EP3545269A1 - Verfahren zur laufzeitmessung eines ultraschallsignals in einem strömenden fluid - Google Patents

Verfahren zur laufzeitmessung eines ultraschallsignals in einem strömenden fluid

Info

Publication number
EP3545269A1
EP3545269A1 EP17800387.7A EP17800387A EP3545269A1 EP 3545269 A1 EP3545269 A1 EP 3545269A1 EP 17800387 A EP17800387 A EP 17800387A EP 3545269 A1 EP3545269 A1 EP 3545269A1
Authority
EP
European Patent Office
Prior art keywords
frequency
ultrasonic
signal
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17800387.7A
Other languages
English (en)
French (fr)
Inventor
Frank Theis
Roland Christ
Ulrich Gaugler
Hans-Michael Sonnenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Metering GmbH
Original Assignee
Diehl Metering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Metering GmbH filed Critical Diehl Metering GmbH
Publication of EP3545269A1 publication Critical patent/EP3545269A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • G01F1/668Compensating or correcting for variations in velocity of sound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters

Definitions

  • the present invention relates to methods for measuring the transit time of an ultrasonic signal in a fluid or medium according to the preamble of claim 1.
  • Ultrasonic flowmeters are based on the measurement of the propagation time of sound waves, which is measured either as an absolute transit time or as a difference from a reference transit time or as an absolute transit time and as a difference from a reference transit time.
  • level and envelope methods are usually used for absolute transit time measurement.
  • reliable measurements are associated with a considerable complexity of implementation.
  • the implementation is mostly implemented using so-called ASICs (Application Specific Integrated Circuits).
  • transit time difference method the transit time difference of the sound waves is measured with and against the media movement. Due to the periodic repetition of the phase positions, however, only transit time differences can be measured which are smaller than the period of the signal frequency used. This can lead to problems at high medium flows. In addition, no absolute transit time measurements are possible.
  • the transit time can be determined in this method by determining the transit time difference with respect to a reference time having a known transit time.
  • the transit times of ultrasonic signals in a fluid and derived therefrom runtime differences are also dependent on the temperature of the fluid. This results in the need to either detect the fluid temperature by means of a temperature sensor or to detect a value correlated to the fluid temperature, such as the absolute signal delay time for calculating the fluid temperature, and to include the fluid temperature in determining the flow rate.
  • a method according to the preamble of claim 1 is known.
  • To measure the sound propagation time in media with a strong or strongly fluctuating sound attenuation is proposed to radiate sound signals of different frequency from a sound sensor and to receive again, wherein for each received signal, the phase shift with respect to a respectively associated reference signal measured and from the measured phase shifts Running time is calculated.
  • the frequency of the one sound signal corresponds to the resonance frequency of the ultrasonic transducer, that of the other sound signal is about 10% higher.
  • US Pat. No. 4 527 432 describes a method and a device for ultrasound flow measurement of fuel for optimizing the fuel supply in a vehicle with an extended measuring range, in which the phase difference between a transmission signal and a reception signal of a first lower frequency and the phase difference between a transmission signal and a reception signal of a second high frequency are respectively measured in and against the flow direction of the fluid. Subsequently, the phase difference of the lower frequency is subtracted from the phase difference of the higher frequency and from this the difference in the number of wave trains in each direction is determined. This difference is proportional to the flow rate. From DE 10 2011 016 963 A1 a method for ultrasonic flow measurement according to the transit time difference method is known.
  • a phase difference between a transmission signal and a reception signal of a first lower frequency and the phase difference between a transmission signal and a reception signal of a second higher frequency are measured both in and against the flow direction of the fluid.
  • the measured phase differences are then checked under a coincidence condition and the flow rate calculated on the basis of the coincidence consideration.
  • the measuring range can be increased to more than one period.
  • DE 10 201 1 004 830 B4 describes a method for measuring the propagation velocity of sound waves with a dynamic time window.
  • at least two sound waves with at least two different frequencies are fed into a measuring path one after the other.
  • the phase angle of the received sound waves relative to an associated reference signal of the same frequency is determined.
  • the sound frequencies used must be chosen so that the occurring phase angle difference between two adjacent frequencies is always less than 2 ⁇ .
  • the object of the present invention is to provide a novel method of the generic type which, with the possibility of a simple implementation, enables an exact determination of the transit time of an ultrasonic signal even at high flow rates.
  • the position of a measuring point for the received signal of the first frequency and the position of a measuring point for the received signal of the second frequency relative to one another can be related to one another from the measured phase difference.
  • Transmission signals of different frequencies propagate at the same speed in the medium to be measured.
  • a phase offset which increases almost linearly from wave train to wave train of the received signal, can be detected directly between the received signals of different measuring frequency. From this phase difference, the exact position of a measuring point or measuring window in the received wave train can be derived exactly down to a few nanoseconds.
  • the absolute signal propagation time of the measurement signals in the medium can be determined without additional measurement of the temperature of the medium. Temperature sensors for measuring the absolute transit time are therefore not necessary.
  • the invention makes it possible to determine the transit time difference over several wave trains. From this, the flow can be clearly determined. As a result, the invention enables an effective measuring range extension, in particular towards high flow rates.
  • the measuring window can be set or enlarged accordingly.
  • the ultrasound measurements with different frequencies are preferably carried out alternately.
  • the first ultrasonic frequency represents a main frequency
  • the second ultrasonic frequency represents an additional frequency.
  • the measurement with the second frequency can take place either only for one measuring direction or optionally also for both measuring directions.
  • the first and second transmission signals are bursts of signals, each having a plurality of waves.
  • the invention modern methods particularly advantageous because previous methods with the emission of short bursts always had to perform each runtime measurement on exactly the same receiving wave.
  • more than two measurement frequencies such. B. three measurement frequencies are used.
  • a common reference clock is predetermined for the first and second transmission signals and the determination of the position of a measuring point or measuring window in the ultrasonic transit time measurement always takes place with reference to the common reference clock, the measuring times can always be compared with the reference clock or the reference clock for the Comparison of the measuring points or the measuring window are used.
  • a window signal having a duration of preferably more than one period of the waves of the received signal is generated, the temporal position of the window signal is determined by a (empirical) receiving position based on previous measurements and within the window signal the time of a zero crossing of a particular wave of the first or second ultrasonic received signal evaluated.
  • a measuring pulse can be determined, which preferably extends from the zero crossing to the end of the measuring window.
  • the deviation of the first ultrasonic frequency fi or second ultrasonic frequency h should be set so small in each case to the resonance frequency of the ultrasonic transducer that no phase jump occurs along the signal periods of the signal packet.
  • signal periods with a high signal level can be selected as the operating point for the transit time measurement.
  • transit time differences can also be determined very precisely. If the method is operated with a center frequency to the first and second ultrasonic frequency, which is close to the resonance frequency, this ensures the additional advantage that this results in a larger frequency difference and thus an even better evaluable, larger phase difference.
  • the first and second ultrasonic frequencies are approximately symmetrical to the main resonance frequency or center frequency of the ultrasonic transducer.
  • the main resonance frequency is the frequency with the highest transmittable amplitude.
  • the latter can be used to determine the transit time difference, wherein the two additional frequencies above and below the center frequency are preferably used only for determining the phase difference of the two frequencies for measuring position determination.
  • a test value for a plausibility check and / or a fault check and / or the mixing ratio of a two- or multi-phase mixture and / or at least one fluid-specific physical variable can be derived from the absolute runtime.
  • FIG. 1 shows a simplified basic circuit structure for carrying out the method according to the invention
  • FIG. 2 shows an exemplary relationship between transmission waves, reception waves, reference clock and measuring pulse for a frequency in the context of carrying out the method according to the invention
  • FIG. 3 shows greatly simplified waveforms (transmitting and receiving waves) of ultrasonic signals of two different frequencies and a PD / measuring position diagram when carrying out the measuring method according to the invention
  • FIG. 3 shows greatly simplified waveforms (transmitting and receiving waves) of ultrasonic signals of two different frequencies and a PD / measuring position diagram when carrying out the measuring method according to the invention
  • FIG. 1 shows by way of example a possible structure for implementing the measuring method according to the invention.
  • a central control and computing unit 1 of any type receives from a clock generator 2 the higher-level system clock (reference clock), from which all other processes in the measuring system derived.
  • the control and processing unit 1 at an adjustable clock pattern generator 3, the desired measurement frequency via a set signal AS and supplies the clock pattern generator 3 with a synchronous to the reference clock RT clock signal.
  • the actual start of an ultrasonic measurement takes place via the start signal SS to the clock pattern generator 3, which then supplies a wave sequence via the transmission signal SES.
  • This transmission signal SES consists of waves of the selected measurement frequency, wherein the measurement frequency is preferably selected such that it is as close as possible to the frequencies resonantly transmissible by ultrasonic transducers 8, 9, for example at the frequency of 1 MHz for 1 MHz ultrasonic transducers.
  • the transmission signal in the sense of a burst may contain only a few waves or, as a quasi-continuous excitation, any number of waves.
  • the transmission signal SES is power amplified and adapted to the impedance of the ultrasonic transducers 8, 9.
  • the direction signal RS controls the control and processing unit 1 to the multiplexer 5 so that the desired measurement direction can be achieved and the necessary ultrasonic transducer 8 or 9 can be supplied with the transmission signal SES.
  • a sound signal is to be transmitted through the medium 12 to a further ultrasound transducer 9 via an ultrasound transducer 8.
  • the Transmission signal from the multiplexer 5 is passed to the ultrasonic transducer 8, which converts it into a corresponding sound signal (burst) 13.
  • the control and computing unit 1 switches the multiplexer 5 over the direction signal RS from the transmitting ultrasonic transducer 8 to the receiving ultrasonic transducer 9 after a set transmission time. After passing through the medium 12 over the duration to be measured, the sound signal 13 or the sound wave train reaches the ultrasound transducer 9, which generates a corresponding electrical reception signal ES from it and forwards it to the multiplexer 5.
  • the received signal ES reaches an optional input amplifier 6, which amplifies the signal level as needed and terminates the receiving path against the receiving ultrasonic transducer 9 with the appropriate impedance.
  • the incoming initially analog signal is converted into a digital received signal DES for further processing.
  • the control and computing unit 1 For the desired time measurement, the control and computing unit 1 generates a window signal FS (measurement window) of a duration of more than one wavelength, whose temporal position in the received signal DES is determined by a reception position based on measurements made in advance.
  • FS measurement window
  • a zero crossing of the received signal DES in the functional unit measuring pulse generator 10 is evaluated such that a measuring pulse MP results in time from the detected zero crossing to the predetermined window end.
  • the measuring window end generated by the control and processing unit 1 is synchronous to the reference clock RT, from which the transmission signal was generated.
  • the total signal propagation delay between the start of the signal transmission and the start of the received signal can be determined by summation:
  • the signal transit time results from the number of reference clocks to the end of the measurement window multiplied by the time length of a reference clock period, minus the time duration of the measurement pulse minus the number of receive waves up to the measurement window position, multiplied by the time length of a receive wave period.
  • the analog measuring pulse length is digitized by a time-digital converter 11 for further digital processing by the control and processing unit 1.
  • the relationship described above between transmit waves, receive waves, reference clock RT and measurement window MF is exemplified in FIG. 2 for a reference clock RT with 16-times transmission frequency, a burst transmission with 8 waves and a measurement window position for the evaluation of the 8th reception wave.
  • the window signal or measuring window MF has a duration of more than one period, it lies in the region of the zero crossing of the 8th wave.
  • FIG. 3 two ultrasound transmission signals of different frequencies f1 and f2 are respectively shown on the left side, which alternately pass through the fluid or medium 12 in the form of a sound wave packet (burst) with a finite number of signal periods.
  • the respective resulting received signals are shown, which can be tapped at the ultrasonic transducer in each case in the form of an electrical signal.
  • the received signal shown in each case in FIG. 3 comprises z. B. a total of 16 signal periods.
  • the signal level is the highest.
  • the measuring method is carried out in the example of FIG. 3 with two ultrasonic signals of different frequency fi, h. It can be seen that signals of different frequencies can be measured at the same speed in the propagate the medium or fluid and when receiving these signals of different frequency from a wave to wave of the received signal almost linearly increasing phase offset PD between the signals of different measurement frequency directly detected ie can be measured. From the measured phase difference t (fi) - t (f 2 ), the exact position of a measuring point in the received wave train can be derived accurately to a few nanoseconds and set in relation to the measuring point of the further frequency.
  • the runtime can be unambiguously determined even over several signal periods (wave trains), which effectively leads to a measurement range extension to high fluid flow rates.
  • a specific determination of the frequencies fi or f 2 of the two ultrasonic signals can be made.
  • the frequency fi of the one ultrasonic signal is only slightly above the main resonance frequency of the ultrasonic transducer, whereas the frequency f 2 of the second ultrasonic signal is only slightly below the main resonance frequency of the ultrasonic transducer.
  • the difference between the respective frequency and the main resonant frequency of the ultrasound transducer should expediently be so small that no phase jump occurs along the signal periods of the received signal packet.
  • the frequencies fi or f 2 used should preferably deviate in a range of less than 10% from the main resonant frequency of the ultrasonic transducer. Particularly preferably, the frequencies are each in the range of a deviation of 3 to 8% to the main resonance frequency. As a result, in the steady state of the ultrasonic transducer, the signal periods located there are available for a measuring window with particularly high level strengths for the measuring method.
  • the determination of the two ultrasonic frequencies fi or f 2 to the main resonance frequency of the ultrasonic transducer should also be appropriately sym- be metric. This makes it possible, with regard to the signal generation and evaluation, to provide a hardware structure common to both ultrasonic signals. This in turn ensures that errors or distortions cancel due to the opposition.
  • the ultrasonic transducer has a main resonant frequency of z. B. 1010 MHz, so z.
  • the first ultrasonic frequency fi at about 980 MHz and the second ultrasonic frequency f 2 at about 1040 MHz.
  • the zero crossing into the positive of a specific signal period eg the third signal period shown by way of example in FIG. 3
  • another signal period for example the eighth signal period at which the signal level is highest, could also be used.
  • phase difference PD phase difference between the two frequencies fi and f2 with respect to the selected reference point RP
  • the phase difference PD between the two frequencies fi and f2 with respect to the selected reference point RP is approximately directly proportional to the number of received waves up to the reference point REF.
  • the absolute sound propagation time can be determined therefrom without the influence of a medium velocity.
  • the characteristic order of magnitude of the phase difference PD to be evaluated can be determined by reference measurements for the desired reception positions in the wave packet in a simple manner using a known medium type, with a known medium temperature and known medium properties. From the electronically determined difference of the signal propagation times with / against the fluid flow, ie the transit time difference, the flow rate of the fluid in the control and computing unit 1 can be determined.
  • a common measurement window can be used for a forward and backward measurement.
  • two separate measurement windows can be used for the forward and backward measurement. The latter is at widely spaced phase values of z. B. more than one ps appropriate.
  • two measurement windows for the transit time difference and the phase difference measurement can be provided.
  • a test value for a plausibility check and / or a fault check and / or the mixing ratio of a two- or multi-phase mixture and / or at least one fluid-specific physical quantity can be derived.
  • the method can also be operated with a center frequency close to the resonant frequency fo for determining the transit time difference, with two additional frequencies fi and f2 above and below the center frequency being used only for determining the phase difference of the two frequencies for position determination.
  • This offers the advantage that due to the larger frequency difference between fi and an even better evaluable, larger phase difference arises.
  • the digital received signal is the digital received signal

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Ultraschalllaufzeitmessung in einem Fluid, bei dem ein eine Messstrecke durchströmendes Fluid mit einem von einem Ultraschallwandler erzeugten ersten Sendesignal mit einer ersten Frequenz f1 und einem von dem Ultraschallwandler erzeugten zweiten Sendesignal mit einer zweiten Frequenz f2 beaufschlagt wird, die ersten und zweiten Sendesignale von einem Ultraschallwandler empfangen und erste und zweite Empfangssignale mit jeweils mehreren Wellen erzeugt werden, aus den Empfangssignalen die Laufzeitdifferenz bestimmt wird, eine Phasendifferenz (PD) zwischen erstem Empfangssignal mit der ersten Frequenz f1 und zweitem Empfangssignal mit der zweiten Frequenz f2 gemessen wird, und aus der gemessenen Phasendifferenz (PD) die Position eines Messpunkts im Bereich der Wellen (Wellenzug) des Empfangssignals abgeleitet wird.

Description

VERFAHREN ZUR LAUFZEITMESSUNG EINES ULTRASCHALLSIGNALS
IN EINEM STRÖMENDEN FLUID
Die vorliegende Erfindung betrifft Verfahren zur Laufzeitmessung eines Ultraschallsignals in einem Fluid oder Medium gemäß dem Oberbegriff des Anspruchs 1.
Technologischer Hintergrund Ultraschall-Durchflussmesser beruhen auf der Messung der Laufzeit von Schallwellen, welche entweder als absolute Laufzeit oder als Differenz gegenüber einer Bezugslaufzeit oder als absolute Laufzeit und als Differenz gegenüber einer Bezugslaufzeit gemessen wird. Zur absoluten Laufzeitmessung werden üblicherweise sogenannte Pegel- und Hüllkurvenverfahren eingesetzt. Zuverlässige Messungen sind hierbei jedoch mit einer erheblichen Komplexität der Implementierung verbunden. Die Implementierung wird zumeist unter Verwendung sogenannter ASICs (Application Specific Integrated Circuits) umgesetzt.
Bei Laufzeitdifferenzverfahren wird die Laufzeitdifferenz der Schallwellen mit und gegen die Medienbewegung gemessen. Durch die periodische Wiederholung der Phasenlagen können jedoch nur Laufzeitunterschiede gemessen werden, die kleiner sind als die Periodendauer der verwendeten Signalfrequenz. Dies kann zu Problemen bei hohen Mediumdurchflüssen führen. Zudem sind keine absoluten Laufzeitmessungen möglich. Die Laufzeit kann bei diesem Verfahren ermittelt werden, indem der Laufzeitunterschied gegenüber einem Bezugszeitpunkt mit bekannter Laufzeit bestimmt wird. Darüber hinaus sind die Laufzeiten von Ultraschallsignalen in einem Fluid und daraus abgeleitete Laufzeitdifferenzen auch von der Temperatur des Fluids abhängig. Daraus entsteht die Notwendigkeit, entweder die Fluid-Temperatur mittels eines Temperaturfühlers zu erfassen oder eine zur Fluid-Temperatur korre- lierte Größe wie die absolute Signallaufzeit zur Berechnung der Fluidtemperatur zu erfassen und die Fluid-Temperatur bei der Bestimmung der Durchflussmenge miteinzubeziehen.
Nächstliegender Stand der Technik
Aus der DE 198 41 154 A1 ist ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 bekannt. Zur Messung der Schalllaufzeit in Medien mit einer starken bzw. stark schwankenden Schalldämpfung wird vorgeschlagen, von einem Schallsensor zwei Schallsignale unterschiedlicher Frequenz abzustrahlen und wieder zu empfangen, wobei für jedes Empfangssignal die Phasenverschiebung in Bezug auf ein jeweils zugehöriges Referenzsignal gemessen und aus den gemessenen Phasenverschiebungen die Laufzeit errechnet wird. Die Frequenz des einen Schallsignals entspricht der Resonanzfrequenz des Ultraschallwandlers, diejenige des anderen Schallsignals liegt ca. 10% höher.
In der US 4 527 432 ist ein Verfahren sowie eine Vorrichtung zur Ultraschall- Durchflussmessung von Treibstoff zur Optimierung der Treibstoffzufuhr in einem Fahrzeug mit einem erweiterten Messbereich beschrieben, bei dem jeweils die Phasendifferenz zwischen einem Sendesignal und einem Empfangssignal einer ersten niedrigeren Frequenz sowie die Phasendifferenz zwischen einem Sendesignal und einem Empfangssignal einer zweiten hohen Frequenz jeweils sowohl in als auch gegen die Fließrichtung des Fluids gemessen werden. Anschließend wird die Phasendifferenz der niedrigeren Frequenz von der Phasendifferenz der höheren Frequenz subtrahiert und daraus der Unterschied in der Anzahl der Wellenzüge in jeder Richtung ermittelt. Dieser Unterschied ist proportional zur Durchflussmenge. Aus der DE 10 2011 016 963 A1 ist ein Verfahren zur Ultraschall- Durchflussmessung nach dem Laufzeitdifferenzverfahren bekannt. Auch hierbei werden eine Phasendifferenz zwischen einem Sendesignal und einem Empfangssignal einer ersten niedrigeren Frequenz sowie die Phasendifferenz zwi- sehen einem Sendesignal und einem Empfangssignal einer zweiten höheren Frequenz jeweils sowohl in als auch gegen die Fließrichtung des Fluids gemessen. Die gemessenen Phasendifferenzen werden anschließend unter einer Koinzidenzbedingung überprüft und die Durchflussmenge auf der Grundlage der Koinzidenzbetrachtung berechnet. Hierdurch kann der Messbereich auf mehr als eine Periodendauer vergrößert werden.
Die DE 10 201 1 004 830 B4 beschreibt ein Verfahren zur Messung der Ausbreitungsgeschwindigkeit von Schallwellen mit einem dynamischen Zeitfenster. Hierbei werden mindestens zwei Schallwellen mit mindestens zwei unterschiedlichen Frequenzen in eine Messstrecke zeitlich nacheinander eingespeist. Ferner wird der Phasenwinkel der empfangenen Schallwellen gegenüber einem zugehörigen Referenzsignal gleicher Frequenz bestimmt. Die verwendeten Schallfrequenzen müssen so gewählt werden, dass die auftretende Phasenwinkeldifferenz zwischen zwei benachbarten Frequenzen immer kleiner als 2π ist.
Aufgabe der vorliegenden Erfindung
Die Aufgabe der vorliegenden Erfindung besteht darin, ein neuartiges Verfahren der gattungsgemäßen Art zur Verfügung zu stellen, welches bei Möglichkeit einer einfachen Implementierung eine exakte Bestimmung der Laufzeit eines Ultraschallsignals auch bei hohen Durchflüssen ermöglicht.
Lösung der Aufgabe
Die Aufgabe der vorliegenden Erfindung wird durch den Gegenstand des Anspruchs 1 gelöst. Zweckmäßige Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beansprucht. Erfindungsgemäß können aus der gemessenen Phasendifferenz die Position eines Messpunkts für das Empfangssignal der ersten Frequenz sowie die Position eines Messpunkt für das Empfangssignal der zweiten Frequenz zueinander in Relation gesetzt werden. Sendesignale unterschiedlicher Frequenz breiten sich im zu messenden Medium mit gleicher Geschwindigkeit aus. Beim Empfang dieser Signale kann ein von Wellenzug zu Wellenzug des Empfangssignals nahezu linearer zunehmender Phasenversatz zwischen den Empfangssignalen unterschiedlicher Messfrequenz direkt erfasst werden. Aus dieser Phasendifferenz lässt sich die exakte Position eines Messpunktes oder Messfensters im empfangenen Wellenzug bis auf wenige Nanosekunden genau ableiten. Daraus wiederum kann die absolute Signallaufzeit der Messsignale im Medium ohne zusätzliche Messung der Temperatur des Mediums bestimmt werden. Temperatursensoren für die Messung der absoluten Laufzeit sind somit nicht notwendig. Vorteilhaft ermöglicht es die Erfindung, die Laufzeitdifferenz über mehrere Wellenzüge hinweg zu bestimmen. Daraus kann der Durchfluss eindeutig bestimmt werden. Dadurch ermöglicht die Erfindung eine wirksame Messbereichserweiterung insbesondere hin zu hohen Durchflüssen. Das Messfenster kann entsprechend festgelegt bzw. vergrößert werden.
Zur Erzeugung verschiedener Ultraschallfrequenzen als Messfrequenzen wird lediglich eine einfache Schaltungstechnik benötigt, die keinen Einfluss auf den Grundaufbau des Messsystems hat. Die Ultraschallmessungen mit unterschiedlichen Frequenzen werden vorzugsweise abwechselnd durchgeführt.
Zweckmäßigerweise stellt die erste Ultraschallfrequenz eine Hauptfrequenz, die zweite Ultraschallfrequenz eine Zusatzfrequenz dar. Die Messung mit der zwei- ten Frequenz kann entweder nur für eine Messrichtung oder optional auch für beide Messrichtungen erfolgen.
Vorzugsweise handelt es sich bei den ersten und zweiten Sendesignalen um Signalpakete (Bursts) mit jeweils mehreren Wellen. Hierbei ist das erfindungs- gemäße Verfahren besonders vorteilhaft, da bisherige Verfahren mit Aussendung kurzer Bursts stets darauf angewiesen waren, jede Laufzeitmessung auf genau der gleichen Empfangswelle durchzuführen. Vorzugsweise können auch mehr als zwei Messfrequenzen, so z. B. drei Messfrequenzen, eingesetzt werden.
Dadurch, dass ein für die ersten und zweiten Sendesignale gemeinsamer Referenztakt vorgegeben ist und die Bestimmung der Position eines Messpunkts oder Messfensters bei der Ultraschalllaufzeitmessung stets unter Bezug auf den gemeinsamen Referenztakt erfolgt, können die Messzeitpunkte stets mit dem Referenztakt verglichen werden bzw. der Referenztakt für den Vergleich der Messpunkte bzw. des Messfensters herangezogen werden. Vorzugsweise wird ein Fenstersignal einer Dauer von vorzugsweise mehr als einer Periodendauer der Wellen des Empfangssignals erzeugt, die zeitliche Lage des Fenstersignals durch eine auf vorab durchgeführten Messungen beruhende (empirische) Empfangsposition festgelegt und innerhalb des Fenstersignals der Zeitpunkt eines Nulldurchgang einer bestimmten Welle des ersten bzw. zweiten Ultraschallempfangssignals ausgewertet.
Zweckmäßigerweise kann an der Position des Messpunkts innerhalb des Messfensters ein Messpuls festgelegt werden, der vorzugsweise vom Nulldurchgang bis zum Ende des Messfensters reicht.
Gemäß der Erfindung ist ferner vorgesehen, dass die Abweichung der ersten Ultraschallfrequenz fi bzw. zweiten Ultraschallfrequenz h jeweils zur Resonanzfrequenz des Ultraschallwandlers derart gering festgelegt sein soll, dass sich kein Phasensprung entlang der Signalperioden des Signalpakets einstellt. Daraus resultiert, dass Signalperioden mit hohem Signalpegel als Arbeitspunkt für die Laufzeitmessung ausgewählt werden können. Es ergibt sich somit eine hohe Signalübertragungseffizienz sehr nahe der Hauptresonanzfrequenz der Ultraschallwandler. Dies führt dazu, dass neben der Bestimmung der absoluten Signallaufzeiten auch Laufzeitdifferenzen sehr präzise bestimmt werden können. Wird das Verfahren mit einer Mittenfrequenz zur ersten und zweiten Ultraschallfrequenz betrieben, die nahe der Resonanzfrequenz liegt, gewährleistet dies den zusätzlichen Vorteil, dass hierdurch ein größerer Frequenzunterschied und damit eine noch besser auswertbare, größere Phasendifferenz entsteht.
Es ist vorteilhaft, wenn die erste und zweite Ultraschallfrequenz zur Hauptresonanzfrequenz oder Mittenfrequenz des Ultraschallwandlers annähernd symmetrisch liegen. Bei der Hauptresonanzfrequenz handelt es sich um die Frequenz mit der höchsten übertragbaren Amplitude.
Bei Verwendung einer Mittenfrequenz kann letztere zur Bestimmung der Laufzeitdifferenz eingesetzt werden, wobei die beiden zusätzlichen Frequenzen oberhalb und unterhalb der Mittenfrequenz vorzugsweise lediglich zur Bestim- mung der Phasendifferenz der beiden Frequenzen zur Messpositionsbestimmung verwendet werden.
Aus der absoluten Laufzeit kann weiterhin vorzugsweise ein Prüfwert für eine Plausibilitätsüberprüfung und/oder eine Störungsüberprüfung und/oder das Mi- schungsverhältnis einer Zwei- oder Mehrphasenmischung und/oder mindestens eine fluidspezifische physikalische Größe abgeleitet werden.
Beschreibung der Erfindung anhand eines besonderen Ausführungsbeispiels
Eine zweckmäßige Ausgestaltung des erfindungsgemäßen Verfahrens wird nachstehend näher erläutert. Es zeigen:
Fig. 1 einen vereinfachten prinzipiellen Schaltungsaufbau zur Durchführung des erfindungsgemäßen Verfahrens;
Fig. 2 einen beispielhaften Zusammenhang zwischen Sendewellen, Empfangswellen, Referenztakt und Messpuls für eine Frequenz im Rahmen der Durchführung des erfindungsgemäßen Verfahrens; Fig. 3 stark vereinfachte Wellenverläufe (Sende- und Empfangswellen) von Ultraschallsignalen zweier unterschiedlicher Frequenzen und ein PD/Messpositions-Diagramm bei der Durchführung des erfindungs- gemäßen Messverfahrens;
Die in Fig. 1 dargestellte Vorrichtung zeigt beispielhaft eine mögliche Struktur zur Umsetzung des erfindungsgemäßen Messverfahrens. Eine zentrale Steuerungsund Recheneinheit 1 beliebiger Bauart (analoge/digitale Logik, einen Mikrokon- troller oder dergleichen) erhält aus einem Taktgenerator 2 den übergeordneten Systemtakt (Referenztakt), aus dem sich alle anderen Abläufe im Messsystem ableiten. Zunächst stellt die Steuerungs- und Recheneinheit 1 an einem einstellbaren Taktmustergenerator 3 die gewünschte Messfrequenz über ein Einstellsignal AS ein und beliefert den Taktmustergenerator 3 mit einem zum Referenztakt RT synchronen Taktsignal.
Der eigentliche Start einer Ultraschallmessung erfolgt über das Startsignal SS an den Taktmustergenerator 3, der dann eine Wellensequenz über das Sendesignal SES liefert. Dieses Sendesignal SES besteht aus Wellen der gewählten Mess- frequenz, wobei die Messfrequenz bevorzugt so gewählt wird, dass sie möglichst im Bereich der von Ultraschallwandlern 8, 9 resonant übertragbaren Frequenzen liegt, zum Beispiel bei der Frequenz von 1 MHz für 1 MHz-Ultraschallwandler. Hierbei kann das Sendesignal im Sinne eines Bursts nur einige wenige Wellen oder als quasi-kontinuierliche Anregung beliebig viele Wellen enthalten.
Über den Sendeverstärker 4 wird das Sendesignal SES leistungsverstärkt und an die Impedanz der Ultraschallwandler 8, 9 angepasst. Mit dem Richtungssignal RS steuert die Steuerungs- und Recheneinheit 1 den Multiplexer 5 so an, dass die gewünschte Messrichtung erreicht werden kann und der dafür nötige Ultra- schallwandler 8 bzw. 9 mit dem Sendesignal SES versorgt werden kann.
Im gezeigten Beispiel soll über einen Ultraschallwandler 8 ein Schallsignal durch das Medium 12 an einen weiteren Ultraschallwandler 9 gesendet werden. Das Sendesignal vom Multiplexer 5 wird an den Ultraschallwandler 8 geleitet, der dieses in ein entsprechendes Schallsignal (Burst) 13 umwandelt.
Während der Übertragung des Schallsignals 13 bzw. Schallwellenzugs im Medi- um 12 schaltet nach einer eingestellten Sendezeit die Steuerungs- und Recheneinheit 1 den Multiplexer 5 über das Richtungssignal RS vom sendenden Ultraschallwandler 8 auf den empfangenden Ultraschallwandler 9 um. Nach dem Durchlaufen des Mediums 12 über die zu messende Laufzeit hinweg erreicht das Schallsignal 13 bzw. der Schallwellenzug den Ultraschallwandler 9, der daraus ein entsprechendes elektrisches Empfangssignal ES erzeugt und an den Multiplexer 5 weiter gibt.
Von dem Multiplexer 5 gelangt das Empfangssignal ES an einen optionalen Eingangsverstärker 6, der bei Bedarf den Signalpegel verstärkt und den Empfangs- pfad gegen den empfangenden Ultraschallwandler 9 mit der geeigneten Impedanz abschließt.
Mit einem Nulldurchgangsdetektor 7, zum Beispiel einem Komparator, wird das eingehende zunächst analoge Signal in ein digitales Empfangssignal DES für die weitere Verarbeitung umgewandelt. Für die angestrebte Zeitmessung erzeugt die Steuerungs- und Recheneinheit 1 ein Fenstersignal FS (Messfenster) einer Dauer von mehr als einer Wellenlänge, dessen zeitliche Lage im Empfangssignal DES durch eine auf vorab durchgeführten Messungen beruhende Empfangsposition hin festgelegt ist.
Innerhalb dieses Messfensters wird ein Nulldurchgang des Empfangssignals DES in der Funktionseinheit Messpulsgenerator 10 so ausgewertet, dass sich ein Messpuls MP zeitlich vom erkannten Nulldurchgang bis zum vorgegebenen Fensterende ergibt. Hierbei ist das von der Steuerungs- und Recheneinheit 1 erzeugte Messfensterende synchron zum Referenztakt RT, aus dem auch das Sendesignal erzeugt wurde. Aus der Messfensterposition, die ein Vielfaches an Referenztakten darstellt, und der Länge des Messpulses MP kann durch Summa- tion die gesamte Signallaufzeit zwischen Start der Signalaussendung und Start des Empfangssignals ermittelt werden: Die Signallaufzeit ergibt sich aus der Anzahl der Referenztakte bis Messfensterende multipliziert mit der zeitlichen Länge einer Referenztaktperiode, abzüglich der zeitlichen Messpulslänge, abzüglich der Anzahl der Empfangswellen bis zur Messfensterposition, multipliziert mit der zeitlichen Länge einer Empfangswellenperiode.
Die analoge Messpulslänge wird von einem Zeit-Digitalwandler 11 für die weitere digitale Verarbeitung durch die Steuerungs- und Recheneinheit 1 digitalisiert.
Der oben beschriebene Zusammenhang zwischen Sendewellen, Empfangswellen, Referenztakt RT und Messfenster MF ist in Fig. 2 beispielhaft skizziert für einen Referenztakt RT mit 16-facher Sendefrequenz, eine Burstaussendung mit 8 Wellen und eine Messfensterposition für die Auswertung der 8. Empfangswelle. Wie aus Fig. 2 ersichtlich, hat das Fenstersignal bzw. Messfenster MF eine Dauer von mehr als einer Periodendauer, es liegt im Bereich des Nulldurchgangs der 8. Welle.
In Fig. 3 sind jeweils an der linken Seite zwei Ultraschall-Sendesignale unter- schiedlicher Frequenz fi bzw. f2 dargestellt, welche abwechselnd jeweils in Form eines Schallwellenpakets (Burst) mit einer endlichen Anzahl von Signalperioden das Fluid bzw. Medium 12 durchlaufen.
Im rechten Bereich der Fig. 3 sind die jeweils resultierenden Empfangssignale dargestellt, welche am Ultraschallwandler jeweils in Form eines elektrischen Signals abgegriffen werden können. Das jeweils in der Fig. 3 dargestellte Empfangssignal umfasst z. B. insgesamt 16 Signalperioden. Im eingeschwungenen Zustand des Ultraschallwandlers im Bereich der 8. Welle, d.h. im mittleren Bereich des jeweils empfangenen Ultraschallpakets, ist der Signalpegel am höchs- ten.
Das Messverfahren wird bei dem Beispiel von Fig. 3 mit zwei Ultraschallsignalen unterschiedlicher Frequenz fi, h durchgeführt. Daraus ist ersichtlich, dass sich Signale unterschiedlicher Frequenz mit gleicher Geschwindigkeit im zu messen- den Medium bzw. Fluid ausbreiten und beim Empfang dieser Signale unterschiedlicher Frequenz ein von Welle zu Welle des Empfangssignals nahezu linear zunehmender Phasenversatz PD zwischen den Signalen unterschiedlicher Messfrequenz direkt erfasst d. h. gemessen werden kann. Aus der gemessenen Phasendifferenz t(fi) - t(f2) lässt sich die exakte Position eines Messpunkts im empfangenen Wellenzug auf wenige Nanosekunden genau ableiten und in Relation zum Messpunkt der weiteren Frequenz setzen.
Aufgrund der Messpunktzuordnung auf der Basis der Phasenfrequenzmessung bei mindestens zwei verschiedenen Frequenzen kann vor allem auch über mehrere Signalperioden (Wellenzüge) hinweg die Laufzeit eindeutig bestimmt werden, was effektiv zu einer Messbereichserweiterung zu hohen Fluiddurchflüssen führt. Darüber hinaus kann eine bestimmte Festlegung der Frequenzen fi bzw. f2 der beiden Ultraschallsignale vorgenommen werden. In vorteilhafter Weise liegt die Frequenz fi des einen Ultraschallsignals lediglich geringfügig oberhalb der Hauptresonanzfrequenz des Ultraschallwandlers, wohingegen die Frequenz f2 des zweiten Ultraschallsignals lediglich geringfügig unterhalb der Hauptresonanz- frequenz des Ultraschallwandlers liegt. Der Unterschied der jeweiligen Frequenz zur Hauptresonanzfrequenz des Ultraschallwandlers soll zweckmäßigerweise derart gering sein, dass sich kein Phasensprung entlang der Signalperioden des empfangenen Signalpakets einstellt. Die verwendeten Frequenzen fi bzw. f2 sollten vorzugsweise in einem Bereich von weniger als 10 % von der Hauptresonanzfrequenz des Ultraschallwandlers abweichen. Besonders vorzugsweise sollen die Frequenzen jeweils im Bereich einer Abweichung von 3 bis 8 % zur Hauptresonanzfrequenz liegen. Daraus resultiert, dass im eingeschwungenen Zustand des Ultraschallwandlers die dort befindlichen Signalperioden für ein Messfenster mit besonders hohen Pegelstärken für das Messverfahren zur Verfügung stehen.
Die Festlegung der beiden Ultraschallfrequenzen fi bzw. f2 zur Hauptresonanzfrequenz des Ultraschallwandlers soll darüber hinaus zweckmäßigerweise sym- metrisch sein. Dies ermöglicht es, hinsichtlich der Signalerzeugung und Auswertung eine für beide Ultraschallsignale gemeinsamen Hardware-Aufbau vorzusehen. Hierdurch wiederum wird erreicht, dass sich Fehler bzw. Verfälschungen aufgrund der Gegenläufigkeit aufheben.
Besitzt der Ultraschallwandler eine Hauptresonanzfrequenz von z. B. 1010 MHz, so kann z. B. die erste Ultraschallfrequenz fi bei ca. 980 MHz und die zweite Ultraschallfrequenz f2 bei ca. 1040 MHz liegen. Wie aus Fig. 3 ersichtlich ist, kann für die Durchführung des Messverfahrens bei einer ersten Frequenz fi z.B. der Nulldurchgang ins Positive einer bestimmten Signalperiode (z.B. der in Fig. 3 beispielhaft gezeigten dritten Signalperiode) als Referenzpunkt REF im Messfenster MF herangezogen werden. Alternativ könnte auch eine andere Signalperiode, z.B. die achte Signalperiode, bei der der Sig- nalpegel am höchsten ist, herangezogen werden. Bei der Messung mit einer zweiten Frequenz h, die sich von der ersten Frequenz fi unterscheidet, ergibt sich für den entsprechenden Nulldurchgang ein zeitlicher Versatz (Phasendifferenz PD) gegen den Referenzpunkt REF, aus dem sich die Position der Welle (z.B. der dritten Welle) im Empfangspaket (Summe aller empfangenen Wellen) ermitteln lässt. Hierbei ist die Phasendifferenz PD zwischen den beiden Frequenzen fi bzw. f2 in Bezug auf den gewählten Referenzpunkt RP annähernd direkt proportional zur Anzahl der empfangenen Wellen bis zum Referenzpunkt REF.
Bei einer Messung der oben beschriebenen Art in Vorwärts- sowie Rückwärts- richtung und einer entsprechenden Mittelwertbildung kann daraus die absolute Schalllaufzeit ohne Einfluss einer Mediumsgeschwindigkeit ermittelt werden. Bei bekannter Länge der Messstrecke ergibt sich für ein bekanntes Medium aus der absoluten Schalllaufzeit unmittelbar die Mediumstemperatur. Zur Kalibrierung des Messverfahrens kann in einfacher Weise unter Einsatz einer bekannten Mediumsart, bei einer bekannten Mediumstemperatur und bekannten vorliegenden Mediumseigenschaften die charakteristische Größenordnung der auszuwertenden Phasendifferenz PD durch Referenzmessungen für die angestrebten Empfangspositionen im Wellenpaket ermittelt werden. Aus der elektronisch ermittelten Differenz der Signallaufzeiten mit/gegen den Fluidstrom, also der Laufzeitdifferenz, kann die Durchflussgeschwindigkeit des Fluids in der Steuerungs- und Recheneinheit 1 ermittelt werden.
Vorteilhaft können für ein Entrauschen der Messgröße Phasenversatz Mehrfachmessungen mit den Frequenzen fi bzw. vorzugsweise schnell hintereinander durchgeführt werden. Ebenso kann für eine Vorwärts- und Rückwärtsmessung ein gemeinsames Messfenster verwendet werden. Alternativ können auch zwei getrennte Messfenster für die Vorwärts- und Rückwärtsmessung verwendet werden. Letzteres ist bei weit auseinanderliegenden Phasenwerten von z. B. mehr als einer ps zweckmäßig. Alternativ können auch zwei Messfenster für die Laufzeitdifferenz und die Phasendifferenzmessung vorgesehen sein.
Ebenso kann aus der absoluten Laufzeit des ersten bzw. zweiten Ultraschallsignals z. B. ein Prüfwert für eine Plausibilitätsüberprüfung und/oder eine Störungsüberprüfung und/oder das Mischungsverhältnis einer Zwei- oder Mehrpha- senmischung und/oder mindestens eine fluidspezifische physikalische Größe abgeleitet werden.
Alternativ kann das Verfahren auch mit einer Mittenfrequenz nahe der Resonanzfrequenz fo zur Bestimmung der Laufzeitdifferenz betrieben werden, wobei zwei zusätzliche Frequenzen fi und f2 ober- und unterhalb der Mittenfrequenz nur zur Bestimmung der Phasendifferenz der beiden Frequenzen zur Positionsbestimmung verwendet werden. Dies bietet den Vorteil, dass durch den größeren Frequenzunterschied zwischen fi und eine noch besser auswertbare, größere Phasendifferenz entsteht. BEZUGSZEICHENLISTE
1 Steuerungs- und Recheneinheit
2 Taktgenerator
3 Taktmustergenerator
4 Sendeverstärker
5 Multiplexer
6 Eingangsverstärker
7 Nulldurchgangsdetektor
8 Ultraschallwandler
9 Ultraschallwandler
10 Messpulsgenerator
11 Zeit-Digitalwandler
12 Medium
13 Schallsignal (Burst) Messrichtung 1
14 Schallsignal (Burst) Messrichtung 2
ES Empfangssignal
DES digitales Empfangssignal
FS Fenstersignal
MF Messfenster
MP Messpuls
PD Phasendifferenz
RS Richtungssignal
RT Referenztakt
AS Einstellsignal
SS Startsignal
SES Sendesignal
REF Referenzpunkt
fi Frequenz
f2 Frequenz

Claims

PAT E N TA N S P R Ü C H E
Verfahren zur Ultraschalllaufzeitmessung in einem Fluid, bei dem ein eine Messstrecke durchströmendes Fluid mit einem von einem Ultraschallwandler erzeugten ersten Sendesignal mit einer ersten Frequenz fi und einem von dem Ultraschallwandler erzeugten zweiten Sendesignal mit einer zweiten Frequenz h beaufschlagt wird,
die ersten und zweiten Sendesignale von einem Ultraschallwandler empfangen und erste und zweite Empfangssignale mit jeweils mehreren Wellen erzeugt werden,
aus den Empfangssignalen die Laufzeitdifferenz bestimmt wird, eine Phasendifferenz (PD) zwischen erstem Empfangssignal mit der ersten Frequenz fi und zweitem Empfangssignal mit der zweiten Frequenz f2 gemessen wird, dadurch gekennzeichnet, dass
aus der gemessenen Phasendifferenz (PD) die Position eines Messpunkts im Bereich der Wellen (Wellenzug) des Empfangssignals abgeleitet wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass
ein für die ersten und zweiten Sendesignale gemeinsamer Referenztakt (RT) vorgegeben ist und die Bestimmung der Position des Messpunkts oder Messfensters bei der Ultraschalllaufzeitmessung unter Bezug auf den gemeinsamen Referenztakt (RT) erfolgt.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die auszuwertenden Phasendifferenzen durch Vorabmessungen unter bekannten Umgebungsbedingungen festgelegt werden.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass an der Position des Messpunkts und/oder Messfensters im Bereich der Wellen (Wellenzug) des Empfangssignals ein Messpuls (MP) erzeugt wird.
5. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Ultraschallfrequenz fi oberhalb und die zweite Ultraschallfrequenz f2 unterhalb der Resonanzfrequenz f0 oder einer Mittenfrequenz fm des Ultraschallwandlers liegt.
6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abweichung der ersten Ultraschallfrequenz fi bzw. zweiten Ultraschallfrequenz f2 jeweils zur Resonanzfrequenz fo oder einer Mittenfrequenz fm des Ultraschallwandlers -S 10 % beträgt, vorzugsweise im Bereich von 3-8 % liegt.
7. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste und zweite Ultraschallfrequenz fi bzw. f2 zur Resonanzfrequenz f0 oder Mittenfrequenz fm des Ultraschallwandlers, vorzugsweise zumindest im Wesentlichen, symmetrisch, liegen.
8. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Ultraschallfrequenz (z. B. die Ultraschallfrequenz fi) als Grundfrequenz und die weitere Ultraschallfrequenz (z. B. die Ultraschallfrequenz weitere f2) als Zusatzfrequenz eingesetzt wird und die Messung der Zusatzfrequenz entweder nur für eine Messrichtung oder für beide Messrichtungen erfolgt.
9. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Position zweier Nulldurchgänge des ersten bzw. zweiten Ultraschallsignals als Bezugspunkt zur Bestimmung der absoluten Laufzeit des ersten und/oder zweiten Ultraschallsignals herangezogen wird.
10. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste Ultraschallsignal und das zweite Ultraschallsignal vom Ultraschallwandler abwechselnd erzeugt sowie empfangen wird.
11. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Messbereich des Ultraschall- Durchflussmessers größer als ein Wellenzug des ersten und/oder zweiten Ultraschallsignals ist.
12. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren ohne Messung der Fluid- temperatur betrieben wird.
13. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das aus der absoluten Laufzeit des ersten bzw. zweiten Ultraschallsignals die Fluidtemperatur und/oder die Schallgeschwindigkeit im Fluid abgeleitet wird.
14. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass aus der absoluten Laufzeit des ersten bzw. zweiten Ultraschallsignals, vorzugsweise in Verbindung mit einer Temperaturmessung, entweder
ein Prüfwert für eine Plausibilitätsüberprüfung und/oder eine Störungsüberprüfung und/oder das Mischungsverhältnis einer Zwei- oder Mehrphasenmischung und/oder
mindestens eine fluidspezifische physikalische Größe
abgeleitet wird.
EP17800387.7A 2016-11-24 2017-11-16 Verfahren zur laufzeitmessung eines ultraschallsignals in einem strömenden fluid Withdrawn EP3545269A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016014088 2016-11-24
DE102017005208.5A DE102017005208A1 (de) 2016-11-24 2017-06-01 Verfahren zur Laufzeitmessung eines Ultraschallsignals in einem Fluid
PCT/EP2017/001345 WO2018095562A1 (de) 2016-11-24 2017-11-16 Verfahren zur laufzeitmessung eines ultraschallsignals in einem strömenden fluid

Publications (1)

Publication Number Publication Date
EP3545269A1 true EP3545269A1 (de) 2019-10-02

Family

ID=62068661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17800387.7A Withdrawn EP3545269A1 (de) 2016-11-24 2017-11-16 Verfahren zur laufzeitmessung eines ultraschallsignals in einem strömenden fluid

Country Status (3)

Country Link
EP (1) EP3545269A1 (de)
DE (1) DE102017005208A1 (de)
WO (1) WO2018095562A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11630082B2 (en) 2020-05-14 2023-04-18 Honeywell International Inc. Millimeter-wave and ultrasound sensors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3779374B1 (de) * 2019-03-20 2022-08-17 Shenzhen Goodix Technology Co., Ltd. Laufzeiterzeugungsschaltung und zugehöriger chip, durchflussmesser und verfahren

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527432A (en) 1983-11-07 1985-07-09 General Motors Corporation Dual frequency acoustic fluid flow method and apparatus
EP0250660B1 (de) * 1986-06-05 1991-03-27 Moore Products Co. Verfahren und Vorrichtung zur Messung der Geschwindigkeit eines Fluids
DE19841154C2 (de) 1998-09-09 2002-11-07 Holger Loehmer Verfahren und Vorrichtung zur Messung der Laufzeit von Schallwellen
US6575044B1 (en) * 2002-05-06 2003-06-10 Murray F. Feller Transit-time flow sensor combining high resolution and wide dynamic range
DE102011004830B4 (de) 2011-02-28 2015-10-29 Holger Löhmer Phasenverfahren zur Messung der Ausbreitungsgeschwindigkeit von Schallwellen mit dynamischem Messfenster
DE102011016963A1 (de) 2011-04-13 2012-10-18 Hydrometer Gmbh Verfahren zur Messung von Durchflussmengen nach dem Prinzip der Ultraschalllaufzeitdifferenz

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11630082B2 (en) 2020-05-14 2023-04-18 Honeywell International Inc. Millimeter-wave and ultrasound sensors

Also Published As

Publication number Publication date
DE102017005208A1 (de) 2018-05-24
WO2018095562A1 (de) 2018-05-31

Similar Documents

Publication Publication Date Title
DE10206134B4 (de) Ultraschall-Strömungsmesser
EP2818874B1 (de) Ultraschallmessvorrichtung
DE102011005170B4 (de) Verfahren zur Ultraschall-Clamp-on-Durchflussmessung und Vorrichtung zur Umsetzung des Verfahrens
EP1941243A1 (de) Verfahren und vorrichtung zur ultraschall-messung des durchflusses fliessfähiger medien
DE112018001949T5 (de) Objekterfassungsvorrichtung
DE2153432B2 (de) Akustischer Durchflußmesser
WO2018219492A1 (de) Verfahren zur bestimmung des drucks eines fluids
EP3071989B1 (de) Verfahren und eine vorrichtung zur messung einer relativgeschwindigkeit mittels eines akustischen sensors
DE19841154C2 (de) Verfahren und Vorrichtung zur Messung der Laufzeit von Schallwellen
EP1846734A1 (de) Ultraschallstr\mungssensor mit modulo-2pi-restnachführung
DE10328662B4 (de) Verfahren zur Durchflußmessung mittels eines Ultraschall-Durchflußmessers
DE102018216920A1 (de) Objekterfassungsvorrichtung
EP3545269A1 (de) Verfahren zur laufzeitmessung eines ultraschallsignals in einem strömenden fluid
EP4212829A1 (de) Verfahren und messeinrichtung zur ermittlung einer einen durchfluss betreffenden messgrösse
DE102017011861B4 (de) Verfahren zur Bestimmung der Laufzeit eines Ultraschallsignals in einem strömenden Medium sowie Ultraschalldurchflussmesser
DE202011005427U1 (de) Vorrichtung zum Messen der Laufzeit eines Ultraschallsignals in einer strömenden Flüssigkeit
DE102015102200B4 (de) Verfahren zur Bestimmung von Eigenschaften eines Mediums und Vorrichtung zur Bestimmung von Eigenschaften eines Mediums
DE102010040890A1 (de) Radarsensor mit phasengeregeltem Oszillator
EP3894799B1 (de) Ultraschallwandleranordnung einer clamp-on-ultraschall-durchflussmessstelle, und eine clamp-on-ultraschall-durchflussmessstelle sowie verfahren zur inbetriebnahme der clamp-on-ultraschall-durchflussmessstelle
EP3967989B1 (de) Verfahren zum betreiben eines ultraschall-durchflussmessgeräts und ultraschall-durchflussmessgerät
EP1936403B1 (de) Ultraschallsensor und Verfahren zum Bestimmen eines Abstands eines Objekts von einem Ultraschallsensor
EP2511673A1 (de) Verfahren zur Messung von Durchflussmengen nach dem Prinzip der Ultraschalllaufzeitdifferenz
WO2020151815A1 (de) Verfahren zur bestimmung der laufzeit eines ultraschallsignals in einem strömenden medium sowie ultraschalldurchflussmesser
EP0025026A2 (de) Vorrichtung zur Messung der Strömungsgeschwindigkeit eines Fluids
DE102012025287B4 (de) Vorrichtung zur verbesserten Zeitsteuerung für zerstörungsfreie Prüfung und Untersuchung sowie Verfahren dafür

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210601