EP3544729A1 - Catalyst precursor metal alkane-sulfonates, method for the production thereof and use of same - Google Patents

Catalyst precursor metal alkane-sulfonates, method for the production thereof and use of same

Info

Publication number
EP3544729A1
EP3544729A1 EP17812005.1A EP17812005A EP3544729A1 EP 3544729 A1 EP3544729 A1 EP 3544729A1 EP 17812005 A EP17812005 A EP 17812005A EP 3544729 A1 EP3544729 A1 EP 3544729A1
Authority
EP
European Patent Office
Prior art keywords
metal
catalyst precursor
support
catalyst
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17812005.1A
Other languages
German (de)
French (fr)
Inventor
Bernard Monguillon
Zsolt Molnar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3544729A1 publication Critical patent/EP3544729A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/10Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves

Definitions

  • the present invention relates to the field of supported metal catalysts and more particularly to the preparation of supported metal catalysts.
  • the invention more particularly relates to an improved process for the preparation of such supported metal catalysts.
  • supported metal catalysts are widely and commonly used, for example for hydrotreatment reactions.
  • supported metal catalysts are today in particular used for the production of fine chemicals in the chemical industry, for example in the refining industry, where it is known that they are usually used for hydrotreatment reactions, and more particularly for the hydrotreatment of hydrocarbon fractions.
  • the hydrotreating consists, under appropriate conditions such as in the presence of hydrogen, in the conversion of sulfur-containing organic compounds to hydrogen sulfide, which operation is called hydrodesulphurization (HDS). Hydroprocessing also involves converting organic compounds from nitrogen to ammonia, the operation being called hydrodenitrogenation (HDN). These hydrotreatment reactions are most often conducted in the presence of one or more catalysts.
  • HDS hydrodesulphurization
  • HDN hydrodenitrogenation
  • These catalysts are commonly supported metal catalysts and generally comprise one or more metals selected from the metals of columns 3 to 12 of the periodic table of the IUPAC elements, such as, by way of nonlimiting examples, molybdenum , tungsten, nickel, cobalt, and mixtures thereof.
  • the most commonly used supported metal hydrotreatment catalysts include cobalt and molybdenum (CoMo catalysts), nickel and molybdenum (NiMo catalysts), and nickel and tungsten (Ni-W catalysts).
  • the metals in the commercial catalysts when delivered to the end user, are generally and most commonly present under their oxide form.
  • these supported metal catalysts are active only in the form of metal sulfides. This is the reason why, before being used, the oxide forms must be transformed into sulphurous forms, in other words, they must be sulphured.
  • Such catalysts are manufactured industrially on very large scales and generally the metal or metals are deposited on one or more porous supports, such as, by way of nonlimiting examples, aluminas, silicas or silicas. aluminas.
  • United States Patent Application No. US2013 / 0237734 discloses the use of methanesulfonic acid for the pretreatment of the support, in order to improve the efficiency of the catalyst. Subsequently, the acid-treated support is contacted with metal to form a catalyst precursor. The metal is introduced in the form of nitrates, carbonates or metal acetates or combinations thereof.
  • the method disclosed in this application does not provide a simple and effective method of catalyst preparation leading directly to sulfide supported metal catalysts.
  • United States Patent Application No. US2007 / 0227949 discloses sulfur containing catalyst compositions, wherein the sulfur compound may be selected from mercapto compounds, thioacids, mercaptoalcohols, sulfoxides, thiocyanates, and the like. ammonium and thioureas, polysulfides or elemental sulfur and sulfur-containing inorganic compounds.
  • the sulfur compound is present in the form of a sulfur compound which is not bound to the metal component.
  • the disadvantage is that metal is deposited on the support, and therefore already present on said support, before the reaction with the sulfur-containing compound to form metal sulfides.
  • the activity and the efficiency of the catalyst are based on the amount of metal deposited on the support and this method does not allow the increase of the amount of metal on the support, and therefore no improvement in the activity of the catalyst. catalyst.
  • US4845068 relates to an inorganic oxide carrier carrying a metal, which is dipped in a sulfiding agent having a mercapto radical.
  • the catalyst is active without any additional treatment or after treatment with presence of hydrogen.
  • the supported sulfur metal catalysts are pyrogenic. Also, precautionary measures must be taken during transport, storage and also during the handling of said catalysts, thereby increasing the constraints and logistics costs.
  • the international application WO2014 / 068135 relates to a zeolite material containing tin and having a MWW backbone structure.
  • This zeolite material is obtained via a process comprising the treatment of a zeolite material containing boron in a liquid solvent system having a pH in the range of 5.5 to 8.
  • Said solvent system may be an organic acid and / or an inorganic acid, such as methanesulfonic acid.
  • This treatment leads to a new zeolite material having a MWW-type backbone structure, with a higher interlayer distance compared to the prior art materials.
  • only the support is treated with methanesulfonic acid and this does not lead to a better dispersion of the metal on the zeolite.
  • the fact that the metal is associated with an alkane-sulphonate ion greatly facilitates the sulphidation of the metal which is necessary before use. This facilitation is evident in at least two aspects: it allows i) an improved coating of the support with metal and ii) a more efficient and faster sulfidation of the metal.
  • the alkanesulfonic acid metal salt is a sulfur-containing compound
  • the amount of sulfur-containing compounds for the pre-sulfurization step is accordingly reduced.
  • alkanesulfonic acid metal salt allows the preparation of stable catalysts, safe and non-pyrogenic, which leads to fewer difficulties and risks during storage, transportation and use.
  • the present invention relates to a catalyst precursor comprising at least one porous support and at least one metal adsorbed on said support, said metal being in the form of an alkane-sulphonate metal of general formula (1):
  • R represents a linear, cyclic or branched saturated hydrocarbon chain comprising from 1 to 12 carbon atoms, preferably from 1 to 6 carbon atoms, more preferably from 1 to 4 carbon atoms, advantageously R represents a methyl group or ethyl, more preferably R represents a methyl group, M represents a metal cation, the metal being selected from the metals of any one of columns 3 to 12 of the periodic table of the NUPAC elements, and
  • n is an integer representing the valence of the metal atom cation.
  • catalyst precursor in the present invention refers to a catalyst which is stable under storage and transport conditions and which can be activated prior to use.
  • the support of the catalyst precursor of the present invention may be any support known to those skilled in the art and preferably any porous support, and preferably any porous refractory support, commonly used in the field of supported catalysts and well known to those skilled in the art.
  • porous refractory support any porous catalyst support well known to those skilled in the art capable of withstanding heat, and in particular the effects induced by high temperatures, by bodies having a point of high fusion.
  • Typical examples of porous refractory materials are refractory porous ceramics, well known in the field of catalysis, such as porous zirconia ceramics, or porous alumina ceramics.
  • the support is preferably chosen from porous refractory metal oxides.
  • a support include, without limitation, alumina, silica, zirconia, magnesia, beryllium oxide, chromium oxide, titanium oxide, thorium oxide , ceramics, carbon such as carbon black, graphite and activated carbon, as well as combinations thereof.
  • the support comprises a crystalline silico-aluminate compound, and more specifically it consists of a crystalline silicoaluminate compound, which compound is commonly known under the name of "zeolite".
  • the crystalline silico-aluminates generally contain micropores, mesopores and macropores.
  • zeolite refers to a particular group of crystalline aluminosilicates. These zeolites have a network of silicon oxide and aluminum tetrahedra in which aluminum and silicon atoms are arranged in a three-dimensional skeleton by sharing oxygen atoms.
  • the ratio of oxygen atoms to total atoms of aluminum and silicon can vary in large proportions, for example from 1 to 200.
  • the backbone has a negative electrovalence which is generally balanced by the inclusion of cations within the crystal, such as cations of metals, alkali metals, alkaline earth metals or hydrogen or mixtures of these cations.
  • the support comprises a ZSM zeolite MFI skeleton.
  • zeolite ZSM has a high ratio of silicon to aluminum.
  • the SiO 2 / Al 2 O 3 ratio in zeolite ZSM may be greater than or equal to about 5: 1, for example, about 8: 1 to about 200: 1.
  • ZSM zeolites examples include but are not limited to zeolites ZSM-22, ZSM-23, ZSM-5, ZSM-1 1, ZSM-12, ZSM-23, ZSM-35, ZSM-38 or the associations of these.
  • Natural zeolites for example ferrierite, artificial and synthetic zeolites such as, but not limited to, SAPO zeolites, for example SAPO-1 1, SAPO-31, ALPO and MCM-41 zeolites, are also examples of suitable zeolites which can be used as a catalyst precursor support according to the present invention.
  • SAPO zeolites for example SAPO-1 1, SAPO-31, ALPO and MCM-41 zeolites
  • the support comprises a zeolite and more preferably the zeolite may have a pore size of about 3 Angstroms (3 ⁇ or 300 ⁇ m) to about 10 ⁇ (1 nm), preferably about 5 ⁇ . (500 ⁇ m) at about 8 ⁇ (800 ⁇ m).
  • the metal adsorbed on the support may be of any type of metal selected from the metals of columns 3 to 12 of the periodic table of NUPAC elements, that is to say a transition metal. .
  • the metal is selected from the metals of columns 5 to 1 1, more preferably 5 to 10 of the periodic table of the NUPAC elements, more preferably still the metal is selected from vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum and mixtures of two or more d between them in all proportions.
  • the preferred metal mixtures include, by way of non-limiting examples, nickel-tungsten, cobalt-molybdenum, nickel-vanadium, nickel-molybdenum, molybdenum-tungsten and nickel-cobalt.
  • nickel-tungsten metal-blending catalysts have excellent isomerization and dearomatization properties, while having an increased ability to perform hydrodeoxygenation reactions and other hydrotreatment reactions. in particular the hydrocracking of organic raw materials, whether of fossil origin (petroleum hydrocarbons), animal or vegetable origin.
  • the amount of metal present in the catalyst precursor of the present invention is generally from 0.1% to 30 %.
  • the amount of metal can be measured according to any method known to those skilled in the art.
  • the amount of metal is measured by scanning electron microscopy (SEM) coupled with EDS (energy dispersive X-ray spectrometry).
  • SEM scanning electron microscopy
  • EDS energy dispersive X-ray spectrometry
  • An EDS system software is used to analyze the energy spectrum to determine the abundance of particular elements.
  • the EDS can be used to find the chemical composition of materials up to a point size of a few micrometers, and thus create elemental composition maps.
  • the preferred catalyst precursors of the present invention are, by way of non-limiting examples, catalyst precursors comprising platinum adsorbed on SAPO-1 1 / Al 2 O 3 , or on ZSM-22 / Al 2 O 3. 3 , or on ZSM-23 / AI 2 O 3 , or comprising nickel and tungsten adsorbed on Al2O3 or on zeolite / A Os.
  • the most preferred catalyst precursors are, for example, Ni-W on Al 2 O 3 and Ni-W on zeolite / Al 2 O 3.
  • the present invention relates to a process for preparing the catalyst precursor as described above, comprising at least the following steps:
  • the "fixing of at least a portion of the metal salt on said porous support” can be carried out by the skilled person according to any method known per se, and for example by one or more of the following actions: immersion, diving dipping, or mixing said porous support in a liquid medium containing at least one metal salt of alkanesulfonic acid.
  • the "fixation" step more or less corresponds to a deposit, a coating, an introduction, a diffusion, in the pores of the support, of at least a part of the metal salt on said porous support.
  • the "fixing” step can be carried out at any temperature between the laboratory temperature and 200 ° C, preferably between the laboratory temperature and 100 ° C.
  • the heating of the reaction medium improves the kinetics of the "fixation” step.
  • the "fixing” step is carried out at laboratory temperature (ie at room temperature).
  • the fixing step (b) can be performed according to any method commonly used by those skilled in the art, for example and in a non-limiting manner, by soaking, impregnation (wet or dry), deposit adsorption from a solution, co-precipitation and chemical vapor deposition, preferably by impregnation, and more preferably by way impregnation wet, and for example as disclosed by Acres et al. in the document "The design and preparation of supported catalysts", Catalysis, vol. 4, 1-4, (1981).
  • the impregnation method is the preferred method.
  • Step b) can be performed at any temperature, generally at a temperature ranging from 10 ° C to 100 ° C, preferably from 20 ° C to 80 ° C. Step b) is most preferably performed under atmospheric pressure, although it may be carried out under reduced pressure or, alternatively, under pressure.
  • step b) is carried out with agitation, at any suitable speed and according to any known method commonly used by those skilled in the art, for example and in a nonlimiting manner, at least 1 using a blade, a turbine, a propeller, a rotor, a double screw system and other.
  • Step b) is generally performed for a few seconds to several hours, preferably for a few minutes to a few hours, usually from a few minutes to two hours.
  • the amount of adsorbed ("fixed") metal on the porous support is advantageously monitored by measuring the amount of metal remaining in the alkanesulfonic acid metal salt formulation.
  • the remaining metal salts can be measured by various methods such as potentiometry or inductively coupled plasma mass spectrometry (ICP / MS), which is the preferred method.
  • one or more additives may be added to the formulation, such as those well known to those skilled in the art, for example, and without limitation, those selected from inorganic acids such as nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, organic acids such as acetic acid, oxalic acid, glycolic acid, and the like, as well as mixtures thereof. Phosphoric acid or its derivatives are a particular preferred acid.
  • additives which may also be added during step b) include reducing agents, wetting agents, solvents and other additives well known to those skilled in the art.
  • the "reducing agent” that can be added in the formulation generally aims to increase the amount of metal adsorbed on the support thereby increasing the activity of the future catalyst. It may also aim to facilitate the conversion of the metal sulfonate to the corresponding metal sulfide during the calcination reaction which is carried out before use of the catalyst.
  • the reducing agent is a sulfur-containing compound generally selected from, and without limitation, mercaptans, sulfoxides and thioacids.
  • the reducing agent is a thiocarboxylic acid, for example thioglycolic acid or thioacetic acid.
  • the molar amount of reducing agent is from 0.3 times to 3.5 times more than the molar amount of the metal present on the support.
  • the amount of metal present on the support can be measured by SEM as described above.
  • Step b) can be performed more than once, that is to say several times with the same solution or a different solution of metal and with the same method or a different method.
  • the liquid medium may be any suitable liquid medium known to those skilled in the art and which is suitable for the adsorption of metal on porous media.
  • the liquid medium may thus be water or any organic liquid or a mixture of one or more organic compounds, possibly with water.
  • Such a liquid medium may thus be water or an organic medium or a hydro-organic medium.
  • the liquid medium is a solvent for the metal salt of the alkanesulfonic acid.
  • the liquid medium is the alkanesulfonic acid as such or the dilution solvent medium for said alkanesulfonic acid.
  • the liquid medium may be water, and in this case the water is the dilution medium for the alkanesulfonic acid and is the solvent for the metal salt of the alkane-acid. sulphonic acid concerned.
  • the solubilized alkanesulfonic acid metal salt is present in a concentration ranging from 5 gL -1 to 2000 gL -1 , preferably from 5 gL -1 to 1500 g. L "1 , more preferably from 50 g L -1 to 1500 g. L ⁇ 1 , the limits being included.
  • a concentration of less than 5 gL "1 is possible, but the amount of adsorbed metal may not be sufficient, similarly a concentration greater than 2000 gL -1 is possible, provided that the salt remains soluble, in order to avoid non-soluble particles of metal salt of alkanesulfonic acid, which could be a problem during the recovery of the catalyst precursor.
  • the metal alkanesulfonate has the general formula (1):
  • R represents a saturated, linear, cyclic or branched hydrocarbon-based chain containing from 1 to 12 carbon atoms, preferably from 1 to 6 carbon atoms, more preferably from 1 to 4 carbon atoms, advantageously R represents a methyl group or ethyl, more preferably R represents a methyl group,
  • M represents a metal cation, the metal being selected from the metals of any one of columns 3 to 12 of the periodic table of the IUPAC elements, and
  • n is an integer representing the valence of the metal cation.
  • alkane metal sulphonate of general formula (1) is known as such and is commercially available or may be prepared by techniques known to those skilled in the art or prepared by adaptation of known techniques. of the man of the art. Such a known method is for example described by Gernon et al. in the document Environmental Benefits of Methane Sulfonic Acid: Comparative Properties and Advantages, Green Publication, 1 (3), 127-140, (1999), where it merely involves reacting alkanesulfonic acid with at least a metal.
  • a metal alkane-sulphonate of general formula (1) may be prepared by contacting one or more corresponding metals of columns 3 to 12 of the periodic table of IUPAC elements and / or or one or more compounds containing such metal or such metals with one or more alkanesulfonic acids.
  • This contacting can be carried out at any temperature, preferably and most conveniently at room temperature, or at a moderate temperature, for example at a temperature ranging from room temperature to 60.degree. C. to 80.degree. atmospheric pressure.
  • This contact leads to the attack of the metals and / or compound (s) containing the metal (s) with the acid (s), thereby forming one or more metal salts of formula (1) above.
  • the alkanesulfonic acid is preferably selected from alkanesulphonic acids of formula RSO3H, wherein R is as described above.
  • Typical alkanesulfonic acids for use in the preparation of the salt of formula (1) include, but are not limited to, methanesulfonic acid, ethanesulfonic acid, n-propanesulfonic acid, acid / 'n-propane-sulfonic acid, n-butane-sulfonic acid, /' n-butane-sulfonic acid, sec-butane-sulphonic acid, tert-butane-sulphonic acid, and mixtures of two or more of them, in all proportions.
  • the alkanesulfonic acid is methanesulfonic acid and / or ethanesulfonic acid, more preferably the alkanesulphonic acid is methanesulfonic acid.
  • the present invention thus preferably uses at least one alkane-sulphonic acid which is chosen from alkane-sulphonic acids with a linear or branched hydrocarbon chain having 1 to 4 carbon atoms, and preferably the acid alkanesulfonic acid is methanesulfonic acid (AMS).
  • alkane-sulphonic acid which is chosen from alkane-sulphonic acids with a linear or branched hydrocarbon chain having 1 to 4 carbon atoms, and preferably the acid alkanesulfonic acid is methanesulfonic acid (AMS).
  • any formulation comprising at least one alkanesulfonic acid may be used in the context of the present invention.
  • the alkane-sulfonic acid (s) can be used as such or diluted with various components as shown below.
  • such a formulation comprises from 0.01% by weight to 100% by weight of alkanesulfonic acid, more generally from 0.01% by weight to 90% by weight, in particular from 0.01% by weight to 75% by weight.
  • % by weight of alkanesulfonic acid relative to the total weight of said formulation, it being understood that a formulation comprising 100% by weight of alkanesulphonic acid is pure alkanesulphonic acid, that is, to say undiluted.
  • the concentration of the alkane-sulfonic acid or acids may vary and depends on various parameters, among which the solubility of the metal salt of formula (1). Those skilled in the art will be able to easily adjust the concentration of alkane-sulfonic acid without excessive efforts.
  • the concentration of the alkane-sulphonic acid or acids used for the formation of metal salts is rather high and for example ranges from 60% by weight to 100% by weight, preferably from approximately 70% by weight to 100% by weight of the alkane-sulfonic acid or acids relative to the total weight of said formulation, for the preparation of metal salts, when the metal or metals are not easily attacked by the acid or acids.
  • less concentrated formulations for example from 0.01% by weight to 60% by weight, preferably from 0.01% by weight to 50% by weight, may be used for the preparation of metal salts from metals which are easily attacked by acids, for example when in powder form and the like.
  • the formulation described above is, for example, pure alkanesulfonic acid or an aqueous or organic or hydro-organic formulation, at a higher or lower concentration, which may be diluted before use. Alternatively, the formulation may be ready for use, i.e. without the need for any dilution.
  • alkanesulfonic acids known and formulations comprising such acids, there may be mentioned methane sulfonic acid in aqueous solution, under the tradename E-PURE MSA ®, marketed by Arkema, or under trade name Lutropur ® , marketed by BASF, either ready for use or diluted in water in the proportions described above.
  • any metal salt of formula (1) may be used to prepare the catalyst precursor.
  • Such a preparation process comprises at least one step consisting in adsorbing ("fixing") at least one metal on at least one porous support, by contacting at least one alkane-sulphonate of formula (1) with the at least one porous support.
  • step c) The contact between the support and said metal salt of alkanesulphonic acid leads to the "fixation" of the metal salt on the support, that is to say the adsorption of the metal on the surface of the support, said porous support then comprising metal and alkane-sulfonate groups, said groups serving as latent sulfur species which can be subsequently released.
  • the separation of the support from the liquid medium in step c) is carried out according to one or more methods known to those skilled in the art, among which, by way of non-limiting examples, solid-liquid separation may be mentioned. , solid-liquid extraction, filtration and other.
  • nonlimiting examples of such methods include evaporation by heating, distillation, evacuation, evaporation under a stream of gas such as hydrogen, oxygen, nitrogen, an inert gas. , such as neon or argon, and other.
  • a stream of gas such as hydrogen, oxygen, nitrogen, an inert gas. , such as neon or argon, and other.
  • removal of the liquid medium is effected by heating under a stream of nitrogen.
  • the catalyst precursor can be dried and recovered according to known techniques.
  • the drying is generally carried out for 2 hours to 20 hours at a temperature ranging from 30 ° C to 300 ° C, preferably from 60 ° C to 200 ° C, more preferably from 80 ° C to 120 ° C, and generally at pressures ranging from 0.1 bar absolute (10 kPa) to 300 bar absolute (30 MPa), advantageously from 1 bar absolute (100 kPa) to 100 bar absolute (10 MPa) and more preferably between 1 bar absolute (100 kPa) ) and 5 absolute bar (500 kPa).
  • the drying is carried out at a temperature of 100 ° C for 5 hours to 10 hours at a pressure of 1 bar absolute (100 kPa).
  • the catalyst precursor prepared according to the process of the present invention generally comprises a quantity of metal, expressed as a percentage by weight of the corresponding metal oxide with respect to the total mass of the catalyst precursor, of between 0, 1% by weight and 30% by weight, preferably from 1% by weight to 30% by weight, more preferably from 5% by weight to 20% by weight.
  • the catalyst precursor of the present invention obtained in step d) thus comprises one or more metals together with alkane-sulphonate groups which represent a latent source of sulfur useful for subsequent catalytic reactions.
  • the catalyst precursor of the present invention is stable, ready for storage, transportation and handling.
  • the present invention also relates to the use of the catalyst precursor of the present invention in industry. particularly in the petrochemical industry, and more specifically in the refining industry.
  • the catalyst precursor of the present invention should be advantageously activated, according to any method known in the art.
  • the catalyst precursor according to the invention is therefore a very convenient catalyst precursor, which is stable and safe to handle, store and transport and which is activated prior to use as any other catalyst known in the art.
  • the sulfonate groups decompose and form metal sulfides which represent the active form of the catalyst in a number of reactions which are carried out particularly in the petrochemical industry, and more specifically in the refining industry.
  • the catalyst precursor of the present invention therefore has the advantage of avoiding any sulfidation step during or after activation immediately prior to use.
  • the activation of the catalyst precursor of the present invention can be carried out according to any known technique, for example by heating at elevated temperature, an operation also known as calcination.
  • the calcination is generally carried out at temperatures ranging from 200 ° C to 600 ° C, preferably from 300 ° C to 500 ° C, for 1 hour to 6 hours, preferably for 2 hours to 4 hours.
  • the temperature can be gradually increased, for example at a rate of 20 to 50 ° C / hour over the temperature range described above.
  • a rate of 20 to 50 ° C / hour over the temperature range described above.
  • the calcination can be carried out under an inert atmosphere, for example under nitrogen, or in an oxygen-containing gas, such as air, or pure oxygen, optionally in the presence of water vapor.
  • the calcination step is performed in an oxygen-containing atmosphere.
  • the present invention also relates to a process for the preparation of an activated catalyst comprising a calcination step, at a calcination temperature well known to those skilled in the art, of the catalyst precursor as defined above. which leads in this way to an activated sulfide metal catalyst.
  • the present invention relates to a process for the preparation of an activated catalyst in which the catalyst precursor as defined above is subjected to calcination at a temperature of between 200 ° C. and 1200 ° C. preferably between 400 ° C and 1200 ° C, more preferably between 600 ° C and 1200 ° C.
  • mercapto acids include, for example and without limitation, thioglycolic acid and mercaptopropionic acid.
  • the present invention relates to the use of said activated catalyst, for the production of fine chemicals and more particularly for the hydrotreatment of hydrocarbon fractions.
  • hydrotreatment refers to the reduction of compounds by treatment with hydrogen and comprises, among other reactions: hydrogenation, hydrodesulfurization, hydrodenitrogenation, hydrodearomatization and hydrogenolysis.
  • the catalyst obtained by said process is thus a pre-sulfurized catalyst.

Abstract

The invention relates to the production of a catalyst precursor by means of a metal salt of an alkanesulfonic acid, the catalyst precursor comprising a metal alkane-sulfonate adsorbed on a substrate, and to the use of such a catalyst precursor in chemical reactions for producing products of fine chemistry in the chemical industry, particularly in the refining industry.

Description

ALKANE-SULFONATES MÉTALLIQUES PRÉCURSEURS DE CATALYSEUR, LEURS MÉTHODE DE PRÉPARATION ET UTILISATION  CATALYST PRECURSOR METAL ALKANE-SULFONATES, THEIR METHODS OF PREPARATION AND USE
[0001] La présente invention se rapporte au domaine des catalyseurs métalliques supportés et plus particulièrement à la préparation de catalyseurs métalliques supportés. L'invention a plus particulièrement comme objet un procédé perfectionné pour la préparation de tels catalyseurs métalliques supportés. The present invention relates to the field of supported metal catalysts and more particularly to the preparation of supported metal catalysts. The invention more particularly relates to an improved process for the preparation of such supported metal catalysts.
[0002] Dans l'industrie chimique, et en particulier dans l'industrie pétrochimique, des catalyseurs métalliques supportés sont largement et communément utilisés, par exemple pour des réactions d'hydrotraitement. In the chemical industry, and in particular in the petrochemical industry, supported metal catalysts are widely and commonly used, for example for hydrotreatment reactions.
[0003] Ainsi, des catalyseurs métalliques supportés sont aujourd'hui en particulier utilisés pour la production de produits de chimie fine dans l'industrie chimique, par exemple dans l'industrie du raffinage, où on sait qu'ils sont d'ordinaire utilisés pour des réactions d'hydrotraitement, et plus particulièrement pour l'hydrotraitement de fractions d'hydrocarbures.  [0003] Thus, supported metal catalysts are today in particular used for the production of fine chemicals in the chemical industry, for example in the refining industry, where it is known that they are usually used for hydrotreatment reactions, and more particularly for the hydrotreatment of hydrocarbon fractions.
[0004] L'hydrotraitement consiste, dans des conditions appropriées telles qu'en présence d'hydrogène, en la conversion de composés organiques soufrés en sulfure d'hydrogène, laquelle opération est appelée hydrodésulfuration (HDS). L'hydrotraitement consiste également à convertir des composés organiques de l'azote en ammoniac, l'opération étant alors appelée hydrodésazotation (HDN). Ces réactions d'hydrotraitement sont le plus souvent menées en présence d'un ou plusieurs catalyseurs.  The hydrotreating consists, under appropriate conditions such as in the presence of hydrogen, in the conversion of sulfur-containing organic compounds to hydrogen sulfide, which operation is called hydrodesulphurization (HDS). Hydroprocessing also involves converting organic compounds from nitrogen to ammonia, the operation being called hydrodenitrogenation (HDN). These hydrotreatment reactions are most often conducted in the presence of one or more catalysts.
[0005] Ces catalyseurs sont communément des catalyseurs métalliques supportés et comprennent généralement un ou plusieurs métaux choisis parmi les métaux des colonnes 3 à 12 du tableau périodique des éléments de l'IUPAC, tels que, à titre d'exemples non limitatifs, le molybdène, le tungstène, le nickel, le cobalt, ainsi que les mélanges de ceux-ci. Les catalyseurs d'hydrotraitement métalliques supportés le plus communément utilisés comprennent du cobalt et du molybdène (catalyseurs au CoMo), du nickel et du molybdène (catalyseurs au NiMo) et du nickel et du tungstène (catalyseurs au Ni-W).  These catalysts are commonly supported metal catalysts and generally comprise one or more metals selected from the metals of columns 3 to 12 of the periodic table of the IUPAC elements, such as, by way of nonlimiting examples, molybdenum , tungsten, nickel, cobalt, and mixtures thereof. The most commonly used supported metal hydrotreatment catalysts include cobalt and molybdenum (CoMo catalysts), nickel and molybdenum (NiMo catalysts), and nickel and tungsten (Ni-W catalysts).
[0006] Les métaux dans les catalyseurs du commerce, lorsqu'ils sont délivrés à l'utilisateur final, sont généralement et le plus communément présents sous leur forme oxyde. Cependant, ces catalyseurs métalliques supportés ne sont actifs que sous la forme de sulfures métalliques. C'est la raison pour laquelle, avant d'être utilisées, les formes oxyde doivent être transformées en formes sulfurées, en d'autres termes, elles doivent être sulfurées. The metals in the commercial catalysts, when delivered to the end user, are generally and most commonly present under their oxide form. However, these supported metal catalysts are active only in the form of metal sulfides. This is the reason why, before being used, the oxide forms must be transformed into sulphurous forms, in other words, they must be sulphured.
[0007] De tels catalyseurs sont fabriqués industriellement à de très grandes échelles et généralement le métal ou les métaux sont déposés sur un ou plusieurs supports poreux, tels que, à titre d'exemples non limitatifs, des alumines, des silices ou des silices/alumines.  Such catalysts are manufactured industrially on very large scales and generally the metal or metals are deposited on one or more porous supports, such as, by way of nonlimiting examples, aluminas, silicas or silicas. aluminas.
[0008] La demande de brevet des États-Unis n° US2013/0237734 décrit l'utilisation d'acide méthanesulfonique pour le prétraitement du support, afin d'améliorer l'efficacité du catalyseur. Par la suite, le support traité par l'acide est mis en contact avec du métal, pour former un précurseur de catalyseur. Le métal est introduit sous la forme de nitrates, carbonates ou acétates métalliques ou d'associations de ceux-ci. Cependant la méthode divulguée dans cette demande ne fournit pas un procédé simple et efficace de préparation de catalyseur conduisant directement à des catalyseurs métalliques supportés sulfurés.  United States Patent Application No. US2013 / 0237734 discloses the use of methanesulfonic acid for the pretreatment of the support, in order to improve the efficiency of the catalyst. Subsequently, the acid-treated support is contacted with metal to form a catalyst precursor. The metal is introduced in the form of nitrates, carbonates or metal acetates or combinations thereof. However, the method disclosed in this application does not provide a simple and effective method of catalyst preparation leading directly to sulfide supported metal catalysts.
[0009] La demande de brevet des États-Unis n° US2007/0227949 divulgue des compositions de catalyseur contenant du soufre, dans lesquelles le composé soufré peut être choisi parmi les composés mercapto, les thioacides, les mercaptoalcools, les sulfoxydes, les thiocyanates d'ammonium et les thio-urées, les polysulfures ou le soufre élémentaire et les composés inorganiques soufrés. Le composé soufré est présent sous la forme d'un composé soufré qui n'est pas lié au constituant métallique. United States Patent Application No. US2007 / 0227949 discloses sulfur containing catalyst compositions, wherein the sulfur compound may be selected from mercapto compounds, thioacids, mercaptoalcohols, sulfoxides, thiocyanates, and the like. ammonium and thioureas, polysulfides or elemental sulfur and sulfur-containing inorganic compounds. The sulfur compound is present in the form of a sulfur compound which is not bound to the metal component.
[0010] L'inconvénient est que du métal est déposé sur le support, et par conséquent déjà présent sur ledit support, avant la réaction avec le composé contenant du soufre pour former des sulfures métalliques. L'activité et l'efficacité du catalyseur sont basées sur la quantité de métal déposé sur le support et cette méthode ne permet pas l'augmentation de la quantité de métal sur le support, et par conséquent pas d'amélioration de l'activité du catalyseur.  The disadvantage is that metal is deposited on the support, and therefore already present on said support, before the reaction with the sulfur-containing compound to form metal sulfides. The activity and the efficiency of the catalyst are based on the amount of metal deposited on the support and this method does not allow the increase of the amount of metal on the support, and therefore no improvement in the activity of the catalyst. catalyst.
[0011] Le brevet US4845068 concerne un support en oxyde inorganique portant un métal, qui est trempé dans un agent de sulfuration ayant un radical mercapto. Le catalyseur est actif sans aucun traitement complémentaire ou après traitement en présence d'hydrogène. En plus des inconvénients précédemment cités, on sait que les catalyseurs métalliques au soufre supportés sont pyrogènes. Aussi, des mesures de précaution doivent-elles être prises pendant le transport, le stockage et également pendant la manipulation desdits catalyseurs, ce qui augmente de cette manière les contraintes et les coûts de logistique. US4845068 relates to an inorganic oxide carrier carrying a metal, which is dipped in a sulfiding agent having a mercapto radical. The catalyst is active without any additional treatment or after treatment with presence of hydrogen. In addition to the aforementioned drawbacks, it is known that the supported sulfur metal catalysts are pyrogenic. Also, precautionary measures must be taken during transport, storage and also during the handling of said catalysts, thereby increasing the constraints and logistics costs.
[0012] La demande internationale WO2014/068135 concerne un matériau zéolithique contenant de l'étain et présentant une structure à squelette MWW. Ce matériau zéolithique est obtenu par l'intermédiaire d'un procédé comprenant le traitement d'un matériau zéolithique contenant du bore dans un système solvant liquide ayant un pH dans la plage de 5,5 à 8. Ledit système solvant peut être un acide organique et/ou un acide inorganique, tel que l'acide méthanesulfonique. Ce traitement conduit à un nouveau matériau zéolithique ayant une structure à squelette de type MWW, avec une distance intercouche plus élevée par comparaison avec les matériaux de l'état antérieur de la technique. Dans cet exposé, seul le support est traité avec de l'acide méthanesulfonique et ceci ne conduit pas à une meilleure dispersion du métal sur la zéolithe.  The international application WO2014 / 068135 relates to a zeolite material containing tin and having a MWW backbone structure. This zeolite material is obtained via a process comprising the treatment of a zeolite material containing boron in a liquid solvent system having a pH in the range of 5.5 to 8. Said solvent system may be an organic acid and / or an inorganic acid, such as methanesulfonic acid. This treatment leads to a new zeolite material having a MWW-type backbone structure, with a higher interlayer distance compared to the prior art materials. In this disclosure, only the support is treated with methanesulfonic acid and this does not lead to a better dispersion of the metal on the zeolite.
[0013] En plus des inconvénients précédents, l'énorme quantité de composés soufrés utilisés pour l'étape de pré-sulfuration a un impact négatif direct sur l'environnement. On a par conséquent besoin de procédés améliorés afin, entre autres, de réduire l'utilisation de quantités aussi importantes de composés soufrés. Il reste également un besoin de catalyseurs métalliques supportés qui sont plus stables, plus faciles à activer, plus efficaces et qui comportent une quantité appropriée de métal catalytique. In addition to the above disadvantages, the huge amount of sulfur compounds used for the pre-sulfurization step has a direct negative impact on the environment. Improved processes are therefore needed to, inter alia, reduce the use of such large amounts of sulfur compounds. There is also a need for supported metal catalysts that are more stable, easier to activate, more efficient, and have an adequate amount of catalytic metal.
[0014] Les objectifs ci-dessus sont atteints en totalité ou au moins en partie avec la présente invention qui est décrite plus en détail ci-dessous. En effet, les demandeurs ont maintenant découvert que l'utilisation de sel métallique d'acide alcane-sulfonique est particulièrement bien adaptée à la préparation de catalyseurs métalliques supportés. En outre, on a observé que de tels catalyseurs métalliques supportés préparés avec un sel métallique d'acide alcane-sulfonique sont dépourvus de la totalité ou d'une partie des inconvénients des catalyseurs métalliques connus dans l'art préparés par l'intermédiaire de voies classiques connues. [0015] Ainsi et entre autres avantages, l'utilisation d'un sel métallique d'acide alcane-sulfonique permet d'améliorer la quantité de métal déposé sur le support donc éventuellement d'améliorer l'activité du catalyseur. De plus, le sel métallique d'acide alcane-sulfonique a une solubilité plus élevée dans une solution à base d'eau qu'un autre sel métallique de composé contenant du soufre ce qui permet une meilleure dispersion du métal sur la surface du support. The above objects are achieved in whole or at least in part with the present invention which is described in more detail below. Indeed, the applicants have now discovered that the use of metal salt of alkanesulphonic acid is particularly well suited to the preparation of supported metal catalysts. Furthermore, it has been observed that such supported metal catalysts prepared with an alkane-sulfonic acid metal salt lack all or some of the disadvantages of metal catalysts known in the art prepared via lanes. known classics. Thus, and among other advantages, the use of a metal salt of alkane-sulfonic acid makes it possible to improve the amount of metal deposited on the support, thus possibly improving the activity of the catalyst. In addition, the alkanesulfonic acid metal salt has a higher solubility in a water-based solution than another metal salt of sulfur-containing compound which allows for better dispersion of the metal on the surface of the support.
[0016] En outre, le fait que le métal soit associé avec un ion alcane-sulfonate facilite grandement la sulfuration du métal qui est nécessaire avant utilisation. Cette facilitation est évidente selon au moins deux aspects : il permet i) un revêtement amélioré du support avec du métal et ii) une sulfuration plus efficace et plus rapide du métal.  In addition, the fact that the metal is associated with an alkane-sulphonate ion greatly facilitates the sulphidation of the metal which is necessary before use. This facilitation is evident in at least two aspects: it allows i) an improved coating of the support with metal and ii) a more efficient and faster sulfidation of the metal.
[0017] Comme autre avantage de la présente invention, et du fait que le sel métallique d'acide alcane-sulfonique est un composé contenant du soufre, la quantité de composés contenant du soufre pour l'étape de pré-sulfuration est en conséquence réduite.  As another advantage of the present invention, and since the alkanesulfonic acid metal salt is a sulfur-containing compound, the amount of sulfur-containing compounds for the pre-sulfurization step is accordingly reduced. .
[0018] En tant qu'autre avantage encore, l'utilisation de sel métallique d'acide alcane-sulfonique permet la préparation de catalyseurs stables, sans danger et non pyrogènes, ce qui conduit à moins de difficultés et de risques pendant le stockage, le transport et l'utilisation.  As yet another advantage, the use of alkanesulfonic acid metal salt allows the preparation of stable catalysts, safe and non-pyrogenic, which leads to fewer difficulties and risks during storage, transportation and use.
[0019] Par conséquent, et selon un premier aspect, la présente invention se rapporte à un précurseur de catalyseur comprenant au moins un support poreux et au moins un métal adsorbé sur ledit support, ledit métal étant sous la forme d'un alcane-sulfonate métallique de formule générale (1 ) :  Therefore, and according to a first aspect, the present invention relates to a catalyst precursor comprising at least one porous support and at least one metal adsorbed on said support, said metal being in the form of an alkane-sulphonate metal of general formula (1):
(R-SO2-O-)n, Mn+ (1 ) (R-SO 2 -O-) n , M n + (1)
dans laquelle : in which :
- R représente une chaîne hydrocarbonée saturée linéaire, cyclique ou ramifiée, comprenant de 1 à 12 atomes de carbone, de préférence de 1 à 6 atomes de carbone, de préférence encore de 1 à 4 atomes de carbone, avantageusement R représente un groupe méthyle ou éthyle, de préférence encore R représente un groupe méthyle, - M représente un cation métallique, le métal étant choisi parmi les métaux de l'une quelconque des colonnes 3 à 12 du tableau périodique des éléments de NUPAC, et R represents a linear, cyclic or branched saturated hydrocarbon chain comprising from 1 to 12 carbon atoms, preferably from 1 to 6 carbon atoms, more preferably from 1 to 4 carbon atoms, advantageously R represents a methyl group or ethyl, more preferably R represents a methyl group, M represents a metal cation, the metal being selected from the metals of any one of columns 3 to 12 of the periodic table of the NUPAC elements, and
- n est un nombre entier représentant la valence du cation d'atome métallique.  n is an integer representing the valence of the metal atom cation.
[0020] Le terme « précurseur de catalyseur » dans la présente invention désigne un catalyseur qui est stable dans les conditions de stockage et de transport et qui peut être activé avant utilisation. The term "catalyst precursor" in the present invention refers to a catalyst which is stable under storage and transport conditions and which can be activated prior to use.
[0021] Le support du précurseur de catalyseur de la présente invention peut être tout support connu de l'homme du métier et de préférence tout support poreux, et de préférence encore tout support poreux réfractaire, communément utilisé dans le domaine des catalyseurs supportés et bien connu de l'homme du métier.  The support of the catalyst precursor of the present invention may be any support known to those skilled in the art and preferably any porous support, and preferably any porous refractory support, commonly used in the field of supported catalysts and well known to those skilled in the art.
[0022] Par « support réfractaire poreux », on entend tout support de catalyseur poreux bien connu de l'homme du métier capable de résister à la chaleur, et en particulier aux effets induits par les hautes températures, par des corps ayant un point de fusion élevé. Des exemples typiques de matériaux réfractaires poreux sont les céramiques poreuses réfractaires, bien connues dans le domaine de la catalyse, telles que les céramiques à base de zircone poreuse, ou encore les céramiques à base d'alumine poreuse. By "porous refractory support" is meant any porous catalyst support well known to those skilled in the art capable of withstanding heat, and in particular the effects induced by high temperatures, by bodies having a point of high fusion. Typical examples of porous refractory materials are refractory porous ceramics, well known in the field of catalysis, such as porous zirconia ceramics, or porous alumina ceramics.
[0023] Plus généralement, et à titre d'exemples non limitatifs, le support est de préférence être choisi parmi les oxydes métalliques réfractaires poreux. Des exemples d'un tel support comprennent, de manière non limitative, l'alumine, la silice, la zircone, la magnésie, l'oxyde de béryllium, l'oxyde de chrome, l'oxyde de titane, l'oxyde de thorium, les céramiques, le carbone tel que le noir de carbone, le graphite et le charbon actif, ainsi que les associations de ceux-ci. Parmi les exemples spécifiques et préférés, on peut citer les supports en silico-aluminate amorphe, en silico-aluminate cristallin (zéolithe) et en silice-oxyde de titane.  More generally, and by way of non-limiting examples, the support is preferably chosen from porous refractory metal oxides. Examples of such a support include, without limitation, alumina, silica, zirconia, magnesia, beryllium oxide, chromium oxide, titanium oxide, thorium oxide , ceramics, carbon such as carbon black, graphite and activated carbon, as well as combinations thereof. Among the specific and preferred examples, mention may be made of the supports made of amorphous silico-aluminate, crystalline silico-aluminate (zeolite) and silica-titanium oxide.
[0024] Selon un mode de réalisation préféré, le support comprend un composé silico-aluminate cristallin, et plus précisément il est constitué d'un composé silico- aluminate cristallin, lequel composé est communément connu sous le nom de « zéolithe ». Les silico-aluminates cristallins contiennent généralement des micropores, des mésopores et des macropores. [0025] Le terme « zéolithe » fait référence à un groupe particulier d'aluminosilicates cristallins. Ces zéolithes présentent un réseau de tétraèdres d'oxyde de silicium et d'aluminium dans lesquels des atomes d'aluminium et de silicium sont arrangés en un squelette tridimensionnel en partageant des atomes d'oxygène. Dans le squelette, le rapport des atomes d'oxygène au total des atomes d'aluminium et de silicium peut varier en de grandes proportions, par exemple de 1 à 200. Le squelette présente une électrovalence négative qui est généralement équilibrée par l'inclusion de cations à l'intérieur du cristal, tels que des cations de métaux, de métaux alcalins, de métaux alcalinoterreux ou encore de l'hydrogène ou des mélanges de ces cations. According to a preferred embodiment, the support comprises a crystalline silico-aluminate compound, and more specifically it consists of a crystalline silicoaluminate compound, which compound is commonly known under the name of "zeolite". The crystalline silico-aluminates generally contain micropores, mesopores and macropores. [0025] The term "zeolite" refers to a particular group of crystalline aluminosilicates. These zeolites have a network of silicon oxide and aluminum tetrahedra in which aluminum and silicon atoms are arranged in a three-dimensional skeleton by sharing oxygen atoms. In the backbone, the ratio of oxygen atoms to total atoms of aluminum and silicon can vary in large proportions, for example from 1 to 200. The backbone has a negative electrovalence which is generally balanced by the inclusion of cations within the crystal, such as cations of metals, alkali metals, alkaline earth metals or hydrogen or mixtures of these cations.
[0026] Les exemples typiques de zéolithes qui peuvent être utilisées dans le cadre de la présente invention comprennent les zéolithes choisies parmi les zéolithes MFI, FAU, MAZ, MOR, LTL, LTA, PAR, OFF, STI, MTW, EPI, TON, MEL, FER et les exemples plus précis de zéolithes adéquates comprennent les zéolithes A, les zéolithes X, les zéolithes Y, les zéolithes ZSM, les mordénites, les zéolithes ω, les zéolithes β et autres, ainsi que les mélanges de celles-ci.  Typical examples of zeolites that may be used in the context of the present invention include zeolites chosen from zeolites MFI, FAU, MAZ, MOR, LTL, LTA, PAR, OFF, STI, MTW, EPI, TON, MEL, IRON and more specific examples of suitable zeolites include zeolites A, zeolites X, zeolites Y, zeolites ZSM, mordenites, zeolites ω, zeolites β and others, as well as mixtures thereof.
[0027] Dans un autre mode de réalisation, le support comprend une zéolithe ZSM à squelette MFI. Généralement, la zéolithe ZSM a un rapport élevé du silicium à l'aluminium. Par exemple, le rapport S1O2/AI2O3 dans la zéolithe ZSM peut être supérieur ou égal à environ 5:1 , par exemple d'environ 8:1 à environ 200:1 .  In another embodiment, the support comprises a ZSM zeolite MFI skeleton. Generally, zeolite ZSM has a high ratio of silicon to aluminum. For example, the SiO 2 / Al 2 O 3 ratio in zeolite ZSM may be greater than or equal to about 5: 1, for example, about 8: 1 to about 200: 1.
[0028] Les exemples de zéolithes ZSM adéquates comprennent de manière non limitative, les zéolithes ZSM-22, ZSM-23, ZSM-5, ZSM-1 1 , ZSM-12, ZSM-23, ZSM- 35, ZSM-38 ou les associations de celles-ci. Examples of suitable ZSM zeolites include but are not limited to zeolites ZSM-22, ZSM-23, ZSM-5, ZSM-1 1, ZSM-12, ZSM-23, ZSM-35, ZSM-38 or the associations of these.
[0029] Les zéolithes naturelles, par exemple la ferriérite, les zéolithes artificielles et synthétiques telles que, de façon non exhaustive, les zéolithes SAPO, par exemple SAPO-1 1 , SAPO-31 , les zéolithes ALPO et MCM-41 , sont également des exemples de zéolithes adéquates qui peuvent être utilisées en tant que support du précurseur de catalyseur selon la présente invention.  Natural zeolites, for example ferrierite, artificial and synthetic zeolites such as, but not limited to, SAPO zeolites, for example SAPO-1 1, SAPO-31, ALPO and MCM-41 zeolites, are also examples of suitable zeolites which can be used as a catalyst precursor support according to the present invention.
[0030] De préférence, le support comprend une zéolithe et de préférence encore la zéolithe peut avoir une taille des pores d'environ 3 Ângstrôms (3 Â ou 300 pm) à environ 10 Â (1 nm), de préférence d'environ 5 Â (500 pm) à environ 8 Â (800 pm). [0031] Comme indiqué ci-dessus, le métal adsorbé sur le support peut être de tout type de métal choisi parmi les métaux des colonnes 3 à 12 du tableau périodique des éléments de NUPAC, c'est-à-dire un métal de transition. Dans un mode de réalisation préféré, le métal est choisi parmi les métaux des colonnes 5 à 1 1 , de préférence encore 5 à 10 du tableau périodique des éléments de NUPAC, de préférence même encore le métal est choisi parmi le vanadium, le niobium, le tantale, le chrome, le molybdène, le tungstène, le fer, le ruthénium, l'osmium, le cobalt, le rhodium, l'iridium, le nickel, le palladium, le platine et les mélanges de deux ou plus de deux d'entre eux en toutes proportions. [0030] Preferably, the support comprises a zeolite and more preferably the zeolite may have a pore size of about 3 Angstroms (3 Å or 300 μm) to about 10 Å (1 nm), preferably about 5 Å. (500 μm) at about 8 Å (800 μm). As indicated above, the metal adsorbed on the support may be of any type of metal selected from the metals of columns 3 to 12 of the periodic table of NUPAC elements, that is to say a transition metal. . In a preferred embodiment, the metal is selected from the metals of columns 5 to 1 1, more preferably 5 to 10 of the periodic table of the NUPAC elements, more preferably still the metal is selected from vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum and mixtures of two or more d between them in all proportions.
[0032] Les mélanges de métaux préférés comprennent, à titre d'exemples non limitatifs, le nickel-tungstène, le cobalt-molybdène, le nickel-vanadium, le nickel- molybdène, le molybdène-tungstène et le nickel-cobalt. D'ordinaire, les catalyseurs à mélange de métaux constitué de nickel et de tungstène ont d'excellentes propriétés d'isomérisation et de désaromatisation, tout en présentant une capacité accrue pour effectuer des réactions d'hydrodésoxygénation et d'autres réactions d'hydrotraitement, en particulier l'hydrocraquage de matières premières organiques, qu'elles soient d'origine fossile (des hydrocarbures issus de pétrole), animale ou végétale.  The preferred metal mixtures include, by way of non-limiting examples, nickel-tungsten, cobalt-molybdenum, nickel-vanadium, nickel-molybdenum, molybdenum-tungsten and nickel-cobalt. Typically, nickel-tungsten metal-blending catalysts have excellent isomerization and dearomatization properties, while having an increased ability to perform hydrodeoxygenation reactions and other hydrotreatment reactions. in particular the hydrocracking of organic raw materials, whether of fossil origin (petroleum hydrocarbons), animal or vegetable origin.
[0033] La quantité de métal présent dans le précurseur de catalyseur de la présente invention, exprimée sous forme du pourcentage en masse de l'oxyde métallique correspondant par rapport à la masse totale du précurseur de catalyseur, va généralement de 0,1 % à 30 %. La quantité de métal peut être mesurée selon toute méthode connue de l'homme du métier. Pour les besoins de la présente invention, la quantité de métal est mesurée par microscopie électronique à balayage (MEB) couplée avec EDS (spectrométrie à rayons X à dispersion d'énergie). Un logiciel de système EDS est utilisé pour analyser le spectre d'énergie afin de déterminer l'abondance d'éléments particuliers. L'EDS peut être utilisée pour trouver la composition chimique de matériaux jusqu'à une taille de point de quelques micromètres, et donc créer des cartes de composition élémentaire.  The amount of metal present in the catalyst precursor of the present invention, expressed as the percentage by weight of the corresponding metal oxide relative to the total mass of the catalyst precursor, is generally from 0.1% to 30 %. The amount of metal can be measured according to any method known to those skilled in the art. For the purposes of the present invention, the amount of metal is measured by scanning electron microscopy (SEM) coupled with EDS (energy dispersive X-ray spectrometry). An EDS system software is used to analyze the energy spectrum to determine the abundance of particular elements. The EDS can be used to find the chemical composition of materials up to a point size of a few micrometers, and thus create elemental composition maps.
[0034] Les précurseurs de catalyseur préférés de la présente invention sont, à titre d'exemples non limitatifs, des précurseurs de catalyseur comprenant du platine adsorbé sur SAPO-1 1/AI2O3, ou sur ZSM-22/AI2O3, ou sur ZSM-23/AI2O3, ou comprenant du nickel et du tungstène adsorbés sur AI2O3 ou sur zéolithe/A Os. Les précurseurs de catalyseur tout particulièrement préférés sont par exemple Ni-W sur AI2O3 et Ni-W sur zéolithe/AI2O3. The preferred catalyst precursors of the present invention are, by way of non-limiting examples, catalyst precursors comprising platinum adsorbed on SAPO-1 1 / Al 2 O 3 , or on ZSM-22 / Al 2 O 3. 3 , or on ZSM-23 / AI 2 O 3 , or comprising nickel and tungsten adsorbed on Al2O3 or on zeolite / A Os. The most preferred catalyst precursors are, for example, Ni-W on Al 2 O 3 and Ni-W on zeolite / Al 2 O 3.
[0035] Selon un deuxième aspect, la présente invention se rapporte à un procédé de préparation du précurseur de catalyseur tel que décrit ci-dessus, comprenant au moins les étapes suivantes :  According to a second aspect, the present invention relates to a process for preparing the catalyst precursor as described above, comprising at least the following steps:
a) la mise en contact d'au moins un support poreux avec au moins un sel métallique d'acide alcane-sulfonique dans un milieu liquide, a) contacting at least one porous support with at least one metal salt of alkanesulfonic acid in a liquid medium,
b) la fixation d'au moins une partie du sel métallique sur ledit support poreux pour produire un support poreux sur lequel au moins une partie du sel métallique est fixé et qui est le précurseur de catalyseur, b) fixing at least a portion of the metal salt on said porous support to produce a porous support on which at least a portion of the metal salt is attached and which is the catalyst precursor,
c) la séparation du précurseur de catalyseur obtenu dudit milieu liquide, et d) le séchage et la récupération du précurseur de catalyseur. c) separating the obtained catalyst precursor from said liquid medium, and d) drying and recovering the catalyst precursor.
[0036] La « fixation d'au moins une partie du sel métallique sur ledit support poreux » peut être réalisée par l'homme du métier selon toute méthode connue en soi, et par exemple par une ou plusieurs des actions suivantes : immersion, plongée, trempage, ou mélange dudit support poreux dans un milieu liquide contenant au moins un sel métallique d'acide alcane-sulfonique.  The "fixing of at least a portion of the metal salt on said porous support" can be carried out by the skilled person according to any method known per se, and for example by one or more of the following actions: immersion, diving dipping, or mixing said porous support in a liquid medium containing at least one metal salt of alkanesulfonic acid.
[0037] Plus précisément et sans être limité par la théorie, l'étape de « fixation » correspond plus ou moins à un dépôt, un revêtement, une introduction, une diffusion, dans les pores du support, d'au moins une partie du sel métallique sur ledit support poreux. More specifically and without being limited by the theory, the "fixation" step more or less corresponds to a deposit, a coating, an introduction, a diffusion, in the pores of the support, of at least a part of the metal salt on said porous support.
[0038] L'étape de « fixation » peut être réalisée à toute température comprise entre la température de laboratoire et 200°C, de préférence entre la température de laboratoire et 100°C. Le chauffage du milieu réactionnel améliore la cinétique de l'étape de « fixation ». De préférence l'étape de « fixation » est réalisée à température de laboratoire (c'est-à-dire à température ambiante).  The "fixing" step can be carried out at any temperature between the laboratory temperature and 200 ° C, preferably between the laboratory temperature and 100 ° C. The heating of the reaction medium improves the kinetics of the "fixation" step. Preferably the "fixing" step is carried out at laboratory temperature (ie at room temperature).
[0039] L'étape de fixation (b) peut être réalisée selon toute méthode communément utilisée par l'homme de l'art, par exemple et de manière non limitative, par trempage, imprégnation (en voie humide ou à sec), dépôt, adsorption à partir d'une solution, co-précipitation et dépôt chimique en phase vapeur, de préférence par imprégnation, et de préférence encore par imprégnation en voie humide, et par exemple comme divulgué par Acres et coll. dans le document « The design and préparation of supported catalysts », Catalysis, vol. 4, 1 -4, (1981 ). La méthode d'imprégnation est la méthode préférée. The fixing step (b) can be performed according to any method commonly used by those skilled in the art, for example and in a non-limiting manner, by soaking, impregnation (wet or dry), deposit adsorption from a solution, co-precipitation and chemical vapor deposition, preferably by impregnation, and more preferably by way impregnation wet, and for example as disclosed by Acres et al. in the document "The design and preparation of supported catalysts", Catalysis, vol. 4, 1-4, (1981). The impregnation method is the preferred method.
[0040] L'étape b) peut être exécutée à n'importe quelle température, généralement à une température allant de 10°C à 100°C, de préférence de 20°C à 80°C. L'étape b) est de manière tout à fait préférée exécutée sous pression atmosphérique, bien qu'elle puisse être exécutée sous pression réduite ou, en variante, sous pression.  Step b) can be performed at any temperature, generally at a temperature ranging from 10 ° C to 100 ° C, preferably from 20 ° C to 80 ° C. Step b) is most preferably performed under atmospheric pressure, although it may be carried out under reduced pressure or, alternatively, under pressure.
[0041] Avantageusement l'étape b) est exécutée sous agitation, à n'importe quelle vitesse appropriée et selon n'importe quelle méthode connue communément utilisée par l'homme de l'art, par exemple et de manière non limitative, à l'aide d'une pale, d'une turbine, d'une hélice, d'un rotor, d'un système à double vis et autre. Advantageously, step b) is carried out with agitation, at any suitable speed and according to any known method commonly used by those skilled in the art, for example and in a nonlimiting manner, at least 1 using a blade, a turbine, a propeller, a rotor, a double screw system and other.
[0042] L'étape b) est généralement exécutée pendant quelques secondes à plusieurs heures, de préférence pendant quelques minutes à quelques heures, d'ordinaire de quelques minutes à deux heures. La quantité de métal adsorbé (« fixé ») sur le support poreux est avantageusement suivie avec la mesure de la quantité de métal restant dans la formulation de sel métallique d'acide alcane- sulfonique. Les sels métalliques restants peuvent être mesurés par différentes méthodes telles que la potentiométrie ou la spectrométrie de masse à plasma à couplage inductif (ICP/MS), qui est la méthode préférée. Step b) is generally performed for a few seconds to several hours, preferably for a few minutes to a few hours, usually from a few minutes to two hours. The amount of adsorbed ("fixed") metal on the porous support is advantageously monitored by measuring the amount of metal remaining in the alkanesulfonic acid metal salt formulation. The remaining metal salts can be measured by various methods such as potentiometry or inductively coupled plasma mass spectrometry (ICP / MS), which is the preferred method.
[0043] Pendant l'étape b), un ou plusieurs additifs peuvent être ajoutés à la formulation, tels que ceux bien connus de l'homme du métier, par exemple, et sans limitation, ceux choisis parmi les acides inorganiques tels que l'acide nitrique, l'acide chlorhydrique, l'acide sulfurique, l'acide phosphorique, les acides organiques tels que l'acide acétique, l'acide oxalique, l'acide glycolique, et autres, ainsi que les mélanges de ceux-ci. L'acide phosphorique ou ses dérivés sont un acide préféré particulier.  During step b), one or more additives may be added to the formulation, such as those well known to those skilled in the art, for example, and without limitation, those selected from inorganic acids such as nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, organic acids such as acetic acid, oxalic acid, glycolic acid, and the like, as well as mixtures thereof. Phosphoric acid or its derivatives are a particular preferred acid.
[0044] Les autres additifs qui peuvent également être ajoutés pendant l'étape b) comprennent les agents réducteurs, les agents mouillant, les solvants et autres additifs bien connus de l'homme du métier.  Other additives which may also be added during step b) include reducing agents, wetting agents, solvents and other additives well known to those skilled in the art.
[0045] L'« agent réducteur » qui peut être ajouté dans la formulation vise généralement à augmenter la quantité de métal adsorbé sur le support ce qui augmente de cette manière l'activité du futur catalyseur. Il peut également viser à faciliter la transformation du sulfonate métallique en sulfure métallique correspondant pendant la réaction de calcination qui est mise en œuvre avant utilisation du catalyseur. The "reducing agent" that can be added in the formulation generally aims to increase the amount of metal adsorbed on the support thereby increasing the activity of the future catalyst. It may also aim to facilitate the conversion of the metal sulfonate to the corresponding metal sulfide during the calcination reaction which is carried out before use of the catalyst.
[0046] Habituellement, l'agent réducteur est un composé contenant du soufre généralement choisi parmi, et sans limitation, les mercaptans, les sulfoxydes et les thioacides. De préférence, l'agent réducteur est un acide thiocarboxylique, par exemple l'acide thioglycolique ou l'acide thioacétique.  Usually, the reducing agent is a sulfur-containing compound generally selected from, and without limitation, mercaptans, sulfoxides and thioacids. Preferably, the reducing agent is a thiocarboxylic acid, for example thioglycolic acid or thioacetic acid.
[0047] Selon l'invention, la quantité molaire d'agent réducteur va de 0,3 fois à 3,5 fois plus que la quantité molaire du métal présent sur le support. La quantité de métal présent sur le support peut être mesurée par MEB comme décrit ci-dessus.  According to the invention, the molar amount of reducing agent is from 0.3 times to 3.5 times more than the molar amount of the metal present on the support. The amount of metal present on the support can be measured by SEM as described above.
[0048] L'étape b) peut être effectuée plus d'une fois, c'est-à-dire plusieurs fois avec la même solution ou une solution différente de métal et avec la même méthode ou une méthode différente. Step b) can be performed more than once, that is to say several times with the same solution or a different solution of metal and with the same method or a different method.
[0049] Le milieu liquide peut être n'importe quel milieu liquide adéquat connu de l'homme de l'art et qui est adapté à l'adsorption de métal sur des supports poreux. Le milieu liquide peut ainsi être de l'eau ou n'importe quel liquide organique ou un mélange d'un ou plusieurs composés organiques, éventuellement avec de l'eau. Un tel milieu liquide peut ainsi être de l'eau ou un milieu organique ou un milieu hydroorganique.  The liquid medium may be any suitable liquid medium known to those skilled in the art and which is suitable for the adsorption of metal on porous media. The liquid medium may thus be water or any organic liquid or a mixture of one or more organic compounds, possibly with water. Such a liquid medium may thus be water or an organic medium or a hydro-organic medium.
[0050] Dans un mode de réalisation préféré de la présente invention, le milieu liquide est un solvant pour le sel métallique de l'acide alcane-sulfonique. Dans un autre mode de réalisation préféré de la présente invention, le milieu liquide est l'acide alcane-sulfonique en tant que tel ou le milieu solvant de dilution pour ledit acide alcane-sulfonique. À titre d'exemple, le milieu liquide peut être de l'eau et, dans ce cas, l'eau est le milieu de dilution pour l'acide alcane-sulfonique et est le solvant pour le sel métallique de l'acide alcane-sulfonique concerné.  In a preferred embodiment of the present invention, the liquid medium is a solvent for the metal salt of the alkanesulfonic acid. In another preferred embodiment of the present invention, the liquid medium is the alkanesulfonic acid as such or the dilution solvent medium for said alkanesulfonic acid. By way of example, the liquid medium may be water, and in this case the water is the dilution medium for the alkanesulfonic acid and is the solvent for the metal salt of the alkane-acid. sulphonic acid concerned.
[0051] En règle générale le sel métallique d'acide alcane-sulfonique solubilisé est présent en une concentration allant de 5 g.L~1 à 2000 g.L~1, de préférence de 5 g.L~1 à 1500 g. L"1, de préférence encore de 50 g. L"1 à 1500 g. L~1, les limites étant incluses. Une concentration inférieure à 5 g.L"1 est possible, mais cependant la quantité de métal adsorbé peut ne pas être suffisante. De façon similaire une concentration supérieure à 2000 g.L-1 est possible, à condition cependant que le sel reste soluble, afin d'éviter des particules non solubles de sel métallique d'acide alcane-sulfonique, qui pourraient représenter un problème lors de la récupération du précurseur de catalyseur. As a general rule, the solubilized alkanesulfonic acid metal salt is present in a concentration ranging from 5 gL -1 to 2000 gL -1 , preferably from 5 gL -1 to 1500 g. L "1 , more preferably from 50 g L -1 to 1500 g. L ~ 1 , the limits being included. A concentration of less than 5 gL "1 is possible, but the amount of adsorbed metal may not be sufficient, similarly a concentration greater than 2000 gL -1 is possible, provided that the salt remains soluble, in order to avoid non-soluble particles of metal salt of alkanesulfonic acid, which could be a problem during the recovery of the catalyst precursor.
[0052] Comme divulgué ci-dessus, l'alcane-sulfonate métallique répond à la formule générale (1 ) :  As disclosed above, the metal alkanesulfonate has the general formula (1):
(R-SO2-O-)n, Mn+ (1 ) (R-SO 2 -O-) n , M n + (1)
dans laquelle : in which :
- R représente une chaîne hydrocarbonée saturée, linéaire, cyclique ou ramifiée comprenant de 1 à 12 atomes de carbone, de préférence de 1 à 6 atomes de carbone, de préférence encore de 1 à 4 atomes de carbone, avantageusement R représente un groupe méthyle ou éthyle, de préférence encore R représente un groupe méthyle,  R represents a saturated, linear, cyclic or branched hydrocarbon-based chain containing from 1 to 12 carbon atoms, preferably from 1 to 6 carbon atoms, more preferably from 1 to 4 carbon atoms, advantageously R represents a methyl group or ethyl, more preferably R represents a methyl group,
- M représente un cation métallique, le métal étant choisi parmi les métaux de l'une quelconque des colonnes 3 à 12 du tableau périodique des éléments de l'IUPAC, et M represents a metal cation, the metal being selected from the metals of any one of columns 3 to 12 of the periodic table of the IUPAC elements, and
- n est un nombre entier représentant la valence du cation métallique. n is an integer representing the valence of the metal cation.
[0053] L'alcane-sulfonate métallique de formule générale (1 ) est connu en tant que tel et disponible dans le commerce ou peut être préparé par des techniques connues de l'homme de l'art ou bien préparé par adaptation de techniques connues de l'homme de l'art. Une telle méthode connue est par exemple décrite par Gernon et coll. dans le document « Environmental benefits of méthane sulphonic acid : comparative properties and advantages », Green publication, 1 (3), 127-140, (1999), où elle consiste simplement à faire réagir de l'acide alcane-sulfonique avec au moins un métal.  The alkane metal sulphonate of general formula (1) is known as such and is commercially available or may be prepared by techniques known to those skilled in the art or prepared by adaptation of known techniques. of the man of the art. Such a known method is for example described by Gernon et al. in the document Environmental Benefits of Methane Sulfonic Acid: Comparative Properties and Advantages, Green Publication, 1 (3), 127-140, (1999), where it merely involves reacting alkanesulfonic acid with at least a metal.
[0054] Selon un autre exemple, un alcane-sulfonate métallique de formule générale (1 ) peut être préparé par mise en contact d'un ou plusieurs métaux correspondants des colonnes de 3 à 12 du tableau périodique des éléments de l'IUPAC et/ou d'un ou plusieurs composés contenant un tel métal ou de tels métaux avec un ou plusieurs acides alcane-sulfoniques.  According to another example, a metal alkane-sulphonate of general formula (1) may be prepared by contacting one or more corresponding metals of columns 3 to 12 of the periodic table of IUPAC elements and / or or one or more compounds containing such metal or such metals with one or more alkanesulfonic acids.
[0055] Cette mise en contact peut être réalisée à toute température, de préférence et le plus commodément à température ambiante, ou à température modérée, par exemple à une température pouvant aller de la température ambiante à 60°C - 80°C, à pression atmosphérique. Cette mise en contact aboutit à l'attaque du ou des métaux et/ou du ou des composés contenant le ou les métaux par le ou les acides, ce qui forme ainsi un ou plusieurs sels métalliques de formule (1 ) ci-dessus. This contacting can be carried out at any temperature, preferably and most conveniently at room temperature, or at a moderate temperature, for example at a temperature ranging from room temperature to 60.degree. C. to 80.degree. atmospheric pressure. This contact leads to the attack of the metals and / or compound (s) containing the metal (s) with the acid (s), thereby forming one or more metal salts of formula (1) above.
[0056] Une agitation appropriée peut également être nécessaire ou recommandée afin d'accélérer la formation du sel de formule (1 ) recherché, « appropriée » signifiant toute méthode d'agitation connue de l'homme du métier pouvant accélérer la formation du sel recherché. Appropriate stirring may also be necessary or recommended in order to accelerate the formation of the desired salt of formula (1), "appropriate" meaning any agitation method known to those skilled in the art that can accelerate the formation of the desired salt .
[0057] Dans la présente invention, l'acide alcane-sulfonique est de préférence choisi parmi les acides alcane-sulfoniques de formule RSO3H, dans laquelle R est tel que décrit ci-dessus. Les acides alcane-sulfoniques typiques destinés à être utilisés dans la préparation du sel de formule (1 ) comprennent, mais sans caractère limitatif, l'acide méthane-sulfonique, l'acide éthane-sulfonique, l'acide n-propane- sulfonique, l'acide /'so-propane-sulfonique, l'acide n-butane-sulfonique, l'acide /'so-butane-sulfonique, l'acide sec-butane-sulfonique, l'acide terf-butane-sulfonique et les mélanges de deux ou plusieurs d'entre eux, en toutes proportions. In the present invention, the alkanesulfonic acid is preferably selected from alkanesulphonic acids of formula RSO3H, wherein R is as described above. Typical alkanesulfonic acids for use in the preparation of the salt of formula (1) include, but are not limited to, methanesulfonic acid, ethanesulfonic acid, n-propanesulfonic acid, acid / 'n-propane-sulfonic acid, n-butane-sulfonic acid, /' n-butane-sulfonic acid, sec-butane-sulphonic acid, tert-butane-sulphonic acid, and mixtures of two or more of them, in all proportions.
[0058] Selon un mode de réalisation préféré, l'acide alcane-sulfonique est l'acide méthane-sulfonique et/ou l'acide éthane-sulfonique, de préférence encore l'acide alcane-sulfonique est l'acide méthane-sulfonique. According to a preferred embodiment, the alkanesulfonic acid is methanesulfonic acid and / or ethanesulfonic acid, more preferably the alkanesulphonic acid is methanesulfonic acid.
[0059] La présente invention fait ainsi de préférence usage d'au moins un acide alcane-sulfonique qui est choisi parmi les acides alcane-sulfoniques à chaîne hydrocarbonée linéaire ou ramifiée ayant de 1 à 4 atomes de carbone, et de préférence l'acide alcane-sulfonique est l'acide méthane-sulfonique (AMS).  The present invention thus preferably uses at least one alkane-sulphonic acid which is chosen from alkane-sulphonic acids with a linear or branched hydrocarbon chain having 1 to 4 carbon atoms, and preferably the acid alkanesulfonic acid is methanesulfonic acid (AMS).
[0060] N'importe quelle formulation comprenant au moins un acide alcane- sulfonique peut être utilisée dans le cadre de la présente invention. De plus, le ou les acides alcane-sulfoniques peuvent être utilisés en tant que tels ou dilués par divers constituants comme montré ci-dessous. Généralement une telle formulation comprend de 0,01 % en poids à 100% en poids d'acide alcane-sulfonique, plus généralement de 0,01 % en poids à 90% en poids, en particulier de 0,01 % en poids à 75% en poids d'acide alcane-sulfonique, par rapport au poids total de ladite formulation, étant entendu qu'une formulation comprenant 100% en poids d'acide alcane-sulfonique est de l'acide alcane-sulfonique pur, c'est-à-dire non dilué. Any formulation comprising at least one alkanesulfonic acid may be used in the context of the present invention. In addition, the alkane-sulfonic acid (s) can be used as such or diluted with various components as shown below. Generally, such a formulation comprises from 0.01% by weight to 100% by weight of alkanesulfonic acid, more generally from 0.01% by weight to 90% by weight, in particular from 0.01% by weight to 75% by weight. % by weight of alkanesulfonic acid, relative to the total weight of said formulation, it being understood that a formulation comprising 100% by weight of alkanesulphonic acid is pure alkanesulphonic acid, that is, to say undiluted.
[0061] La concentration du ou des acides alcane-sulfoniques peut varier et dépend de divers paramètres, parmi lesquels la solubilité du sel métallique de formule (1 ). L'homme du métier sera capable d'adapter facilement la concentration en acide alcane-sulfonique sans efforts excessifs. The concentration of the alkane-sulfonic acid or acids may vary and depends on various parameters, among which the solubility of the metal salt of formula (1). Those skilled in the art will be able to easily adjust the concentration of alkane-sulfonic acid without excessive efforts.
[0062] De préférence, la concentration du ou des acides alcane-sulfoniques utilisés pour la formation de sels métalliques est plutôt importante et par exemple va de 60% en poids à 100% en poids, de préférence d'environ 70% en poids à 100% en poids du ou des acides alcane-sulfoniques par rapport au poids total de ladite formulation, pour la préparation de sels métalliques, quand le ou les métaux ne sont pas facilement attaqués par le ou les acides. En variante, des formulations moins concentrées, par exemple de 0,01 % en poids à 60% en poids, de préférence de 0,01 % en poids à 50% en poids, peuvent être utilisées pour la préparation de sels métalliques à partir de métaux qui sont facilement attaqués par des acides, par exemple lorsqu'ils sont sous des formes de poudre et similaires.  Preferably, the concentration of the alkane-sulphonic acid or acids used for the formation of metal salts is rather high and for example ranges from 60% by weight to 100% by weight, preferably from approximately 70% by weight to 100% by weight of the alkane-sulfonic acid or acids relative to the total weight of said formulation, for the preparation of metal salts, when the metal or metals are not easily attacked by the acid or acids. Alternatively, less concentrated formulations, for example from 0.01% by weight to 60% by weight, preferably from 0.01% by weight to 50% by weight, may be used for the preparation of metal salts from metals which are easily attacked by acids, for example when in powder form and the like.
[0063] La formulation décrite ci-dessus est par exemple de l'acide alcane- sulfonique pur ou une formulation aqueuse ou organique ou hydro-organique, à une concentration plus ou moins élevée, éventuellement qui est diluée avant utilisation. En variante, la formulation peut être prête à l'emploi, c'est-à-dire sans la nécessité d'une quelconque dilution. The formulation described above is, for example, pure alkanesulfonic acid or an aqueous or organic or hydro-organic formulation, at a higher or lower concentration, which may be diluted before use. Alternatively, the formulation may be ready for use, i.e. without the need for any dilution.
[0064] Parmi les acides alcane-sulfoniques connus et les formulations comprenant de tels acides, on peut mentionner l'acide méthane-sulfonique en solution aqueuse, sous l'appellation commerciale E-PURE MSA®, commercialisée par Arkema, ou bien sous l'appellation commerciale Lutropur®, commercialisée par BASF, soit prête à l'emploi soit diluée dans de l'eau dans les proportions décrites ci-dessus. [0064] Among the alkanesulfonic acids known and formulations comprising such acids, there may be mentioned methane sulfonic acid in aqueous solution, under the tradename E-PURE MSA ®, marketed by Arkema, or under trade name Lutropur ® , marketed by BASF, either ready for use or diluted in water in the proportions described above.
[0065] Comme décrit ci-dessus, n'importe quel sel métallique de formule (1 ) peut être utilisé afin de préparer le précurseur de catalyseur. Un tel procédé de préparation comprend au moins une étape consistant à adsorber (« fixer ») au moins un métal sur au moins un support poreux, par la mise en contact d'au moins un alcane-sulfonate de formule (1 ) avec l'au moins un support poreux. As described above, any metal salt of formula (1) may be used to prepare the catalyst precursor. Such a preparation process comprises at least one step consisting in adsorbing ("fixing") at least one metal on at least one porous support, by contacting at least one alkane-sulphonate of formula (1) with the at least one porous support.
[0066] Le contact entre le support et ledit sel métallique d'acide alcane-sulfonique conduit à la « fixation » du sel métallique sur le support, c'est-à-dire l'adsorption du métal sur la surface du support, ledit support poreux comprenant alors du métal et des groupes alcane-sulfonate, lesdits groupes servant d'espèces soufrées latentes qui peuvent être ultérieurement libérées. [0067] La séparation du support du milieu liquide à l'étape c) est effectuée selon une ou plusieurs méthodes connues de l'homme du métier, parmi lesquelles on peut citer, à titre d'exemples non limitatifs, la séparation solide-liquide, l'extraction solide- liquide, la filtration et autre. The contact between the support and said metal salt of alkanesulphonic acid leads to the "fixation" of the metal salt on the support, that is to say the adsorption of the metal on the surface of the support, said porous support then comprising metal and alkane-sulfonate groups, said groups serving as latent sulfur species which can be subsequently released. The separation of the support from the liquid medium in step c) is carried out according to one or more methods known to those skilled in the art, among which, by way of non-limiting examples, solid-liquid separation may be mentioned. , solid-liquid extraction, filtration and other.
[0068] Les exemples non limitatifs de telles méthodes comprennent l'évaporation par chauffage, la distillation, la mise sous vide, l'évaporation sous un courant de gaz tel que l'hydrogène, l'oxygène, l'azote, un gaz inerte, tel que le néon ou l'argon, et autre. De préférence, l'élimination du milieu liquide est effectuée par chauffage sous un courant d'azote.  The nonlimiting examples of such methods include evaporation by heating, distillation, evacuation, evaporation under a stream of gas such as hydrogen, oxygen, nitrogen, an inert gas. , such as neon or argon, and other. Preferably, removal of the liquid medium is effected by heating under a stream of nitrogen.
[0069] Après l'élimination du milieu liquide dans l'étape c), le précurseur de catalyseur peut être séché et récupéré selon des techniques connues. Le séchage est généralement réalisé pendant 2 heures à 20 heures à une température allant de 30°C à 300°C, de préférence de 60°C à 200°C, de préférence encore de 80°C à 120°C, et généralement à des pressions allant de 0,1 bar absolu (10 kPa) à 300 bar absolu (30 MPa), avantageusement de 1 bar absolu (100 kPa) à 100 bar absolu (10 MPa) et de préférence encore entre 1 bar absolu (100 kPa) et 5 bar absolu (500 kPa). De préférence, le séchage est effectué à une température de 100°C pendant 5 heures à 10 heures à une pression de 1 bar absolu (100 kPa).  After removal of the liquid medium in step c), the catalyst precursor can be dried and recovered according to known techniques. The drying is generally carried out for 2 hours to 20 hours at a temperature ranging from 30 ° C to 300 ° C, preferably from 60 ° C to 200 ° C, more preferably from 80 ° C to 120 ° C, and generally at pressures ranging from 0.1 bar absolute (10 kPa) to 300 bar absolute (30 MPa), advantageously from 1 bar absolute (100 kPa) to 100 bar absolute (10 MPa) and more preferably between 1 bar absolute (100 kPa) ) and 5 absolute bar (500 kPa). Preferably, the drying is carried out at a temperature of 100 ° C for 5 hours to 10 hours at a pressure of 1 bar absolute (100 kPa).
[0070] Le précurseur de catalyseur préparé selon le procédé de la présente invention comprend généralement une quantité de métal, exprimée sous forme de pourcentage en masse de l'oxyde métallique correspondant par rapport à la masse totale du précurseur de catalyseur, comprise entre 0,1 % en poids et 30% en poids, de préférence de 1 % en poids à 30% en poids, de préférence encore de 5% en poids à 20% en poids. The catalyst precursor prepared according to the process of the present invention generally comprises a quantity of metal, expressed as a percentage by weight of the corresponding metal oxide with respect to the total mass of the catalyst precursor, of between 0, 1% by weight and 30% by weight, preferably from 1% by weight to 30% by weight, more preferably from 5% by weight to 20% by weight.
[0071] Le précurseur de catalyseur de la présente invention obtenu à l'étape d) comprend ainsi un ou plusieurs métaux conjointement avec des groupes alcane- sulfonate qui représentent une source latente de soufre utile pour des réactions catalytiques ultérieures. Le précurseur de catalyseur de la présente invention est stable, prêt au stockage, au transport et à la manutention.  The catalyst precursor of the present invention obtained in step d) thus comprises one or more metals together with alkane-sulphonate groups which represent a latent source of sulfur useful for subsequent catalytic reactions. The catalyst precursor of the present invention is stable, ready for storage, transportation and handling.
[0072] Selon un troisième aspect, la présente invention se rapporte également à l'utilisation du précurseur de catalyseur de la présente invention dans l'industrie chimique, en particulier dans l'industrie pétrochimique, et plus précisément dans l'industrie du raffinage. According to a third aspect, the present invention also relates to the use of the catalyst precursor of the present invention in industry. particularly in the petrochemical industry, and more specifically in the refining industry.
[0073] Lorsqu'il est utilisé dans l'industrie chimique, le précurseur de catalyseur de la présente invention doit avantageusement être activé, selon toute méthode connue dans l'art. Le précurseur de catalyseur selon l'invention est par conséquent un précurseur de catalyseur très commode, qui est stable et sans danger à manipuler, stocker et transporter et qui est activé avant utilisation comme n'importe quel autre catalyseur connu dans le domaine.  When used in the chemical industry, the catalyst precursor of the present invention should be advantageously activated, according to any method known in the art. The catalyst precursor according to the invention is therefore a very convenient catalyst precursor, which is stable and safe to handle, store and transport and which is activated prior to use as any other catalyst known in the art.
[0074] En outre, pendant l'activation du précurseur de catalyseur de la présente invention, les groupes sulfonate se décomposent et forment des sulfures métalliques qui représentent la forme active du catalyseur dans un certain nombre de réactions qui sont effectuées en particulier dans l'industrie pétrochimique, et plus précisément dans l'industrie du raffinage.  In addition, during the activation of the catalyst precursor of the present invention, the sulfonate groups decompose and form metal sulfides which represent the active form of the catalyst in a number of reactions which are carried out particularly in the petrochemical industry, and more specifically in the refining industry.
[0075] Le précurseur de catalyseur de la présente invention présente par conséquent l'avantage d'éviter une quelconque étape de sulfuration pendant ou après l'activation, immédiatement avant utilisation.  The catalyst precursor of the present invention therefore has the advantage of avoiding any sulfidation step during or after activation immediately prior to use.
[0076] L'activation du précurseur de catalyseur de la présente invention peut être exécutée selon toute technique connue, par exemple par chauffage à température élevée, une opération également appelée calcination. La calcination est généralement exécutée à des températures allant de 200°C à 600°C, de préférence de 300°C à 500°C, pendant 1 heure à 6 heures, de préférence pendant 2 heures à 4 heures.  The activation of the catalyst precursor of the present invention can be carried out according to any known technique, for example by heating at elevated temperature, an operation also known as calcination. The calcination is generally carried out at temperatures ranging from 200 ° C to 600 ° C, preferably from 300 ° C to 500 ° C, for 1 hour to 6 hours, preferably for 2 hours to 4 hours.
[0077] Selon un mode de réalisation préféré, la température peut être progressivement augmentée, par exemple à une vitesse de 20 à 50°C/heure sur la plage de température décrite ci-dessus. L'homme du métier saura connaître la température et la durée appropriées, et même d'autres température et durée hors des plages ci-dessus, pour une calcination efficace du précurseur de catalyseur de la présente invention.  According to a preferred embodiment, the temperature can be gradually increased, for example at a rate of 20 to 50 ° C / hour over the temperature range described above. Those skilled in the art will know the appropriate temperature and time, and even other temperatures and times out of the ranges above, for efficient calcination of the catalyst precursor of the present invention.
[0078] La calcination peut être exécutée sous atmosphère inerte, par exemple sous azote, ou dans un gaz contenant de l'oxygène, tel que l'air, ou de l'oxygène pur, éventuellement en présence de vapeur d'eau. De préférence l'étape de calcination est exécutée dans une atmosphère contenant de l'oxygène. [0079] La présente invention concerne également un procédé pour la préparation d'un catalyseur activé comprenant une étape de calcination, à une température de calcination bien connue de l'homme de l'art, du précurseur de catalyseur tel que défini ci-dessus, ce qui conduit de cette manière à un catalyseur métallique sulfuré activé. Selon un mode de réalisation préféré, la présente invention concerne un procédé pour la préparation d'un catalyseur activé dans lequel le précurseur de catalyseur tel que défini ci-dessus est soumis à calcination à une température comprise entre 200°C et 1200°C, de préférence entre 400°C et 1200°C, de préférence encore entre 600°C et 1200°C. The calcination can be carried out under an inert atmosphere, for example under nitrogen, or in an oxygen-containing gas, such as air, or pure oxygen, optionally in the presence of water vapor. Preferably the calcination step is performed in an oxygen-containing atmosphere. The present invention also relates to a process for the preparation of an activated catalyst comprising a calcination step, at a calcination temperature well known to those skilled in the art, of the catalyst precursor as defined above. which leads in this way to an activated sulfide metal catalyst. According to a preferred embodiment, the present invention relates to a process for the preparation of an activated catalyst in which the catalyst precursor as defined above is subjected to calcination at a temperature of between 200 ° C. and 1200 ° C. preferably between 400 ° C and 1200 ° C, more preferably between 600 ° C and 1200 ° C.
[0080] Dans certains cas, et lorsqu'approprié, il peut être avantageux d'ajouter encore du soufre ou une source de soufre pendant la calcination et/ou pendant l'utilisation du catalyseur, de manière à augmenter encore la teneur en soufre du catalyseur activé. Cet ajout supplémentaire peut être réalisé de n'importe quelle manière connue de l'homme de l'art, telle que par exemple, l'ajout direct, continu ou discontinu de soufre et/ou d'une source de soufre telle qu'un disulfure de dialkyle (par exemple le disulfure de diméthyle), un thioacide ou un mercapto-acide et autre. Les mercapto-acides préférés comprennent par exemple et sans limitation l'acide thioglycolique et l'acide mercaptopropionique.  In some cases, and where appropriate, it may be advantageous to add further sulfur or a source of sulfur during the calcination and / or during the use of the catalyst, so as to further increase the sulfur content of the catalyst. activated catalyst. This additional addition can be carried out in any manner known to those skilled in the art, such as, for example, the direct, continuous or discontinuous addition of sulfur and / or a source of sulfur such as dialkyl disulfide (e.g. dimethyl disulfide), thioacid or mercapto-acid and the like. Preferred mercapto acids include, for example and without limitation, thioglycolic acid and mercaptopropionic acid.
[0081] Pendant la calcination et/ou pendant l'utilisation du catalyseur, il est également possible d'ajouter au moins un agent réducteur tel que défini ci-dessus, éventuellement conjointement avec un gaz réducteur, de préférence l'hydrogène, sous haute température.  During the calcination and / or during the use of the catalyst, it is also possible to add at least one reducing agent as defined above, optionally together with a reducing gas, preferably hydrogen, under high pressure. temperature.
[0082] La présente invention se rapporte à l'utilisation dudit catalyseur activé, pour la production de produits de chimie fine et plus particulièrement pour l'hydrotraitement de fractions d'hydrocarbures. Dans le contexte de la présente invention et comme précédemment dit, l'« hydrotraitement » désigne la réduction de composés par traitement avec de l'hydrogène et comprend entre autres réactions : l'hydrogénation, l'hydrodésulfuration, l'hydrodésazotation, l'hydrodésaromatisation et l'hydrogénolyse.  The present invention relates to the use of said activated catalyst, for the production of fine chemicals and more particularly for the hydrotreatment of hydrocarbon fractions. In the context of the present invention and as previously stated, "hydrotreatment" refers to the reduction of compounds by treatment with hydrogen and comprises, among other reactions: hydrogenation, hydrodesulfurization, hydrodenitrogenation, hydrodearomatization and hydrogenolysis.
[0083] Selon un mode de réalisation préféré, le catalyseur obtenu par ledit procédé est ainsi un catalyseur pré-sulfuré.  According to a preferred embodiment, the catalyst obtained by said process is thus a pre-sulfurized catalyst.

Claims

REVENDICATIONS
1. Précurseur de catalyseur comprenant au moins un support poreux et au moins un métal adsorbé sur ledit support, ledit métal étant sous la forme d'un alcane-sulfonate métallique de formule générale (1 ) : A catalyst precursor comprising at least one porous support and at least one metal adsorbed on said support, said metal being in the form of a metal alkane sulphonate of general formula (1):
(R-SO2-O-)n, Mn+ (1 ) (R-SO 2 -O-) n , M n + (1)
dans laquelle : in which :
- R représente une chaîne hydrocarbonée saturée linéaire, cyclique ou ramifiée, comprenant de 1 à 12 atomes de carbone, de préférence de 1 à 6 atomes de carbone, de préférence encore de 1 à 4 atomes de carbone, avantageusement R représente un groupe méthyle ou éthyle, de préférence encore R représente un groupe méthyle,  R represents a linear, cyclic or branched saturated hydrocarbon chain comprising from 1 to 12 carbon atoms, preferably from 1 to 6 carbon atoms, more preferably from 1 to 4 carbon atoms, advantageously R represents a methyl group or ethyl, more preferably R represents a methyl group,
- M représente un cation métallique, le métal étant choisi parmi les métaux de l'une quelconque des colonnes 3 à 12 du tableau périodique des éléments de l'IUPAC, et  M represents a metal cation, the metal being selected from the metals of any one of columns 3 to 12 of the periodic table of the IUPAC elements, and
- n est un nombre entier représentant la valence du cation d'atome métallique.  n is an integer representing the valence of the metal atom cation.
2. Précurseur de catalyseur selon la revendication 1 , dans lequel ledit au moins un support poreux est un support poreux réfractaire choisi parmi l'alumine, la silice, la zircone, la magnésie, l'oxyde de béryllium, l'oxyde de chrome, l'oxyde de titane, l'oxyde de thorium, les céramiques, le noir de carbone, le graphite et le charbon actif, ainsi que les associations de ceux-ci. The catalyst precursor according to claim 1, wherein said at least one porous support is a porous refractory support selected from alumina, silica, zirconia, magnesia, beryllium oxide, chromium oxide, titanium oxide, thorium oxide, ceramics, carbon black, graphite and activated carbon, as well as combinations thereof.
3. Précurseur de catalyseur selon l'une quelconque des revendications 1 ou 2, dans lequel ledit au moins un support poreux est un support poreux réfractaire choisi parmi les supports en silicoaluminate amorphe, en silicoaluminate cristallin (zéolithe) et en silice-oxyde de titane. 3. Catalyst precursor according to any one of claims 1 or 2, wherein said at least one porous support is a refractory porous support selected from amorphous silicoaluminate supports, crystalline silicoaluminate (zeolite) and silica-titanium oxide .
4. Précurseur de catalyseur selon l'une quelconque des revendications précédentes, dans lequel l'au moins un métal adsorbé sur ledit support est tout métal choisi parmi les métaux des colonnes 3 à 12 du tableau périodique des éléments de NUPAC, de préférence parmi les métaux des colonnes 5 à 1 1 , de préférence encore parmi les métaux des colonnes 5 à 10. Catalyst precursor according to any one of the preceding claims, wherein the at least one metal adsorbed on said support is all metal chosen from the metals of columns 3 to 12 of the periodic table of the NUPAC elements, preferably from the metals of columns 5 to 11, more preferably from the metals of columns 5 to 10.
5. Précurseur de catalyseur selon l'une quelconque des revendications précédentes, dans lequel ledit au moins un métal adsorbé sur ledit support est tout métal choisi parmi le vanadium, le niobium, le tantale, le chrome, le molybdène, le tungstène, le fer, le ruthénium, l'osmium, le cobalt, le rhodium, l'iridium, le nickel, le palladium, le platine et les mélanges de deux ou plus de deux d'entre eux en toutes proportions. A catalyst precursor according to any one of the preceding claims, wherein said at least one metal adsorbed on said support is any metal selected from vanadium, niobium, tantalum, chromium, molybdenum, tungsten, iron , ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum and mixtures of two or more of them in all proportions.
6. Précurseur de catalyseur selon l'une quelconque des revendications précédentes, dans lequel ledit au moins un métal adsorbé sur ledit support est un mélange choisi parmi nickel-tungstène, cobalt-molybdène, nickel-vanadium, nickel- molybdène, molybdène-tungstène et nickel-cobalt. The catalyst precursor according to any one of the preceding claims, wherein said at least one metal adsorbed on said support is a mixture selected from nickel-tungsten, cobalt-molybdenum, nickel-vanadium, nickel-molybdenum, molybdenum-tungsten and nickel-cobalt.
7. Précurseur de catalyseur selon l'une quelconque des revendications précédentes, la quantité de métal présent dans le précurseur de catalyseur de la présente invention, exprimée sous forme du pourcentage en masse de l'oxyde métallique correspondant par rapport à la masse totale du précurseur de catalyseur, allant généralement de 0,1 % à 30%. The catalyst precursor according to any one of the preceding claims, the amount of metal present in the catalyst precursor of the present invention, expressed as the mass percentage of the corresponding metal oxide relative to the total mass of the precursor. catalyst, generally ranging from 0.1% to 30%.
8. Procédé pour la préparation du précurseur de catalyseur selon l'une quelconque des revendications précédentes, comprenant au moins les étapes suivantes : Process for the preparation of the catalyst precursor according to any one of the preceding claims, comprising at least the following steps:
a) mise en contact d'au moins un support poreux avec au moins un sel métallique d'acide alcane-sulfonique dans un milieu liquide, a) contacting at least one porous support with at least one metal salt of alkanesulfonic acid in a liquid medium,
b) fixation d'au moins une partie du sel métallique sur ledit support poreux pour produire un support poreux sur lequel au moins une partie du sel métallique est fixée et qui est le précurseur de catalyseur, b) attaching at least a portion of the metal salt to said porous support to produce a porous support on which at least a portion of the metal salt is attached and which is the catalyst precursor,
c) séparation du précurseur de catalyseur obtenu dudit milieu liquide, et d) séchage et la récupération du précurseur de catalyseur. c) separating the catalyst precursor obtained from said liquid medium, and d) drying and recovering the catalyst precursor.
9. Utilisation du précurseur de catalyseur selon l'une quelconque des revendications 1 à 7, dans l'industrie chimique, en particulier dans l'industrie pétrochimique, et plus précisément dans l'industrie du raffinage. 9. Use of the catalyst precursor according to any one of claims 1 to 7, in the chemical industry, in particular in the petrochemical industry, and more specifically in the refining industry.
10. Procédé pour la préparation d'un catalyseur activé dans lequel le précurseur de catalyseur selon l'une quelconque des revendications 1 à 7 est soumis à calcination à une température comprise entre 200°C et 1200°C, de préférence entre 400°C et 1200°C, de préférence encore entre 600°C et 1200°C. Process for the preparation of an activated catalyst in which the catalyst precursor according to any one of claims 1 to 7 is calcined at a temperature of between 200 ° C and 1200 ° C, preferably between 400 ° C. and 1200 ° C, more preferably between 600 ° C and 1200 ° C.
11. Procédé selon la revendication 10, comprenant en outre l'ajout de soufre ou d'une source de soufre pendant la calcination. The method of claim 10, further comprising adding sulfur or a source of sulfur during calcination.
EP17812005.1A 2016-11-24 2017-11-20 Catalyst precursor metal alkane-sulfonates, method for the production thereof and use of same Withdrawn EP3544729A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1661426A FR3058909B1 (en) 2016-11-24 2016-11-24 SULFONIC ACID SALTS FOR THE PREPARATION OF METAL CATALYST
PCT/FR2017/053171 WO2018096247A1 (en) 2016-11-24 2017-11-20 Catalyst precursor metal alkane-sulfonates, method for the production thereof and use of same

Publications (1)

Publication Number Publication Date
EP3544729A1 true EP3544729A1 (en) 2019-10-02

Family

ID=58779079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17812005.1A Withdrawn EP3544729A1 (en) 2016-11-24 2017-11-20 Catalyst precursor metal alkane-sulfonates, method for the production thereof and use of same

Country Status (5)

Country Link
US (1) US20190366310A1 (en)
EP (1) EP3544729A1 (en)
CN (1) CN109996605A (en)
FR (1) FR3058909B1 (en)
WO (1) WO2018096247A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453797B (en) 2019-02-20 2024-03-22 加睿技术有限责任公司 Catalyst structure and method for upgrading hydrocarbons in the presence of catalyst structure
USD982375S1 (en) 2019-06-06 2023-04-04 Sharkninja Operating Llc Food preparation device
WO2022038514A1 (en) * 2020-08-18 2022-02-24 Kara Technologies Inc. Method of light oil desulfurization in the presence of methane containing gas environment and catalyst structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970697A (en) * 1974-07-01 1976-07-20 National Distillers And Chemical Corporation Oxidation of ethylene to acetic acid
DE3884451T2 (en) 1987-04-22 1994-02-03 Sumitomo Metal Mining Co Catalysts for the hydrogenating treatment of hydrocarbons and their activation.
FR2706326B1 (en) * 1993-06-14 1995-09-15 Eurecat Europ Retrait Catalys New mode of catalyst presulphurization.
US7776784B2 (en) * 2003-07-14 2010-08-17 Nippon Oil Corporation Hydrodesulfurization catalyst and hydrodesulfurization process for gasoline fractions
GB0403592D0 (en) * 2004-02-18 2004-03-24 Lucite Int Uk Ltd A catalyst system
US7608558B2 (en) 2004-04-22 2009-10-27 Sonja Eijsbouts Hydrotreating catalyst containing a group V metal
US20090107880A1 (en) * 2007-10-31 2009-04-30 Chevron U.S.A. Inc. Method of upgrading heavy hydrocarbon streams to jet products
CA2759044C (en) * 2009-04-29 2017-09-26 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US8058203B2 (en) * 2009-04-29 2011-11-15 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
SG175391A1 (en) * 2009-04-29 2011-12-29 Chevron Usa Inc Hydroconversion multi-metallic catalyst and method for making thereof
US20130237734A1 (en) 2012-03-07 2013-09-12 Chevron Phillips Chemical Company Lp Aromatization Catalyst and Methods of Preparing Same
ES2621510T3 (en) 2012-11-05 2017-07-04 Basf Se A zeolitic material containing tin that has a MWW type frame structure

Also Published As

Publication number Publication date
CN109996605A (en) 2019-07-09
US20190366310A1 (en) 2019-12-05
WO2018096247A1 (en) 2018-05-31
FR3058909A1 (en) 2018-05-25
FR3058909B1 (en) 2018-11-16

Similar Documents

Publication Publication Date Title
CA2499632C (en) Catalytic method of producing mercaptans from thioethers
WO2018096247A1 (en) Catalyst precursor metal alkane-sulfonates, method for the production thereof and use of same
CA2672953C (en) Hydrotreatment catalyst method for production and use thereof
EP1838438B1 (en) Hydroprocessing catalyst, preparation method thereof and use of same
EP2313194B1 (en) Catalyst comprising at least one izm-2 zeolite and use thereof for the conversion of hydrocarbon-based feedstocks
CA2681542C (en) Process for the regeneration of hydrocarbon processing catalysts
EP2287274B1 (en) Method for preparing a Ni/Sn support catalyst for selective hydrogenation of polyunsaturated hydrocarbons
EP1542944A1 (en) Catalytic method of producing alkyl mercaptans by adding hydrogen sulphide to an olefin
FR3043341A1 (en)
FR2936962A1 (en) PROCESS FOR REGENERATING HYDROCARBON TREATMENT CATALYSTS
EP1077083A1 (en) Catalyst comprising at least one zeolite of the NES structural type and rhenium and the transalkylation of aromatic hydrocarbons using the same
FR2659570A1 (en) PROCESS FOR PRESULFURING CATALYST FOR PROCESSING HYDROCARBONS
WO2019101564A1 (en) Catalyst containing a furan compound and use thereof in a hydroprocessing and/or hydrocracking method
FR2880822A1 (en) HYDROTREATING CATALYST, PROCESS FOR PREPARING THE SAME AND USE THEREOF
FR2761905A1 (en) Desaluminated mordenite based catalyst and its application in dismutation and/or transalkylation of aromatic hydrocarbons
FR2661114A1 (en) HYDROREAFFINING CATALYST FOR HYDROCARBON CHARGES COMPRISING NIOBIUM TRISULFIDE AND METHOD OF HYDROREFINING USING SAID CATALYST.
WO2011045482A1 (en) Method for the hydroprocessing and hydroisomerisation of oils originating from renewable sources, using a modified zeolite
EP2295522B1 (en) Method for sulphidation of hydrocarbon processing catalysts.
EP2598611A1 (en) Method for the hydrodesulfurization of a gasoline fraction in the presence of a supported sulfide catalyst prepared using at least one cyclic oligosaccharide
WO2021121982A1 (en) Process for the preparation of a hydrotreating and/or hydrocracking catalyst by impregnation in a melted medium, catalyst obtained, and use thereof
EP2295521B1 (en) Method for sulphidation of hydrocarbon processing catalysts
EP1149829B1 (en) Process for the preparation of sulfurized olefins
WO2014037644A1 (en) Method for the sulfidation of a hydrodesulfurization catalyst
EP1525915B1 (en) Catalyst comprising at least one BOG type zeolite and its use in the transalkylation of alkylaromatic hydrocarbons
WO2020002138A1 (en) C5 or c6 acid ester-based catalyst and use thereof in a hydroprocessing and/or hydrocracking process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20190520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOLNAR, ZSOLT

Inventor name: MONGUILLON, BERNARD

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200114