EP3521740B1 - Oven - Google Patents

Oven Download PDF

Info

Publication number
EP3521740B1
EP3521740B1 EP18154874.4A EP18154874A EP3521740B1 EP 3521740 B1 EP3521740 B1 EP 3521740B1 EP 18154874 A EP18154874 A EP 18154874A EP 3521740 B1 EP3521740 B1 EP 3521740B1
Authority
EP
European Patent Office
Prior art keywords
tub
furnace
length compensation
compensation element
segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18154874.4A
Other languages
German (de)
French (fr)
Other versions
EP3521740B8 (en
EP3521740A1 (en
Inventor
Gerhard Hubweber
Franz Kals
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Graphite Austria GmbH
Original Assignee
Showa Denko Carbon Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Carbon Austria GmbH filed Critical Showa Denko Carbon Austria GmbH
Priority to EP18154874.4A priority Critical patent/EP3521740B8/en
Priority to ES18154874T priority patent/ES2879831T3/en
Priority to PL18154874T priority patent/PL3521740T3/en
Publication of EP3521740A1 publication Critical patent/EP3521740A1/en
Publication of EP3521740B1 publication Critical patent/EP3521740B1/en
Application granted granted Critical
Publication of EP3521740B8 publication Critical patent/EP3521740B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0023Linings or walls comprising expansion joints or means to restrain expansion due to thermic flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • F27D11/04Ohmic resistance heating with direct passage of current through the material being heated

Definitions

  • the invention relates to an oven with at least one oven pan, in which a first and a second electrical contact are provided, which are electrically insulated from the oven pan, the oven pan being formed from pan segments arranged one behind the other from the first to the second electrical contact and spaced apart from one another, which pan segments are at least partially made of metal are formed and have an electrically insulating coating on their inner side facing the interior of the furnace pan.
  • Furnaces of the type mentioned are known from the prior art and are used for the production of synthetic graphite, which is required in large quantities for applications in metallurgy, for example for melting electrodes for scrap melting.
  • Synthetic graphite is produced by heating shaped bodies with a high carbon content to temperatures of approx. 3000 ° C.
  • the high-carbon molded bodies are produced in a known manner ( Ullmann's Encyclopedia of Industrial Chemistry, Vol. A5, VCH Verlagsgesellschaft mbH, Weinheim, 1986, pp.
  • the fired shaped bodies can be impregnated with pitch or other coking organic liquids and fired again in order to coke the impregnating agent, as a result of which the porosity of the shaped bodies decreases and their strength increases.
  • Acheson furnace was previously used to graphitize the high-carbon molded bodies, in which the high-carbon molded bodies were embedded in a resistance bed made of silicon carbide-containing material lying transversely to the longitudinal axis of the furnace.
  • This bulk resistance material was connected to a suitable electrical power supply via connection electrodes and heated to the graphitization temperature by means of an electrical current, which also heated the molded bodies.
  • longitudinal graphitization (Castner furnace) has established itself.
  • the furnace for longitudinal graphitization consists of a fixed tub made of metal, ceramic or a combination of both, in which a bulk material for thermal insulation and the shaped bodies to be graphitized are inserted as a strand.
  • a carbon block electrically insulated from the tub, is pressed onto the shaped body to be graphitized as a power connection electrode. Direct current is applied to the strand via these carbon blocks and the shaped bodies are heated up to a graphitization temperature of 3000 ° C in direct current flow.
  • the AT 411 798 B discloses a furnace for longitudinal graphitization in which tub segments made of metal and temperature-resistant and electrically insulating concrete ribs standing on a hall floor are arranged alternately and are sealed gas-tight by means of a furnace hood.
  • the disadvantage of the process of longitudinal graphitization is that only carbon-containing bulk materials can be used for thermal insulation in the furnace trough which have undesirable electrical conductivity.
  • This electrical conductivity leads to the coupling of the metallic furnace pan to the potential gradient of the electrical connection electrodes with the formation of undesired secondary currents in the furnace pan, which on the one hand heat the furnace pan and on the other hand take away energy from the shaped bodies to be graphitized.
  • the metal furnace pans were therefore lined with refractory bricks in order to achieve electrical insulation. This had the significant disadvantage that the cooling times of the graphite electrodes in the furnace after grazing were very long due to the refractory lining functioning as additional heat insulation, which severely restricted the productivity of the graphitizing furnaces.
  • the U.S. 5,299,225 discloses an oven that reduces cooling times somewhat.
  • the furnace has a furnace pan with several interconnected metal segments into which a cast refractory insulation is inserted.
  • the furnace pan also has an elaborate, heavily ribbed metal construction, whereby the outer surface of the furnace pan is enlarged compared to the furnace pans known up to that point and a better heat dissipation was achieved after graphitization. Nevertheless, the heat transfer through the several cm thick, cast refractory insulation was still severely limited.
  • the U.S. 5,631,919 discloses a furnace for longitudinal graphitization with two rows of metal tub segments arranged one behind the other and spaced apart from one another.
  • the mutually facing ends of successive tub segments are slidably mounted in a U-shaped recess of a support body made of electrically insulating material, in particular concrete.
  • the tub segments are thus electrically isolated from one another by the distance between the mutually facing ends of successive tub segments or by concrete bodies that are received between the mutually facing ends.
  • An adhesive, electrically insulating coating is provided on the inside of the tub segments, the layer thickness of which in the dried state is between 0.127 mm and 1.27 mm.
  • the coating serves to electrically isolate the carbon bodies inserted in the tub segments from the tub segments.
  • the disadvantage here is that the support bodies have to be provided in the area of the mutually facing ends of successive tub segments.
  • the U.S. 4,394,766 discloses a furnace for longitudinal graphitization with metal tub segments arranged one behind the other and spaced apart from one another, which have a heat-resistant inner coating which is cast and stabilized with anchors.
  • the gap between the spaced apart tub segments increases due to temperature Changes in length of the tub segments, isolates successive tub segments electrically from one another and is covered by a cover body which has a heat-resistant inner coating and an outer seal resting on the tub segment.
  • the massive formation of the inner coating is particularly disadvantageous here.
  • the furnace construction is complicated because of the covering bodies to be arranged over each gap.
  • the WO 87/06685 A1 discloses a furnace for longitudinal graphitization with metal tub segments arranged one behind the other and spaced apart from one another.
  • the tub segments are clad on the inside with refractory bricks and electrically isolated from each other.
  • the invention provides a furnace as defined in claim 1.
  • Advantageous embodiments and developments are specified in the dependent claims.
  • adjacent tub segments are connected to one another via a length compensation element arranged between facing ends of the adjacent tub segments, which length compensation element is at least partially made of metal, has an electrically insulating coating on its inside facing the interior of the furnace tub and perpendicular to the inside the tub segments is designed to be deflected.
  • the furnace thus has at least one furnace pan into which a molded body containing carbon and to be processed by heat is introduced can be.
  • a series of molded bodies preferably arranged one behind the other and connected to one another and containing carbon, to be processed by heat, can be introduced into the furnace.
  • the furnace pans are advantageously arranged next to one another in order to be able to form the furnace with small length dimensions, in which case at least one shaped body to be processed can then be introduced into each furnace pan.
  • the shaped body to be processed is expediently placed in a bed of carbon-containing material, which has a heat-insulating effect but also has electrical conductivity.
  • the furnace can be a graphitization furnace for performing longitudinal graphitization of the shaped body to be processed. To process the shaped body, an electrical voltage is applied to it, so that the shaped body is heated by the resulting current flow through the shaped body.
  • a first and a second power contact electrically insulated from the furnace pan, are provided in the furnace pan or in each furnace pan.
  • the current contacts are connected or can be connected to an electrical energy source provided outside the furnace pan and are set up to establish an electrical connection with the molded body to be processed.
  • Appropriate arrangements and designs of current contacts in a furnace pan are known to those skilled in the field of furnaces for longitudinal graphitization.
  • the current contacts can be arranged in end walls made of ceramic material at two ends of the furnace pan.
  • the furnace pan is formed from pan segments which are arranged one behind the other from the first to the second power contact and are spaced apart from one another.
  • the distance between adjacent tub segments ie one behind the other in the direction from the first to the second power contact, enables a temperature-dependent, collision-free linear expansion of the tub segments.
  • the tub segments are at least partially made of metal, ie are electrically conductive.
  • the tub segments In order to electrically isolate the tub segments from the molded body to be processed, through which current flows in the operating state of the furnace, and the material of the bed, the tub segments have an electrically insulating coating on their inside facing the interior of the furnace tub.
  • Neighbors, from each other spaced tub segments are connected to each other via a length compensation element arranged between the adjacent tub segments in order to avoid a gap between the facing ends of the adjacent tub segments, ie the length compensation element is arranged between the facing ends of two adjacent tub segments.
  • the length compensation elements are at least partially made of metal and are therefore electrically conductive. In order to electrically insulate the entire furnace pan and not just the pan segments, the length compensation elements also have an electrically insulating coating on their inside facing the interior of the furnace pan. In this way, an undesired current flow in the furnace pan or in the pan segments and the length compensation elements, which would occur on the inner wall of the furnace pan due to electrically uninsulated surface areas, is prevented.
  • the electrically insulating coating itself should have the lowest possible heat storage capacity and the lowest possible layer thickness in order to facilitate the cooling of the furnace after the heating process has ended.
  • the layer thickness of the electrically insulating coating is preferably less than 1 mm, more preferably less than 0.5 mm and particularly preferably less than 0.2 mm.
  • the length compensation elements arranged between the tub segments also have a temperature-dependent fluctuating extension.
  • the electrically insulating coating is advantageously designed to be at least slightly elastic in order to reliably adhere to the length compensation elements deformed by the influence of temperature.
  • the length compensation element is designed to be deflected perpendicular to the inside of the tub segments.
  • a length compensation element constructed in this way with, for example, an undulating course in its longitudinal direction is particularly suitable for changes in its longitudinal extent between the mutually facing ends of two adjacent tub segments.
  • the length compensation element does not protrude beyond the inside of the tub segments in the direction of the interior of the furnace tub in order not to make handling of the bed in the furnace tub more difficult by protruding parts of the length compensation elements.
  • the tub segments are electrically isolated from the length compensation element connected to them.
  • an undesired flow of current in the furnace pan i.e. in the pan segments and length compensation elements, is prevented even better.
  • the electrical insulation between the pan segments and the length compensation elements connected therewith prevents an undesired flow of current between two or more pan segments.
  • the length compensation element is designed in a meandering shape.
  • At least one tub segment is screwed to a length compensation element so that it can be separated.
  • all tub segments are separately screwed to the length compensation element connected to them.
  • a particularly stable construction of the furnace can be achieved if the tub segment screwed to the length compensating element has an outwardly bent edge on which a connecting section of the length compensating element rests, and at least one screw extends through the bent edge of the tub segment, the connecting section of the length compensating element and through extends two flanges which abut on the opposite sides of the bent edge of the tub segment and the connecting portion of the length compensation element.
  • the outwardly bent edge of the The tub segment points away from the interior of the furnace tub and can, for example, be angled at right angles from the inside of the tub segment.
  • the connecting section of the length compensation element, which in the screwed state rests against the bent edge of the tub segment, is expediently an end section of the length compensation element.
  • the flanges have a larger extension perpendicular to the inside of the tub segments than the head of the screw or a nut screwed onto it and thus increase the area in which the force of the tightened screw acts on the bent edge of the tub segment and the connecting section of the length compensation element.
  • the flanges are preferably releasably connected to the bent edge of the tub segment and the connecting section of the length compensation element by means of the at least one screw.
  • the outwardly bent edge of the pan segment and / or the connecting section of the length compensation element also have an electrically insulating coating on the mutually facing sides and the at least one screw in one electrically insulating sleeve is added.
  • the outwardly bent edge of the tub segment and the connecting section of the length compensation element thus rest against one another, electrically insulated from one another.
  • the at least one screw including the screw head and a nut screwed on it is electrically isolated from the bent edge of the tub segment and from the connecting section of the length compensation element by means of the electrically insulating sleeve, a current flow from one tub segment via the length compensation element to the adjacent tub segment is prevented.
  • the electrically insulating coating of the bent edge of the tub segment and / or the connecting section of the length compensation element on the mutually facing sides of the bent edge and the connecting section is preferably formed in the same way as the electrically insulating coating on the inside of the tub segments and on the inside of the length compensation elements .
  • the electrically insulating Coating on the facing sides of the outwardly bent edge of the tub segment and of the connecting portion of the length compensation element extends beyond the contact surface between the outwardly bent edge of the tub segment and the connecting portion of the length compensation element.
  • the tub segment and the length compensation element are still electrically isolated from each other if, due to assembly or manufacturing inaccuracies, the bent edge of the tub segment and the connecting section of the length compensation element are undesirably offset from a target position when they are screwed together.
  • the electrically insulating coating extends on only one of the mutually facing sides of the outwardly bent edge of the tub segment and the connecting section of the length compensation element beyond the contact area between the outwardly bent edge of the tub segment and the connecting section of the length compensation element.
  • the tub segment screwed to the length compensation element is inseparably connected to a first flange on which a second flange inseparably connected to the length compensation element rests, and at least one screw passes through the first flange and through the second flange extends.
  • the first flange is expediently provided on the end of the tub segment facing the length compensation element and the second flange is provided on the end of the length compensation element facing the tub segment.
  • the first and the second flange are welded to the tub segment or the length compensation element.
  • the first and the second flange are connected to one another in the assembled state of the furnace by means of the at least one screw.
  • the first and the second flange have an electrically insulating coating on their inside facing the interior of the furnace pan.
  • the first flange and / or the second flange have an electrically insulating coating on the mutually facing sides and the at least one screw is received in an electrically insulating sleeve. In the screwed state, the first and the second flange therefore rest against one another in an electrically insulated manner from one another.
  • the electrically insulating coating of the first and / or the second flange is preferably formed in the same way as the electrically insulating coating on the inside of the tub segments and on the inside of the length compensation elements.
  • the electrically insulating coating has enamel or at least one of magnesium oxide, chamotte or glasses with heat-resistant binders, preferably potassium water glass, sodium water glass, silica sol, silicone resins, inorganic phosphates, for example aluminum phosphate or magnesium phosphate, water-soluble aluminates or water-soluble aluminosilicates.
  • heat-resistant binders preferably potassium water glass, sodium water glass, silica sol, silicone resins, inorganic phosphates, for example aluminum phosphate or magnesium phosphate, water-soluble aluminates or water-soluble aluminosilicates.
  • Such a coating can reliably insulate the tub segments and the length compensation elements against electrical current even at high temperatures, for example up to about 800 ° C., and can be made thin.
  • Such a surface temperature on the inside of the tub must be expected, especially if the radiant heat from electrodes briefly heats the metal wall of the furnace when it is removed from the furnace.
  • the electrically insulating coating can, for example, be applied to the tub segments and the length compensation elements in a flowable state and then harden.
  • the electrically insulating coating can either be applied to the inside of the tub segments and the length compensation elements after the furnace tub has been set up, e.g. in existing furnaces for longitudinal graphitization, or the tub segments and length compensation elements are applied to the furnace before the furnace is assembled provided electrically insulating coating, in which case the electrically insulating coating can also be burned on, for example. A burned-on enamel.
  • the heat output from the furnace to the outside is not hindered in the cooling phase after graphitization.
  • the productivity of the graphitizing furnace is not restricted.
  • At least one tub segment is inseparably connected, in particular welded, to a length compensation element.
  • the mutually facing ends of the tub segment and the length compensation element are inseparably connected or welded to one another.
  • this construction does not provide any electrical insulation of the tub segment from the length compensation element at their common connection point or welding point, so that damage to the electrically insulating coating on the inside of at least two tub segments results in an undesirable current flow in the furnace tub between the damaged points of the electrically insulating coating over the Lead length compensation elements.
  • the trough segment inseparably connected to the length compensation element is formed from segment parts arranged one behind the other in the direction from the first to the second power contact, with adjacent segment parts of the trough segment connected to one another via an electrically insulating intermediate layer and are electrically isolated from each other.
  • the furnace 1 for longitudinal graphitization of a workpiece, ie a molded body containing carbon to be machined by the action of heat
  • the molded body or the workpiece is inserted into the furnace pan 2 between the electrical contacts 3a, 3b and thus electrically connected.
  • the current contacts 3a, 3b can be designed to press against the molded body.
  • the shaped body is preferably embedded in a bed of heat-resistant material such as coke.
  • the molded body and the heat-resistant material (coke) are not shown for the sake of clarity.
  • the electrically insulating coating 9 on the inside 8 of the tub segments 6 and the electrically insulating coating 12 on the inside 11 of the length compensation elements 10 isolate the furnace tub 2 from the electrical current that is passed through it for processing the molded body, not shown. Without the electrically insulating coating 9, 12, the electrical current would undesirably pass through the bed of heat-resistant material (for example coke) and through the inner sides 8, 11 of the tub segments 6 and the length compensation elements 10 flow into the furnace trough 2 and are passed on via the trough segments 6 and the length compensation elements 10.
  • the bed of heat-resistant material for example coke
  • the length compensation element 10 is in Fig. 1 illustrated example perpendicular to the inside 8 of the tub segments 6, ie in the direction of the arrow B, which points in the width direction of the furnace 1, deflected or meandering in the shape of a wave.
  • the length compensation element 10 is thus designed particularly favorably for changes in its longitudinal extension in the direction of the arrow L.
  • the length compensation element 10 is arranged between adjacent tub segments 6a, 6b or 6b, 6c and connected to them, in order to avoid a gap between the mutually facing ends of adjacent tub segments 6 or to close it with the length compensation element 10.
  • the adjacent tub segments 6, 6a, 6b, 6c are thus connected to one another without any gaps.
  • there is also no need for a cover body which rests on the insides of adjacent tub segments and covers a remaining gap between adjacent tub segments.
  • the tub segments 6 are firmly connected to the length compensation elements 10.
  • Fig. 2 shows a section of the furnace pan 2 of the furnace 1 from Fig. 1 , in a section in the longitudinal direction L of the furnace 1, on an enlarged scale. It can be seen that adjacent tub segments 6, in FIG Fig. 2 The example shown, the tub segments 6b, 6c, are screwed to a length compensation element 10 so as to be separable.
  • the tub segments 6, 6b, 6c screwed to the length compensation element 10 have an outwardly bent, for example flanged, edge 13 on which a connecting section 14 of the length compensation element 10 rests. At least one screw 15, but preferably several screws 15, extend through the bent edge 13 of the tub segment 6, the connecting section 14 of the length compensation element 10 and through two flanges 16a, 16b.
  • both the outwardly bent edge 13 of the tub segment 6 and the connecting section 14 of the length compensation element 10 have an electrically insulating coating 18 on the mutually facing sides 13z, 14z.
  • only the outwardly bent edge 13 of the tub segment 6 or the connecting section 14 of the length compensation element 10 can have an electrically insulating coating 18 on the mutually facing sides 13z, 14z.
  • the screws 15 are accommodated in a heat-resistant, for example ceramic, electrically insulating sleeve 19 in order to establish an electrically conductive connection from the bent edge 13 of the tub segment 6, 6c via the generally metallic flange 16a and via the screw 15 to the generally metallic flange 16b or to avoid the connecting section 14 of the length compensation element 10.
  • the screw head 15a and the nut 17 are also electrically insulated from the flanges 16a, 16b. For example, the screw head 15 a and the nut 17 rest on bent edges of the electrically insulating sleeve 19.
  • Fig. 3 shows a section of a differently constructed furnace pan 2 of a furnace 1, in a section in the longitudinal direction L of the furnace 1, on an enlarged scale.
  • the tub segment 6 screwed to the length compensation element 10 is inseparably connected to a first flange 22a, for example welded
  • the length compensation element 10 is inseparably connected to a second flange 22b, for example welded.
  • the first flange 22a and the second flange 22b lie against one another in the assembled state of the furnace 1 and are screwed to one another by means of screws 15 which extend through the first flange 22a and through the second flange 22b.
  • the first flange 22a and the second flange 22b have an electrically insulating coating 18 on the mutually facing sides 22az, 22bz.
  • the screws 15 are received in an electrically insulating sleeve 19.
  • Fig. 4 shows a section of a differently constructed furnace pan 2 of a furnace 1, in a section in the longitudinal direction L of the furnace 1, on an enlarged scale.
  • the tub segments 6 are inseparably connected to the length compensation elements 10, preferably welded.
  • one end E6 of the tub segment 6 and one end E10 of the length compensation element 10, which ends E6 and E10 face one another, are inseparably connected to one another, preferably welded to one another by means of a weld seam 23.
  • the electrically insulating coating 9 of the tub segment 6 and the electrically insulating coating 12 of the length compensation element 10 are applied in the example shown to the tub segment 6, to the length compensation element 10 connected to it and to the weld seam 23 in the direction of the interior 7 of the furnace tub 2.
  • the tub segment 6 inseparably connected to the length compensation element 10 can be formed from segment parts 6x arranged one behind the other in the direction from the first to the second current contact 3a, 3b
  • Adjacent segment parts 6x1, 6x2 of the tub segment 6 are connected to one another via an electrically insulating intermediate layer 24 and are electrically insulated from one another.
  • an existing 25 m long graphitization furnace was used, which was designed with two furnace tanks electrically connected in series.
  • the furnace pans consisted of metallic and ceramic segments.
  • the series connection of the two furnace pans was designed in such a way that the connection electrodes, made of graphite, of the two furnace pans one side of the tubs were electrically connected to each other.
  • the power connection (plus and minus connection) was attached to the graphite connection electrodes on the opposite side of the two furnace pans.
  • the oven was now treated in such a way that an oven pan (the one that was coupled to the plus side of the electrical connection) was completely coated with a ceramic coating using an airless paint spraying system with a wet film thickness of 0.15 mm.
  • the other furnace pan (the one that was connected to the minus side of the electrical connection) remained uncoated.
  • the same starting material was built into both furnace tanks for graphitization, 77 electrodes in each tank. After switching on the power supply, the built-in moldings were heated up to 3000 ° C. After graphitization, the electrodes were finished and the electrical resistance measured. It was found that those graphite electrodes that were graphitized in the coated tub had an average electrical resistance of 0.05 [ ⁇ Ohmm] lower than those electrodes that were graphitized in the uncoated tub.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Resistance Heating (AREA)

Description

Die Erfindung betrifft einen Ofen mit zumindest einer Ofenwanne, in welcher ein erster und ein zweiter von der Ofenwanne elektrisch isolierter Stromkontakt vorgesehen sind, wobei die Ofenwanne aus vom ersten zum zweiten Stromkontakt hintereinander angeordneten und voneinander beabstandeten Wannensegmenten gebildet ist, welche Wannensegmente zumindest teilweise aus Metall gebildet sind und an ihrer dem Innenraum der Ofenwanne zugewandten Innenseite eine elektrisch isolierende Beschichtung aufweisen.The invention relates to an oven with at least one oven pan, in which a first and a second electrical contact are provided, which are electrically insulated from the oven pan, the oven pan being formed from pan segments arranged one behind the other from the first to the second electrical contact and spaced apart from one another, which pan segments are at least partially made of metal are formed and have an electrically insulating coating on their inner side facing the interior of the furnace pan.

Öfen der genannten Art sind aus dem Stand der Technik bekannt und werden zur Herstellung von synthetischem Graphit verwendet, der in großen Mengen für Anwendungen in der Metallurgie etwa für Schmelzelektroden zum Schrottschmelzen benötigt wird. Synthetischer Graphit wird dabei durch Erhitzen von hochkohlenstoffhaltigen Formkörpern auf Temperaturen von ca. 3000 °C hergestellt. Die hochkohlenstoffhaltigen Formkörper werden in bekannter Weise ( Ullmann's Encyclopedia of Industrial Chemistry, Vol. A5, VCH Verlagsgesellschaft mbH, Weinheim, 1986, S. 103 bis 113 ) durch Heißvermischen von Petrolkoksen oder Pechkoksen, bevorzugt in Form der Nadelkokse, mit Steinkohlenteerpech, Petrolpech oder anderen verkokbaren organischen Flüssigkeiten als Bindemittel, anschließende Formgebung und Brennen der Formkörper zur Verkokung des Bindemittels hergestellt. Alternativ können die gebrannten Formkörper mit Pech oder anderen verkokbaren organischen Flüssigkeiten imprägniert und erneut gebrannt werden um das Imprägniermittel zu verkoken, wodurch die Porosität der Formkörper abnimmt und deren Festigkeit zunimmt. Zum Graphitieren der hochkohlenstoffhaltigen Formkörper wurde früher der sogenannte Acheson Ofen verwendet, in welchem die hochkohlenstoffhaltigen Formkörper quer zur Ofenlängsachse liegend in eine Widerstandsschüttung aus siliziumcarbidhaltigem Material eingebettet wurden. Diese Widerstandsschüttung wurde über Anschlusselektroden mit einer geeigneten elektrischen Stromversorgung verbunden und durch elektrischen Strom auf die Graphitierungstemperatur erhitzt, wodurch auch die Formkörper erhitzt wurden. In den letzten Jahrzehnten hat sich die sogenannte Längsgraphitierung (Castner Ofen) durchgesetzt. Im Unterschied zum Acheson Ofen, der seitlich aufgestellten Wände aus Feuerfestbetonelementen aufwies, welche nach jedem Brand wieder entfernt wurden, besteht der Ofen zur Längsgraphitierung aus einer festen Wanne aus Metall, Keramik oder einer Kombination aus beiden, in welche ein Schüttmaterial zur Wärmeisolierung und die zu graphitierenden Formkörper als Strang eingelegt werden. An den beiden Strangenden wird an die zu graphitierenden Formkörper ein von der Wanne elektrisch isolierter Kohlenstoffblock als Stromanschlusselektrode angepresst. Über diese Kohlenstoffblöcke wird an den Strang Gleichstrom angelegt und die Formkörper im direkten Stromdurchgang bis zur Graphitierungstemperatur von 3000 °C erhitzt.Furnaces of the type mentioned are known from the prior art and are used for the production of synthetic graphite, which is required in large quantities for applications in metallurgy, for example for melting electrodes for scrap melting. Synthetic graphite is produced by heating shaped bodies with a high carbon content to temperatures of approx. 3000 ° C. The high-carbon molded bodies are produced in a known manner ( Ullmann's Encyclopedia of Industrial Chemistry, Vol. A5, VCH Verlagsgesellschaft mbH, Weinheim, 1986, pp. 103 to 113 ) by hot mixing of petroleum cokes or pitch cokes, preferably in the form of needle cokes, with coal tar pitch, petroleum pitch or other coking organic liquids as binders, subsequent shaping and firing of the shaped bodies to coke the binder. Alternatively, the fired shaped bodies can be impregnated with pitch or other coking organic liquids and fired again in order to coke the impregnating agent, as a result of which the porosity of the shaped bodies decreases and their strength increases. The so-called Acheson furnace was previously used to graphitize the high-carbon molded bodies, in which the high-carbon molded bodies were embedded in a resistance bed made of silicon carbide-containing material lying transversely to the longitudinal axis of the furnace. This bulk resistance material was connected to a suitable electrical power supply via connection electrodes and heated to the graphitization temperature by means of an electrical current, which also heated the molded bodies. In the last few decades, so-called longitudinal graphitization (Castner furnace) has established itself. In contrast to the Acheson furnace, which had walls made of refractory concrete elements on the side, which were removed after each fire the furnace for longitudinal graphitization consists of a fixed tub made of metal, ceramic or a combination of both, in which a bulk material for thermal insulation and the shaped bodies to be graphitized are inserted as a strand. At the two ends of the strand, a carbon block, electrically insulated from the tub, is pressed onto the shaped body to be graphitized as a power connection electrode. Direct current is applied to the strand via these carbon blocks and the shaped bodies are heated up to a graphitization temperature of 3000 ° C in direct current flow.

Die AT 411 798 B offenbart einen Ofen zur Längsgraphitierung bei welchem Wannensegmente aus Metall und auf einem Hallenboden stehende, temperaturbeständige und elektrisch isolierende Betonrippen abwechselnd angeordnet sind und mittels einer Ofenhaube gasdicht verschlossen werden.The AT 411 798 B discloses a furnace for longitudinal graphitization in which tub segments made of metal and temperature-resistant and electrically insulating concrete ribs standing on a hall floor are arranged alternately and are sealed gas-tight by means of a furnace hood.

Nachteilig beim Verfahren der Längsgraphitierung ist, dass nur kohlenstoffhaltige Schüttmaterialien zur Wärmeisolation in der Ofenwanne verwendet werden können, die eine unerwünschte elektrische Leitfähigkeit aufweisen. Durch diese elektrische Leitfähigkeit kommt es zur Ankoppelung der metallischen Ofenwanne an das Potentialgefälle der elektrischen Anschlusselektroden mit einer Ausbildung von unerwünschten Nebenströmen in der Ofenwanne, welche zum einen die Ofenwanne erhitzen und zum anderen Energie von den zu graphitierenden Formkörpern wegnehmen. In den Anfängen der Längsgraphitierung waren deshalb die metallischen Ofenwannen mit Feuerfeststeinen ausgemauert, um eine elektrische Isolation zu erreichen. Dies hatte den erheblichen Nachteil, dass die Abkühlzeiten der Graphitelektroden im Ofen nach dem Grahitieren durch die als zusätzliche Wärmeisolierung funktionierende feuerfeste Ausmauerung sehr lange waren, was die Produktivität der Graphitierungsöfen stark eingeschränkt hat. Da die massiven Betonrippen die metallischen Ofenwanne gemäß der AT 411 798 B mehrfach elektrisch unterbrechen, wurden die Nachteile des Ankoppelns des Potentialgefälles reduziert, ohne dass die metallischen Segmente ausgemauert werden mussten. Dennoch verbleibt in den metallischen Wannensegmenten ein elektrisches Potentialgefälle mit Bildung von Nebenströmen, welche einen Teil der zur Graphitierung benötigten Energie aufzehren. Weiters ist durch die einen beachtlichen Teil der Ofenkonstruktion (bzw. der Ofenlänge) einnehmenden gegossenen Betonrippen die Wärmeabgabe nach der Graphitierung behindert, was die Produktivität infolge Verlängerung der Auskühlzeit negativ beeinflusst.The disadvantage of the process of longitudinal graphitization is that only carbon-containing bulk materials can be used for thermal insulation in the furnace trough which have undesirable electrical conductivity. This electrical conductivity leads to the coupling of the metallic furnace pan to the potential gradient of the electrical connection electrodes with the formation of undesired secondary currents in the furnace pan, which on the one hand heat the furnace pan and on the other hand take away energy from the shaped bodies to be graphitized. In the early days of longitudinal graphitization, the metal furnace pans were therefore lined with refractory bricks in order to achieve electrical insulation. This had the significant disadvantage that the cooling times of the graphite electrodes in the furnace after grazing were very long due to the refractory lining functioning as additional heat insulation, which severely restricted the productivity of the graphitizing furnaces. Since the massive concrete ribs form the metallic furnace pan according to the AT 411 798 B Interrupting electrically several times, the disadvantages of coupling the potential gradient were reduced without the metallic segments having to be bricked up. Nevertheless, there remains an electrical potential gradient in the metal tub segments with the formation of side currents, which consume part of the energy required for graphitization. Furthermore is Due to the cast concrete ribs, which occupy a considerable part of the furnace structure (or the furnace length), the heat dissipation after graphitization is hindered, which has a negative impact on productivity as the cooling time is extended.

Die US 5,299,225 offenbart einen Ofen der die Abkühlzeiten etwas reduziert. Der Ofen weist eine Ofenwanne mit mehreren miteinander verbundenen metallischen Segmenten auf, in welche eine gegossene Feuerfestisolierung eingelegt ist. Die Ofenwanne weist zudem eine aufwendige, stark verrippte Metallkonstruktion auf, wodurch die Außenoberfläche der Ofenwanne gegenüber den bis dahin bekannten Ofenwannen vergrößert und eine bessere Wärmeabgabe nach der Graphitierung erreicht wurde. Dennoch war der Wärmedurchgang durch die mehrere cm dicke, gegossene Feuerfestisolierung weiterhin stark beschränkt.The U.S. 5,299,225 discloses an oven that reduces cooling times somewhat. The furnace has a furnace pan with several interconnected metal segments into which a cast refractory insulation is inserted. The furnace pan also has an elaborate, heavily ribbed metal construction, whereby the outer surface of the furnace pan is enlarged compared to the furnace pans known up to that point and a better heat dissipation was achieved after graphitization. Nevertheless, the heat transfer through the several cm thick, cast refractory insulation was still severely limited.

Die US 5,631,919 offenbart einen Ofen zur Längsgraphitierung mit zwei nebeneinander verlaufenden Reihen von hintereinander angeordneten und voneinander beabstandeten metallischen Wannensegmenten. Die einander zugewandten Enden aufeinanderfolgender Wannensegmente sind gleitend in einer U-förmigen Vertiefung eines Stützkörpers aus elektrisch isolierendem Material, insb. Beton, gelagert. Die Wannensegmente sind somit durch den Abstand zwischen den einander zugewandten Enden aufeinanderfolgender Wannensegmente oder durch Betonkörper die zwischen den einander zugewandten Enden aufgenommen sind, voneinander elektrisch isoliert. An den Innenseiten der Wannensegmente ist ein anhaftender, elektrisch isolierender Überzug vorgesehen, dessen Schichtdicke im getrockneten Zustand zwischen 0,127 mm und 1,27 mm beträgt. Der Überzug dient der elektrischen Isolation von in die Wannensegmente eingelegten Karbonkörpern von den Wannensegmenten. Nachteilig ist hier, dass jeweils im Bereich der einander zugewandten Enden aufeinanderfolgender Wannensegmente die Stützkörper vorzusehen sind.The U.S. 5,631,919 discloses a furnace for longitudinal graphitization with two rows of metal tub segments arranged one behind the other and spaced apart from one another. The mutually facing ends of successive tub segments are slidably mounted in a U-shaped recess of a support body made of electrically insulating material, in particular concrete. The tub segments are thus electrically isolated from one another by the distance between the mutually facing ends of successive tub segments or by concrete bodies that are received between the mutually facing ends. An adhesive, electrically insulating coating is provided on the inside of the tub segments, the layer thickness of which in the dried state is between 0.127 mm and 1.27 mm. The coating serves to electrically isolate the carbon bodies inserted in the tub segments from the tub segments. The disadvantage here is that the support bodies have to be provided in the area of the mutually facing ends of successive tub segments.

Die US 4,394,766 offenbart einen Ofen zur Längsgraphitierung mit hintereinander angeordneten und voneinander beabstandeten metallischen Wannensegmenten, die eine gegossene und mit Ankern stabilisierte hitzebeständige Innenbeschichtung aufweisen. Der Spalt zwischen den beabstandeten Wannensegmenten nimmt temperaturbedingte Längenänderungen der Wannensegmente auf, isoliert aufeinanderfolgende Wannensegmente elektrisch voneinander und ist durch einen Abdeckkörper, der eine hitzebeständige Innenbeschichtung und eine am Wannensegment aufliegende Außendichtung aufweist, abgedeckt. Hier ist besonders die massive Ausbildung der Innenbeschichtung von Nachteil. Zudem ist die Ofenkonstruktion wegen der über jedem Spalt anzuordnenden Abdeckkörper kompliziert.The U.S. 4,394,766 discloses a furnace for longitudinal graphitization with metal tub segments arranged one behind the other and spaced apart from one another, which have a heat-resistant inner coating which is cast and stabilized with anchors. The gap between the spaced apart tub segments increases due to temperature Changes in length of the tub segments, isolates successive tub segments electrically from one another and is covered by a cover body which has a heat-resistant inner coating and an outer seal resting on the tub segment. The massive formation of the inner coating is particularly disadvantageous here. In addition, the furnace construction is complicated because of the covering bodies to be arranged over each gap.

Die WO 87/06685 A1 offenbart einen Ofen zur Längsgraphitierung mit hintereinander angeordneten und voneinander beabstandeten metallischen Wannensegmenten. Die Wannensegmente sind an der Innenseite mit feuerfesten Steinen verkleidet und elektrisch voneinander isoliert.The WO 87/06685 A1 discloses a furnace for longitudinal graphitization with metal tub segments arranged one behind the other and spaced apart from one another. The tub segments are clad on the inside with refractory bricks and electrically isolated from each other.

Es ist nun Aufgabe der Erfindung, einen Ofen wie eingangs angegeben zu schaffen, der die Bildung eines unerwünschten Stromflusses in der metallischen Ofenwanne vermeidet, damit den Energieverbrauch zur Graphitierung der in die Ofenwanne eingebrachten Formkörper senkt und die Qualität der zu graphitierten Formkörper verbessert. Zudem ist es Aufgabe der Erfindung die Produktivität bei der Graphitierung der Formkörper durch Minimierung der Abkühlzeit nach dem Graphitieren zu verbessern und den Aufwand für die Herstellung von Ofenwannen zur Längsgraphitierung zu minimieren.It is now the object of the invention to create a furnace as stated at the beginning which avoids the formation of an undesired current flow in the metallic furnace pan, so that the energy consumption for graphitizing the shaped bodies introduced into the furnace trough is reduced and the quality of the shaped bodies to be graphitized is improved. In addition, it is an object of the invention to improve the productivity in the graphitization of the shaped bodies by minimizing the cooling time after graphitization and to minimize the expenditure for the production of furnace pans for longitudinal graphitization.

Hierfür sieht die Erfindung einen Ofen wie in Anspruch 1 definiert vor. Vorteilhafte Ausführungsformen und Weiterbildungen sind in den abhängigen Ansprüchen angegeben.For this purpose, the invention provides a furnace as defined in claim 1. Advantageous embodiments and developments are specified in the dependent claims.

Gemäß der Erfindung ist vorgesehen, dass benachbarte Wannensegmente über ein zwischen einander zugewandter Enden der benachbarten Wannensegmente angeordnetes Längenausgleichselement miteinander verbunden sind, welches Längenausgleichselement zumindest teilweise aus Metall gebildet ist, auf seiner dem Innenraum der Ofenwanne zugewandten Innenseite eine elektrisch isolierende Beschichtung aufweist und senkrecht zur Innenseite der Wannensegmente ausgelenkt ausgebildet ist. Der Ofen weist somit zumindest eine Ofenwanne auf, in welche ein Kohlenstoff enthaltender, durch Wärme zu bearbeitender Formkörper eingebracht werden kann. An Stelle eines einzelnen zu bearbeitenden Formkörpers kann auch eine Reihe vorzugsweise hintereinander angeordneter und miteinander verbundener Kohlenstoff enthaltender, durch Wärme zu bearbeitender Formkörper in den Ofen eingebracht werden. Wenn der Ofen eine zweite oder mehr Ofenwannen aufweist, sind die Ofenwannen günstiger Weise nebeneinander angeordnet, um den Ofen mit geringen Längenabmessungen ausbilden zu können, wobei dann in jeder Ofenwanne zumindest ein zu bearbeitender Formkörper eingebracht werden kann. Der zu bearbeitende Formkörper wird zweckmäßiger Weise in eine Schüttung aus Kohlenstoff enthaltendem Material eingelegt, welches eine Wärme dämmende Wirkung jedoch auch elektrische Leitfähigkeit aufweist. Insbesondere kann der Ofen ein Graphitierungsofen zum Ausführen einer Längsgraphitierung des zu bearbeitenden Formkörpers sein. Zur Bearbeitung des Formkörpers wird an diesen eine elektrischen Spannung angelegt, sodass der Formkörper durch den daraus resultierenden Stromfluss durch den Formkörper erhitzt wird. Hierfür sind in der Ofenwanne bzw. in jeder Ofenwanne ein erster und ein zweiter von der Ofenwanne elektrisch isolierter Stromkontakt vorgesehen. Die Stromkontakte sind mit einer außerhalb der Ofenwanne bereitgestellten elektrischen Energiequelle verbunden bzw. verbindbar und zur Herstellung einer elektrischen Verbindung mit dem zu bearbeitenden Formkörper eingerichtet. Zweckmäßige Anordnungen und Ausbildungen von Stromkontakten in einer Ofenwanne sind dem Fachmann aus dem Gebiet der Öfen zur Längsgraphitierung bekannt. Beispielsweise können die Stromkontakte in aus keramischem Material bestehenden Stirnwänden an zwei Enden der Ofenwanne angeordnet sein. Die Ofenwanne ist aus Wannensegmenten gebildet, die vom ersten zum zweiten Stromkontakt hintereinander angeordnet und voneinander beabstandet sind. Der Abstand zwischen benachbarten, d.h. in Richtung vom ersten zum zweiten Stromkontakt hintereinander angeordneten Wannensegmenten ermöglicht eine temperaturbedingte, kollisionsfreie Längenausdehnung der Wannensegmente. Die Wannensegmente sind zumindest zum Teil aus Metall gebildet, d.h. elektrisch leitfähig. Um die Wannensegmente gegenüber dem zu bearbeitenden, im Betriebszustand des Ofens stromdurchflossenen Formkörper und dem Material der Schüttung elektrisch zu isolieren, weisen die Wannensegmente an ihrer dem Innenraum der Ofenwanne zugewandten Innenseite eine elektrisch isolierende Beschichtung auf. Benachbarte, voneinander beabstandete Wannensegmente sind über ein zwischen den benachbarten Wannensegmenten angeordnetes Längenausgleichselement miteinander verbunden, um einen Spalt zwischen den einander zugewandten Enden der benachbarten Wannensegmente zu vermeiden, d.h. das Längenausgleichselement ist zwischen den einander zugewandten Enden zweier benachbarter Wannensegmente angeordnet. Die Längenausgleichselemente sind zumindest zum Teil aus Metall gebildet und somit elektrisch leitfähig. Um die gesamte Ofenwanne und nicht nur die Wannensegmente elektrisch zu isolieren, weisen auch die Längenausgleichselemente auf ihrer dem Innenraum der Ofenwanne zugewandten Innenseite eine elektrisch isolierende Beschichtung auf. Auf diese Weise wird ein unerwünschter Stromfluss in der Ofenwanne bzw. in den Wannensegmenten und den Längenausgleichselementen, der sich wegen elektrisch unisolierter Oberflächenbereiche an der Innenwand der Ofenwanne einstellen würde, verhindert. Die elektrisch isolierende Beschichtung selbst soll eine möglichst geringe Wärmespeicherkapazität und eine möglichst geringe Schichtdicke aufweisen, um die Abkühlung des Ofens nach Beendigung des Heizvorgangs zu begünstigen. Vorzugsweise beträgt die Schichtdicke der elektrisch isolierenden Beschichtung weniger als 1 mm, bevorzugter weniger als 0,5 mm und besonders bevorzugt weniger als 0,2 mm. Da sich in Folge der schwankenden Ofentemperatur die Wannensegmente unterschiedlich ausdehnen, weisen die zwischen den Wannensegmenten angeordneten Längenausgleichselemente ebenfalls eine temperaturbedingt schwankende Erstreckung auf. Günstiger Weise ist die elektrisch isolierende Beschichtung zumindest geringfügig elastisch ausgebildet, um zuverlässig an den durch den Temperatureinfluss verformten Längenausgleichselementen anzuhaften. Zudem ist vorgesehen, dass das Längenausgleichselement senkrecht zur Innenseite der Wannensegmente ausgelenkt ausgebildet ist. Ein derart konstruiertes Längenausgleichselement mit beispielsweise wellenförmigem Verlauf in seiner Längsrichtung ist für Änderungen seiner Längserstreckung zwischen den einander zugewandten Enden zweier benachbarter Wannensegmente besonders geeignet. Vorzugsweise überragt das Längenausgleichselement nicht die Innenseite der Wannensegmente in Richtung des Innenraums der Ofenwanne, um die Handhabung der Schüttung in der Ofenwanne durch vorstehende Teile der Längenausgleichselemente nicht zu erschweren.According to the invention it is provided that adjacent tub segments are connected to one another via a length compensation element arranged between facing ends of the adjacent tub segments, which length compensation element is at least partially made of metal, has an electrically insulating coating on its inside facing the interior of the furnace tub and perpendicular to the inside the tub segments is designed to be deflected. The furnace thus has at least one furnace pan into which a molded body containing carbon and to be processed by heat is introduced can be. Instead of a single molded body to be processed, a series of molded bodies, preferably arranged one behind the other and connected to one another and containing carbon, to be processed by heat, can be introduced into the furnace. If the furnace has a second or more furnace pans, the furnace pans are advantageously arranged next to one another in order to be able to form the furnace with small length dimensions, in which case at least one shaped body to be processed can then be introduced into each furnace pan. The shaped body to be processed is expediently placed in a bed of carbon-containing material, which has a heat-insulating effect but also has electrical conductivity. In particular, the furnace can be a graphitization furnace for performing longitudinal graphitization of the shaped body to be processed. To process the shaped body, an electrical voltage is applied to it, so that the shaped body is heated by the resulting current flow through the shaped body. For this purpose, a first and a second power contact, electrically insulated from the furnace pan, are provided in the furnace pan or in each furnace pan. The current contacts are connected or can be connected to an electrical energy source provided outside the furnace pan and are set up to establish an electrical connection with the molded body to be processed. Appropriate arrangements and designs of current contacts in a furnace pan are known to those skilled in the field of furnaces for longitudinal graphitization. For example, the current contacts can be arranged in end walls made of ceramic material at two ends of the furnace pan. The furnace pan is formed from pan segments which are arranged one behind the other from the first to the second power contact and are spaced apart from one another. The distance between adjacent tub segments, ie one behind the other in the direction from the first to the second power contact, enables a temperature-dependent, collision-free linear expansion of the tub segments. The tub segments are at least partially made of metal, ie are electrically conductive. In order to electrically isolate the tub segments from the molded body to be processed, through which current flows in the operating state of the furnace, and the material of the bed, the tub segments have an electrically insulating coating on their inside facing the interior of the furnace tub. Neighbors, from each other spaced tub segments are connected to each other via a length compensation element arranged between the adjacent tub segments in order to avoid a gap between the facing ends of the adjacent tub segments, ie the length compensation element is arranged between the facing ends of two adjacent tub segments. The length compensation elements are at least partially made of metal and are therefore electrically conductive. In order to electrically insulate the entire furnace pan and not just the pan segments, the length compensation elements also have an electrically insulating coating on their inside facing the interior of the furnace pan. In this way, an undesired current flow in the furnace pan or in the pan segments and the length compensation elements, which would occur on the inner wall of the furnace pan due to electrically uninsulated surface areas, is prevented. The electrically insulating coating itself should have the lowest possible heat storage capacity and the lowest possible layer thickness in order to facilitate the cooling of the furnace after the heating process has ended. The layer thickness of the electrically insulating coating is preferably less than 1 mm, more preferably less than 0.5 mm and particularly preferably less than 0.2 mm. Since the tub segments expand differently as a result of the fluctuating furnace temperature, the length compensation elements arranged between the tub segments also have a temperature-dependent fluctuating extension. The electrically insulating coating is advantageously designed to be at least slightly elastic in order to reliably adhere to the length compensation elements deformed by the influence of temperature. In addition, it is provided that the length compensation element is designed to be deflected perpendicular to the inside of the tub segments. A length compensation element constructed in this way with, for example, an undulating course in its longitudinal direction is particularly suitable for changes in its longitudinal extent between the mutually facing ends of two adjacent tub segments. Preferably, the length compensation element does not protrude beyond the inside of the tub segments in the direction of the interior of the furnace tub in order not to make handling of the bed in the furnace tub more difficult by protruding parts of the length compensation elements.

Wenn im Rahmen der Beschreibung auf eine Längsrichtung des Ofens, der Ofenwanne, der Wannensegmente oder der Längenausgleichselemente Bezug genommen wird, so ist hierunter die Richtung vom ersten zum zweiten Stromkontakt zu verstehen.If, in the context of the description, reference is made to a longitudinal direction of the furnace, the furnace pan, the pan segments or the length compensation elements, this is understood to mean the direction from the first to the second electrical contact.

Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung kann vorgesehen sein, dass die Wannensegmente von dem damit verbundenen Längenausgleichselement elektrisch isoliert sind. Auf diese Weise wird ein unerwünschter Stromfluss in der Ofenwanne, d.h. in den Wannensegmenten und Längenausgleichselementen, noch besser verhindert. Selbst dann, wenn Teile der elektrisch isolierenden Beschichtung an der Innenwand der Ofenwanne beschädigt, insbesondere abgeschlagen sind, kann sich wegen der elektrischen Isolierung zwischen den Wannensegmenten und den damit verbundenen Längenausgleichselementen kein unerwünschter Stromfluss zwischen zwei oder mehr Wannensegmenten einstellen.According to a preferred embodiment of the present invention it can be provided that the tub segments are electrically isolated from the length compensation element connected to them. In this way, an undesired flow of current in the furnace pan, i.e. in the pan segments and length compensation elements, is prevented even better. Even if parts of the electrically insulating coating on the inner wall of the furnace pan are damaged, in particular chipped, the electrical insulation between the pan segments and the length compensation elements connected therewith prevents an undesired flow of current between two or more pan segments.

Für eine besonders vorteilhafte Ofenkonstruktion kann vorgesehen sein, dass das Längenausgleichselement mäanderförmig ausgebildet ist.For a particularly advantageous furnace construction it can be provided that the length compensation element is designed in a meandering shape.

Um den Ofen einfach aufbauen und einzelne Wannensegmente im Bedarfsfall reparieren oder austauschen zu können, ist es günstig, wenn zumindest ein Wannensegment trennbar mit einem Längenausgleichselement verschraubt ist. Vorteilhafter Weise sind alle Wannensegmente trennbar mit dem jeweils damit verbundenen Längenausgleichselement verschraubt.In order to be able to set up the furnace easily and to be able to repair or replace individual tub segments if necessary, it is advantageous if at least one tub segment is screwed to a length compensation element so that it can be separated. Advantageously, all tub segments are separately screwed to the length compensation element connected to them.

Eine besonders stabile Konstruktion des Ofens kann erzielt werden, wenn das mit dem Längenausgleichselement verschraubte Wannensegment einen nach außen umgebogenen Rand aufweist, an welchem ein Verbindungsabschnitt des Längenausgleichselements anliegt, und sich zumindest eine Schraube durch den umgebogenen Rand des Wannensegments, den Verbindungsabschnitt des Längenausgleichselements und durch zwei Flansche erstreckt, die an den voneinander abgewandten Seiten des umgebogenen Rands des Wannensegments und des Verbindungsabschnitts des Längenausgleichselements anliegen. Der nach außen umgebogene Rand des Wannensegments weist vom Innenraum der Ofenwanne weg und kann beispielsweise rechtwinkelig von der Innenseite des Wannensegments abgewinkelt sein. Der Verbindungsabschnitt des Längenausgleichselements, welcher im verschraubten Zustand am umgebogenen Rand des Wannensegments anliegt, ist zweckmäßiger Weise ein Endabschnitt des Längenausgleichselements. Die Flansche weisen senkrecht zur Innenseite der Wannensegmente eine größere Erstreckung als der Kopf der Schraube oder eine darauf aufgeschraubte Mutter auf und vergrößern somit die Fläche in welcher die Kraft der festgezogenen Schraube auf den umgebogenen Rand des Wannensegments und den Verbindungsabschnitt des Längenausgleichselements wirkt. Die Flansche sind bevorzugt lösbar mittels der zumindest einen Schraube mit dem umgebogenen Rand des Wannensegments und dem Verbindungsabschnitt des Längenausgleichselements verbunden.A particularly stable construction of the furnace can be achieved if the tub segment screwed to the length compensating element has an outwardly bent edge on which a connecting section of the length compensating element rests, and at least one screw extends through the bent edge of the tub segment, the connecting section of the length compensating element and through extends two flanges which abut on the opposite sides of the bent edge of the tub segment and the connecting portion of the length compensation element. The outwardly bent edge of the The tub segment points away from the interior of the furnace tub and can, for example, be angled at right angles from the inside of the tub segment. The connecting section of the length compensation element, which in the screwed state rests against the bent edge of the tub segment, is expediently an end section of the length compensation element. The flanges have a larger extension perpendicular to the inside of the tub segments than the head of the screw or a nut screwed onto it and thus increase the area in which the force of the tightened screw acts on the bent edge of the tub segment and the connecting section of the length compensation element. The flanges are preferably releasably connected to the bent edge of the tub segment and the connecting section of the length compensation element by means of the at least one screw.

Um einen unerwünschten Stromfluss in der Ofenwanne besonders zuverlässig vermeiden zu können, kann vorgesehen sein, dass auch der nach außen umgebogene Rand des Wannensegments und/oder der Verbindungsabschnitt des Längenausgleichselements an den einander zugewandten Seiten eine elektrisch isolierende Beschichtung aufweisen und die zumindest eine Schraube in einer elektrisch isolierenden Hülse aufgenommen ist. Der nach außen umgebogene Rand des Wannensegments und der Verbindungsabschnitt des Längenausgleichselements liegen somit elektrisch voneinander isoliert aneinander an. Da auch die zumindest eine Schraube inklusive dem Schraubenkopf und einer darauf aufgeschraubten Mutter mittels der elektrisch isolierenden Hülse vom umgebogenen Rand des Wannensegments und vom Verbindungsabschnitt des Längenausgleichselements elektrisch isoliert ist, wird ein Stromfluss von einem Wannensegment über das Längenausgleichselement zum benachbarten Wannensegment unterbunden. Die elektrisch isolierende Beschichtung des umgebogenen Rands des Wannensegments und/oder des Verbindungsabschnitts des Längenausgleichselements an den einander zugewandten Seiten des umgebogenen Rands und des Verbindungsabschnitts ist bevorzugt auf die gleiche Weise wie die elektrisch isolierende Beschichtung an der Innenseite der Wannensegmente und an der Innenseite der Längenausgleichselemente ausgebildet.In order to be able to avoid an undesired current flow in the furnace pan particularly reliably, it can be provided that the outwardly bent edge of the pan segment and / or the connecting section of the length compensation element also have an electrically insulating coating on the mutually facing sides and the at least one screw in one electrically insulating sleeve is added. The outwardly bent edge of the tub segment and the connecting section of the length compensation element thus rest against one another, electrically insulated from one another. Since the at least one screw including the screw head and a nut screwed on it is electrically isolated from the bent edge of the tub segment and from the connecting section of the length compensation element by means of the electrically insulating sleeve, a current flow from one tub segment via the length compensation element to the adjacent tub segment is prevented. The electrically insulating coating of the bent edge of the tub segment and / or the connecting section of the length compensation element on the mutually facing sides of the bent edge and the connecting section is preferably formed in the same way as the electrically insulating coating on the inside of the tub segments and on the inside of the length compensation elements .

Besonders günstig ist es, wenn sich die elektrisch isolierende Beschichtung an den einander zugewandten Seiten des nach außen umgebogenen Rands des Wannensegments und des Verbindungsabschnitts des Längenausgleichselements über die Berührungsfläche zwischen dem nach außen umgebogenen Rand des Wannensegments und dem Verbindungsabschnitt des Längenausgleichselements hinaus erstreckt. Auf diese Weise sind das Wannensegment und das Längenausgleichselement auch dann noch elektrisch voneinander isoliert, wenn auf Grund von Montage- oder Herstellungsungenauigkeiten der umgebogene Rand des Wannensegments und der Verbindungsabschnitts des Längenausgleichselements im miteinander verschraubten Zustand unerwünschter Weise von einer Sollposition abweichend gegeneinander versetzt sind. Es kann auch vorgesehen sein, dass sich die elektrisch isolierende Beschichtung an nur einer der einander zugewandten Seiten des nach außen umgebogenen Rands des Wannensegments und des Verbindungsabschnitts des Längenausgleichselements über die Berührungsfläche zwischen dem nach außen umgebogenen Rand des Wannensegments und dem Verbindungsabschnitt des Längenausgleichselements hinaus erstreckt.It is particularly favorable if the electrically insulating Coating on the facing sides of the outwardly bent edge of the tub segment and of the connecting portion of the length compensation element extends beyond the contact surface between the outwardly bent edge of the tub segment and the connecting portion of the length compensation element. In this way, the tub segment and the length compensation element are still electrically isolated from each other if, due to assembly or manufacturing inaccuracies, the bent edge of the tub segment and the connecting section of the length compensation element are undesirably offset from a target position when they are screwed together. It can also be provided that the electrically insulating coating extends on only one of the mutually facing sides of the outwardly bent edge of the tub segment and the connecting section of the length compensation element beyond the contact area between the outwardly bent edge of the tub segment and the connecting section of the length compensation element.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung kann vorgesehen sein, dass das mit dem Längenausgleichselement verschraubte Wannensegment untrennbar mit einem ersten Flansch verbunden ist, an welchem ein untrennbar mit dem Längenausgleichselement verbundener zweiter Flansch anliegt, und sich zumindest eine Schraube durch den ersten Flansch und durch den zweiten Flansch erstreckt. Der erste Flansch ist zweckmäßiger Weise am dem Längenausgleichselement zugewandten Ende des Wannensegments und der zweite Flansch am dem Wannensegment zugewandten Ende des Längenausgleichselements vorgesehen. Beispielsweise sind der erste und der zweite Flansch mit dem Wannensegment bzw. dem Längenausgleichselement verschweißt. Der erste und der zweite Flansch sind im montierten Zustand des Ofens mittels der zumindest einen Schraube miteinander verbunden. Zudem weisen der erste und der zweite Flansch an ihrer dem Innenraum der Ofenwanne zugewandten Innenseite eine elektrisch isolierende Beschichtung auf.According to a further preferred embodiment of the invention it can be provided that the tub segment screwed to the length compensation element is inseparably connected to a first flange on which a second flange inseparably connected to the length compensation element rests, and at least one screw passes through the first flange and through the second flange extends. The first flange is expediently provided on the end of the tub segment facing the length compensation element and the second flange is provided on the end of the length compensation element facing the tub segment. For example, the first and the second flange are welded to the tub segment or the length compensation element. The first and the second flange are connected to one another in the assembled state of the furnace by means of the at least one screw. In addition, the first and the second flange have an electrically insulating coating on their inside facing the interior of the furnace pan.

Um im Fall des ersten mit dem Wannensegment untrennbar verbundenen Flansches und des zweiten mit dem Längenausgleichselement untrennbar verbundenen Flansches einen unerwünschten Stromfluss in der Ofenwanne besonders zuverlässig vermeiden zu können, kann vorgesehen sein, dass der erste Flansch und/oder der zweite Flansch an den einander zugewandten Seiten eine elektrisch isolierende Beschichtung aufweisen und die zumindest eine Schraube in einer elektrisch isolierenden Hülse aufgenommen ist. Der erste und der zweite Flansch liegen im verschraubten Zustand somit elektrisch voneinander isoliert aneinander an. Da auch die zumindest eine Schraube inklusive dem Schraubenkopf und einer darauf aufgeschraubten Mutter mittels der elektrisch isolierenden Hülse vom ersten und zweiten Flansch elektrisch isoliert ist, wird ein Stromfluss von einem Wannensegment über das Längenausgleichselement zum benachbarten Wannensegment unterbunden. Die elektrisch isolierende Beschichtung des ersten und/oder des zweiten Flansches ist bevorzugt auf die gleiche Weise wie die elektrisch isolierende Beschichtung an der Innenseite der Wannensegmente und an der Innenseite der Längenausgleichselemente ausgebildet.In the case of the first flange inseparably connected to the tub segment and the second flange inseparably connected to the length compensation element, an undesired flow of current To be able to avoid particularly reliably in the furnace pan, it can be provided that the first flange and / or the second flange have an electrically insulating coating on the mutually facing sides and the at least one screw is received in an electrically insulating sleeve. In the screwed state, the first and the second flange therefore rest against one another in an electrically insulated manner from one another. Since the at least one screw including the screw head and a nut screwed onto it is electrically isolated from the first and second flange by means of the electrically insulating sleeve, a current flow from one tub segment via the length compensation element to the adjacent tub segment is prevented. The electrically insulating coating of the first and / or the second flange is preferably formed in the same way as the electrically insulating coating on the inside of the tub segments and on the inside of the length compensation elements.

Besonders vorteilhaft ist es, wenn die elektrisch isolierende Beschichtung Emaille oder zumindest eines von Magnesiumoxid, Schamotte oder Gläser, mit hitzefesten Bindemitteln, vorzugsweise Kaliumwasserglas, Natriumwasserglas, Kieselsol, Silikonharzen, anorganische Phosphate, beispielsweise Aluminiumphosphat oder Magnesiumphosphat, wasserlösliche Aluminate oder wasserlösliche Aluminosilikate, aufweist. Eine derartige Beschichtung kann selbst bei hohen Temperaturen, bspw. bis etwa 800°C, die Wannensegmente und die Längenausgleichselemente zuverlässig gegen elektrischen Strom isolieren und dünn ausgebildet sein. Mit einer solchen Oberflächentemperatur an der Wanneninnenseite muss gerechnet werden, insbesondere dann, wenn die Strahlungswärme von Elektroden beim Ausbauen aus dem Ofen die metallische Wand des Ofens kurzzeitig erhitzt. Die elektrisch isolierende Beschichtung kann beispielsweise in einem fließfähigen Zustand auf die Wannensegmente und die Längenausgleichselemente aufgetragen werden und danach aushärten. Die elektrisch isolierende Beschichtung kann entweder nach der Errichtung der Ofenwanne auf der Innenseite der Wannensegmente und der Längenausgleichselemente aufgebracht werden, bspw. bei bereits bestehenden Öfen zur Längsgraphitierung, oder die Wannensegmente und Längenausgleichselemente werden vor dem Zusammenbau des Ofens mit der elektrisch isolierenden Beschichtung versehen, in welchem Fall die elektrisch isolierende Beschichtung auch aufgebrannt werden kann, bspw. eine aufgebrannte Emaille ist.It is particularly advantageous if the electrically insulating coating has enamel or at least one of magnesium oxide, chamotte or glasses with heat-resistant binders, preferably potassium water glass, sodium water glass, silica sol, silicone resins, inorganic phosphates, for example aluminum phosphate or magnesium phosphate, water-soluble aluminates or water-soluble aluminosilicates. Such a coating can reliably insulate the tub segments and the length compensation elements against electrical current even at high temperatures, for example up to about 800 ° C., and can be made thin. Such a surface temperature on the inside of the tub must be expected, especially if the radiant heat from electrodes briefly heats the metal wall of the furnace when it is removed from the furnace. The electrically insulating coating can, for example, be applied to the tub segments and the length compensation elements in a flowable state and then harden. The electrically insulating coating can either be applied to the inside of the tub segments and the length compensation elements after the furnace tub has been set up, e.g. in existing furnaces for longitudinal graphitization, or the tub segments and length compensation elements are applied to the furnace before the furnace is assembled provided electrically insulating coating, in which case the electrically insulating coating can also be burned on, for example. A burned-on enamel.

Durch die geringe Schichtdicke der elektrisch isolierende Beschichtung wird die Wärmeabgabe des Ofens nach außen in der Abkühlphase nach der Graphitierung nicht behindert. Damit ergibt sich im Gegenteil zu anderen Ofenkonstruktionen, bei welchen an Stelle der dünnen elektrisch isolierenden Beschichtung die Ofenwanne ausgemauert oder mit einer gegossenen Feuerfestisolierung versehen wird, keine Einschränkung der Produktivität des Graphitierungsofens. Durch den Wegfall der für bestimmte Ofenkonstruktionen erforderlichen keramischen Segmente als elektrische Zwischenschicht zwischen den Wannensegmenten einer Ofenwanne, welche keramischen Segmente ebenfalls eine sehr schlechte Wärmeleitung aufweisen, wird die Abkühlzeit des Graphitierungsofens verkürzt und die Produktivität bei gleichen Ofenabmessungen des erfindungsgemäßen Ofens gegenüber einem bekannten Ofen erhöht.Due to the small thickness of the electrically insulating coating, the heat output from the furnace to the outside is not hindered in the cooling phase after graphitization. In contrast to other furnace designs, in which the furnace pan is bricked up or provided with cast refractory insulation instead of the thin electrically insulating coating, the productivity of the graphitizing furnace is not restricted. By eliminating the ceramic segments required for certain furnace designs as an electrical intermediate layer between the tub segments of a furnace tub, which ceramic segments also have very poor heat conduction, the cooling time of the graphitizing furnace is shortened and productivity is increased compared to a known furnace with the same furnace dimensions of the furnace according to the invention.

Für eine besonders einfache und kostengünstige Ofenkonstruktion kann vorgesehen sein, dass zumindest ein Wannensegment untrennbar mit einem Längenausgleichselement verbunden, insbesondere verschweißt ist. Zweckmäßiger Weise sind die einander zugewandten Enden des Wannensegments und des Längenausgleichselements miteinander untrennbar verbunden bzw. verschweißt. Diese Konstruktion sieht jedoch keine elektrische Isolation des Wannensegments vom Längenausgleichselement an deren gemeinsamer Verbindungsstelle bzw. Schweißstelle vor, sodass Beschädigungen der elektrisch isolierenden Beschichtung an der Innenseite von zumindest zwei Wannensegmenten zu einem unerwünschten Stromfluss in der Ofenwanne zwischen den schadhaften Stellen der elektrisch isolierenden Beschichtung über die Längenausgleichselemente führen. Zur Vermeidung bzw. Reduktion eines solchen unerwünschten Stromflusses in der Ofenwanne kann vorgesehen sein, dass das mit dem Längenausgleichselement untrennbar verbundene Wannensegment aus in Richtung vom ersten zum zweiten Stromkontakt hintereinander angeordneten Segmentteilen gebildet ist, wobei benachbarte Segmentteile des Wannensegments über eine elektrisch isolierende Zwischenschicht miteinander verbunden und voneinander elektrisch isoliert sind.For a particularly simple and inexpensive furnace construction, it can be provided that at least one tub segment is inseparably connected, in particular welded, to a length compensation element. Appropriately, the mutually facing ends of the tub segment and the length compensation element are inseparably connected or welded to one another. However, this construction does not provide any electrical insulation of the tub segment from the length compensation element at their common connection point or welding point, so that damage to the electrically insulating coating on the inside of at least two tub segments results in an undesirable current flow in the furnace tub between the damaged points of the electrically insulating coating over the Lead length compensation elements. To avoid or reduce such an undesirable current flow in the furnace trough, the trough segment inseparably connected to the length compensation element is formed from segment parts arranged one behind the other in the direction from the first to the second power contact, with adjacent segment parts of the trough segment connected to one another via an electrically insulating intermediate layer and are electrically isolated from each other.

Die Erfindung wird im Folgenden anhand von bevorzugten, nicht einschränkenden Ausführungsformen unter Bezugnahme auf die Zeichnung noch weiter erläutert. Es zeigen:

  • Fig. 1 einen Ofen gemäß der Erfindung in einer schematischen Darstellung, der eine Ofenwanne mit Wannensegmenten und Längenausgleichselementen aufweist;
  • Fig. 2 eine schematische Darstellung eines Abschnitts der Ofenwanne des Ofens aus Fig. 1, in einem Längsschnitt, wobei die Wannensegmente mit dazwischen angeordneten Längenausgleichselementen verschraubt sind;
  • Fig. 3 eine schematische Darstellung eines Abschnitts einer anders konstruierten Ofenwanne des Ofens aus Fig. 1, in einem Längsschnitt, wobei die Wannensegmente im Vergleich zu Fig. 2 auf andere Weise mit dazwischen angeordneten Längenausgleichselementen verschraubt sind; und
  • Fig. 4 eine schematische Darstellung eines Abschnitts einer Ofenwanne des Ofens aus Fig. 1, in einem Längsschnitt, wobei die Wannensegmente mit dazwischen angeordneten Längenausgleichselementen verschweißt sind.
  • Fig. 1 zeigt in einer perspektivischen Ansicht einen Ofen 1 mit zumindest einer Ofenwanne 2, im in Fig. 1 dargestellten Beispiel genau einer Ofenwanne 2. In der Ofenwanne 2 sind ein erster Stromkontakt 3a und ein zweiter Stromkontakt 3b vorgesehen, die von der Ofenwanne 2 elektrisch isoliert angeordnet sind. Die Stromkontakte 3a, 3b können bspw. in aus keramischem Material bestehenden Stirnwänden 4a, 4b an zwei Enden 5a, 5b der Ofenwanne 2 angeordnet sein. Die Ofenwanne 2 weist voneinander beabstandete Wannensegmente 6 auf, die in Längsrichtung L des Ofens 1, d.h. in Richtung vom ersten Stromkontakt 3a zum zweiten Stromkontakt 3b, hintereinander angeordnet sind. In Fig. 1 sind beispielhaft nur drei Wannensegmente 6, 6a, 6b, 6c dargestellt. Selbstverständlich kann die Ofenwanne 2 auch nur zwei oder mehr als drei Wannensegmente 6 aufweisen. Ebenso kann der Ofen 1 mehr als eine Ofenwanne 2 aufweisen. Die Wannensegmente 6 sind zumindest teilweise aus Metall gebildet, d.h. elektrisch leitfähig, und weisen an ihrer dem Innenraum 7 der Ofenwanne 2 zugewandten Innenseite 8 eine elektrisch isolierende Beschichtung 9 auf. Benachbarte Wannensegmente 6a, 6b bzw. 6b, 6c sind über ein zwischen den benachbarten Wannensegmenten 6a, 6b bzw. 6b, 6c angeordnetes Längenausgleichselement 10, 10a, 10b miteinander verbunden, d.h. das Längenausgleichselement 10, 10a, 10b ist in den Wänden und im Boden der Ofenwanne 2 vorgesehen, um eine temperaturbedingte Relativbewegung der Wannensegmente 6 zueinander zuzulassen. Die Ofenwanne 2 ist nicht auf eine rechteckige Querschnittsform beschränkt und kann bspw. im Querschnitt auch U-förmig sein. Die Ofenwanne 2 weist in Längsrichtung L des Ofens 1 abwechselnd aufeinanderfolgende Wannensegmente 6 und Längenausgleichselemente 10 auf. Das Längenausgleichselement 10 ist zumindest teilweise aus Metall gebildet und weist auf seiner dem Innenraum 7 der Ofenwanne 2 zugewandten Innenseite 11 eine elektrisch isolierende Beschichtung 12 auf. Die elektrisch isolierende Beschichtung 9 und die elektrisch isolierende Beschichtung 12 sind im dargestellten Beispiel auf die Wannensegmente 6 bzw. auf die Längenausgleichselemente 10 fest aufgebracht und somit Teil der Wannensegmente 6 bzw. der Längenausgleichselemente 10.
The invention is explained in more detail below on the basis of preferred, non-limiting embodiments with reference to the drawing. Show it:
  • Fig. 1 a furnace according to the invention in a schematic representation, which has a furnace pan with pan segments and length compensation elements;
  • Fig. 2 a schematic representation of a portion of the furnace pan of the furnace Fig. 1 , in a longitudinal section, wherein the tub segments are screwed to length compensation elements arranged between them;
  • Fig. 3 a schematic representation of a portion of a differently constructed furnace pan of the furnace Fig. 1 , in a longitudinal section, with the tub segments compared to Fig. 2 are screwed in a different way with length compensation elements arranged between them; and
  • Fig. 4 a schematic representation of a portion of a furnace pan of the furnace Fig. 1 , in a longitudinal section, the tub segments being welded to length compensation elements arranged between them.
  • Fig. 1 shows a perspective view of an oven 1 with at least one oven pan 2, in FIG Fig. 1 The example shown is exactly one furnace pan 2. A first power contact 3 a and a second power contact 3 b are provided in the furnace pan 2 and are arranged to be electrically insulated from the furnace pan 2. The current contacts 3a, 3b can be arranged, for example, in end walls 4a, 4b made of ceramic material at two ends 5a, 5b of the furnace pan 2. The furnace pan 2 has spaced apart pan segments 6 which are arranged one behind the other in the longitudinal direction L of the furnace 1, ie in the direction from the first power contact 3a to the second power contact 3b. In Fig. 1 only three tub segments 6, 6a, 6b, 6c are shown by way of example. Of course, the furnace pan 2 can also have only two or more than three pan segments 6. The furnace 1 can also have more than one furnace pan 2. The tub segments 6 are at least partially formed from metal, ie electrically conductive, and have an electrically insulating coating 9 on their inner side 8 facing the interior 7 of the furnace pan 2. Adjacent tub segments 6a, 6b or 6b, 6c are connected to one another via a length compensation element 10, 10a, 10b arranged between the adjacent tub segments 6a, 6b or 6b, 6c, ie the length compensation element 10, 10a, 10b is in the walls and in the floor the furnace pan 2 is provided in order to allow a temperature-dependent movement of the pan segments 6 relative to one another. The furnace pan 2 is not restricted to a rectangular cross-sectional shape and can, for example, also be U-shaped in cross-section. In the longitudinal direction L of the furnace 1, the furnace pan 2 has alternately successive pan segments 6 and length compensation elements 10. The length compensation element 10 is formed at least partially from metal and has an electrically insulating coating 12 on its inner side 11 facing the interior 7 of the furnace pan 2. In the example shown, the electrically insulating coating 9 and the electrically insulating coating 12 are firmly applied to the tub segments 6 and / or to the length compensation elements 10 and are thus part of the tub segments 6 and / or the length compensation elements 10.

Für die Verwendung des Ofens 1 zur Längsgraphitierung eines Werkstücks, d.h. eines durch Wärmeeinwirkung zu bearbeitenden, Kohlenstoff enthaltenden Formkörpers, wird der Formkörper bzw. das Werkstück zwischen den Stromkontakten 3a, 3b und damit elektrisch verbunden in die Ofenwanne 2 eingelegt. Dabei können die Stromkontakte 3a, 3b ausgebildet sein, gegen den Formkörper zu drücken. Zudem wird der Formkörper bevorzugt in eine Schüttung aus hitzefestem Material wie etwa Koks eingebettet. Der Formkörper und das hitzefeste Material (Koks) sind der Übersichtlichkeit wegen nicht dargestellt. Die elektrisch isolierende Beschichtung 9 an der Innenseite 8 der Wannensegmente 6 und die elektrisch isolierende Beschichtung 12 an der Innenseite 11 der Längenausgleichselemente 10 isolieren die Ofenwanne 2 vom elektrischen Strom, der zur Bearbeitung des nicht dargestellten Formkörpers durch diesen geleitet wird. Ohne die elektrisch isolierende Beschichtung 9, 12 würde der elektrische Strom unerwünschter Weise über die Schüttung aus hitzefestem Material (bspw. Koks) und über die Innenseiten 8, 11 der Wannensegmente 6 und der Längenausgleichselemente 10 in die Ofenwanne 2 einströmen und über die Wannensegmente 6 und die Längenausgleichselemente 10 weitergeleitet werden.To use the furnace 1 for longitudinal graphitization of a workpiece, ie a molded body containing carbon to be machined by the action of heat, the molded body or the workpiece is inserted into the furnace pan 2 between the electrical contacts 3a, 3b and thus electrically connected. The current contacts 3a, 3b can be designed to press against the molded body. In addition, the shaped body is preferably embedded in a bed of heat-resistant material such as coke. The molded body and the heat-resistant material (coke) are not shown for the sake of clarity. The electrically insulating coating 9 on the inside 8 of the tub segments 6 and the electrically insulating coating 12 on the inside 11 of the length compensation elements 10 isolate the furnace tub 2 from the electrical current that is passed through it for processing the molded body, not shown. Without the electrically insulating coating 9, 12, the electrical current would undesirably pass through the bed of heat-resistant material (for example coke) and through the inner sides 8, 11 of the tub segments 6 and the length compensation elements 10 flow into the furnace trough 2 and are passed on via the trough segments 6 and the length compensation elements 10.

Das Längenausgleichselement 10 ist im in Fig. 1 dargestellten Beispiel senkrecht zur Innenseite 8 der Wannensegmente 6, d.h. in Richtung des Pfeils B, welcher in die Breitenrichtung des Ofens 1 weist, wellenförmig ausgelenkt bzw. mäanderförmig ausgebildet. Somit ist das Längenausgleichselement 10 besonders günstig für Änderungen seiner Längserstreckung in Richtung des Pfeils L ausgebildet. Das Längenausgleichselement 10 ist zwischen benachbarten Wannensegmenten 6a, 6b bzw. 6b, 6c und mit diesen verbunden angeordnet, um einen Spalt zwischen den einander zugewandten Enden benachbarter Wannensegmente 6 zu vermeiden bzw. durch das Längenausgleichselement 10 zu verschließen. Die benachbarten Wannensegmente 6, 6a, 6b, 6c sind somit spaltfrei miteinander verbunden. Im Gegensatz zu bekannten Ofenkonstruktionen ist auch kein Abdeckkörper erforderlich, der an den Innenseiten benachbarter Wannensegmente aufliegt und einen verbleibenden Spalt zwischen benachbarten Wannensegmenten abdeckt. In den dargestellten Beispielen sind die Wannensegmente 6 fest mit den Längenausgleichselementen 10 verbunden.The length compensation element 10 is in Fig. 1 illustrated example perpendicular to the inside 8 of the tub segments 6, ie in the direction of the arrow B, which points in the width direction of the furnace 1, deflected or meandering in the shape of a wave. The length compensation element 10 is thus designed particularly favorably for changes in its longitudinal extension in the direction of the arrow L. The length compensation element 10 is arranged between adjacent tub segments 6a, 6b or 6b, 6c and connected to them, in order to avoid a gap between the mutually facing ends of adjacent tub segments 6 or to close it with the length compensation element 10. The adjacent tub segments 6, 6a, 6b, 6c are thus connected to one another without any gaps. In contrast to known furnace constructions, there is also no need for a cover body which rests on the insides of adjacent tub segments and covers a remaining gap between adjacent tub segments. In the examples shown, the tub segments 6 are firmly connected to the length compensation elements 10.

Fig. 2 zeigt einen Abschnitt der Ofenwanne 2 des Ofens 1 aus Fig. 1, in einem Schnitt in Längsrichtung L des Ofens 1, in einem vergrößerten Maßstab. Dabei ist erkennbar, dass benachbarte Wannensegmente 6, im in Fig. 2 dargestellten Beispiel die Wannensegmente 6b, 6c, trennbar mit einem Längenausgleichselement 10 verschraubt sind. Dabei weisen die mit dem Längenausgleichselement 10 verschraubten Wannensegmente 6, 6b, 6c einen nach außen umgebogenen bspw. umgebördelten Rand 13 auf, an welchem ein Verbindungsabschnitt 14 des Längenausgleichselements 10 anliegt. Zumindest eine Schraube 15, bevorzugt jedoch mehrere Schrauben 15 erstrecken sich durch den umgebogenen Rand 13 des Wannensegments 6, den Verbindungsabschnitt 14 des Längenausgleichselements 10 und durch zwei Flansche 16a, 16b. Die Flansche 16a, 16b liegen an den voneinander abgewandten Seiten 13a, 14a des umgebogenen Rands 13 des Wannensegments 6 und des Verbindungsabschnitts 14 des Längenausgleichselements 10 lösbar an. Die Schrauben 15 spannen gemeinsam mit einer darauf montierten Mutter 17 das Wannensegment 6, das Längenausgleichselement 10 und die Flansche 16a, 16b zusammen. In dieser Ausführungsform sind daher die Wannensegmente 6 direkt mit den Längenausgleichselementen 10 verbunden. Im in Fig. 2 dargestellten Beispiel weisen sowohl der nach außen umgebogene Rand 13 des Wannensegments 6 als auch der Verbindungsabschnitt 14 des Längenausgleichselements 10 an den einander zugewandten Seiten 13z, 14z eine elektrisch isolierende Beschichtung 18 auf. In einer einfacheren Ausführungsform kann auch nur der nach außen umgebogene Rand 13 des Wannensegments 6 oder der Verbindungsabschnitt 14 des Längenausgleichselements 10 an den einander zugewandten Seiten 13z, 14z eine elektrisch isolierende Beschichtung 18 aufweisen. Die Schrauben 15 sind in einer hitzebeständigen, bspw. keramischen, elektrisch isolierenden Hülse 19 aufgenommen, um eine elektrisch leitende Verbindung vom umgebogene Rand 13 des Wannensegments 6, 6c über den im allgemeinen metallischen Flansch 16a und über die Schraube 15 zum im allgemeinen metallischen Flansch 16b bzw. zum Verbindungsabschnitt 14 des Längenausgleichselements 10 zu vermeiden. Auch der Schraubenkopf 15a und die Mutter 17 sind von den Flanschen 16a, 16b elektrisch isoliert. Beispielsweise liegen der Schraubenkopf 15a und die Mutter 17 an umgebogenen Rändern der elektrisch isolierenden Hülse 19 an. Fig. 2 shows a section of the furnace pan 2 of the furnace 1 from Fig. 1 , in a section in the longitudinal direction L of the furnace 1, on an enlarged scale. It can be seen that adjacent tub segments 6, in FIG Fig. 2 The example shown, the tub segments 6b, 6c, are screwed to a length compensation element 10 so as to be separable. The tub segments 6, 6b, 6c screwed to the length compensation element 10 have an outwardly bent, for example flanged, edge 13 on which a connecting section 14 of the length compensation element 10 rests. At least one screw 15, but preferably several screws 15, extend through the bent edge 13 of the tub segment 6, the connecting section 14 of the length compensation element 10 and through two flanges 16a, 16b. The flanges 16a, 16b releasably rest on the sides 13a, 14a of the bent edge 13 of the tub segment 6 and the connecting section 14 of the length compensation element 10, which face away from one another. The screws 15 tension together with a nut mounted thereon 17 the tub segment 6, the length compensation element 10 and the flanges 16a, 16b together. In this embodiment, the tub segments 6 are therefore connected directly to the length compensation elements 10. In the in Fig. 2 In the example shown, both the outwardly bent edge 13 of the tub segment 6 and the connecting section 14 of the length compensation element 10 have an electrically insulating coating 18 on the mutually facing sides 13z, 14z. In a simpler embodiment, only the outwardly bent edge 13 of the tub segment 6 or the connecting section 14 of the length compensation element 10 can have an electrically insulating coating 18 on the mutually facing sides 13z, 14z. The screws 15 are accommodated in a heat-resistant, for example ceramic, electrically insulating sleeve 19 in order to establish an electrically conductive connection from the bent edge 13 of the tub segment 6, 6c via the generally metallic flange 16a and via the screw 15 to the generally metallic flange 16b or to avoid the connecting section 14 of the length compensation element 10. The screw head 15a and the nut 17 are also electrically insulated from the flanges 16a, 16b. For example, the screw head 15 a and the nut 17 rest on bent edges of the electrically insulating sleeve 19.

In Fig. 2 ist zudem erkennbar, dass sich die elektrisch isolierende Beschichtung 18 an den einander zugewandten Seiten 13z, 14z des nach außen umgebogenen Rands 13 des Wannensegments 6 und des Verbindungsabschnitts 14 des Längenausgleichselements 10 in Bereichen 20 über die Berührungsfläche 21 zwischen dem nach außen umgebogenen Rand 13 des Wannensegments 6 und dem Verbindungsabschnitt 14 des Längenausgleichselements 10 hinaus erstreckt.In Fig. 2 it can also be seen that the electrically insulating coating 18 on the mutually facing sides 13z, 14z of the outwardly bent edge 13 of the tub segment 6 and the connecting section 14 of the length compensation element 10 in areas 20 over the contact surface 21 between the outwardly bent edge 13 of the Tub segment 6 and the connecting portion 14 of the length compensation element 10 also extends.

Fig. 3 zeigt einen Abschnitt einer anders konstruierten Ofenwanne 2 eines Ofens 1, in einem Schnitt in Längsrichtung L des Ofens 1, in einem vergrößerten Maßstab. Dabei ist erkennbar, dass das mit dem Längenausgleichselement 10 verschraubte Wannensegment 6 untrennbar mit einem ersten Flansch 22a verbunden bspw. verschweißt ist und das Längenausgleichselement 10 untrennbar mit einem zweiten Flansch 22b verbunden bspw. verschweißt ist. Der erste Flansch 22a und der zweite Flansch 22b liegen im montierten Zustand des Ofens 1 aneinander an und sind mittels Schrauben 15 die sich durch den ersten Flansch 22a und durch den zweiten Flansch 22b erstrecken miteinander verschraubt. Im in Fig. 3 dargestellten Beispiel weisen der erste Flansch 22a und der zweite Flansch 22b an den einander zugewandten Seiten 22az, 22bz eine elektrisch isolierende Beschichtung 18 auf. Die Schrauben 15 sind in einer elektrisch isolierenden Hülse 19 aufgenommen. Fig. 3 shows a section of a differently constructed furnace pan 2 of a furnace 1, in a section in the longitudinal direction L of the furnace 1, on an enlarged scale. It can be seen that the tub segment 6 screwed to the length compensation element 10 is inseparably connected to a first flange 22a, for example welded, and the length compensation element 10 is inseparably connected to a second flange 22b, for example welded. The first flange 22a and the second flange 22b lie against one another in the assembled state of the furnace 1 and are screwed to one another by means of screws 15 which extend through the first flange 22a and through the second flange 22b. In the in Fig. 3 In the illustrated example, the first flange 22a and the second flange 22b have an electrically insulating coating 18 on the mutually facing sides 22az, 22bz. The screws 15 are received in an electrically insulating sleeve 19.

Fig. 4 zeigt einen Abschnitt einer anders konstruierten Ofenwanne 2 eines Ofens 1, in einem Schnitt in Längsrichtung L des Ofens 1, in einem vergrößerten Maßstab. Gemäß dieser Konstruktion sind die Wannensegmente 6 untrennbar mit den Längenausgleichselementen 10 verbunden, vorzugsweise verschweißt. Insbesondere sind ein Ende E6 des Wannensegments 6 und ein Ende E10 des Längenausgleichselementes 10, welche Enden E6 und E10 einander zugewandt sind, miteinander untrennbar verbunden, vorzugsweise mittels einer Schweißnaht 23 miteinander verschweißt. Die elektrisch isolierende Beschichtung 9 des Wannensegments 6 und die elektrisch isolierende Beschichtung 12 des Längenausgleichselements 10 sind im dargestellten Beispiel auf das Wannensegment 6, auf das damit verbundene Längenausgleichselement 10 und auf die Schweißnaht 23 in Richtung zum Innenraum 7 der Ofenwanne 2 aufgebracht. Um einen allfälligen Stromfluss durch die Wannensegmente 6 und die Längenausgleichselemente 10 im Falle einer beschädigten elektrisch isolierenden Beschichtung 9, 12 einzugrenzen, kann das mit dem Längenausgleichselement 10 untrennbar verbundene Wannensegment 6 aus in Richtung vom ersten zum zweiten Stromkontakt 3a, 3b hintereinander angeordneten Segmentteilen 6x gebildet sein, wobei benachbarte Segmentteile 6x1, 6x2 des Wannensegments 6 über eine elektrisch isolierende Zwischenschicht 24 miteinander verbunden und voneinander elektrisch isoliert sind. Fig. 4 shows a section of a differently constructed furnace pan 2 of a furnace 1, in a section in the longitudinal direction L of the furnace 1, on an enlarged scale. According to this construction, the tub segments 6 are inseparably connected to the length compensation elements 10, preferably welded. In particular, one end E6 of the tub segment 6 and one end E10 of the length compensation element 10, which ends E6 and E10 face one another, are inseparably connected to one another, preferably welded to one another by means of a weld seam 23. The electrically insulating coating 9 of the tub segment 6 and the electrically insulating coating 12 of the length compensation element 10 are applied in the example shown to the tub segment 6, to the length compensation element 10 connected to it and to the weld seam 23 in the direction of the interior 7 of the furnace tub 2. In order to limit any current flow through the tub segments 6 and the length compensation elements 10 in the event of a damaged electrically insulating coating 9, 12, the tub segment 6 inseparably connected to the length compensation element 10 can be formed from segment parts 6x arranged one behind the other in the direction from the first to the second current contact 3a, 3b Adjacent segment parts 6x1, 6x2 of the tub segment 6 are connected to one another via an electrically insulating intermediate layer 24 and are electrically insulated from one another.

In einem Versuch wurde ein vorhandener 25 m langer Graphitierungsofen benutzt, welcher mit zwei elektrisch in Serie geschalteten Ofenwannen ausgeführt war. Die Ofenwannen bestanden aus metallischen und keramischen Segmenten. Die Serienschaltung der beiden Ofenwannen war dergestalt ausgeführt, dass die aus Graphit bestehenden Anschlusselektroden der beiden Ofenwannen auf einer Seite der Wannen elektrisch miteinander verbunden waren. Der Stromanschluss (Plus und Minusanschluss) war auf der gegenüberliegenden Seite der beiden Ofenwannen an die aus Graphit bestehenden Anschlusselektroden angebracht. Der Ofen wurde nun dergestalt behandelt, dass eine Ofenwanne (jene, die an der Plus-Seite des elektrischen Anschlusses angekoppelt war) komplett mit einer keramischen Beschichtung mittels einer Airless-Farbspritzanlage mit 0,15 mm Nassfilmdicke beschichtet wurde. Die Beschichtung war folgendermaßen hergestellt: In einem Dissolver wurden im Rührkessel 30 Masseanteile an flüssigem kolloidalem Kieselsol mit 40 % Festkörperanteil (Korngröße 10 nm) als Bindemittel und 10 Massenteile Wasser vorgelegt. In diese Flüssigkeit wurde ein Feststoffgemisch von 40 Massenteilen Magnesiumoxid mit einer mittleren Korngröße d50= 4 µm (d90= 13 µm) und 20 Massenteilen Glaspulver mit einer mittleren Korngröße von 4 µm (d98 =17 µm) und 0,3 Massenteilen Methylzellulose als Verdicker eingebracht und suspendiert, wobei die Drehzahl der Dissolverscheibe während des Pulvereintrags stetig bis auf 12 m/sec gesteigert wurde und mit dieser Drehzahl 10 Minuten dispergiert wurde. Die andere Ofenwanne (jene, die an der Minus-Seite des elektrischen Anschlusses angekoppelt war) blieb unbeschichtet. In beide Ofenwannen wurde für die Graphitierung das gleiche Ausgangsmaterial eingebaut, jeweils 77 Elektroden in jede Wanne. Nach dem Einschalten der Stromversorgung wurden die eingebauten Formkörper bis auf 3000 °C aufgeheizt. Nach dem Graphitieren wurden die Elektroden endbearbeitet und der elektrische Widerstand gemessen. Es zeigte sich, dass jene Graphitelektroden die in der beschichteten Wanne graphitiert worden sind im Mittel einen um 0,05[µOhmm] geringeren elektrischen Widerstand aufwiesen als jene Elektroden, welche in der unbeschichteten Wanne graphitiert worden sind.In an experiment, an existing 25 m long graphitization furnace was used, which was designed with two furnace tanks electrically connected in series. The furnace pans consisted of metallic and ceramic segments. The series connection of the two furnace pans was designed in such a way that the connection electrodes, made of graphite, of the two furnace pans one side of the tubs were electrically connected to each other. The power connection (plus and minus connection) was attached to the graphite connection electrodes on the opposite side of the two furnace pans. The oven was now treated in such a way that an oven pan (the one that was coupled to the plus side of the electrical connection) was completely coated with a ceramic coating using an airless paint spraying system with a wet film thickness of 0.15 mm. The coating was produced as follows: 30 parts by mass of liquid colloidal silica sol with 40% solids content (grain size 10 nm) as binder and 10 parts by mass of water were placed in a dissolver in a stirred tank. A solid mixture of 40 parts by mass of magnesium oxide with an average grain size d50 = 4 µm (d90 = 13 µm) and 20 parts by mass of glass powder with an average particle size of 4 µm (d98 = 17 µm) and 0.3 parts by mass of methyl cellulose was introduced into this liquid as a thickener and suspended, the speed of the dissolver disk being increased steadily up to 12 m / sec during the powder introduction and dispersing was carried out at this speed for 10 minutes. The other furnace pan (the one that was connected to the minus side of the electrical connection) remained uncoated. The same starting material was built into both furnace tanks for graphitization, 77 electrodes in each tank. After switching on the power supply, the built-in moldings were heated up to 3000 ° C. After graphitization, the electrodes were finished and the electrical resistance measured. It was found that those graphite electrodes that were graphitized in the coated tub had an average electrical resistance of 0.05 [μOhmm] lower than those electrodes that were graphitized in the uncoated tub.

Claims (10)

  1. Furnace (1) comprising at least one furnace tub (2) in which a first current contact (3a) and a second current contact (3b) that are electrically insulated from the furnace tub (2) are provided, the furnace tub (2) being formed from tub segments (6) which are arranged one behind the other from the first current contact (3a) to the second current contact (3b) and are spaced apart from one another, which tub segments (6) are at least partially made of metal and comprise an electrically insulating coating (9) on the inside (8) thereof facing the interior (7) of the furnace tub (2), characterised in that adjacent tub segments (6) are interconnected via a length compensation element (10) arranged between mutually facing ends of the adjacent tub segments (6), which length compensation element (10) is at least partially made of metal, comprises an electrically insulating coating (12) on the inside (11) thereof facing the interior (7) of the furnace tub (2), and is deflected perpendicularly to the inside (8) of the tub segments (6).
  2. Furnace (1) according to claim 1, characterised in that the tub segments (6) are electrically insulated from the length compensation element (10) connected thereto.
  3. Furnace (1) according to either claim 1 or claim 2, characterised in that the length compensation element (10) has a meandering shape.
  4. Furnace (1) according to any of claims 1 to 3, characterised in that at least one tub segment (6) is detachably screwed to a length compensation element (10).
  5. Furnace (1) according to claim 4, characterised in that the tub segment (6) screwed to the length compensation element (10) has an outwardly bent edge (13) against which a connecting portion (14) of the length compensation element (10) rests, and at least one screw (15) extends through the bent edge (13) of the tub segment (6), the connecting portion (14) of the length compensation element (10) and through two flanges (16a, 16b) which rest against the sides (13a, 14a) of the bent edge (13) of the tub segment (6) and the connecting portion (14) of the length compensation element (10) that face away from one another.
  6. Furnace (1) according to claim 5, characterised in that the outwardly bent edge (13) of the tub segment (6) and the connecting portion (14) of the length compensation element (10) also comprise an electrically insulating coating (18) on the mutually facing sides (13z, 14z) and the at least one screw (15) is received in an electrically insulating sleeve (19).
  7. Furnace (1) according to claim 6, characterised in that the electrically insulating coating (18) on the mutually facing sides (13z, 14z) of the outwardly bent edge (13) of the tub segment (6) and the connecting portion (14) of the length compensation element (10) extends over the contact surface (21) between the outwardly bent edge (13) of the tub segment (6) and the connecting portion (14) of the length compensation element (10).
  8. Furnace (1) according to claim 4, characterised in that the tub segment (6) screwed to the length compensation element (10) is non-detachably connected to a first flange (22a) against which a second flange (22b) non-detachably connected to the length compensation element (10) rests, and at least one screw (15) extends through the first flange (22a) and through the second flange (22b).
  9. Furnace (1) according to claim 8, characterised in that the first flange (22a) and the second flange (22b) comprise an electrically insulating coating (18) on the mutually facing sides (22az, 22bz) and the at least one screw (15) is received in an electrically insulating sleeve (19).
  10. Furnace (1) according to any of claims 1 to 9, characterised in that the electrically insulating coating (9, 12, 18) comprises enamel or at least one of magnesium oxide, chamotte or glasses, comprising heat-resistant binders, preferably potassium water glass, sodium water glass, silica sol, silicone resins, inorganic phosphates, for example aluminium phosphate or magnesium phosphate, water-soluble aluminates or water-soluble aluminosilicates.
EP18154874.4A 2018-02-02 2018-02-02 Oven Active EP3521740B8 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18154874.4A EP3521740B8 (en) 2018-02-02 2018-02-02 Oven
ES18154874T ES2879831T3 (en) 2018-02-02 2018-02-02 Kiln
PL18154874T PL3521740T3 (en) 2018-02-02 2018-02-02 Oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18154874.4A EP3521740B8 (en) 2018-02-02 2018-02-02 Oven

Publications (3)

Publication Number Publication Date
EP3521740A1 EP3521740A1 (en) 2019-08-07
EP3521740B1 true EP3521740B1 (en) 2021-04-07
EP3521740B8 EP3521740B8 (en) 2021-07-07

Family

ID=61157080

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18154874.4A Active EP3521740B8 (en) 2018-02-02 2018-02-02 Oven

Country Status (3)

Country Link
EP (1) EP3521740B8 (en)
ES (1) ES2879831T3 (en)
PL (1) PL3521740T3 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394766A (en) 1981-08-03 1983-07-19 Great Lakes Carbon Corporation Graphitization system method and apparatus
IT1191877B (en) * 1986-04-30 1988-03-23 Elettrocarbonium Spa IMPROVEMENT IN MOBILE GRAPHING OVENS
US5299225A (en) 1992-05-20 1994-03-29 Sigri Great Lakes Carbon Corp. Graphitization furnace
US5631919A (en) 1995-11-21 1997-05-20 Ucar Carbon Technology Corporation Apparatus for lengthwise graphitization (LWG) of carbon electrode bodies
AT411798B (en) 2002-04-16 2004-05-25 Sgl Carbon Gmbh & Co METHOD FOR THE RECHARGING AND GRAPHATION OF CARBON-IMPREGNATED CARBON BODIES IN A PROCESS STEP AND OVEN TUBE FOR CARRYING OUT THIS PROCESS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3521740B8 (en) 2021-07-07
PL3521740T3 (en) 2021-09-06
EP3521740A1 (en) 2019-08-07
ES2879831T3 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
DE69025955T2 (en) HIGH TEMPERATURE DIFFUSION OVENS
DE7727148U1 (en) COMPOSED ELECTRODE FOR ARC FURNACES
EP3777473B1 (en) Ceramic heating resistance, electrical heating element and apparatus for heating a fluid
DE3413745C2 (en) DC arc furnace
DE3709905A1 (en) USE FOR A REFINING OVEN
DE69611971T2 (en) Device and method for graphitizing electrode bodies made of carbon in the longitudinal direction
EP3521740B1 (en) Oven
EP0440899A1 (en) Refractory nozzle
DE3601014A1 (en) METHOD AND DEVICE FOR CONTINUOUS STRAND GRAPHING OF CARBON MOLDED BODIES
DE69401814T2 (en) DEVICE FOR FEEDING A METAL MELT, IN PARTICULAR CAST IRON, IN A CASTING MACHINE, AND CASTING MACHINE EQUIPPED WITH THE SAME MELT FEEDING
DE69623868T2 (en) Graphite electrode with connection
EP0217208A2 (en) Bottom of an electric smelt furnace, in particular of a direct current one
DE102011077172A1 (en) Microwave oven for sintering e.g. uranium dioxide-based nuclear fuel pellets, has gutter-shaped heating element provided in resonator chamber and heatable by microwaves prevalent in resonator chamber
DE2616555A1 (en) CYLINDER-SHAPED LONG EXTENDED FURNACE FOR THE TREATMENT OF MATERIAL AT HIGH TEMPERATURE IN A GAS ATMOSPHERE UNDER HIGH PRESSURE
DE2630198C2 (en) Furnace with direct electrical resistance heating for the production of silicon carbide
DE529118C (en) Metal-reinforced continuous carbon electrode for electric ovens
DE3855704T2 (en) Radiant heater.
EP2182284A1 (en) Electrode arrangement
DE10326711B4 (en) Device for drying a lining mass
DE2057747B2 (en) Electric heating element made of a heat and oxidation resistant material
DE3840827A1 (en) ELECTROTHERMIC REDUCTION STOVES
CH639577A5 (en) SLIDER PLATE FOR SLIDING LATCHES ON CONTAINERS CONTAINING METAL MELT AND METHOD FOR THE PRODUCTION OF SUCH SLIDING PLATES.
EP0530932B1 (en) Metallurgical container for a DC arc installation
DE3243780A1 (en) Heating body and process for its production
DE3036429C2 (en) Ceramic capacitor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200123

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200511

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1380223

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004592

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2879831

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210708

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210809

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004592

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220202

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018004592

Country of ref document: DE

Owner name: RESONAC GRAPHITE AUSTRIA GMBH, AT

Free format text: FORMER OWNER: SHOWA DENKO CARBON AUSTRIA GMBH, BAD GOSIERN AM HALLSTAETTERSEE, AT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 1380223

Country of ref document: AT

Kind code of ref document: T

Owner name: RESONAC GRAPHITE AUSTRIA GMBH, AT

Effective date: 20230317

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: RESONAC GRAPHITE AUSTRIA GMBH

Effective date: 20230522

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

P02 Opt-out of the competence of the unified patent court (upc) changed

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231124

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240307

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240209

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240226

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231128

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407