EP3531156B1 - Adjusting a field distribution of an antenna assembly of a magnetic resonance system - Google Patents

Adjusting a field distribution of an antenna assembly of a magnetic resonance system Download PDF

Info

Publication number
EP3531156B1
EP3531156B1 EP18157877.4A EP18157877A EP3531156B1 EP 3531156 B1 EP3531156 B1 EP 3531156B1 EP 18157877 A EP18157877 A EP 18157877A EP 3531156 B1 EP3531156 B1 EP 3531156B1
Authority
EP
European Patent Office
Prior art keywords
antenna arrangement
antenna
symmetry
field distribution
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18157877.4A
Other languages
German (de)
French (fr)
Other versions
EP3531156A1 (en
Inventor
Razvan Lazar
Jürgen NISTLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthineers AG
Original Assignee
Siemens Healthineers AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Healthineers AG filed Critical Siemens Healthineers AG
Priority to EP18157877.4A priority Critical patent/EP3531156B1/en
Priority to US16/281,080 priority patent/US10761160B2/en
Priority to CN201910129622.7A priority patent/CN110174629B/en
Publication of EP3531156A1 publication Critical patent/EP3531156A1/en
Application granted granted Critical
Publication of EP3531156B1 publication Critical patent/EP3531156B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3664Switching for purposes other than coil coupling or decoupling, e.g. switching between a phased array mode and a quadrature mode, switching between surface coil modes of different geometrical shapes, switching from a whole body reception coil to a local reception coil or switching for automatic coil selection in moving table MR or for changing the field-of-view
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/10Plotting field distribution ; Measuring field distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34076Birdcage coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/5659Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the RF magnetic field, e.g. spatial inhomogeneities of the RF magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
    • G01R33/583Calibration of signal excitation or detection systems, e.g. for optimal RF excitation power or frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/422Screening of the radio frequency field

Definitions

  • the present invention relates to a method for adjusting a field distribution of an antenna arrangement of a magnetic resonance system.
  • the present invention relates in particular to a method for compensating for mechanical tolerances of an arrangement of a high-frequency antenna in a high-frequency screen of a magnetic resonance system.
  • the present invention further relates to a magnetic resonance system with an antenna arrangement, a computer program product and an electronically readable data carrier, which contribute to the implementation of the method.
  • antenna arrangements can be used to generate a high-frequency field, a so-called B1 field.
  • Such antenna arrangements can, for example, have a cylindrical or tubular structure which is arranged around a patient receiving opening of the magnetic resonance system.
  • Examples of antenna arrangements, which are often also called body coils, are in the publications US 8362775 B2 , US 6781378 B2 , US 8072218 B2 and US 20170016969 A1 described.
  • the DE 10 2011 089448 A1 relates to a breast coil for a magnetic resonance tomography device for generating magnetic resonance images of female breasts, with a coil housing with a breast recess for receiving a breast and with a number of coil elements. At least one of the coil elements forms an HF correction coil element and for this purpose has a circuit arrangement to switch the HF correction coil element between an HF correction operating state and another operating state.
  • the HF correction coil element is designed so that in the HF correction operating state it passively resonates with a B 1 field emitted by a transmitting antenna arrangement of the magnetic resonance tomography device and influences the local B 1 field distribution during a magnetic resonance recording.
  • the US 2013/021033 A1 relates to a system for adjusting a radio frequency (RF) magnetic field in an MR imaging unit using an RF transmitter coil for generating a radio frequency (RF) magnetic field and a plurality of RF receiver coils for receiving RF signals for magnetic resonance (MR) image data acquisition.
  • An RF transmitter coil generates an RF magnetic field.
  • An RF receiver coil receives an RF signal for MR image data acquisition and couples a magnetic field from the RF receiver coil to the RF transmitter coil for adaptively changing the RF magnetic field generated by the RF transmitter coil in response to an inhomogeneity in the RF magnetic field generated by the RF transmitter coil to reduce applying an RF pulse to the RF transmitter coil.
  • the WO 2007/124246A1 relates to a magnetic resonance system with a high-speed coil operating mode switch.
  • a hybrid circuit for cooperatively coupling a radio frequency control signal to a quadrature coil is configurable in at least one of at least two coil modes.
  • a time sequence of the at least two coil operating modes can be determined and used to compensate for B1 inhomogeneity.
  • the US 5,081,418 A relates to a method of adjusting a radio frequency coil for use in MR imaging applications.
  • the method uses shunts with a reactance in parallel with a switch to connect portions of the coil to ground, thereby limiting resonant operation of the coil to a known orientation.
  • an antenna arrangement can also be provided in conjunction with a local coil.
  • the antenna arrangement can include an actual antenna, for example a so-called birdcage antenna or a transverse electromagnetic resonator (TEM antenna), and a radio frequency screen (HF screen) in order to provide a defined environment for field generation.
  • TEM antenna transverse electromagnetic resonator
  • HF screen radio frequency screen
  • the interaction between the antenna and the HF shield is crucial, for example to achieve a symmetrical or homogeneous field distribution.
  • the distance between the antenna and the HF screen must be maintained as precisely as possible.
  • practical implementations of such antenna arrangements are based on a mechanical separation of the antenna and HF shield, which means that adjustment elements are required to compensate for the existing tolerances.
  • adjustable capacitors in addition to mechanical adjustment elements, adjustable capacitors, so-called trimming capacitors, can be provided in order to compensate for these mechanical tolerances and to improve the field distribution, for example to homogenize it or to increase field symmetry.
  • trimming capacitors can be provided in order to compensate for these mechanical tolerances and to improve the field distribution, for example to homogenize it or to increase field symmetry.
  • such adjustment work is very time-consuming and therefore cost-intensive.
  • the homogeneous or symmetrical field distribution of the B1 field emitted by the antenna arrangement can also be influenced during operation of the magnetic resonance system, for example by the patient to be examined.
  • the object of the present invention is therefore to improve a field distribution of an antenna arrangement of a magnetic resonance system, for example under the conditions described above.
  • this object is achieved by a method for adjusting a field distribution of an antenna arrangement of a magnetic resonance system, a magnetic resonance system, a computer program product and an electronically readable data carrier solved according to the independent claims.
  • the dependent claims define embodiments of the invention.
  • a method for adjusting a field distribution of an antenna arrangement of a magnetic resonance system is provided.
  • the antenna arrangement is a cylindrical antenna arrangement for generating radio frequency signals, which has a cylindrical radio frequency shield around the antenna arrangement.
  • a symmetry of the field distribution is impaired by a positional inaccuracy of the antenna arrangement in the magnetic resonance system.
  • a symmetry of the field distribution is impaired by a positional inaccuracy of the antenna arrangement in relation to the high-frequency screen (HF screen).
  • An impairment of the symmetry of the field distribution can include, for example, an impairment of the homogeneity of the field distribution inside the antenna arrangement.
  • the antenna arrangement includes several antenna resonant circuit elements and several switching elements.
  • a respective switching element of the plurality of switching elements is assigned to each antenna resonant circuit element of the plurality of antenna resonant circuit elements.
  • a respective switching element is designed to functionally couple the associated antenna resonant circuit element to the antenna arrangement or to decouple it from the antenna arrangement depending on a switching state of the switching element.
  • the combination of antenna resonant circuit element and associated switching element can therefore be viewed as a switchable antenna resonant circuit element.
  • the antenna arrangement can, for example, comprise an antenna with a birdcage structure.
  • a birdcage structure consists of a number of equidistant, parallel longitudinal antenna rods arranged on a cylindrical surface. These longitudinal rods are connected to each other at high frequencies at the ends by antenna end rings.
  • a high-frequency connection means that it is not necessarily a galvanic connection, but just one There is a transparent connection for high-frequency currents.
  • the switchable antenna resonant circuit elements can be arranged, for example, between galvanically separated sections of the end rings. Alternatively, the switchable antenna resonant circuit elements can be arranged, for example, parallel to one of the longitudinal rods.
  • symmetry information of the field distribution in the antenna arrangement is measured.
  • symmetry information of the field distribution inside the antenna arrangement can be measured.
  • symmetry information of the field distribution within the cylindrical surface, which is delimited by the longitudinal rods can be measured.
  • the multiple switching elements are automatically adjusted in such a way that the symmetry of the field distribution inside the antenna arrangement is increased.
  • An automatic control can, for example, control different switching combinations for the multiple switching elements using a suitable method and thus optimize the field distribution. For example, a gradient descent method can be used or many or all possible switching combinations can be tried out and the best possible field distribution can be determined.
  • the switchable antenna resonant circuit elements can thus compensate for mechanical tolerances that result from the interaction between the antenna and the high-frequency screen. Likewise, during operation of the magnetic resonance system, a patient's reaction to the field distribution within the antenna arrangement can be compensated for.
  • the positional inaccuracy of the antenna arrangement according to the invention includes a positional inaccuracy of an arrangement the antenna arrangement in relation to a high frequency shield.
  • This positional inaccuracy of the arrangement of the antenna arrangement in relation to the high-frequency screen can affect the symmetry of the field distribution inside the antenna arrangement.
  • effects of the positioning are at least partially compensated for according to the invention.
  • measuring the symmetry information includes measuring a resonance frequency of the antenna arrangement.
  • Resonance frequencies and their decoupling can depend on the symmetry properties of the field distribution in the antenna arrangement.
  • the multiple switching elements are adjusted based on the resonance frequency in such a way that a symmetry of the field distribution inside the antenna arrangement is increased, for example the multiple switching elements are adjusted so that one or more specific (desired) resonance frequencies and their decoupling occur.
  • the resonance frequency of the antenna arrangement can be determined, for example, when feeding a high-frequency signal into the antenna arrangement and is therefore easily available as a measure of the symmetry or homogeneity of the field distribution.
  • measuring the symmetry information includes measuring a B1 field in the antenna arrangement.
  • the multiple switching elements are adjusted based on the B1 field measurement in such a way that the symmetry of the field distribution inside the antenna arrangement is increased.
  • the measurement of the B1 field can be carried out, for example, using appropriate sensors at suitable locations inside the antenna arrangement. This can, for example, ensure homogeneity or symmetry in various particularly relevant areas.
  • measuring the symmetry information includes measuring a current distribution in the antenna arrangement.
  • the multiple switching elements are adjusted based on the current distribution in such a way that the symmetry of the field distribution inside the antenna arrangement is increased.
  • the current distribution in the antenna arrangement can be carried out, for example, with suitable current sensors, so-called pick-up coils.
  • the current sensors can be assigned to the switching elements, for example.
  • the current sensors can be assigned to individual elements of the end rings or the longitudinal rods of an antenna with a birdcage structure.
  • the current sensors can be arranged in areas of galvanic isolation between individual elements of the end rings.
  • the current distribution represents an indicator of the homogeneity or symmetry of the field distribution of the high-frequency field generated by the antenna arrangement and is therefore suitable for controlling the switching elements.
  • An antenna resonant circuit element of the plurality of antenna resonant circuit elements can comprise, for example, a capacitor.
  • the capacitor is coupled to the antenna arrangement by means of the associated switching element in order to change a capacitance of the antenna arrangement in order to increase the symmetry or homogeneity of the field distribution in the antenna arrangement.
  • a capacitor can be arranged in series with the associated switching element between two galvanically isolated elements of an end ring in order to increase the capacitive coupling between the galvanically isolated elements of the end ring depending on the switching state of the switching element.
  • such an increase in capacitive coupling can improve the symmetry or homogeneity of the field distribution.
  • an antenna resonant circuit element of the plurality of antenna resonant circuit elements can comprise, for example, an inductive element.
  • the inductive element is connected to the antenna arrangement by means of the associated switching element coupled to change an inductance of the antenna arrangement to increase the symmetry or homogeneity of the field distribution.
  • a series circuit consisting of the inductive element and the associated switching element can be arranged parallel to one of the longitudinal rods of an antenna with a birdcage structure. With this arrangement, an inductance of the longitudinal rod can be increased depending on the switching state of the switching element. Such an increase in inductance can improve the symmetry or homogeneity of the field distribution.
  • the plurality of switching elements can be switched independently of one another. This makes it possible to precisely adjust the field distribution and thus compensate for positional inaccuracy or other asymmetries or inhomogeneities in the field distribution.
  • a magnetic resonance system with an antenna arrangement according to claim 8 is further provided.
  • the antenna arrangement includes a plurality of antenna resonant circuit elements, a plurality of switching elements and a control device which is coupled to the plurality of switching elements for controlling the switching elements.
  • Each antenna resonant circuit element of the plurality of antenna resonant circuit elements is assigned one switching element of the plurality of switching elements.
  • a respective switching element is designed to functionally couple the associated antenna resonant circuit element to the antenna arrangement depending on a switching state of the switching element.
  • the control device is designed to measure symmetry information of the field distribution in the antenna arrangement and to automatically control the plurality of switching elements based on the measured symmetry information set in such a way that a Symmetry of the field distribution inside the antenna arrangement is increased.
  • the antenna arrangement is designed to carry out the method described above and therefore also includes the advantages described above in connection with the method.
  • the switching elements can include, for example, diodes whose switching state can be adjusted using a bias voltage.
  • the preload can be adjusted by the control device.
  • the switching elements can comprise transistors which are controlled by the control device.
  • the antenna arrangement can have a birdcage structure, for example.
  • the antenna arrangement includes two end rings.
  • Each of the end rings has a plurality of conductive surfaces isolated from one another in the circumferential direction. The several conductive surfaces are therefore galvanically isolated from one another.
  • An antenna resonant circuit element of the plurality of antenna resonant circuit elements can, for example, comprise a capacitor.
  • the capacitor is arranged between two conductive surfaces of one of the end rings.
  • the capacitor can be arranged together with its associated switching element between the two conductive surfaces in such a way that a capacitive coupling between the two conductive surfaces is increased by the capacitance of the capacitor when the switching element is closed. This allows the capacitive coupling between the conductive surfaces of the end rings to be changed.
  • the two conductive surfaces of one of the end rings can have a capacitive coupling to one another, for example due to their geometric arrangement to one another or due to capacitive elements arranged between them.
  • the switchable capacitor can have a capacity in the range of 1% to 20% of the capacitive coupling of the two conductive surfaces exhibit.
  • the switchable capacitor can have a capacity in the range of 5% to 10% of the capacitive coupling of the two conductive surfaces.
  • a change in the capacitive coupling between the two conductive surfaces in the range of, for example, 1% to 20% is generally sufficient to compensate for positioning tolerances of the antenna arrangement in relation to the high-frequency screen in a magnetic resonance system.
  • the antenna arrangement comprises a plurality of longitudinal rods.
  • An antenna resonant circuit element of the plurality of antenna resonant circuit elements can include, for example, an inductive element.
  • the inductive element is arranged parallel to one of the plurality of longitudinal bars in the longitudinal direction.
  • the inductive element together with its associated switching element can be arranged parallel to one of the plurality of longitudinal bars in such a way that an inductance of the longitudinal bar is increased.
  • the inductive element can, for example, have an inductance in the range of 1% to 20% of the inductance of the longitudinal rod.
  • the inductive element can have an inductance in the range of 5% to 10% of the inductance of the longitudinal rod.
  • the inductance of the longitudinal rod can be increased by the inductance of the inductive element depending on a switching state of the switching element.
  • Such a change in the inductance of a longitudinal rod in the range of, for example, 1% to 20% is generally sufficient to compensate for positioning tolerances of the antenna arrangement in relation to the high-frequency screen in a magnetic resonance system.
  • the magnetic resonance system can also, for example, have a high-frequency control device for controlling the antenna arrangement, a gradient control unit, an image sequence control and a computing unit that is designed to acquire MR data of a predetermined volume section within an examination object.
  • the symmetry of the field distribution is impaired by a positional inaccuracy of the antenna arrangement in the magnetic resonance system.
  • the positional inaccuracy of the antenna arrangement includes a positional inaccuracy of an arrangement of the antenna arrangement with respect to a high-frequency screen, wherein adjusting the plurality of switching elements such that a symmetry of the field distribution inside the antenna arrangement is increased at least partially compensates for the positional inaccuracy.
  • the magnetic resonance system is designed to carry out the method described above and therefore also includes the advantages described above in connection with the method.
  • the present invention further relates to a computer program product according to claim 14.
  • the computer program product may require program resources, e.g. libraries and auxiliary functions, in order to implement the corresponding embodiments of the method.
  • the claim directed to the computer program product is intended to protect, in particular, software with which one of the above-described embodiments of the method according to the invention can be carried out or which carries out this embodiment.
  • the software can be a source code (e.g. C++) that still needs to be compiled and bound or that only needs to be interpreted, or it can be an executable software code that only needs to be loaded into the corresponding computing unit for execution.
  • the present invention relates to an electronically readable data carrier according to claim 15, e.g. a DVD, a magnetic tape, a hard drive or a USB stick, on which electronically readable control information, in particular software (see above), is stored. If this control information (software) is read from the data carrier and stored in a control device or computing unit of a magnetic resonance system, all embodiments according to the invention of the method described above can be carried out.
  • an electronically readable data carrier e.g. a DVD, a magnetic tape, a hard drive or a USB stick, on which electronically readable control information, in particular software (see above), is stored. If this control information (software) is read from the data carrier and stored in a control device or computing unit of a magnetic resonance system, all embodiments according to the invention of the method described above can be carried out.
  • FIG 1 schematically represents a magnetic resonance system 10 (MR system).
  • the magnetic resonance system 10 has a magnet 11 for generating a polarization field B0.
  • An examination subject 13 arranged on a couch 12 can be moved into a cylindrical opening in the magnet 11 in order to record location-coded magnetic resonance signals or MR data from the examination subject 13.
  • a cylindrical antenna arrangement 50 for generating high-frequency signals, in particular high-frequency pulses (HF pulses), is also provided around the cylindrical opening.
  • a cylindrical high-frequency shield 40 is also provided around the antenna arrangement 50.
  • the magnetization generated by the polarization field B0 can be deflected from the equilibrium position and spatially coded, and the resulting magnetization is detected by receiving coils.
  • MR images magnetic resonance images
  • the magnetic resonance system 10 also has a controller 20 that can be used to control the magnetic resonance system 10.
  • the controller 20 has a gradient control unit 15 for controlling and switching the necessary magnetic field gradients.
  • a high-frequency control device (HF control device) 14 is provided for controlling the antenna arrangement 50 and generating the HF pulses to deflect the magnetization.
  • An image sequence control 16 controls the sequence of the magnetic field gradients and HF pulses and thus indirectly the gradient control unit 15 and the HF control device 14.
  • An operator can control the magnetic resonance system 10 via an input unit 17 and MR images and others necessary for control can be displayed on a display unit 18 information is displayed.
  • a computing unit 19 with at least one processor unit (not shown) is provided for controlling the various units in the controller 20 and for carrying out computing operations.
  • a memory unit 21 is provided in which, for example, program modules or programs can be stored, which, when executed by the computing unit 19 or its processor unit, can control the process of the magnetic resonance system 10.
  • the computing unit 19 is designed to calculate the MR images from the acquired magnetic resonance signals.
  • FIG 2 shows an exemplary structure of the antenna arrangement 50 in the form of a three-dimensional wire model.
  • the antenna arrangement 50 of FIG 2 has a so-called birdcage structure (Birdcage structure).
  • a birdcage structure consists of a number of equidistant, parallel longitudinal antenna rods 51 arranged on a cylindrical surface
  • FIG 2 the antenna arrangement 50 has eight longitudinal rods 51.
  • the antenna arrangement 50 can have any number of longitudinal antenna rods 51, for example six or more than eight, for example twelve or 16. These longitudinal rods 51 are each connected to one another at high frequencies at the ends by antenna end rings 52, 53.
  • “High-frequency connected” in this context means that there is not necessarily a galvanic connection, but rather just a connection between the longitudinal rods that is permeable to high-frequency currents.
  • the connection points 54,55 can be formed, for example, by conductive surfaces of the respective end ring 52,53.
  • the resonance capacitors 56 can be formed, for example, by opposing surfaces of these conductive surfaces 54,55.
  • resonance capacitors 56 can be arranged as discrete components between the conductive surfaces.
  • the longitudinal rods 51 each have a corresponding inductance due to their physical expansion in the longitudinal direction.
  • the end rings 52.53 are each round.
  • the end rings 52, 53 can also consist of straight sections running between two longitudinal antenna rods 51.
  • the antenna arrangement 50 is connected to the high-frequency control device 14 via connecting lines 57, 58.
  • the connecting lines 57, 58 are each connected to adjacent connection points next to a resonance capacitor 56. These connecting lines 57, 58 not only feed in the high-frequency pulses during transmission, but also also a tap of the captured magnetic resonance signals in reception mode.
  • a precise arrangement or precise interaction of the antenna arrangement 50 and the high-frequency screen 40 is crucial.
  • a precise arrangement of the antenna arrangement 50 in the high-frequency screen 40 for example a uniform distance between the antenna arrangement 50 and the high-frequency screen 40, is crucial for the homogeneity or symmetry of a high-frequency field generated by the antenna arrangement 50.
  • one or more resonance frequencies and their decoupling of the antenna arrangement 50 can be influenced by the arrangement of the antenna arrangement 50 in the high-frequency shield 40.
  • the performance of the antenna arrangement 50 can therefore be impaired by mechanical tolerances when installing the antenna arrangement 50.
  • the performance of the antenna arrangement 50 during operation of the magnetic resonance system 10 can be impaired by, for example, arranging the patient 13 within the antenna arrangement 50, since a field distribution of the field generated by the antenna arrangement 50 can be influenced by the patient 13.
  • the antenna arrangement 50 has switchable antenna resonant circuit elements.
  • FIG 3 shows a section of the antenna arrangement 50 FIG 2 .
  • FIG 3 shows only some of the connection points 54,55 of the end rings 52,53 and only one longitudinal antenna rod 51 of the several longitudinal antenna rods.
  • Two resonance capacitors 56 are shown between two adjacent connection points 54, 55.
  • the number of these resonance capacitors 56 between two adjacent connection points 54,55 is arbitrary.
  • the capacitance of these resonant capacitors 56 can also for example, generated by the connection points 54,55 themselves.
  • the connection points 54,55 can, as in FIG 3 shown, include conductive surfaces which lie opposite each other on one side and can thus form a capacitance.
  • the conductive surfaces 54, 55 are conductively connected to the longitudinal rod 51, whereby the longitudinal rod 51 can in turn be designed as a conductive surface.
  • Switchable antenna resonant circuit elements are available in the FIG 3 Combinations of a switching element and a capacitor are shown.
  • a switching element 59 is provided in series with a capacitor 60 as a switchable antenna resonant circuit element between the conductive surface 54 and the conductive surface 55.
  • a series connection of a switching element 62 and a capacitor 63 is provided as a switchable antenna resonant circuit element to the conductive surface adjacent there.
  • Corresponding switchable antenna resonant circuit elements are also provided on the end ring 53 between the conductive surfaces.
  • the switching elements 59,62 can be controlled by the control device 14.
  • a control line 61 is provided between the control device 14 and the switching element 59 and a control line 64 is provided between the control device 14 and the switching element 62.
  • the field distribution inside the antenna arrangement 50 can be adjusted in order, for example, to increase the symmetry or homogeneity of the field distribution and thus to compensate for mechanical tolerances in the positioning of the antenna arrangement 50 in the high-frequency shield 40.
  • a satisfactory adjustment of the field distribution inside the antenna arrangement 50 can be achieved with just a few switchable antenna resonant circuit elements.
  • a respective switchable antenna resonant circuit element can be provided in each of the end rings 52, 53 between each of the connection points 54, 55.
  • FIG 4 shows another example of a switchable antenna resonant circuit element.
  • the switchable antenna resonant circuit element in FIG 4 comprises a combination of a switching element 65 and an inductive element 66.
  • the inductive element 66 can, for example, be a conductor track or a flat conductor parallel to the longitudinal rod 51.
  • the switching element 65 When the switching element 65 is closed, the inductance of the inductive element 66 also has an effect on the inductance of the longitudinal antenna rod 51.
  • the switching element 65 can be controlled by the control device 14.
  • a control line 67 is provided between the control device 14 and the switching element 65.
  • Several of these switchable antenna resonant circuit elements can also be provided in a longitudinal antenna rod 51.
  • the field distribution inside the antenna arrangement 50 can be adjusted in order, for example, to increase the symmetry or homogeneity of the field distribution and thus to compensate for mechanical tolerances in the positioning of the antenna arrangement 50 in the high-frequency screen 40.
  • a satisfactory adjustment of the field distribution inside the antenna arrangement 50 can be achieved with just a few switchable antenna resonant circuit elements.
  • a respective switchable antenna resonant circuit element can be provided in only a few of the longitudinal antenna rods 51, for example only in two or four of the longitudinal antenna rods 51.
  • a corresponding switchable antenna resonant circuit element can be provided in each of the longitudinal rods 51.
  • the antenna resonant circuit elements between the conductive surfaces 54, 55 and in the longitudinal antenna rods 51 can be controlled independently of one another by the control device 14.
  • switchable antenna resonant circuit elements in the antenna arrangement 50 for example, mechanical tolerances that result from the interaction between the high-frequency screen 40 and the antenna arrangement 50 can be compensated for.
  • These switchable antenna resonant circuit elements can be used to adjust resonance frequencies and their decoupling.
  • the resonance frequencies and their decoupling can be measured, for example, with the high-frequency control device 14 when controlling the antenna arrangement 50 and the switchable antenna resonant circuit elements can be controlled accordingly in order to achieve suitable target values for the resonance frequencies and their decoupling.
  • the switchable antenna resonant circuit elements can be controlled, for example, using an optimization method, for example using a gradient descent method, in order to set a desired resonance frequency and their decoupling. Alternatively, all possible switching combinations of the switchable antenna resonant circuit elements can be tried out and the most suitable switching combination for operation can be selected.
  • a current distribution in the antenna arrangement 50 can also be used as an optimization criterion.
  • a current sensor can be assigned to each switching element.
  • FIG 5 shows such an arrangement in which the switching elements in the end ring 53 are each assigned a corresponding current sensor 72,73.
  • current sensors can also be provided which measure a current in the connection points 54, 55.
  • current sensors 69-71 for measuring respective currents in the connection points 54, 55 in the end ring 53 are shown.
  • the current sensors 69-73 can be connected to the high frequency control device 14 be coupled.
  • the current sensors 69-73 can each include a so-called pick-up coil.
  • the switchable antenna resonant circuit elements can be adjusted so that a homogeneous current distribution and thus also a homogeneous field distribution is achieved.
  • the effects of asymmetries during installation can be at least partially compensated for.
  • the antenna arrangement 50 is not placed centrally in the radio frequency shield 40, this can lead to an asymmetry in the B1 field in the transverse direction. This asymmetry can be compensated for by suitable control of the switchable antenna resonant circuit elements.
  • a corresponding current sensor does not have to be provided in the area of every switchable antenna resonant circuit element and every connection point in order to achieve a more homogeneous current distribution. Even with a smaller number of current sensors, asymmetries and inhomogeneities can be at least partially detected and thus compensated for.
  • the switchable antenna resonant circuit elements can be controlled by the high-frequency control device 14 in order, for example, to compensate for repercussions of the patient 13 on the current distribution in the antenna arrangement 50.
  • the current sensors described above can be used.
  • sensors for measuring the B1 field can also be used at various points to evaluate the B1 field and adjust the switchable antenna resonant circuit elements.
  • the B1 field can be measured at certain points with permanently installed sensors or with portable sensors and a so-called B1 map can be generated. Based on this B1 map, the B1 field distribution can be assessed by the high-frequency control device 14 and the switchable antenna resonant circuit elements be controlled accordingly to improve the B1 field.
  • FIG 6 shows schematically an example of a switching element, for example the switching element 59.
  • the switching element includes a diode.
  • the diode can in particular comprise a so-called PIN diode.
  • other switchable semiconductor elements can be used as switching elements, for example transistors.
  • the switching elements 59, 62, 65 in the end rings 52, 53 and the longitudinal antenna rods 51 can be switched on and off separately from each other via corresponding control lines.
  • the control device 14 applies a negative voltage compared to the cathode to the anode of the diode via the control lines 61.
  • the diode blocks and the switching element 59 is not permeable to high-frequency currents, the switching element 59 is therefore "open”.
  • a positive voltage relative to the cathode is applied by the control device 14 via the control lines 61 to the anode of the diode.
  • the diode conducts and the switching element 59 is permeable to high-frequency currents, the switching element 59 is therefore "closed”.
  • FIG 7 a flowchart of a method with steps 101 and 102 is shown.
  • the method can be carried out, for example, using the high-frequency control device 14.
  • symmetry information of the field distribution in the antenna arrangement 50 is measured.
  • the symmetry information can, for example, be a measure of homogeneity or indicate symmetry of a B1 field generated by the antenna arrangement 50.
  • a current distribution in the antenna arrangement 50 can be measured, resonance frequencies and their decoupling when feeding high-frequency signals into the antenna arrangement 50 can be measured, or the B1 field generated by the antenna arrangement 50 can be measured at different positions.
  • the multiple switching elements 59, 62, 65 in the end rings 52, 53 and in the longitudinal antenna rods 51 are automatically adjusted based on the measured symmetry information in such a way that the symmetry of the field distribution inside the antenna arrangement 50 is increased.
  • the method steps 101 and 102 can be carried out interactively several times in order to optimize the symmetry of the field distribution inside the antenna arrangement 50.

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Einstellen einer Feldverteilung einer Antennenanordnung einer Magnetresonanzanlage. Die vorliegende Erfindung betrifft insbesondere ein Verfahren zum Kompensieren mechanischer Toleranzen einer Anordnung einer Hochfrequenzantenne in einem Hochfrequenzschirm einer Magnetresonanzanlage. Die vorliegende Erfindung betrifft weiterhin eine Magnetresonanzanlage mit einer Antennenanordnung, ein Computerprogrammprodukt und einen elektronisch lesbaren Datenträger, welche zur Realisierung des Verfahrens beitragen.The present invention relates to a method for adjusting a field distribution of an antenna arrangement of a magnetic resonance system. The present invention relates in particular to a method for compensating for mechanical tolerances of an arrangement of a high-frequency antenna in a high-frequency screen of a magnetic resonance system. The present invention further relates to a magnetic resonance system with an antenna arrangement, a computer program product and an electronically readable data carrier, which contribute to the implementation of the method.

In Magnetresonanzanlagen (MR-Anlagen) können Antennenanordnungen verwendet werden, um ein Hochfrequenzfeld, ein sogenanntes B1-Feld, zu erzeugen. Derartige Antennenanordnungen können beispielsweise eine zylindrische oder röhrenförmige Struktur aufweisen, welche rund um eine Patientenaufnahmeöffnung der Magnetresonanzanlage angeordnet ist. Beispiele von Antennenanordnungen, die oftmals auch Ganzkörperspulen (engl. body coil) genannt werden, sind in den Druckschriften US 8362775 B2 , US 6781378 B2 , US 8072218 B2 und US 20170016969 A1 beschrieben.In magnetic resonance systems (MR systems), antenna arrangements can be used to generate a high-frequency field, a so-called B1 field. Such antenna arrangements can, for example, have a cylindrical or tubular structure which is arranged around a patient receiving opening of the magnetic resonance system. Examples of antenna arrangements, which are often also called body coils, are in the publications US 8362775 B2 , US 6781378 B2 , US 8072218 B2 and US 20170016969 A1 described.

Die DE 10 2011 089448 A1 betrifft eine Brustspule für eine Magnetresonanztomographieeinrichtung zur Erzeugung von Magnetresonanzaufnahmen weiblicher Brüste, mit einem Spulengehäuse mit einer Brustausnehmung zur Aufnahme einer Brust und mit einer Anzahl von Spulenelementen. Zumindest eines der Spulenelemente bildet ein HF-Korrekturspulenelement und weist hierzu eine Schaltungsanordnung auf, um das HF-Korrekturspulenelement zwischen einem HF-Korrektur-Betriebszustand und einem weiteren Betriebszustand umzuschalten. Dabei ist das HF-Korrekturspulenelement so ausgebildet, dass es im HF-Korrektur-Betriebszustand passiv mit einem von einer Sendeantennenanordnung der Magnetresonanztomographieeinrichtung ausgesendeten B1-Feld mitschwingt und die lokale B1-Feldverteilung während einer Magnetresonanzaufnahme beeinflusst.The DE 10 2011 089448 A1 relates to a breast coil for a magnetic resonance tomography device for generating magnetic resonance images of female breasts, with a coil housing with a breast recess for receiving a breast and with a number of coil elements. At least one of the coil elements forms an HF correction coil element and for this purpose has a circuit arrangement to switch the HF correction coil element between an HF correction operating state and another operating state. The HF correction coil element is designed so that in the HF correction operating state it passively resonates with a B 1 field emitted by a transmitting antenna arrangement of the magnetic resonance tomography device and influences the local B 1 field distribution during a magnetic resonance recording.

Die US 2013/021033 A1 betrifft ein System zum Einstellen eines Funkfrequenz- (RF) Magnetfelds in einer MR Bildgebungseinheit unter Verwendung einer RF Sendespule zum Erzeugen eines Funkfrequenz-(RF) Magnetfelds und mehrerer RF Empfängerspulen zum Empfangen von RF Signalen für eine Magnetresonanz-(MR) Bilddatenerfassung. Eine RF Sendespule erzeugt ein RF Magnetfeld. Eine RF Empfängerspule empfängt ein RF Signal für eine MR Bilddatenerfassung und koppelt ein Magnetfeld von der RF Empfängerspule auf die RF Sendespule zum anpassenden Ändern des von der RF Sendespule erzeugten RF Magnetfelds, um eine Inhomogenität in dem von der RF Sendespule erzeugten RF Magnetfeld als Antwort auf einen Anwenden eines RF Pulses auf die RF Sendespule zu verringern.The US 2013/021033 A1 relates to a system for adjusting a radio frequency (RF) magnetic field in an MR imaging unit using an RF transmitter coil for generating a radio frequency (RF) magnetic field and a plurality of RF receiver coils for receiving RF signals for magnetic resonance (MR) image data acquisition. An RF transmitter coil generates an RF magnetic field. An RF receiver coil receives an RF signal for MR image data acquisition and couples a magnetic field from the RF receiver coil to the RF transmitter coil for adaptively changing the RF magnetic field generated by the RF transmitter coil in response to an inhomogeneity in the RF magnetic field generated by the RF transmitter coil to reduce applying an RF pulse to the RF transmitter coil.

Die WO 2007/124246A1 betrifft eine Magnetresonanzanlage mit einer Hochgeschwindigkeitsspulenbetriebsartumschaltung. Ein Hybridschaltkreis zum zusammenarbeitenden Koppeln eines Funkfrequenzsteuersignals mit einer Quadraturspule ist in mindestens einer von mindestens zwei Spulenbetriebsarten konfigurierbar. Eine zeitliche Abfolge der mindestens zwei Spulenbetriebsarten kann bestimmt und verwendet werden, um eine B1 Inhomogenität zu kompensieren.The WO 2007/124246A1 relates to a magnetic resonance system with a high-speed coil operating mode switch. A hybrid circuit for cooperatively coupling a radio frequency control signal to a quadrature coil is configurable in at least one of at least two coil modes. A time sequence of the at least two coil operating modes can be determined and used to compensate for B1 inhomogeneity.

Die US 5 081 418 A betrifft ein Verfahren zum Einstellen einer Hochfrequenzspule für eine Verwendung bei MR-Bildgebungsanwendungen. Bei dem Verfahren werden Shunts mit einer Reaktanz parallel zu einem Schalter verwendet, um Abschnitte der Spule mit Masse zu verbinden, wodurch ein Resonanzbetrieb der Spule zu einer bekannten Ausrichtung begrenzt wird.The US 5,081,418 A relates to a method of adjusting a radio frequency coil for use in MR imaging applications. The method uses shunts with a reactance in parallel with a switch to connect portions of the coil to ground, thereby limiting resonant operation of the coil to a known orientation.

Alternativ zu den o.g. Ganzkörperspulen kann eine derartige Antennenanordnung auch in Verbindung mit einer Lokalspule vorgesehen sein. Die Antennenanordnung kann eine eigentliche Antenne, beispielsweise eine sogenannte Vogelkäfigantenne (Birdcage Antenna) oder einen transversal elektromagnetischen Resonator (TEM-Antenne), und einen Hochfrequenzschirm (HF-Schirm) umfassen, um eine definierte Umgebung für die Felderzeugung bereitzustellen. Für eine optimale Arbeitsweise der Antennenanordnung ist das Zusammenspiel von Antenne und HF-Schirm entscheidend, um beispielsweise eine symmetrische oder homogene Feldverteilung zu erreichen. Unter anderem ist dabei der Abstand zwischen Antenne und HF-Schirm möglichst exakt einzuhalten. Praktische Realisierungen derartiger Antennenanordnungen beruhen jedoch auf einer mechanischen Trennung von Antenne und HF-Schirm, wodurch Einstellelemente erforderlich sind, um die vorhandenen Toleranzen zu kompensieren.As an alternative to the above-mentioned whole-body coils, such an antenna arrangement can also be provided in conjunction with a local coil. The antenna arrangement can include an actual antenna, for example a so-called birdcage antenna or a transverse electromagnetic resonator (TEM antenna), and a radio frequency screen (HF screen) in order to provide a defined environment for field generation. For the antenna arrangement to work optimally, the interaction between the antenna and the HF shield is crucial, for example to achieve a symmetrical or homogeneous field distribution. Among other things, the distance between the antenna and the HF screen must be maintained as precisely as possible. However, practical implementations of such antenna arrangements are based on a mechanical separation of the antenna and HF shield, which means that adjustment elements are required to compensate for the existing tolerances.

Neben mechanischen Einstellelementen können einstellbare Kondensatoren, sogenannte Trimmkondensatoren, vorgesehen werden, um diese mechanischen Toleranzen auszugleichen und die Feldverteilung zu verbessern, beispielsweise zu homogenisieren oder eine Feldsymmetrie erhöhen. Derartige Einstellenarbeiten sind jedoch sehr zeit- und somit kostenintensiv. Ferner kann die homogene oder symmetrische Feldverteilung des von der Antennenanordnung abgegebenen B1-Feldes auch im Betrieb der Magnetresonanzanlage durch beispielsweise den zu untersuchenden Patienten beeinflusst werden.In addition to mechanical adjustment elements, adjustable capacitors, so-called trimming capacitors, can be provided in order to compensate for these mechanical tolerances and to improve the field distribution, for example to homogenize it or to increase field symmetry. However, such adjustment work is very time-consuming and therefore cost-intensive. Furthermore, the homogeneous or symmetrical field distribution of the B1 field emitted by the antenna arrangement can also be influenced during operation of the magnetic resonance system, for example by the patient to be examined.

Aufgabe der vorliegenden Erfindung ist es daher, eine Feldverteilung einer Antennenanordnung einer Magnetresonanzanlage beispielsweise unter den zuvor beschriebenen Bedingungen zu verbessern.The object of the present invention is therefore to improve a field distribution of an antenna arrangement of a magnetic resonance system, for example under the conditions described above.

Erfindungsgemäß wird diese Aufgabe durch ein Verfahren zum Einstellen einer Feldverteilung einer Antennenanordnung einer Magnetresonanzanlage, eine Magnetresonanzanlage, ein Computerprogrammprodukt und einen elektronisch lesbaren Datenträger gemäß der unabhängigen Ansprüche gelöst. Die abhängigen Ansprüche definieren Ausführungsformen der Erfindung.According to the invention, this object is achieved by a method for adjusting a field distribution of an antenna arrangement of a magnetic resonance system, a magnetic resonance system, a computer program product and an electronically readable data carrier solved according to the independent claims. The dependent claims define embodiments of the invention.

Gemäß der vorliegenden Erfindung wird ein Verfahren zum Einstellen einer Feldverteilung einer Antennenanordnung einer Magnetresonanzanlage gemäß Anspruch 1 bereitgestellt. Die Antennenanordnung ist eine zylinderförmige Antennenanordnung zur Erzeugung von Hochfrequenzsignalen, die einen zylinderförmigen Hochfrequenzschirm rund um die Antennenanordnung aufweist. Eine Symmetrie der Feldverteilung ist durch eine Positionsungenauigkeit der Antennenanordnung in der Magnetresonanzanlage beeinträchtigt. Eine Symmetrie der Feldverteilung ist durch eine Positionsungenauigkeit der Antennenanordnung in Bezug auf den Hochfrequenzschirm (HF-Schirm) beeinträchtigt. Eine Beeinträchtigung der Symmetrie der Feldverteilung kann beispielsweise eine Beeinträchtigung der Homogenität der Feldverteilung im Inneren der Antennenanordnung umfassen. Die Antennenanordnung umfasst mehrere Antennenschwingkreiselemente und mehrere Schaltelemente. Jedem Antennenschwingkreiselement der mehreren Antennenschwingkreiselemente ist ein jeweiliges Schaltelement der mehreren Schaltelemente zugeordnet. Ein jeweiliges Schaltelement ist ausgestaltet, dass zugeordnete Antennenschwingkreiselement in Abhängigkeit von einem Schaltzustand des Schaltelements mit der Antennenanordnung funktionsfähig zu koppeln oder von der Antennenanordnung zu entkoppeln. Die Kombination aus Antennenschwingkreiselement und zugeordnetem Schaltelement kann somit als ein schaltbares Antennenschwingkreiselement betrachtet werden.According to the present invention, a method for adjusting a field distribution of an antenna arrangement of a magnetic resonance system according to claim 1 is provided. The antenna arrangement is a cylindrical antenna arrangement for generating radio frequency signals, which has a cylindrical radio frequency shield around the antenna arrangement. A symmetry of the field distribution is impaired by a positional inaccuracy of the antenna arrangement in the magnetic resonance system. A symmetry of the field distribution is impaired by a positional inaccuracy of the antenna arrangement in relation to the high-frequency screen (HF screen). An impairment of the symmetry of the field distribution can include, for example, an impairment of the homogeneity of the field distribution inside the antenna arrangement. The antenna arrangement includes several antenna resonant circuit elements and several switching elements. A respective switching element of the plurality of switching elements is assigned to each antenna resonant circuit element of the plurality of antenna resonant circuit elements. A respective switching element is designed to functionally couple the associated antenna resonant circuit element to the antenna arrangement or to decouple it from the antenna arrangement depending on a switching state of the switching element. The combination of antenna resonant circuit element and associated switching element can therefore be viewed as a switchable antenna resonant circuit element.

Die Antennenanordnung kann beispielsweise eine Antenne mit einer Vogelkäfigstruktur (englisch: Birdcage structure) umfassen. Eine Vogelkäfigstruktur besteht aus einer Anzahl von auf einer zylinderartigen Oberfläche angeordneten, äquidistanten, parallel verlaufenden Antennen-Längsstäben. Diese Längsstäbe sind endseitig jeweils durch Antennen-Endringe hochfrequenzmäßig untereinander verbunden. Eine hochfrequenzmäßige Verbindung bedeutet in diesem Zusammenhang, dass nicht zwingend eine galvanische Verbindung, sondern lediglich eine für Hochfrequenzströme transparente Verbindung besteht. Die schaltbaren Antennenschwingkreiselemente können beispielsweise zwischen galvanisch getrennten Abschnitten der Endringe angeordnet sein. Alternativ können die schaltbaren Antennenschwingkreiselemente beispielsweise parallel zu einem der Längsstäbe angeordnet sein.The antenna arrangement can, for example, comprise an antenna with a birdcage structure. A birdcage structure consists of a number of equidistant, parallel longitudinal antenna rods arranged on a cylindrical surface. These longitudinal rods are connected to each other at high frequencies at the ends by antenna end rings. In this context, a high-frequency connection means that it is not necessarily a galvanic connection, but just one There is a transparent connection for high-frequency currents. The switchable antenna resonant circuit elements can be arranged, for example, between galvanically separated sections of the end rings. Alternatively, the switchable antenna resonant circuit elements can be arranged, for example, parallel to one of the longitudinal rods.

Bei dem Verfahren wird eine Symmetrieinformation der Feldverteilung in der Antennenanordnung gemessen. Insbesondere kann beispielsweise eine Symmetrieinformation der Feldverteilung im Inneren der Antennenanordnung gemessen werden. Im Fall einer Antennenanordnung mit Vogelkäfigstruktur kann beispielsweise eine Symmetrieinformation der Feldverteilung innerhalb der zylinderförmigen Oberfläche, welche von den Längsstäben begrenzt wird, gemessen werden. Anhand der gemessenen Symmetrieinformation werden die mehreren Schaltelemente automatisch derart eingestellt, dass eine Symmetrie der Feldverteilung im Inneren der Antennenanordnung erhöht wird.In the method, symmetry information of the field distribution in the antenna arrangement is measured. In particular, for example, symmetry information of the field distribution inside the antenna arrangement can be measured. In the case of an antenna arrangement with a birdcage structure, for example, symmetry information of the field distribution within the cylindrical surface, which is delimited by the longitudinal rods, can be measured. Based on the measured symmetry information, the multiple switching elements are automatically adjusted in such a way that the symmetry of the field distribution inside the antenna arrangement is increased.

Durch die Verwendung von Schaltelementen kann ein Einstellen beziehungsweise Abgleichen der Antennenanordnung auf einfache Art und Weise automatisiert werden. Eine automatische Steuerung kann beispielsweise verschiedene Schaltkombinationen für die mehreren Schaltelemente mithilfe eines geeigneten Verfahrens ansteuern und so die Feldverteilung optimieren. Beispielsweise kann ein Gradientenabstiegsverfahren dazu verwendet werden oder es können viele oder alle möglichen Schaltkombinationen ausprobiert werden und so die bestmögliche Feldverteilung ermittelt werden. Durch die schaltbaren Antennenschwingkreiselemente können somit mechanische Toleranzen, die sich aus dem Zusammenspiel zwischen Antenne und Hochfrequenzschirm ergeben, kompensiert werden. Ebenso kann im Betrieb der Magnetresonanzanlage eine Rückwirkung eines Patienten auf die Feldverteilung innerhalb der Antennenanordnung kompensiert werden.By using switching elements, setting or adjusting the antenna arrangement can be automated in a simple manner. An automatic control can, for example, control different switching combinations for the multiple switching elements using a suitable method and thus optimize the field distribution. For example, a gradient descent method can be used or many or all possible switching combinations can be tried out and the best possible field distribution can be determined. The switchable antenna resonant circuit elements can thus compensate for mechanical tolerances that result from the interaction between the antenna and the high-frequency screen. Likewise, during operation of the magnetic resonance system, a patient's reaction to the field distribution within the antenna arrangement can be compensated for.

Wie zuvor beschrieben, umfasst die Positionsungenauigkeit der Antennenanordnung erfindungsgemäß eine Positionsungenauigkeit einer Anordnung der Antennenanordnung in Bezug auf einen Hochfrequenzschirm.As described above, the positional inaccuracy of the antenna arrangement according to the invention includes a positional inaccuracy of an arrangement the antenna arrangement in relation to a high frequency shield.

Diese Positionsungenauigkeit der Anordnung der Antennenanordnung in Bezug auf den Hochfrequenzschirm kann die Symmetrie der Feldverteilung im Inneren der Antennenanordnung beeinträchtigen. Durch das Einstellen der mehreren Schaltelemente derart, dass eine Symmetrie der Feldverteilung im Inneren der Antennenanordnung erhöht wird, werden Auswirkungen der Posierfindungsgemäß zumindest teilweise kompensiert.This positional inaccuracy of the arrangement of the antenna arrangement in relation to the high-frequency screen can affect the symmetry of the field distribution inside the antenna arrangement. By adjusting the plurality of switching elements in such a way that the symmetry of the field distribution inside the antenna arrangement is increased, effects of the positioning are at least partially compensated for according to the invention.

Bei einem Ausführungsbeispiel umfasst das Messen der Symmetrieinformation ein Messen einer Resonanzfrequenz der Antennenanordnung. Resonanzfrequenzen und deren Entkopplung können von Symmetrieeigenschaften der Feldverteilung in der Antennenanordnung abhängen. Die mehreren Schaltelemente werden anhand der Resonanzfrequenz derart eingestellt, dass eine Symmetrie der Feldverteilung im Inneren der Antennenanordnung erhöht wird, beispielsweise die mehreren Schaltelemente so eingestellt werden, dass eine oder mehrere bestimmte (gewünschte) Resonanzfrequenzen und deren Entkopplung auftreten. Die Resonanzfrequenz der Antennenanordnung kann beispielsweise beim Einspeisen eines Hochfrequenzsignals in die Antennenanordnung bestimmt werden und ist somit auf einfache Art und Weise als Maß für die Symmetrie oder Homogenität der Feldverteilung verfügbar.In one embodiment, measuring the symmetry information includes measuring a resonance frequency of the antenna arrangement. Resonance frequencies and their decoupling can depend on the symmetry properties of the field distribution in the antenna arrangement. The multiple switching elements are adjusted based on the resonance frequency in such a way that a symmetry of the field distribution inside the antenna arrangement is increased, for example the multiple switching elements are adjusted so that one or more specific (desired) resonance frequencies and their decoupling occur. The resonance frequency of the antenna arrangement can be determined, for example, when feeding a high-frequency signal into the antenna arrangement and is therefore easily available as a measure of the symmetry or homogeneity of the field distribution.

Bei einem weiteren Ausführungsbeispiel umfasst das Messen der Symmetrieinformation ein Messen eines B1-Feldes in der Antennenanordnung. Die mehreren Schaltelemente werden anhand der B1-Feld-Messung derart eingestellt, dass eine Symmetrie der Feldverteilung im Inneren der Antennenanordnung erhöht wird. Die Messung des B1-Feldes kann beispielsweise mithilfe von entsprechenden Sensoren an geeigneten Stellen im Inneren der Antennenanordnung durchgeführt werden. Dadurch kann beispielsweise die Homogenität oder Symmetrie in verschiedenen besonders relevanten Bereichen sichergestellt werden.In a further embodiment, measuring the symmetry information includes measuring a B1 field in the antenna arrangement. The multiple switching elements are adjusted based on the B1 field measurement in such a way that the symmetry of the field distribution inside the antenna arrangement is increased. The measurement of the B1 field can be carried out, for example, using appropriate sensors at suitable locations inside the antenna arrangement. This can, for example, ensure homogeneity or symmetry in various particularly relevant areas.

Bei noch einem weiteren Ausführungsbeispiel umfasst das Messen der Symmetrieinformation ein Messen einer Stromverteilung in der Antennenanordnung. Die mehreren Schaltelemente werden anhand der Stromverteilung derart eingestellt, dass eine Symmetrie der Feldverteilung im Inneren der Antennenanordnung erhöht wird. Die Stromverteilung in der Antennenanordnung kann beispielsweise mit geeigneten Stromsensoren, sogenannten Pick-up-Spulen durchgeführt werden. Die Stromsensoren können beispielsweise den Schaltelementen zugeordnet sein. Alternativ oder zusätzlich können die Stromsensoren einzelnen Elementen der Endringe oder der Längsstäbe einer Antenne mit Vogelkäfigstruktur zugeordnet sein. Weiterhin können die Stromsensoren in Bereichen einer galvanischen Trennung zwischen einzelnen Elementen der Endringe angeordnet sein.In yet another embodiment, measuring the symmetry information includes measuring a current distribution in the antenna arrangement. The multiple switching elements are adjusted based on the current distribution in such a way that the symmetry of the field distribution inside the antenna arrangement is increased. The current distribution in the antenna arrangement can be carried out, for example, with suitable current sensors, so-called pick-up coils. The current sensors can be assigned to the switching elements, for example. Alternatively or additionally, the current sensors can be assigned to individual elements of the end rings or the longitudinal rods of an antenna with a birdcage structure. Furthermore, the current sensors can be arranged in areas of galvanic isolation between individual elements of the end rings.

Die Stromverteilung stellt einen Indikator für die Homogenität bzw. Symmetrie der Feldverteilung von dem von der Antennenanordnung erzeugten Hochfrequenzfeld dar und ist somit zum Steuern der Schaltelemente geeignet.The current distribution represents an indicator of the homogeneity or symmetry of the field distribution of the high-frequency field generated by the antenna arrangement and is therefore suitable for controlling the switching elements.

Ein Antennenschwingkreiselement der mehreren Antennenschwingkreiselemente kann beispielsweise einen Kondensator umfassen. Der Kondensator wird mittels des zugeordneten Schaltelements mit der Antennenanordnung gekoppelt, um eine Kapazität der Antennenanordnung zur Erhöhung der Symmetrie oder Homogenität der Feldverteilung in der Antennenanordnung zu verändern. Beispielsweise kann ein Kondensator in Reihe mit dem zugeordneten Schaltelement zwischen zwei galvanisch getrennten Elementen von einem Endring angeordnet werden, um in Abhängigkeit von dem Schaltzustand des Schaltelements die kapazitive Kopplung zwischen den galvanisch getrennten Elementen des Endrings zu erhöhen. In Abhängigkeit von der Asymmetrie oder Inhomogenität der Feldverteilung kann eine derartige Erhöhung der kapazitiven Kopplung die Symmetrie oder Homogenität der Feldverteilung verbessern.An antenna resonant circuit element of the plurality of antenna resonant circuit elements can comprise, for example, a capacitor. The capacitor is coupled to the antenna arrangement by means of the associated switching element in order to change a capacitance of the antenna arrangement in order to increase the symmetry or homogeneity of the field distribution in the antenna arrangement. For example, a capacitor can be arranged in series with the associated switching element between two galvanically isolated elements of an end ring in order to increase the capacitive coupling between the galvanically isolated elements of the end ring depending on the switching state of the switching element. Depending on the asymmetry or inhomogeneity of the field distribution, such an increase in capacitive coupling can improve the symmetry or homogeneity of the field distribution.

Alternativ oder zusätzlich kann ein Antennenschwingkreiselement der mehreren Antennenschwingkreiselemente beispielsweise ein induktives Element umfassen. Das induktive Element wird mittels des zugeordneten Schaltelements mit der Antennenanordnung gekoppelt, um eine Induktivität der Antennenanordnung zur Erhöhung der Symmetrie oder Homogenität der Feldverteilung zu verändern. Zum Beispiel kann eine Reihenschaltung bestehend aus dem induktiven Element und dem zugeordneten Schaltelement parallel zu einem der Längsstäbe einer Antenne mit Vogelkäfigstruktur angeordnet werden. Bei dieser Anordnung kann eine Induktivität des Längsstabs in Abhängigkeit von dem Schaltzustand des Schaltelements erhöht werden. Eine derartige Erhöhung der Induktivität kann die Symmetrie oder Homogenität der Feldverteilung verbessern.Alternatively or additionally, an antenna resonant circuit element of the plurality of antenna resonant circuit elements can comprise, for example, an inductive element. The inductive element is connected to the antenna arrangement by means of the associated switching element coupled to change an inductance of the antenna arrangement to increase the symmetry or homogeneity of the field distribution. For example, a series circuit consisting of the inductive element and the associated switching element can be arranged parallel to one of the longitudinal rods of an antenna with a birdcage structure. With this arrangement, an inductance of the longitudinal rod can be increased depending on the switching state of the switching element. Such an increase in inductance can improve the symmetry or homogeneity of the field distribution.

Bei einem weiteren Ausführungsbeispiel sind die mehreren Schaltelemente unabhängig voneinander schaltbar. Dadurch kann eine genaue Einstellung der Feldverteilung und somit eine Kompensation von Positionsungenauigkeit oder sonstigen Asymmetrien oder Inhomogenitäten der Feldverteilung ermöglicht werden.In a further exemplary embodiment, the plurality of switching elements can be switched independently of one another. This makes it possible to precisely adjust the field distribution and thus compensate for positional inaccuracy or other asymmetries or inhomogeneities in the field distribution.

Gemäß der vorliegenden Erfindung wird ferner eine Magnetresonanzanlage mit einer Antennenanordnung gemäß Anspruch 8 bereitgestellt. Eine Symmetrie einer Feldverteilung der Antennenanordnung ist erfindungsgemäß durch eine Positionsungenauigkeit der Antennenanordnung in der Magnetresonanzanlage beeinträchtigt. Die Antennenanordnung umfasst mehrere Antennenschwingkreiselemente, mehrere Schaltelemente und eine Steuervorrichtung, welche mit den mehreren Schaltelementen zur Ansteuerung der Schaltelemente gekoppelt ist. Jedem Antennenschwingkreiselement der mehreren Antennenschwingkreiselemente ist jeweils ein Schaltelement der mehreren Schaltelemente zugeordnet. Ein jeweiliges Schaltelement ist ausgestaltet, dass zugeordnete Antennenschwingkreiselement in Abhängigkeit von einem Schaltzustand des Schaltelements mit der Antennenanordnung funktionsfähig zu koppeln. Die Steuervorrichtung ist ausgestaltet, eine Symmetrieinformation der Feldverteilung in der Antennenanordnung zu messen und automatisch die mehreren Schaltelemente anhand der gemessenen Symmetrieinformation derart einzustellen, dass eine Symmetrie der Feldverteilung im Inneren der Antennenanordnung erhöht wird.According to the present invention, a magnetic resonance system with an antenna arrangement according to claim 8 is further provided. According to the invention, a symmetry of a field distribution of the antenna arrangement is impaired by a positional inaccuracy of the antenna arrangement in the magnetic resonance system. The antenna arrangement includes a plurality of antenna resonant circuit elements, a plurality of switching elements and a control device which is coupled to the plurality of switching elements for controlling the switching elements. Each antenna resonant circuit element of the plurality of antenna resonant circuit elements is assigned one switching element of the plurality of switching elements. A respective switching element is designed to functionally couple the associated antenna resonant circuit element to the antenna arrangement depending on a switching state of the switching element. The control device is designed to measure symmetry information of the field distribution in the antenna arrangement and to automatically control the plurality of switching elements based on the measured symmetry information set in such a way that a Symmetry of the field distribution inside the antenna arrangement is increased.

Die Antennenanordnung ist ausgestaltet, das zuvor beschriebene Verfahren auszuführen und umfasst daher auch die im Zusammenhang mit dem Verfahren zuvor beschriebenen Vorteile.The antenna arrangement is designed to carry out the method described above and therefore also includes the advantages described above in connection with the method.

Die Schaltelemente können beispielsweise Dioden umfassen, deren Schaltzustand mittels einer Vorspannung einstellbar ist. Die Vorspannung kann von der Steuervorrichtung eingestellt werden. Alternativ oder zusätzlich können die Schaltelemente Transistoren umfassen, welche von der Steuervorrichtung angesteuert werden.The switching elements can include, for example, diodes whose switching state can be adjusted using a bias voltage. The preload can be adjusted by the control device. Alternatively or additionally, the switching elements can comprise transistors which are controlled by the control device.

Die Antennenanordnung kann zum Beispiel eine Vogelkäfigstruktur aufweisen. Bei einer beispielhaften Antennenanordnung umfasst die Antennenanordnung zwei Endringe. Jeder der Endringe weist in Umfangsrichtung mehrere voneinander isolierte leitfähige Flächen auf. Die mehreren leitfähigen Flächen sind somit voneinander galvanisch getrennt. Ein Antennenschwingkreiselement der mehreren Antennenschwingkreiselementen kann beispielsweise einen Kondensator umfassen. Der Kondensator ist zwischen zwei leitfähigen Flächen von einem der Endringe angeordnet. Beispielsweise kann der Kondensator zusammen mit seinem zugeordneten Schaltelement derart zwischen den zwei leitfähigen Flächen angeordnet sein, dass eine kapazitive Kopplung zwischen den beiden leitfähigen Flächen bei geschlossenem Schaltelement um die Kapazität des Kondensators erhöht wird. Dadurch kann die kapazitive Kopplung zwischen den leitfähigen Flächen der Endringe verändert werden.The antenna arrangement can have a birdcage structure, for example. In an exemplary antenna arrangement, the antenna arrangement includes two end rings. Each of the end rings has a plurality of conductive surfaces isolated from one another in the circumferential direction. The several conductive surfaces are therefore galvanically isolated from one another. An antenna resonant circuit element of the plurality of antenna resonant circuit elements can, for example, comprise a capacitor. The capacitor is arranged between two conductive surfaces of one of the end rings. For example, the capacitor can be arranged together with its associated switching element between the two conductive surfaces in such a way that a capacitive coupling between the two conductive surfaces is increased by the capacitance of the capacitor when the switching element is closed. This allows the capacitive coupling between the conductive surfaces of the end rings to be changed.

Die zwei leitfähigen Flächen von dem einen der Endringe können eine kapazitive Kopplung zueinander aufweisen, beispielsweise aufgrund ihrer geometrischen Anordnung zueinander oder aufgrund von dazwischen angeordneten kapazitiven Elementen. Der schaltbare Kondensator kann eine Kapazität im Bereich von 1% bis 20% der kapazitiven Kopplung der zwei leitfähigen Flächen aufweisen. Insbesondere kann der schaltbare Kondensator eine Kapazität im Bereich von 5% bis 10% der kapazitiven Kopplung der zwei leitfähigen Flächen aufweisen. Eine Änderung der kapazitiven Kopplung zwischen den zwei leitfähigen Flächen im Bereich von beispielsweise 1% bis 20% ist im Allgemeinen ausreichend, um Positionierungstoleranzen der Antennenanordnung in Bezug zum Hochfrequenzschirm in einer Magnetresonanzanlage auszugleichen.The two conductive surfaces of one of the end rings can have a capacitive coupling to one another, for example due to their geometric arrangement to one another or due to capacitive elements arranged between them. The switchable capacitor can have a capacity in the range of 1% to 20% of the capacitive coupling of the two conductive surfaces exhibit. In particular, the switchable capacitor can have a capacity in the range of 5% to 10% of the capacitive coupling of the two conductive surfaces. A change in the capacitive coupling between the two conductive surfaces in the range of, for example, 1% to 20% is generally sufficient to compensate for positioning tolerances of the antenna arrangement in relation to the high-frequency screen in a magnetic resonance system.

Bei einer weiteren beispielhaften Antennenanordnung umfasst die Antennenanordnung mehrere Längsstäbe. Ein Antennenschwingkreiselement der mehreren Antennenschwingkreiselemente kann beispielsweise ein induktives Element umfassen. Das induktive Element wird parallel zu einem der mehreren Längsstäbe in Längsrichtung angeordnet. Beispielsweise kann das induktive Element zusammen mit seinem zugeordneten Schaltelement derart parallel zu einem der mehreren Längsstäbe angeordnet sein, dass eine Induktivität des Längsstabs erhöht wird.In a further exemplary antenna arrangement, the antenna arrangement comprises a plurality of longitudinal rods. An antenna resonant circuit element of the plurality of antenna resonant circuit elements can include, for example, an inductive element. The inductive element is arranged parallel to one of the plurality of longitudinal bars in the longitudinal direction. For example, the inductive element together with its associated switching element can be arranged parallel to one of the plurality of longitudinal bars in such a way that an inductance of the longitudinal bar is increased.

Das induktive Element kann beispielsweise eine Induktivität im Bereich von 1% bis 20% der Induktivität des Längsstabs aufweisen. Insbesondere kann das induktive Element eine Induktivität im Bereich von 5% bis 10% der Induktivität des Längsstabs aufweisen. Dadurch kann die Induktivität des Längsstabs in Abhängigkeit von einem Schaltzustand des Schaltelements um die Induktivität des induktiven Elements erhöht werden. Eine derartige Änderung der Induktivität eines Längsstabs im Bereich von beispielsweise 1% bis 20% ist im Allgemeinen ausreichend, um Positionierungstoleranzen der Antennenanordnung in Bezug zum Hochfrequenzschirm in einer Magnetresonanzanlage auszugleichen.The inductive element can, for example, have an inductance in the range of 1% to 20% of the inductance of the longitudinal rod. In particular, the inductive element can have an inductance in the range of 5% to 10% of the inductance of the longitudinal rod. As a result, the inductance of the longitudinal rod can be increased by the inductance of the inductive element depending on a switching state of the switching element. Such a change in the inductance of a longitudinal rod in the range of, for example, 1% to 20% is generally sufficient to compensate for positioning tolerances of the antenna arrangement in relation to the high-frequency screen in a magnetic resonance system.

Die Magnetresonanzanlage kann ferner beispielsweise eine Hochfrequenzsteuervorrichtung zur Ansteuerung der Antennenanordnung, eine Gradientensteuereinheit, eine Bildsequenzsteuerung und eine Recheneinheit umfassen, die ausgebildet sind, um MR-Daten eines vorbestimmten Volumenabschnitts innerhalb eines Untersuchungsobjekts zu erfassen. Erfindungsgemäß ist die Symmetrie der Feldverteilung durch eine Positionsungenauigkeit der Antennenanordnung in der Magnetresonanzanlage beeinträchtigt. Die Positionsungenauigkeit der Antennenanordnung umfasst eine Positionsungenauigkeit einer Anordnung der Antennenanordnung in Bezug auf einen Hochfrequenzschirm, wobei das Einstellen der mehreren Schaltelemente derart, dass eine Symmetrie der Feldverteilung im Innern der Antennenanordnung erhöht wird, die Positionsungenauigkeit zumindest teilweise kompensiert.The magnetic resonance system can also, for example, have a high-frequency control device for controlling the antenna arrangement, a gradient control unit, an image sequence control and a computing unit that is designed to acquire MR data of a predetermined volume section within an examination object. According to the invention, the symmetry of the field distribution is impaired by a positional inaccuracy of the antenna arrangement in the magnetic resonance system. The positional inaccuracy of the antenna arrangement includes a positional inaccuracy of an arrangement of the antenna arrangement with respect to a high-frequency screen, wherein adjusting the plurality of switching elements such that a symmetry of the field distribution inside the antenna arrangement is increased at least partially compensates for the positional inaccuracy.

Die Magnetresonanzanlage ist ausgestaltet, das zuvor beschriebene Verfahren auszuführen und umfasst daher auch die im Zusammenhang mit dem Verfahren zuvor beschriebenen Vorteile.The magnetic resonance system is designed to carry out the method described above and therefore also includes the advantages described above in connection with the method.

Des Weiteren betrifft die vorliegende Erfindung ein Computerprogrammprodukt gemäß Anspruch 14.The present invention further relates to a computer program product according to claim 14.

Mit diesem Computerprogrammprodukt können alle oder verschiedene vorab beschriebene Ausführungsformen des erfindungsgemäßen Verfahrens ausgeführt werden, wenn das Computerprogrammprodukt in der Steuervorrichtung läuft. Dabei benötigt das Computerprogrammprodukt eventuell Programmmittel, z.B. Bibliotheken und Hilfsfunktionen, um die entsprechenden Ausführungsformen des Verfahrens zu realisieren. Mit anderen Worten soll mit dem auf das Computerprogrammprodukt gerichteten Anspruch insbesondere eine Software unter Schutz gestellt werden, mit welcher eine der oben beschriebenen Ausführungsformen des erfindungsgemäßen Verfahrens ausgeführt werden kann bzw. welche diese Ausführungsform ausführt. Dabei kann es sich bei der Software um einen Quellcode (z.B. C++), der noch compiliert und gebunden oder der nur interpretiert werden muss, oder um einen ausführbaren Softwarecode handeln, der zur Ausführung nur noch in die entsprechende Recheneinheit zu laden ist.With this computer program product, all or various previously described embodiments of the method according to the invention can be carried out when the computer program product is running in the control device. The computer program product may require program resources, e.g. libraries and auxiliary functions, in order to implement the corresponding embodiments of the method. In other words, the claim directed to the computer program product is intended to protect, in particular, software with which one of the above-described embodiments of the method according to the invention can be carried out or which carries out this embodiment. The software can be a source code (e.g. C++) that still needs to be compiled and bound or that only needs to be interpreted, or it can be an executable software code that only needs to be loaded into the corresponding computing unit for execution.

Schließlich betrifft die vorliegende Erfindung einen elektronisch lesbaren Datenträger gemäß Anspruch 15, z.B. eine DVD, ein Magnetband, eine Festplatte oder einen USB-Stick, auf welchem elektronisch lesbare Steuerinformationen, insbesondere Software (vgl. oben), gespeichert ist. Wenn diese Steuerinformationen (Software) von dem Datenträger gelesen und in eine Steuervorrichtung bzw. Recheneinheit einer Magnetresonanzanlage gespeichert werden, können alle erfindungsgemäßen Ausführungsformen des vorab beschriebenen Verfahrens durchgeführt werden.Finally, the present invention relates to an electronically readable data carrier according to claim 15, e.g. a DVD, a magnetic tape, a hard drive or a USB stick, on which electronically readable control information, in particular software (see above), is stored. If this control information (software) is read from the data carrier and stored in a control device or computing unit of a magnetic resonance system, all embodiments according to the invention of the method described above can be carried out.

Nachfolgend wird die vorliegende Erfindung anhand erfindungsgemäßer Ausführungsformen unter Bezugnahme auf die Figuren im Detail beschrieben. Gleiche Bezugszeichen in den unterschiedlichen Figuren bezeichnen gleiche oder ähnliche Komponenten.

  • FIG 1 stellt schematisch eine Magnetresonanzanlage gemäß einer Ausführungsform der Erfindung dar.
  • FIG 2 zeigt schematisch eine Antennenanordnung gemäß einer Ausführungsform der vorliegenden Erfindung.
  • FIG 3 zeigt schematisch einen Ausschnitt einer Antennenanordnung gemäß einer Ausführungsform der vorliegenden Erfindung.
  • FIG 4 zeigt schematisch einen Ausschnitt einer Antennenanordnung gemäß einer weiteren Ausführungsform der vorliegenden Erfindung.
  • FIG 5 zeigt schematisch einen Ausschnitt einer Antennenanordnung gemäß einer weiteren Ausführungsform der vorliegenden Erfindung.
  • FIG 6 zeigt schematisch ein Schaltelement mit einer Ansteuerung gemäß einer Ausführungsform der vorliegenden Erfindung.
  • FIG 7 zeigt schematisch ein Ablaufdiagramm mit Verfahrensschritten eines Verfahrens gemäß einer Ausführungsform der vorliegenden Erfindung.
The present invention is described in detail below using embodiments of the invention with reference to the figures. The same reference numbers in the different figures designate the same or similar components.
  • FIG 1 schematically represents a magnetic resonance system according to an embodiment of the invention.
  • FIG 2 shows schematically an antenna arrangement according to an embodiment of the present invention.
  • FIG 3 shows schematically a section of an antenna arrangement according to an embodiment of the present invention.
  • FIG 4 shows schematically a section of an antenna arrangement according to a further embodiment of the present invention.
  • FIG 5 shows schematically a section of an antenna arrangement according to a further embodiment of the present invention.
  • FIG 6 shows schematically a switching element with a control according to an embodiment of the present invention.
  • FIG 7 schematically shows a flowchart with process steps of a method according to an embodiment of the present invention.

FIG 1 stellt schematisch eine Magnetresonanzanlage 10 (MR-Anlage) dar. Die Magnetresonanzanlage 10 weist einen Magneten 11 zur Erzeugung eines Polarisationsfelds B0 auf. Eine auf einer Liege 12 angeordnete Untersuchungsperson 13 kann in eine zylinderförmiger Öffnung in dem Magneten 11 gefahren werden, um dort ortskodierte Magnetresonanzsignale bzw. MR-Daten von der Untersuchungsperson 13 aufzunehmen. Rund um die zylinderförmiger Öffnung ist ferner eine zylinderförmige Antennenanordnung 50 zur Erzeugung von Hochfrequenzsignalen, insbesondere Hochfrequenzpulsen (HF-Pulse), vorgesehen. Um eine definierte Umgebung für eine Felderzeugung durch die Antennenanordnung 50 bereitzustellen, ist ferner ein zylinderförmiger Hochfrequenzschirm 40 rund um die Antennenanordnung 50 vorgesehen. Durch Einstrahlen von Hochfrequenzpulsen mit der Antennenanordnung 50 und Schalten von Magnetfeldgradienten kann die durch das Polarisationsfeld B0 erzeugte Magnetisierung aus der Gleichgewichtslage ausgelenkt und ortskodiert werden, und die sich ergebende Magnetisierung wird von Empfangsspulen detektiert. Wie durch Einstrahlen der HF-Pulse und durch Schalten von Magnetfeldgradienten in verschiedenen Kombinationen und Reihenfolgen Magnetresonanzbilder (MR-Bilder) erzeugt werden können, ist dem Fachmann grundsätzlich bekannt und wird hier nicht näher erläutert. FIG 1 schematically represents a magnetic resonance system 10 (MR system). The magnetic resonance system 10 has a magnet 11 for generating a polarization field B0. An examination subject 13 arranged on a couch 12 can be moved into a cylindrical opening in the magnet 11 in order to record location-coded magnetic resonance signals or MR data from the examination subject 13. A cylindrical antenna arrangement 50 for generating high-frequency signals, in particular high-frequency pulses (HF pulses), is also provided around the cylindrical opening. In order to provide a defined environment for field generation by the antenna arrangement 50, a cylindrical high-frequency shield 40 is also provided around the antenna arrangement 50. By radiating high-frequency pulses with the Antenna arrangement 50 and switching of magnetic field gradients, the magnetization generated by the polarization field B0 can be deflected from the equilibrium position and spatially coded, and the resulting magnetization is detected by receiving coils. How magnetic resonance images (MR images) can be generated by irradiating the RF pulses and switching magnetic field gradients in various combinations and sequences is fundamentally known to those skilled in the art and will not be explained in more detail here.

Die Magnetresonanzanlage 10 weist weiterhin eine Steuerung 20 auf, die zur Steuerung der Magnetresonanzanlage 10 verwendet werden kann. Die Steuerung 20 weist eine Gradientensteuereinheit 15 zur Steuerung und Schaltung der notwendigen Magnetfeldgradienten auf. Eine Hochfrequenzsteuervorrichtung (HF-Steuervorrichtung) 14 ist für die Steuerung der Antennenanordnung 50 und die Generierung der HF-Pulse zur Auslenkung der Magnetisierung vorgesehen. Eine Bildsequenzsteuerung 16 steuert die Abfolge der Magnetfeldgradienten und HF-Pulse und damit indirekt die Gradientensteuereinheit 15 und die HF-Steuervorrichtung 14. Über eine Eingabeeinheit 17 kann eine Bedienperson die Magnetresonanzanlage 10 steuern und auf einer Anzeigeeinheit 18 können MR-Bilder und sonstige zur Steuerung notwendige Informationen angezeigt werden. Eine Recheneinheit 19 mit mindestens einer Prozessoreinheit (nicht gezeigt) ist vorgesehen zur Steuerung der verschiedenen Einheiten in der Steuerung 20 und zur Durchführung von Rechenoperationen. Weiterhin ist eine Speichereinheit 21 vorgesehen, in der beispielsweise Programmmodule bzw. Programme abgespeichert sein können, die, wenn sie von der Recheneinheit 19 bzw. ihrer Prozessoreinheit ausgeführt werden, den Ablauf der Magnetresonanzanlage 10 steuern können. Die Recheneinheit 19 ist ausgebildet, um aus den erfassten Magnetresonanzsignalen die MR-Bilder zu berechnen.The magnetic resonance system 10 also has a controller 20 that can be used to control the magnetic resonance system 10. The controller 20 has a gradient control unit 15 for controlling and switching the necessary magnetic field gradients. A high-frequency control device (HF control device) 14 is provided for controlling the antenna arrangement 50 and generating the HF pulses to deflect the magnetization. An image sequence control 16 controls the sequence of the magnetic field gradients and HF pulses and thus indirectly the gradient control unit 15 and the HF control device 14. An operator can control the magnetic resonance system 10 via an input unit 17 and MR images and others necessary for control can be displayed on a display unit 18 information is displayed. A computing unit 19 with at least one processor unit (not shown) is provided for controlling the various units in the controller 20 and for carrying out computing operations. Furthermore, a memory unit 21 is provided in which, for example, program modules or programs can be stored, which, when executed by the computing unit 19 or its processor unit, can control the process of the magnetic resonance system 10. The computing unit 19 is designed to calculate the MR images from the acquired magnetic resonance signals.

FIG 2 zeigt in Form eines dreidimensionalen Drahtmodells einen beispielhaften Aufbau der Antennenanordnung 50. Die Antennenanordnung 50 der FIG 2 weist eine sogenannte Vogelkäfigstruktur (Birdcage structure) auf. Eine solche Vogelkäfigstruktur besteht aus einer Anzahl von auf einer zylinderförmigen Oberfläche angeordneten, äquidistanten, parallel verlaufenden Antennen-Längsstäben 51. In dem Beispiel der FIG 2 weist die Antennenanordnung 50 acht Längsstäbe 51 auf. Die Antennenanordnung 50 kann jedoch eine beliebige Anzahl von Antennen-Längsstäben 51 aufweisen, beispielsweise sechs oder mehr als acht, beispielsweise zwölf oder 16. Diese Längsstäbe 51 sind endseitig jeweils durch Antennen-Endringe 52,53 hochfrequenzmäßig untereinander verbunden. "Hochfrequenzmäßig verbunden" bedeutet in diesem Zusammenhang, dass nicht zwingend eine galvanische Verbindung, sondern lediglich eine für Hochfrequenzströme durchlässige Verbindung zwischen den Längsstäben besteht. Beispielsweise befinden sich in den Antennen-Endringen 52,53 jeweils zwischen zwei Anschlussstellen 54,55 benachbarter Antennen-Längsstäbe 51 Resonanzkondensatoren 56. Die Anschlussstellen 54,55 können beispielsweise durch leitfähige Flächen des jeweiligen Endrings 52,53 gebildet werden. Die Resonanzkondensatoren 56 können beispielsweise durch gegenüberliegende Flächen dieser leitfähigen Flächen 54,55 gebildet werden. Alternativ oder zusätzlich können Resonanzkondensatoren 56 als diskrete Bauelemente zwischen den leitfähigen Flächen angeordnet sein. Die Längsstäbe 51 besitzen aufgrund ihrer physikalischen Ausdehnung in Längsrichtung jeweils eine entsprechende Induktivität. FIG 2 shows an exemplary structure of the antenna arrangement 50 in the form of a three-dimensional wire model. The antenna arrangement 50 of FIG 2 has a so-called birdcage structure (Birdcage structure). Such a birdcage structure consists of a number of equidistant, parallel longitudinal antenna rods 51 arranged on a cylindrical surface FIG 2 the antenna arrangement 50 has eight longitudinal rods 51. However, the antenna arrangement 50 can have any number of longitudinal antenna rods 51, for example six or more than eight, for example twelve or 16. These longitudinal rods 51 are each connected to one another at high frequencies at the ends by antenna end rings 52, 53. “High-frequency connected” in this context means that there is not necessarily a galvanic connection, but rather just a connection between the longitudinal rods that is permeable to high-frequency currents. For example, there are resonance capacitors 56 in the antenna end rings 52,53 between two connection points 54,55 of adjacent longitudinal antenna rods 51. The connection points 54,55 can be formed, for example, by conductive surfaces of the respective end ring 52,53. The resonance capacitors 56 can be formed, for example, by opposing surfaces of these conductive surfaces 54,55. Alternatively or additionally, resonance capacitors 56 can be arranged as discrete components between the conductive surfaces. The longitudinal rods 51 each have a corresponding inductance due to their physical expansion in the longitudinal direction.

In dem in FIG 2 dargestellten Beispiel sind die Endringe 52,53 jeweils rund. Alternativ können die Endringe 52,53 auch aus jeweils zwischen zwei Antennen-Längsstäben 51 verlaufenden geraden Abschnitten bestehen.In the in FIG 2 In the example shown, the end rings 52.53 are each round. Alternatively, the end rings 52, 53 can also consist of straight sections running between two longitudinal antenna rods 51.

Die Antennenanordnung 50 ist über Anschlussleitungen 57,58 mit der Hochfrequenzsteuervorrichtung 14 verbunden. Die Anschlussleitungen 57,58 sind jeweils an benachbarten Anschlussstellen neben einem Resonanzkondensator 56 angeschlossen. Über diese Anschlussleitungen 57,58 erfolgt nicht nur die Einspeisung der Hochfrequenzpulse im Sendebetrieb, sondern auch ein Abgriff der aufgefangenen Magnetresonanzsignale im Empfangsbetrieb.The antenna arrangement 50 is connected to the high-frequency control device 14 via connecting lines 57, 58. The connecting lines 57, 58 are each connected to adjacent connection points next to a resonance capacitor 56. These connecting lines 57, 58 not only feed in the high-frequency pulses during transmission, but also also a tap of the captured magnetic resonance signals in reception mode.

Für eine optimale Leistungsfähigkeit der Antennenanordnung 50 ist eine genaue Anordnung bzw. ein genaues Zusammenspiel von der Antennenanordnung 50 und dem Hochfrequenzschirm 40 entscheidend. Unter anderem ist eine genaue Anordnung der Antennenanordnung 50 in dem Hochfrequenzschirm 40, beispielsweise ein gleichmäßiger Abstand zwischen der Antennenanordnung 50 und dem Hochfrequenzschirm 40, entscheidend für eine Homogenität oder Symmetrie eines von der Antennenanordnung 50 erzeugten Hochfrequenzfeldes. Ferner können eine Resonanzfrequenz oder mehrere Resonanzfrequenzen und deren Entkopplung der Antennenanordnung 50 durch die Anordnung der Antennenanordnung 50 in dem Hochfrequenzschirm 40 beeinflusst werden. Die Leistungsfähigkeit der Antennenanordnung 50 kann somit durch mechanische Toleranzen beim Einbau der Antennenanordnung 50 beeinträchtigt werden. Darüber hinaus kann die Leistungsfähigkeit der Antennenanordnung 50 im Betrieb der Magnetresonanzanlage 10 durch beispielsweise das Anordnen des Patienten 13 innerhalb der Antennenanordnung 50 beeinträchtigt werden, da eine Feldverteilung des von der Antennenanordnung 50 erzeugten Feldes von dem Patienten 13 beeinflusst werden kann.For optimal performance of the antenna arrangement 50, a precise arrangement or precise interaction of the antenna arrangement 50 and the high-frequency screen 40 is crucial. Among other things, a precise arrangement of the antenna arrangement 50 in the high-frequency screen 40, for example a uniform distance between the antenna arrangement 50 and the high-frequency screen 40, is crucial for the homogeneity or symmetry of a high-frequency field generated by the antenna arrangement 50. Furthermore, one or more resonance frequencies and their decoupling of the antenna arrangement 50 can be influenced by the arrangement of the antenna arrangement 50 in the high-frequency shield 40. The performance of the antenna arrangement 50 can therefore be impaired by mechanical tolerances when installing the antenna arrangement 50. In addition, the performance of the antenna arrangement 50 during operation of the magnetic resonance system 10 can be impaired by, for example, arranging the patient 13 within the antenna arrangement 50, since a field distribution of the field generated by the antenna arrangement 50 can be influenced by the patient 13.

Insbesondere um die mechanischen Toleranzen zu kompensieren, weist die Antennenanordnung 50 schaltbare Antennenschwingkreiselemente auf.In particular, in order to compensate for the mechanical tolerances, the antenna arrangement 50 has switchable antenna resonant circuit elements.

FIG 3 zeigt einen Ausschnitt der Antennenanordnung 50 der FIG 2. FIG 3 zeigt nur einige der Anschlussstellen 54,55 der Endringe 52,53 und lediglich einen Antennen-Längsstab 51 der mehreren Antennen-Längsstäbe. In dem Beispiel der FIG 3 sind zwischen jeweils zwei benachbarten Anschlussstellen 54,55 jeweils zwei Resonanzkondensatoren 56 gezeigt. Die Anzahl dieser Resonanzkondensatoren 56 zwischen jeweils zwei benachbarten Anschlussstellen 54,55 ist beliebig. Wie zuvor beschrieben, kann die Kapazität dieser Resonanzkondensatoren 56 auch beispielsweise durch die Anschlussstellen 54,55 selbst erzeugt werden. Die Anschlussstellen 54,55 können, wie in FIG 3 gezeigt, leitfähige Flächen umfassen, welche sich an einer Seite gegenüber liegen und somit eine Kapazität ausbilden können. Die leitfähigen Flächen 54,55 sind mit dem Längsstab 51 leitend verbunden, wobei der Längsstab 51 wiederum als eine leitfähige Fläche ausgebildet sein kann. FIG 3 shows a section of the antenna arrangement 50 FIG 2 . FIG 3 shows only some of the connection points 54,55 of the end rings 52,53 and only one longitudinal antenna rod 51 of the several longitudinal antenna rods. In the example of the FIG 3 Two resonance capacitors 56 are shown between two adjacent connection points 54, 55. The number of these resonance capacitors 56 between two adjacent connection points 54,55 is arbitrary. As previously described, the capacitance of these resonant capacitors 56 can also for example, generated by the connection points 54,55 themselves. The connection points 54,55 can, as in FIG 3 shown, include conductive surfaces which lie opposite each other on one side and can thus form a capacitance. The conductive surfaces 54, 55 are conductively connected to the longitudinal rod 51, whereby the longitudinal rod 51 can in turn be designed as a conductive surface.

Als schaltbare Antennenschwingkreiselemente sind in der FIG 3 Kombinationen aus einem Schaltelement und einem Kondensator gezeigt. Beispielsweise ist zwischen der leitfähigen Fläche 54 und der leitfähigen Fläche 55 ein Schaltelement 59 in Reihe mit einem Kondensator 60 als schaltbares Antennenschwingkreiselement vorgesehen. Auf der anderen Seite der leitfähigen Fläche 55 ist zu der dort benachbarten leitfähigen Fläche eine Reihenschaltung eines Schaltelements 62 und eines Kondensators 63 als schaltbares Antennenschwingkreiselement vorgesehen. An dem Endring 53 sind ebenfalls entsprechende schaltbare Antennenschwingkreiselemente zwischen den leitfähigen Flächen vorgesehen. Im geschlossenen Zustand des Schaltelements 59 wirkt sich die Kapazität des Kondensators 60 zusätzlich auf die kapazitive Kopplung zwischen der leitfähigen Fläche 54 und der leitfähigen Fläche 55 aus. Die Schaltelemente 59,62 sind von der Steuervorrichtung 14 steuerbar. Dazu sind zwischen der Steuervorrichtung 14 und dem Schaltelement 59 eine Steuerleitung 61 und zwischen der Steuervorrichtung 14 und dem Schaltelement 62 eine Steuerleitung 64 vorgesehen.Switchable antenna resonant circuit elements are available in the FIG 3 Combinations of a switching element and a capacitor are shown. For example, a switching element 59 is provided in series with a capacitor 60 as a switchable antenna resonant circuit element between the conductive surface 54 and the conductive surface 55. On the other side of the conductive surface 55, a series connection of a switching element 62 and a capacitor 63 is provided as a switchable antenna resonant circuit element to the conductive surface adjacent there. Corresponding switchable antenna resonant circuit elements are also provided on the end ring 53 between the conductive surfaces. When the switching element 59 is closed, the capacitance of the capacitor 60 also has an effect on the capacitive coupling between the conductive surface 54 and the conductive surface 55. The switching elements 59,62 can be controlled by the control device 14. For this purpose, a control line 61 is provided between the control device 14 and the switching element 59 and a control line 64 is provided between the control device 14 and the switching element 62.

Mithilfe der schaltbaren Antennenschwingkreiselemente kann die Feldverteilung im Inneren der Antennenanordnung 50 eingestellt werden, um beispielsweise eine Symmetrie oder Homogenität der Feldverteilung zu erhöhen und somit mechanische Toleranzen der Positionierung der Antennenanordnung 50 in dem Hochfrequenzschirm 40 kompensieren. Bereits mit nur wenigen schaltbaren Antennenschwingkreiselementen kann eine zufriedenstellende Einstellung der Feldverteilung im Inneren der Antennenanordnung 50 erreicht werden. Beispielsweise können in jedem der Endringe 52,53 lediglich zwei bis vier schaltbare Antennenschwingkreiselemente vorgesehen sein. Natürlich kann in jedem der Endringe 52,53 zwischen jeder der Anschlussstellen 54,55 ein jeweiliges schaltbares Antennenschwingkreiselement vorgesehen sein.With the help of the switchable antenna resonant circuit elements, the field distribution inside the antenna arrangement 50 can be adjusted in order, for example, to increase the symmetry or homogeneity of the field distribution and thus to compensate for mechanical tolerances in the positioning of the antenna arrangement 50 in the high-frequency shield 40. A satisfactory adjustment of the field distribution inside the antenna arrangement 50 can be achieved with just a few switchable antenna resonant circuit elements. For example, can Only two to four switchable antenna resonant circuit elements can be provided in each of the end rings 52, 53. Of course, a respective switchable antenna resonant circuit element can be provided in each of the end rings 52, 53 between each of the connection points 54, 55.

FIG 4 zeigt ein weiteres Beispiel eines schaltbaren Antennenschwingkreiselements. Das schaltbare Antennenschwingkreiselement in FIG 4 umfasst eine Kombination aus einem Schaltelement 65 und einem induktiven Element 66. Das induktive Element 66 kann beispielsweise eine Leiterbahn oder ein flächiger Leiter parallel zu dem Längsstab 51 sein. Im geschlossenen Zustand des Schaltelements 65 wirkt sich die Induktivität des induktiven Elements 66 zusätzlich auf die Induktivität des Antennen-Längsstab 51 aus. Das Schaltelement 65 ist von der Steuervorrichtung 14 steuerbar. Dazu ist zwischen der Steuervorrichtung 14 und dem Schaltelement 65 eine Steuerleitung 67 vorgesehen. In einem Antennen-Längsstab 51 können auch mehrere dieser schaltbaren Antennenschwingkreiselemente vorgesehen sein. FIG 4 shows another example of a switchable antenna resonant circuit element. The switchable antenna resonant circuit element in FIG 4 comprises a combination of a switching element 65 and an inductive element 66. The inductive element 66 can, for example, be a conductor track or a flat conductor parallel to the longitudinal rod 51. When the switching element 65 is closed, the inductance of the inductive element 66 also has an effect on the inductance of the longitudinal antenna rod 51. The switching element 65 can be controlled by the control device 14. For this purpose, a control line 67 is provided between the control device 14 and the switching element 65. Several of these switchable antenna resonant circuit elements can also be provided in a longitudinal antenna rod 51.

Mit dem schaltbaren Antennenschwingkreiselemente in dem Antennen-Längsstab 51 kann die Feldverteilung im Inneren der Antennenanordnung 50 eingestellt werden, um beispielsweise eine Symmetrie oder Homogenität der Feldverteilung zu erhöhen und somit mechanische Toleranzen der Positionierung der Antennenanordnung 50 in dem Hochfrequenzschirm 40 zu kompensieren. Bereits mit nur wenigen schaltbaren Antennenschwingkreiselementen kann eine zufriedenstellende Einstellung der Feldverteilung im Inneren der Antennenanordnung 50 erreicht werden. Beispielsweise kann in nur wenigen der Antennen-Längsstäbe 51 ein jeweiliges schaltbares Antennenschwingkreiselement vorgesehen sein, beispielsweise nur in zwei oder vier der Antennen-Längsstäbe 51. Selbstverständlich kann in jedem der Längsstäbe 51 ein entsprechendes schaltbares Antennenschwingkreiselement vorgesehen werden.With the switchable antenna resonant circuit elements in the longitudinal antenna rod 51, the field distribution inside the antenna arrangement 50 can be adjusted in order, for example, to increase the symmetry or homogeneity of the field distribution and thus to compensate for mechanical tolerances in the positioning of the antenna arrangement 50 in the high-frequency screen 40. A satisfactory adjustment of the field distribution inside the antenna arrangement 50 can be achieved with just a few switchable antenna resonant circuit elements. For example, a respective switchable antenna resonant circuit element can be provided in only a few of the longitudinal antenna rods 51, for example only in two or four of the longitudinal antenna rods 51. Of course, a corresponding switchable antenna resonant circuit element can be provided in each of the longitudinal rods 51.

Die Antennenschwingkreiselemente zwischen den leitfähigen Flächen 54,55 und in den Antennen-Längsstäben 51 sind unabhängig voneinander von der Steuervorrichtung 14 ansteuerbar.The antenna resonant circuit elements between the conductive surfaces 54, 55 and in the longitudinal antenna rods 51 can be controlled independently of one another by the control device 14.

Mit den zuvor beschriebenen schaltbaren Antennenschwingkreiselementen in der Antennenanordnung 50 können beispielsweise mechanische Toleranzen, die sich aus dem Zusammenspiel zwischen dem Hochfrequenzschirm 40 und der Antennenanordnung 50 ergeben, kompensiert werden. Diese schaltbaren Antennenschwingkreiselemente können verwendet werden, um Resonanzfrequenzen und deren Entkopplung einzustellen. Die Resonanzfrequenzen und deren Entkopplung können beispielsweise mit der Hochfrequenzsteuervorrichtung 14 beim Ansteuern der Antennenanordnung 50 gemessen werden und die schaltbaren Antennenschwingkreiselemente entsprechend angesteuert werden, um geeignete Zielwerte für die Resonanzfrequenzen und deren Entkopplung zu erreichen. Dabei können die schaltbaren Antennenschwingkreiselemente beispielsweise mithilfe eines Optimierungsverfahrens, beispielsweise mithilfe eines Gradientenabstiegsverfahrens, angesteuert werden, um ein gewünschte Resonanzfrequenzen und deren Entkopplung einzustellen. Alternativ können auch alle möglichen Schaltkombinationen der schaltbaren Antennenschwingkreiselemente ausprobiert werden und die geeignetste Schaltkombination für den Betrieb ausgewählt werden.With the previously described switchable antenna resonant circuit elements in the antenna arrangement 50, for example, mechanical tolerances that result from the interaction between the high-frequency screen 40 and the antenna arrangement 50 can be compensated for. These switchable antenna resonant circuit elements can be used to adjust resonance frequencies and their decoupling. The resonance frequencies and their decoupling can be measured, for example, with the high-frequency control device 14 when controlling the antenna arrangement 50 and the switchable antenna resonant circuit elements can be controlled accordingly in order to achieve suitable target values for the resonance frequencies and their decoupling. The switchable antenna resonant circuit elements can be controlled, for example, using an optimization method, for example using a gradient descent method, in order to set a desired resonance frequency and their decoupling. Alternatively, all possible switching combinations of the switchable antenna resonant circuit elements can be tried out and the most suitable switching combination for operation can be selected.

Neben den Resonanzfrequenzen und der Entkopplung kann beispielsweise auch eine Stromverteilung in der Antennenanordnung 50 als ein Optimierungskriterium verwendet werden. Dazu kann jedem Schaltelement ein Stromsensor zugeordnet werden. FIG 5 zeigt eine derartige Anordnung, bei welcher den Schaltelementen in dem Endring 53 jeweils ein entsprechender Stromsensor 72,73 zugeordnet ist. Alternativ oder zusätzlich können auch Stromsensoren vorgesehen werden, welche einen Strom in den Anschlussstellen 54,55 messen. In FIG 5 sind beispielsweise Stromsensoren 69-71 zum Messen von jeweiligen Strömen in den Anschlussstellen 54,55 in dem Endring 53 gezeigt. Die Stromsensoren 69-73 können mit der Hochfrequenzsteuervorrichtung 14 gekoppelt sein. Die Stromsensoren 69-73 können jeweils eine sogenannte Pick-up-Spule umfassen. Unter Berücksichtigung der Informationen von den Stromsensoren 69-73 können die schaltbaren Antennenschwingkreiselemente so eingestellt werden, dass eine homogene Stromverteilung und damit auch eine homogene Feldverteilung erreicht wird. Auswirkungen von Asymmetrien beim Einbau können damit zumindest teilweise kompensiert werden. Wenn beispielsweise die Antennenanordnung 50 nicht mittig im Hochfrequenzschirm 40 platziert ist, kann dies zu einer Asymmetrie im B1-Feld in transversale Richtung führen. Durch geeignete Ansteuerung der schaltbaren Antennenschwingkreiselemente kann diese Asymmetrie kompensiert werden. Es ist klar, dass nicht im Bereich von jedem schaltbaren Antennenschwingkreiselement und jeder Anschlussstelle ein entsprechender Stromsensor vorgesehen sein muss, um eine homogenere Stromverteilung zu erreichen. Bereits mit einer geringeren Anzahl von Stromsensoren können Asymmetrien und Inhomogenitäten zumindest teilweise erfasst und somit kompensiert werden.In addition to the resonance frequencies and the decoupling, a current distribution in the antenna arrangement 50 can also be used as an optimization criterion. For this purpose, a current sensor can be assigned to each switching element. FIG 5 shows such an arrangement in which the switching elements in the end ring 53 are each assigned a corresponding current sensor 72,73. Alternatively or additionally, current sensors can also be provided which measure a current in the connection points 54, 55. In FIG 5 For example, current sensors 69-71 for measuring respective currents in the connection points 54, 55 in the end ring 53 are shown. The current sensors 69-73 can be connected to the high frequency control device 14 be coupled. The current sensors 69-73 can each include a so-called pick-up coil. Taking into account the information from the current sensors 69-73, the switchable antenna resonant circuit elements can be adjusted so that a homogeneous current distribution and thus also a homogeneous field distribution is achieved. The effects of asymmetries during installation can be at least partially compensated for. For example, if the antenna arrangement 50 is not placed centrally in the radio frequency shield 40, this can lead to an asymmetry in the B1 field in the transverse direction. This asymmetry can be compensated for by suitable control of the switchable antenna resonant circuit elements. It is clear that a corresponding current sensor does not have to be provided in the area of every switchable antenna resonant circuit element and every connection point in order to achieve a more homogeneous current distribution. Even with a smaller number of current sensors, asymmetries and inhomogeneities can be at least partially detected and thus compensated for.

Auch im Betrieb der Magnetresonanzanlage 10, d.h., wenn beispielsweise ein Patient 13 in die Magnetresonanzanlage 10 eingefahren wird, können die schaltbaren Antennenschwingkreiselemente von der Hochfrequenzsteuervorrichtung 14 angesteuert werden, um beispielsweise Rückwirkungen des Patienten 13 auf die Stromverteilung in der Antennenanordnung 50 zu kompensieren. Dazu können beispielsweise wiederum die zuvor beschriebenen Stromsensoren verwendet werden. Alternativ oder zusätzlich können neben den Stromsensoren auch Sensoren zur Messung des B1-Feldes an verschiedenen Stellen zur Bewertung des B1-Feldes und Einstellung der schaltbaren Antennenschwingkreiselemente herangezogen werden. Beispielsweise kann das B1-Feld mit fest eingebauten Sensoren oder mit ortsveränderlichen Sensoren an bestimmten Stellen gemessen werden und eine sogenannte B1-Map erzeugt werden. Auf der Grundlage dieser B1-Map kann die B1-Feldverteilung von der Hochfrequenzsteuervorrichtung 14 beurteilt werden und die schaltbaren Antennenschwingkreiselemente zur Verbesserung des B1-Feldes entsprechend angesteuert werden.Even during operation of the magnetic resonance system 10, that is, for example, when a patient 13 is moved into the magnetic resonance system 10, the switchable antenna resonant circuit elements can be controlled by the high-frequency control device 14 in order, for example, to compensate for repercussions of the patient 13 on the current distribution in the antenna arrangement 50. For this purpose, for example, the current sensors described above can be used. Alternatively or additionally, in addition to the current sensors, sensors for measuring the B1 field can also be used at various points to evaluate the B1 field and adjust the switchable antenna resonant circuit elements. For example, the B1 field can be measured at certain points with permanently installed sensors or with portable sensors and a so-called B1 map can be generated. Based on this B1 map, the B1 field distribution can be assessed by the high-frequency control device 14 and the switchable antenna resonant circuit elements be controlled accordingly to improve the B1 field.

Zusammenfassend können mithilfe der schaltbaren Antennenschwingkreiselemente mechanische Toleranzen und deren Einfluss auf die Abstimmung der Antennenanordnung 50 automatisiert und kostengünstig kompensiert werden.In summary, with the help of the switchable antenna resonant circuit elements, mechanical tolerances and their influence on the tuning of the antenna arrangement 50 can be compensated automatically and cost-effectively.

FIG 6 zeigt schematisch ein Beispiel für ein Schaltelement, beispielsweise für das Schaltelement 59. In dem in FIG 6 gezeigten Beispiel umfasst das Schaltelement eine Diode. Die Diode kann insbesondere eine sogenannte PIN-Diode umfassen. Alternativ oder zusätzlich sind andere schaltbare Halbleiterelemente als Schaltelemente verwendbar, beispielsweise Transistoren. FIG 6 shows schematically an example of a switching element, for example the switching element 59. In the in FIG 6 In the example shown, the switching element includes a diode. The diode can in particular comprise a so-called PIN diode. Alternatively or additionally, other switchable semiconductor elements can be used as switching elements, for example transistors.

Die Schaltelemente 59,62,65 in den Endringen 52,53 und den Antennen-Längsstäben 51 sind getrennt voneinander einzelnen über entsprechende Steuerleitungen ein- und ausschaltbar. In FIG 6 links wird von der Steuervorrichtung 14 über die Steuerleitungen 61 an die Anode der Diode eine gegenüber der Kathode negative Spannung angelegt. Dadurch sperrt die Diode und das Schaltelement 59 ist für Hochfrequenzströme nicht durchlässig, das Schaltelement 59 ist somit "offen". In FIG 6 rechts wird von der Steuervorrichtung 14 über die Steuerleitungen 61 an die Anode der Diode eine gegenüber der Kathode positive Spannung angelegt. Dadurch leitet die Diode und das Schaltelement 59 ist für Hochfrequenzströme durchlässig, das Schaltelement 59 ist somit "geschlossen".The switching elements 59, 62, 65 in the end rings 52, 53 and the longitudinal antenna rods 51 can be switched on and off separately from each other via corresponding control lines. In FIG 6 On the left, the control device 14 applies a negative voltage compared to the cathode to the anode of the diode via the control lines 61. As a result, the diode blocks and the switching element 59 is not permeable to high-frequency currents, the switching element 59 is therefore "open". In FIG 6 On the right, a positive voltage relative to the cathode is applied by the control device 14 via the control lines 61 to the anode of the diode. As a result, the diode conducts and the switching element 59 is permeable to high-frequency currents, the switching element 59 is therefore "closed".

In FIG 7 ist ein Ablaufdiagramm eines Verfahrens mit Schritten 101 und 102 dargestellt. Das Verfahren kann beispielsweise mittels der Hochfrequenzsteuervorrichtung 14 durchgeführt werden.In FIG 7 a flowchart of a method with steps 101 and 102 is shown. The method can be carried out, for example, using the high-frequency control device 14.

Im Schritt 101 wird eine Symmetrieinformation der Feldverteilung in der Antennenanordnung 50 gemessen. Die Symmetrieinformation kann beispielsweise ein Maß für eine Homogenität oder Symmetrie eines von der Antennenanordnung 50 erzeugten B1-Feldes anzeigen. Zur Bestimmung der Symmetrieinformation kann beispielsweise eine Stromverteilung in der Antennenanordnung 50 gemessen werden, Resonanzfrequenzen und deren Entkopplung beim Einspeisen von Hochfrequenzsignalen in die Antennenanordnung 50 gemessen werden oder das von der Antennenanordnung 50 erzeugten B1-Feld an verschiedenen Positionen gemessen werden. Im Schritt 102 werden die mehreren Schaltelemente 59,62,65 in den Endringen 52,53 und in den Antennen-Längsstäben 51 anhand der gemessenen Symmetrieinformation derart automatisch eingestellt, dass eine Symmetrie der Feldverteilung im Inneren der Antennenanordnung 50 erhöht wird. Die Verfahrensschritte 101 und 102 können mehrfach interaktiv durchgeführt werden, um eine Optimierung der Symmetrie der Feldverteilung im Inneren der Antennenanordnung 50 zu erreichen. In step 101, symmetry information of the field distribution in the antenna arrangement 50 is measured. The symmetry information can, for example, be a measure of homogeneity or indicate symmetry of a B1 field generated by the antenna arrangement 50. To determine the symmetry information, for example, a current distribution in the antenna arrangement 50 can be measured, resonance frequencies and their decoupling when feeding high-frequency signals into the antenna arrangement 50 can be measured, or the B1 field generated by the antenna arrangement 50 can be measured at different positions. In step 102, the multiple switching elements 59, 62, 65 in the end rings 52, 53 and in the longitudinal antenna rods 51 are automatically adjusted based on the measured symmetry information in such a way that the symmetry of the field distribution inside the antenna arrangement 50 is increased. The method steps 101 and 102 can be carried out interactively several times in order to optimize the symmetry of the field distribution inside the antenna arrangement 50.

Claims (15)

  1. Method for adjusting a field distribution of an antenna arrangement of a magnetic resonance system, wherein the antenna arrangement (50) is a cylinder-shaped antenna arrangement (50) for generating radio-frequency signals, which has a cylinder-shaped radio-frequency screen (40) around the antenna arrangement (50), wherein the antenna arrangement (10) comprises multiple oscillating circuit antenna elements (60, 63, 66) and multiple switching elements (59, 62, 65), wherein each oscillating circuit antenna element out of the multiple oscillating circuit antenna elements (60, 63, 66) is in each case assigned a switching element of the multiple switching elements (59, 62, 65), wherein a respective switching element is embodied to couple the assigned oscillating circuit antenna element operatively to the antenna arrangement (50) in dependence on a switching status of the switching element, wherein the method comprises:
    - measuring (101) symmetry information on the field distribution in the antenna arrangement (50), and
    - automatically adjusting (101) the multiple switching elements (59, 62, 65) using the measured symmetry information such that a symmetry of the field distribution in the interior of the antenna arrangement (50) is increased, characterised in that the symmetry of the field distribution is negatively impacted by a positional inaccuracy of the antenna arrangement (50) in the magnetic resonance system (10), wherein
    the positional inaccuracy of the antenna arrangement (50) comprises a positional inaccuracy of an arrangement of the antenna arrangement (50) relative to the radio-frequency screen (40), wherein the adjustment of the multiple switching elements (59, 62, 65) such that a symmetry of the field distribution in the interior of the antenna arrangement (50) is increased at least partially compensates the positional inaccuracy.
  2. Method according to claim 1, wherein the measurement of the symmetry information comprises a measurement of a resonant frequency of the antenna arrangement (50), wherein the multiple switching elements (59, 62, 65) are adjusted using the resonant frequency such that a symmetry of the field distribution in the interior of the antenna arrangement (50) is increased.
  3. Method according to one of the preceding claims, wherein the measurement of the symmetry information comprises a measurement of a B1 field in the antenna arrangement (50), wherein the multiple switching elements (59, 62, 65) are adjusted using the B1 field measurement such that a symmetry of the field distribution in the interior of the antenna arrangement (50) is increased.
  4. Method according to one of the preceding claims, wherein the measurement of the symmetry information comprises a measurement of a current distribution in the antenna arrangement (50), wherein the multiple switching elements (59, 62, 65) are adjusted using the current distribution such that a symmetry of the field distribution in the interior of the antenna arrangement (50) is increased.
  5. Method according to one of the preceding claims, wherein one oscillating circuit antenna element out of the multiple oscillating circuit antenna elements (60, 63, 66) comprises a capacitor (60, 63), wherein the method further comprises:
    - coupling the capacitor (60, 63) to the antenna arrangement (50) by means of the assigned switching element in order to change a capacitance of the antenna arrangement (50) in order to increase the symmetry of the field distribution in the antenna arrangement (50).
  6. Method according to one of the preceding claims, wherein one oscillating circuit antenna element out of the multiple oscillating circuit antenna elements (60, 63, 66) comprises an inductive element (66), wherein the method further comprises:
    - coupling the inductive element (66) by means of the assigned switching element to the antenna arrangement (50) in order to change an inductance of the antenna arrangement (50) in order to increase the symmetry of the field distribution in the antenna arrangement (50).
  7. Method according to one of the preceding claims, wherein the multiple switching elements (59, 62, 65) can be switched independently of one another.
  8. Magnetic resonance system with an antenna arrangement (50), wherein the antenna arrangement (50) has a cylinder-shaped antenna arrangement (50) for generating radio-frequency signals, which has a cylinder-shaped radio-frequency screen (40) around the antenna arrangement (50), wherein the antenna arrangement (50) comprises:
    - multiple oscillating circuit antenna elements (60, 63, 66),
    - multiple switching elements (59, 62, 65), wherein each oscillating circuit antenna element out of the multiple oscillating circuit antenna elements (60, 63, 66) is in each case assigned a switching element of the multiple switching elements (59, 62, 65), wherein a respective switching element is embodied to couple the assigned oscillating circuit antenna element operatively to the antenna arrangement (50) in dependence on a switching status of the switching element, and
    - a control apparatus (14) embodied to carry out the following steps:
    - measuring (101) symmetry information on the field distribution in the antenna arrangement (50), and
    - automatically adjusting the multiple switching elements (59, 62, 65) using the measured symmetry information such that a symmetry of the field distribution in the interior of the antenna arrangement (50) is increased, characterised in that the symmetry of the field distribution is negatively impacted by a positional inaccuracy of the antenna arrangement (50) in the magnetic resonance system (10),
    wherein the positional inaccuracy of the antenna arrangement (50) comprises a positional inaccuracy of an arrangement of the antenna arrangement (50) in respect of the radio-frequency screen (40), wherein the adjustment of the multiple switching elements (59, 62, 65) such that a symmetry of the field distribution in the interior of the antenna arrangement (50) is increased at least partially compensates the positional inaccuracy.
  9. Magnetic resonance system according to claim 8, wherein the antenna arrangement (50) is embodied to carry out the method according to one of claims 2-7.
  10. Magnetic resonance system according to claim 8 or claim 9, wherein the antenna arrangement (50) comprises two ferrules (52, 53), wherein each of the ferrules (52, 53) has in the circumferential direction multiple conductive surfaces (54, 55) that are insulated from one another, wherein one oscillating circuit antenna element out of the multiple oscillating circuit antenna elements (60, 63, 66) comprises a capacitor (60, 63), wherein the capacitor (60, 63) is arranged between two conductive surfaces (54, 55) of one of the ferrules (52, 53).
  11. Magnetic resonance system according to claim 10, wherein the two conductive surfaces (54, 55) of the one of the ferrules (52, 53) have a capacitive coupling to one another, wherein the capacitor (60, 63) has a capacitance in the range of 1% to 20%, in particular in the range of 5% to 10%, of the capacitive coupling of the two conductive surfaces (54, 55).
  12. Magnetic resonance system according to one of claims 8-11, wherein the antenna arrangement (50) comprises multiple longitudinal rods (51), wherein one oscillating circuit antenna element out of the multiple oscillating circuit antenna elements (60, 63, 66) comprises an inductive element (66), wherein the inductive element (66) is arranged parallel to one out of the multiple longitudinal rods (51) in the longitudinal direction.
  13. Magnetic resonance system according to claim 12, wherein the one out of the multiple longitudinal rods (51) has an inductance, wherein the inductive element (66) has an inductance in the range of 1% to 20%, in particular in the range of 5% to 10%, of the inductance of the longitudinal rod (51) .
  14. Computer program product, which comprises a program and can be loaded directly into a memory (21) of a programmable controller (20) of a magnetic resonance system (10) according to claim 8 to 13, with program means for carrying out all the steps of the method according to one of claims 1-7 when the program is executed in the controller (20) of the magnetic resonance system (10).
  15. Electronically readable data medium with electronically readable control information stored thereupon, which is embodied to carry out the method according to one of claims 1-7 when the data medium is used in a controller (20) of a magnetic resonance system (10) according to one of claims 8 to 13.
EP18157877.4A 2018-02-21 2018-02-21 Adjusting a field distribution of an antenna assembly of a magnetic resonance system Active EP3531156B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18157877.4A EP3531156B1 (en) 2018-02-21 2018-02-21 Adjusting a field distribution of an antenna assembly of a magnetic resonance system
US16/281,080 US10761160B2 (en) 2018-02-21 2019-02-20 Adjusting a field distribution of an antenna arrangement of a magnetic resonance system
CN201910129622.7A CN110174629B (en) 2018-02-21 2019-02-21 Adjusting field distribution of an antenna arrangement of a magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18157877.4A EP3531156B1 (en) 2018-02-21 2018-02-21 Adjusting a field distribution of an antenna assembly of a magnetic resonance system

Publications (2)

Publication Number Publication Date
EP3531156A1 EP3531156A1 (en) 2019-08-28
EP3531156B1 true EP3531156B1 (en) 2024-03-27

Family

ID=61256690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18157877.4A Active EP3531156B1 (en) 2018-02-21 2018-02-21 Adjusting a field distribution of an antenna assembly of a magnetic resonance system

Country Status (3)

Country Link
US (1) US10761160B2 (en)
EP (1) EP3531156B1 (en)
CN (1) CN110174629B (en)

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638253A (en) * 1984-10-29 1987-01-20 General Electric Company Mutual inductance NMR RF coil matching device
US5081418A (en) * 1990-04-30 1992-01-14 General Electric Company Method and apparatus for tuning an nmr field coil
US5126674A (en) * 1990-08-29 1992-06-30 The United States Of America As Represented By The Secretary Of The Navy Planar imaging by nuclear magnetic resonance
US6249121B1 (en) * 1999-05-17 2001-06-19 General Electric Company RF body coil
US6781378B2 (en) 2002-02-19 2004-08-24 Siemens Aktiengesellschaft Radio-frequency antenna for a magnetic resonance system
DE10314215B4 (en) * 2003-03-28 2006-11-16 Siemens Ag Magnetic resonance antenna and method for detuning their natural resonance frequency
DE102006018158A1 (en) 2006-04-19 2007-10-25 Siemens Ag Cylindrical magnetic resonance antenna
WO2007124246A1 (en) * 2006-04-21 2007-11-01 Koninklijke Philips Electronics, N.V. Mr involving high speed coil mode switching between i-channel linear, q-channel linear, quadrature and anti-quadrature modes
CN101467060A (en) * 2006-06-15 2009-06-24 皇家飞利浦电子股份有限公司 Silent and thin RF body coil
DE102007016313B4 (en) 2007-04-04 2010-06-17 Siemens Ag Whole body antenna for a magnetic resonance system and magnetic resonance system with such a whole body antenna
DE102008006117B4 (en) 2008-01-25 2013-12-12 Siemens Aktiengesellschaft Magnetic resonance system, antenna system, method for setting up a magnetic resonance system and method for generating magnetic resonance images
JP4633131B2 (en) * 2008-03-07 2011-02-16 株式会社日立製作所 NMR probe
DE102008062547B4 (en) 2008-12-16 2012-05-24 Siemens Aktiengesellschaft magnetic resonance antenna
US8269499B2 (en) * 2010-06-01 2012-09-18 Quality Electrodynamics, Llc Failsafe protection from induced RF current for MRI RF coil assembly having transmit functionality
WO2012023385A1 (en) * 2010-08-17 2012-02-23 株式会社 日立メディコ High-frequency coil and magnetic resonance imaging device employing same
JP5685476B2 (en) * 2011-04-11 2015-03-18 株式会社日立製作所 Magnetic resonance imaging system
US8686728B2 (en) * 2011-07-21 2014-04-01 Siemens Medical Solutions Usa, Inc. System for adapting an RF transmission magnetic field for image acquisition
DE102011086964B4 (en) * 2011-11-23 2013-06-13 Siemens Aktiengesellschaft Magnetic resonance antenna arrangement, magnetic resonance system and use of a magnetic resonance antenna arrangement
DE102011089448B4 (en) * 2011-12-21 2023-03-16 Siemens Healthcare Gmbh Breast coil and method for generating magnetic resonance images of the breast
DE102012207722B3 (en) 2012-05-09 2013-08-22 Siemens Aktiengesellschaft Whole-body coil for MRI apparatus e.g. functional MRI apparatus used for performing investigation of patient, has radio frequency antenna whose capacitance is changed by changing distance of RF-screen
HUE050753T2 (en) * 2014-03-12 2021-01-28 Kenjiro Kimura Scattering tomography method and scattering tomography device
WO2015150952A1 (en) * 2014-03-31 2015-10-08 Koninklijke Philips N.V. Receive coils with low-loss detune circuits for magnetic resonance (mr) systems and method of operation thereof
DE102014207314B4 (en) * 2014-04-16 2017-08-10 Siemens Healthcare Gmbh Method, system and magnetic resonance system for compensating inhomogeneities of the magnetic field
US10132882B2 (en) * 2015-06-09 2018-11-20 General Electric Company Systems and methods for MRI body coil support structures
DE102016204620B4 (en) 2015-07-16 2019-07-04 Siemens Healthcare Gmbh MR body coil
US10151813B2 (en) * 2016-06-29 2018-12-11 Siemens Healthcare Gmbh Magnetic resonance apparatus and method for operation thereof with actively controllable radio-frequency coil profiles

Also Published As

Publication number Publication date
EP3531156A1 (en) 2019-08-28
CN110174629B (en) 2021-09-24
CN110174629A (en) 2019-08-27
US20190257899A1 (en) 2019-08-22
US10761160B2 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
DE10124465A1 (en) Transmission and receiver coil for a magnetic resonance imaging instrument with an arrangement of independently adjustable resonator segments forming a body coil that allows complete control of the HF field distribution
DE102005049229B3 (en) Flip angle distribution determination method for use in magnetic resonance system for medical diagnosis, involves measuring absolute flip angle distribution using one transmission configuration as reference configuration
DE102004026616B4 (en) Method for measuring an examination area with a magnetic resonance apparatus
EP0186238B1 (en) Method of producing a movement signal and nuclear spin tomograph for such a method
DE102011086964B4 (en) Magnetic resonance antenna arrangement, magnetic resonance system and use of a magnetic resonance antenna arrangement
DE102012212376B3 (en) Method for determining activation sequence (AS) for magnetic resonance system, involves determining high frequency pulse train for k-space trajectory in high frequency (HF)-pulse optimization process
DE3427666C2 (en)
DE102011005649B4 (en) Determination of the actual tilt angle and adjustment of the transmitter voltage during MR imaging of a continuously moved examination subject
DE102012207722B3 (en) Whole-body coil for MRI apparatus e.g. functional MRI apparatus used for performing investigation of patient, has radio frequency antenna whose capacitance is changed by changing distance of RF-screen
DE102011089448A1 (en) Breast coil and method for generating magnetic resonance images of the breast
DE10207736B4 (en) Method for determining the position of a local antenna
DE19959720A1 (en) Procedure to operate magnetic resonant tomography unit having Shim coil arrangement and gradient coil
DE102014222938B4 (en) MR local coil system, MR system and method of operating the same
DE102011083959A1 (en) Method for controlling a magnetic resonance system
DE10307814B4 (en) Gradient coils and method for producing gradient coils for MRI systems
DE102014214844B4 (en) Method and magnetic resonance system for acquiring MR data
DE102008048414A1 (en) Apparatus and method for positioning a small animal for MRI measurement
DE102016204620A1 (en) MR body coil
EP1275972A2 (en) High frequency coil arrangement for an MR-apparatus
DE102010033329A1 (en) Method for determining magnet resonance system-controlling sequence, involves carrying out optimization of multi-channel pulse train or k-area-gradient trajectory in high frequency-pulse-optimization process
DE102013226170A1 (en) Method and device for spatial homogenization of the field strength of high-frequency pulses of a transmitting antenna of a magnetic resonance tomography device
DE102017213026A1 (en) Gradient coil for generating a magnetic field gradient and a higher-order magnetic field
DE102017200446A1 (en) Correction of an MR transmission signal
DE102011086658B3 (en) Shim coil device for use in local coil of magnetic resonance apparatus, has shim coil and compensation coil arranged in coil plane, where overall assembly of shim coil and compensation coil is symmetrical with respect to two central axes
DE102015202670A1 (en) Magnetic resonance apparatus with a switching matrix unit and a method for pulse sequence optimization and a computer program product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210827

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G01R 33/422 20060101ALN20230911BHEP

Ipc: G01R 33/34 20060101ALN20230911BHEP

Ipc: G01R 33/565 20060101ALI20230911BHEP

Ipc: G01R 33/36 20060101AFI20230911BHEP

INTG Intention to grant announced

Effective date: 20231002

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS HEALTHINEERS AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP