EP3531433B1 - Inductive module and method for producing an inductive module - Google Patents
Inductive module and method for producing an inductive module Download PDFInfo
- Publication number
- EP3531433B1 EP3531433B1 EP18192874.8A EP18192874A EP3531433B1 EP 3531433 B1 EP3531433 B1 EP 3531433B1 EP 18192874 A EP18192874 A EP 18192874A EP 3531433 B1 EP3531433 B1 EP 3531433B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic core
- insulation
- insulation body
- bobbin
- inductive component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001939 inductive effect Effects 0.000 title claims description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000009413 insulation Methods 0.000 claims description 276
- 238000004804 winding Methods 0.000 claims description 66
- 238000000034 method Methods 0.000 claims description 9
- 239000012777 electrically insulating material Substances 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 238000004026 adhesive bonding Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/25—Magnetic cores made from strips or ribbons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/02—Coils wound on non-magnetic supports, e.g. formers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/26—Fastening parts of the core together; Fastening or mounting the core on casing or support
- H01F27/266—Fastening or mounting the core on casing or support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2823—Wires
- H01F27/2828—Construction of conductive connections, of leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/30—Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
- H01F27/306—Fastening or mounting coils or windings on core, casing or other support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/324—Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/324—Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
- H01F27/325—Coil bobbins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/08—High-leakage transformers or inductances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
- H01F41/022—Manufacturing of magnetic circuits made from strip(s) or ribbon(s) by winding the strips or ribbons around a coil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/04—Arrangements of electric connections to coils, e.g. leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/04—Arrangements of electric connections to coils, e.g. leads
- H01F2005/043—Arrangements of electric connections to coils, e.g. leads having multiple pin terminals, e.g. arranged in two parallel lines at both sides of the coil
Definitions
- the present invention relates to an inductive component and a method for producing an inductive component and, in particular, compliance with insulation requirements in the case of very compact inductive components.
- Inductive components such as transformers and chokes are used in a large number of application areas.
- An application example for this is electronics in automobiles, in which inductive components are used, for example, as ignition transformers for gas discharge lamps or filter chokes.
- the extensive developments in the automotive sector with regard to automotive electronics led to a sharp increase in the number of electronic components, for example for use in vehicles as instrument clusters that are used to display data in the car, for controlling the engine management system by activating the ignition system or the injection system, in anti-lock braking and driving dynamics control systems, in the control of airbags, in body control units, in driver assistance systems, in car alarm systems and multimedia devices such as navigation systems, TV gymnasts, etc.
- the number of electronic devices in automobiles which is increasing with this development, necessitates, for example, further adjustments to the electronic components with regard to their structural size in order to adhere to the installation spaces specified in the automobile by the vehicle design despite the increasingly extensive and complex electronics in automobiles.
- the electronics in automobiles in terms of robustness, the temperature range (e.g. ensuring operability in a temperature range of -40 ° C to around 120 ° C), vibration and shock resistance (caused by vibrations in vehicle operation), etc., whereby the reliability of the electronics should be guaranteed over the longest possible period with regard to the most varied of conditions and states.
- a component size which is particularly aimed at a more compact design of electronic components in order to meet specified installation spaces, for example as a specified maximum mounting area that an electronic component can be on a carrier, such as a printed circuit board the electronic component is to be attached, at most is allowed to take, it is essential to adhere to the generally prescribed safety standards without, in turn, reducing the performance and quality of electronic components.
- insulation requirements are specified by safety standards for the implementation of uniform minimum safety standards that electronic components should meet, such as compliance with specified air and creepage distances and compliance with a specified dielectric strength.
- an air gap is generally understood to be the shortest distance between two conductive parts, especially the shortest possible connection via air, across recesses and gaps and across insulating attachments that are not connected to the substrate over the entire surface and without gaps.
- the clearance depends, among other things, on the voltages present, with electronic components being assigned to specified overvoltage categories. Both overvoltages that enter the electronic component from outside via connections (e.g. connection terminals of an electronic component) and are generated in the electronic component itself and occur at the connections must be taken into account.
- Predefined clearances are intended to rule out the possibility of a voltage breakdown through air via the shortest possible connections through air. In this sense, clearances limit the maximum possible electric fields in air so that no breakdown occurs.
- the creepage distance represents the shortest connection between two potentials over a surface of an insulating material which is arranged between the two potentials.
- the creepage distance is generally dependent on the effective operating voltage of an electronic component and is influenced, among other things, by the degree of contamination and / or the degree of moisture on a surface of an insulation material.
- the creep resistance of an insulating material is determined by the insulation strength of a surface of the insulating material under the influence of moisture and / or contamination and can be understood as indicating the maximum creepage current that can be set under standardized test conditions in a defined test arrangement.
- the creepage resistance depends essentially on the water absorption capacity and the behavior of an insulating material under thermal stress.
- the insulation distance is understood to mean the thickness of an insulation material, so that this variable is important for determining the dielectric strength of an insulation material.
- document US 2011/0187485 A1 shows a transformer with a coil, connection electrodes, a core, a primary winding, a secondary winding and an additional winding.
- the coil is made of an electrically insulating material and has a tubular section that defines an interior space.
- the tubular portion has an outer peripheral surface that provides first to third portions arranged side by side in the axial direction of the tubular portion.
- the connection electrodes are provided on the coil for electrical connection to the windings.
- the core is inserted into the interior.
- the primary winding has an insulating layer and is wound over the first section.
- the secondary winding has an insulating layer and is wound over the third section.
- the additional winding is wound over the second section and has an insulation layer whose insulation performance is greater than that of the insulation layer of the primary winding and the secondary winding.
- an SMD current sensor device comprising a magnetic core, a first winding and a second winding, each around the first and second portions of the magnetic core are wound. Most of the first winding is surrounded by an electrically insulating material that defines a first shell that defines a through hole for inserting the first portion of the magnetic core.
- the device includes an electrically insulating support around which the second winding is wound and which defines a through hole for inserting the second portion of the magnetic core therein, both through holes being aligned with one another.
- a bobbin module with a winding space for applying a plurality of windings and for defining a longitudinal axis of the module is known.
- a fastening device is used to fasten the additional bobbin module along a longitudinal direction and along two axes perpendicular to the longitudinal axis.
- the fastening device consists of two contact units that are designed for contact in corresponding contact openings in the additional bobbin module.
- the object on which the invention is based is to provide inductive components with a compact design for assembly in small installation spaces while complying with specified safety standards, in particular without falling below specified air and / or creepage and / or insulation distances.
- the present invention provides an inductive component comprising a magnetic core, an insulating body formed from an electrically insulating material in which the magnetic core is received, and a coil body wound with at least one winding.
- the insulation body has at least two insulation wall sections which are connected to one another and which are each directed at least partially towards a side surface section of the magnet core.
- the coil body comprises at least one contact element attached to a side surface section of the coil body for electrical connection to the at least one winding and a magnetic core receptacle in which the magnetic core received in the insulation body is partially received.
- a side surface section of the magnet core facing the at least one contact element is at least partially covered by an insulation wall section of the insulation body.
- the insulation body is provided with at least two mechanically connected insulation wall sections, one of which is the insulation wall sections of the insulation body at least partially covers the side surface section of the magnetic core which is directed towards the contact elements in the inductive component, sufficient air and creepage distances are ensured in a safe and reliable manner regardless of the dimensions of the inductive component.
- the insulation body further comprises at least one web portion which is formed on the insulation wall portion, which is directed towards the at least one contact element and which protrudes outwardly away from the insulation body along a normal direction of the insulation wall portion.
- the outwardly protruding web sections achieve a mechanical stability of the insulation body, and on the other hand, the web sections allow a lateral enlargement of the air and creepage distances.
- the side surface section of the magnetic core that is directed towards the contact elements is completely covered by the insulation wall section. This allows leakage currents to be suppressed very efficiently.
- the insulation body and the coil body are mechanically connected by connecting means. This allows the insulation body and the coil body to be provided separately, as a result of which the inductive component can be modularized and the clearance and creepage distances can be retrofitted.
- connection means can comprise at least one first connection element arranged on the insulation body and at least one second connection element arranged on the coil body, which mechanically engage with one another.
- This type of mechanical connection between the insulation body and the coil body also enables reliable assembly of the insulation body and coil body in a simple manner.
- the connecting means can be designed to couple the insulation body and the coil body in a mechanically releasable manner. This allows creepage distance extensions in the inductive component to be achieved in a simple manner, with individual components being able to be exchanged and retrofitted if necessary.
- the insulation body is formed by at least three insulation wall sections which are mechanically connected to one another so that the insulation body has a pot-shaped or bowl-shaped shape with a recess in which the magnetic core is received.
- a correspondingly designed insulation body can easily be produced by injection molding techniques and can be produced inexpensively in large numbers.
- a pot-shaped or bowl-shaped insulation body enables a mechanically stable reception of the core by the insulation body.
- a depth of the depression can be greater than or equal to a height dimension of the magnetic core that is defined with respect to the magnetic core along a direction along which the magnetic core is received in the depression.
- the at least one web section can have a protrusion section protruding towards the coil body, which is inserted into a positioning recess formed in the coil body, which is arranged on a side on which at least one contact is arranged.
- a mechanically reproducible positioning of the insulation body on the coil body can be achieved, which, for example, allows an advantage for a mechanical assembly of coil bodies with insulation bodies.
- an exact positioning of the magnetic core on the coil body and thus relative to the winding provided above the coil body can thereby be achieved.
- the coil body can have at least two contact elements on a side surface section and two wire sections of the at least one winding can be guided along the at least one web section on opposite sides thereof to one of the contact elements.
- a mechanical separation of the wire sections can be achieved by means of the web section, so that an extension of the air and creepage distance between the two wire sections is provided by means of the web section.
- the inductive component further comprises at least one further contact element that is on a side surface section of the bobbin is attached, which is arranged on a side of the bobbin opposite the at least one contact element, a further magnetic core, and a further insulation body, the further insulation body having at least two interconnected insulation wall sections, each at least partially towards a side surface section of the further magnet core are directed, wherein the further insulation body is arranged on the coil body so that it is opposite the insulation body and the further magnetic core received in the further insulation body is partially received in the magnetic core receptacle, and wherein a side surface section of the further magnetic core directed towards the at least one further contact element through an insulation wall section of the further insulation body is at least partially covered.
- the two magnetic cores are each designed according to an E core configuration.
- a method for producing an inductive component comprises winding the coil body with the at least one winding and receiving the magnetic core in the insulation body.
- the method further comprises attaching the insulation body with the magnetic core received therein to the wound coil body, the insulation body being partially received in the magnetic core receptacle of the coil body.
- FIG. 1d an inductive component 100 according to the first embodiment.
- Fig. 1a is an insulation body 20 of the inductive component 100 from Fig. 1d shown schematically in a perspective view.
- Figure 1b the insulation body 20 with a magnetic core 10 is shown schematically in a perspective view, the magnetic core 10 being received in the insulation body 20.
- Figure 1c is a coil body 30 of the inductive component 100 from Fig. 1d shown schematically in a perspective view with at least one winding W1 provided above.
- the insulation body 20 is formed from insulation wall sections 22, 24 and 26, the insulation wall sections 22, 24 and 26 being mechanically connected to one another and defining a receptacle 25 which is suitably designed and dimensioned to accommodate the magnetic core 10 (cf. Figure 1b ). Furthermore, the insulation body 20 has U-shaped insulation wall sections 27, which are arranged on the floor-side insulation wall section 22 in accordance with the shape of the magnet core 10. These U-shaped insulation wall sections 27 are optional and can also not be present.
- U-shaped insulation wall sections 27 which alternatively can also be only L-shaped or in each case by only one insulation wall section, a stable mechanical accommodation of the magnet core 10 in the insulation body 20 can be provided, as with reference to FIG Figure 1b is described in more detail below.
- the bottom-side insulation wall section 22 can have a shape adapted to the magnetic core 10, for example recesses can be provided in the bottom-side insulation wall section 22, which are surrounded by the U-shaped insulation wall sections 27 (in the illustration of FIG Fig. 1a these recesses are not visible, but there is a recess in Fig. 1a indicated by dashed lines with respect to one of the U-shaped insulation wall sections 27). However, this does not represent a restriction of the bottom-side insulation wall section 22 and this can be designed as a plate-shaped body without recesses.
- the insulation wall sections 24, 26 protrude from the floor-side insulation wall section 22 along a normal direction of the floor-side insulation wall section 22, so that the receptacle 25 is fixed by the floor-side insulation wall section 22 and the insulation wall sections 24, 26 protruding therefrom.
- the insulation body 20 is open with respect to a side of the floor-side insulation wall section 22 opposite the floor-side insulation wall section 22 and a side of the floor-side insulation wall section 22 opposite the insulation wall section 24.
- a side of the insulation body 20 opposite the bottom insulation wall section 22 can be partially covered by an insulation wall section (not shown) provided there.
- an insulation wall section (not shown) can be covered over the U-shaped insulation wall sections 24 with a smaller area than the bottom area of the bottom insulation wall section 22, for example an area smaller by at most half.
- This optional insulation wall section (not shown) can be provided as a "pick & place cap" in order, for example, to be graspable for a suction nozzle on a transport device (not shown) in an automated production process.
- the floor-side insulation wall section 22 is mechanically connected to the insulation wall sections 26 and the insulation wall section 24, the insulation wall section 24 being arranged at an edge of the floor-side insulation wall section 22 and extending away from the floor-side insulation wall section in the normal direction, so that the insulation wall section 22 extends transversely extends to directions of extent of the insulation wall sections 26 and is mechanically connected to the insulation wall sections 26.
- the insulation wall sections 24 have a height H24 and the insulation wall sections 26 each have a height H26.
- the U-shaped insulation wall sections 27 can have the height H24 or the height H26.
- At least the height H24 defines a depth of the receptacle 25 in accordance with the height dimension of the insulation wall section 24 (in relation to the normal direction to the bottom insulation wall section 22).
- insulation wall sections 24, 26 in the illustration of Fig. 1a are shown as being of the same height, this does not constitute a limitation of the invention and the insulation wall sections 24, 26 and 27 can have different height dimensions, the height dimension H26 of the insulation wall sections 26 being smaller than the height dimension H24 of the insulation wall 24.
- the insulation body 20 further comprises two web sections 28 which are formed on the insulation wall section 24.
- the two web sections 28 shown do not represent a limitation of the invention and any number of web sections 28 can be formed along the insulation wall section 24, for example only one web section (cf. Fig. 1d , the insulation body shown there having only one web section 28) or more than two web sections.
- the web sections 28 have a protrusion section 28a which extends in the normal direction of the insulation wall section 24 and thus protrudes from this in the normal direction to the insulation wall section 24.
- the web sections 28 can furthermore have a protrusion section 28b which extends along the normal direction of the bottom-side insulation wall section 22 and which protrudes downwards from the insulation body 20 along an underside of the bottom-side insulation wall section 22.
- FIG Figure 1b shows a state in which the magnetic core 10 is received in the insulating body 20.
- the magnetic core 10 is shown in FIG Figure 1b formed in the form of an E-shaped magnet core 10, which has two side legs Sa, Sb and a central leg Sc lying between them, which are connected by a transverse yoke Sd oriented transversely to the side legs Sa, Sb and the central leg Sc.
- the magnetic core 10 has a height H10 that extends along a direction perpendicular to an extension direction of the transverse yoke Sd and perpendicular to the extension directions of the Side legs Sa, Sb and the middle leg Sc is set.
- the magnetic core 10 can alternatively be provided as a C or I-shaped magnetic core (not shown), the bottom-side insulation wall section of the insulation body 20 being adapted to this core shape and the U-shaped insulation wall sections 27 not being provided.
- the insulating body 20 is designed in accordance with the magnetic core 10, so that the magnetic core 10 is received in the receptacle 25 of the insulating body 20.
- the height dimensions (corresponds to the depth of the receptacle 25) H24, H26 are matched to the height dimension H10 of the magnetic core 10, so that H10 H24 and H10 H26.
- the side surface section 14 of the magnetic core 10 is only partially covered by the insulation wall section 24 if recesses (not shown) are formed in the insulation wall section 24, which partially expose the side surface section 14 of the magnetic core 10, for example in the event that the Isolation wall section 24 is formed by several subsections which protrude from the bottom-side isolation wall section 22 along its normal direction.
- a function of the web portions 28 is described below with regard to Figure 1c and 1d described in more detail at the appropriate point.
- the bobbin 30 is shown, which is wound with at least one winding W1.
- W1 the winding W1.
- at least one primary winding and one secondary winding are provided (primary and secondary windings are shown in the schematic representations of FIG Figure 1c and 1d not specifically shown).
- primary and secondary windings are shown in the schematic representations of FIG Figure 1c and 1d not specifically shown).
- only one winding can be provided.
- the bobbin 30 shown can represent a bobbin which can be wound easily and in particular automatically and is designed for SMD assembly, as in FIG Fig. 1d and 1c is illustrated schematically by contact elements in the form of U-shaped contact pins 50a and 50b.
- contact elements instead of the SMD design of the coil body 30, it can alternatively be designed as a THT coil body for push-through assembly, the contact elements instead of the contact pins 50a, 50b shown as U-shaped contact elements in L-shape can be provided.
- the bobbin 30 has a core receptacle 32, above which at least one winding chamber 34 is provided for receiving the at least one winding W1, with contact strips 36a and 36b extending transversely to a longitudinal direction of the magnetic core receptacle 32 being arranged at opposite ends of the magnetic core receptacle 32 of the bobbin 30 .
- Contact elements corresponding to contact pins 50a, 50b are received in contact strips 36a, 36b, so that a row of contact pins 52a, 52b protrude from end faces 37a, 37b of contact strips 36a, 36b along a direction of extent of magnetic core receptacle 32.
- winding connections are attached to the contact pins 52a, 52b, as shown by some connections Aa, Ab of wire end sections Wa, Wb of the winding W1 in FIG Figure 1c is illustrated schematically.
- the wire end sections Wa, Wb can be led to the contact pins 52b under the contact strip 36b of the bobbin 30 and electrically connected to the contact pins 52b in order to electrically connect the winding W1 to the contact pins 52b, for example by means of a contact pin or contact pins Pb in Figure 1c is illustrated, the connection Ab des Wire end portion Wb is mechanically and electrically connected to the contact pin Pb, for example (without limitation) by wrapping the contact pin Pb with the wire end portion Wb or soldering the wire end portion Wb to the contact pin Pb or the like, whereby the terminal Ab is formed.
- At least one contact element which is represented by at least one contact pin 50a, is attached to the further side surface section 37a of the coil former 30, which is opposite to at least one other contact element, which is represented by at least one of the contact pins 50b.
- the side surface portions 37a and 37b are formed on opposite sides of the spool 30.
- the winding chamber 34 of the bobbin 30 can, as shown in FIG Figure 1c are formed by wall sections 34a and 34c which protrude from a connecting section 36c along a normal direction with respect to the connecting section 36c, the connecting section 36c mechanically connecting the contact strips 36a and 36b to one another.
- the contact strips 36a, 36b and the connecting section 36c can be formed integrally. According to the embodiment shown, the contact strips 36a, 36b and the connecting section 36c are formed in the shape of the letter H.
- a wall section 34b is formed opposite the connecting section 36c and connects the winding chamber sections 34a and 34c to one another.
- the magnetic core receptacle 32 is enclosed by the winding chamber sections 34a, 34c, the connecting sections 36c and the wall section 34b opposite thereto.
- flange-like projections Fa, Fb can be formed on opposite end sections of the magnetic core seat 32, which projections delimit the winding chamber along the magnetic core seat 32.
- the coil body 30 provides a coil between the contact strips 36a, 36b through the winding with at least the winding W1 in the winding chamber 34.
- partition walls can be provided in the winding chamber 34 in order to separate individual winding sections of the at least one turn W1 from one another.
- FIG. 1c is also formed in the contact strip 36a at least one recess 38a, for. B. in the form of a slot.
- the at least one recess 38a can partially penetrate the contact strip 36a along a direction parallel to the contact pins 52a.
- the at least one recess 38a can support the contact strip 36a along its entire thickness (cf. thickness d of the contact strips in the illustration of FIG Fig. 1d ) at least partially enforce.
- At least one recess 38b can furthermore be formed in the contact strip 36b (for example two, as in FIG Figure 1c is illustrated), e.g. B. in the form of a slot.
- the recess 38b can partially penetrate the contact strip 36b along a direction parallel to the contact pins 52b.
- the at least one recess 38b can support the contact strip 36b along its entire thickness (cf. thickness d of the contact strips in the illustration of FIG Fig. 1d ) at least partially enforce.
- the recesses 38a and 38b can be formed in the respective contact strips 36a and 36b between adjacent contact elements, for example the contact pins 50a and 50b (alternatively, at least one recess can also be formed only in one contact strip).
- the contact elements for example the contact pins 50a and 50b in the respective strips 36a and 36b, can be subdivided into subsets of contact elements by respective recesses 38a and 38b, the degree of subdivision depending on the application.
- the number of cutouts that are formed in one of the contact strips 36a, 36b can differ from or be the same as the number of cutouts that are formed in the other of the contact strips 36a, 36b. In any case, the number of recesses corresponds to the number of projection sections 28b which are located on the insulation body 20 (cf. Fig. 1a and 1b ) are formed in relationship.
- a height HS of a projection section 28b is less than or equal to the thickness (cf. d in Fig. 1d ) a contact strip.
- Positioning and stabilization of the insulating body 20 on the coil body 30 can thereby be achieved.
- permanent and fixed mounting of the insulation body 20 on the coil body 30 can be achieved by means of gluing by introducing an adhesive into at least one recess.
- the insulation body 20 can be detachably or permanently connected to the coil body 30 by means of a latching mechanism (not shown), with latching lugs or latching hooks (not shown), which are formed on at least one web section 28 of the insulation body 20, in corresponding depressions (not shown).
- the height HS of at least one protrusion section 28b is greater than a thickness (cf.d in Fig. 1d ) the contact strips 36a, 36b.
- the at least one protrusion section 28b protrudes from the underside of the associated contact strip 36a, 36b and thus allows a labyrinth to be formed on the underside for lengthening the creepage and clearance between the contact pins 50a, 50b on the underside of the relevant contact strip 36a, 36b.
- This labyrinth structure can interact with a labyrinth structure (not shown) additionally provided on the underside of at least one of the contact strips 36a, 36b.
- guide grooves can be formed on the underside of at least one of the contact strips 36a, 36b in order to guide the wire sections Wa, Wb of the winding W1 to corresponding contact pins 52b on the underside. The same can apply to the contact strip 36a.
- the inductive component 100 further comprises a further magnetic core 10a and a further insulation body 20a, the insulation body 20a having an insulation wall section 24a and one in the illustration of FIG Fig. 1d Has not visible insulation wall section, which is formed corresponding to the insulation wall section 22 of the insulation body 20 and is arranged to the coil body 30 and connected to the insulation wall portion 24a.
- the insulation body 20a can have at least one further insulation wall section 26a, which is connected to the insulation wall sections 24a and the insulation wall section (not shown) (which is provided in the insulation body 20a in a manner similar to the insulation wall section 22 of the insulation body 20).
- the insulation wall sections are each at least partially facing a side face section of the magnetic core 10a (for example, the insulation wall section 24a is facing a side face section 14a of the magnetic core 10a and the insulation wall section 26a is facing a side face section 16a of the magnetic core).
- the insulating body 20a is arranged on the coil body 30, so that the insulating body 20a is opposite the insulating body 20 and the magnetic core 10a received in the insulating body 20a in the magnetic core receptacle 32 of the bobbin 30 is partially added.
- a side surface section 14a of the magnet core 10a facing the at least one further contact element 50a is at least partially covered by the insulation wall section 24a of the insulation body 20a.
- the inductive component 100 can be viewed as having a modular magnetic core 10 ′.
- This modular magnetic core 10 ' may be formed from the E-shaped magnetic cores 10, 10a according to a double E core configuration as shown. This is not a restriction and instead of two E cores, two C cores, an E core and a C core, an E core and an I core and a C core and an I core in the inductive component 100 can be combined.
- the individual magnetic cores 10, 10a represent individual core segments of the modular magnetic core 10'.
- the magnetic cores 10, 10a (or core segments 10, 10a in the modular magnetic core 10 ') are received in the corresponding E-shaped insulation bodies 20, 20a.
- the representation in Fig. 1d with regard to the separate insulation bodies 20, 20a is not to be interpreted as restrictive here.
- the insulation bodies 20, 20a can be designed as connected by at least one insulation wall section, for example the insulation bodies 20, 20a can be connected to one another by a common insulation wall section corresponding to the insulation wall section 26 or a connected bottom-side insulation wall section (in the form of an "H") or as a integral insulation body 20 'be formed.
- each of the insulating bodies 20, 20a is connected to a corresponding one of the contact strips 36a, 36b, as in FIG Fig. 1d is shown.
- each of the insulation bodies 20, 20a is on one side of the magnetic core receptacle (cf. 32 in Figure 1c ) of the bobbin 30 is inserted.
- a center leg of each of the E-shaped magnetic cores 10, 10a is inserted into the magnetic core receptacle 32 of the bobbin 30, which is shown in FIG Figure 1c is shown, inserted.
- FIG. 1d If only one web section 28 is shown, this does not represent a restriction and, alternatively, more than one web section 28, for example two web sections 28, as in FIG Fig. 1a and 1b is shown, be provided.
- the modular or integral insulation body 20 ' is shown in FIG Fig. 1d as is shown formed by two individual insulating bodies 20, 20a, which are arranged on corresponding contact strips 36a, 36b of the coil body 30, this does not represent a limitation of the invention and instead only a single insulating body 20 or 20a can be attached to a corresponding one of the contact strips 36a, 36b of the bobbin 30 in Fig. 1d to be available.
- the web sections 28 can protrude by the height HT from the insulation wall section 24 of the body element 20 along a normal direction of the floor-side insulation wall section.
- an extension of the creepage distance between two of the contact pins 50b, between which the web section 28 is arranged, can be provided as a function of the height HT.
- the height HT of the web section, which is arranged between two contact pins 50b is greater than an extension length of the contact pins 50b by which the contact pins 50b protrude from the end face 37b of the contact strip 36b, an extension of the air gap between these contact elements can be provided.
- the insulation wall portion 24 covers a side surface portion of the magnetic core 10 which is facing the contact pins 50b and in connection with Figure 1b is described as side surface portion 14.
- the side surface section 14 of the magnetic core 10 that is trimmed to the contact pins 50b is covered by the insulation wall section 24 and the distance between the contact pins 50b and the magnetic core 10 is lengthened according to a height of the insulation wall 24, as described above with reference to the heights H24 and H26 is.
- the required air and creepage distances between the contact pins 50a, 50b of the inductive component 100 and the magnetic cores 10, 10a are each determined on the basis of the height of the insulation bodies 20, 20a.
- the creepage distance is advantageously extended independently of a base area of the inductive component 100, in particular an underside Area of the coil former 30. This in turn means that the inductive component 100 can be provided in a very compact manner while at the same time maintaining the necessary air and creepage distances.
- the inductive component 100 can be produced in accordance with the following method steps.
- the magnetic cores 10 and 10a (or magnetic core segments of the modular magnetic core 10 ') are received in the corresponding insulation bodies 20, 20a.
- each of the magnetic cores 10, 10a can be glued or otherwise glued into the corresponding insulation body 20, 20a, for example by structures in accordance with latching lugs or hooks (not shown) provided on the corresponding insulation body 20, 20a, or an insulation cover can be attached on the top the corresponding insulation bodies 20, 20a after receiving the magnetic cores 10, 10a are mounted in the corresponding insulation bodies 20 and 20a.
- the individual magnetic cores 10, 10a are each received in the individual insulation bodies 20, 20a and can be provided separately at this point in time.
- the coil body 30 is wound with at least one winding W1, for example in an automatic winding process.
- each of the insulation bodies 20, 20a with the corresponding magnetic cores 10, 10a is attached to a corresponding one of the contact strips 36a, 36b in accordance with the manner described above.
- the middle legs (cf. Sc in Figure 1b ) the magnetic cores 10, 10a are pushed into the core receptacle 32 of the bobbin 30 from opposite sides of the core receptacle 32.
- the individual magnetic cores 10, 10a can be fixed to one another by gluing them to contacting end faces of the magnetic cores 10, 10a, the magnetic core 10 'being provided as a unit. Additionally or alternatively, the individual insulation bodies 20, 20a can be attached to the coil body 30 by means of gluing and the like.
- the inductive component 100 shown here can be produced by a method that involves winding the coil body 30 with the at least one winding W1, receiving at least one of the magnetic cores 10, 10a in the associated insulation body 20, 20a (e.g. only the magnetic core 10 can be in Figure 1b in the ones shown there Insulating body 20 can be used, the other magnetic core 10a can be attached to the coil body without the insulating body 10a, so that the insulating body 20a is dispensed with in the inductive component 100) and the insulating body (s) 20, 20a with the magnetic core 10, 10a received therein can be attached on the wound bobbin 30, the magnetic cores 10, 10a being partially received in the magnetic core receptacle 32 of the bobbin 30.
- the winding of the coil body 30 can take place independently of the inclusion of the magnetic cores 10, 10a in the insulation body (s) 20, 20a, for example at a separate time or at the same time.
- the magnetic cores 10, 10a can also be received in the insulation bodies 20, 20a in that the magnetic core 10 is received in the insulation body 20 and the magnetic core 10a is received in the insulation body 20a.
- only one magnetic core e.g. the magnetic core 10 or the magnetic core 10a
- an automated production method for producing the inductive component 100 can be provided.
- the inductive component 100 includes the magnetic core 10, the insulation body 20 formed from an electrically insulating material, in which the magnetic core 10 is received, the insulation body 20 at least the two connected insulation wall sections 22, 24 (optionally with at least one of the insulation wall sections 26), each of which is at least partially aligned with a corresponding one of the side surface sections 14, 16 of the magnetic core 10, the at least one winding W1 and the bobbin 30 wound with the at least one winding W1, which comprises at least that on the Contact element attached to the side surface section 37b of the coil body 30, for example at least one contact pin 50b, for electrical connection to the at least one winding W1 and the magnetic core receptacle 32, in which the magnetic core 10 received in the insulating body 20 is partially received, wherein the side surface section 14 of the magnetic core 10 that is aligned with the at least one contact element is at least partially covered by the insulation wall section 24 of the insulation body 20.
- the side surface section 14 of the magnetic core 10, which is aligned with the at least one contact element 50b, can be completely covered by the insulation wall section 24.
- the insulating body 20 and the coil body 30 can be mechanically connected by the connecting means 240.
- the connecting means 28, 38 can comprise at least one first connecting element 28 arranged on the insulation body 20 and at least one second connecting element 38 arranged on the coil former 20, which mechanically engage with one another.
- the connecting means 28, 38 can be designed to couple the insulating body 20 and the coil body 30 in a mechanically releasable manner.
- the insulation body 20 can be formed by at least the three insulation wall sections 22, 24, 26, which are connected to one another, so that the insulation body 20 has a pot-shaped or bowl-shaped shape with the recess 25 in which the magnetic core 10 is received.
- a depth of the recess 25 can be greater than or equal to the height dimension H10 of the magnetic core 10, which is defined with respect to the magnetic core 10 along a direction along which the magnetic core 10 is received in the recess 25.
- the insulation body 20 can further comprise at least one of the web sections 28 which is formed on the insulation wall section 24, which is aligned with the at least one contact element 50b and which protrudes outwardly away from the insulation body 20 along a normal direction of the insulation wall section 24.
- This at least one web portion 28 can have the protrusion portion 28b protruding towards the coil body 30, which is inserted into the positioning recess 38 formed in the coil body 30, which is arranged on the side of the coil body 30 on which the at least one contact element 50b is arranged .
- the contact elements 50b can be provided in the number of two contact pins on the side surface portion 37b of the coil former 30 and at least the two wire end portions Wa and Wb of the at least one winding W1 can be provided along the at least one web portion 28 on opposite sides thereof to one of the contact elements 50b be performed.
- the inductive component 100 can further comprise at least one of the contact elements 50a, which is attached to the side surface section 37a of the coil body 30, which is arranged on the side of the coil body 30 opposite the contact element 50b, the further magnetic core 10a and the further insulation body 20a, wherein the further insulation body 20a have at least the insulation wall section 24a, which is at least partially aligned with the side surface section 14a of the further magnetic core 10a, and a further insulation wall section connected thereto, which is a further Side surface section (side surface section connected to the side surface section 14a) of the further magnetic core 10a is at least partially trimmed, the further insulation body 20a being arranged on the coil body 30 so that it is opposite the insulation body 20 and the further magnetic core 10a received in the further insulation body 20 is inserted into the Magnetic core holder 32 is partially added.
- the further insulation body 20a have at least the insulation wall section 24a, which is at least partially aligned with the side surface section 14a of the further magnetic core 10a, and a further insulation wall section connected there
- the side surface section 14a of the further magnet core 10a that is aligned with the at least one further contact element 50a can be at least partially covered by the insulation wall section 24a of the further insulation body 20a, and the magnet cores 10, 10an can each be designed according to an E core configuration.
- an inductive component 200 (cf. Figure 2b ) described according to a second embodiment.
- the inductive component 200 according to the second embodiment differs from the inductive component 100 according to the first embodiment, which with reference to FIG Figures 1a to 1d is described above, by an alternative embodiment of the insulation body, as shown on the basis of an insulation body 220 in FIG Fig. 2a and 2 B and is described below.
- the recess 244 is formed on a contact strip 236b of the coil former 230.
- the coil body 230 is designed in accordance with the coil body 30 and in particular has contact strips 236a, 236b which are connected by a connection region (not shown) corresponding to the connection section 360. Furthermore, contact pins 25a, 25b are formed in the corresponding end faces 237a, 237b of the corresponding contact strips 236a, 236b.
- the insulation body 220 has a floor-side insulation wall section 222 and insulation wall sections 224 and 226 extending therefrom along a direction normal to the floor-side insulation wall section 222. Furthermore, U-shaped insulation wall sections 227 corresponding to the U-shaped insulation wall sections 27 in the illustration of FIG Fig. 1a educated. Over the insulation wall sections 227, as in Fig. 2a is shown, an optional "Pick &Place" surface "229 can be designed, which extends as a planar cap over the U-shaped insulation wall sections 227 and can serve as a starting point for a suction nozzle (not shown) in an automatic production and assembly process.
- a receptacle 225 is formed in the insulation body 220 and is laterally surrounded by the insulation wall sections 224 and 226.
- a depth of the recess 225 is determined by a height of the insulation wall sections H220, as in FIG Fig. 1a is designed according to the heights H24 and H26.
- the insulation wall sections 226 and 224 can have different heights, although these are shown in FIG Fig. 2a are shown as being of the same height.
- a magnetic core 210 is used, for example by inserting a core segment 210a of an E core and then inserting a core segment 210b from the outside into the insulation body 220 (cf. magnetic core 210 in Figure 2b ).
- a height H210 of the magnetic core 210 can be essentially less than or equal to a depth of the recess: H220 H210.
- the magnetic core 210 has side surface sections 214, 216.
- the magnetic core 210 can be a modular magnetic core 210 composed of individual magnetic cores 210a, 210b, wherein the magnetic cores 210a, 210b can be glued to one another in order to provide the magnetic core 210 in integral form after the inductive component 200 has been provided.
- the insulation body 220 can be used when the inductive component 200 only provides contact elements 250a on one contact strip (236a) for applying a high voltage (high-voltage connections should be provided on one contact strip), while contact elements 250b are provided on the other contact strip 236b a low-voltage potential are provided. Accordingly, by means of the insulation body 220 on the high-voltage side of the inductive Component 200, in particular on the contact strip 236a of the high-voltage contact elements 250a, provided by the insulation wall section 224, which is prepared for the high-voltage connections, an advantageous air and creepage distance extension to the magnetic core 210 and the winding W2 above the coil body 230.
- the assembly of the insulation body 220 on the coil body 230 as shown in FIG Fig. 2a and 2 B is only illustrative and not restrictive, since instead of the connecting means 240 and / or in addition to this, web sections (not shown) corresponding to the web sections 28 according to the first embodiment with corresponding slots can be provided in the coil body.
- the illustrated inductive component 200 can be produced by a method that involves winding the coil former 230 with the at least one winding W2, accommodating the magnetic core 210 in the insulating body 220 and attaching the insulating body 220 with the magnetic core 210 accommodated therein to the wound coil former 230 comprises, wherein the magnetic core 210 is partially received in the magnetic core receptacle 232 of the bobbin 230.
- the winding of the coil body 230 can take place independently of the reception of the magnetic core 210 in the insulation body 220, for example at different times or at the same time.
- the magnetic core 210 can also be received in the insulation body 220 in that the core segment 210a is received in the insulation body 220 and the core segment 210b is then pushed into the insulation body 220. As a result, an automated production method for producing the inductive component 100 can be provided.
- the inductive component 200 ready, which, according to the described second embodiments, the magnetic core 210, the insulating body 220 formed from an electrically insulating material, in which the magnetic core 210 is accommodated, the insulating body 220 having at least the two connected insulating wall sections 222, 224, each of which one of the side surface section 214, 216 of the magnetic core 210 are each at least partially trimmed, which comprises at least one winding W2 and the coil former wound with the at least one winding W2, the at least one contact element attached to the side surface section 237a of the coil former 230 in the form of one of the contact pins 250a for the electrical connection to the at least one winding W2 and the magnetic core receptacle 232, in which the magnetic core 210 received in the insulation body 220 is partially received, the side surface section facing the at least one contact element 250a 214 des Magnet core 210 is at least partially covered by one of the insulation wall sections 224 of the insulation body 220.
- the side surface section 214 of the magnetic core 210 which is aligned with the at least one contact element 250a, can be completely covered by the insulation wall section 224.
- the insulation body 220 and the coil body 230 can be mechanically connected by the connecting means 240.
- the connecting means 240 can comprise at least the first connecting element 242 arranged on the insulation body 220 and at least the second connecting element 244 arranged on the coil former 230, which mechanically engage with one another.
- the connecting means 240 can be designed to couple the insulating body 220 and the coil body 230 in a mechanically releasable manner.
- the insulation body 220 can be formed by at least three insulation wall sections that are connected to one another, so that the insulation body 220 has a pot-shaped or bowl-shaped shape with the recess 225 in which the magnetic core 210 is received.
- the depth of the recess 225 may be greater than or equal to the height dimension H210 of the magnetic core 210, which is defined with respect to the magnetic core 210 along the direction along which the magnetic core 210 is received in the recess 225.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Coils Or Transformers For Communication (AREA)
- Insulating Of Coils (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
Die vorliegende Erfindung betrifft ein induktives Bauelement und ein Verfahren zur Herstellung eines induktiven Bauelements und insbesondere die Einhaltung von Isolationsanforderungen bei sehr kompakten induktiven Bauelementen.The present invention relates to an inductive component and a method for producing an inductive component and, in particular, compliance with insulation requirements in the case of very compact inductive components.
Induktive Bauelemente, wie z.B. Transformatoren und Drosseln, werden in einer Vielzahl von Anwendungsbereichen eingesetzt. Ein Anwendungsbeispiel hierfür stellt die Elektronik in Automobilen dar, in der induktive Bauelemente u.a. zum Beispiel als Zündtransformatoren für Gasentladungslampen oder Filterdrosseln eingesetzt werden. Dabei führten die im Automobilbereich vorangetriebenen umfangreichen Entwicklungen bezüglich der Automobilelektronik zu einer stark ansteigenden Anzahl von Elektronikkomponenten, zum Beispiel zur Anwendungen im Fahrzeug als Kombiinstrumente, die zur Anzeige von Daten im Auto dienen, zur Steuern des Motorsteuerung mit einer Ansteuerung der Zündanlage oder des Einspritzsystems, in Antiblockier- und Fahrdynamikregelsystemen, in der Steuerung von Airbags, in Bodycontrolunits, in Fahrerassistenzsystemen, in Autoalarmanlagen und Multimediageräten, wie z.B. Navigationssysteme, TV-Turner usw.Inductive components such as transformers and chokes are used in a large number of application areas. An application example for this is electronics in automobiles, in which inductive components are used, for example, as ignition transformers for gas discharge lamps or filter chokes. The extensive developments in the automotive sector with regard to automotive electronics led to a sharp increase in the number of electronic components, for example for use in vehicles as instrument clusters that are used to display data in the car, for controlling the engine management system by activating the ignition system or the injection system, in anti-lock braking and driving dynamics control systems, in the control of airbags, in body control units, in driver assistance systems, in car alarm systems and multimedia devices such as navigation systems, TV gymnasts, etc.
Die mit dieser Entwicklung steigende Anzahl an elektronischen Geräten in Automobilen macht zum Beispiel weitere Anpassungen der Elektronikkomponenten hinsichtlich ihrer Baugröße erforderlich, um die im Automobil seitens der Fahrzeugkonstruktion vorgegebenen Bauräume trotz der immer umfangreicheren und komplexeren Elektronik in Automobilen einzuhalten. Im Allgemeinen bestehen weitere Anforderungen an die Elektronik in Automobilen hinsichtlich der Robustheit, des Temperaturbereichs (z.B. die Gewährleistung der Betriebsfähigkeit in einem Temperaturbereich von -40°C bis etwa 120°C), der Schwingungs- und Stoßfestigkeit (hervorgerufen durch Erschütterungen im Fahrzeugbetrieb), usw., wodurch die Zuverlässigkeit der Elektronik über einen möglichst großen Zeitraum hinsichtlich verschiedenster Bedingungen und Zustände gewährleistet werden soll.The number of electronic devices in automobiles, which is increasing with this development, necessitates, for example, further adjustments to the electronic components with regard to their structural size in order to adhere to the installation spaces specified in the automobile by the vehicle design despite the increasingly extensive and complex electronics in automobiles. In general, there are further requirements for the electronics in automobiles in terms of robustness, the temperature range (e.g. ensuring operability in a temperature range of -40 ° C to around 120 ° C), vibration and shock resistance (caused by vibrations in vehicle operation), etc., whereby the reliability of the electronics should be guaranteed over the longest possible period with regard to the most varied of conditions and states.
Neben den anwendungsbezogenen Bedingungen hinsichtlich einer Bauteilgröße, die insbesondere auf eine kompaktere Ausgestaltung von Elektronikkomponenten gerichtet ist, um vorgegebenen Bauräumen zu genügen, beispielsweise als eine vorgegebene maximale Montagefläche, die eine Elektronikkomponente auf einem Träger, wie z.B. einer Leiterplatte, an der die Elektronikkomponente anzubringen ist, höchstens einnehmen darf, sind dabei unbedingt allgemein vorgegebene Sicherheitsstandards einzuhalten, ohne dabei wiederrum die Leistungsfähigkeit und Qualität von Elektronikkomponenten zu verringern. Beispielsweise werden durch Sicherheitsnormen zur Umsetzung von einheitlichen Mindestsicherheitsstandards Isolationsanforderungen vorgegeben, die Elektronikkomponenten erfüllen sollen, wie z.B. die Einhaltung von vorgegebenen Luft- und Kriechstrecken und die Einhaltung einer vorgegebenen Durchschlagsfestigkeit.In addition to the application-related conditions with regard to a component size, which is particularly aimed at a more compact design of electronic components in order to meet specified installation spaces, for example as a specified maximum mounting area that an electronic component can be on a carrier, such as a printed circuit board the electronic component is to be attached, at most is allowed to take, it is essential to adhere to the generally prescribed safety standards without, in turn, reducing the performance and quality of electronic components. For example, insulation requirements are specified by safety standards for the implementation of uniform minimum safety standards that electronic components should meet, such as compliance with specified air and creepage distances and compliance with a specified dielectric strength.
Hierbei wird im Allgemeinen unter einer Luftstrecke die kürzeste Entfernung zwischen zwei leitenden Teilen verstanden, speziell die kürzest mögliche Verbindung über Luft, über Vertiefungen und Spalten hinweg und quer durch isolierende Aufsätze, die nicht vollflächig und spaltenfrei mit dem Untergrund verbunden sind. Die Luftstrecke hängt unter anderem von anliegenden Spannungen ab, wobei Elektronikkomponenten vorgegebenen Überspannungskategorien zugeordnet werden. Dabei sind sowohl Überspannungen zu berücksichtigen, die von außen über Anschlüsse (z.B. Anschlussklemmen einer Elektronikkomponente) in die Elektronikkomponente eintreten, als auch in der Elektronikkomponente selbst erzeugt werden und an den Anschlüssen auftreten. Durch vorgegebene Luftstrecken soll ausgeschlossen werden, dass über mögliche kürzeste Verbindungen durch Luft ein Spannungsdurchschlag durch Luft auftritt. In diesem Sinne begrenzen Luftstrecken maximal mögliche elektrische Felder in Luft, so dass kein Durchschlag erfolgt.Here, an air gap is generally understood to be the shortest distance between two conductive parts, especially the shortest possible connection via air, across recesses and gaps and across insulating attachments that are not connected to the substrate over the entire surface and without gaps. The clearance depends, among other things, on the voltages present, with electronic components being assigned to specified overvoltage categories. Both overvoltages that enter the electronic component from outside via connections (e.g. connection terminals of an electronic component) and are generated in the electronic component itself and occur at the connections must be taken into account. Predefined clearances are intended to rule out the possibility of a voltage breakdown through air via the shortest possible connections through air. In this sense, clearances limit the maximum possible electric fields in air so that no breakdown occurs.
Demgegenüber stellt die Kriechstrecke die kürzeste Verbindung zwischen zwei Potentialen über eine Oberfläche eines Isolierstoffs dar, der zwischen den zwei Potentialen angeordnet ist. Die Kriechstrecke ist allgemein von der effektiven Betriebsspannung einer Elektronikkomponente abhängig und wird u.a. durch den Verschmutzungsgrad und/oder Befeuchtungsgrad einer Oberfläche eines Isolationsstoffes beeinflusst. Zum Beispiel wird eine Kriechstromfestigkeit eines Isolierstoffes durch die Isolationsfestigkeit einer Oberfläche des Isolierstoffes unter Einwirkung von Feuchtigkeit und/oder Verunreinigungen bestimmt und kann als den maximalen Kriechstrom bezeichnend verstanden werden, der sich unter genormten Prüfbedingungen in einer definierten Prüfanordnung einstellen darf. Dabei hängt die Kriechstromfestigkeit wesentlich von dem Wasseraufnahmevermögen und dem Verhalten eines Isolierstoffes bei thermischer Beanspruchung ab.In contrast, the creepage distance represents the shortest connection between two potentials over a surface of an insulating material which is arranged between the two potentials. The creepage distance is generally dependent on the effective operating voltage of an electronic component and is influenced, among other things, by the degree of contamination and / or the degree of moisture on a surface of an insulation material. For example, the creep resistance of an insulating material is determined by the insulation strength of a surface of the insulating material under the influence of moisture and / or contamination and can be understood as indicating the maximum creepage current that can be set under standardized test conditions in a defined test arrangement. The creepage resistance depends essentially on the water absorption capacity and the behavior of an insulating material under thermal stress.
Weiterhin wird unter der Isolationsstrecke die Stärke eines Isolationsmaterials verstanden, so dass diese Größe für die Ermittlung der Durchschlagsfestigkeit eines Isolationswerkstoffes von Bedeutung ist.Furthermore, the insulation distance is understood to mean the thickness of an insulation material, so that this variable is important for determining the dielectric strength of an insulation material.
Mittels Sicherheitsnormen, die Anforderungen an Luft-, Kriech- und Isolationsstrecken stellen, ergeben sich abhängig von einer Dimensionierung einer Elektronikkomponente Zwangsbedingen für eine ausreichende Isolation, um Spannungsdurchschläge (z.B. Lichtboden oder Funkenschlag) und/oder Kriechströme als potentielles Sicherheitsrisiko zu vermeiden. Beispielsweise sind Spannungsdurchschläge als Lichtbogen oder Funkenschlag im Rahmen der Explosionssicherheit zu vermeiden, während Kriechströme ein Sicherheitsrisiko für einen Benutzer bei Kontakt mit einer Kriechstromquelle darstellen.By means of safety standards that place requirements on air, creepage and insulation distances, depending on the dimensioning of an electronic component, there are compulsory conditions for sufficient insulation in order to avoid voltage breakdowns (e.g. light bottom or sparking) and / or creepage currents as a potential safety risk. For example, voltage breakdowns as arcing or sparking are to be avoided in the context of explosion safety, while leakage currents represent a safety risk for a user in the event of contact with a leakage current source.
Aus Dokument
Dokument
In Dokument
Gemäß der Schrift
Angesichts der obigen Erläuterungen besteht die der Erfindung zugrunde liegende Aufgabe in der Bereitstellung von induktiven Bauelementen mit kompakter Bauform zur Montage in kleinen Bauräumen unter Einhaltung von vorgegebenen Sicherheitsnormen, insbesondere ohne vorgegebene Luftstrecken und/oder Kriechstrecken und/oder Isolationsstrecken zu unterschreiten.In view of the above explanations, the object on which the invention is based is to provide inductive components with a compact design for assembly in small installation spaces while complying with specified safety standards, in particular without falling below specified air and / or creepage and / or insulation distances.
Die vorliegende Erfindung stellt in einem Aspekt ein induktives Bauelement bereit, umfassend einen Magnetkern, einen aus einem elektrisch isolierenden Material gebildeten Isolationskörper, in den der Magnetkern aufgenommen ist, und einen mit wenigstens einer Wicklung bewickelten Spulenkörper. Dabei weist der Isolationskörper wenigstens zwei miteinander verbundene Isolationswandabschnitte auf, die jeweils einem Seitenflächenabschnitt des Magnetkerns wenigstens teilweise zu gerichtet sind. Der Spulenkörper umfasst wenigstens ein an einem Seitenflächenabschnitt des Spulenkörpers angebrachtes Kontaktelement zur elektrischen Verbindung mit der wenigstens einen Wicklung und eine Magnetkernaufnahme, in die der in den Isolationskörper aufgenommene Magnetkern teilweise aufgenommen ist. Dabei ist ein dem wenigstens einen Kontaktelement zu gerichteter Seitenflächenabschnitt des Magnetkerns durch einen Isolationswandabschnitt des Isolationskörpers wenigstens teilweise bedeckt.In one aspect, the present invention provides an inductive component comprising a magnetic core, an insulating body formed from an electrically insulating material in which the magnetic core is received, and a coil body wound with at least one winding. In this case, the insulation body has at least two insulation wall sections which are connected to one another and which are each directed at least partially towards a side surface section of the magnet core. The coil body comprises at least one contact element attached to a side surface section of the coil body for electrical connection to the at least one winding and a magnetic core receptacle in which the magnetic core received in the insulation body is partially received. In this case, a side surface section of the magnet core facing the at least one contact element is at least partially covered by an insulation wall section of the insulation body.
Da der Isolationskörper mit wenigstens zwei mechanisch verbundenen Isolationswandabschnitten bereitgestellt wird, wovon einer der Isolationswandabschnitte des Isolationskörpers den Seitenflächenabschnitt des Magnetkerns wenigstens teilweise bedeckt, der den Kontaktelementen im induktiven Bauelement zu gerichtet ist, werden ausreichende Luft- und Kriechstrecken auf eine sichere und zuverlässige Weise unabhängig von einer Dimensionierung des induktiven Bauelements sichergestellt.Since the insulation body is provided with at least two mechanically connected insulation wall sections, one of which is the insulation wall sections of the insulation body at least partially covers the side surface section of the magnetic core which is directed towards the contact elements in the inductive component, sufficient air and creepage distances are ensured in a safe and reliable manner regardless of the dimensions of the inductive component.
Weiterhin umfasst der Isolationskörper in diesem Aspekt ferner wenigstens einen Stegabschnitt, der an dem Isolationswandabschnitt ausgebildet ist, der dem wenigstens einen Kontaktelement zu gerichtet ist und der entlang einer Normalenrichtung des Isolationswandabschnitts von dem Isolationskörper weg nach außen hervorsteht. Durch die nach außen hervorstehenden Stegabschnitte wird zum Einen eine mechanische Stabilität des Isolationskörpers erreicht, zum Anderen erlauben die Stegabschnitte eine laterale Vergrößerung der Luft- und Kriechstrecken.Furthermore, in this aspect, the insulation body further comprises at least one web portion which is formed on the insulation wall portion, which is directed towards the at least one contact element and which protrudes outwardly away from the insulation body along a normal direction of the insulation wall portion. On the one hand, the outwardly protruding web sections achieve a mechanical stability of the insulation body, and on the other hand, the web sections allow a lateral enlargement of the air and creepage distances.
In einer vorteilhaften Ausführungsform dieses Aspekts ist der Seitenflächenabschnitt des Magnetkerns, der den Kontaktelementen zu gerichtet ist, durch den Isolationswandabschnitt vollständig bedeckt. Damit lassen sich Kriechströme sehr effizient unterdrücken.In an advantageous embodiment of this aspect, the side surface section of the magnetic core that is directed towards the contact elements is completely covered by the insulation wall section. This allows leakage currents to be suppressed very efficiently.
In einer weiteren vorteilhaften Ausführungsform dieses Aspekts sind der Isolationskörper und der Spulenkörper durch Verbindungsmittel mechanisch verbunden. Dies erlaubt eine separate Bereitstellung des Isolationskörpers und des Spulenkörpers, wodurch eine Modularisierung des induktiven Bauelements und eine nachrüstbare Anpassung von Luft- und Kriechstrecken möglich ist.In a further advantageous embodiment of this aspect, the insulation body and the coil body are mechanically connected by connecting means. This allows the insulation body and the coil body to be provided separately, as a result of which the inductive component can be modularized and the clearance and creepage distances can be retrofitted.
In einer vorteilhafteren Ausgestaltung dieser Ausführungsform können die Verbindungsmittel wenigstens ein an dem Isolationskörper angeordnetes erstes Verbindungselement und wenigstens ein an dem Spulenkörper angeordnetes zweites Verbindungselement umfassen, die miteinander mechanisch in Eingriff treten. Durch diese Art der mechanischen Verbindung des Isolationskörpers und des Spulenkörpers lässt sich weiterhin eine zuverlässige Montage von Isolationskörper und Spulenkörper auf eine einfache Weise erreichen.In a more advantageous refinement of this embodiment, the connection means can comprise at least one first connection element arranged on the insulation body and at least one second connection element arranged on the coil body, which mechanically engage with one another. This type of mechanical connection between the insulation body and the coil body also enables reliable assembly of the insulation body and coil body in a simple manner.
In einer weiteren vorteilhafteren Ausgestaltung dieser Ausführungsform können die Verbindungsmittel dazu ausgebildet sein, den Isolationskörper und den Spulenkörper mechanisch lösbar zu koppeln. Dadurch lassen sich Kriechstreckenverlängerungen im induktiven Bauelement durch eine einfache Weise erreichen, wobei im Bedarfsfall ein Austauschen und Nachrüsten einzelner Komponenten möglich ist.In a further, more advantageous embodiment of this embodiment, the connecting means can be designed to couple the insulation body and the coil body in a mechanically releasable manner. This allows creepage distance extensions in the inductive component to be achieved in a simple manner, with individual components being able to be exchanged and retrofitted if necessary.
In einer weiteren vorteilhaften Ausführungsform dieses Aspekts ist der Isolationskörper durch wenigstens drei Isolationswandabschnitte gebildet, die miteinander mechanisch verbunden sind, so dass der Isolationskörper eine topf- oder schalenförmige Gestalt mit einer Vertiefung aufweist, in die der Magnetkern aufgenommen ist. Ein entsprechend ausgebildeter Isolationskörper ist leicht durch Spritzgusstechniken herstellbar und kostengünstig unter hoher Stückzahl produzierbar. Weiterhin wird durch einen topf- oder schalenförmigen Isolationskörper eine mechanisch stabile Aufnahme des Kerns durch den Isolationskörper ermöglicht.In a further advantageous embodiment of this aspect, the insulation body is formed by at least three insulation wall sections which are mechanically connected to one another so that the insulation body has a pot-shaped or bowl-shaped shape with a recess in which the magnetic core is received. A correspondingly designed insulation body can easily be produced by injection molding techniques and can be produced inexpensively in large numbers. Furthermore, a pot-shaped or bowl-shaped insulation body enables a mechanically stable reception of the core by the insulation body.
In einer vorteilhaften Ausgestaltung dieser Ausführungsform kann eine Tiefe der Vertiefung größer oder gleich einer Höhenabmessung des Magnetkerns sein, die bezüglich des Magnetkerns entlang einer Richtung festgelegt ist, entlang der der Magnetkern in die Vertiefung aufgenommen ist. Dadurch kann weiterhin eine Luft- und Kriechstreckenlänge entsprechend einer Tiefe der Vertiefung entlang der gesamten Höhenabmessung des Magnetkerns festgelegt werden. Es können demzufolge sehr kompakte induktive Bauelemente bereitgestellt werden.In an advantageous refinement of this embodiment, a depth of the depression can be greater than or equal to a height dimension of the magnetic core that is defined with respect to the magnetic core along a direction along which the magnetic core is received in the depression. As a result, a clearance and creepage distance corresponding to a depth of the recess along the entire height dimension of the magnet core can be determined. As a result, very compact inductive components can be provided.
In einer vorteilhaften Ausführungsform dieses Aspekts kann der wenigstens eine Stegabschnitt einen zu dem Spulenkörper hin hervorstehenden Vorsprungabschnitt aufweisen, der jeweils in eine im Spulenkörper gebildete Positionierungsaussparung eingesetzt ist, die an einer Seite angeordnet ist, an der wenigstens ein Kontakt angeordnet ist. Dadurch lässt sich eine mechanisch reproduzierbare Positionierung des Isolationskörpers am Spulenkörper erreichen, die z.B. einen Vorteil für eine mechanische Bestückung von Spulenkörpern mit Isolationskörpern erlaubt. Weiterhin kann dadurch eine genaue Positionierung des Magnetkerns am Spulenkörper und damit relativ zu der über dem Spulenkörper vorgesehenen Wicklung erreicht werden.In an advantageous embodiment of this aspect, the at least one web section can have a protrusion section protruding towards the coil body, which is inserted into a positioning recess formed in the coil body, which is arranged on a side on which at least one contact is arranged. In this way, a mechanically reproducible positioning of the insulation body on the coil body can be achieved, which, for example, allows an advantage for a mechanical assembly of coil bodies with insulation bodies. Furthermore, an exact positioning of the magnetic core on the coil body and thus relative to the winding provided above the coil body can thereby be achieved.
In einer weiteren vorteilhaften Ausgestaltung dieser Ausführungsform kann der Spulenkörper an einem Seitenflächenabschnitt wenigstens zwei Kontaktelemente aufweisen und zwei Drahtabschnitte der wenigstens einen Wicklung können entlang des wenigstens einen Stegabschnitts an gegenüberliegenden Seiten davon jeweils zu einem der Kontaktelemente geführt sein. Somit kann mittels des Stegabschnitts eine mechanische Trennung der Drahtabschnitte erreicht werden, so dass eine Luft- und Kriechstreckenverlängerung zwischen den beiden Drahtabschnitten mittels des Stegabschnitts bereitgestellt wird.In a further advantageous embodiment of this embodiment, the coil body can have at least two contact elements on a side surface section and two wire sections of the at least one winding can be guided along the at least one web section on opposite sides thereof to one of the contact elements. Thus, a mechanical separation of the wire sections can be achieved by means of the web section, so that an extension of the air and creepage distance between the two wire sections is provided by means of the web section.
In einer weiteren vorteilhaften Ausführungsform dieses Aspekts umfasst das induktive Bauelement ferner wenigstens ein weiteres Kontaktelement, das an einem Seitenflächenabschnitt des Spulenkörpers angebracht ist, der an einer dem wenigstens einen Kontaktelement gegenüberliegenden Seite des Spulenkörpers angeordnet ist, einen weiteren Magnetkern, und einen weiteren Isolationskörper, wobei der weitere Isolationskörper wenigstens zwei miteinander verbundene Isolationswandabschnitte aufweist, die jeweils einem Seitenflächenabschnitt des weiteren Magnetkerns jeweils wenigstens teilweise zu gerichtet sind, wobei der weitere Isolationskörper an dem Spulenkörper angeordnet ist, so dass er dem Isolationskörper gegenüberliegt und der in den weiteren Isolationskörper aufgenommene weitere Magnetkern in die Magnetkernaufnahme teilweise aufgenommen ist, und wobei ein dem wenigstens einen weiteren Kontaktelement zu gerichteter Seitenflächenabschnitt des weiteren Magnetkerns durch einen Isolationswandabschnitt des weiteren Isolationskörpers wenigstens teilweise bedeckt ist. Dadurch kann ein vorteilhaftes Kerndesign gebildet aus zwei einzelnen Magnetkernen unter Erfüllung vorgegebener Isolationsstrecken unabhängig von Dimensionen des induktiven Bauelements bereitgestellt werden. In einer vorteilhaften Ausgestaltung dieser Ausführungsform sind die beiden Magnetkerne jeweils gemäß einer E-Kernkonfiguration ausgebildet.In a further advantageous embodiment of this aspect, the inductive component further comprises at least one further contact element that is on a side surface section of the bobbin is attached, which is arranged on a side of the bobbin opposite the at least one contact element, a further magnetic core, and a further insulation body, the further insulation body having at least two interconnected insulation wall sections, each at least partially towards a side surface section of the further magnet core are directed, wherein the further insulation body is arranged on the coil body so that it is opposite the insulation body and the further magnetic core received in the further insulation body is partially received in the magnetic core receptacle, and wherein a side surface section of the further magnetic core directed towards the at least one further contact element through an insulation wall section of the further insulation body is at least partially covered. As a result, an advantageous core design formed from two individual magnetic cores can be provided while satisfying specified insulation distances, regardless of the dimensions of the inductive component. In an advantageous embodiment of this embodiment, the two magnetic cores are each designed according to an E core configuration.
In einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zum Herstellen eines induktiven Bauelements gemäß dem obigen Aspekt bereitgestellt. Das Verfahren umfasst dabei ein Bewickeln des Spulenkörpers mit der wenigstens einen Wicklung und ein Aufnehmen des Magnetkerns in den Isolationskörper. Das Verfahren umfasst ferner ein Anbringen des Isolationskörpers mit dem darin aufgenommenen Magnetkern an dem bewickelten Spulenkörper, wobei der Isolationskörper teilweise in die Magnetkernaufnahme des Spulenkörpers aufgenommen wird.In a further aspect of the present invention, a method for producing an inductive component according to the above aspect is provided. The method comprises winding the coil body with the at least one winding and receiving the magnetic core in the insulation body. The method further comprises attaching the insulation body with the magnetic core received therein to the wound coil body, the insulation body being partially received in the magnetic core receptacle of the coil body.
Weitere Vorteile und Merkmale der Erfindung werden nachstehend im Zusammenhang mit den beiliegenden Figuren ausführlicher beschrieben, wobei:
- Fig. 1a
- einen Isolationskörper gemäß erster Ausführungsformen der Erfindung in einer perspektivischen Ansicht schematisch darstellt,
- Fig. 1b
- den in
Fig. 1a dargestellten Isolationskörper zusammen mit einem davon aufgenommenen Magnetkern in einer perspektivischen Ansicht schematisch darstellt, - Fig. 1c
- einen bewickelten Spulenkörper gemäß den ersten Ausführungsformen der vorliegenden Erfindung in einer perspektivischen Ansicht schematisch darstellt,
- Fig. 1d
- ein induktives Bauelement gemäß den ersten Ausführungsformen der vorliegenden Erfindung in einer perspektivischen Ansicht schematisch darstellt,
- Fig. 2a
- einen Isolationskörper gemäß zweiter Ausführungsformen der Erfindung in einer perspektivischen Ansicht schematisch darstellt, und
- Fig. 2b
- ein induktives Bauelement mit dem in
Fig. 2a dargestellten Isolationskörper in einer perspektivischen Ansicht schematisch darstellt.
- Fig. 1a
- schematically represents an insulation body according to first embodiments of the invention in a perspective view,
- Figure 1b
- the in
Fig. 1a shows the insulation body shown together with a magnetic core received therefrom in a perspective view, - Figure 1c
- shows a wound bobbin according to the first embodiments of the present invention in a perspective view schematically,
- Fig. 1d
- schematically represents an inductive component according to the first embodiments of the present invention in a perspective view,
- Fig. 2a
- shows an insulation body according to second embodiments of the invention in a perspective view schematically, and
- Figure 2b
- an inductive component with the in
Fig. 2a represents the insulation body shown schematically in a perspective view.
Mit Bezug auf die
Gemäß der Darstellung in
Der bodenseitige Isolationswandabschnitt 22 kann eine an den Magnetkern 10 angepasste Form aufweisen, z.B. können Aussparungen im bodenseitigen Isolationswandabschnitt 22 vorgesehen sein, die von den U-förmigen Isolationswandabschnitten 27 umgeben sind (in der Darstellung von
Die Isolationswandabschnitte 24, 26 stehen von dem bodenseitigen Isolationswandabschnitt 22 entlang einer Normalenrichtung des bodenseitigen Isolationswandabschnitts 22 hervor, so dass die Aufnahme 25 durch den bodenseitigen Isolationswandabschnitt 22 und die davon abstehenden Isolationswandabschnitte 24, 26 festgelegt wird. Der Isolationskörper 20 ist bezüglich einer dem bodenseitigen Isolationswandabschnitt 22 gegenüberliegenden Seite und einer dem Isolationswandabschnitt 24 gegenüberliegenden Seite des bodenseitigen Isolationswandabschnitt 22 geöffnet.The
Dies stellt keine Beschränkung der vorliegenden Erfindung dar und eine dem bodenseitigen Isolationswandabschnitt 22 gegenüberliegende Seite des Isolationskörpers 20 kann teilweise durch einen dort vorgesehenen Isolationswandabschnitt (nicht dargestellt) bedeckt sein. Beispielsweise kann ein Isolationswandabschnitt (nicht dargestellt) mit einer gegenüber in der Bodenfläche des bodenseitigen Isolationswandabschnitts 22 kleineren Fläche, beispielsweise einer um höchstens die Hälfte kleineren Fläche, über den U-förmigen Isolationswandabschnitten 24 bedeckt sein. Dieser optionale Isolationswandabschnitt (nicht dargestellt) kann als eine "Pick&Place-Kappe" vorgesehen sein, um z.B. für einen Ansaugstutzen an einer Transportvorrichtung (nicht dargestellt) in einem automatisierten Fertigungsprozess greifbar zu sein.This does not represent a limitation of the present invention and a side of the
Der bodenseitige Isolationswandabschnitt 22 ist mit den Isolationswandabschnitten 26 und dem Isolationswandabschnitt 24 in mechanischer Verbindung, wobei der Isolationswandabschnitt 24 an einer Kante des bodenseitigen Isolationswandabschnitts 22 angeordnet ist und sich in der Normalenrichtung bezüglich des bodenseitigen Isolationswandabschnitts von diesem wegerstreckt, so dass sich der Isolationswandabschnitt 22 quer zu Erstreckungsrichtungen der Isolationswandabschnitte 26 erstreckt und mit den Isolationswandabschnitten 26 mechanisch verbunden ist.The floor-side
Gemäß der Darstellung in
Obgleich die Isolationswandabschnitte 24, 26 in der Darstellung von
Der Isolationskörper 20 umfasst ferner zwei Stegabschnitte 28, die an dem Isolationswandabschnitt 24 ausgebildet sind. Die dargestellten zwei Stegabschnitte 28 stellen keine Beschränkung der Erfindung dar und es kann eine beliebige Anzahl von Stegabschnitten 28 entlang des Isolationswandabschnitts 24 gebildet sein, beispielsweise lediglich ein Stegabschnitt (vgl.
Die Stegabschnitte 28 weisen einen sich in der Normalenrichtung des Isolationswandabschnitts 24 erstreckenden und damit in der Normalenrichtung zum Isolationswandabschnitt 24 von diesem hervorstehenden Vorsprungabschnitt 28a auf. Zusätzlich können die Stegabschnitte 28 ferner einen sich entlang der Normalenrichtung des bodenseitigen Isolationswandabschnitt 22 erstreckenden Vorsprungabschnitt 28b aufweisen, der entlang einer Unterseite des bodenseitigen Isolationswandabschnitts 22 von dem Isolationskörper 20 nach unten hervorsteht.The
Mit Bezug nun auf
Wie aus den
Gemäß den oben beschriebenen Höhenabmessungen des Magnetkerns 10 und der oben beschriebenen Tiefe der Aufnahme 25 ist sichergestellt, dass eine Seitenfläche 14 des Querjochs Sd des Magnetkerns 10, die im gemäß
Mit weiteren Bezug auf
Mit Bezug auf
Der in den
Gemäß der Darstellung in
Die Wickelkammer 34 des Spulenkörpers 30 kann gemäß der Darstellung in
Weiterhin ist dem Verbindungsabschnitt 36c gegenüberliegend ein Wandabschnitt 34b gebildet, der die Wickelkammerabschnitte 34a und 34c miteinander verbindet. Dadurch wird die Magnetkernaufnahme 32 durch die Wickelkammerabschnitte 34a, 34c, die Verbindungsabschnitte 36c und den dazu gegenüber liegenden Wandabschnitt 34b umschlossen.Furthermore, a
Gemäß einiger anschaulicher Ausführungsformen hierin, wie in
Mit Bezug auf
Zusätzlich oder alternativ kann in der Kontaktleiste 36b ferner wenigstens eine Aussparung 38b gebildet sein (z.B. zwei, wie in
Gemäß einiger anschaulicher Ausführungsformen können die Aussparungen 38a und 38b in den jeweiligen Kontaktleisten 36a und 36b jeweils zwischen benachbarten Kontaktelementen, z.B. den Kontaktpins 50a und 50b, gebildet sein (alternativ kann wenigstens eine Aussparung auch nur in einer Kontaktleiste gebildet sein). Beispielsweise können weiterhin die Kontaktelemente, z.B. die Kontaktpins 50a und 50b in der jeweiligen Leiste 36a und 36b, durch jeweiligen Aussparungen 38a und 38b in Untergruppen von Kontaktelementen unterteilt sein, wobei der Grad an Unterteilung abhängig vom Anwendungsfall ist. Die Anzahl von Aussparungen, die in einer der Kontaktleisten 36a, 36b gebildet sind, kann sich von der Anzahl von Aussparungen, die in der anderen der Kontaktleisten 36a, 36b gebildet sind, unterscheiden oder gleich sein. In jedem Fall steht die Anzahl von Aussparungen mit der Anzahl von Vorsprungabschnitten 28b, die am Isolationskörper 20 (vgl.
In einem anschaulichen Beispiel der ersten Ausführungsform ist eine Höhe HS eines Vorsprungabschnitts 28b kleiner oder gleich der Dicke (vgl. d in
Gemäß einer konkreten anschaulichen Ausgestaltung der ersten Ausführungsform ist die Höhe HS von wenigstens einem Vorsprungabschnitt 28b größer als eine Dicke (vgl. d in
Mit Bezug auf
Gemäß anschaulichen Ausführungsformen ist der Isolationskörper 20a an dem Spulenkörper 30 angeordnet, so dass der Isolationskörper 20a dem Isolationskörper 20 gegenüberliegt und der in den Isolationskörper 20a aufgenommene Magnetkern 10a in die Magnetkernaufnahme 32 des Spulenkörpers 30 teilweise aufgenommen ist. Ein dem wenigstens einen weiteren Kontaktelement 50a zugerichteter Seitenflächenabschnitt 14a des Magnetkerns 10a ist durch den Isolationswandabschnitt 24a des Isolationskörpers 20a wenigstens teilweise bedeckt.According to illustrative embodiments, the insulating
In einer alternativen Sichtweise kann das induktive Bauelement 100 als einen modularen Magnetkern 10' aufweisend angesehen werden. Dieser modulare Magnetkern 10' kann gemäß einer Doppel-E-Kernkonfiguration aus den E-förmigen Magnetkernen 10, 10a gebildet sein, wie dargestellt ist. Dies stellt keine Beschränkung dar und es können anstelle zweier E-Kerne auch zwei C-Kerne, ein E-Kern und ein C-Kern, ein E-Kern und ein I-Kern und ein C-Kern und ein I-Kern in dem induktiven Bauelement 100 kombiniert werden.In an alternative perspective, the
In der Sichtweise eines modularen Magnetkerns 10' stellen die einzelnen Magnetkerne 10, 10a einzelne Kernsegmente des modularen Magnetkerns 10' dar.In the perspective of a modular magnetic core 10 ', the individual
Entsprechend der Darstellung in
Gemäß der Darstellung in
Obgleich in
Obgleich der modulare oder integrale Isolationskörper 20' in der Darstellung von
Mit Bezug auf
Mit weiterem Bezug auf
Demzufolge werden erforderliche Luft- und Kriechstrecken zwischen den Kontaktpins 50a, 50b des induktiven Bauelements 100 und den Magnetkernen 10, 10a jeweils anhand der Höhe der Isolationskörper 20, 20a festgelegt. Vorteilhafterweise erfolgt die Kriechstreckenverlängerung unabhängig von einer Grundfläche des induktiven Bauelements 100, insbesondere einer unterseitigen Fläche des Spulenkörpers 30. Dies bedeutet wiederrum, dass das induktive Bauelement 100 in einer sehr kompakten Weise unter gleichzeitiger Einhaltung von erforderlichen Luft- und Kriechstrecken bereitgestellt werden kann.Accordingly, the required air and creepage distances between the contact pins 50a, 50b of the
Das induktive Bauelement 100 gemäß der ersten Ausführungsform kann entsprechend der folgenden Verfahrensschritte hergestellt werden. Die Magnetkerne 10 und 10a (oder Magnetkernsegmente des modularen Magnetkerns 10') werden in die entsprechenden Isolationskörper 20, 20a aufgenommen. Optional kann jeder der Magnetkerne 10, 10a in den entsprechenden Isolationskörper 20, 20a eingeklebt oder anderweitig, beispielsweise durch Strukturen gemäß Rastnasen oder -haken (nicht dargestellt), die an dem entsprechenden Isolationskörper 20, 20a bereitgestellt sind, oder eine Anbringung einer oberseitigen Isolationsabdeckung auf den entsprechenden Isolationskörpern 20, 20a nach Aufnahme der Magnetkerne 10, 10a in die entsprechenden Isolationskörper 20 und 20a montiert werden. Dadurch werden die einzelnen Magnetkerne 10, 10a jeweils in die einzelnen Isolationskörper 20, 20a aufgenommen und können zu diesem Zeitpunkt separat bereitgestellt sein kann.The
Unabhängig von der Bereitstellung der Magnetkerne 10, 10a in den Isolationskörpern 20, 20a wird der Spulenkörper 30 mit wenigstens einer Wickelung W1 bewickelt, beispielsweise in einem automatischen Wickelprozess.Independently of the provision of the
Anschließend wird jeder der Isolationskörper 20, 20a mit den entsprechenden Magnetkernen 10, 10a an einer entsprechenden der Kontaktleisten 36a, 36b entsprechend der oben beschriebenen Weise angebracht. Dazu werden Mittelschenkel (vgl. Sc in
Gegebenenfalls kann eine Fixierung der einzelnen Magnetkerne 10, 10a aneinander durch Verkleben an sich berührenden Stirnflächen der Magnetkerne 10, 10a erfolgen, wobei der Magnetkern 10' als Einheit bereitgestellt wird. Zusätzlich oder alternativ können die einzelnen Isolationskörper 20, 20a am Spulenkörper 30 mittels Klebung und dergleichen angebracht werden.If necessary, the individual
Das in
Zusammenfassend werden mit Bezug auf die
Dabei kann der Seitenflächenabschnitt 14 des Magnetkerns 10, der dem wenigstens einen Kontaktelement 50b zugerichtet ist, durch den Isolationswandabschnitt 24 vollständig bedeckt sein.The
Weiterhin können der Isolationskörper 20 und der Spulenkörper 30 durch die Verbindungsmittel 240 mechanisch verbunden sein. Dabei können die Verbindungsmittel 28, 38 wenigstens ein an dem Isolationskörper 20 angeordnetes erstes Verbindungselement 28 und wenigstens ein an dem Spulenkörper 20 angeordnetes zweites Verbindungselement 38 umfassen, die miteinander mechanisch in Eingriff treten. Zusätzlich oder alternativ können die Verbindungsmittel 28, 38 dazu ausgebildet sein, den Isolationskörper 20 und den Spulenkörper 30 mechanisch lösbar zu koppeln.Furthermore, the insulating
Weiterhin kann der Isolationskörper 20 durch wenigstens die drei Isolationswandabschnitte 22, 24, 26 gebildet sein, die miteinander verbunden sind, so dass der Isolationskörper 20 eine topf- oder schalenförmige Gestalt mit der Vertiefung 25 aufweist, in die der Magnetkern 10 aufgenommen ist. Dabei kann eine Tiefe der Vertiefung 25 größer oder gleich der Höhenabmessung H10 des Magnetkerns 10 sein, die bezüglich des Magnetkerns 10 entlang einer Richtung festgelegt ist, entlang der der Magnetkern 10 in die Vertiefung 25 aufgenommen ist.Furthermore, the
Weiterhin kann der Isolationskörper 20 ferner wenigstens einen der Stegabschnitte 28 umfassen, der an dem Isolationswandabschnitt 24 ausgebildet ist, der dem wenigstens einen Kontaktelement 50b zugerichtet ist und der entlang einer Normalenrichtung des Isolationswandabschnitts 24 von dem Isolationskörper 20 weg nach außen hervorsteht. Dabei kann dieser wenigstens eine Stegabschnitt 28 den zu dem Spulenkörper 30 hin hervorstehenden Vorsprungabschnitt 28b aufweisen, der jeweils in die im Spulenkörper 30 gebildete Positionierungsaussparung 38 eingesetzt ist, die an der Seite des Spulenkörpers 30 angeordnet ist, an der das wenigstens eine Kontaktelement 50b angeordnet ist. Weiterhin können die Kontaktelemente 50b in der Anzahl von zwei Kontaktpins an dem Seitenflächenabschnitt 37b des Spulenkörpers 30 bereitgestellt sein und es können wenigstens die zwei Drahtendabschnitte Wa und Wb der wenigstens einen Wicklung W1 entlang des wenigstens einen Stegabschnitts 28 an gegenüberliegenden Seiten davon jeweils zu einem der Kontaktelemente 50b geführt sein.Furthermore, the
Weiterhin kann das induktive Bauelement 100 ferner wenigstens weiter eines der Kontaktelemente 50a, das an dem Seitenflächenabschnitt 37a des Spulenkörpers 30 angebracht ist, der an der dem Kontaktelement 50b gegenüberliegenden Seite des Spulenkörpers 30 angeordnet ist, den weiteren Magnetkern 10a und den weiteren Isolationskörper 20a umfassen, wobei der weitere Isolationskörper 20a wenigstens den Isolationswandabschnitt 24a, der dem Seitenflächenabschnitt 14a des weiteren Magnetkerns 10a wenigstens teilweise zugerichtet ist, und einen damit verbundenen weiteren Isolationswandabschnitt aufweisen, der einem weiteren Seitenflächenabschnitt (mit dem Seitenflächenabschnitt 14a verbundenen Seitenflächenabschnitt) des weiteren Magnetkerns 10a wenigstens teilweise zugerichtet ist, wobei der weitere Isolationskörper 20a an dem Spulenkörper 30 angeordnet ist, so dass er dem Isolationskörper 20 gegenüberliegt und der in den weiteren Isolationskörper 20 aufgenommene weitere Magnetkern 10a in die Magnetkernaufnahme 32 teilweise aufgenommen ist. Dabei kann der dem wenigstens einen weiteren Kontaktelement 50a zugerichtete Seitenflächenabschnitt 14a des weiteren Magnetkerns 10a durch den Isolationswandabschnitt 24a des weiteren Isolationskörpers 20a wenigstens teilweise bedeckt sein und die Magnetkerne 10, 10an können jeweils gemäß einer E-Kernkonfiguration ausgebildet sein.Furthermore, the
Mit Bezug auf die
Abgesehen davon ist der Spulenkörper 230 entsprechend dem Spulenkörper 30 ausgebildet und weist insbesondere Kontaktleisten 236a, 236b auf, die durch einen Verbindungsbereich (nicht dargestellt) entsprechend dem Verbindungsabschnitt 360 verbunden sind. Weiterhin sind Kontaktpins 25a, 25b in den entsprechenden Stirnflächen 237a, 237b der entsprechenden Kontaktleisten 236a, 236b gebildet.Apart from this, the
Der Isolationskörper 220 weist einen bodenseitigen Isolationswandabschnitt 222 und sich entlang einer Normalenrichtung zum bodenseitigen Isolationswandabschnitt 222 davon weg erstreckende Isolationswandabschnitte 224 und 226 auf. Weiterhin sind in dem bodenseitigen Isolationswandabschnitt 222 U-förmige Isolationswandabschnitte 227 entsprechend den U-förmigen Isolationswandabschnitten 27 in der Darstellung der
In dem Isolationskörper 220 ist eine Aufnahme 225 gebildet, die von den Isolationswandabschnitten 224 und 226 lateral umgeben ist. Eine Tiefe der Ausnehmung 225 wird durch eine Höhe der Isolationswandabschnitte H220 festgelegt, wie bezüglich
In die Ausnehmung 225 in
Gemäß einiger anschaulicher Ausführungsformen kann der Magnetkern 210 ein aus einzelnen Magnetkernen 210a, 210b zusammengesetzter Magnetkern 210 in modularer Ausgestaltung sein, wobei die Magnetkerne 210a, 210b miteinander verklebt sein können, um dadurch den Magnetkern 210 nach Bereitstellung des induktiven Bauelements 200 in integraler Form bereitzustellen.According to some illustrative embodiments, the
Der Isolationskörper 220 kann dann zum Einsatz kommen, wenn im induktiven Bauelement 200 lediglich an einer Kontaktleiste (236a) zur Anlegung einer Hochspannung vorgesehene Kontaktelemente 250a bereitgestellt sind (an einer Kontaktleiste sollen Hochspannungsanschlüsse vorgesehen sein), während an der anderen Kontaktleiste 236b Kontaktelemente 250b zur Aufnahme eines Niederspannungspotentials vorgesehen sind. Dementsprechend wird mittels des Isolationskörpers 220 an der hochspannungstragenden Seite des induktiven Bauelements 200, insbesondere an der Kontaktleiste 236a der Hochspannungskontaktelemente 250a, durch den Isolationswandabschnitt 224, der den Hochspannungsanschlüssen zugerichtet ist, eine vorteilhafte Luft- und Kriechstreckenverlängerung zum Magnetkern 210 und der Wicklung W2 über dem Spulenkörper 230 bereitgestellt.The
Die Montage des Isolationskörpers 220 am Spulenkörper 230 gemäß der Darstellung in den
Das in
Zusammenfassend stellen die
Weiterhin kann der Seitenflächenabschnitt 214 des Magnetkerns 210, der dem wenigstens einen Kontaktelement 250a zugerichtet ist, durch den Isolationswandabschnitt 224 vollständig bedeckt sein.Furthermore, the
Weiterhin können der Isolationskörper 220 und der Spulenkörper 230 durch die Verbindungsmittel 240 mechanisch verbunden sein. Dabei können die Verbindungsmittel 240 wenigstens das an dem Isolationskörper 220 angeordnete erste Verbindungselement 242 und wenigstens das an dem Spulenkörper 230 angeordnete zweite Verbindungselement 244 umfassen, die miteinander mechanisch in Eingriff treten. Die Verbindungsmittel 240 können dazu ausgebildet sein, den Isolationskörper 220 und den Spulenkörper 230 mechanisch lösbar zu koppeln.Furthermore, the
Weiterhin kann der Isolationskörper 220 durch wenigstens drei Isolationswandabschnitte gebildet sein, die miteinander verbunden sind, so dass der Isolationskörper 220 eine topf- oder schalenförmige Gestalt mit der Vertiefung 225 aufweist, in die der Magnetkern 210 aufgenommen ist.Furthermore, the
Weiterhin kann die Tiefe der Vertiefung 225 größer oder gleich der Höhenabmessung H210 des Magnetkerns 210 sein, die bezüglich des Magnetkerns 210 entlang der Richtung festgelegt ist, entlang der der Magnetkern 210 in die Vertiefung 225 aufgenommen ist.Furthermore, the depth of the
Claims (12)
- An inductive component (100; 200) comprising:a magnetic core (10; 210),an insulation body (20; 220) formed from an electrically insulating material, in which the magnetic core (10; 210) is housed, the insulation body (20; 220) having at least two interconnected insulation wall portions (22, 24; 222, 224), each of which is at least partially facing a side surface portion (14, 16; 214) of the magnetic core (10; 210),at least one winding (W1; W2), anda bobbin (30; 230) on which the at least one winding (W1; W2) is wound, comprisingat least one contact element (50b; 250a) attached to a side surface portion (37b; 237a) of the bobbin (30; 230) for electrical connection to the at least one winding (W1; W2), anda magnetic core receptacle (32; 232) in which the magnetic core (10; 210) housed in the insulation body (20; 220) is partially accommodated,wherein a side surface portion (14; 214) of the magnetic core (10; 210) facing the at least one contact element (50b; 250a) is at least partially covered by one of the insulation wall portions (24; 224) of the insulation body (20; 220),characterized in that the insulation body (20) further comprises at least one rib portion (28) formed on the insulation wall portion (24) facing the at least one contact member (50b) and protruding to the outside away from the insulation body (20) along a normal direction of the insulation wall portion (24).
- The inductive component (100; 200) according to claim 1, wherein the side surface portion (14; 214) of the magnetic core (10; 210) facing the at least one contact element (50b; 250a) is completely covered by the insulation wall portion (24; 224).
- The Inductive component (100; 200) according to claim 1 or 2, wherein the insulation body (20; 220) and the bobbin (30; 230) are mechanically connected via connecting means (240).
- The inductive component (100; 200) according to claim 3, wherein said connecting means (28, 38; 240) comprise at least one first connecting element (28; 242) disposed on said insulation body (20, 220) and at least one second connecting element (38; 244) disposed on said bobbin (30, 230) which mechanically engage with each other.
- The inductive component (100; 200) according to claim 3 or 4, wherein said connecting means (28, 38; 240) are adapted to provide releasable mechanical coupling between said insulation body (20; 220) and said bobbin (30; 230).
- The inductive component (100; 200) according to any one of claims 1 to 5, wherein the insulation body (20; 220) is formed by at least three insulation wall sections connected to each other so that the insulation body (20; 220) has a pot- or bowl-shaped configuration with a recess (25; 225) in which the magnetic core (10; 210) is housed.
- The inductive component (100; 200) according to claim 6, wherein a depth of the recess (25; 225) is greater than or equal to a height dimension (H10; H210) of the magnetic core (10; 210) defined with respect to the magnetic core (10; 210) along a direction in which the magnetic core (10; 210) is received in the recess (25; 225).
- The inductive component (100) according to any one of claims 1 to 7, wherein the at least one rib portion (28) comprises a projection portion (28b) protruding toward the bobbin (30) and being respectively inserted into a positioning recess (38) formed in the bobbin (30) and arranged on a side where the at least one contact element (50b) is arranged.
- The inductive component (100) according to any one of claims 1 to 8, wherein at least two contact elements (50b) are formed on the side surface portion (37b) of the bobbin (30), and wherein at least two wire end portions (Wa, Wb) of the at least one winding (W1) are guided along the at least one rib portion (28) on opposite sides thereof to one of the contact elements (50b), respectively.
- The inductive component (100) according to any one of claims 1 to 9, further comprising at least one further contact element (50a) attached to a side surface portion (37a) of the bobbin (30) arranged on a side of the bobbin (30) opposite to the at least one contact element (50b),
a further magnetic core (10a), and
a further insulation body (20a), the further insulation body (20a) having at least two interconnected insulation wall portions (24a) each at least partially facing a side surface portion (14a) of the further magnetic core (10a),
wherein said further insulation body (20a) is arranged on said bobbin (30) opposite to said insulation body (20) and said further magnetic core (10a) housed in said further insulation body (20; 220) is partially accommodated in said magnetic core receptacle (32), and
wherein a side surface portion (14a) of the further magnetic core (10a) facing the at least one further contact element (50a) is at least partially covered by an insulation wall portion (24a) of the further insulation body (20a). - The inductive component (100) according to claim 10, wherein the magnetic cores (10, 10a) are each formed in an E-core configuration.
- A method of manufacturing the inductive component (100, 200) according to any one of claims 1 to 11, the method comprising:winding the at least one winding (W1; W2) on the bobbin (30; 230),housing the magnetic core (10; 210) in the insulation body (20; 220), andattaching the insulation body (20; 220) with the magnetic core (10; 210) housed therein to the bobbin (30; 230) with the winding thereon, wherein the magnetic core (10; 210) is partially received in the magnetic core receptacle (32; 232) of the bobbin (30; 230).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018202669.6A DE102018202669B3 (en) | 2018-02-22 | 2018-02-22 | Inductive component and method for producing an inductive component |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3531433A1 EP3531433A1 (en) | 2019-08-28 |
EP3531433B1 true EP3531433B1 (en) | 2021-02-17 |
Family
ID=63524113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18192874.8A Active EP3531433B1 (en) | 2018-02-22 | 2018-09-06 | Inductive module and method for producing an inductive module |
Country Status (8)
Country | Link |
---|---|
US (1) | US11587716B2 (en) |
EP (1) | EP3531433B1 (en) |
JP (1) | JP6676128B2 (en) |
KR (1) | KR102114060B1 (en) |
CN (1) | CN110189905B (en) |
CA (1) | CA3021650C (en) |
DE (1) | DE102018202669B3 (en) |
ES (1) | ES2871136T3 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018130504B4 (en) * | 2018-11-30 | 2023-11-23 | Borgwarner Ludwigsburg Gmbh | Primary coil former for an ignition coil and ignition coil with such a primary coil former |
DE102019208884A1 (en) * | 2019-06-19 | 2020-12-24 | SUMIDA Components & Modules GmbH | Inductive component |
DE102019213722A1 (en) * | 2019-09-10 | 2021-03-11 | SUMIDA Components & Modules GmbH | INDUCTIVE COMPONENT |
CN114089230A (en) * | 2021-10-27 | 2022-02-25 | 许继电源有限公司 | Explosion-proof tool for inductance fault experiment |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0722050B2 (en) * | 1990-02-09 | 1995-03-08 | 株式会社タムラ製作所 | Thin transformer |
JPH04131915U (en) * | 1991-05-29 | 1992-12-04 | 株式会社ダイヘン | stationary induction electrical equipment |
JP3311391B2 (en) * | 1991-09-13 | 2002-08-05 | ヴィエルティー コーポレーション | Leakage inductance reducing transformer, high frequency circuit and power converter using the same, and method of reducing leakage inductance in transformer |
JPH0812823B2 (en) * | 1993-02-03 | 1996-02-07 | 株式会社タムラ製作所 | Small transformer |
AU6686396A (en) | 1995-08-02 | 1997-02-26 | Northeast Ventures, Inc. | Bobbin assembled transformers |
JP2000049020A (en) * | 1998-07-28 | 2000-02-18 | Toshiba Tec Corp | Electromagnetic equipment |
US6255931B1 (en) * | 1998-12-01 | 2001-07-03 | Atech Technology Co., Ltd. | Hipot barrier structure for transformer |
JP2006270055A (en) * | 2005-02-28 | 2006-10-05 | Matsushita Electric Ind Co Ltd | Resonance type transformer and power supply unit using it |
JP2006278727A (en) * | 2005-03-29 | 2006-10-12 | Seiko Epson Corp | Transformer, electronic apparatus and recording device equipped therewith |
JP4209403B2 (en) * | 2005-04-12 | 2009-01-14 | 三菱電機株式会社 | Ignition device for internal combustion engine |
CN2829036Y (en) * | 2005-07-26 | 2006-10-18 | 东莞创慈磁性元件有限公司 | Separate double-channel transformer |
US7345565B2 (en) * | 2006-04-12 | 2008-03-18 | Taipei Multipower Electronics Co., Ltd. | Transformer structure |
DE102006029272B4 (en) * | 2006-06-26 | 2013-11-28 | SUMIDA Components & Modules GmbH | Modular bobbin and inductive component with a modular bobbin and method for producing an inductive component |
JP2008112753A (en) * | 2006-10-27 | 2008-05-15 | Tdk Corp | Lateral low-profile coil part, and soldering method of its winding terminal |
JP2009016581A (en) | 2007-07-04 | 2009-01-22 | Tamura Seisakusho Co Ltd | Transformer |
WO2009104113A1 (en) | 2008-02-20 | 2009-08-27 | Philips Intellectual Property & Standards Gmbh | High voltage transformer with space-saving primary windings |
TWI370466B (en) * | 2008-05-09 | 2012-08-11 | Delta Electronics Inc | Trensformer structure |
TWI351042B (en) * | 2008-07-15 | 2011-10-21 | Delta Electronics Inc | Combination structure of circuit carrier and transformer |
TWI381612B (en) * | 2008-08-04 | 2013-01-01 | Delta Electronics Inc | Transformer structure |
TW201113913A (en) * | 2009-10-15 | 2011-04-16 | Delta Electronics Inc | Transformer structure |
TWI379330B (en) * | 2009-11-18 | 2012-12-11 | Delta Electronics Inc | Transformer |
US20110187485A1 (en) * | 2010-02-04 | 2011-08-04 | Tdk Corporation | Transformer having sectioned bobbin |
US9646755B2 (en) * | 2010-11-15 | 2017-05-09 | Pulse Electronics, Inc. | Advanced electronic header apparatus and methods |
CN102163489B (en) | 2011-01-25 | 2012-10-03 | 清流县鑫磁线圈制品有限公司 | Series integrated inductive device |
JP5893892B2 (en) * | 2011-10-31 | 2016-03-23 | 株式会社タムラ製作所 | Reactor and manufacturing method thereof |
TWI437586B (en) * | 2012-03-26 | 2014-05-11 | Delta Electronics Inc | Transformer structure |
US9183974B1 (en) * | 2012-08-07 | 2015-11-10 | Universal Lighting Technologies, Inc. | Bobbin apparatus for reducing gap losses in magnetic components |
ES2405837B1 (en) | 2012-11-12 | 2013-10-18 | Premo, S.L. | Surface mount current sensor device |
CN103035364B (en) | 2012-12-28 | 2017-02-15 | 广州金升阳科技有限公司 | Electronic transformer |
DE102013206453B4 (en) | 2013-04-11 | 2015-02-12 | SUMIDA Components & Modules GmbH | Housing with extended creepage and clearance distances and electrical component with such housing |
CN104240918B (en) * | 2013-06-21 | 2016-08-17 | 台达电子工业股份有限公司 | Transformer device structure |
JP5928531B2 (en) * | 2013-08-19 | 2016-06-01 | 株式会社デンソー | Ignition coil |
TWI462129B (en) * | 2013-12-19 | 2014-11-21 | Delta Electronics Inc | Transformer combination structure and carrying base |
TWI463508B (en) * | 2014-04-22 | 2014-12-01 | Yujing Technology Co Ltd | The improved structure of the transformer |
CN104616869A (en) * | 2015-02-11 | 2015-05-13 | 南京优倍电气有限公司 | Enhancement intrinsic safety transformer |
CN205282221U (en) * | 2015-12-08 | 2016-06-01 | 光宝电子(广州)有限公司 | Transformer bearing and use electron device of this transformer bearing |
JP6677055B2 (en) * | 2016-04-06 | 2020-04-08 | スミダコーポレーション株式会社 | Small transformer |
JP6713335B2 (en) * | 2016-04-21 | 2020-06-24 | Njコンポーネント株式会社 | Trance |
-
2018
- 2018-02-22 DE DE102018202669.6A patent/DE102018202669B3/en active Active
- 2018-09-06 ES ES18192874T patent/ES2871136T3/en active Active
- 2018-09-06 EP EP18192874.8A patent/EP3531433B1/en active Active
- 2018-10-22 CA CA3021650A patent/CA3021650C/en active Active
- 2018-10-29 JP JP2018202782A patent/JP6676128B2/en active Active
- 2018-11-20 US US16/196,162 patent/US11587716B2/en active Active
- 2018-11-30 CN CN201811457515.9A patent/CN110189905B/en active Active
- 2018-12-13 KR KR1020180160738A patent/KR102114060B1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN110189905B (en) | 2022-07-19 |
JP2019145775A (en) | 2019-08-29 |
US20190259523A1 (en) | 2019-08-22 |
CA3021650C (en) | 2021-01-12 |
US11587716B2 (en) | 2023-02-21 |
EP3531433A1 (en) | 2019-08-28 |
JP6676128B2 (en) | 2020-04-08 |
DE102018202669B3 (en) | 2019-07-04 |
ES2871136T3 (en) | 2021-10-28 |
CA3021650A1 (en) | 2019-08-22 |
KR20190101277A (en) | 2019-08-30 |
KR102114060B1 (en) | 2020-05-25 |
CN110189905A (en) | 2019-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3531433B1 (en) | Inductive module and method for producing an inductive module | |
EP0594031B1 (en) | Electric inductance element | |
EP1880586B1 (en) | Starter transformer and lamp socket for a discharge lamp | |
DE10148133A1 (en) | Flat transformer with inserted secondary windings | |
DE112017000890T5 (en) | Circuit and electrical connection box | |
DE69712859T2 (en) | Control device for vehicle lighting | |
DE112005002980T5 (en) | Disc varistor and method for its production | |
EP1792321A1 (en) | Supporting component, interference suppression coil device, and production method | |
WO2008037591A1 (en) | Ignition coil, in particular for an internal combustion engine of a motor vehicle | |
EP3906571A1 (en) | Inductive component | |
WO2020254480A1 (en) | Inductive component | |
EP0713233A2 (en) | Arrangement of a relay with a plug-in adapter and method of manufacturing this arrangement | |
DE10304138B3 (en) | Vehicle IC engine ignition coil with electrically-conductive modular elements for interference suppression stacked together between HV side of ignition coil and ignition plug | |
DE102018215801A1 (en) | Electronics module, power electronics and motor vehicle | |
WO2013057266A1 (en) | High voltage transformer and wound coil former for ignition modules with terminal pins integral to the primary winding | |
DE102007025421B4 (en) | Ignition transformer and ignition module | |
EP0275496A2 (en) | Arrangement for electrically connecting an apparatus | |
DE112018002513T5 (en) | Electrical distribution box | |
EP1979920B1 (en) | Ignition transformer and ignition module for a discharge luminaire | |
DE102019124858B3 (en) | Blade fuse | |
DE102017202592A1 (en) | Control electronics with a magnetic flux guide element | |
DE602004012416T2 (en) | Insulating arrangement for electrical components | |
DE102007063690B4 (en) | ignition module | |
EP1122862A2 (en) | Polyphase motor | |
DE102011118288B4 (en) | Transformer with a cap for covering an inductive component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200228 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40013012 Country of ref document: HK |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01F 27/32 20060101ALI20200805BHEP Ipc: H01F 38/00 20060101ALI20200805BHEP Ipc: H01F 27/29 20060101ALI20200805BHEP Ipc: H01F 27/28 20060101ALI20200805BHEP Ipc: H01F 27/30 20060101ALI20200805BHEP Ipc: H01F 27/02 20060101AFI20200805BHEP Ipc: H01F 5/04 20060101ALI20200805BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200928 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018003889 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1362555 Country of ref document: AT Kind code of ref document: T Effective date: 20210315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210517 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210518 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2871136 Country of ref document: ES Kind code of ref document: T3 Effective date: 20211028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018003889 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20211118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210906 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210906 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231002 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230927 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240924 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240922 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240924 Year of fee payment: 7 |