relative to the radial artery 15 and the variation of the length of the conductive elastomer segment 101b is relative to the ulnial artery 16.
  • This configuration allows to obtain two distinct electrical signals that can be transmitted by the wireless communication units of the housings 102a and 102b to the computer unit 4 comprising the algorithm 3 capable of processing these signals to extract the blood flow parameters, which allows the practitioner to obtain more precise information relating to each artery separately.
  • the computer unit 4 comprising the algorithm 3 capable of processing these signals to extract the blood flow parameters, which allows the practitioner to obtain more precise information relating to each artery separately.
  • he makes an incision 17 on the radial artery, he can compare the blood flows in the two arteries of the wrist and adapt his intervention if necessary.
  • a Wheatstone bridge-type circuit has been used here, but it is obvious that any suitable analog system, well known to those skilled in the art, for converting elastomer segment length information into electrical current and / or information digital is also possible, as example of other forms of measuring bridge or amplifier, in particular a differential amplifier.
  • an alternative variant for separately analyzing the signals relating to the ulnial 16 and radial arteries 17 is to use two segments of conductive elastomer 201a and 201b. These are each connected at one end to a housing 202, and at their other end to a fastener 218 and partially surround the wrist 5.
  • the housing 202 comprises two Wheatstone bridges 206a and 206b each integrating one of the two elastomer segments 201a and 201b as unknown resistance.
  • each end of the elastomer must be connected to the Wheatstone bridge for proper operation, it is necessary to add two lead wires 219a and 219b completing the loop formed respectively by the elastomer segments 201a and 201b within their respective Wheatstone bridge.
  • These Wheatstone bridges are each connected to a detector 210a and 210b, respectively, and are both connected to an emitter 208 and a power source 207.
  • a similar configuration can be envisioned with three or more segments of elastomers each segment being integrated in a measuring bridge, but all being connected to the same transmitter.
  • the use of the equipment of the invention is not limited to the wrist or the arm, it can also be used on other limbs or organs according to the needs of the practitioner, for example when the pose of a stent is done via the femoral artery, the bracelet can be placed at the level of the thigh.
  • the use of the invention is not limited to uses during surgical procedures. It can be applied to any other activity to monitor blood flow and / or respiratory cycles.
  • An example is the monitoring of sleep apnea.
  • the patient can then be equipped with a device of the invention, in the form of a bracelet or patch, connected during his sleep to an analysis device, such as his smartphone, which contains an application analyzing the signal emitted by the device electronic equipment and that can emit an audible and / or luminous signal intended to wake the patient, if the apnea becomes dangerous for him.
  • Blood flow monitoring equipment and / or breathing cycles including one or more segments of conductive elastomer, can be used in many parts of the body. It can be used ante, per and post surgery.
  • the equipment of the invention can be used at wrist 1606, ankle 1610 or knee 1609 to monitor venous problems in the leg, from the top of the thigh 1607 to monitor the Femoral artery, lower thigh 1608 to detect arterial and / or venous occlusions. It can also be applied to different levels of the upper arms 1603 and 1604 and / or the forearms 1605 and 1606 to detect arterial and / or venous occlusions.
  • the monitoring conductive elastomeric segment may also be installed at the trunk, for example around the waist 1627, to monitor the movements of the abdomen, for example to monitor abdominal wall behaviors after intestinal intervention, or at the level of the chest 1626 to monitor the respiratory cycle, cardiac coherence and arterial and venous cardiac activities.
  • the device of the invention can be arranged aesthetically, as a kind of jewel, to be used during the day and night in an elegant, practical and comfortable.
  • Another very useful and novel embodiment of the invention is to join the segment (s) of conductive elastomer and the gripping and / or treatment means to an adhesive part, to form a device of the "patch" type. ".
  • a conductive elastomer segment 1621 is connected to an input device 1620 by electrical connectors 1623.
  • the elastomer 1621 and the gripper 1620 are disposed on the tacky side of an adhesive piece 1622, the assembly forming a patch 1624.
  • the input device 1620 has the same elements as the housings 2 and 202 already described.
  • This patch 1624 can be used for example on the chest or abdomen to measure cardiac coherence, respiratory rate and blood circulation. In particular, this patch can be used to assess whether a patient's breathing is deep or only on the upper part of the lungs (inconsistency), which is an indication of the sympathetic, parasympathetic balance of his metabolism.
  • the 1624 patch can also be used for the measurement of bladder function which is a very important parameter when a patient is in intensive care.
  • This multilayer construction consists of alternating layers of conductive elastomer with layers of non-conductive elastomer. This advantageous construction makes it possible to carry out several measurements using a single laminated segment 1500.
  • the elastomer segment 1500 is here alternately constituted by layers of conductive elastomer 1501 (a, b and c) and layers of non-conductive elastomer 1502 (a, b and c), may have the same or different stiffness values.
  • the conductive elastomer layers 1501a, b and c may also have different conductivity values to each other. These layers 1501a, b and c are connected to the rest of the device by electrical connectors.
  • a non-conductive elastomer layer 1502a advantageously forms the outer layer intended to be in contact with the patient's skin in order to electrically isolate the device.
  • all the conductive layers cover the entire length of the segment 1500. It is also conceivable that a portion of the conductive layers, here the layer 1501b, can be “fractionated", that is to say, interspersed on its length of non-conductive sections 1503 to form conductive segments 1504, 1505 and 1506. Each conductive segment is connected to the rest of the device by judiciously arranged electrical connectors. This fractionation gives the layer 1501b the previously described properties for bracelets consisting of several segments of conductive elastomers, and makes it possible to isolate signals originating from different venous or arterial flows, such as, for example, the flows relating to the ulnar artery and at the radial artery.
  • the non-conductive sections 1503 may be made of elastomer or not, and possibly made of different materials.
  • the segment 1500 may comprise several identical conductive layers, each generating a signal that can be processed separately or statistically or by calculating the interactions of the signals of similar layers.
  • the electrical connections can be made with any suitable material, both by examples of metals, such as copper, as conductive inks.
  • An elastomer segment including a layer or layer of multiple layers, may be used to design equipment designed for specific monitoring.
  • an elastomer segment designed for femoral artery monitoring may have the same construction as an elastomer segment designed for monitoring the radial artery at the wrist, but will be adapted in its dimensions according to the 'use.
  • the means for extracting the parameters of the blood and / or respiratory flows to be monitored comprise an algorithm implementing a certain number of steps for converting the signal measured at the level of the measurement bridge into an operator viewable signal.
  • an electrical signal s here a voltage v
  • the electrical signal includes maxima and voltage minima from which the average heart rate fc is extracted.
  • the heart rate is between 0.25 and 4 Hz.
  • a sampling frequency i.e. the frequency at which heart rate extraction can be performed, of 200 Hz is sufficient.
  • the 2002 extraction of the heart rate fc comprises several steps from 2003 to 2011.
  • the signal S passes into a bandpass filter, that is to say, allowing only one band or frequency range between a low cutoff frequency and a high cutoff frequency of the filter, as for example a filter type RIF (impulse response Finite).
  • a bandpass filter that is to say, allowing only one band or frequency range between a low cutoff frequency and a high cutoff frequency of the filter, as for example a filter type RIF (impulse response Finite).
  • RIF impulse response Finite
  • step 2005 the first derivatives S 'are binarized into signals S'b, replacing the positive values of the signals S' by 1 and the negative ones by 0.
  • step independent and / or parallel 2006 the second derivatives are rectified into S''p signals by setting all negative values to 0.
  • step 2007 the product of the binarized first derivatives S'b and second derivatives rectified S''p gives the signal W which it is possible, in step 2008, to identify the maximums Wmax.
  • the application of a digital filter called "weight”, in step 2009, allows to extract from these maximums Wmax the component Wmaxf relative to the arterial frequency.
  • the signal Wmaxf is then processed again to eliminate the "noise", by a band pass filtering 2010.
  • Cardiac coherence that is, the change in heart rate, as defined by the Heartmath Institute, can be inferred.
  • Cardiac coherence is a follow-up that analyzes the heartbeat rate compared to the previous beat. This dynamics is at the origin of the balancing of sympathetic and para sympathetic systems of the body. This monitoring can make it possible to evaluate in particular the level of stress of an individual and possibly to detect the appearance of pathologies such as burn out, depression, or stroke.
  • the signals corresponding to each segment are treated separately, and each undergoes all the steps 2003 to 2011.
  • the other parameters of blood flow and respiratory cycles can also be extracted from the same signal Sf from the bandpass filtering step 2003.
  • the signal Sf is processed by vibratory analysis integrating a Fast Fourier Transformation (FFT) from which the spectral power density PSDi is extracted for each frequency group, that is to say say on frequency bands each corresponding to a distinct physiological parameter, such as for example the frequencies of the venous system, the arterial system, the respiratory frequencies.
  • FFT Fast Fourier Transformation
  • Each physiological function can, indeed, be associated with a set of frequencies which make it possible to characterize it in its cycle, its energy and its dynamics.
  • PDSi signals obtained for each frequency band can then also be weighted by their energy and intensity, in a step 2013, to generate representative signals Wi of each physiological function measured, for example a respiratory signal Wr, a venous signal Wv or an arterial signal Wa.
  • the frequency bands considered, for each segment of elastomer may depend on the specific placement of the segment on the body element and the dominant signals expected for these locations.
  • the Wi signals obtained for each segment can be compared to facilitate the automatic detection of the types of physiological parameters mainly detected by each segment of elastomer.
  • All the algorithmic steps 300 described above are managed in real time by the computer system, and the resulting signals can be viewed by an operator.
  • all the measured values, the signals or the calculation results can be saved on non-volatile memories, local or remote, such as for example hard disks or the cloud.
  • the steps of the algorithm 300 are detailed here by way of example. The nature, the number and the ordering of the steps can obviously be different to construct an algorithm making it possible to extract from the measurement of the length of the variable elastomer segment any information that can be used by a practitioner.
  • the Applicant was surprised to observe that the insertion of an extension member of the static length of the elastomer segment, here a bead 404, positioned between a segment of conductive elastomer 401 connected to a casing 402 and around the wrist 5, specifically at the level of the radial artery 15, significantly improves the accuracy of the measured signal relative to this radial artery 15.
  • the presence of the bead makes it possible, by geometric effect, by slightly separating the elastomer segment 402 from the arm 5, to amplify the variation in length due to the variation in the diameter of the radial artery, that is, to amplify the amplitude of the signal by increasing the sensitivity.
  • a pearl is used here.
  • the latter being threaded on the elastomer segment, it is easily movable by sliding and is not likely to dissociate.
  • any other rigid positionable element that is to say capable of being placed stably in time at a specific location of the body member, for example at an artery to monitor, between the skin and the skin. elastomer, is possible.
  • the element may for example have a cubic, semi-spherical shape or any other form that the skilled person deems appropriate.
  • the rigid member may be made of any suitable material, and may for example be of wood or plastic.
  • a device according to the invention which comprises two elastomer segments each covering the entire periphery of a wrist may comprise an extension member positionable on each segment.
  • a first extension member would be placed between the first elastomeric segment and the skin at the radial artery
  • a second extension member would be placed between the second elastomeric segment and the skin at the level of the ulnar artery .
  • the equipment can thus measure with great precision the information relating to these two arteries.
  • Other segments with extension member may be added, for example measuring also venous flow.
  • the equipment according to the invention thus comprises at least one extension member positionable between a conductive elastomer segment of the equipment and the perimeter of the body element to be monitored, at a point of interest which is preferably a channel traversed by a blood flow.
  • this extension member may perform other measurements by incorporating a miniaturized complementary measuring instrument.
  • a sonic or ultrasonic microphone may make it possible to perform doppler-type measurements on the arterial flow, in parallel with the plethysmographic measurement.
  • the result of this measurement could be combined with other information generated by the equipment of the invention, in order to improve its accuracy, quality and range.
  • the computer system for processing the signal can be, inter alia, a connected watch.
  • a connected watch 503 is equipped with a connection port 504, at one of the fasteners of the watch strap 506. It can be envisaged to integrate the equipment of the invention, that is to say at least one conductive elastomer segment 501 (here, two are represented) and a circuit 502 comprising the input means the length of the segments 501, the signal processing means and possibly the battery, to the bracelet 501 of the watch 503.
  • the processed signal it can be transmitted via the connection port 504 of the watch 503 to a software , or an application, 506 installed on the watch.
  • the connected watch 503 that is to say that can communicate in wifi, bluetooth, or 3G or 4G for example, can be programmed to automatically prevent a medical emergency service in case of identification of a problem related to blood flow or breathing cycles of the individual.
  • This configuration is particularly interesting for people at risk of high heart failure, or serious lung problems.
  • the emergency service can not only intervene quickly but, in addition, directly adapt its intervention thanks to the information provided by the equipment integrate into the patient's wristband.
  • the bracelet and the equipment of the invention form an assembly connectable, mechanically for one and electronically for the other, with the connected watch.
  • the watch strap supporting the equipment of the invention could be coated with silicone to ensure sealing.
  • the equipment of the invention can also be used to monitor a baby's breathing and / or heart activity. It is even conceivable that it is combined with infant respiratory monitoring monitor, such as a sensor mat to be placed under a mattress. This type of carpet often suffers from a lack of sensitivity leading to false alarms. Combining the information recorded by the carpet with the information from a bracelet of the invention could advantageously increase the sensitivity of the assembly.

Abstract

The invention of the present application relates to non-invasive equipment for monitoring blood flow and/or respiratory cycles of a human or animal body, comprising at least one segment of conductive elastomer of variable resistance, which is arranged to extend about the circumference of the body element and is sensitive to the length of the circumference of said element, means for capturing said length by virtue of said variable resistance and supplying a signal representative of said length, and means for processing said signal, having means of extracting the parameters of the blood flow and/or of the respiratory cycles that are to be monitored.

Description

Equipement de surveillance des flux sanguins et respiratoires Equipment for monitoring blood and respiratory flows
Arrière-plan de l'invention La pléthysmographie, développée au début du XXème siècle, permet de mesurer les variations de volume dans un organe ou le corps entier, humain ou animal, et est, entre autres, utilisée pour mesurer les flux sanguins périphériques, ou superficiels. En particulier, R. J. Whitney a mis au point, vers la fin des années 40, un système de jauge de déformation à double cordon formé par une enveloppe de caoutchouc contenant du mercure (J. Physiol., 121, 1-27, 1953) . La technologie a depuis été améliorée. Différentes techniques sont décrites utilisant par exemple un capteur photoélectrique éclairant les artères du poignet pour mesurer la variation du volume artériel et permettant la génération d'un signal électrique qui peut ensuite être analysé par diverses méthodes pour obtenir les informations hématologiques. Une revue des méthodes de pléthysmographie est disponible sur internet (http : //levelldiagnostics . com/research/P/LlD-BACKGROUND OF THE INVENTION Plethysmography, developed at the beginning of the 20th century, makes it possible to measure changes in volume in an organ or the whole body, whether human or animal, and is, among other things, used to measure peripheral blood flows. or superficial. In particular, R. J. Whitney developed, in the late 1940s, a double cord deformation gauge system consisting of a mercury-containing rubber casing (J. Physiol., 121, 1-27, 1953). The technology has since been improved. Various techniques are described using for example a photoelectric sensor illuminating the arteries of the wrist to measure the variation of the arterial volume and allowing the generation of an electrical signal which can then be analyzed by various methods to obtain the hematological information. A review of plethysmography methods is available on the internet (http://levelldiagnostics.com/ research / P / LlD-
PulseWaveMonograph . pdf) . Cependant, bien que très simples et pratiques d'utilisation, les techniques de pléthysmographie actuellement disponibles souffrent d'un manque de précision. La mise au point du sphygmomanomètre, plus connu sous l'appellation de tensiomètre, a conduit à l'abandon progressif de la pléthysmographie. Le tensiomètre est basé sur le principe d'un manomètre qui enregistre la réaction des artères, soumises à la fois à la pression du cœur et à celle de l'air produite par l'appareil. Bien que donnant un résultat moins précis et sur une plus courte durée que le pléthysmographe, le tensiomètre s'est imposé pour sa simplicité d'utilisation dans les cabinets médicaux. Il ne permet cependant qu'une évaluation approximative de la tension, représentative des flux sanguins, sur une courte période . PulseWaveMonograph. pdf). However, although very simple and practical to use, currently available plethysmography techniques suffer from a lack of precision. The development of the sphygmomanometer, better known as a sphygmomanometer, led to the gradual abandonment of plethysmography. The tensiometer is based on the principle of a manometer that records the reaction of the arteries, subjected to both the pressure of the heart and that of the air produced by the device. Although giving a less accurate result and a shorter duration than the plethysmograph, the tensiometer has become essential for its simplicity of use in medical practices. However, it allows only a rough estimate of the voltage, representative of blood flows, over a short period.
Parallèlement, 1 ' électrocardiographie est devenue l'examen de choix du cardiologue pour représenter l'activité électrique du cœur. Cet examen nécessite néanmoins la pose de plusieurs électrodes à divers emplacements du corps, reliées à une unité d'analyse, de surveillance (monitoring) , des signaux recueillis . At the same time, electrocardiography has become the cardiologist's exam of choice for representing the electrical activity of the heart. This examination nevertheless requires the installation of several electrodes at various locations of the body, connected to a unit of analysis, monitoring, signals collected.
L' échographie Doppler est également utilisée pour explorer les flux sanguins intracardiaques et intravasculaires . Le praticien déplace une sonde le long des organes à analyser afin de déterminer la direction et la vitesse du flux sanguin. Cet examen n'est toutefois pas compatible avec une utilisation prolongée et nécessite la présence active d'un praticien. Doppler ultrasound is also used to explore intracardiac and intravascular blood flow. The practitioner moves a probe along the organs to be analyzed to determine the direction and speed of blood flow. However, this test is not compatible with prolonged use and requires the active presence of a practitioner.
Les maladies cardio-vasculaires sont la première cause de mortalité dans le monde. Au cours des trente dernières années, la recherche a permis de mettre au point de nombreux traitements médicamenteux contre une partie des pathologies cardiaques. En parallèle, les techniques chirurgicales se sont considérablement perfectionnées, permettant en particulier d'éviter au maximum les interventions à cœur ouvert, en favorisant par exemple la pose de dispositifs de support artériels, tels que les stents, par voie artérielle, en particulier via l'artère radiale. Cardiovascular disease is the leading cause of death in the world. Over the last thirty years, research has led to the development of many drug treatments for some of the heart diseases. At the same time, the surgical techniques have been considerably improved, making it possible in particular to avoid open heart surgery as much as possible by, for example, encouraging the placement of arterial support devices, such as stents, by the arterial route, in particular via the radial artery.
Devant l'augmentation du nombre d'interventions pour la pose de tels dispositifs, la législation a permis l'élargissement du nombre de praticiens susceptibles de réaliser cet acte auparavant réservé au seul chirurgien cardiologue. L'augmentation du nombre de ces interventions s'est aussi accompagnée d'une augmentation du nombre de problèmes post¬ opératoires . Faced with the increase in the number of interventions for the installation of such devices, the legislation has allowed the expansion of the number of practitioners likely to perform this act previously reserved for the only cardiac surgeon. The increase in the number of these interventions was also accompanied by an increase in the number of post ¬ operative problems.
Il s'avère que les cycles respiratoires, c'est-à-dire le nombre d'inspirations et d'expirations par unité de temps ont également une incidence sur les flux sanguins. It turns out that breathing cycles, that is, the number of breaths and expirations per unit of time, also affect blood flow.
En particulier, une complication fréquente est le rétrécissement ou même l'occlusion post opératoire de l'artère (sténose) via laquelle le dispositif médical a été inséré, rendant une nouvelle intervention, via la même artère, inefficace voire même dangereuse. Or il n'est pas rare qu'un même patient nécessite plusieurs interventions du même type au cours de sa vie. Ce problème est décrit en détail par Muhammad Rashid et al. (J Am Heart Assoc. 2016; doi: 10.1161/JAHA.115.002686) . Une des causes possibles avancées pour expliquer cette occlusion/sténose artérielle est le temps et la pression de compression inadaptés de la plaie résultant de l'incision de l'artère effectuée au début de l'intervention. Une compression correctement réalisée permet en effet de réduire les risques d'occlusion, comme cela est décrit dans l'article http : //www . invasivecardiology . corn/articles /ulnar-artery- transient-compression-facilitating-radial-artery-patent- hemostasis-ultra-novel . A ce jour, aucune technique n'est utilisée pour surveiller la fonction artérielle dans l'environnement de la plaie, ni durant l'intervention chirurgicale, ni durant la phase de compression de la plaie suite à l'intervention, mise à part une surveillance par ultrasons qui n'est pas pratique à mettre en œuvre dans ce contexte . Il y a donc actuellement un réel manque d'un dispositif simple, autonome, peu encombrant, qui permettrait la surveillance précise de la fonction artérielle en temps réel au cours de l'intervention chirurgicale et, après l'intervention, au cours de la phase de compression de la plaie. Cette surveillance pourrait permettre au praticien d'adapter en temps réel et sa technique opératoire et la pression exercée sur la plaie afin de minimiser les risques de problèmes post-opératoires, comme l'occlusion artérielle. In particular, a frequent complication is the narrowing or even the postoperative occlusion of the artery (stenosis) via which the medical device has been inserted, making a new intervention, via the same artery, ineffective or even dangerous. But it is not uncommon for the same patient to require several interventions of the same type during his life. This problem is described in detail by Muhammad Rashid et al. (J Am Heart Assoc 2016, doi: 10.1161 / JAHA.115.002686). One of the possible causes advanced to explain this occlusion / arterial stenosis is the inadequate compression time and pressure of the wound resulting from the incision of the artery performed at the beginning of the procedure. A correctly performed compression indeed makes it possible to reduce the risks of occlusion, as it is described in the article http: // www. invasivecardiology. corn / articles / ulnar-artery-transient-compression-facilitating-radial-artery-patent-hemostasis-ultra-novel. To date, no technique has been used to monitor arterial function in the wound environment, during the surgical procedure, or during the compression phase of the wound following the procedure, except for monitoring. ultrasound which is not practical to implement in this context. So there is currently a real lack of a simple device, autonomous, space-saving, which would allow the precise monitoring of the arterial function in real time during the surgical intervention and, after the intervention, during the phase compression of the wound. This monitoring could allow the practitioner to adapt in real time and its operative technique and the pressure exerted on the wound to minimize the risks of post-operative problems, such as arterial occlusion.
C'est le problème résolu par la présente invention. La présente invention propose une amélioration des techniques de plethysmographie, mettant avantageusement à profit les avancées technologiques dans le domaine des matériaux conducteurs . This is the problem solved by the present invention. The present invention provides an improvement in plethysmography techniques, advantageously taking advantage of technological advances in the field of conductive materials.
Heeger, MacDiarmid et Shirawa ont montré que des polymères non conducteurs pouvaient être « dopés » afin de favoriser le déplacement des électrons le long des doubles liaisons conjuguées du polymère et de rendre ce polymère conducteur. Le document WO2015/049067 détaille une méthode pour doper des polymères, et en particulier des élastomères, avec des nanomatérieux, en particulier des nanomatériaux à base de carbone, de type graphène afin de rendre ces polymères conducteurs. Ces élastomères conducteurs ont la propriété d'avoir une résistance variant en fonction de leur longueur, c'est-à-dire du stress qui leur est appliqué. Cela est détaillé dans le document de brevet ci-dessus qui suggère l'utilisation de cette propriété pour mesurer des mouvements physiologiques subtils tels que le pouls ou la respiration. Heeger, MacDiarmid and Shirawa have shown that nonconductive polymers can be "doped" to promote the displacement of electrons along the conjugated double bonds of the polymer and to make this polymer conductive. The document WO2015 / 049067 details a method for doping polymers, and in particular elastomers, with nanomaterials, in particular graphene-type carbon-based nanomaterials, in order to render these polymers conductive. These conductive elastomers have the property of having a resistance varying according to their length, that is to say the stress applied to them. This is detailed in the above patent document which suggests the use of this property to measure subtle physiological movements such as pulse or respiration.
La présente invention concerne un équipement pléthysmographique non-invasif incluant un élastomère conducteur à résistance variable utilisable en particulier en salle d'opération, n'occasionnant aucune gêne pour le ou les praticiens . Solution de l'invention The present invention relates to non-invasive plethysmographic equipment including an elastomer variable resistive conductor usable especially in the operating room, not causing any inconvenience to the practitioner or practitioners. Solution of the invention
Ainsi, l'invention de la présente demande a d'abord pour objet un équipement non-invasif de surveillance des flux sanguins d'un élément corporel comprenant un réseau de canaux parcourus par lesdits flux sanguins comprenant : Thus, the invention of the present application firstly relates to a non-invasive equipment for monitoring the blood flows of a body element comprising a network of channels traversed by said blood flows comprising:
au moins un segment d'élastomère conducteur à résistance variable agencé pour s'étendre sur le pourtour de l'élément corporel et sensible à la longueur du pourtour dudit élément, des moyens de saisie de ladite longueur grâce à ladite résistance variable et fournissant un signal représentatif de ladite longueur, et at least one variable-resistance conductive elastomer segment arranged to extend around the perimeter of the body element and sensitive to the length of the periphery of said element, means for gripping said length by virtue of said variable resistor and providing a signal representative of said length, and
des moyens de traitements dudit signal comportant des moyens d'extraction des paramètres des flux sanguins à surveiller. L'invention de la présente demande a également pour objet un équipement non-invasif de surveillance des cycles respiratoires d'un corps humain ou animal induisant une variation de la longueur du pourtour d'un élément corporel comprenant : au moins un segment d'élastomère conducteur à résistance variable agencé pour s'étendre sur le pourtour de l'élément corporel et sensible à la longueur du pourtour dudit élément, means for processing said signal comprising means for extracting the parameters of the blood flows to be monitored. The invention of the present application also relates to a non-invasive equipment for monitoring the breathing cycles of a human or animal body inducing a variation in the length of the periphery of a body element comprising: at least one segment of elastomer variable resistance conductor arranged to extend around the periphery of the body element and sensitive to the length of the periphery of said element,
- des moyens de saisie de ladite longueur grâce à ladite résistance variable et fournissant un signal représentatif de ladite longueur, et des moyens de traitements dudit signal comportant des moyens d'extraction des paramètres des cycles respiratoires à surveiller. La demanderesse est donc partie du document WO2015/049067 pour résoudre le problème présenté ci-dessus. Ce document ne décrit cependant pas l'application des élastomères conducteurs à résistance variable à des équipements de pléthysmographie et est donc exclu juridiquement du champ de l'art antérieur. Une personne du métier lisant ce document, en particulier le paragraphe relatif aux senseurs (p. 24, 1. 24-33), devant le large champ des possibilités de mise en œuvre de tels senseurs, ne pouvait pas être guidé vers la réalisation particulière d'équipements de pléthysmographie mettant en œuvre des élastomères conducteurs à résistance variable. means for capturing said length by said variable resistor and providing a signal representative of said length, and processing means of said signal comprising means for extracting the parameters of the respiratory cycles to be monitored. The applicant is therefore part of WO2015 / 049067 to solve the problem presented above. This document, however, does not describe the application of conductive elastomers with variable resistance to plethysmography equipment and is therefore legally excluded from the field of the prior art. A person skilled in the art reading this document, in particular the paragraph relating to sensors (page 24, 1. 24-33), faced with the wide scope of the possibilities of implementing such sensors, could not be guided towards the particular realization of plethysmography equipment using conductive elastomers with variable resistance.
Les flux sanguins correspondent à l'écoulement du sang dans les vaisseaux sanguins et le cœur. Les vaisseaux sanguins sont tous les conduits qui transportent le sang et comprennent les artères, les veines, les veinules et les capillaires. Blood flow is the flow of blood through the blood vessels and the heart. Blood vessels are all conduits that carry blood and include arteries, veins, venules and capillaries.
Un équipement non-invasif de surveillance est un équipement qui permet de surveiller un ou plusieurs paramètres, ne nécessitant aucune infraction à la peau. Il est en général accepté qu'une simple prise de sang et une injection de produit sont également de nature non-invasive . Le caractère non-invasif d'un équipement implique généralement une absence de dangerosité. Dans une forme de réalisation préférée, le segment d'élastomère conducteur à résistance variable est agencé pour entourer l'élément corporel et sensible à la longueur du tour dudit élément. Dans une autre forme de réalisation intéressante, le segment d'élastomère conducteur à résistance variable est solidarisé à une pièce adhésive. Dans tous les cas, l'élastomère conducteur est, évidemment, placé au contact même de la peau. Placer l'élastomère sur un tissu couvrant la peau, comme un vêtement, réduirait significativement la sensibilité du dispositif. Par élément corporel, il faut en fait entendre ici toute partie du corps susceptible d'être recouverte ou entourée, en tout ou partie, par le segment d'élastomère. Ces éléments corporels peuvent comprendre les membres corporels, le tronc ou la gorge. Ils peuvent appartenir à un humain ou à un animal . Non-invasive monitoring equipment is equipment that allows one or more parameters to be monitored, without the need for any infringement of the skin. It is generally accepted that a simple blood test and a product injection are also non-invasive. The non-invasive nature of an equipment generally implies an absence of danger. In a preferred embodiment, the variable resistance conductive elastomeric segment is arranged to surround the body member and responsive to the tower length of said member. In another interesting embodiment, the variable resistance conductive elastomeric segment is secured to an adhesive part. In all cases, the conductive elastomer is, obviously, placed in contact with the skin itself. Placing the elastomer on a fabric covering the skin, such as clothing, would significantly reduce the sensitivity of the device. By body element, it is in fact understood here any body part likely to be covered or surrounded, in whole or in part, by the elastomer segment. These bodily elements may include bodily limbs, trunk or throat. They can belong to a human or an animal.
Le pourtour de l'élément corporel fait référence à une ligne qui forme la limite de la surface de cet élément. Le segment d'élastomère peut par exemple s'étendre sur une partie du tronc ou du cou. La longueur du pourtour peut n'être qu'une fraction de la longueur du pourtour de l'élément corporel. De plus, « entourer le membre » ne signifie pas forcément que le segment est refermé sur lui-même autour du membre, puisqu' autour du membre sont disposés les moyens de saisie et des moyens de traitement. Les termes « tour » et « pourtour » seront utilisés indifféremment dans la suite de ce document. The perimeter of the body element refers to a line that forms the boundary of the surface of this element. The elastomer segment may for example extend over a portion of the trunk or neck. The length of the periphery may be only a fraction of the length of the perimeter of the body element. In addition, "surround the member" does not necessarily mean that the segment is closed around itself around the member, since around the member are arranged the input means and processing means. The terms "tower" and "perimeter" will be used interchangeably later in this document.
Une pièce adhésive désigne ici une couche fine, en tissu polymère ou tout autre matériau approprié, recouverte, sur au moins une de ses faces, d'une substance adhésive ou collante qui permet à la pièce d'adhérer de façon durable à la peau, au niveau de l'élément corporel où elle est placée. De telles pièces adhésives sont notamment utilisés dans les pansements ou dans ce qui est communément appelé un « patch ». An adhesive piece here designates a thin layer, made of polymer fabric or any other suitable material, covered on at least one of its faces with an adhesive or sticky substance which allows the piece to adhere in a durable manner to the skin. at the level of the body element where it is placed. Such Adhesive pieces are especially used in dressings or in what is commonly called a "patch".
Dans la forme de réalisation préférée de l'invention, les moyens de saisie de ladite longueur comprennent au moins un pont de mesure, dont au moins une des résistances est constituée par l'élastomère conducteur à résistance variable. Le signal électrique en sortie du pont de mesure est une image de ladite longueur de pourtour. In the preferred embodiment of the invention, the gripping means of said length comprise at least one measuring bridge, at least one of the resistors is constituted by the conductive elastomer variable resistance. The electrical signal at the output of the measurement bridge is an image of the said length of periphery.
Un pont de mesure désigne ici un assemblage électronique, comprenant au moins une résistance dont la valeur varie en fonction d'un paramètre à mesurer, ici une longueur. Un exemple bien connu de pont de mesure est le pont de Wheatstone, mais il existe également de nombreuses variantes comme les ponts en courant alternatif, pont de Owen, pont de Schering, pont de Robinson, qui permettent d'améliorer la précision de mesure. La variation de longueur de l'élastomère conducteur, c'est-à- dire la variation de la longueur du pourtour du membre corporel à surveiller, induit une variation de la résistance de l'élastomère conducteur qu'on apprécie à l'aide du pont de mesure et qui est une image des flux sanguins au niveau du membre autour duquel est placé l'élastomère conducteur. Le principe du pont de Wheatstone est bien connu par l'homme du métier. Son application aux jauges de déformation est largement documentée (What's The Différence Between Operational Amplifiers And Instrumentation Amplifiers , Electronic Design, 26 Août 2015 ; Signal conditioning Wheastone Résistive Bridge Sensors , Texas Instruments , Application Report SLOA034 , September 1999) . De façon générale, le pont de mesure assure ici la fonction d'amplificateur électronique, et peut être un amplificateur opérationnel, différentiel ou d'instrumentation. Le pont de mesure peut également être appelé circuit de mesure, la notion de pont étant liée à la présence de l'élastomère conducteur à résistance variable. A measuring bridge here designates an electronic assembly, comprising at least one resistor whose value varies as a function of a parameter to be measured, here a length. A well-known example of a bridge is the Wheatstone bridge, but there are also many variants such as AC bridges, Owen Bridge, Schering Bridge, Robinson Bridge, which improve measurement accuracy. The variation in the length of the conductive elastomer, that is to say the variation in the length of the perimeter of the body limb to be monitored, induces a variation in the resistance of the conductive elastomer that is evaluated using the measuring bridge and which is an image of the blood flow at the limb around which the conductive elastomer is placed. The principle of the Wheatstone bridge is well known to those skilled in the art. Its application to strain gauges is widely documented (What's The Difference Between Operational Amplifiers and Instrumentation Amplifiers, Electronic Design, August 26, 2015; Signal Conditioning Wheatseat Resistive Bridge Sensors, Texas Instruments, Application Report SLOA034, September 1999). In general, the measuring bridge provides the function electronic amplifier, and may be an operational, differential or instrumentation amplifier. The measuring bridge can also be called measuring circuit, the concept of bridge being related to the presence of the conductive elastomer variable resistance.
Dans une forme de réalisation avantageuse de l'invention, les moyens de traitement sont des moyens électroniques et les moyens d'extraction de paramètres des flux sanguins à surveiller comprennent un algorithme agencé pour recevoir les informations relatives à ladite longueur pour en extraire les paramètres des flux sanguins à surveiller. In an advantageous embodiment of the invention, the processing means are electronic means and the means for extracting blood flow parameters to be monitored comprise an algorithm arranged to receive the information relating to said length in order to extract the parameters of the parameters. blood flow to watch.
De tels algorithmes sont décrits dans BioMedical Engineering OnLine, 20054 : 48 (DOI: 10.1186/1475-925X-4-48) . Ils permettent en particulier de séparer les informations relatives aux flux artériels des informations relatives aux flux veineux et/ou aux cycles respiratoires. Ils permettent également d'analyser les relations entre ces deux flux. Such algorithms are described in BioMedical Engineering OnLine, 20054: 48 (DOI: 10.1186 / 1475-925X-4-48). In particular, they make it possible to separate information relating to arterial flows from information relating to venous flow and / or respiratory cycles. They also make it possible to analyze the relations between these two flows.
L'invention sera mieux comprise à l'aide de la description suivante de plusieurs formes de réalisation de l'invention, en référence au dessin en annexe sur lequel : la figure 1 représente une vue schématique de l'équipement de surveillance des flux sanguins selon l'invention ; The invention will be better understood with the aid of the following description of several embodiments of the invention, with reference to the drawing in the appendix in which: FIG. 1 represents a schematic view of the blood flow monitoring equipment according to the invention;
la figure 2 représente l'équipement de la figure 1 autour du poignet d'un patient ; Figure 2 shows the equipment of Figure 1 around the wrist of a patient;
la figure 3 est une vue de l'équipement de la figure 1 avec, en détail, le boitier de saisie et de traitement ; Figure 3 is a view of the equipment of Figure 1 with, in detail, the capture box and processing;
la figure 4 représente une autre forme de réalisation de l'équipement de surveillance des flux sanguins, comprenant deux segments d'élastomère conducteur et positionné, autour du poignet d'un patient ; FIG. 4 represents another embodiment of the blood flow monitoring equipment, comprising two segments of conductive elastomer and positioned around the wrist of a patient;
la figure 5 illustre la disposition de l'équipement de la figure 5 sur l'intérieur du poignet, par rapport aux artères du poignet et à une incision pratiquée sur l'artère radiale ; la figure 6 représente une autre forme de réalisation de l'équipement de surveillance des flux sanguins, comprenant deux segments d'élastomère conducteur et positionné, autour du poignet d'un patient ; Figure 5 illustrates the arrangement of the equipment of Figure 5 on the inside of the wrist, with respect to the arteries of the wrist and an incision made on the radial artery; Figure 6 shows another embodiment of the blood flow monitoring equipment, comprising two segments of conductive elastomer and positioned around the wrist of a patient;
la figure 7 est une vue de l'équipement de la figure 7 avec, en détail, le boitier de saisie et de traitement ; Figure 7 is a view of the equipment of Figure 7 with, in detail, the capture box and processing;
la figure 8 représente une forme de segment d'élastomère conducteur ; Fig. 8 shows a conductive elastomeric segment form;
les figures 9a et 9b représentent une autre forme de réalisation de l'équipement de surveillance des flux sanguins, comprenant un système d'ajustement de la longueur du segment d'élastomère variable ; Figs. 9a and 9b show another embodiment of the blood flow monitoring equipment, including a system for adjusting the length of the variable elastomer segment;
la figure 10 représente une configuration particulière du segment d'élastomère conducteur ; Figure 10 shows a particular configuration of the conductive elastomeric segment;
la figure 11 illustre les utilisations possible de l'équipement de l'invention ; Figure 11 illustrates the possible uses of the equipment of the invention;
la figure 12 représente l'équipement de l'invention intégré dans une pièce adhésive; Figure 12 shows the equipment of the invention integrated in an adhesive part;
la figure 13 illustre un algorithme de l'équipement de l'invention ; Figure 13 illustrates an algorithm of the equipment of the invention;
la figure 14 illustre l'équipement de l'invention comprenant un organe d'extension d'un élastomère conducteur de l'équipement de l'invention; FIG. 14 illustrates the equipment of the invention comprising an extension member of a conductive elastomer of the equipment of the invention;
la figure 15 illustre l'équipement de l'invention associé à un bracelet de compression automatique ; et FIG. 15 illustrates the equipment of the invention associated with an automatic compression bracelet; and
la figure 16 illustre schématiquement l'équipement de l'invention intégré au bracelet d'une montre connecté. En référence aux figures 1 à 3, l'équipement pléthysmographique de l'invention comporte un bracelet 1 de maintien d'un boitier 2 de saisie et de traitement de signaux et, ici, logé dans un système informatique 4, un algorithme 3 dont la fonction se combine à celles des moyens de traitement du boitier 2. Figure 16 schematically illustrates the equipment of the invention integrated into the bracelet of a connected watch. With reference to FIGS. 1 to 3, the plethysmographic equipment of the invention comprises a strap 1 for holding a box 2 for capturing and processing signals and, here, housed in a computer system 4, an algorithm 3 whose function combines with those of the processing means of the housing 2.
Le bracelet 1 est ici un segment d'élastomère destiné à entourer en partie ici un poignet 5 et fixé au boitier 2 pour tenir ce dernier sur le poignet 5. La liaison du segment élastomère et du boitier peut être réalisée de façon simple et standard, par exemple à l'aide d'un ruban adhésif de la marque protégée « Velcro® » ou à la manière d'un bracelet de montre maintenant le boitier de montre. Le bracelet 1 est en polymère conducteur destiné à être plaqué contre la peau du poignet 5. The bracelet 1 is here an elastomer segment intended to partially surround here a wrist 5 and fixed to the housing 2 to hold the latter on the wrist 5. The connection of the elastomer segment and the housing can be carried out in a simple and standard way, for example with the help of an adhesive tape of the protected trademark "Velcro®" or in the manner of a watch strap holding the watch case. The bracelet 1 is made of conductive polymer intended to be pressed against the skin of the wrist 5.
Le boitier 2 contient un pont de Wheatstone 6 alimenté par une source d'énergie 7 et relié en sortie à un émetteur sans fil 8. Le bracelet 1 est intégré au pont 6 en tant que résistance inconnue à apprécier, et relié en une 9 des deux extrémités de la diagonale du pont 6 dans laquelle est disposé un détecteur 10 qui est relié à l'émetteur 8 et en une 11 des deux extrémités de l'autre diagonale du pont 6 relié à la source d' énergie 7. The housing 2 contains a Wheatstone bridge 6 powered by a power source 7 and connected at the output to a wireless transmitter 8. The bracelet 1 is integrated in the bridge 6 as unknown resistance to be appreciated, and connected in a 9 of the two ends of the diagonal of the bridge 6 in which is disposed a detector 10 which is connected to the transmitter 8 and one 11 of the two ends of the other diagonal of the bridge 6 connected to the energy source 7.
Le système informatique 4, dans lequel est implanté l'algorithme 3, comporte un récepteur 12 agencé pour être relié à l'émetteur 8 du boitier 2. L'algorithme 3 coopère donc avec le pont de mesure 6, l'émetteur sans fil 8 et le récepteur sans fil 12. The computer system 4, in which is implanted the algorithm 3, comprises a receiver 12 arranged to be connected to the transmitter 8 of the housing 2. The algorithm 3 thus cooperates with the measurement bridge 6, the wireless transmitter 8 and the wireless receiver 12.
Comme source d'énergie 7, on peut envisager une pile électrique ou une batterie rechargeable. La liaison émetteur 8 - récepteur 12 peut être une liaison « bluetooth », « wifi », ou toute autre technologie sans fil. Comme système informatique, on peut considérer un ordinateur, une tablette tactile, un smartphone, voire une montre connectée. As a source of energy 7, it is possible to envisage an electric battery or a rechargeable battery. The transmitter 8 - receiver 12 link may be a connection "bluetooth", "wifi", or any other wireless technology. As computer system, one can consider a computer, a touch pad, a smartphone or even a connected watch.
Le positionnement et l'ajustement correct de la tension de l'élastomère conducteur sont important pour avoir un signal de qualité optimale. La longueur de l'élastomère peut être ajustée afin que la tension de l'élastomère conducteur soit suffisante pour la détection de ses variations de longueur, et donc de résistance, mais pas trop forte, afin que la circulation sanguine ne soit pas affectée. L'ajustement de la longueur du bracelet 1 au pourtour du poignet peut se faire manuellement ou automatiquement. Proper positioning and adjustment of the voltage of the conductive elastomer is important to have an optimal quality signal. The length of the elastomer may be adjusted so that the voltage of the conductive elastomer is sufficient for the detection of its variations in length, and therefore of resistance, but not too high, so that the blood circulation is not affected. The adjustment of the length of the bracelet 1 around the wrist can be done manually or automatically.
Les caractéristiques structurelles de l'équipement de l'invention ayant été décrites, son fonctionnement va maintenant être abordé. The structural characteristics of the equipment of the invention having been described, its operation will now be discussed.
Au cours de son fonctionnement, la longueur de l'élastomère conducteur varie en fonction du flux veineux, du flux artériel et du volume respiratoire. Le pont de Wheatstone 6 comprenant le bracelet 1 en élastomère conducteur va générer un signal électrique qui est l'image de ces paramètres physiologiques. Ce signal peut ensuite être amplifié avant d'être transmis par l'émetteur 8 au récepteur 12 du système informatique 4 comprenant l'algorithme 3, permettant d'extraire du signal reçu ses diverses composantes. During its operation, the length of the conductive elastomer varies depending on the venous flow, the arterial flow and the respiratory volume. The Wheatstone bridge 6 comprising the conductive elastomer bracelet 1 will generate an electrical signal which is the image of these physiological parameters. This signal can then be amplified before being transmitted by the transmitter 8 to the receiver 12 of the computer system 4 comprising the algorithm 3, making it possible to extract the various components from the received signal.
L'algorithme 3 peut en particulier permettre d'isoler le signal électrique lié à la pulsation artérielle et le signal électrique lié au flux veineux. Il peut également permettre d'analyser la différence entre ces deux flux ainsi que les dérivées première ou seconde de la différence entre ces deux flux. Il peut, en outre, également comprendre une analyse fréquentielle afin de séparer plus clairement les flux, pour une meilleure qualité de signal. Ces informations peuvent ensuite être visualisées sur l'écran 13 du système informatique 4. In particular, the algorithm 3 can isolate the electrical signal related to the arterial pulse and the electrical signal related to the venous flow. It can also allow to analyze the difference between these two flows as well as the first or second derivatives of the difference between these two flows. It can, moreover, also include a frequency analysis in order to separate the streams more clearly, for a better quality of signal. This information can then be viewed on the screen 13 of the computer system 4.
Les informations visualisées peuvent être diverses et adaptées au contexte d'utilisation de l'équipement de l'invention. Typiquement, l'évolution des paramètres physiologiques, ou de leur relation entre eux, calculés par l'algorithme 3, en fonction du temps, sera visualisée de manière simple à analyser par le praticien. The information displayed may be diverse and adapted to the context of use of the equipment of the invention. Typically, the evolution of the physiological parameters, or their relationship between them, calculated by the algorithm 3, as a function of time, will be displayed in a manner easy to analyze by the practitioner.
Lors d'une intervention chirurgicale visant à introduire par exemple par l'artère radiale un dispositif de type stent, une incision dans l'artère radiale est pratiquée au niveau de l'avant-bras. Il est alors envisageable de positionner le bracelet 1 entre la main et l'incision. Ceci est rendu possible par la petite taille du bracelet 1, qui n'est pas encombrant et ne comprend pas de raccordements électriques pouvant gêner le travail du praticien. Le praticien peut alors surveiller, en temps réel, au cours de l'introduction du stent, les flux artériels et veineux au niveau du poignet et adapter son intervention en conséquence. De même, à la fin de l'intervention, un praticien va appliquer une pression au niveau de la plaie résultant de l'incision de l'artère, afin d'arrêter l'hémorragie. En étant capable de surveiller en temps réel les flux artériel et veineux, le praticien va pouvoir adapter la pression appliquée sur la plaie. Dans le cas, illustré sur la figure 15, où cette phase de compression de la plaie serait gérée par un dispositif automatique 14 de compression de la plaie, comme par exemple celui présenté par Terumo TR Band® (http : //www . medicalexpo . fr/prod/terumo-medical/product-71204- 454828.html) , il est envisageable que la pression appliquée par le dispositif automatique de compression soit piloté, sans fil, par un algorithme supplémentaire intégré au système informatique 4 en fonction de l'analyse des données fournies par le bracelet 1. Le dispositif médical de compression peut être connecté sans fil au système informatique ou, selon les cas, par connexion filaire directe au boitier du bracelet. Différents types de compression peuvent être appliqués et commandés via le dispositif de mesure, en connexion directe et/ou sans fil. La compression peut par exemple s'effectuer par pression d'un élément extérieur, tel que par exemple une sphère dure ou molle, une chambre à air ou une chambre contenant un fluide compressible ou non. Le bon positionnement et l'ajustement correct de la tension du segment d'élastomère 1 sont importants pour la qualité du signal mesuré et, par conséquent, la qualité des paramètres extraits par les algorithmes de détection et d'analyse. L'opérateur positionne facilement le bracelet sur le poignet, à proximité de la main, dans une position ne perturbant pas l'intervention chirurgicale. Le réglage délicat consiste alors principalement à serrer le bracelet afin d'ajuster sa pression ou tension. Ceci est géré en ajustant la longueur du ruban élastomère conducteur à une contrainte ou tension optimale à laquelle l' élastomère reste suffisamment flexible, mais pas trop lâche. Il est important de noter que la contrainte absolue de l' élastomère n'affecte pas la mesure, mais sa précision. Ceci est lié aux caractéristiques physiques de l'élastomère comme, par exemple, son module d'élasticité, sa température et ses dimensions. L'élastomère peut être fabriqué dans une forme spécifique afin qu'il soit plus souple, ce qui signifie qu'il donnera une plus grande précision et sa longueur sera plus facile à ajuster. During a surgical procedure intended to introduce, for example by the radial artery, a stent-type device, an incision in the radial artery is made at the level of the forearm. It is then possible to position the bracelet 1 between the hand and the incision. This is made possible by the small size of the bracelet 1, which is not bulky and does not include electrical connections that may hinder the work of the practitioner. The practitioner can then monitor, in real time, during the introduction of the stent, the arterial and venous flows at the wrist and adapt his intervention accordingly. Similarly, at the end of the procedure, a practitioner will apply pressure to the wound resulting from the incision of the artery, to stop the bleeding. By being able to monitor the arterial and venous flows in real time, the practitioner will be able to adapt the pressure applied to the wound. In the case, illustrated in Figure 15, where this wound compression phase would be managed by an automatic device 14 for wound compression, such as that presented by Terumo TR Band® (http: // www. Medicalexpo. fr / prod / terumo-medical / product-71204-454828.html), it is conceivable that the pressure applied by the automatic compression device is controlled, wirelessly, by an additional algorithm integrated in the computer system 4 according to the analysis of the data provided by the bracelet 1. The medical compression device can be connected wirelessly to the computer system or, as the case may be, by direct wire connection to the case of the bracelet. Different types of compression can be applied and controlled via the measuring device, in direct and / or wireless connection. The compression can for example be effected by pressing an outer element, such as for example a hard or soft sphere, an air chamber or a chamber containing a compressible fluid or not. The correct positioning and correct adjustment of the elastomer segment 1 voltage is important for the quality of the measured signal and, consequently, the quality of the parameters extracted by the detection and analysis algorithms. The operator easily positions the bracelet on the wrist, near the hand, in a position that does not disturb the surgical procedure. The delicate setting then consists mainly in tightening the bracelet to adjust its pressure or tension. This is managed by adjusting the length of the conductive elastomeric tape to an optimum stress or tension at which the elastomer remains sufficiently flexible, but not too loose. It is important to note that the absolute stress of the elastomer does not affect the measurement, but its precision. This is related to the physical characteristics of the elastomer such as, for example, its modulus of elasticity, temperature and dimensions. The elastomer can be made in a specific shape so that it is more flexible, which means that it will give greater precision and its length will be easier to adjust.
L'ajustement de la longueur de l'élastomère peut être avantageusement facilité par l'utilisation d'un système de blocage coopérant avec le segment d'élastomère conducteur. The adjustment of the length of the elastomer can be advantageously facilitated by the use of a locking system cooperating with the conductive elastomer segment.
Afin de faciliter cette coopération, le ruban élastomère conducteur 1 peut être constitué par un matériau continu 110 ayant un relief particulier, comme par exemple un relief répétitif 111 tel qu'illustré sur la figure 8. Le relief est ici une perforation ayant une forme de rectangle aux coins arrondis, mais il peut prendre n'importe quelle forme compatible avec la solidité, la précision, la flexibilité et la résistance requise pour le bracelet 1. Le relief peut, par exemple, être un motif de grippage tel qu'utilisé, par exemple, sur un collier de serrage. Cette forme de réalisation permet également d'améliorer le contact électrique entre l'élastomère conducteur et la partie mécanique reliée aux pièces électroniques du boitier 2. In order to facilitate this cooperation, the conductive elastomeric tape 1 may consist of a continuous material 110 having a particular relief, such as for example a repetitive relief 111 as illustrated in FIG. 8. The relief here is a perforation having a shape of rectangle with rounded corners, but it can take any form compatible with the strength, precision, flexibility and resistance required for the bracelet 1. The relief may, for example, be a pattern of seizing as used, for example, on a hose clamp. This embodiment also makes it possible to improve the electrical contact between the conductive elastomer and the mechanical part connected to the electronic parts of the housing 2.
De la même manière, l'ajustement du bracelet 1, au moment de son installation sur le poignet, peut également être piloté par encore un autre algorithme intégré au système informatique 4, en fonction de l'analyse des données fournies par le bracelet 1, un organe moteur permettant de serrer l'élastomère conducteur jusqu'à sa tension optimale pour la surveillance . En référence aux figures 9a et 9b, la peau 311 du poignet 310 est entourée par le segment d'élastomère conducteur 313 et un boitier 312 contenant les éléments électroniques de l'équipement ainsi qu'un organe de serrage 316. L'organe de serrage 316, comprend un moteur 315 qui, par l'intermédiaire d'une bague de serrage 314, permet un mouvement du segment d'élastomère conducteur au niveau de son extrémité 313B, ajustant ainsi sa longueur, l'autre extrémité 313B étant fixée au boitier 312. Le moteur 315 peut être piloté par le système informatique 4, et va entraîner le serrage ou le desserrage du segment d'élastomère 313 jusqu'à sa tension optimale. Cette tension est proportionnelle à la résistance de l'élastomère et peut être extraite du signal électrique généré par le dispositif. Il est envisageable que la fin de l'opération d'ajustement soit signalée à l'opérateur, par exemple au moyen d'un signal lumineux apparent sur le boitier 2, d'un message sur l'écran 13 du système informatique 4, d'un signal sonore émis au niveau du boitier 2 ou du système informatique 4, d'une vibration d'un élément du dispositif ou d'une combinaison de plusieurs de ces signaux. In the same way, the adjustment of the bracelet 1, at the time of its installation on the wrist, can also be controlled by yet another algorithm integrated in the computer system 4, according to the analysis of the data provided by the bracelet 1, a drive member for clamping the conductive elastomer to its optimum voltage for monitoring. With reference to FIGS. 9a and 9b, the skin 311 of the wrist 310 is surrounded by the conductive elastomer segment 313 and a case 312 containing the electronic elements of the equipment and a clamping member 316. The clamping member 316, comprises a motor 315 which, via a clamping ring 314, allows movement of the conductive elastomer segment at its end 313B, thus adjusting its length, the other end 313B being fixed to the housing 312. The motor 315 can be driven by the computer system 4, and will cause the elastomeric segment 313 to be tightened or loosened to its optimum tension. This voltage is proportional to the resistance of the elastomer and can be extracted from the electrical signal generated by the device. It is conceivable that the end of the adjustment operation is signaled to the operator, for example by means of an apparent light signal on the housing 2, a message on the screen 13 of the computer system 4, an audible signal emitted at the level of the housing 2 or the computer system 4, a vibration of an element of the device or a combination of several of these signals.
Une application intéressante de l'invention est l'utilisation simultanée de plusieurs bracelets 1. Un second bracelet peut être placé entre le coude et l'épaule afin de générer un second signal électronique, pouvant être analysé en relation avec le premier signal électrique et donner au praticien des informations supplémentaires relatives aux flux sanguins au niveau du bras dans son ensemble. De façon similaire, un ou plusieurs bracelets peuvent être disposés symétriquement sur le second bras afin d'obtenir un signal dit « de référence » par rapport auquel les flux sanguins du bras subissant l'intervention peuvent être comparés. En référence aux figures 4 et 5, l'équipement de surveillance pléthysmographique non-invasif de l'invention peut comprendre deux segments d'un élastomère conducteur agencés pour entourer le membre corporel. An interesting application of the invention is the simultaneous use of several bracelets 1. A second bracelet can be placed between the elbow and the shoulder to generate a second electronic signal, which can be analyzed in relation to the first electrical signal and give to the practitioner additional information about blood flow in the arm as a whole. Similarly, one or more bracelets can be arranged symmetrically on the second arm to obtain a so-called "reference" signal with respect to which the blood flows of the arm undergoing the intervention can be compared. With reference to FIGS. 4 and 5, the non-invasive plethysmographic monitoring apparatus of the invention may comprise two segments of a conductive elastomer arranged to surround the body limb.
Deux segments d' élastomère conducteur 101a et 101b sont reliés chacun par une extrémité à un boitier 102a et par leur autre extrémité à un boitier 102b et entourent en partie le poignet 5. Les deux boîtiers 102a et 102b sont chacun constitués de façon similaire à l'équipement précédemment décrit. Lors de la mise en place du bracelet, le premier boitier 102a est placé entre l'artère radiale 15 et l'artère ulniale 16 et le second boitier 102b est placé sur le dessus du poignet. Dans cette configuration, la variation de la longueur du segment d' élastomère conducteur 101a est relative à l'artère radiale 15 et la variation de la longueur du segment d' élastomère conducteur 101b est relative à l'artère ulniale 16. Cette configuration permet d'obtenir deux signaux électriques distincts qui pourront être transmis par les unités de communication sans fil des boîtiers 102a et 102b à l'unité informatique 4 comprenant l'algorithme 3 capable de traiter ces signaux pour en extraire les paramètres de flux sanguins, ce qui permet au praticien d' obtenir des informations plus précises et relatives à chaque artère séparément. En particulier, si il pratique une incision 17 sur l'artère radiale, il peut comparer les flux sanguins dans les deux artères du poignet et adapter son intervention si besoin. Un circuit de type pont de Wheatstone a été ici utilisé, mais il est évident que tout système analogique adéquat, bien connu de l'homme du métier, permettant de convertir l'information de longueur du segment élastomère en courant électrique et/ou en information numérique est également envisageable, comme par exemple d'autres formes de ponts de mesure ou d'amplificateur, en particulier un amplificateur différentiel. Two segments of conductive elastomer 101a and 101b are each connected at one end to a housing 102a and at their other end to a housing 102b and partially surround the wrist 5. The two housings 102a and 102b are each formed in a manner similar to the previously described equipment. During the introduction of the bracelet, the first housing 102a is placed between the radial artery 15 and the ulnial artery 16 and the second housing 102b is placed on the top of the wrist. In this configuration, the variation of the length of the conductive elastomer segment 101a is relative to the radial artery 15 and the variation of the length of the conductive elastomer segment 101b is relative to the ulnial artery 16. This configuration allows to obtain two distinct electrical signals that can be transmitted by the wireless communication units of the housings 102a and 102b to the computer unit 4 comprising the algorithm 3 capable of processing these signals to extract the blood flow parameters, which allows the practitioner to obtain more precise information relating to each artery separately. In particular, if he makes an incision 17 on the radial artery, he can compare the blood flows in the two arteries of the wrist and adapt his intervention if necessary. A Wheatstone bridge-type circuit has been used here, but it is obvious that any suitable analog system, well known to those skilled in the art, for converting elastomer segment length information into electrical current and / or information digital is also possible, as example of other forms of measuring bridge or amplifier, in particular a differential amplifier.
En référence aux figures 6 et 7, une variante alternative pour analyser séparément les signaux relatifs aux artères ulniale 16 et radiale 17 est d'utiliser deux segments d'élastomère conducteur 201a et 201b. Ceux-ci sont reliés chacun par une extrémité à un boitier 202, et par leur autre extrémité à un élément de fixation 218 et entourent en partie le poignet 5. Dans ce cas, le boitier 202 comprend deux ponts de Wheatstone 206a et 206b intégrant chacun un des deux segments d'élastomère 201a et 201b en tant que résistance inconnue. Etant donné que chaque extrémité de l'élastomère doit être connectée au pont de Wheatstone pour un fonctionnement correct, il est nécessaire d'ajouter deux fils conducteurs 219a et 219b complétant la boucle formée respectivement par les segments d'élastomère 201a et 201b au sein de leur pont de Wheatstone respectif. Ces ponts de Wheatstone sont chacun reliés à un détecteur, respectivement 210a et 210b et sont tous les deux reliés à un émetteur 208 et une source de d'énergie 207. Une configuration similaire peut être envisagée avec trois segments d' élastomères ou plus, chaque segment étant intégré dans un pont de mesure, mais tous étant connectés à un même émetteur. With reference to FIGS. 6 and 7, an alternative variant for separately analyzing the signals relating to the ulnial 16 and radial arteries 17 is to use two segments of conductive elastomer 201a and 201b. These are each connected at one end to a housing 202, and at their other end to a fastener 218 and partially surround the wrist 5. In this case, the housing 202 comprises two Wheatstone bridges 206a and 206b each integrating one of the two elastomer segments 201a and 201b as unknown resistance. Since each end of the elastomer must be connected to the Wheatstone bridge for proper operation, it is necessary to add two lead wires 219a and 219b completing the loop formed respectively by the elastomer segments 201a and 201b within their respective Wheatstone bridge. These Wheatstone bridges are each connected to a detector 210a and 210b, respectively, and are both connected to an emitter 208 and a power source 207. A similar configuration can be envisioned with three or more segments of elastomers each segment being integrated in a measuring bridge, but all being connected to the same transmitter.
De même, l'utilisation de l'équipement de l'invention ne se limite pas au poignet ou au bras, il peut être également utilisé sur d'autres membres ou organes en fonction des besoins du praticien, par exemple lorsque la pose d'un stent se fait via l'artère fémorale, le bracelet peut être placé au niveau de la cuisse. L'utilisation de l'invention ne se limite pas à des utilisations au cours d'interventions chirurgicales. Elle peut s'appliquer à tout autre activité de surveillance des flux sanguins et/ou des cycles respiratoire. Similarly, the use of the equipment of the invention is not limited to the wrist or the arm, it can also be used on other limbs or organs according to the needs of the practitioner, for example when the pose of a stent is done via the femoral artery, the bracelet can be placed at the level of the thigh. The use of the invention is not limited to uses during surgical procedures. It can be applied to any other activity to monitor blood flow and / or respiratory cycles.
Un exemple est la surveillance des apnées du sommeil. Le patient peut alors être équipé d'un équipement de l'invention, sous forme de bracelet ou de patch, connecté pendant son sommeil à un périphérique d'analyse, tel que son smartphone, qui contient une application analysant le signal émis par le dispositif électronique de l'équipement et qui peut émettre un signal sonore et/ou lumineux destiné à réveiller le patient, si l'apnée devient dangereuse pour lui. L'équipement de surveillance des flux sanguins et/ou des cycles respiratoires, comprenant un ou plusieurs segments d'élastomère conducteur, peut être utilisé sur de nombreuses parties du corps. Il peut être utilisé ante, per et post intervention chirurgicale. Il peut également être utilisé à plus long terme, pendant des jours, des semaines ou des mois pour surveiller des paramètres physiologiques d'un patient, comme par exemple, les flux artériels et/ou veineux et sa cohérence cardiaque. En référence à la figure 10, l'équipement de l'invention peut être utilisée au niveau du poignet 1606, de la cheville 1610 ou du genou 1609 pour surveiller les problèmes veineux dans la jambe, du haut de la cuisse 1607 pour surveiller l'artère fémorale, de la partie inférieure de la cuisse 1608 pour détecter des occlusions artérielles et/ou veineuses. Il peut également s'appliquer à différents niveaux des bras supérieurs 1603 et 1604 et/ou des avant-bras 1605 et 1606 pour détecter des occlusions artérielles et/ou veineuses. Il peut également être utilisé avantageusement pour surveiller le comportement physiologique du pénis pour clarifier le type d'une dysfonction érectile. Une application du dispositif au niveau du cou 1602 permet de surveiller le rythme respiratoire, les instabilités des cycles respiratoires et les flux artériels et/ou veineux vers le cerveau . Le segment d'élastomère conducteur de surveillance peut également être installé au niveau du tronc, par exemple autour de la taille 1627, pour surveiller les mouvements de l'abdomen, par exemple pour suivre les comportements de la paroi abdominale après une intervention intestinale, ou au niveau de la poitrine 1626 pour surveiller le cycle respiratoire, la cohérence cardiaque et les activités cardiaques artérielles et ou veineuses. An example is the monitoring of sleep apnea. The patient can then be equipped with a device of the invention, in the form of a bracelet or patch, connected during his sleep to an analysis device, such as his smartphone, which contains an application analyzing the signal emitted by the device electronic equipment and that can emit an audible and / or luminous signal intended to wake the patient, if the apnea becomes dangerous for him. Blood flow monitoring equipment and / or breathing cycles, including one or more segments of conductive elastomer, can be used in many parts of the body. It can be used ante, per and post surgery. It can also be used in the longer term, for days, weeks or months to monitor a patient's physiological parameters, such as, for example, arterial and / or venous flow and its cardiac coherence. With reference to FIG. 10, the equipment of the invention can be used at wrist 1606, ankle 1610 or knee 1609 to monitor venous problems in the leg, from the top of the thigh 1607 to monitor the Femoral artery, lower thigh 1608 to detect arterial and / or venous occlusions. It can also be applied to different levels of the upper arms 1603 and 1604 and / or the forearms 1605 and 1606 to detect arterial and / or venous occlusions. It can also be used advantageously to monitor the physiological behavior of the penis to clarify the type of erectile dysfunction. An application of the device at the level of the neck 1602 makes it possible to monitor the respiratory rhythm, the instabilities of the respiratory cycles and the arterial and / or venous flows towards the brain. The monitoring conductive elastomeric segment may also be installed at the trunk, for example around the waist 1627, to monitor the movements of the abdomen, for example to monitor abdominal wall behaviors after intestinal intervention, or at the level of the chest 1626 to monitor the respiratory cycle, cardiac coherence and arterial and venous cardiac activities.
Accessoirement, le dispositif de l'invention peut être agencé de façon esthétique, comme une sorte de bijou, pour pouvoir être utilisé durant la journée et la nuit de manière élégante, pratique et confortable. Incidentally, the device of the invention can be arranged aesthetically, as a kind of jewel, to be used during the day and night in an elegant, practical and comfortable.
Une autre forme de réalisation très utile et nouvelle de l'invention est de solidariser le ou les segment (s) d'élastomère conducteur et les moyens de saisie et/ou de traitement à une pièce adhésive, pour former un dispositif de type « patch ». En référence à la figure 12, un segment d'élastomère conducteur 1621 est relié à un dispositif de saisie 1620 par des connecteurs électriques 1623. L'élastomère 1621 et le dispositif de saisie 1620 sont disposés sur la face collant d'une pièce adhésive 1622, l'ensemble formant un patch 1624. Another very useful and novel embodiment of the invention is to join the segment (s) of conductive elastomer and the gripping and / or treatment means to an adhesive part, to form a device of the "patch" type. ". With reference to FIG. 12, a conductive elastomer segment 1621 is connected to an input device 1620 by electrical connectors 1623. The elastomer 1621 and the gripper 1620 are disposed on the tacky side of an adhesive piece 1622, the assembly forming a patch 1624.
Le dispositif de saisie 1620 reprend les mêmes éléments que les boîtiers 2 et 202 déjà décrits. Ce patch 1624 peut être utilisé par exemple sur la poitrine ou sur l'abdomen pour mesurer la cohérence cardiaque, le rythme respiratoire et la circulation sanguine. En particulier, ce patch peut servir à évaluer si la respiration d'un patient est profonde ou seulement sur la partie supérieure des poumons (incohérence) , ce qui est une indication de l'équilibre sympathique, parasympathique de son métabolisme. Le patch 1624 peut également être utilisé pour la mesure de la fonction de la vessie qui est un paramètre très important lorsqu'un patient est en soins intensifs. The input device 1620 has the same elements as the housings 2 and 202 already described. This patch 1624 can be used for example on the chest or abdomen to measure cardiac coherence, respiratory rate and blood circulation. In particular, this patch can be used to assess whether a patient's breathing is deep or only on the upper part of the lungs (inconsistency), which is an indication of the sympathetic, parasympathetic balance of his metabolism. The 1624 patch can also be used for the measurement of bladder function which is a very important parameter when a patient is in intensive care.
Il est possible de fabriquer le segment d'élastomère conducteur de l'invention « en couches » afin d'en réduire la taille, le coût de production, le poids et d'augmenter simultanément sa sensibilité et la précision de mesure. Cette construction multicouches consiste en une alternance de couches l'élastomère conducteur avec des couches d'élastomère non-conducteur. Cette construction avantageuse permet de réaliser plusieurs mesures à l'aide d'un seul segment stratifié 1500. It is possible to manufacture the conductive elastomeric segment of the invention "in layers" in order to reduce the size, the cost of production, the weight and simultaneously increase its sensitivity and measurement accuracy. This multilayer construction consists of alternating layers of conductive elastomer with layers of non-conductive elastomer. This advantageous construction makes it possible to carry out several measurements using a single laminated segment 1500.
En référence à la figure 10, le segment d'élastomère 1500 est ici constitué alternativement avec des couches d'élastomère conducteur 1501 (a, b et c) et des couches d'élastomère non- conducteur 1502 (a, b et c) , pouvant avoir des valeurs de rigidité identiques ou différentes. Les couches d'élastomère conducteur 1501a, b et c peuvent également avoir des valeurs de conductivité différentes entre elles. Ces couches 1501a, b et c sont reliées au reste du dispositif par des connecteurs électriques. Une couche d'élastomère non conducteur 1502a forme avantageusement la couche externe destinée à être en contact avec la peau du patient, afin d'isoler électriquement le dispositif. With reference to FIG. 10, the elastomer segment 1500 is here alternately constituted by layers of conductive elastomer 1501 (a, b and c) and layers of non-conductive elastomer 1502 (a, b and c), may have the same or different stiffness values. The conductive elastomer layers 1501a, b and c may also have different conductivity values to each other. These layers 1501a, b and c are connected to the rest of the device by electrical connectors. A non-conductive elastomer layer 1502a advantageously forms the outer layer intended to be in contact with the patient's skin in order to electrically isolate the device.
Dans une forme de réalisation, toutes les couches conductrices couvrent toute la longueur du segment 1500. II est également envisageable qu'une partie des couches conductrices, ici la couche 1501b, puisse être « fractionnée », c'est-à-dire entrecoupée sur sa longueur de sections non conductrices 1503 afin de former des segments conducteurs 1504, 1505 et 1506. Chaque segment conducteur est relié au reste du dispositif par des connecteurs électriques judicieusement agencés. Ce fractionnement confère à la couche 1501b les propriétés décrites préalablement pour des bracelets constitués de plusieurs segments d' élastomères conducteurs, et permet d' isoler des signaux provenant de flux veineux ou artériels différents, comme par exemple les flux relatifs à l'artère ulniale et à l'artère radiale. In one embodiment, all the conductive layers cover the entire length of the segment 1500. It is also conceivable that a portion of the conductive layers, here the layer 1501b, can be "fractionated", that is to say, interspersed on its length of non-conductive sections 1503 to form conductive segments 1504, 1505 and 1506. Each conductive segment is connected to the rest of the device by judiciously arranged electrical connectors. This fractionation gives the layer 1501b the previously described properties for bracelets consisting of several segments of conductive elastomers, and makes it possible to isolate signals originating from different venous or arterial flows, such as, for example, the flows relating to the ulnar artery and at the radial artery.
Les sections non-conductrices 1503 peuvent être en élastomère ou non, et éventuellement fabriquées dans des matériaux différents. The non-conductive sections 1503 may be made of elastomer or not, and possibly made of different materials.
Le segment 1500 peut comporter plusieurs couches conductrices identiques, générant chacune un signal qui pourra être traité séparément ou statistiquement ou en calculant les interactions des signaux des couches similaires. The segment 1500 may comprise several identical conductive layers, each generating a signal that can be processed separately or statistically or by calculating the interactions of the signals of similar layers.
D'une manière générale, les connections électriques peuvent être réalisées avec tout matériau approprié, aussi bien par exemple des métaux, comme du cuivre, que des encres conductrices . In general, the electrical connections can be made with any suitable material, both by examples of metals, such as copper, as conductive inks.
Un segment d' élastomère, comprenant une couche ou une superposition de plusieurs couches, peut être utilisé pour concevoir un équipement conçu pour une surveillance spécifique. Par exemple, un segment d' élastomère conçu pour surveillance de l'artère fémorale peut avoir la même construction qu'un segment d' élastomère conçu pour la surveillance de l'artère radiale au niveau du poignet, mais sera adapté dans ses dimensions selon l'usage. An elastomer segment, including a layer or layer of multiple layers, may be used to design equipment designed for specific monitoring. For example, an elastomer segment designed for femoral artery monitoring may have the same construction as an elastomer segment designed for monitoring the radial artery at the wrist, but will be adapted in its dimensions according to the 'use.
Les moyens d'extraction des paramètres des flux sanguins et/ou respiratoires à surveiller comprennent un algorithme mettant en œuvre un certain nombre d'étapes pour convertir le signal mesuré au niveau du pont de mesure en signal visualisable par un opérateur. The means for extracting the parameters of the blood and / or respiratory flows to be monitored comprise an algorithm implementing a certain number of steps for converting the signal measured at the level of the measurement bridge into an operator viewable signal.
En référence à la figure 13, dans une première étape 2001, un signal électrique s, ici une tension v, est mesuré au cours du temps t pour chaque segment d' élastomère . Le signal électrique comprend des maximas et des minimas de tension dont est extraite la fréquence cardiaque moyenne fc. Par exemple, pour un humain, la fréquence cardiaque est comprise entre 0,25 et 4 hertz. Pour une mesure correcte, une fréquence d'échantillonnage, c'est-à-dire la fréquence à laquelle l'extraction de la fréquence cardiaque peut être réalisée, de 200 Hz est suffisante. En pratique, l'extraction 2002 de la fréquence cardiaque fc comprend plusieurs étapes 2003 à 2011. Dans une première étape 2003, le signal S passe dans un filtre passe bande, c'est-à-dire ne laissant passer qu'une bande ou intervalle de fréquences compris entre une fréquence de coupure basse et une fréquence de coupure haute du filtre, comme par exemple un filtre de type RIF (Réponse impulsionnelle Finie) . Du signal résultant Sf, dans une seconde étape 2004, sont extraites les dérivées premières S' et secondes S''. En mode digital, les dérivées premières et secondes sont calculées de manière classique par S' (n) = S(n+1)-S(n) et S'' (n) = S ' (n+1 ) -S ' (n) ou n est le numéro deWith reference to FIG. 13, in a first step 2001, an electrical signal s, here a voltage v, is measured over time t for each elastomer segment. The electrical signal includes maxima and voltage minima from which the average heart rate fc is extracted. For example, for a human, the heart rate is between 0.25 and 4 Hz. For a correct measurement, a sampling frequency, i.e. the frequency at which heart rate extraction can be performed, of 200 Hz is sufficient. In practice, the 2002 extraction of the heart rate fc comprises several steps from 2003 to 2011. In a first step 2003, the signal S passes into a bandpass filter, that is to say, allowing only one band or frequency range between a low cutoff frequency and a high cutoff frequency of the filter, as for example a filter type RIF (impulse response Finite). From the resulting signal Sf, in a second step 2004, the first derivatives S 'and seconds S''are extracted. In digital mode, the first and second derivatives are conventionally calculated by S '(n) = S (n + 1) -S (n) and S''(n) = S' (n + 1) -S ' (n) where n is the number of
I ' échantillon . The sample.
A l'étape 2005, les dérivées premières S' sont binarisées en signaux S'b, en remplaçant les valeurs positives des signaux S' par 1 et les négatives par 0. Dans une étape indépendante et/ou parallèle 2006, les dérivées secondes sont rectifiées en signaux S''p en mettant à 0 toutes les valeurs négatives. In step 2005, the first derivatives S 'are binarized into signals S'b, replacing the positive values of the signals S' by 1 and the negative ones by 0. In a step independent and / or parallel 2006, the second derivatives are rectified into S''p signals by setting all negative values to 0.
Dans une étape de calcul 2007, le produit des dérivées premières binarisées S'b et des dérivées secondes rectifiées S''p donne le signal W dont il est possible, à l'étape 2008, d'identifier les maximums Wmax . L'application d'un filtre numérique dit « de poids », à l'étape 2009, permet d'extraire de ces maximums Wmax la composante Wmaxf relative à la fréquence artérielle. Le signal Wmaxf est ensuite à nouveau traité pour en éliminer le « bruit », par un filtrage passe bande 2010. In a calculation step 2007, the product of the binarized first derivatives S'b and second derivatives rectified S''p gives the signal W which it is possible, in step 2008, to identify the maximums Wmax. The application of a digital filter called "weight", in step 2009, allows to extract from these maximums Wmax the component Wmaxf relative to the arterial frequency. The signal Wmaxf is then processed again to eliminate the "noise", by a band pass filtering 2010.
II est alors possible de détecter l'intervalle de temps entre deux maxima d'un signal de pulsation artérielle pour en extraire, à l'étape 2011, la fréquence cardiaque. It is then possible to detect the time interval between two maxima of an arterial pulsation signal to extract, in step 2011, the heart rate.
La cohérence cardiaque, c'est-à-dire la variation de la fréquence cardiaque, telle que défini par l'institut Heartmath, peut en être déduite. Cardiac coherence, that is, the change in heart rate, as defined by the Heartmath Institute, can be inferred.
La cohérence cardiaque est un suivi qui analyse la vitesse de battement cardiaque par rapport au battement précédent. Cette dynamique est à l'origine de l'équilibrage des systèmes sympathiques et para sympathiques du corps. Ce suivi peut permettre d'évaluer en particulier le niveau de stress d'un individu et éventuellement de détecter l'apparition de pathologies comme le burn out, la dépression, ou un accident vasculaire cérébral. Cardiac coherence is a follow-up that analyzes the heartbeat rate compared to the previous beat. This dynamics is at the origin of the balancing of sympathetic and para sympathetic systems of the body. This monitoring can make it possible to evaluate in particular the level of stress of an individual and possibly to detect the appearance of pathologies such as burn out, depression, or stroke.
Dans le cas où l'équipement comprend plusieurs segments d' élastomère, les signaux correspondant à chaque segment sont traités séparément, et subissent chacun toutes les étapes 2003 à 2011. In the case where the equipment comprises several segments of elastomer, the signals corresponding to each segment are treated separately, and each undergoes all the steps 2003 to 2011.
Les autres paramètres des flux sanguins et des cycles respiratoires peuvent également être extraits, à partir du même signal Sf issu de l'étape de filtrage passe-bande 2003. The other parameters of blood flow and respiratory cycles can also be extracted from the same signal Sf from the bandpass filtering step 2003.
Dans une étape 2012, pour chaque segment d' élastomère, le signal Sf est traité par analyse vibratoire intégrant une transformation de Fourrier rapide (FFT) dont on extrait la densité de puissance spectrale PSDi pour chaque groupe de fréquence, c'est-à-dire sur des bandes de fréquences correspondant chacune à un paramètre physiologique distinct, comme par exemple les fréquences du système veineux, du système artériel, les fréquences respiratoires. Chaque fonction physiologique peut, en effet, être associée à un ensemble de fréquences qui permettent de la caractériser dans son cycle, son énergie et sa dynamique. Les signaux PDSi obtenus pour chaque bande de fréquences peuvent ensuite également être pondérés par leur énergie et leur intensité, dans une étape 2013, afin de générer des signaux représentatifs Wi de chaque fonction physiologique mesurée, par exemple un signal respiratoire Wr, un signal veineux Wv ou un signal artériel Wa . Les bandes de fréquences considérées, pour chaque segment d' élastomère, peuvent dépendre du placement spécifique du segment sur l'élément corporel et des signaux dominants attendus pour ces emplacements. In a step 2012, for each segment of elastomer, the signal Sf is processed by vibratory analysis integrating a Fast Fourier Transformation (FFT) from which the spectral power density PSDi is extracted for each frequency group, that is to say say on frequency bands each corresponding to a distinct physiological parameter, such as for example the frequencies of the venous system, the arterial system, the respiratory frequencies. Each physiological function can, indeed, be associated with a set of frequencies which make it possible to characterize it in its cycle, its energy and its dynamics. PDSi signals obtained for each frequency band can then also be weighted by their energy and intensity, in a step 2013, to generate representative signals Wi of each physiological function measured, for example a respiratory signal Wr, a venous signal Wv or an arterial signal Wa. The frequency bands considered, for each segment of elastomer, may depend on the specific placement of the segment on the body element and the dominant signals expected for these locations.
Dans le cas où l'équipement comprend plusieurs segments d' élastomère, les signaux Wi obtenus pour chaque segment peuvent être comparés pour faciliter la détection automatique des types de paramètres physiologiques majoritairement détectés par chaque segment d' élastomère . In the case where the equipment comprises several segments of elastomer, the Wi signals obtained for each segment can be compared to facilitate the automatic detection of the types of physiological parameters mainly detected by each segment of elastomer.
Toutes les étapes de l'algorithmique 300 décrites ci-dessus sont gérées en temps réel par le système informatique, et les signaux qui en résultent peuvent être visualisés par un opérateur. All the algorithmic steps 300 described above are managed in real time by the computer system, and the resulting signals can be viewed by an operator.
Au cours du déroulement des étapes de l'algorithme 300, toutes les valeurs mesurées, les signaux ou les résultats de calcul peuvent être sauvegardés sur des mémoires non volatiles, locales ou distantes, comme par exemple des disques durs ou le nuage . During the course of the steps of the algorithm 300, all the measured values, the signals or the calculation results can be saved on non-volatile memories, local or remote, such as for example hard disks or the cloud.
Les étapes de l'algorithme 300 sont détaillées ici à titre d'exemple. La nature, le nombre et l'ordonnancement des étapes peuvent évidemment être différents pour construire un algorithme permettant d'extraire de la mesure de la longueur du segment d' élastomère variable toute information utilisable par un praticien. En référence à la figure 14, la demanderesse a été surprise d'observer que l'insertion d'un organe d'extension de la longueur statique du segment d' élastomère, ici une perle 404, positionnée entre un segment d' élastomère conducteur 401 connecté à un boitier 402 et le pourtour du poignet 5, spécifiquement au niveau de l'artère radiale 15, permet d'améliorer significativement la précision du signal mesuré relatif à cette artère radiale 15. The steps of the algorithm 300 are detailed here by way of example. The nature, the number and the ordering of the steps can obviously be different to construct an algorithm making it possible to extract from the measurement of the length of the variable elastomer segment any information that can be used by a practitioner. With reference to FIG. 14, the Applicant was surprised to observe that the insertion of an extension member of the static length of the elastomer segment, here a bead 404, positioned between a segment of conductive elastomer 401 connected to a casing 402 and around the wrist 5, specifically at the level of the radial artery 15, significantly improves the accuracy of the measured signal relative to this radial artery 15.
En effet, la présence de la perle permet, par effet géométrique, en écartant légèrement le segment d'élastomère 402 du bras 5, d'amplifier la variation de longueur due à la variation de diamètre de l'artère radiale, c'est-à-dire d'amplifier l'amplitude du signal en en augmentant la sensibilité . Indeed, the presence of the bead makes it possible, by geometric effect, by slightly separating the elastomer segment 402 from the arm 5, to amplify the variation in length due to the variation in the diameter of the radial artery, that is, to amplify the amplitude of the signal by increasing the sensitivity.
Une perle est ici utilisée. Celle-ci étant enfilée sur le segment d'élastomère, elle y est facilement déplaçable par coulissement et ne risque pas de s'en désolidariser. Cependant, tout autre élément rigide positionnable, c'est-à- dire susceptible d'être placé de façon stable dans le temps à un endroit précis du membre corporel, par exemple au niveau d'une artère à surveiller, entre la peau et l' élastomère, est envisageable. L'élément peut par exemple avoir une forme cubique, semi-sphérique ou toute autre forme que l'homme du métier juge adaptée. L'élément rigide peut être fabriqué avec n'importe quel matériau adapté, et peut par exemple être en bois ou en plastique. A pearl is used here. The latter being threaded on the elastomer segment, it is easily movable by sliding and is not likely to dissociate. However, any other rigid positionable element, that is to say capable of being placed stably in time at a specific location of the body member, for example at an artery to monitor, between the skin and the skin. elastomer, is possible. The element may for example have a cubic, semi-spherical shape or any other form that the skilled person deems appropriate. The rigid member may be made of any suitable material, and may for example be of wood or plastic.
Dans le cas d'un équipement comprenant plusieurs segments d'élastomère conducteur, il est envisageable d'installer plusieurs organes d'extensions, positionnables chacun sur un segment d'élastomère, afin de surveiller plusieurs artères. Par exemple, un équipement selon l'invention, qui comprend deux segments d'élastomère couvrant chacun tout le pourtour d'un poignet peut comprendre un organe d'extension positionnable sur chaque segment. Lors de l'utilisation, un premier organe d'extension serait placé entre le premier segment d'élastomère et la peau au niveau de l'artère radiale, un second organe d'extension serait placé entre le deuxième segment d'élastomère et la peau au niveau de l'artère ulniale. L'équipement peut ainsi mesurer avec une grande précision les informations relatives à ces deux artères. D'autres segments avec organe d'extension peuvent être ajoutés, pour mesure par exemple également les flux veineux. L'équipement selon l'invention comprend ainsi au moins un organe d'extension positionnable entre un segment d'élastomère conducteur de l'équipement et le pourtour de l'élément corporel à surveiller, au niveau d'un point d'intérêt qui est de préférence un canal parcouru par un flux sanguin. In the case of equipment comprising several segments of conductive elastomer, it is conceivable to install several extension members, each positionable on an elastomer segment, in order to monitor several arteries. For example, a device according to the invention, which comprises two elastomer segments each covering the entire periphery of a wrist may comprise an extension member positionable on each segment. When using, a first extension member would be placed between the first elastomeric segment and the skin at the radial artery, a second extension member would be placed between the second elastomeric segment and the skin at the level of the ulnar artery . The equipment can thus measure with great precision the information relating to these two arteries. Other segments with extension member may be added, for example measuring also venous flow. The equipment according to the invention thus comprises at least one extension member positionable between a conductive elastomer segment of the equipment and the perimeter of the body element to be monitored, at a point of interest which is preferably a channel traversed by a blood flow.
Il est envisageable d'utiliser cet organe d'extension pour réaliser d'autres mesures en y intégrant un instrument de mesure complémentaire miniaturisé. Par exemple, associer à l'organe d'extension un microphone sonique ou ultrasonique peut permettre de réaliser des mesures de type doppler sur le flux artériel, en parallèle de la mesure pléthysmographique . Le résultat de cette mesure pourrait être combiné aux autres informations générées par l'équipement de l'invention, afin d'en améliorer la précision, la qualité et la portée. It is conceivable to use this extension member to perform other measurements by incorporating a miniaturized complementary measuring instrument. For example, associating with the extension member a sonic or ultrasonic microphone may make it possible to perform doppler-type measurements on the arterial flow, in parallel with the plethysmographic measurement. The result of this measurement could be combined with other information generated by the equipment of the invention, in order to improve its accuracy, quality and range.
Il a été évoqué plus haut que le système informatique de traitement du signal peut être, entre autres, une montre connectée. En référence à la figure 16, une montre connectée 503 est équipée d'un port 504 de connexion, au niveau d'une des attaches du bracelet 506 de montre. Il peut être envisagé d'intégrer l'équipement de l'invention, c'est-à-dire au moins un segment d'élastomère conducteur 501 (ici, deux sont représentés) et un circuit 502 comprenant les moyens de saisie de la longueur des segments 501, les moyens de traitement du signal et éventuellement la batterie, au bracelet 501 de la montre 503. Une fois le signal traité, il peut être transmis, via le port de connexion 504 de la montre 503 à un logiciel, ou une application, 506 installé sur la montre. La montre connectée 503, c'est-à-dire pouvant communiquer en wifi, bluetooth, ou en 3G ou 4G par exemple, peut être programmée pour prévenir automatiquement un service d'urgences médicales en cas d'identification d'un problème lié aux flux sanguins ou aux cycles respiratoires de l'individu. Cette configuration est particulièrement intéressante pour des personnes présentant un risque de déficience cardiaque élevé, ou des problèmes pulmonaires sérieux. Le service d'urgence peut non seulement intervenir rapidement mais, en outre, adapter directement son intervention grâce aux informations fournies par l'équipement intégrer dans le bracelet de montre du patient . It has been mentioned above that the computer system for processing the signal can be, inter alia, a connected watch. With reference to FIG. 16, a connected watch 503 is equipped with a connection port 504, at one of the fasteners of the watch strap 506. It can be envisaged to integrate the equipment of the invention, that is to say at least one conductive elastomer segment 501 (here, two are represented) and a circuit 502 comprising the input means the length of the segments 501, the signal processing means and possibly the battery, to the bracelet 501 of the watch 503. Once the processed signal, it can be transmitted via the connection port 504 of the watch 503 to a software , or an application, 506 installed on the watch. The connected watch 503, that is to say that can communicate in wifi, bluetooth, or 3G or 4G for example, can be programmed to automatically prevent a medical emergency service in case of identification of a problem related to blood flow or breathing cycles of the individual. This configuration is particularly interesting for people at risk of high heart failure, or serious lung problems. The emergency service can not only intervene quickly but, in addition, directly adapt its intervention thanks to the information provided by the equipment integrate into the patient's wristband.
Le bracelet et l'équipement de l'invention forment un ensemble connectable, mécaniquement pour l'une et électroniquement pour l'autre, avec la montre connectée. The bracelet and the equipment of the invention form an assembly connectable, mechanically for one and electronically for the other, with the connected watch.
Pour des utilisations en milieux humides, par exemple lors de plongée sous-marine, le bracelet de montre supportant l'équipement de l'invention pourrait être enrobé de silicone pour en assurer 1 ' étanchéité . For uses in wet environments, for example during scuba diving, the watch strap supporting the equipment of the invention could be coated with silicone to ensure sealing.
On a parlé ici de montre connectée, mais il faut entendre par là tout système de monitoring portable de la taille d'une montre et intégrant différentes technologies telles que par exemple l'Apple Watch. L'équipement de l'invention peut également être utilisé pour surveiller la respiration et/ou l'activité cardiaque d'un bébé. Il est même envisageable qu'il soit combiné à moniteur de surveillance respiratoire infantile, comme par exemple un tapis à capteur à placer sous un matelas. Ce type de tapis souffre souvent d'un manque de sensibilité conduisant à de fausses alertes. Combiner les informations enregistrées par le tapis avec les informations issues d'un bracelet de l'invention pourrait augmenter avantageusement la sensibilité de l'ensemble. We have talked about connected watch here, but this means any wearable monitoring system the size of a watch and integrating different technologies such as for example the Apple Watch. The equipment of the invention can also be used to monitor a baby's breathing and / or heart activity. It is even conceivable that it is combined with infant respiratory monitoring monitor, such as a sensor mat to be placed under a mattress. This type of carpet often suffers from a lack of sensitivity leading to false alarms. Combining the information recorded by the carpet with the information from a bracelet of the invention could advantageously increase the sensitivity of the assembly.

Claims

Revendications claims
1. Equipement non-invasif de surveillance des flux sanguins, d'un élément corporel comprenant un réseau de canaux parcourus par lesdits flux sanguins, comprenant : 1. Non-invasive blood flow monitoring equipment, of a body element comprising a network of channels traversed by said blood flows, comprising:
au moins un segment d'élastomère conducteur à résistance variable (1 ; 101 ; 201) agencé pour s'étendre sur le pourtour de l'élément corporel (5) et la résistance étant sensible à la longueur du pourtour dudit élément,  at least one variable-resistance conductive elastomer segment (1; 101; 201) arranged to extend around the perimeter of the body element (5) and the resistance being sensitive to the length of the periphery of said element,
- des moyens (2 ; 102 ; 202) de saisie de ladite longueur grâce à ladite résistance variable (1 ; 101 ; 201) et fournissant un signal représentatif de ladite longueur, et des moyens (2, 4) de traitement dudit signal comportant des moyens (3) d'extraction des paramètres des flux sanguins à surveiller. means (2; 102; 202) for capturing said length by means of said variable resistor (1; 101; 201) and providing a signal representative of said length, and means (2, 4) for processing said signal comprising means (3) for extracting blood flow parameters to be monitored.
2. Equipement non-invasif de surveillance des cycles respiratoires d'un corps humain ou animal, induisant une variation de la longueur du pourtour d'un élément corporel, comprenant : 2. Non-invasive equipment for monitoring the breathing cycles of a human or animal body, inducing a variation in the length of the periphery of a body component, comprising:
au moins un segment d'élastomère conducteur à résistance variable (1 ; 101 ; 201) agencé pour s'étendre sur le pourtour de l'élément corporel (5) et la résistance étant sensible à la longueur du pourtour dudit élément,  at least one variable-resistance conductive elastomer segment (1; 101; 201) arranged to extend around the perimeter of the body element (5) and the resistance being sensitive to the length of the periphery of said element,
- des moyens (2 ; 102 ; 202) de saisie de ladite longueur grâce à ladite résistance variable (1 ; 101 ; 201) et fournissant un signal représentatif de ladite longueur, et des moyens (2, 4) de traitements dudit signal comportant des moyens (3) d'extraction des paramètres des cycles respiratoires à surveiller. means (2; 102; 202) for capturing said length by means of said variable resistor (1; 101; 201) and supplying a signal representative of said length, and means (2, 4) for processing said signal comprising means (3) for extracting the parameters of the respiratory cycles to be monitored.
3. Equipement selon l'une des revendications 1 et 2, dans lequel le segment d'élastomère conducteur à résistance variable (1 ; 101 ; 201) est agencé pour entourer l'élément corporel (5) et sensible à la longueur du tour dudit élément . 3. Equipment according to one of claims 1 and 2, wherein the resistance elastomeric segment resistance variable (1; 101; 201) is arranged to surround the body member (5) and responsive to the tower length of said member.
4. Equipement selon l'une des revendications 1 et 2, dans lequel le segment d'élastomère conducteur à résistance variable (1 ; 101 ; 201) est solidarisé à une pièce adhésive .  4. Equipment according to one of claims 1 and 2, wherein the variable resistance conductive elastomeric segment (1; 101; 201) is secured to an adhesive part.
5. Equipement selon l'une des revendications 1 à 4, dans lequel les moyens de saisie de ladite longueur comprennent au moins un circuit de mesure (6), dont au moins une des résistances est constituée par l'élastomère conducteur à résistance variable . 5. Equipment according to one of claims 1 to 4, wherein the gripping means of said length comprise at least one measuring circuit (6), at least one of the resistors is constituted by the conductive elastomer variable resistance.
6. Equipement selon la revendication 5 dans lequel le circuit de mesure (6) est relié à un émetteur sans fil (8) . 6. Equipment according to claim 5 wherein the measuring circuit (6) is connected to a wireless transmitter (8).
7. Equipement selon la revendication 6 dans lequel l'émetteur sans fil (8) est relié à un récepteur sans fil (12) d'un système informatique (4) de traitement des signaux reçus par le récepteur (12) . 7. Equipment according to claim 6 wherein the wireless transmitter (8) is connected to a wireless receiver (12) of a computer system (4) for processing signals received by the receiver (12).
8. Equipement selon l'une des revendications 1 à 7, dans lequel les moyens de traitement sont des moyens électroniques et les moyens d'extraction de paramètres des flux sanguins et/ou des cycles respiratoires à surveiller comprennent un algorithme (3) agencé pour recevoir les informations relatives à ladite longueur pour en extraire les paramètres des flux sanguins et/ou des cycles respiratoires à surveiller. 8. Equipment according to one of claims 1 to 7, wherein the processing means are electronic means and the means for extracting blood flow parameters and / or respiratory cycles to monitor comprise an algorithm (3) arranged for receiving the information relating to said length to extract the parameters of the blood flows and / or respiratory cycles to be monitored.
9. Equipement selon l'une des revendications 1 à 7, dans lequel les moyens de traitement sont des moyens électroniques et les moyens d'extraction de paramètres des flux sanguins et/ou des cycles respiratoires à surveiller comprennent un algorithme (3) agencé pour recevoir les informations relatives à ladite longueur pour en extraire des paramètres 5 de cohérence cardiaque. 9. Equipment according to one of claims 1 to 7, wherein the processing means are electronic means and the means for extracting blood flow parameters and / or respiratory cycles to be monitored comprise an algorithm (3) arranged to receive the information relating to said length in order to extract cardiac coherence parameters therefrom.
10. Equipement selon l'une des revendications 8 et 9, dans lequel ledit algorithme (3) coopère avec le circuit de mesure (6), l'émetteur sans fil (8) et le récepteur sans fil10. Equipment according to one of claims 8 and 9, wherein said algorithm (3) cooperates with the measuring circuit (6), the wireless transmitter (8) and the wireless receiver
10 (12) . 10 (12).
11. Equipement selon l'une des revendications 8 à 10, dans lequel ledit algorithme (3) est implanté dans ledit système informatique (4) . 11. Equipment according to one of claims 8 to 10, wherein said algorithm (3) is implanted in said computer system (4).
15  15
12. Equipement selon les revendications 1 à 11, comprenant plusieurs segments d'élastomère conducteur (101a, 101b ; 201a, 201b ; 1501a, 1501b, 1501c, 1504, 1505, 1506) .  12. Equipment according to claims 1 to 11, comprising a plurality of conductive elastomer segments (101a, 101b; 201a, 201b; 1501a, 1501b, 1501c, 1504, 1505, 1506).
20 13. Equipement selon la revendication 12, dans lequel il est prévu un boitier (202) comprenant au moins deux circuits de mesure (206a, 206b) intégrant chacun un segment d'élastomère conducteur (201a, 201b) . Equipment according to claim 12, wherein there is provided a housing (202) comprising at least two measuring circuits (206a, 206b) each incorporating a conductive elastomeric segment (201a, 201b).
25 14. Equipement selon l'une des revendications 3 et 5 à 13, comprenant un organe de serrage (316) du segment d'élastomère conducteur (1). The equipment according to one of claims 3 and 5 to 13, comprising a clamping member (316) of the conductive elastomeric segment (1).
15. Equipement selon la revendication 14, dans lequel l'organe 30 de serrage (316) comprend un moteur (315), piloté par le système informatique (4) pour ajuster la longueur du segment d'élastomère conducteur (1). Equipment according to claim 14, wherein the clamping member (316) comprises a motor (315), driven by the computer system (4) for adjusting the length of the conductive elastomeric segment (1).
16. Equipement selon l'une des revendications 1 à 15, dans lequel le segment d'élastomère conducteur à résistance variable (1 ; 1500) est un segment multicouches (1500) consistant en une alternance de couches l'élastomère16. Equipment according to one of claims 1 to 15, wherein the variable resistance conductive elastomer segment (1; 1500) is a multilayer segment (1500) consisting of an alternation of layers the elastomer
5 conducteur (1501a, 1501b, 1501c) avec des couches d' élastomères non-conducteur (1502a, 1502b, 1502c). Conductor (1501a, 1501b, 1501c) with layers of non-conductive elastomers (1502a, 1502b, 1502c).
17. Equipement selon l'une des revendications 1 à 16, comprenant au moins un organe d'extension du segment17. Equipment according to one of claims 1 to 16, comprising at least one extension member of the segment.
10 d'élastomère conducteur agencé pour être positionnable entre le segment d'élastomère conducteur de l'équipement et le pourtour de l'élément corporel à surveiller. The conductive elastomer is arranged to be positionable between the conductive elastomeric segment of the equipment and the periphery of the body component to be monitored.
18. Equipement selon la revendication 17, dans lequel l'organe 15 d'extension du segment d'élastomère conducteur est agencé pour être positionnable contre un des canaux dont le flux sanguin est à surveiller. Equipment according to claim 17, wherein the elastomer segment extending member is arranged to be positionable against one of the channels whose blood flow is to be monitored.
19. Equipement selon la revendication 17, dans lequel 20 l'élément rigide contient un instrument de mesure complémentaire . Equipment according to claim 17, wherein the rigid element contains a complementary measuring instrument.
20. Equipement selon la revendication 5, dans lequel le circuit de mesure (6), est un amplificateur différentiel.Equipment according to claim 5, wherein the measuring circuit (6) is a differential amplifier.
25 25
21. Ensemble comprenant un équipement selon l'une des  21. Kit comprising equipment according to one of
revendications 1 à 20 et un dispositif automatique de  claims 1 to 20 and an automatic
compression agencé pour être piloté par l'équipement.  Compression arranged to be controlled by the equipment.
30 22. Equipement selon l'une des revendications 1 à 20, intégré dans le bracelet d'une montre connectée. 22. Equipment according to one of claims 1 to 20, integrated into the bracelet of a connected watch.
23. Equipement selon la revendication 22, agencé pour être connecté à un port de connexion de la montre. 23. Equipment according to claim 22, arranged to be connected to a connection port of the watch.
24. Ensemble comprenant un équipement selon l'une des revendications 1 à 20 et un tapis moniteur de surveillance respiratoire agencé pour coopérer avec l'équipement. 24. An assembly comprising an equipment according to one of claims 1 to 20 and a respiratory monitor monitor mat arranged to cooperate with the equipment.
EP17803903.8A 2016-12-21 2017-11-21 Equipment for monitoring blood flow and respiratory flow Pending EP3558106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2016/5953A BE1024423B1 (en) 2016-12-21 2016-12-21 Equipment for monitoring blood and respiratory flows
PCT/EP2017/079918 WO2018114180A1 (en) 2016-12-21 2017-11-21 Equipment for monitoring blood flow and respiratory flow

Publications (1)

Publication Number Publication Date
EP3558106A1 true EP3558106A1 (en) 2019-10-30

Family

ID=57838086

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17803903.8A Pending EP3558106A1 (en) 2016-12-21 2017-11-21 Equipment for monitoring blood flow and respiratory flow

Country Status (6)

Country Link
US (1) US11426083B2 (en)
EP (1) EP3558106A1 (en)
JP (2) JP7093777B2 (en)
CN (1) CN110650680B (en)
BE (1) BE1024423B1 (en)
WO (1) WO2018114180A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220364843A1 (en) * 2018-07-05 2022-11-17 Ergo Figure Limited Displacement measuring device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1024423B1 (en) 2016-12-21 2018-02-13 Idahealth Inc Equipment for monitoring blood and respiratory flows
US11832923B2 (en) 2016-12-21 2023-12-05 IdaHealth, Inc. Device for monitoring blood flow
EP3777678B1 (en) * 2018-03-26 2022-10-26 TERUMO Kabushiki Kaisha Measurement device
CA3169590A1 (en) * 2020-01-29 2021-08-05 Cipher Skin System for providing powerline communication over flexible mesh for circuit design used in biometric monitoring
FR3109518B1 (en) * 2020-04-23 2022-05-20 Samira Kerrouche PERSONAL MEDICAL MONITORING DEVICE OF THE CONNECTED WATCH TYPE AND METHOD FOR PERSONAL MEDICAL MONITORING OF A CORRESPONDING USER.
FR3109640B1 (en) * 2020-04-23 2022-05-20 Samira Kerrouche CONNECTED MONITORING WATCH, BEACON SYSTEM AND METHOD FOR MONITORING A CORRESPONDING USER.
WO2022035430A1 (en) 2020-08-13 2022-02-17 IdaHealth, Inc. Device for monitoring blood flow

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258720A (en) * 1979-02-09 1981-03-31 Medasonics Strain gauge plethysmograph
DE3831934A1 (en) * 1987-12-02 1989-06-15 Bristol Myers Co MONITOR FOR NIGHTLY PENISS SWELLS
JPH0528309U (en) * 1991-09-27 1993-04-16 三洋電機株式会社 Pulse meter
JP2998579B2 (en) * 1994-12-05 2000-01-11 松下電器産業株式会社 Pulse wave measuring device
FI115287B (en) * 1999-10-04 2005-04-15 Polar Electro Oy Electrode belt of a heart rate monitor
JP2004135920A (en) 2002-10-18 2004-05-13 Tcc Corporation Ltd Physiology measuring instrument of human body
AU2003285679A1 (en) * 2003-12-19 2005-08-03 Michael Rufer Elastic textile structures for sensing body movements
JP2008241717A (en) 2004-03-29 2008-10-09 Sanyo Electric Co Ltd Electrostatic capacitance-type pressure sensor, and heart rate/respiratory rate measuring device having the same
EP1791467B1 (en) * 2004-09-21 2013-03-27 Adidas AG Improved sensors for inductive plethysmographic monitoring applications and apparel using same
JP2006271610A (en) * 2005-03-29 2006-10-12 Casio Comput Co Ltd Band
JP4830097B2 (en) * 2005-06-29 2011-12-07 国立大学法人広島大学 Blood vessel state measuring device, control program, recording medium
JP4668712B2 (en) * 2005-07-12 2011-04-13 フクダ電子株式会社 Body motion detection belt
TW200728699A (en) * 2006-01-23 2007-08-01 Chang-Ming Yang Fabric-based strain gauge
US20070287923A1 (en) * 2006-05-15 2007-12-13 Charles Adkins Wrist plethysmograph
US20080119896A1 (en) * 2006-10-28 2008-05-22 Kwok Shing Thomas Wong Method and device for anti-sleep apnea
FI120619B (en) * 2006-11-17 2009-12-31 Suunto Oy Device and method for monitoring performance
KR100903172B1 (en) * 2007-06-04 2009-06-17 충북대학교 산학협력단 Method for monitoring respiration in a wireless way and device for performing the same
KR101023446B1 (en) * 2007-09-21 2011-03-25 주식회사 바이오에이비씨랩 Sensor Comprising A Material Which Generates An Electrical Signal In Response To Elongation
DE102007053843A1 (en) * 2007-11-12 2009-05-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Garment for detecting a breathing movement
US20100036287A1 (en) * 2008-08-08 2010-02-11 Michael Weber Method and Device for Detecting Parameters for the Characterization of Motion Sequences at the Human or Animal Body
BR112012008497A2 (en) * 2009-10-15 2019-09-24 Koninklijke Philips Electrnics N. V. apparatus for measuring a child's cranial deformity method for measuring a child's cranial deformity
JP5580801B2 (en) 2011-10-13 2014-08-27 セイコーインスツル株式会社 Biological information detection device
JP6078753B2 (en) * 2012-05-14 2017-02-15 株式会社 ライフインターフェイス Limb-mounted biological information measuring device
JP2015156878A (en) * 2012-06-01 2015-09-03 エイペックスメディカル株式会社 Respiratory monitoring device and radiation irradiating system
KR20130141283A (en) * 2012-06-15 2013-12-26 코오롱글로텍주식회사 Band sensor comprising an electro-conductive textile
US20140088461A1 (en) * 2012-09-27 2014-03-27 X2 Biosystems, Inc. Health monitor
TWI631930B (en) * 2013-04-01 2018-08-11 美盛醫電股份有限公司 Physiology signal sensing device
US9311792B2 (en) * 2013-09-27 2016-04-12 Nokia Technologies Oy Wearable electronic device
US10251604B2 (en) 2013-10-02 2019-04-09 The Provost, Fellows, Foundation Scholars, And The Other Members Of Board, Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth, Near Dublin Sensitive, high-strain, high-rate, bodily motion sensors based on conductive nano-material-rubber composites
WO2015077838A1 (en) 2013-11-28 2015-06-04 University Of Western Sydney "blood volume monitor"
TWI552171B (en) * 2014-03-12 2016-10-01 國立臺灣大學 Conductive film and manufacturing method for preparing the same
US10314547B2 (en) * 2014-04-09 2019-06-11 Halo Wearables LLC Calibration of a wearable medical device
WO2015172897A1 (en) 2014-05-12 2015-11-19 Koninklijke Philips N.V. Silicone composite sensor for measurement of heart rate
WO2015179320A1 (en) * 2014-05-19 2015-11-26 The Regents Of The University Of California Flexible sensor apparatus
EP2957225A1 (en) * 2014-06-18 2015-12-23 STBL Medical Research AG Strain gauge device and equipment with such strain gauge devices
JP6285897B2 (en) 2014-07-28 2018-02-28 シナノケンシ株式会社 Biological information reader
CN104586406A (en) * 2015-02-15 2015-05-06 珠海安润普科技有限公司 Wearable device, method and system for monitoring respiration and sleep characteristics
US20160278642A1 (en) * 2015-03-24 2016-09-29 Covidien Lp Vascular disease detection device
US10076252B2 (en) * 2015-04-02 2018-09-18 Microsoft Technology Licensing, Llc Sizable wrist-worn pressure sensing device
JP6325482B2 (en) 2015-04-06 2018-05-16 バンドー化学株式会社 Capacitance type sensor sheet and sensor device
US9609921B1 (en) * 2016-03-04 2017-04-04 Feinstein Patents, Llc Self-fitting, self-adjusting, automatically adjusting and/or automatically fitting magnetic clasp
US10898084B2 (en) * 2016-03-31 2021-01-26 The Regents Of The University Of California Vital signs monitor
US10456081B2 (en) * 2016-09-30 2019-10-29 Intel Corporation Blood pressure apparatus using active materials and related methods
BE1024423B1 (en) 2016-12-21 2018-02-13 Idahealth Inc Equipment for monitoring blood and respiratory flows
US11000193B2 (en) 2017-01-04 2021-05-11 Livemetric (Medical) S.A. Blood pressure measurement system using force resistive sensor array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220364843A1 (en) * 2018-07-05 2022-11-17 Ergo Figure Limited Displacement measuring device
US11644300B2 (en) * 2018-07-05 2023-05-09 Ergo Figure Limited Displacement measuring device

Also Published As

Publication number Publication date
US20200093378A1 (en) 2020-03-26
US11426083B2 (en) 2022-08-30
BE1024423B1 (en) 2018-02-13
JP2022120192A (en) 2022-08-17
WO2018114180A1 (en) 2018-06-28
JP7093777B2 (en) 2022-06-30
JP2020513892A (en) 2020-05-21
CN110650680A (en) 2020-01-03
CN110650680B (en) 2023-11-07

Similar Documents

Publication Publication Date Title
BE1024423B1 (en) Equipment for monitoring blood and respiratory flows
Holz et al. Glabella: Continuously sensing blood pressure behavior using an unobtrusive wearable device
KR102556074B1 (en) Wearable Technologies for Joint Health Assessment
US8764651B2 (en) Fitness monitoring
RU2674087C2 (en) Personal health data collection
JP2022188252A (en) System and method for providing user feedback on arrangement/contact quality of blood pressure sensor
CN105592788A (en) Form factors for the multi-modal physiological assessment of brain health
CN108366749A (en) Ambulatory blood pressure and life physical sign monitoring device, system and method
US20140288447A1 (en) Ear-related devices implementing sensors to acquire physiological characteristics
Lee et al. Advances in microsensors and wearable bioelectronics for digital stethoscopes in health monitoring and disease diagnosis
EP2667768A2 (en) Apparatus and methods for monitoring physiological data during environmental interference
Chowdhury et al. Machine learning in wearable biomedical systems
JP2021510113A (en) Wearable health condition monitoring device and how to manufacture and use it
Qu et al. Monitoring of physiological sounds with wearable device based on piezoelectric MEMS acoustic sensor
FR2679453A1 (en) Biological awakening device which can be programmed as a function of sleep phases
Ne et al. Hearables, in-ear sensing devices for bio-signal acquisition: a narrative review
CN206979491U (en) Wearable human balanced capacity monitor
EP0681447B1 (en) Device for the determination of physiological information and corresponding use
Panda et al. Skin-coupled pvdf microphones for noninvasive vascular blood sound monitoring
Rosa et al. Towards a fully automatic food intake recognition system using acoustic, image capturing and glucose measurements
US20240090786A1 (en) Device for monitoring blood flow
Poon et al. Wearing sensors inside and outside of the human body for the early detection of diseases
Zhao et al. The emerging wearable solutions in mHealth
EP0221981A1 (en) Device for automatically measuring the blood pressure by self-contained, computerized monitoring in true ambulatory conditions
CN206641862U (en) A kind of Backpack type smart electronicses stethoscope

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240129